
Journal of Computer and System Sciences 115 (2021) 187–213
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Approximating partition functions of bounded-degree Boolean

counting Constraint Satisfaction Problems ✩

Andreas Galanis ∗, Leslie Ann Goldberg, Kuan Yang

Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 May 2017
Received in revised form 19 August 2020
Accepted 19 August 2020
Available online 27 August 2020

Keywords:
Constraint satisfaction
Approximate counting
Hardness of approximation

We study the complexity of #CSP�(�), which is the problem of counting satisfying
assignments to CSP instances with constraints from � and whose variables can appear
at most � times. Our main result shows that: (i) if every function in � is affine, then
#CSP�(�) is in FP for all �, (ii) otherwise, if every function in � is in a class called I M2,
then for large �, #CSP�(�) is equivalent under approximation-preserving reductions to
the problem of counting independent sets in bipartite graphs, (iii) otherwise, for large �,
it is NP-hard to approximate #CSP�(�), even within an exponential factor.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Constraint Satisfaction Problems (CSPs), which originated in Artificial Intelligence [21] provide a general framework for
modelling decision, counting and approximate counting problems. The paradigm is sufficiently general that applications
from diverse areas such as database theory, scheduling and graph theory can all be captured (see, for example, [17,18,20]).
Moreover, all graph homomorphism decision and counting problems [15] can be re-cast in the CSP framework and partition
function problems from statistical physics [25] can be represented as counting CSPs. Given the usefulness of CSPs, the study
of the complexity of CSPs is an extremely active area in computational complexity (for example, see [3] and the references
therein).

In this paper, we will be concerned with Boolean counting CSPs. An instance I = (V , C) of a Boolean counting CSP
consists of a set V of variables and a set C of constraints. An assignment σ : V → {0, 1} assigns a Boolean value called a
“spin” to each variable. Each constraint associates a tuple (v1, . . . , vk) of variables with a Boolean relation which constrains
the spins that can be assigned to v1, . . . , vk . In particular, the assignment σ is said to “satisfy” the constraint if the tuple
(σ (v1), . . . , σ(vk)) is in the corresponding relation. An assignment is said to be “satisfying” if it satisfies all constraints. A
Constraint Satisfaction Problem comes with two important parameters — the constraint language � is the set of all relations
that may be used in constraints and the degree � is the maximum number of times that any variable v ∈ V may be used
in constraints in any instance. The number of satisfying assignments is denoted Z I . The computational problem #CSP�(�)

is the problem of computing Z I , given a CSP instance I with constraints in � and degree at most �. We use #CSP(�) to
denote the version of the problem in which the degree of instances is unconstrained.

✩ A preliminary announcement of these results appeared in the proceedings of ICALP 2017. The research leading to these results has received funding
from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) ERC grant agreement no. 334828. The
paper reflects only the authors’ views and not the views of the ERC or the European Commission. The European Union is not liable for any use that may
be made of the information contained therein.

* Corresponding author.
E-mail address: andreas.galanis@cs.ox.ac.uk (A. Galanis).
https://doi.org/10.1016/j.jcss.2020.08.003
0022-0000/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2020.08.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2020.08.003&domain=pdf
mailto:andreas.galanis@cs.ox.ac.uk
https://doi.org/10.1016/j.jcss.2020.08.003

188 A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213
Although constraints are supported by Boolean relations, they can be used to code up weighted interactions such as those
that arise in statistical physics. For example, let R be the “not-all-equal” relation of arity 3. Then consider the conjunction of
R(x, a, b) and R(y, a, b). There are two satisfying assignments with σ(x) = 0 and σ(y) = 1 since σ(a) and σ(b) must differ.
Similarly, there are two satisfying assignments with σ(x) = 1 and σ(y) = 0. On the other hand, there are three satisfying
assignments with σ(x) = σ(y) = 1 and there are three satisfying assignments with σ(x) = σ(y) = 0. Thus, the induced
interaction on the variables x and y is the same as the interaction of the ferromagnetic Ising model (at an appropriate
temperature) — an assignment in which x and y have the same spin has weight 3, whereas an assignment where they have
different spins has weight 2.

For every � ≥ 3, the work of Cai, Lu and Xia [6] completely classifies the complexity of exactly solving #CSP�(�),
depending on the parameter �. If every relation in � is affine, then #CSP�(�) is solvable in polynomial time (so the
problem in the complexity class FP). Otherwise, it is #P-complete. The term “affine” will be defined in Section 2. Roughly,
it means that the tuples in the relation are solutions to a linear system, so Gaussian elimination gives an appropriate
polynomial-time algorithm. The characterisation of Cai, Lu and Xia is exactly the same classification that was obtained for
the unbounded problem #CSP(�) by Creignou and Hermann [7]. Thus, as far as exact counting is concerned, the degree-
bound � does not affect the complexity as long as � ≥ 3. As Cai, Lu and Xia point out, the dichotomy is false for � = 2,
where #CSP2(�) is equivalent to the Holant problem Holant(�) — see the references in [6] for more information about
Holant problems.

Much less is known about the complexity of approximately solving #CSP�(�). In fact, even the decision problem is still
open. While Schaefer [22] completely classified the complexity of the decision problem CSP(�) — where the goal is to
determine whether or not Z I is 0 for an instance of #CSP(�) — the complexity of the corresponding decision problem
CSP�(�), where the instance has degree at most �, is still not completely resolved. For � ≥ 3, Dalmau and Ford [10]
have solved the special case where � includes both of the relations Rδ0 = {0} and Rδ1 = {1}. This special case is known as
the “conservative case” in the CSP literature. For � ≥ 6, Dyer et al. [12] have classified the difficulty of the approximation
problem:

• If every relation in � is affine, then #CSP�(� ∪ {Rδ0 , Rδ1 }) is in FP.
• Otherwise, if every relation in � is in a class called I M2 (a class which will be defined in Section 2) then #CSP�(� ∪

{Rδ0 , Rδ1 }) is equivalent under approximation-preserving (AP) reductions to the counting problem #BIS (the problem of
counting independent sets in bipartite graphs).

• Otherwise, there is no FPRAS for #CSP�(� ∪ {Rδ0 , Rδ1 }) unless NP = RP.

Dyer et al. made only partial progress on the cases where � ∈ {3, 4, 5}. We refer the reader to [12,19] for a discussion of
the partial classification. However, it is worth noting here that the complexity of #CSP�(� ∪ {Rδ0 , Rδ1 }) is closely related to
the complexity of counting satisfying assignments of so-called read-d Monotone CNF Formulas. Crucial progress was made
by Liu and Lu [19], who completely resolved the complexity of the latter problem. Given the work of Liu and Lu, a complete
classification of #CSP�(� ∪ {Rδ0 , Rδ1 }) for � ∈ {3, 4, 5} may be in reach.

The restriction that Rδ0 and Rδ1 are contained in � is a severe one because it does not apply to many natural applications.
On the other hand, we are a long way from a precise understanding of the complexity of #CSP�(�) without this restriction
because there are specific, relevant parameters that we do not understand. For example, for a positive integer k, let � be the
singleton set containing only the arity-k “not-all-spin-1” relation. Then satisfying assignments of an instance of #CSP�(�)

correspond to independent sets of a k-uniform hypergraph with maximum degree �. The current state-of-the-art for this
problem is that there is an FPRAS for � = O (2k/2) [16] and that the problem is NP-hard to approximate for � = �(2k/2)

[1]; the implicit constants in these bounds do not currently match and thus, for large k, there is a large range of �’s where
we do not yet know the complexity of approximating #CSP�(�). If � instead contains (only) the arity-k “at-least-one-spin-
0” relation then satisfying assignments of an instance of #CSP�(�) correspond to the so-called “strong” independent sets
of a k-uniform hypergraph. Song, Yin and Zhao [23] have presented a barrier for hardness results, showing why current
technology is unsuitable for resolving the cases where � ∈ {4, 5} (roughly, these cases are in “non-uniqueness”, but this is
not realisable by finite gadgets).

The purpose of the present paper is to remove the severe restriction that Rδ0 and Rδ1 are contained in � in the approxi-
mate counting classification of #CSP�(�) from [12]. Since pinning down precise thresholds seems a long way out of reach,
we instead focus on whether there is a “barrier” value �0 such that, for all � ≥ �0, approximation is intractable. Since
we wish to get the strongest possible inapproximability results (showing the hardness of approximating Z I even within an
exponential factor), we define the following computational problem, which has an extra parameter c > 1 that captures the
desired accuracy.

Name #CSP�,c(�).
Instance An n-variable instance I of a CSP with constraint language � and degree at most �.
Output A number Ẑ such that c−n Z I ≤ Ẑ ≤ cn Z I .

Although we have not yet defined all of the terms, we can now at least state (a weak version of) our result.

A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213 189
Theorem 1. Let � be a Boolean constraint language. Then,

1. If every relation in � is affine then #CSP(�) is in FP.
2. Otherwise, if every relation in � is in the class I M2 , then there exists an integer �0 such that for all � ≥ �0 , #CSP�(�) is

#BIS-equivalent under AP-reductions.
3. Otherwise, there exists an integer �0 such that for all � ≥ �0 , there exists a real number c > 1 such that #CSP�,c(�) is NP-hard.

After defining all of the terms, we will state a stronger theorem, Theorem 6, which immediately implies Theorem 1. The
stronger version applies to the #CSP problems that we have already introduced, but it also applies to other restrictions of
these problems, which have even more applications.

We now explain the restriction. Note that in the CSP framework, as we have defined it, the variables that are constrained
by a given constraint need not be distinct. Thus, if the arity-4 relation R is present in a constraint language �, then an
instance of #CSP(�) with variables x and y may contain a constraint such as R(x, x, y, x). This ability to repeat variables is
equivalent to assuming that equality relations of all arities are present in �. This feature of the CSP definition is inconvenient
for two reasons: (1) It does not fit well with some spin-system applications, and (2) In many settings, it obscures the
nuanced complexity classification that arise.

As an example of (1), recall the application where � is the singleton set containing only the arity-k “not-all-spin-1”
relation. As we noted earlier, satisfying assignments of a #CSP(�) instance correspond to independent sets of a k-uniform
hypergraph. Here, hyperedges are size-k subsets of vertices and it does not make sense to allow repeated vertices!

The point (2) is well-known. In fact, the “equality is always present” assumption is the main feature that separates #CSPs
from the more general Holant framework [4].

In our current setting, it turns out that adding equality functions to � does not change the complexity classification,
but this is a result of our theorems rather than an a priori assumption — indeed, determining which constraint languages
� can appropriately simulate equality functions is one of the difficulties — thus, throwing equalities in “for free” would
substantially weaken our results! Our main result, Theorem 6, which will be presented in Section 2, applies both to the
#CSPs that we have already defined, and to more refined versions, in which constraints may not repeat variables.

We wish now to discuss an important special case in which both the #CSPs and the refined versions have already been
studied. This is the special case in which � consists of a single relation which is symmetric in its arguments. A symmetric
relation that is not affine is not in I M2. Therefore, Item 2 in the statement of Theorem 1 never arises in this special case.
Our earlier paper [14] shows that, in this case (where � consists of a single, symmetric, non-affine relation) there is an
integer �0 such that for all � ≥ �0, there exists a real number c > 1 such that #CSP�,c(�) is NP-hard.

While the work of [14] is important for this paper, note that the special case is far from general — in particular, it
is easy to induce asymmetric constraints using symmetric ones. For example, suppose that R1 is the (symmetric) arity-2
“not-all-spin-1” constraint, R2 is the (symmetric) arity-2 “not the same spin” constraint and R3 = {(0, 0), (0, 1), (1, 1)} is the
(asymmetric) arity-2 “Implies” constraint. Then the conjunction of R1(x, a) and R2(a, y) induces R3(x, y).

It is interesting that Theorem 1 is exactly the same classification that was obtained for the unbounded problem #CSP(�)

by Dyer et al. [13]. In particular, they showed

1. If every relation in � is affine then #CSP(�) is in FP.
2. Otherwise, if every relation in � is in the class I M2, then #CSP(�) is #BIS-equivalent under AP-reductions.
3. Otherwise, #CSP(�) is #SAT-equivalent under AP-reductions, where #SAT is the problem of counting the satisfying

assignments of a Boolean formula.

The inapproximability that we demonstrate in Item 3 of Theorem 1 is stronger than what was known in the unbounded
case, both (obviously) because of the degree bound, but also because we show that it is hard to get within an exponential
factor. (This strong kind of inapproximability was also missing from the results of [12].)

2. Definitions and statement of main result

Before giving formal definitions of the problems that we study, we introduce some notation. We use boldface letters to
denote Boolean vectors. A pseudo-Boolean function is a function of the form f : {0, 1}k → R≥0 for some positive integer k,
which is called the arity of f .

Definition 2. Given a pseudo-Boolean function f : {0, 1}k → R≥0, we use the notation R f to denote the relation R f = {x ∈
{0, 1}k | f (x) > 0}, which is the relation underlying f .

If the range of f is {0, 1} then f is said to be a Boolean function and of course in that case R f = {x ∈ {0, 1}k | f (x) = 1}.
In order to allow consistency with obvious generalisations, our formal definition of the Boolean Constraint Satisfaction

Problem is in terms of Boolean functions (rather than, equivalently, using the underlying relations).
A Constraint language � is a set of pseudo-Boolean functions. It is a Boolean constraint language if all of the functions in

it are Boolean functions. An instance I = (V , C) of a CSP with constraint language � consists of a set V of variables and

190 A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213
a set C of constraints. Each constraint Ci ∈ C is of the form f i(vi,1, . . . , vi,ki) where f i is an arity-ki function in � and
(vi,1, . . . , vi,ki) is a tuple of (not necessarily distinct) variables in V . The constraint Ci is said to be “Repeat-Free” if all of
the variables are distinct. Each assignment σ : V → {0, 1} of Boolean values to the variables in V has a weight

w I (σ) :=
∏

f i(vi,1,...,vi,ki
)∈C

f i(σ (vi,1), . . . , σ (vi,ki)).

The partition function maps the instance I to the quantity

Z I :=
∑

σ :V →{0,1}
w I (σ) =

∑
σ :V →{0,1}

∏
f i(vi,1,...,vi,ki

)∈C
f i(σ (vi,1), . . . , σ (vi,ki)).

If � is a Boolean constraint language then it is easy to see that w I (σ) = 1 if the assignment is satisfying and w I (σ) = 0,
otherwise. Thus, Z I is the number of satisfying assignments of I .

When Z I > 0, we will use μI (·) to denote the Gibbs distribution corresponding to Z I . This is the probability distribution
on the set of assignments σ : V → {0, 1} such that

μI (σ) = w I (σ)

Z I
for all σ : V → {0,1}.

The degree dv (C) of a variable v in a constraint C is the number of times that the variable v appears in the tuple
corresponding to C and the degree dv of the variable is dv = ∑

C∈C dv (C). Finally, the degree of the instance I is maxv∈V dv .

Definition 3. #CSP�(�) is the problem of computing Z I , given a CSP instance I with constraints in � and degree at most �.
#CSP(�) is the version of the problem in which the degree of instances is unconstrained. #CSP�,c(�) has an extra parame-
ter c > 1 that captures the desired accuracy. The problem is to compute a number Ẑ such that c−n Z I ≤ Ẑ ≤ cn Z I , where n is
the number of variables in the instance I . The problems #NoRepeatCSP�(�), #NoRepeatCSP(�) and #NoRepeatCSP�,c(�)

are defined similarly, except that inputs are restricted so that all constraints are Repeat-Free.

Definition 4. A Boolean function f : {0, 1}k → {0, 1} is affine if there is a k × k Boolean matrix A and a length-k Boolean
vector b such that R f is equal to the set of solutions x of Ax = b over GF(2).

Definition 5 (The set of functions I M2). A Boolean function f : {0, 1}k → {0, 1} is in I M2 if f (x1, . . . , xk) is logically equivalent
to a conjunction of (any number of) predicates of the form xi , ¬xi or xi ⇒ x j .

We have now defined all of the terms in our main theorem apart from some well-known concepts from complexity
theory, which we discuss next. FP is the class of computational problems (with numerical output) that can be solved in
polynomial time. An FPRAS is a randomised algorithm that produces approximate solutions within specified relative error
with high probability in polynomial time. For two counting problems #A and #B, we say that #A is #B-easy if there is an
approximation-preserving (AP)-reduction from #A to #B. The formal definition of an AP-reduction can be found in [11]. It is
a randomised Turing reduction that yields close approximations to #A when provided with close approximations to #B. The
definition of AP-reduction meshes with the definition of FPRAS in the sense that the existence of an FPRAS for #B implies
the existence of an FPRAS for #A. We say that #A is #B-hard if there is an AP-reduction from #B to #A. Finally, we say that
#A is #B-equivalent if #A is both #B-easy and #B-hard.

The problem of counting satisfying assignments of a Boolean formula is denoted by #SAT. Every counting problem in #P
is AP-reducible to #SAT, so #SAT is said to be complete for #P with respect to AP-reductions. It is known that there is no
FPRAS for #SAT unless RP = NP. The problem of counting independent sets in a bipartite graph is denoted by #BIS. The
problem #BIS appears to be of intermediate complexity: there is no known FPRAS for #BIS (and it is generally believed that
none exists) but there is no known AP-reduction from #SAT to #BIS. Indeed, #BIS is complete with respect to AP-reductions
for a complexity class #RH�1.

Given all of these definitions, we now formally state the stronger version of Theorem 1 promised in the introduction.
The proof can be found in Section 9.

Theorem 6. Let � be a Boolean constraint language. Then,

1. If every function in � is affine then #CSP(�) and #NoRepeatCSP(�) are both in FP.
2. Otherwise, if � ⊆ I M2 , then there exists an integer �0 such that for all � ≥ �0 , #CSP�(�) and #NoRepeatCSP�(�) are both

#BIS-equivalent under AP-reductions, and
3. Otherwise, there exists an integer �0 such that for all � ≥ �0 , there exists a real number c > 1 such that #CSP�,c(�) and

#NoRepeatCSP�,c(�) are both NP-hard.

A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213 191
3. Overview of the proof of Theorem 6

In this section, we give a non-technical overview of the proof of Theorem 6. Our objective is to illustrate the main ideas
and obstacles without delving into the more detailed definitions. A more technical overview can be found in Section 5. Our
focus in this section will be on the case where � consists of a single Boolean function f : {0, 1}k → {0, 1}. As will be clear
in Section 9, this case is the main ingredient in the proof of the theorem.

A typical approach for showing that a counting CSP is intractable is to use an instance of the CSP to build a “gad-
get” which simulates an intractable binary 2-spin constraint. This was the approach used in [14], which proved the
intractability of #NoRepeatCSP�({ f }) for any symmetric non-affine Boolean function f by constructing an instance I of
#NoRepeatCSP�({ f }), along with variables x and y, such that for all spins sx ∈ {0, 1} and sy ∈ {0, 1} the marginal distribu-
tion μI (x, y) satisfies

μI (σ (x) = sx,σ (y) = sy) = g(sx, sy)

g(0,0) + g(0,1) + g(1,0) + g(1,1)
, (1)

where g is a binary function that codes up the interaction of an intractable anti-ferromagnetic 2-spin system. We will not
need to give detailed definitions of 2-spin systems in this paper. Instead, we give a sufficient condition for intractability.

Definition 7. A binary function g : {0, 1}2 →R≥0 is said to be “hard” if all of the following hold:

g(0,0) + g(1,1) > 0,

min{g(0,0), g(1,1)} <
√

g(0,1)g(1,0),

max{g(0,0), g(1,1)} ≤ √
g(0,1)g(1,0).

It was established in [14] that the ability to “simulate” a hard function g in the sense of (1) ensures that
#NoRepeatCSP�({ f }) is NP-hard to approximate, even within an exponential factor.

A key feature of symmetric Boolean functions f which facilitated such simulation in [14] was the fact that the class of
relevant hard functions g is well-behaved, and it turned out that it suffices to encode such a hard binary function with only
ε-accuracy, for some sufficiently small ε > 0, and this was enough to ensure the NP-hardness of #CSP�,c({ f }).

The main obstacle in adapting the approach of [14] to the case where f need not be symmetric in its arguments arises
when f is in I M2. It is unlikely that such a function f can simulate a hard function g in the sense of (1) — indeed such a
simulation would prove the (very surprising) result that #BIS does not have an FPRAS (unless NP = RP). Thus, for f ∈ I M2,
we need instead to encode a binary function which will allow us to connect the problem #NoRepeatCSP�({ f }) to #BIS.

Now consider the binary Boolean function Implies whose underlying relation R Implies = {(0, 0), (0, 1), (1, 1)} contains all
(x, y) satisfying x ⇒ y. Obviously, Implies is not symmetric, and it is not hard according to Definition 7. On bipartite in-
stances, however, the symmetry can be restored by interpreting differently the spins 0 and 1 on the two parts of the graph,
and this leads to a connection with #BIS. In particular, it is well-known [13] that #CSP({Implies}) is equivalent to #BIS
under AP-reductions. This connection was extended to the bounded-degree setting by [5].

Unfortunately, the symmetrisation which connects #CSP({Implies}) to #BIS is not very robust. For example, suppose that
a (non-symmetric) Boolean function f can be used to simulate, in the sense of (1), a binary function g which is very close
to Implies. In particular, suppose that for some ε > 0 and ε1, ε2, ε3, ε4 satisfying |εi | ≤ ε for i = 1, 2, 3, 4, we have

g(0,0) = 1 + ε1, g(0,1) = 1 + ε2,

g(1,0) = ε3, g(1,1) = 1 + ε4.

Such a close approximation is about the best that can be expected using the kind of approximate encodings that are avail-
able. However, the complexity of asymmetric 2-spin systems is not sufficiently well understood to exploit such a simulation.
Surprisingly, for any arbitrarily small constant ε > 0, it is not known even whether the unbounded degree version #CSP({g})
is #BIS-hard, and certainly nothing is known in our bounded-degree setting! The trouble is that the symmetrisation that
works for Implies (i.e., when εi = 0 for i = 1, 2, 3, 4) is no longer guaranteed to symmetrise the imperfect version with the
εi ’s, so the swapping of spin-0 and spin-1 values on one side of the bipartite graph leads to an asymmetric 2-spin system
on bipartite graphs and this does not fall into the scope of known results [5] concerning bounded-degree bipartite 2-spin
systems.

Our approach to handle this problem for f ∈ I M2 is to carefully ensure that there is no accuracy error ε in encoding the
function Implies. In other words, we show that, using f ∈ I M2, we can encode Implies perfectly, a task which is surprisingly
intricate in the repeat-free setting. Our main technical theorem, Theorem 17, achieves this goal. Namely, it shows that,
for every non-affine Boolean function f , either f simulates a hard function (with arbitrarily small accuracy-error ε , which
leads to the desired intractability of #NoRepeatCSP�({ f })) or else f “supports perfect equality” — a concept which will
be defined later, but essentially means that f can be used to perfectly simulate the binary function EQ with underlying
relation REQ = {(0, 0), (1, 1)}. Using EQ, it is possible to simulate repeated variables in constraints, so the #BIS-hardness of
#CSP�({ f }) follows from [13]. When f /∈ I M2 but f supports perfect equality, instead of reducing to the work in [13], we
work somewhat harder to make sure that we also get the strong (exponential factor) inapproximability given in Theorem 6.

192 A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213
4. Pinning, equality and simulating functions

We will often be interested in the case where � contains a single function f : {0, 1}k → R≥0. In this case, we can we
simplify the notation because the constraints in an instance I are in one-to-one correspondence with k-tuples of variables
(there is no need to repeat the name of the function f in each constraint). So, for convenience, we make the following
definitions.

A k-tuple hypergraph H = (V , F) consists of a set V of vertices, together with a set F of hyperarcs, where ev-
ery hyperarc in F is a k-tuple of distinct vertices in V . The degree of H is the maximum, over all vertices v ∈ V ,
of the number of hyperarcs that contain v . Given a function f : {0, 1}k → R≥0, we let I f (H) denote the instance of
#NoRepeatCSP({ f }) whose constraints correspond to the hyperarcs of H . Given an assignment σ : V → {0, 1} we de-
fine w f ;H (σ) := ∏

(v1,...,vk)∈F f (σ (v1), . . . , σ(vk)) and Z f ;H := ∑
σ :V →{0,1} w f ;H (σ), so Z I f (H) = Z f ;I f (H) . By analogy to

the Gibbs distribution on satisfying assignments, when Z f ;H > 0, we use μ f ;H (·) to denote the probability distribution
in which, for all assignments σ : V → {0, 1}, μ f ;H (σ) = w f ;H (σ)/Z f ;H . Given a function f : {0, 1}k → R≥0, a positive
integer �, and a real number c > 1, the following computational problems are equivalent to #NoRepeatCSP�({ f }) and
#NoRepeatCSP�,c({ f }), respectively.

Name #Multi2Spin�(f).
Instance A k-tuple hypergraph H with degree at most �.
Output The partition function Z f ;H .

Name #Multi2Spin�,c(f).
Instance An n-vertex k-tuple hypergraph H with degree at most �.
Output A number Ẑ such that c−n Z f ;H ≤ Ẑ ≤ cn Z f ;H .

The name #Multi2Spin�(f) indicates that the problem is to compute the partition function of a 2-spin system with
multi-body interactions specified by f and degree-bound �.

4.1. Supporting pinning and equality

Let k be a positive integer and let H = (V , F) be a k-tuple hypergraph. Given a configuration σ : V → {0, 1} and a subset
T ⊆ V , we will use σT to denote the restriction of σ to vertices in T . For a vertex v ∈ V , we will also use σv to denote the
spin σ(v) of vertex v in σ . The following definitions are generalisations of definitions from [14].

Definition 8. Let f : {0, 1}k → R≥0. Suppose that ε ≥ 0 and s ∈ {0, 1}. The k-tuple hypergraph H is an ε-realisation of
pinning-to-s if there exists a vertex v of H such that μ f ;H (σv = s) ≥ 1 − ε .

Definition 9. Let f : {0, 1}k → R≥0 and s ∈ {0, 1}. We say that f supports pinning-to-s if, for every ε > 0, there is a k-
tuple hypergraph which is an ε-realisation of pinning-to-s. We say that f supports perfect pinning-to-s if there is a k-tuple
hypergraph which is a 0-realisation of pinning-to-s.

We now define what it means for a function f to support (perfect) equality which was already discussed in Section 3.

Definition 10. Let f : {0, 1}k →R≥0 and ε ≥ 0. The k-tuple hypergraph H is an ε-realisation of equality if there exist distinct
vertices v1 and v2 of H such that, for each s ∈ {0, 1},

μ f ;H (σv1 = σv2 = s) ≥ (1 − ε)/2.

Definition 11. Let f : {0, 1}k →R≥0. The function f supports equality if, for every ε > 0, there is a k-tuple hypergraph which
is an ε-realisation of equality. The function f supports perfect equality if there is a k-tuple hypergraph which is a 0-realisation
of equality.

4.2. Realising conditional distributions induced by pinning and equality

Given a set S of vertices, it will be convenient to follow [14] as follows. We write σS = 0 to denote the event that all
vertices in S are assigned the spin 0 under the assignment σ . We similarly write σS = 1 to denote the event that all vertices
in S are assigned the spin 1 under the assignment σ . Finally, we use σ eq

S to denote the event that all vertices in S have the
same spin under σ (the spin could be 0 or 1). The following definition is a generalisation of Definition 16 of [14] except
that we have changed the notation slightly for convenience.

A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213 193
Definition 12 ([14, Definition 16]). Let f : {0, 1}k → R≥0. Let H = (V , F) be a k-tuple hypergraph. Let V = (V pin0, V pin1, Veq)

where V pin0 and V pin1 are disjoint subsets of V and Veq is a (possibly empty) set of disjoint subsets of V \(V pin0 ∪ V pin1).
Suppose that: (i) V pin0 = ∅ if f does not support pinning-to-0, (ii) V pin1 = ∅ if f does not support pinning-to-1, (iii) Veq = ∅
if f does not support equality, (iv) it holds that μ f ;H (σVpin0 = 0, σVpin1 = 1,

⋂
W ∈Veq

σ
eq
W) > 0. We will then say that “V is

admissible for H with respect to f ” and we will denote by μcond(V)

f ;H the probability distribution μ f ;H (· | σVpin0 = 0, σVpin1 =
1,

⋂
W ∈Veq

σ
eq
W).

Remark 13. Frequently, instead of formally specifying V , we will specify V implicitly by just saying “consider the conditional
distribution μcond(V)

f ;H where the vertices in V pin0 are pinned to 0, the vertices in V pin1 are pinned to 1 and for all W ∈ Veq ,
all the vertices in W are forced to be equal”.

4.3. Simulating hard functions and inapproximability results

We can now give a formal definition of “simulation”, along the lines that was informally discussed in Section 3 (Equa-
tion (1)).

Definition 14. Let f : {0, 1}k → R≥0 and g : {0, 1}t → R≥0. The function f simulates the function g if there is a k-
tuple hypergraph H , an admissible set V for H with respect to f , and t vertices v1, v2, . . . , vt of H such that, for all
(s1, s2, . . . , st) ∈ {0, 1}t ,

μ
cond(V)

f ;H (σ (v1) = s1,σ (v2) = s2, . . . , σ (vt) = st) = g(s1, s2, . . . , st)∑
(s′1,s′2,...,s′t)∈{0,1}t

g(s′
1, s′

2, . . . , s′
t)

.

If V = (∅, ∅, ∅), then we say that f perfectly simulates g . More generally, we say that f simulates a set of functions G if f
simulates every g ∈ G .

The connection between “hard” as defined in Definition 7 and intractability is given in the following lemma.

Lemma 15 ([14, Lemma 18]). Let f : {0, 1}k →R≥0 . If f simulates a hard function, then for all sufficiently large �, there exists c > 1
such that #Multi2Spin�,c(f) is NP-hard. �
Remark 16. [14, Lemma 18] is stated for symmetric functions, but the proof in [14] also works for asymmetric functions.

5. Proof sketch

In this section, for a Boolean function f : {0, 1}k → {0, 1}, we consider the complexity of the problems #Multi2Spin�(f)
and #Multi2Spin�,c(f). Classifying the complexity of these problems is the most important step in the proof of Theorem 6.
Namely, to obtain Theorem 6, it suffices to show that for every non-affine function f , we have that:

• If f is in I M2, then for all sufficiently large �, #Multi2Spin�(f) is #BIS-equivalent.
• If f is not in I M2, then for all sufficiently large �, there exists a real number c > 1 such that #Multi2Spin�,c(f) is

NP-hard.

Our main technical theorem to prove this is the following classification of Boolean functions, which asserts that every
non-affine function either supports perfect equality or simulates a hard function.

Theorem 17. Let k ≥ 2 and let f : {0, 1}k → {0, 1} be a Boolean function. Then at least one of three following propositions is true:

1. f is affine;
2. f supports perfect equality;
3. f simulates a hard function.

Theorem 17 is proved in Section 7. When f simulates a hard function, using Lemma 15, we can immediately conclude
that for all sufficiently large �, there exists c > 1 such that #Multi2Spin�,c(f) is NP-hard. As we already discussed in
Section 3, it is important that, in the case where f does not simulate a hard function, Theorem 17 guarantees that f
supports perfect equality (rather than simple imperfect equality); this allows us to recover the connection to #BIS for those
f ∈ I M2. In fact, when f supports perfect equality, we can effectively carry out (a strengthening of) the program in [13] to
obtain the following classification which perfectly aligns with Theorem 6.

194 A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213
Theorem 18. Let f : {0, 1}k → {0, 1} be a Boolean function that is not affine. Suppose that f supports perfect equality.

1. If f is in I M2 , then for all sufficiently large �, #Multi2Spin�(f) is #BIS-equivalent.
2. If f is not in I M2 , then for all sufficiently large �, there exists a real number c > 1 such that #Multi2Spin�,c(f) is NP-hard.

Theorem 18 is proved in Section 8. Thus, Theorems 17 and 18 together achieve the desired classification of
#Multi2Spin�(f) when f ∈ I M2 as well as the strong inapproximability results when f /∈ I M2. Before delving into the
proofs of Theorems 17 and 18 however, it will be instructive to give the main ideas behind the proofs, especially of the
more critical Theorem 17.

To prove Theorem 17, our proof departs from the previous approaches in the related works [13] and [14]. In these
works, f was used to directly encode a binary function which was feasible because of the presence of equality in [13] and
the symmetry of f in [14]. Instead, we take a much more painstaking combinatorial approach by using induction on the
arity of the function f .

The base case of the induction (proving Theorem 17 for arity-2 functions) is fairly simple to handle, so let us focus on
the induction step. The rough idea, to put the induction hypothesis to work, is to study whether f supports pinning-to-0 or
pinning-to-1; then, provided that at least one these pinnings is available, we need to pin appropriately some arguments of
f to obtain a function h of smaller arity. Our goal is then to ensure that h is non-affine; then, we can invoke the induction
hypothesis and obtain that h either supports perfect equality or simulates a hard function. From there, since h was obtained
by pinning some arguments of f , we will obtain by a transitivity argument (cf. Lemma 33) that f either supports perfect
equality or f simulates the same hard function as h. (A detail here is that, in the case where h supports perfect equality, to
conclude that f supports perfect equality from Lemma 33, we need to ensure that the pinnings of f used to obtain h were
perfect.)

Determining which arguments of f need to be pinned is the most challenging aspect of this scheme. Our method for
reducing the number of functions under consideration is to symmetrise f in a natural way and obtain a new function f ∗
which is now symmetric (see Definition 20). Then, it turns out that there are seven possibilities for the function f ∗ which
we need to consider in detail (the functions are given in Definition 22). That is, when the symmetrisation of f is one of
these seven functions, we have to figure out whether f supports perfect equality and, if not, work out the combinatorial
structure of f and pinpoint which arguments are suitable to be pinned. The details of the argument can be found in
Section 7.2.

The proof of Theorem 18, where f supports perfect equality, basically follows the approach of [13]. However, to get
the stronger inapproximability results, we have to take a detour studying self-dual functions (functions whose value does
not change when we complement their arguments). We show that if f is self-dual then it simulates a hard function
(Theorem 46). The problem with self-dual functions is that they do not support pinning-to-0 or pinning-to-1, so we are
not able to use the relevant results from [13]. After proving Theorem 46 and doing some preparatory work in Section 8.1 to
ensure that “implementations in CSPs” work in the repeat-free setting when f supports perfect equality (see Lemma 42),
the techniques of [13] can be adapted to get Theorem 18.

6. Notation and results from the literature

6.1. Notation

For a vector x, we use xi to denote the i’th entry of x. Further, for vectors x and y of the same length, x ⊕ y will denote
the coordinate-wise addition of x and y over GF(2). More generally, for any binary Boolean operator ⊗, we will denote by
x ⊗ y the vector whose i-th entry is given by xi ⊗ yi . We will use 0, 1 to denote the vectors whose entries are all zeros and
all ones, respectively (the length of these vectors will be clear from context). Finally, for a Boolean vector x, x will denote
the coordinate-wise “negation” of x, i.e., x = x ⊕ 1. For a positive integer k, [k] denotes {1, . . . , k}.

Definition 19 (� f , χS). Let f : {0, 1}k → R≥0. For S ⊆ [k], χS denotes the characteristic vector of S , which is the length-k
Boolean vector such that, for all i ∈ [k], the i-th bit of χS is 1 if and only if i ∈ S . Finally, � f = {S ⊆ [k] | χS ∈ R f }, where
R f is the relation underlying f , defined at the beginning of Section 2.

Definition 20 (The symmetrisation f ∗). Let f : {0, 1}k →R≥0. We denote by f ∗ the symmetrisation of f obtained as follows.
Let Sk denote the set of all permutations π : [k] → [k]. Then f ∗ : {0, 1}k →R≥0 is the function defined by

f ∗(x1, . . . , xk) =
∏

π∈Sk

f (xπ(1), . . . , xπ(k)).

6.2. Affine functions

The following well-known characterisation of affine functions (cf. Definition 4) is instructive and will be useful later. For
a proof, see, for example, Lemma 4.10 of [9] or Lemma 11 of [13].

A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213 195
Lemma 21. Let f : {0, 1}k → {0, 1} be a Boolean function. Then:

1. f is affine iff for every a, b, c ∈ R f , it holds that a ⊕ b ⊕ c ∈ R f .
2. If f is not affine, then for every a ∈ R f , there are b, c ∈ R f such that a ⊕ b ⊕ c /∈ R f . �

The set of affine symmetric Boolean functions f : {0, 1}k → {0, 1} is given by the following set EASY(k).

Definition 22. For k ≥ 2, let EASY(k) be the set containing the following seven functions.

f (k)
zero(x1, . . . , xk) = 0, f (k)

one(x1, . . . , xk) = 1, f (k)
allzero(x1, . . . , xk) = 1{x1 = . . . = xk = 0},

f (k)
allone(x1, . . . , xk) = 1{x1 = . . . = xk = 1}, f (k)

EQ(x1, . . . , xk) = 1{x1 = . . . = xk},
f (k)
even(x1, . . . , xk) = 1{x1 ⊕ · · · ⊕ xk = 0}, f (k)

odd(x1, . . . , xk) = 1{x1 ⊕ · · · ⊕ xk = 1}.

6.3. A characterisation of I M2

In the language of universal algebra, Creignou, Kolaitis, and Zanuttini [9] have shown that I M2 (see Definition 5) is
precisely the “co-clone” corresponding to the “clone” M2 in Post’s lattice (see [2]). Defining clones and co-clones would
be a bit of a distraction from this paper, but the only fact that we need is the following (which follows directly from the
definitions of clones and co-clones and from the fact that I M2 is the co-clone corresponding to M2).

Lemma 23. Let f : {0, 1}k → {0, 1} be a Boolean function. Then, the function f is in I M2 iff for every x, y ∈ R f it holds that x ∨y ∈ R f
and x ∧ y ∈ R f . �
6.4. The case where f is symmetric: extensions to the asymmetric case

In this section, we state a few results from [14] which were stated for the case where f is a symmetric Boolean function,
but whose proof works just as well even when f is asymmetric.

The following lemma, which is Lemma 12 of [14], gives sufficient conditions for pinning-to-0, pinning-to-1 and equality.
The statement of the lemma in [14] is restricted to symmetric functions f , but the proof applies to all functions (with the
trivial modification that the vertices in the hyperarcs in the constructed k-tuple hypergraph H must be ordered appropri-
ately).

Lemma 24 ([14, Lemma 12]). Let f : {0, 1}k →R≥0 and let H be a k-tuple hypergraph.

1. If there is a vertex v in H such that μ f ;H (σv = 0) > μ f ;H (σv = 1), then f supports pinning-to-0.
2. If there is a vertex v in H such that μ f ;H (σv = 1) > μ f ;H (σv = 0), then f supports pinning-to-1.
3. If there are vertices x, y in H such that μ f ;H (σx = σy = 0) = μ f ;H (σx = σy = 1) and μ f ;H (σx = σy) > μ f ;H (σx �= σy), then

f supports equality. �
Lemma 25 ([14, Lemma 17]). Let f : {0, 1}k → R≥0 . Let H = (V , F) be a k-tuple hypergraph and let S be a subset of V . Let V be
admissible for H with respect to f . Then, for every ε > 0, there is a k-tuple hypergraph H ′ = (V ′, F ′) with V ⊆ V ′ and F ⊆ F ′ such
that, for every τ : S → {0, 1}, it holds that

∣∣μ f ;H ′(σS = τ) − μ
cond(V)

f ;H (σS = τ)
∣∣ ≤ ε,

where μcond(V)

f ;H (·) is as in Definition 12. �
We will also use the following result from [14] which applies to symmetric Boolean functions.

Lemma 26 ([14, Proof of Theorem 3]). Let k ≥ 2 and let f : {0, 1}k → {0, 1} be a symmetric Boolean function such that f /∈ EASY(k).
Then either f simulates a hard function or f supports perfect equality (or both).

Proof. We briefly overview the proof in [14], the relevant parts are in [14, Section 4].

1. [14, Lemma 13] shows that every function f /∈ EASY(k) supports one of pinning-to-0, pinning-to-1 or equality.
2. In [14, Section 4.1], the case where f supports both pinning-to-0 and pinning-to-1 is considered. Then, [14] shows that

f simulates a hard function.

196 A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213
3. In [14, Section 4.2], the case where f supports equality but neither pinning-to-0 nor pinning-to-1 is considered. The
proof splits into cases depending on whether f (0) = 0 or f (0) = 1. When f (0) = 0 ([14, Section 4.2.2]), [14] shows that
f supports perfect equality ([14, Lemma 28]). When f (0) = 1 ([14, Section 4.2.3]), [14] shows that f simulates a hard
function.

4. In [14, Section 4.3], the case where f supports pinning-to-0 is considered. Then, [14] shows that f simulates a hard
function. (The case where f supports pinning-to-1 is identical by switching the spins 0 and 1.)

Thus, for every symmetric function f : {0, 1}k → {0, 1} such that f /∈ EASY(k), the results of [14] show that either f simu-
lates a hard function or f supports perfect equality. �
7. Non-affine Boolean functions either support perfect equality or simulate a hard function

In this section, we prove Theorem 17, i.e., that every non-affine Boolean function either supports perfect equality or
simulates a hard function. Before proving the theorem, we will need a few technical lemmas.

7.1. A few preparatory lemmas

Lemma 27. Let f : {0, 1}k → {0, 1} be a k-ary Boolean function. Suppose that f ∗ = fallone . Then f supports perfect pinning-to-1.

Proof. Let H = (V , F) be the k-tuple hypergraph with V = {v1, v2, . . . , vk} and F = {eπ | π ∈ Sk} where eπ =
(vπ(1), vπ(2), . . . , vπ(k)). Since f ∗ = fallone , we have that for all σ : V → {0, 1} it holds that w f ,H (σ) > 0 if and only if
σ(v1) = σ(v2) = · · · = σ(vk) = 1. Thus, f supports perfect pinning-to-1. �

Completely analogously, we have the following pinning lemma when f ∗ = fallzero .

Lemma 28. Let f : {0, 1}k → {0, 1} be a k-ary Boolean function. Suppose that f ∗ = fallzero . Then f supports perfect pinning-to-0. �
For any function f such that f ∗ = fzero , we have the following pinning lemma.

Lemma 29. Let f : {0, 1}k → {0, 1} be a k-ary Boolean function. Suppose that f �= fzero and f ∗ = fzero . Then at least one of the
following two propositions is true:

1. f supports perfect pinning-to-0 and perfect pinning-to-1;
2. f supports perfect equality.

Proof. Note that the conditions in the lemma imply that k ≥ 2. Let Sk denote the set of all permutations π : [k] → [k] and
let id ∈ Sk denote the identity permutation. For any subset A ⊆ Sk , let f A be the function defined by f A(w1, . . . , wk) :=∏

π∈A f (wπ(1), . . . , wπ(k)). Note that f Sk = f ∗ = fzero . Also, for any π ∈ Sk we have f{π } �= fzero (since f �= fzero). By itera-
tively removing permutations from Sk we will thus obtain a subset T ⊆ Sk with |T | > 1 such that f T = fzero and, for every
π ∈ T , it holds that f T \{π } �= fzero . By renaming the variables if necessary, we may assume that id ∈ T .

Let H0 = (V 0, F0) be the k-tuple hypergraph with vertex set V 0 = {x1, . . . , xk} and hyperarc set F0 = ∪π∈T \{id}{(xπ(1), . . . ,
xπ(k))}. By the choice of the set T , we have that Z f ;H0 > 0. For i = 1, . . . , k, let Hi = (V i, Fi) be the k-tuple hypergraph with
vertex set V i = V 0 ∪ {yi+1, . . . , yk} and hyperarc set Fi = F0 ∪ {(x1, . . . , xi, yi+1, . . . , yk)}. Again by the choice of the set T
we have that Z f ;Hk = 0. Thus, there exists 0 ≤ j < k such that Z f ;H j > 0 and Z f ;H j+1 = 0. Note that for every assignment
σ : V j → {0, 1} with w f ;H j (σ) > 0 it holds that σ(x j+1) �= σ(y j+1); otherwise, for the assignment σ ′ = σV j+1 (i.e., the
restriction of the assignment σ to the set V j+1), it would hold that w f ;H j+1 (σ

′) > 0, contradicting that Z f ;H j+1 = 0.
For s1, s2 ∈ {0, 1}, let

Zs1,s2 :=
∑

σ :V j→{0,1};
σ (x j+1)=s1, σ (y j+1)=s2

w f ;H j (σ)

By the argument above, we have that Z00 = Z11 = 0. Since Z f ;H j > 0, we have that at least one of Z01 and Z10 is non-zero.
In fact, we may assume that both are non-zero, since otherwise f supports both perfect pinning-to-0 and perfect pinning-
to-1 so proposition 1 in the statement of the lemma is satisfied (for example, if Z10 = 0, then μ f ;H j (σ (x j+1) = 0) = 1 and
μ f ;H j (σ (y j+1) = 1) = 1).

Let J1, J2 be two disjoint copies of H j . Denote by u1, u2 the vertices corresponding to x j+1 in J1, J2, respectively. Also,
denote by v1, v2 the vertices corresponding to y j+1 in J1, J2. Let J = (V , F) be the k-tuple hypergraph obtained by taking
the union of J1 and J2 and identifying the vertices u2 and v1 into a new vertex w (i.e., we merge the vertex corresponding
to x j+1 in J2 and the vertex corresponding to y j+1 in J1).

A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213 197
For s1, s2 ∈ {0, 1}, let

Z ′
s1,s2

:=
∑

σ :V →{0,1};
σ (u1)=s1, σ (v2)=s2

w f ; J (σ).

By considering the spin of the vertex w , we obtain that

Z ′
s1,s2

= Zs1,0 Z0,s2 + Zs1,1 Z1,s2 ,

which gives that

Z ′
00 = Z01 Z10, Z ′

01 = 0, Z ′
10 = 0, Z ′

11 = Z10 Z01.

Since Z01, Z10 �= 0, we obtain that

μ f ; J (σ (u1) = σ(v2) = 0) = μ f ; J (σ (u1) = σ(v2) = 1) = 1

2
,

and hence f supports perfect equality. �
For any function f , we can show that if f ∗ is fEQ , fodd or feven then f supports perfect equality.

Lemma 30. Let f : {0, 1}k → {0, 1} be a k-ary Boolean function. Suppose that f ∗ = fEQ . Then f supports perfect equality.

Proof. Let H = (V , F) be the k-tuple hypergraph with V = {v1, v2, . . . , vk} and hyperarc set F = {eπ | π ∈ Sk} where
eπ = (vπ(1), vπ(2), . . . , vπ(k)). Since f ∗ = fEQ , we have that for all σ : V → {0, 1} it holds that w f ,H (σ) > 0 iff σ(v1) =
σ(v2) = · · · = σ(vk) = 1 or σ(v1) = σ(v2) = · · · = σ(vk) = 0. Thus, f supports perfect equality. �
Lemma 31. Let f : {0, 1}k → {0, 1} be a k-ary Boolean function. Suppose that f ∗ ∈ { fodd, feven}. Then f supports perfect equality.

Proof. Let H = (V , F) be the k-tuple hypergraph with V = {v1, v2, . . . , vk+1} and F = {eπ | π ∈ Sk} ∪ {e′
π | π ∈ Sk} where

eπ = (vπ(1), vπ(2), . . . , vπ(k)) and e′
π = (vπ(1)+1, vπ(2)+1, . . . , vπ(k)+1) (note that H has k + 1 vertices and 2k! hyperarcs).

Since f ∗ is either fodd or feven , for all σ : V → {0, 1} with w f ,H (σ) > 0, we have that the parity of number of ones among
σ(v1), σ(v2), . . . , σ(vk) and the parity of number of ones among σ(v2), σ(v3), . . . , σ(vk+1) must be the same and thus
σ(v1) = σ(vk+1). Furthermore, for s ∈ {0, 1}, there are exactly 2k−1 assignments σ : V → {0, 1} such that w f ;H (σ) > 0,
σ(v1) = σ(vk+1) and σ(v2) ⊕ σ(v3) ⊕ · · · ⊕ σ(vk) = s. It follows that

μ f ;H (σ (v1) = σ(vk+1) = 0) = μ f ;H (σ (v1) = σ(vk+1) = 1) = 1

2
,

which means that f supports perfect equality. �
By the above lemmas, we can show that some functions can be either dealt with directly, or reduced to other functions

with smaller arity.

Definition 32. For s ∈ {0, 1}, let δs : {0, 1} → {0, 1} be the Boolean function defined by δs(s) = 1 and δs(1 ⊕ s) = 0. Define
f i→s to be the function obtained from f by pinning the i-th argument of f to s, i.e.

f i→s(x1, . . . , xi−1, xi+1, . . . , xk) =
∑

xi∈{0,1}
f (x1, . . . , xk) · δs(xi).

Similarly, for disjoint S, T ⊆ [k], let f S→0,T →1 be the (k − |S ∪ T |)-ary function obtained from f by pinning the arguments
in S to 0 and the arguments in T to 1 So if x′ denotes the |S ∪ T |-ary vector containing all xi with i ∈ S ∪ T and x′′ denotes
the k − |S ∪ T |-ary vector containing all xi with i ∈ [k] \ S ∪ T ,

f S→0,T →1(x′′) =
∑

x′∈{0,1}|S∪T |
f (x1, . . . , xk) ·

∏
i∈S

δ0(xi) ·
∏
j∈T

δ1(x j).

If S = ∅ or T = ∅, we will omit S → 0 or T → 1 from the notation.

Using Definition 32, we have the following lemma:

198 A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213
Lemma 33. Let f : {0, 1}k → {0, 1} be a Boolean function. Suppose that S0 and S1 are disjoint subsets of [k] such that, for a ∈ {0, 1},
Sa is empty if f does not support perfect pinning-to-a. Let h = f S0→0,S1→1 .

1. If h supports equality, then f also supports equality. Further, if h supports perfect equality, then f also supports perfect equality.
2. If h supports pinning-to-s for some s ∈ {0, 1}, then f also supports pinning-to-s.
3. If h simulates a function g : {0, 1}2 → R≥0 that is not f (2)

zero then f simulates g as well. Also, if h perfectly simulates g then f
perfectly simulates g as well.

Proof. Without loss of generality, we assume that the arity of h is n, and that S0 ∪ S1 = {n + 1, n + 2, . . . , k}. For each
a ∈ {0, 1}, if Sa is non-empty, then by assumption f supports perfect pinning-to-a, so there exists a k-tuple hypergraph
Ha = (Va, Fa) with a vertex wa ∈ Va such that μ f ;Ha (σwa = a) = 1.

We now give a general construction which takes any n-tuple hypergraph H = (V , F) and produces a new k-tuple hyper-
graph H ′ = (V ′, F ′). To do this, we take k − n new vertices v ′

n+1, . . . , v
′
k that are not in V and let V ′ = V ∪ {v ′

n+1, . . . , v
′
k}.

The hyperarcs of H ′ are in one-to-one correspondence with those in H : For each hyperarc (u1, u2, . . . , un) in H , we add the
hyperarc (u1, u2, . . . , un, v ′

n+1, v
′
n+2, . . . , v

′
k) to H ′ . Moreover, for i ∈ S0, add a distinct copy of H0 to H ′ by identifying v ′

i
with the vertex w0 in H0. Also, for i ∈ S1, add a distinct copy of H1 to H ′ by identifying v ′

i with the vertex w1 in H1.
Say that an assignment σ : V ′ → {0, 1} is relevant if, for each a ∈ {0, 1} and each i ∈ Sa , σ(vi) = a. The copies of H0 and

H1 ensure that, for every assignment σ : V ′ → {0, 1} with w f ;H ′(σ) > 0, σ is relevant. The definition of h ensures that, for
any relevant assignment σ ,

w f ;H ′(σ) = wh;H (σV). (2)

We now use (2) to establish the three items in the statement of the lemma.

1. Suppose that h supports equality. For any ε ∈ (0, 1), there is an n-tuple hypergraph H = (V , F) and two vertices x and
y of H such that, for every s ∈ {0, 1}, μh;H (σx = σy = s) ≥ (1 −ε)/2. Construct H ′ from H using the general construction
above. From (2), we conclude that, for any s ∈ {0, 1}, μ f ;H ′(σx = σy = s) = μh;H (σx = σy = s) ≥ (1 − ε)/2, so f supports
equality. If h supports perfect equality, then we can take ε = 0 in this argument, obtaining the conclusion that f also
supports perfect equality.

2. Suppose that h supports pinning-to-s. For any ε ∈ (0, 1) there is an n-tuple hypergraph H = (V , F) and a vertex x of H
such that μh;H (σx = s) ≥ 1 − ε . Construct H ′ from H using the general construction above. From (2), we conclude that,
μ f ;H ′(σx = s) = μh;H (σx = s) ≥ 1 − ε , so f supports pinning-to-s.

3. Let g : {0, 1}2 → R≥0 be a function that is not f (2)
zero . Suppose first that h simulates g . By the definition of “simulates”,

there exists an n-tuple hypergraph H with admissible V (with respect to h) and two vertices u and v in H such that,
for every s, t ∈ {0, 1}, it holds that

μ
cond(V)

h;H (σ (u) = s,σ (v) = t) = g(s, t)∑
i, j∈{0,1} g(i, j)

. (3)

Since g �= f (2)
zero , the expression in (3) is well-defined.

Construct H ′ from H using the general construction above. From Items 1 and 2 of the lemma, if h supports equality or
pinning-to-0 or pinning-to-1 then so does f . Thus, V is admissible for H ′ with respect to f . It follows from (2) that

μ
cond(V)

h;H (σ (u) = s,σ (v) = t) = μ
cond(V)

f ;H ′ (σ (u) = s,σ (v) = t | ∧i∈S0σ(vi) = 0, ∧i∈S1σ(vi) = 1)

= μ
cond(V)

f ;H ′ (σ (u) = s,σ (v) = t),

so, using (3), we obtain that f simulates g , as wanted. If h perfectly simulates g then we can take V = (∅, ∅, ∅), so the
argument shows that f perfectly simulates g . �

7.2. Proof that every non-affine Boolean functions either supports perfect equality or simulates a hard function

Definition 34. A function f : {0, 1}k → {0, 1} is semi-trivial if and only if there exists a set S ⊆ [k] such that � f = {T | S ⊆
T ⊆ [k]} or � f = {T | T ⊆ S}.

Remark 35. Every semi-trivial function f is affine since R f equals the solution set of the system of equations of the form
{xi = 1}i∈S or {xi = 0}i∈S where S ⊆ [k] is as in Definition 34.

Lemma 36. Let k ≥ 2 and let f : {0, 1}k → {0, 1} be a k-ary Boolean function. Suppose that f �= fallone and f ∗ = fallone . Let S be a set
in � f such that S �= [k]. Then at least one of the following propositions is true:

A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213 199
1. ∀ T ⊇ S, we have T ∈ � f ;
2. f supports perfect equality;
3. f simulates a hard function.

Proof. Without loss of generality (by re-numbering the variables), let S = {n + 1, n + 2, . . . , k} for some integer n ≥ 1. By
Lemma 27, f supports perfect pinning-to-1. Let h(x1, x2, . . . , xn) = f (x1, . . . , xk)S→1. Note that h∗(0) = 1 and h∗(1) = 1. We
may assume that n ≥ 2 (otherwise ∀ T ⊇ S , we have T ∈ � f).

Case 1. h∗ /∈ EASY(n). In this case, Lemma 26 ensures that either h simulates a hard function or h supports perfect equality
(or both). If h simulates a hard function, then by Item 3 of Lemma 33, f also simulates a hard function. If h supports
perfect equality, then, by Item 1 of Lemma 33, f also supports perfect equality.

Case 2. h∗ ∈ EASY(n). Then h∗ ∈ { fone, feven, fEQ} since h∗(0) = 1 and h∗(1) = 1. If h∗ = fone , we have that h(x) = 1 for all
x ∈ {0, 1}n . Since h(x) = f S→1, we obtain that T ∈ � f for all T ⊇ S .
If h∗ ∈ { feven, fEQ}, then h supports perfect equality by Lemmas 30 and 31. Since f supports perfect pinning-to-1, by
Item 1 of Lemma 33 we obtain that f supports perfect equality as well.

This concludes the proof. �
Lemma 37. Let k ≥ 2 and let f : {0, 1}k → {0, 1} be a k-ary Boolean function. Suppose that f �= fallone and f ∗ = fallone . Then at least
one of the four following propositions is true:

1. f is semi-trivial;
2. there exists t ∈ [k] such that ft→1 is not affine;
3. f supports perfect equality;
4. f simulates a hard function.

Proof. If k = 2, since f �= fallone and f ∗ = fallone , we have f (1, 1) = 1, f (0, 0) = 0 and exactly one of f (0, 1) and f (1, 0) is
one, so f is semi-trivial. Thus, for the rest of the proof we may assume that k ≥ 3.

Since f ∗ = fallone , we have that f (1) = 1 and f (0) = 0. Further, since f �= fallone , there exists S ∈ � f with |S| < k.

Case 1. Every S ∈ � f satisfies |S| ≥ k − 1.
If there is only one set S in � f with |S| = k − 1, then we have that f is semi-trivial (since f (1) = 1). Otherwise, there
are distinct sets S, S ′ ∈ � f with |S| = ∣∣S ′∣∣ = k −1, so

∣∣S ∩ S ′∣∣ = k −2 and thus S ∩ S ′ �= ∅ and S ∩ S ′ /∈ � f . Let t ∈ S ∩ S ′ .
We claim that h = ft→1 is not affine; to see this, note that f (χS) = f (χS ′) = f (χ[k]) = 1 and f (χS ⊕ χS ′ ⊕ χ[k]) =
f (χS∩S ′) = 0. Since h = ft→1 and t ∈ S ∩ S ′ , we obtain that

S\{t}, S ′\{t}, [k]\{t} ∈ �h but (S ∩ S ′)\{t} /∈ �h.

By Item 1 of Lemma 21, it thus follows that h is not affine, as wanted.
Case 2. There exists S ∈ � f with |S| ≤ k − 2.

Let S be a set in � f with the smallest cardinality among the sets in � f . By Lemma 36, either f satisfies proposition 3
or 4, in the statement of the lemma (so we are finished), or every Q ⊇ S satisfies Q ∈ � f . Thus, for the rest of the
proof we may assume that for every Q ⊇ S it holds that Q ∈ � f .
Let � = {W ∈ � f | S \ W �= ∅}. If � is empty then f is semi-trivial, so it satisfies proposition 1 in the statement of the
lemma (and we are finished). So assume that � is non-empty and choose T ∈ � with cardinality as small as possible.
By the choice of S , T cannot be a strict subset of S , so T \ S is not empty. Applying Lemma 36 to the set T , we may
assume that ∀ Q ⊇ T it holds that Q ∈ � f (otherwise, f will satisfy proposition 3 or 4, in the statement of the lemma,
so we are finished). Since f (0) = 0 and S has minimum cardinality among the sets in � f , we have 1 ≤ |S| ≤ |T |.
Case 2a. |T | = 1, which implies |S| = 1. Suppose S = {s} and T = {t}. Consider a set Q ⊆ [k] with |Q | = k − 2. By the

above assumptions, we have that if s ∈ Q or t ∈ Q then Q ∈ � f . This accounts for all but one sets Q ⊆ [k] with
|Q | = k − 2; for the remaining set Q = [k]\{s, t}, it must be the case that Q /∈ � f , otherwise all sets Q with
|Q | = k − 2 are in � f , which contradicts the fact that f ∗ = fallone . Now let’s consider � f . The number of sets
W ∈ � f which contain both s and t is 2k−2. Similarly, the number of sets W ∈ � f which contain s but not t is
2k−2 and the number of sets W ∈ � f which contain t but not s is 2k−2. But the number of sets W ∈ � f which
contain neither s nor t is less than 2k−2. So the k-tuple hypergraph with the single hyperarc (v1, . . . , vk) induces
a hard function on the two vertices vs and vt and therefore f simulates a hard function.

Case 2b. |T | ≥ 2 and S ∩ T �= ∅. Since S \ T �= ∅, we have |S| > |S ∩ T | and thus S ∩ T /∈ � f by the minimality of S .
Let r ∈ S ∩ T . Now we know that S ∈ � f , T ∈ � f and S ∪ T ∈ � f by the assumptions above. But S ∩ T /∈ � f and
χS ⊕ χT ⊕ χS∪T = χS∩T , so by Item 1 of Lemma 21, fr→1 is not affine.

Case 2c. |T | ≥ 2 and S ∩ T = ∅. Since T \ S �= ∅, let r ∈ T \ S . By the above assumptions, we have that S ∪ {r} and
S ∪ T are in � f . Note that {r} /∈ � f ; otherwise, we would obtain a contradiction to the choice of the set T , since

200 A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213
T ′ = {r} satisfies T ′ ∈ � f , S\T ′ = S �= ∅ and |T ′| < |T |. Now we know that S ∪ {r}, T , S ∪ T ∈ � f and {r} /∈ � f .
Note that since S ∩ T = ∅, it holds that χS∪{r} ⊕ χT ⊕ χS∪T = χ{r} , so by Item 1 of Lemma 21 we have that fr→1
is not affine.

This concludes the proof of Lemma 37. �
Similarly, by switching the spins 0 and 1, we obtain the following lemma when f ∗ = fallzero .

Lemma 38. Let k ≥ 2 and let f : {0, 1}k → {0, 1} be a k-ary Boolean function. Suppose that f �= fallzero and f ∗ = fallzero . Then at least
one of the four following propositions is true:

1. f is semi-trivial;
2. there exists t ∈ [k] such that ft→0 is not affine;
3. f supports perfect equality;
4. f simulates a hard function.

Proof. Suppose f is a Boolean function such that f ∗ = fallzero and f �= fallzero . Let g be the function defined by g(x) = f (x)

for all x ∈ {0, 1}k . Now it holds that g∗ = fallone and g∗ �= fallone . So g satisfies one of the four propositions in Lemma 37.
We then have

1. If g is semi-trivial, f is semi-trivial.
2. If gt→1 is not affine for some t ∈ [k], ft→0 is not affine either.
3. If g supports perfect equality, f supports perfect equality too.
4. If g simulates a hard function, f simulates the bitwise complement of the hard function, which is also hard. �

For every function f such that f ∗ = fzero and f �= fzero , we still have a similar reduction lemma, but the proof is more
complicated.

Lemma 39. Let k ≥ 3 and let f : {0, 1}k → {0, 1} be a k-ary Boolean function. Suppose that f ∗ = fzero and f �= fzero . Let S ∈ � f .
Then, at least one of the four following propositions is true:

1. h = f S→0 is semi-trivial;
2. there exists T ⊆ [k] such that f S→0,T →1 is not affine;
3. f supports perfect equality;
4. f simulates a hard function.

Proof. By Lemma 29, we have that either f supports perfect equality or f supports both perfect pinning-to-0 and perfect
pinning-to-1. We assume that the latter holds (otherwise we are done).

Let h = f S→0. Since f (0) = f ∗(0) = 0 and S ∈ � f , we have that h(0) = 0 and h(1) = 1. Note that h has arity q := |S|. We
may assume that q > 1; otherwise, h is semi-trivial (proposition 1 in the statement of the lemma). There are two cases to
consider: h∗ /∈ EASY(q) or h∗ ∈ EASY(q).

• Case 1. h∗ /∈ EASY(q).
Case 1a. q = 2. In this case, h∗(0, 0) = 0 and h∗(0, 1) = h∗(1, 0) = h∗(1, 1) = 1, so h∗ = OR which is a hard function. We

have already assumed (in the first line of the proof) that f supports perfect pinning-to-0. Also, by definition, h
perfectly simulates itself. By Item 3 of Lemma 33, f perfectly simulates h as well, so f simulates a hard function
(proposition 4 in the statement of the lemma).

Case 1b. q > 2. By Lemma 26, either h simulates a hard function or h supports perfect equality (or both). If h simulates
a hard function then by Item 3 of Lemma 33, f simulates the same hard function (proposition 4 in the state-
ment of the lemma). On the other hand, if h supports perfect equality then by Item 1 of Lemma 33 so does f
(proposition 3 in the statement of the lemma).

• Case 2. h∗ ∈ EASY(q). Since h(0) = 0 and h(1) = 1, we have that h∗ is fodd or fallone .
Case 2a. h∗ = fodd. By Lemma 31, h supports perfect equality and thus f supports perfect equality by Item 1 of

Lemma 33 (proposition 3 in the statement of the lemma).
Case 2b. h∗ = fallone. If h = fallone , h is semi-trivial (proposition 1 in the statement of the lemma). Otherwise, note that

q > 1, so by Lemma 37, h is semi-trivial (proposition 1 in the statement of the lemma), or there exists t ∈ [k] such
that ht→1 is not affine or h supports perfect equality or h simulates a hard function. If there exists t ∈ [k] such
that ht→1 is not affine then taking T = {t}, f satisfies proposition 2 in the statement of the lemma. Finally, if h
supports perfect equality then so does f (like Case 2a) and if h simulates a hard function, then so does f (like
Case 1b). �

A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213 201
Lemma 40. Let k ≥ 2 and let f : {0, 1}k → {0, 1} be a k-ary Boolean function. Suppose that f �= fzero and f ∗ = fzero . Then at least
one of the four following propositions is true:

1. f is affine;
2. there exist S, T ⊆ [k] such that f S→0,T →1 is not affine;
3. f supports perfect equality;
4. f simulates a hard function.

Proof. If k = 2, we have f (0, 0) = f (1, 1) = 0, so
∣∣� f

∣∣ ≤ 2 and thus f is affine (cf. Item 1 of Lemma 21) so it satisfies
proposition 1 in the statement of the lemma.

Now suppose k ≥ 3. By Lemma 39, we can assume that for all W ∈ � f , f W →0 is a semi-trivial function (otherwise f
satisfies at least one of propositions 2, 3 or 4).

Choose S ∈ � f such that |S| is as large as possible. Let h = f S→0. Since h is semi-trivial (by taking W = S above),
we claim that there is a T satisfying ∅ ⊂ T ⊆ S such that �h = {U | T ⊆ U ⊆ S}. (To see this, note that the definition of
semi-trivial implies that there is a subset T of S such that either �h = {U | U ⊆ T } or �h = {U | T ⊆ U ⊆ S}. The former is
impossible since ∅ /∈ �h since h(0) = f (0) and f (0) = 0 since f ∗ = fzero . Also, in the latter case, T is not empty because,
once again, ∅ �/∈ �h .)

Case 1. Suppose that ∀X ∈ � f , T ⊆ X: Recall that T is non-empty. Also, for every i ∈ T , {i} ∪ � f i→1 = � f so either f is
affine (proposition 1 in the statement of the lemma) or f i→1 is not affine (proposition 2 in the statement of the lemma).

Now, if Case 1 does not hold then there is an X ∈ � f such that T \ X is non-empty. Since �h = {U | T ⊆ U ⊆ S} we
conclude that X /∈ �h . Since h = f S→0 we conclude that X \ S is non-empty. Thus, the only other case to consider is as
follows.

Case 2. Suppose that there is an X ∈ � f such that T \ X and X \ S are both non-empty:
Let � = {X ∈ � f | T \ X �= ∅ and X \ S �= ∅ }. Let a = min{|T \ X | : X ∈ �}, and b = min{|X \ S| : X ∈ � and |T \ X | = a}.

Choose R ∈ � with |T \ R| = a and |R \ S| = b.
Now before proceeding, we use the sets S , T and R to partition k.

A = {i ∈ [k] | i ∈ S, i ∈ T , i /∈ R},
B = {i ∈ [k] | i ∈ S, i ∈ T , i ∈ R},
C = {i ∈ [k] | i ∈ S, i /∈ T , i /∈ R},
D = {i ∈ [k] | i ∈ S, i /∈ T , i ∈ R},
E = {i ∈ [k] | i /∈ S, i /∈ T , i /∈ R},
F = {i ∈ [k] | i /∈ S, i /∈ T , i ∈ R}.

It is clear from the definitions that the sets A, B , C , D , E and F are disjoint. Also, since T ⊆ S , they partition [k]. From the
definitions, A = T \ R and F = R \ S so, by the choice of R , A and F are non-empty. Let g = fC∪E→0,B∪D→1.

By definition, every element of �g is a subset of A ∪ F . Also, for Y ⊆ A ∪ F , “Y ∈ �g ” means the same thing as “Y ∪ B ∪ D ∈
� f ”. We establish some facts before dividing the analysis into sub-cases.

Fact 1: A ∈ �g . We have �h = {U | T ⊆ U ⊆ S} and T = A ∪ B so A ∪ B ∪ D ∈ �h . Since A ∪ B ∪ D ⊆ S , this means A ∪ B ∪ D ∈
� f . Equivalently, A ∈ �g .

Fact 2: F ∈ �g . From the definition of R , R ∈ � f . Also, R = B ∪ D ∪ F so F ∪ B ∪ D ∈ � f . Equivalently, F ∈ �g .
Fact 3: If Y ∈ �g then either Y ∩ A ∈ {∅, A} or Y ∩ F = ∅ (or both). Suppose for contradiction that ∅ ⊂ Y ∩ A ⊂ A and Y ∩ F

is non-empty. Note that R = B ∪ D ∪ F . Let R ′ = B ∪ D ∪Y . Note that T \ R = A and T \ R ′ = A \Y ⊂ A so |T \ R ′| < |T \ R|.
We will show a contradiction to the choice of R by showing that R ′ ∈ �. First, since Y ∈ �g , R ′ ∈ � f . Also, T \ R ′ = A \Y
is non-empty and R ′ \ S = Y ∩ F is non-empty.

Fact 4: If Y ∈ �g and Y ∩ A = ∅ then Y ∈ {∅, F }. Suppose for contradiction that ∅ ⊂ Y ⊂ F . As in the proof of Fact 3, let
R ′ = B ∪ D ∪ Y . Note that T \ R = T \ R ′ = A. Also, R \ S = F and R ′ \ S = Y so |R \ S| > |R ′ \ S|. Once again, we will
show a contradiction to the choice of R by showing that R ′ ∈ �. As in the proof of Fact 3, since Y ∈ �g , R ′ ∈ � f . Also,
T \ R ′ is non-empty since T \ R is. Finally, R ′ \ S = Y , which is non-empty.

Fact 5: If Y ∈ �g and Y ∩ F = ∅ then Y = A. Since Y ∈ �g , we have Y ∪ B ∪ D ∈ � f . But since Y ⊆ A, we have Y ∪ B ∪ D ⊆ S ,
so Y ∪ B ∪ D ∈ �h . Since �h = {U | T ⊆ U ⊆ S} we have T ⊆ Y ∪ B ∪ D so A ⊆ Y .

Given Facts 1–5, we have only the following sub-cases.

Case 2a: �g = {A, F }. In this case, we will show that f supports perfect equality so it satisfies proposition 3 in the state-
ment of the lemma. Using Lemma 29, we conclude that either f supports perfect equality (in which case we are
finished) or f supports perfect pinning-to-0 and also perfect pinning-to-1, which we now assume. Let H0 be a k-tuple
hypergraph, with a vertex u0 such that μ f ;H (σu0 = 0) = 1. Let H1 be a k-tuple hypergraph, with a vertex u1 such that
0

202 A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213
μ f ;H1 (σu1 = 0) = 1. We have already noted that A is non-empty. Suppose, without loss of generality, that 1 ∈ A (oth-
erwise, we simply re-order the arguments of [k]). Now let H ′ be the k-tuple hypergraph with vertices v0, v1, . . . , vk
and hyperarcs (v0, v2, . . . , vk) and (v1, v2, . . . , vk). Construct H from H ′ by doing the following:
– For every i ∈ C ∪ E , take a new copy of H0 and identify vertex u0 with vi .
– For every i ∈ B ∪ D , take a new copy of H1 and identify vertex u1 with vi .
Now since �g = {A, F }, μ f ;H (σ (v0) = σ(v1) = 0) = μ f ;H (σ (v0) = σ(v1) = 1) = 1/2. Thus, f supports perfect equal-
ity, so we have finished Case 2a.

Case 2b: ∃Y ∈ �g such that Y ∩ A = A and Y ∩ F is non-empty. We will show that f satisfies proposition 2 in the statement
of the lemma. Specifically, consider some t ∈ A. We will show that ft→1 is not affine.
Let Y ′ = Y ∩ F so that Y = A ∪ Y ′ . Let

S1 := B ∪ D ∪ Y = B ∪ D ∪ A ∪ Y ′, S2 := A ∪ B = T , S3 := A ∪ B ∪ C .

We claim that S1\{t}, S2\{t}, S3\{t} ∈ � ft→1 . Since t ∈ S1, S2, S3 (from t ∈ A), the claim will follow by showing that
S1, S2, S3 ∈ � f . Indeed, since Y ∈ �g , we have that S1 ∈ � f . Also, since S2 = T , we have that S2 ∈ �h so S2 ∈ � f .
Finally, since T = A ∪ B ⊆ S3 ⊆ A ∪ B ∪ C ∪ D = S , we have that S3 ∈ �h so S3 ∈ � f .
Let S ′ := A ∪ B ∪ C ∪ D ∪ Y ′ = S ∪ Y ′ and note that χS ′ = χS1 ⊕χS2 ⊕χS3 (see Section 6.1 for the relevant notation) by
the disjointness of A, B, C, D, E, F . Since Y ′ is non-empty by assumption, we obtain that S ′ is not in � f by maximality
of S . Note that t ∈ S ′ , so we have that S ′\{t} /∈ � ft→1 .
To sum up, we have shown that

S1\{t}, S2\{t}, S3\{t} ∈ � ft→1 but S ′\{t} /∈ � ft→1

Since χS1\{t} ⊕ χS2\{t} ⊕ χS3\{t} = χS ′\{t} , by Item 1 of Lemma 21, ft→1 is not affine.

This concludes the proof of Lemma 40. �
Now we can prove Theorem 17, which we restate here for convenience.

Theorem 17. Let k ≥ 2 and let f : {0, 1}k → {0, 1} be a Boolean function. Then at least one of three following propositions is true:

1. f is affine;
2. f supports perfect equality;
3. f simulates a hard function.

Proof. We prove this Theorem by induction on the arity of f .

• k = 2. So R f ⊆ {00, 01, 10, 11}. If f is not affine, then
∣∣R f

∣∣ = 3.
If 00 /∈ R f or 11 /∈ R f , let G be a graph with two vertices u and v and an edge (u, v). Then either μ f ;G(σu = 1, σv =
1) = μ f ;G(σu = 0, σv = 1) = μ f ;G(σu = 1, σv = 0) = 1

3 or μ f ;G(σu = 0, σv = 0) = μ f ;G(σu = 0, σv = 1) = μ f ;G(σu =
1, σv = 0) = 1

3 . So f simulates a hard function.
If 01 /∈ R f or 10 /∈ R f , f ∗ will be fEQ and thus f supports perfect equality by Lemma 30.

• k ≥ 3. Suppose that for all 2 ≤ k′ < k, all k′-ary functions f ′ satisfy at least one of the three propositions in the
statement. We now prove that an arbitrary f : {0, 1}k → {0, 1} satisfies at least one of the propositions as well. If f is
affine, then it satisfies proposition 1 in the statement of the lemma, so we assume that f is not affine, so f /∈ EASY(k).
We have the following case analysis.
Case 1. f ∗ /∈ EASY(k). By Lemma 26, f ∗ either simulates a hard function in which case f simulates the same hard

function as well or f ∗ supports perfect equality in which case f supports perfect equality as well.
Case 2. f ∗ ∈ EASY(k). There are 6 sub-cases to consider:

Case 2a. f ∗ = fEQ . By Lemma 30, f supports perfect equality.
Case 2b. f ∗ = fodd or f ∗ = feven . By Lemma 31, f supports perfect equality.
Case 2c. f ∗ = fallone . By Lemma 27, f supports perfect pinning-to-1. By Lemma 37, f is semi-trivial (and thus f

is affine), or f supports perfect equality or simulates a hard function, or there exists t ∈ [k] such that ft→1
is not affine. If ft→1 is not affine for some t ∈ [k], ft→1 must support perfect equality or simulate a hard
function by the induction hypothesis. So f supports or simulates the same function by Lemma 33.

Case 2d. f ∗ = fallzero . The proof for this case is completely analogous to the case 2c by switching the spins 0 and
1 (cf. Lemma 38).

Case 2e. f ∗ = fone . f ∗ = fone means f (x) = 1 for all x ∈ {0, 1}k , so f is affine.
Case 2 f . f ∗ = fzero . By Lemma 29, we have that either f supports perfect equality or f supports both perfect

pinning-to-0 and perfect pinning-to-1. We assume that the latter is the case (otherwise we are done). By
Lemma 40, f is affine, or f supports perfect equality or simulates a hard function, or there exists some

A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213 203
S, T ⊆ [k] such that f S→0,T →1 is not affine. The only case where we aren’t immediately finished is the final
one. In this case, the arity of f S→0,T →1 must be at least 2 since every unary function is affine. Thus, since
f S→0,T →1 is not affine, it must support perfect equality or simulate a hard function g by the induction
hypothesis. Then, f either supports perfect equality or simulates the hard function g by Lemma 33.

This concludes the case analysis and the proof of Theorem 17. �
8. The case where f supports perfect equality

In this section, we assume that f is not affine but that it supports perfect equality. In this case, due to the presence of
perfect equality, we will be able to employ results and techniques from [13] to show Theorem 18.

8.1. Constraint satisfaction problems and implementations

In the introduction to this paper, we illustrated how Boolean relations can implement more complicated interactions by
considering the “not-all-equal” relation of arity 3 and using it to “implement” ferromagnetic Ising interactions. At this point,
it is useful to make the notion of “implement” more precise. There are various notions in the literature of implementations.
We use (a generalisation of) the notion from [13], which is essentially the “faithful, perfect” variant of “implementation”
from [8].

Definition 41. Let � be a Boolean constraint language. The language � implements a t-ary function g : {0, 1}t → R≥0, if
for some t′ ≥ t there is a CSP instance I with variables x1, . . . , xt′ and constraint language � such that for every tuple
(s1, . . . , st) ∈ {0, 1}t , there are precisely g(s1, s2, . . . , st) satisfying assignments σ of I with σ(x1) = s1, . . . , σ(xt) = st .1

When f supports perfect equality, we will use the following “transitivity” lemma, which will allow us to use some
known implementations.

Lemma 42. Let f : {0, 1}k → {0, 1} be a Boolean function which supports perfect equality. Let � be a Boolean constraint language and
let g : {0, 1}t →R≥0 be a t-ary function such that g is not f (t)

zero and � implements g. Then, if f perfectly simulates �, f also perfectly
simulates the function g.

Proof. Since � implements g , there exists some t′ ≥ t and a CSP instance I with variables X := {x1, . . . , xt′ } and constraints
in � such that for every tuple (s1, . . . , st) ∈ {0, 1}t , there are precisely g(s1, s2, . . . , st) satisfying assignments σ of I with
σ(x1) = s1, . . . , σ(xt) = st . Since g �= f (t)

zero , we conclude that, for all s1, . . . , st ∈ {0, 1},

μI (σ (x1) = s1, . . . , σ (xt) = st) = g(s1, s2, . . . , st)∑
(s′1,s′2,...,s′t)∈{0,1}t

g(s′
1, s′

2, . . . , s′
t)

. (4)

Since f supports perfect equality, there exists a k-tuple hypergraph Heq = (V eq, Feq) and vertices y, z ∈ V eq such that

μ f ;Heq(σ (y) = σ(z) = 0) = μ f ;Heq(σ (y) = σ(z) = 1) = 1/2. (5)

We will use the CSP instance I and the hypergraph Heq to construct a k-tuple hypergraph H = (V , F) with vertices
v1, . . . , vt′ in V satisfying

μ f ;H (σ (v1) = s1, . . . , σ (vt′) = st′) = μI (σ (x1) = s1, . . . , σ (xt′) = st′) (6)

for all s1, . . . , st′ ∈ {0, 1}. From this, the lemma follows since we can sum over the values of st+1, . . . , st′ ∈ {0, 1} to obtain
that

μ f ;H (σ (v1) = s1, . . . , σ (vt) = st) = μI (σ (x1) = s1, . . . , σ (xt) = st)

for all s1, . . . , st ∈ {0, 1}, which in conjunction with (4) yields that f perfectly simulates g .
To formally construct the k-tuple hypergraph H , we will need some notation. Suppose that I has m constraints and

for j ∈ [m] write the j’th constraint as f j(x j,1, . . . , x j,w(j)), where w(j) is the arity of f j ∈ � and, for all i ∈ [w(j)], x j,i ∈
{x1, . . . , xt′ }. Since f perfectly simulates � and every f j is in �, for every constraint C j = f j(x j,1, . . . , x j,w(j)), there is a
k-tuple hypergraph H j = (V j, F j) and vertices v j,1, . . . , v j,w(j) of H j such that for all s1, . . . , sw(j) ∈ {0, 1}, it holds that

1 See also the relevant equation (4).

204 A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213
μ f ;H j (σ (v j,1) = s1, . . . , σ (v j,w(j)) = sw(j)) = f j(s1, . . . , sw(j))

|R f j |
. (7)

Note that the expression |R f j | in the denominator in (7) is not zero because the constraint C j has a satisfying assignment,
since I does (which follows from the fact that g �= f (t)

zero and from the definition of I).
Consider now the k-tuple hypergraph H ′ = (V ′, F ′) which is simply the disjoint union of H1, . . . , Hm (i.e., V ′ = ∪m

j=1 V j

and F ′ = ∪m
j=1F j). Note that, for every subset S ⊆ V ′ and every assignment τ : S → {0, 1}, it holds that

μ f ;H ′(σS = τ) =
m∏

j=1

μ f ;H j (σS∩V j = τS∩V j). (8)

To complete the construction of the desired H , we need some further notation. For a variable xi ∈ {x1, . . . , xt′ } of the CSP
instance I , let Ui ⊆ V ′ denote the subset of vertices of H ′ which correspond to occurrences of the variable xi in the CSP
instance I . More precisely, assume that the variable xi has d occurrences in I for some integer d ≥ 1, and let C j1 , . . . , C jd

be the constraints in which xi appears (note that the indices j1, . . . , jd are not necessarily distinct). Further, let t1, . . . , td
denote the indices of the positions where xi appears in C j1 , . . . , C jd respectively. Then Ui := {v j1,t1 , . . . , v jd,td } is precisely
the subset of vertices of H ′ which correspond to occurrences of the variable xi in the CSP instance I . Let U := ∪i∈[t′]Ui (note
that in general U �= V ′ since H ′ may contain vertices that do not correspond to occurrences of variables of I).

We are now ready to complete the construction of the desired k-tuple hypergraph H = (V , F). Start by setting H equal
to H ′. Then, for each i ∈ [t′] and each pair of vertices u, u′ ∈ Ui , add to H a distinct copy of the k-tuple hypergraph Heq ,
identifying the vertices y and z of Heq with the vertices u and u′ . Having defined H , we next choose the specified vertices
v1, . . . , vt′ . In fact, it suffices, for each i ∈ [t], to let vi be an arbitrary vertex in Ui .

It remains to prove that (6) holds. We call an assignment τ : U → {0, 1} relevant if for every i ∈ [t′] there exists si ∈ {0, 1}
such that for every vertex v ∈ Ui , it holds that τ (v) = si . For relevant assignments τ , we will refer to the tuple (s1, . . . , st′)
as the CSP assignment corresponding to τ . For non-relevant τ , the copies of Heq on top of the sets U1, . . . , Ut′ ensure that
μ f ;H (σU = τ) = 0. For all relevant τ : U → {0, 1}, we have from (5) that

μ f ;H (σU = τ) = μ f ;H ′(σU = τ)

and, hence, using (8), we have that

μ f ;H (σU = τ) =
m∏

j=1

μ f ;H j (σU∩V j = τU∩V j). (9)

Note that for every j ∈ [m] we have U ∩ V j = {v j,1, . . . , v j,w(j)} and, hence, (7) gives

μ f ;H j (σU∩V j = τU∩V j) = f j(τ (v j,1), · · · , τ (v j,w(j)))

|R f j |
. (10)

It follows from (9) and (10) that

μ f ;H (σU = τ) ∝
m∏

j=1

f j(τ (v j,1), · · · , τ (v j,w(j))) for all relevant τ . (11)

For a relevant τ : U → {0, 1}, let (s1, . . . , st′) be the CSP assignment corresponding to τ . Then, the product in the r.h.s. of (11)
is 1 iff (s1, . . . , st′) encodes a satisfying assignment of the CSP instance I . Since the relevant τ : U → {0, 1} and assignments
to the CSP instance I are in 1-1 correspondence, we obtain (6), as wanted. This concludes the proof of Lemma 42. �
Lemma 43. Let f : {0, 1}k → {0, 1} and g : {0, 1}t → {0, 1} be Boolean functions such that f simulates g, and g �= f (t)

zero . Suppose that
g supports pinning-to-s for some s ∈ {0, 1}. Then f supports pinning-to-s as well.

Proof. Without loss of generality, we assume that s = 0. Suppose that the function g supports pinning-to-0. Our goal is to
show that f supports pinning-to-0 as well.

First, let Z g := ∑
(s1,s2,...,st)∈{0,1}t g(s1, s2, . . . , st). Since g �= f (t)

zero , Z g > 0. Since g supports pinning-to-0, by Definition 9,
there exists a t-tuple hypergraph H0 = (V 0, F0) and a vertex v0 ∈ V 0 such that

μg;H0(σv0 = 0) ≥ 9/10. (12)

(The choice of the constant 9/10 is arbitrary, any constant greater than 1/2 would work. Also, Z g;H0 > 0.) For all η : V 0 →
{0, 1} define Aη := w g;H0 (η)

|F0 | and define M := ∑
η:V 0→{0,1} Aη = Z g;H0|F0 | . Since Z g;H0 and Z g are positive, M > 0. Also,
(Z g) (Z g)

A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213 205
μg;H0(η) = Aη

M
. (13)

Now let ε := min{M/8, 1/8}, ε1 := ε/(|F0| 22|V 0|) and ε2 := ε/(2|V 0|). Since f simulates the function g , by Definition 14
and Lemma 25, there exists a k-tuple hypergraph H g = (V g, Fg) and t vertices v1, v2, . . . , vt of H g such that, for all
(s1, s2, . . . , st) ∈ {0, 1}t ,

∣∣∣μ f ;H g (σ (v1) = s1,σ (v2) = s2, . . . , σ (vt) = st) − g(s1, s2, . . . , st)

Z g

∣∣∣ ≤ ε1. (14)

Construct the k-tuple hypergraph H = (V , F) as follows. For every hyperarc e of H0, say e = (u1, . . . , ut) ∈ F0, take a
distinct copy of H g , which we will denote by H (e)

g , and identify the vertices u1, . . . , ut ∈ V 0 with the vertices v1, . . . , vt

of H g . Note that H is a union of copies of H g which intersect only at vertices in V 0. Now for all η : V 0 → {0, 1} define
A′

η := ∏
e∈F0

μ
f ;H(e)

g
(σe = ηe) and M ′ := ∑

η:V 0→{0,1} A′
η . Then

μ f ;H (σV 0 = η) = A′
η

M ′ . (15)

By (14), for every e = (u1, . . . , ut) ∈F0, it holds that

∣∣∣μ f ;H(e)
g

(σe = ηe) − g
(
η(u1), . . . , η(ut)

)
Z g

∣∣∣ ≤ ε1. (16)

Recall that for real numbers a1, . . . , an ∈ [0, 1] and b1, . . . , bn ∈ [0, 1], it holds that | ∏n
i=1 ai −∏n

i=1 bi | ≤ ∑n
i=1 |ai − bi |. Thus,

using (16), we obtain that, for every η : V 0 → {0, 1}, it holds that

|A′
η − Aη| =

∣∣∣ ∏
e∈F0

μ
f ;H(e)

g
(σe = ηe) − w g;H0(η)

(Z g)|F0|
∣∣∣ ≤ ε1|F0|. (17)

Summing this over all η : V 0 → {0, 1}, we obtain that

|M ′ − M| =
∣∣∣ ∑
η:V 0→{0,1}

A′
η −

∑
η:V 0→{0,1}

Aη

∣∣∣ ≤ ε1|F0|2|V 0| = ε2. (18)

Note that the expression ε1|F0| in (17) is at most ε2. Also, for all η : V 0 → {0, 1}, Aη ≤ M and A′
η ≤ M ′ . The bounds in (17)

and (18) yield that Aη − ε2 ≤ A′
η ≤ Aη + ε2 and M − ε2 ≤ M ′ ≤ M + ε2. By the choice of ε , we have M − ε > M/2 and hence

M − ε2 > M/2 as well. Further, we have the bound

∣∣∣ Aη

M
− A′

η

M ′
∣∣∣ ≤ max

{ Aη

M
− Aη − ε2

M + ε2
,

Aη + ε2

M − ε2
− Aη

M

}
≤ ε2(Aη + M)

M(M − ε2)
≤ 2ε2

M − ε2
≤ 4ε2

M
≤ 1

2|V 0|+1 . (19)

From (13) and (15) and (19), we thus obtain that for every η : V 0 → {0, 1}, it holds that

|μ f ;H (σV 0 = η) − μg;H0(η)| ≤ 1/2|V 0|+1.

Summing this over the 2|V 0|−1 possible values of ηV 0\{v0} , we obtain that for s ∈ {0, 1} it holds that

|μ f ;H (σv0 = s) − μg;H0(σv0 = s)| ≤ 1/4.

Combining this with (12), we obtain that

μ f ;H (σv0 = 0) > 1/2 > μ f ;H (σv0 = 1).

Thus, by Lemma 24, we obtain that f supports pinning-to-0. This concludes the proof of Lemma 43. �
The following lemma is similar to Lemma 42 except that, instead of assuming that f perfectly simulates �, we only

assume that f simulates � so instead of concluding that f perfectly simulates g , we only conclude that f simulates g .

Lemma 44. Let f : {0, 1}k → {0, 1} be a Boolean function which supports equality. Let � be a Boolean constraint language and let
g : {0, 1}t → R≥0 be a t-ary function such that g is not f (t)

zero and � implements g. Then, if f simulates �, f also simulates the
function g.

206 A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213
Proof. The proof is similar to the proof of Lemma 42, but the imperfect nature of the simulation adds technical details.
Since � implements g we can follow the proof of Lemma 42 to define the CSP instance I with variables {x1, . . . , xt′ } and
constraints in � satisfying (4).

We will use the CSP instance I and the fact that f supports equality to construct a k-tuple hypergraph H = (V , F) with
an admissible set V∗ for H with respect to f and vertices v1, . . . , vt′ in V satisfying

μ
cond(V∗)

f ;H (σ (v1) = s1, . . . , σ (vt′) = st′) = μI (σ (x1) = s1, . . . , σ (xt′) = st′) (20)

for all s1, . . . , st′ ∈ {0, 1}. From this, the lemma follows since we can sum over the values of st+1, . . . , st′ ∈ {0, 1} to obtain
that

μ
cond(V∗)

f ;H (σ (v1) = s1, . . . , σ (vt) = st) = μI (σ (x1) = s1, . . . , σ (xt) = st)

for all s1, . . . , st ∈ {0, 1}, which in conjunction with (4) yields that f simulates g .
To formally construct the k-tuple hypergraph H , we will need some notation. As in the proof of Lemma 42, suppose that

I has m constraints and for j ∈ [m] write the j’th constraint as f j(x j,1, . . . , x j,w(j)), where w(j) is the arity of f j ∈ � and,
for all i ∈ [w(j)], x j,i ∈ {x1, . . . , xt′ }. Since f simulates � and every f j is in �, for every constraint C j = f j(x j,1, . . . , x j,w(j)),
there is a k-tuple hypergraph H j = (V j, F j), an admissible collection V j = (V j

pin0, V
j

pin1, V
j

eq) for H j with respect to f j and
vertices v j,1, . . . , v j,w(j) of H j such that for all s1, . . . , sw(j) ∈ {0, 1}, it holds that

μ
cond(V j)

f ;H j
(σ (v j,1) = s1, . . . , σ (v j,w(j)) = sw(j)) = f j(s1, . . . , sw(j))

|R f j |
. (21)

Consider now the k-tuple hypergraph H = (V , F) which is simply the disjoint union of H1, . . . , Hm (i.e., V = ∪m
j=1 V j

and F = ∪m
j=1F j). Further, let V = (V pin0, V pin1, Veq), where V pin0 = ∪m

j=1 V j
pin0, V pin1 = ∪m

j=1 V j
pin1 and V eq = ∪m

j=1V
j

eq . We
wish to argue that V is admissible for H with respect to f . The various disjointness constraints in Definition 12 are satisfied
since H1, . . . , Hm are disjoint (using the fact that each V j is admissible for H j with respect to f j). We have assumed, in the
statement of the lemma, that f supports equality. To show that V is admissible for H with respect to f , we need to show
that if some f j supports pinning-to-s for some s ∈ {0, 1} then so does f . This follows from Lemma 43 since, by assumption,
f simulates f j . Thus, V is admissible for H with respect to f .

Note that, for every subset S ⊆ V and every assignment τ : S → {0, 1}, it holds that

μ
cond(V)

f ;H (σS = τ) =
m∏

j=1

μ
cond(V j)

f ;H j
(σS∩V j = τS∩V j). (22)

Having completed the construction of the desired H , to recover (6), it remains to specify V∗ and the vertices v1, . . . , vt′ .
For each i ∈ [t′], define Ui as in the proof of Lemma 42. Also, let U := ∪i∈[t′]Ui . The main idea is that V∗ is the same as
V except that the sets U1, . . . , Ut′ are added to V eq because we want to condition on the fact that the variables in each of
these sets are equal. In order to formally specify V∗ = (V ∗

pin0, V
∗
pin1, V

∗
eq) there is a slight technical difficulty because V ∗

pin0
and V ∗

pin1 have to be disjoint from each other and from all sets in V ∗
eq . In order to deal with this (rather unimportant, but

technical) detail, we give an algorithm for defining V∗ . Let V0 = V . Then, for i = 1, . . . , t′ define V i = (V i
pin0, V

i
pin1, V i

eq) as
follows.

• Let V i = V i−1.
• Note that no vertex in Ui is in V pin0 ∩ V pin1. This follows since I is satisfiable (since g is not the always-zero function

fzero).
• If any vertex in Ui is in V pin0 then replace V i

pin0 with V i−1
pin0 ∪ Ui .

• Otherwise, if any vertex in Ui is in V pin1 then replace V i
pin1 with V i−1

pin1 ∪ Ui .

• Otherwise, if Ui does not intersect any sets in V i−1
eq then replace V i

eq with V i−1
eq ∪ {Ui}.

• Otherwise, let W1, . . . , W z be the sets in V i−1
eq that intersect Ui and replace V i

eq with (V i−1
eq \ {W1, . . . , W z}) ∪ {Ui ∪

W1 ∪ · · · ∪ W z}.

Finally, let V∗ = Vt′ . Then choose the vertices v1, . . . , vt′ to be arbitrary vertices in U1, . . . , Ut′ , respectively.
It remains to prove that (20) holds. As in the proof of Lemma 42, we call an assignment τ : U → {0, 1} relevant if for

every i ∈ [t′] there exists si ∈ {0, 1} such that for every vertex v ∈ Ui , it holds that τ (v) = si . For relevant assignments τ ,
we will refer to the tuple (s1, . . . , st′) as the CSP assignment corresponding to τ . Clearly, for non-relevant τ , we have that
μ

cond(V∗)

f ;H (σU = τ) = 0 since V∗ forces equality on each of the sets U1, . . . , Ut′ . For all relevant τ : U → {0, 1}, we have that

μ
cond(V∗)

f ;H (σU = τ) = μ
cond(V)

f ;H (σU = τ)

μ
cond(V)

(σ
eq

, . . . , σ
eq

)
f ;H U1 Ut

A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213 207
and hence

μ
cond(V∗)
f ;H (σU = τ) ∝ μ

cond(V)

f ;H (σU = τ) for all relevant τ . (23)

Using (22), we have that

μ
cond(V)

f ;H (σU = τ) =
m∏

j=1

μ
cond(V j)

f ;H j
(σU∩V j = τU∩V j). (24)

Note that for every j ∈ [m] we have U ∩ V j = {v j,1, . . . , v j,w(j)} and, hence, (21) gives

μ
cond(V j)

f ;H j
(σU∩V j = τU∩V j) = f j(τ (v j,1), · · · , τ (v j,w(j)))

|R f j |
. (25)

It follows from (23), (24) and (25) that

μ
cond(V∗)
f ;H (σU = τ) ∝

m∏
j=1

f j(τ (v j,1), · · · , τ (v j,w(j))) for all relevant τ . (26)

For a relevant τ : U → {0, 1}, let (s1, . . . , st′) be the CSP assignment corresponding to τ . Then, the product in the r.h.s.
of (26) is 1 iff (s1, . . . , st′) encodes a satisfying assignment of the CSP instance I . Since the relevant τ : U → {0, 1} and
assignments to the CSP instance I are in 1-1 correspondence, we obtain (20), as wanted.

This concludes the proof of Lemma 44. �
The following Boolean functions, which were considered in [13], will be important in what follows: δ0 and δ1 (defined

in Definition 32), and XOR, Implies, NAND, OR. For convenience, we state the corresponding relations here.

• Rδ0 = {(0)} and Rδ1 = {(1)} (these correspond to satisfying assignments of ¬x and x, respectively).
• RXOR = {(0, 1), (1, 0)} (corresponds to satisfying assignments of x �= y).
• R Implies = {(0, 0), (0, 1), (1, 1)} (corresponds to satisfying assignments of x ⇒ y).
• RNAND = {(0, 0), (0, 1), (1, 0)} (corresponds to satisfying assignments of ¬x ∨ ¬y).
• ROR = {(0, 1), (1, 0), (1, 1)} (corresponds to satisfying assignments of x ∨ y).

8.2. The case of self-dual functions

A Boolean function f is said to be self-dual if, for all x, f (x) = f (x). In this section, we show (Theorem 46, below) that
if f is a self-dual Boolean function which is not affine, and f supports perfect equality, then f simulates a hard function.
First, we establish a useful lemma.

Lemma 45. Let f : {0, 1}k → {0, 1} be a self-dual function Boolean with f �= f (k)
zero and f (0) = 0. Further, suppose that f supports

perfect equality. Then, f perfectly simulates XOR.

Proof. From f (0) = 0 and self-duality, we have that f (1) = 0. Since f �= f (k)
zero , there must be some x /∈ {0, 1} such that

f (x) = 1. By self-duality, we have that f (x) = 1 as well. Let U0 = {i ∈ [k] | xi = 0} and U1 = {i ∈ [k] | xi = 1}.
Since f supports perfect equality, there exists a k-tuple hypergraph Heq = (V eq, Feq) and vertices y, z ∈ V eq such that

μ f ;Heq(σ (y) = σ(z) = 0) = μ f ;Heq(σ (y) = σ(z) = 1) = 1/2.

Construct the k-tuple hypergraph H as follows. First, take a single hyperarc (v1, . . . , vk). Then, for every s ∈ {0, 1} and
every i, j such that i and j are both in Us , add a new copy of Heq , identifying y with vi and z with v j . Finally, choose
v1 ∈ U0 and v2 ∈ U1. Then

μ f ;H (σ (v1) = 0,σ (v2) = 1) = μ f ;H (σ (v1) = 1,σ (v2) = 0) = 1/2,

so f perfectly simulates XOR. �
Theorem 46. Suppose that f is a self-dual Boolean function which is not affine and supports perfect equality. Then f simulates a hard
function.

Proof. Let k be the arity of f . The proof has two cases depending on whether f (0) = 0 or f (0) = 1. We begin with the
case where f (0) = 1 (we will reduce the proof for the other case to this one).

208 A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213
So, assume first that f (0) = 1. Since f is not affine, by applying Item 2 of Lemma 21 to a = 0, we obtain that there exist
b, c ∈ {0, 1}k such that f (b) = f (c) = 1 but f (b ⊕ c) = 0. By self-duality, we also have that f (b) = f (c) = 1. Note that

b �= c, b �= 0,1, c �= 0,1.

Indeed, it cannot be the case that b = c since then f (b ⊕ c) = f (0) = 1. Analogously, b = 0 would give that f (b ⊕ c) =
f (c) = 1. Similarly, b = 1 would give that f (b ⊕ c) = f (c) = 1. By symmetry between b and c, we have that c �= 0, 1.

Let w, x, y, z be Boolean variables. For i ∈ [k], let

ri =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w, if bi = 0, ci = 0,

x, if bi = 0, ci = 1,

y, if bi = 1, ci = 0,

z, if bi = 1, ci = 1.

Let V := {r1, . . . , rk} (note that V has at most 4 elements). Also, consider the Boolean function h : {0, 1}|V | → {0, 1} defined
by h = f (r1, . . . , rk).

We next study in more detail the function h. Observe that

• V must contain at least one of x, y since b �= c.
• V must contain at least one of w, x since b �= 1.
• V must contain at least one of w, y since c �= 1.
• V must contain at least one or y, z since b �= 0.
• V must contain at least one of x, z since c �= 0.

Thus, the cases to consider are V = {w, x, y, z}, |V | = 3, or V = {x, y}. However, V = {x, y} is not possible since then
b ⊕ c = 1 and f (1) = 1 (contradicting that f (b ⊕ c) = 0). We now consider the function h (and the corresponding relation
Rh) in each of the possible cases.

• Case 1. V = {x, y, z}.
Note that (x, y, z) = (0, 0, 0) ∈ Rh since f (0) = 1. Also, (0, 1, 1) ∈ Rh since f (b) = 1. Also, (1, 0, 1) ∈ Rh since f (c) = 1.
By self-duality (1, 1, 1), (1, 0, 0), (0, 1, 0) are also in Rh . Then (x, y, z) = (1, 1, 0) is not in Rh since f (b ⊕ c) = 0 and by
self-duality neither is (0, 0, 1). So h(x, y, z) is completely determined. Then, for the function g(x, y) := ∑

z h(x, y, z), we
have that

g(0,0) = g(1,1) = 1 and g(0,1) = g(1,0) = 2,

which is a hard function.
• Case 2. V = {w, x, y}. This case is similar to Case 1 by switching the spins 0 and 1.
• Case 3. V = {w, x, z}. (w, x, z) = (0, 0, 0) is in Rh since f (0) = 1. (0, 0, 1) is in Rh since f (b) = 1. (0, 1, 1) is in Rh

since f (c) = 1. By self-duality, (1, 1, 1), (1, 1, 0) and (1, 0, 0) are also in Rh . (0, 1, 0) is not in Rh since f (b ⊕ c) = 0. By
self-duality, (1, 0, 1) is not in Rh . Then, for the function g(w, z) = ∑

x h(w, x, z), we have that

g(0,0) = g(1,1) = 1 and g(0,1) = g(1,0) = 2,

which is a hard function.
• Case 4. V = {w, y, z}. This case follows from Case 3 by switching b and c.
• Case 5. V = {w, x, y, z}

Similarly to the other cases, we have the following tuples in Rh: (w, x, y, z) = (0, 0, 0, 0), (0, 0, 1, 1), (0, 1, 0, 1), and
their complements and we know that (w, x, y, z) = (0, 1, 1, 0) and its complement are not in Rh . Let h0 = h(0, x, y, z).
Let

C = {(0,0,1), (0,1,0), (1,0,0), (1,1,1)}.
For every possible subset S of C , we have to consider the possibility that Rh0 = S ∪ {(0, 0, 0), (0, 1, 1), (1, 0, 1)}. This is
a lot of cases, but fortunately, some of them can be combined.
– Case 5a. (x, y, z) = (0, 1, 0) is in S but (1, 1, 1) is not. Then, for the function g(x, y) := ∑

w h(w, x, y, x), we have

g(0,0) = g(1,1) = 1 and g(0,1) = g(1,0) = 2,

which is a hard function.
– Case 5b. (x, y, z) = (1, 1, 1) is in S but (0, 1, 0) is not. Then, for the function g(w, x) := ∑

y h(w, x, y, x), we have

g(0,0) = g(1,1) = 1 and g(0,1) = g(1,0) = 2,

which is a hard function.

A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213 209
– Case 5c. (x, y, z) = (1, 0, 0) is in S but (1, 1, 1) is not. This case is symmetric to Case 5a.
– Case 5d. (x, y, z) = (1, 1, 1) is in S but (1, 0, 0) is not. This case is symmetric to Case 5b.
– Case 5e. (x, y, z) = (0, 1, 0) and (1, 0, 0) are both in S .

Then, for the function g(x, y) := ∑
w h(w, x, y, w), we have

g(0,0) = g(1,1) = 1 and g(0,1) = g(1,0) = 2,

which is a hard function.
– Case 5f. S = ∅. Then, for the function g(x, y) := ∑

w,z h(w, x, y, z), we have

g(0,0) = g(1,1) = 1 and g(0,1) = g(1,0) = 2,

which is a hard function.
– Case 5g. S = {(0, 0, 1)}. Then, for the function g(w, z) := ∑

x,y Rh(w, x, y, z), we have

g(0,0) = g(1,1) = 1 and g(0,1) = g(1,0) = 3,

which is a hard function.

It remains to argue that each of the functions g used in Cases 1—5 can be simulated using the function f . This is direct.
{ f } implements the function h and {h} implements the function g , so { f } implements g . Since f supports perfect equality,
we can apply Lemma 42 taking � = { f }. Since (trivially) f perfectly simulates �, we find that f perfectly simulates g . This
completes the proof for the case where f (0) = 1.

We next argue for the case where f (0) = 0. Since f is not affine, we have that f �= f (k)
zero , so there exists t �= 0 such that

f (t) = 1. Let S := {i ∈ [k] | ti = 1} and note that S �= ∅.
Consider the function f ′ defined by f ′(x) := f (x ⊕ t) for all x ∈ {0, 1}k . Note that

• f ′(0) = 1, since f (t) = 1.
• f ′ is self-dual. Indeed, for x ∈ {0, 1}k we have

f ′(x) = f (x ⊕ 1 ⊕ t) = f (x ⊕ t) = f ′(x),

where the middle equality follows from the self-duality of f .
• f ′ is not affine. Since f is not affine, we know from Lemma 21(1) that there are a, b, c such that f (a) = f (b) = f (c) = 1

and f (a ⊕ b ⊕ c) = 0. Let a′ = a ⊕ t, b′ = b ⊕ t and c′ = c ⊕ t. Then by the definition of f ′ , f ′(a′) = f ′(b′) = f ′(c′) = 1.
But f ′(a′ ⊕ b′ ⊕ c′) = f ′(a ⊕ b ⊕ c ⊕ t) = f (a ⊕ b ⊕ c) = 0, so f ′ is not affine.

By the previous argument, we thus have { f ′} implements a hard function g . We will show that f simulates g . Indeed,
observe that the constraint language { f , XOR} implements f ′ (just apply XOR to the bits of f which correspond to non-zero
entries of the vector t). Since f (0) = 0 and f supports perfect equality, by Lemma 45 we have that f perfectly simulates
{ f , XOR}. Applying Lemma 42 with � = { f , XOR} and the g of Lemma 42 as f ′ , we find that f perfectly simulates f ′ . Then
applying Lemma 42 again with � = { f ′}, and the g of Lemma 42 as g , we obtain that f simulates the hard function g , as
wanted. This concludes the proof of Theorem 46. �
8.3. #BIS-easiness

The goal of Section 8 is to prove Theorem 18. The required #BIS-easiness results follow directly from [13].

Lemma 47 ([13, Lemma 9]). Let � be a constraint language such that every relation in � belongs to I M2 . Then, #CSP(�) is #BIS-
easy. �
8.4. #BIS-hardness

We next prove the required #BIS-hardness results (cf. Lemma 51 below). We will use the following results from the
literature.

Lemma 48 ([5, Corollary 3]). Let � ≥ 6. It is #BIS-hard to count the number of independent sets in bipartite graphs of maximum
degree �. �

The following lemma is from Lemma 13 of [13]. We take the lemma from there since we use the notation of [13].
However, the proof is originally from Lemmas 5.24 and 5.25 of [8].

210 A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213
Lemma 49 ([8]). If f is a Boolean function that is not self-dual, then { f } implements either δ0 or δ1 .

Proof. We just need to explain the terminology in [13, Lemma 13]. It will be then apparent that Items (i)–(iv) in [13,
Lemma 13] show that { f } implements δ0 or δ1. “0-valid” in [13] means that 0 ∈ R f , “1-valid” means that 1 ∈ R f and
“complement-closed” means self-dual. �
Lemma 50 ([13, Lemma 15], see also [8]). If f is a Boolean function that is not affine, then { f , δ0} implements one of OR, Implies,
NAND. The same is true for { f , δ1}. �

We are now ready to show that, for every f which supports perfect equality and is not affine, it holds that, for all
sufficiently large �, #Multi2Spin�(f) is #BIS-hard.

Lemma 51. Let f : {0, 1}k → {0, 1} be a Boolean function which supports perfect equality. Suppose that f is not affine. Then, for all
sufficiently large �, #Multi2Spin�(f) is #BIS-hard.

Proof. Assume first that f is self-dual. Then, by Theorem 46 (note that f is not affine and supports perfect equality by
assumption), f perfectly simulates a hard function. By Lemma 15, we obtain that for all sufficiently large �, there exists
c > 1 such that #Multi2Spin�,c(f) is NP-hard. Now, recall that every problem in #P admits an FPRAS using an NP-oracle
[24]. Since #Multi2Spin�,c(f) is NP-hard, we can use it as an oracle to obtain an FPRAS for #BIS.

Assume next that f is not self-dual. By Lemma 49 we have that { f } implements either δ0 or δ1. We only need to consider
the case where { f } implements δ0, the case of δ1 follows by just switching the spins 0 and 1. First, by Lemma 42 with
� = { f } and g = δ0, f perfectly simulates δ0, so f perfectly simulates { f , δ0}. Recall that f is not affine. By Lemma 50, it
thus follows that { f , δ0} implements one of OR, NAND, Implies. Using Lemma 42 again, it follows that f perfectly simulates
one of OR, NAND, Implies.

Note that OR and NAND correspond to hard functions, so when f perfectly simulates either OR or NAND, we obtain
from Lemma 15 that for all sufficiently large �, there exists c > 1 such that #Multi2Spin�,c(f) is NP-hard. Thus, as in the
case of self-dual functions, we may conclude that for all sufficiently large �, #Multi2Spin�,c(f) is #BIS-hard.

Thus, it remains to consider the case where f perfectly simulates Implies. By Definition 14, this means that there exists
a k-tuple hypergraph H ′ = (V ′, F ′) and vertices x, y in H ′ such that

Z00

Z f ;H ′
= 1

3
,

Z01

Z f ;H ′
= 1

3
,

Z11

Z f ;H ′
= 1

3
,

Z10

Z f ;H ′
= 0, (27)

where, for s1, s2 ∈ {0, 1}, we denote

Zs1s2 :=
∑

σ :V ′→{0,1};
σx=s1, σy=s2

w f ;H ′(σ).

Let �′ be the degree of H ′ . We will show that for all � ≥ 6�′ , #Multi2Spin�,c(f) is #BIS-hard.
We will use Lemma 48. In particular, let G = (V 1 ∪ V 2, E) be a bipartite graph of maximum degree 6 where V 1, V 2 denote

the parts of G in its partition. Let H = (V , F) be the k-tuple hypergraph obtained from G as follows. Start by putting all of
the vertices in V 1 ∪ V 2 into V . Then add additional vertices and hyperarcs as follows. For every edge (v1, v2) ∈ E such that
v1 ∈ V 1 and v2 ∈ V 2, take a distinct copy of H ′ and identify vertex x in H ′ with v1 and vertex y in H ′ with v2. Note that
V 1 ∪ V 2 ⊆ V and that the degree of H is 6�′ .

Let IG denote the set of independent sets of G . Then, we claim that

Z f ;H = |IG | · (Z f ;H ′/3)|E|. (28)

Before proving (28), note that an oracle call to #Multi2Spin�(f) for � ≥ 6�′ with input H and relative error ε > 0 yields via
(28) an estimate for the number of independent sets in bipartite graphs of maximum degree 6 which is within relative error
ε from the true value. Thus, using Lemma 48, we obtain an AP-reduction from #BIS to #Multi2Spin�(f) for all � ≥ 6�′ , as
wanted.

To show (28), let σ : V → {0, 1} be an assignment such that w f ;H (σ) > 0. The copies of H ′ ensure that for every edge
(v1, v2) ∈ E such that v1 ∈ V 1 and v2 ∈ V 2 it holds that either σ(v1) �= 1 or σ(v2) �= 0. Thus, the set (σ−1(1) ∩ V 1) ∪
(σ−1(0) ∩ V 2) is an independent set of G . Conversely, for every independent set I of G , consider

�I = {σ : V → {0,1} | σI∩V 1 = 1, σI∩V 2 = 0, σV 1\I = 0, σV 2\I = 1}.
Then, using (27), we have that the number of assignments σ ∈ �I such that w f ;H (σ) > 0 is equal to∏

(v1,v2)∈E

Zσ (v1)σ (v2) = (Z f ;H ′/3)|E|.

Summing this over all I ∈ IG , we obtain (28), thus completing the proof of Lemma 51. �

A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213 211
8.5. NP-hardness

In this section, we show (Lemma 54 below) that if f supports perfect equality, and it is not affine, and is not in I M2 then,
for all sufficiently large �, there exists c > 1 such that #Multi2Spin�,c(f) is NP-hard. To do this, we need some preparation.
The ideas behind the following lemma are essentially from [13].

Lemma 52. If f perfectly simulates Implies, then f simulates {δ0, δ1} (not necessarily perfectly).

Proof. We first show that f supports both pinning-to-0 and pinning-to-1. Since f perfectly simulates Implies, there exists a
k-tuple hypergraph H and vertices v1, v2 in H such that

μ00 = 1/3, μ01 = 1/3, μ11 = 1/3, μ10 = 0, (29)

where, for s1, s2 ∈ {0, 1}, we denote μs1s2 := μ f ;H (σv1 = s1, σv2 = s2).
Note that

μ f ;H (σv1 = 0) = μ00 + μ01, μ f ;H (σv1 = 1) = μ10 + μ11,

μ f ;H (σv2 = 0) = μ00 + μ10, μ f ;H (σv2 = 1) = μ01 + μ11.

It follows that

μ f ;H (σv1 = 0) = 2/3, μ f ;H (σv1 = 1) = 1/3,

μ f ;H (σv2 = 0) = 1/3, μ f ;H (σv2 = 1) = 2/3.
(30)

Then, using (30), we obtain that H and its vertices v1, v2 satisfy the assumptions of Lemma 24 (v1 satisfies Item 1 and v2
Item 2) and hence we obtain that f supports pinning-to-0 and pinning-to-1.

To conclude that f simulates {δ0, δ1}, consider the k-tuple hypergraph H as above and consider the conditional distribu-
tion μV0

f ;H where we pin the vertex v2 to 0 (this is allowed since f supports pinning-to-0). Then,

μ
V0
f ;H (σ (v1) = 0) = 1, μ

V0
f ;H (σ (v1) = 1) = 0

so f simulates δ0. Analogously, by pinning the vertex v1 to 1, we also obtain that f simulates δ1, concluding the proof. �
Lemma 53 ([13, Proof of Lemma 19]). If f is a Boolean function that is not in I M2, then { f , Implies, δ0, δ1} implements either OR or
NAND. �
Lemma 54. Let f : {0, 1}k → {0, 1} be a function which supports perfect equality. Suppose that f is not affine and is not in I M2 . Then,
for all sufficiently large �, there exists c > 1 such that #Multi2Spin�,c(f) is NP-hard.

Proof. The proof is similar in structure to the proof of Lemma 51.
Assume first that f is self-dual. Then, by Theorem 46 (note that f is not affine and supports perfect equality by assump-

tion), f perfectly simulates a hard function. By Lemma 15, we obtain that for all sufficiently large �, there exists c > 1 such
that #Multi2Spin�,c(f) is NP-hard.

Assume next that f is not self-dual. By Lemma 49 we have that { f } implements either δ0 or δ1. We only need to
consider the case where { f } implements δ0, the case of δ1 follows by switching the spins 0 and 1. First, by Lemma 42 with
� = { f } and g = δ0, f perfectly simulates δ0, so f perfectly simulates { f , δ0}. Recall that f is not affine. By Lemma 50, it
thus follows that { f , δ0} implements one of OR, NAND, Implies. Using Lemma 42 again, it follows that f perfectly simulates
one of OR, NAND, Implies. OR and NAND correspond to hard functions, so when f perfectly simulates either OR or NAND,
we obtain from Lemma 15 that for all sufficiently large �, there exists c > 1 such that #Multi2Spin�,c(f) is NP-hard. Thus,
it remains to consider the case where f perfectly simulates Implies.

Since f perfectly simulates Implies, by Lemma 52, we obtain that f simulates {δ0, δ1}. Thus, f simulates { f , Implies,
δ0, δ1}. By Lemma 53, using that f is not in I M2, we have that { f , Implies, δ0, δ1} implements either OR or NAND. By
Lemma 44, we thus obtain that f simulates either OR or NAND. Hence, as above, we can use Lemma 15 to conclude that
for all sufficiently large �, there exists c > 1 such that #Multi2Spin�,c(f) is NP-hard.

This concludes the proof. �
8.6. Proof of Theorem 18

We are ready to prove Theorem 18, which we restate here for convenience.

Theorem 18. Let f : {0, 1}k → {0, 1} be a Boolean function that is not affine. Suppose that f supports perfect equality.

212 A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213
1. If f is in I M2 , then for all sufficiently large �, #Multi2Spin�(f) is #BIS-equivalent.
2. If f is not in I M2 , then for all sufficiently large �, there exists a real number c > 1 such that #Multi2Spin�,c(f) is NP-hard.

Proof. Item 1 is a consequence of Lemma 47 and Lemma 51. Item 2 is a consequence of Lemma 54. �
9. Proof of Theorem 6

In this section, we combine the pieces to prove Theorem 6.
We will need the following lemma.

Lemma 55. Let f1 : {0, 1}k1 → {0, 1} and f2 : {0, 1}k2 → {0, 1} be Boolean functions such that f1 is not affine and f2 is not in I M2 .
Then, the function f defined by f (x, y) = f1(x) f2(y) is neither affine nor does it belong to I M2.

Proof. We first prove that f is not affine. Since f1 is not affine, by Item 1 of Lemma 21, there exist x(1), x(2), x(3) ∈ R f1

such that x(1) ⊕ x(2) ⊕ x(3) /∈ R f1 . Let y be such that f2(y) = 1 (such a y exists, otherwise f2 would belong to I M2).
For each i = 1, 2, 3, consider the vector z(i) of length k1 + k2 obtained by concatenating the vectors x(i) and y. Since

x(i) ∈ R f1 and y ∈ R f2 , we have that f (z(i)) = f1(x(i)) f2(y) = 1, so z(i) ∈ R f for i = 1, 2, 3. Observe that f (z(1) ⊕ z(2) ⊕ z(3)) =
f1(x(1) ⊕ x(2) ⊕ x(3)) f2(y) = 0, so z(1) ⊕ z(2) ⊕ z(3) /∈ R f . Thus,

z(1), z(2), z(3) ∈ R f but z(1) ⊕ z(2) ⊕ z(3) /∈ R f ,

so by Item 1 of Lemma 21, we have that f is not affine.
We next show that f does not belong to I M2. Since f2 /∈ I M2, by Lemma 23, there exist y(1), y(2) ∈ R f2 such that either

y(1) ∨y(2) /∈ R f2 or y(1) ∧y(2) /∈ R f2 . Assume that y(1) ∨y(2) /∈ R f2 , the other case is completely analogous and actually follows
by duality (switching the spins 0 and 1). Let x be such that f1(x) = 1 (such an x exists, otherwise f1 would be affine).

For each i = 1, 2, consider the vector w(i) of length k1 + k2 obtained by concatenating the vectors x and y(i) . Since
x ∈ R f1 and y(i) ∈ R f2 , we have that f (w(i)) = f1(x) f2(y(i)) = 1, so z(i) ∈ R f for i = 1, 2. Observe that f (w(1) ∨ w(2)) =
f1(x) f2(y(1) ∨ y(2)) = 0, so w(1) ∨ w(2) /∈ R f . Thus,

w(1),w(2) ∈ R f but w(1) ∨ w(2) /∈ R f ,

so by Lemma 23, we have that f does not belong to I M2.
This concludes the proof. �

Theorem 6. Let � be a Boolean constraint language. Then,

1. If every function in � is affine then #CSP(�) and #NoRepeatCSP(�) are both in FP.
2. Otherwise, if � ⊆ I M2 , then there exists an integer �0 such that for all � ≥ �0 , #CSP�(�) and #NoRepeatCSP�(�) are both

#BIS-equivalent under AP-reductions, and
3. Otherwise, there exists an integer �0 such that for all � ≥ �0 , there exists a real number c > 1 such that #CSP�,c(�) and

#NoRepeatCSP�,c(�) are both NP-hard.

Proof. We consider each of the three cases.

1. If every function in � is affine (cf. Definition 4), then Z I can be computed exactly in polynomial time using Gaussian
elimination. This was already noted in the exact-counting dichotomy of Creignou and Hermann [7].

2. Suppose that � ⊆ I M2 and that � includes a function f which is not affine. By the unbounded-degree #BIS-easiness re-
sult of [13], which is stated here as Lemma 47, it follows that for all positive integers �, #CSP�(�) is #BIS-easy. Clearly,
every instance of #NoRepeatCSP�(�) is an instance of #CSP�(�), from which we obtain that #NoRepeatCSP�(�) is
#BIS-easy as well.
If f supports perfect equality, then by Theorem 18, for all sufficiently large �, the problem #Multi2Spin�(f) is #BIS-
hard. As we noted in Section 2, the problem #Multi2Spin�(f) is equivalent to #NoRepeatCSP�({ f }) from which we
obtain that #NoRepeatCSP�(�) is #BIS-hard as well. Note that #NoRepeatCSP�(�) is a restricted version of #CSP�(�)

(the restriction being that constraints may not repeat variables), so it follows immediately that #CSP�(�) is #BIS-hard.
There is a final case that does not arise if #BIS is not NP-hard to approximate, but we include it to make the proof
complete. In particular, if f does not support perfect equality, then by Theorem 17, it simulates a hard function. So,
by Lemma 15, for all sufficiently large �, there exists c > 1 such that #Multi2Spin�,c(f) is NP-hard. As observed in
the proof of Lemma 51, this implies that #Multi2Spin�(f) is #BIS-hard. Then, as in the previous case, we obtain that
#NoRepeatCSP�(�) and #CSP�(�) are #BIS-hard.

A. Galanis et al. / Journal of Computer and System Sciences 115 (2021) 187–213 213
3. Suppose that there are functions f1, f2 ∈ � such that f1 is not affine and f2 is not in I M2 (it might be the case that
f1 = f2). Then, consider the function f (x, y) defined by f (x, y) = f1(x) f2(y). By Lemma 55, we have that f is neither
affine nor does it belong to I M2.
Thus, if f supports perfect equality, then by Theorem 18, for all sufficiently large �, there exists c > 1 such that
#Multi2Spin�,c(f) is NP-hard, which is equivalent to saying that #NoRepeatCSP�,c({ f }) is NP-hard. Now note that
there is an easy reduction from #NoRepeatCSP�,c({ f }) to #NoRepeatCSP�,c(�) — given an instance I of #CSP�,c({ f }),
every constraint involving f is re-written as two constraints involving f1 and f2. Thus, #NoRepeatCSP�,c(�) is also
NP-hard. Since #NoRepeatCSP�(�) is a restricted version of #CSP�(�), we have that #CSP�,c(�) is NP-hard as well.
Otherwise, by Theorem 17, f simulates a hard function. So, by Lemma 15, for all sufficiently large �, there exists
c > 1 such that #Multi2Spin�,c(f) is NP-hard. As in the previous paragraph, this implies that #NoRepeatCSP�,c(�) and
#CSP�,c(�) are NP-hard. �

CRediT authorship contribution statement

Andreas Galanis: Conceptualization, Formal analysis, Investigation, Methodology, Validation, Writing - original draft,
Writing - review & editing. Leslie Ann Goldberg: Conceptualization, Formal analysis, Investigation, Methodology, Validation,
Writing - original draft, Writing - review & editing. Kuan Yang: Conceptualization, Formal analysis, Investigation, Methodol-
ogy, Validation, Writing - original draft, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, Heng Guo, Daniel Štefankovič, Approximation via correlation decay when strong spatial mixing
fails, SIAM J. Comput. 48 (2) (2019) 279–349.

[2] Elmar Böhler, Steffen Reith, Henning Schnoor, Heribert Vollmer, Bases for Boolean co-clones, Inf. Process. Lett. 96 (2) (2005) 59–66.
[3] Andrei A. Bulatov, Venkatesan Guruswami, Andrei Krokhin, Dániel Marx, The Constraint Satisfaction Problem: complexity and approximability (Dagstuhl

seminar 15301), Dagstuhl Rep. 5 (7) (2016) 22–41.
[4] Jin-Yi Cai, Complexity dichotomy for counting problems, in: Language and Automata Theory and Applications - Proceedings of the 7th International

Conference, LATA 2013, Bilbao, Spain, April 2–5, 2013, 2013, pp. 1–11.
[5] Jin-Yi Cai, Andreas Galanis, Leslie A. Goldberg, Heng Guo, Mark Jerrum, Daniel Štefankovič, Eric Vigoda, #BIS-hardness for 2-spin systems on bipartite

bounded degree graphs in the tree non-uniqueness region, J. Comput. Syst. Sci. 82 (5) (2016) 690–711.
[6] Jin-Yi Cai, Pinyan Lu, Mingji Xia, The complexity of complex weighted Boolean #CSP, J. Comput. Syst. Sci. 80 (1) (2014) 217–236.
[7] Nadia Creignou, Miki Hermann, Complexity of generalized satisfiability counting problems, Inf. Comput. 125 (1) (1996) 1–12.
[8] Nadia Creignou, Sanjeev Khanna, Madhu Sudan, Complexity Classifications of Boolean Constraint Satisfaction Problems, Society for Industrial and

Applied Mathematics, 2001.
[9] Nadia Creignou, Phokion G. Kolaitis, Bruno Zanuttini, Preferred representations of Boolean relations, Electron. Colloq. Comput. Complex. 119 (2005).

[10] Víctor Dalmau, Daniel K. Ford, Generalized satisfiability with limited occurrences per variable: a study through delta-matroid parity, in: Mathematical
Foundations of Computer Science 2003, Proceedings of the 28th International Symposium, MFCS 2003, Bratislava, Slovakia, August 25–29, 2003, 2003,
pp. 358–367.

[11] Martin Dyer, Leslie A. Goldberg, Catherine Greenhill, Mark Jerrum, The relative complexity of approximate counting problems, Algorithmica 38 (3)
(2003) 471–500.

[12] Martin E. Dyer, Leslie A. Goldberg, Markus Jalsenius, David Richerby, The complexity of approximating bounded-degree Boolean #CSP, Inf. Comput. 220
(2012) 1–14.

[13] Martin E. Dyer, Leslie A. Goldberg, Mark Jerrum, An approximation trichotomy for Boolean #CSP, J. Comput. Syst. Sci. 76 (3–4) (2010) 267–277.
[14] Andreas Galanis, Leslie A. Goldberg, The complexity of approximately counting in 2-spin systems on k-uniform bounded-degree hypergraphs, Inf.

Comput. 251 (2016) 36–66.
[15] Pavol Hell, Jaroslav Nešetřil, Graphs and Homomorphisms, Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, Oxford,

New York, 2004.
[16] Jonathan Hermon, Allan Sly, Yumeng Zhang, Rapid mixing of hypergraph independent sets, Random Struct. Algorithms 54 (4) (2019) 730–767.
[17] Phokion G. Kolaitis, Moshe Y. Vardi, Conjunctive-query containment and constraint satisfaction, J. Comput. Syst. Sci. 61 (2) (2000) 302–332.
[18] Vipin Kumar, Algorithms for constraint-satisfaction problems: a survey, AI Mag. 13 (1) (1992) 32–44.
[19] Jingcheng Liu, Pinyan Lu, FPTAS for counting monotone CNF, in: Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,

SODA 2015, San Diego, CA, USA, January 4–6, 2015, 2015, pp. 1531–1548.
[20] Ugo Montanari, Networks of constraints: fundamental properties and applications to picture processing, Inf. Sci. 7 (1974) 95–132.
[21] Francesca Rossi, Peter van Beek, Toby Walsh, Handbook of Constraint Programming, Foundations of Artificial Intelligence, Elsevier Science Inc., New

York, NY, USA, 2006.
[22] Thomas J. Schaefer, The complexity of satisfiability problems, in: Proceedings of the 10th Annual ACM Symposium on Theory of Computing, San Diego,

California, USA, May 1–3, 1978, 1978, pp. 216–226.
[23] Renjie Song, Yitong Yin, Jinman Zhao, Counting hypergraph matchings up to uniqueness threshold, in: Approximation, Randomization, and Combina-

torial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, September 7–9, 2016, Paris, France, 2016, pp. 46:1–46:29.
[24] Leslie G. Valiant, Vijay V. Vazirani, NP is as easy as detecting unique solutions, Theor. Comput. Sci. 47 (3) (1986) 85–93.
[25] Dominic J.A. Welsh, Complexity: Knots, Colourings and Counting, Cambridge University Press, New York, NY, USA, 1993.

http://refhub.elsevier.com/S0022-0000(20)30081-7/bib744997C4AEB27CC05194E556318DAA9Ds1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib744997C4AEB27CC05194E556318DAA9Ds1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib03D947A2158373C3B9D74325850CB8B9s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib3DC9326C416D9AE753398169AF559266s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib3DC9326C416D9AE753398169AF559266s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibF23393E021176D96D665A60AE04DB0C0s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibF23393E021176D96D665A60AE04DB0C0s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibF47621FFD0CA5281EA87CE331CFF7D13s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibF47621FFD0CA5281EA87CE331CFF7D13s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibEA8BE7A4B6C9489CCAFAEDBC73685165s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib1EE0BF89C5D1032317D13A2E022793C8s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibB5ECBCC21C8BE0FB9C56AD2201FC4A0Es1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibB5ECBCC21C8BE0FB9C56AD2201FC4A0Es1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib62E08E3DF930B3022644F9943263A758s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibB98F83032F6E8CA0C8F5A38BCA1E3D75s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibB98F83032F6E8CA0C8F5A38BCA1E3D75s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibB98F83032F6E8CA0C8F5A38BCA1E3D75s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib60FC25ED5CE5436AF7D47BD65DC1664Cs1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib60FC25ED5CE5436AF7D47BD65DC1664Cs1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib50DD6A4F0EF9937FEDB92EF54784B9C4s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib50DD6A4F0EF9937FEDB92EF54784B9C4s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibCE323B86E73A688797F41945414EDD1Bs1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibFECA3C730601BE7FD57F1F0B668B4637s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibFECA3C730601BE7FD57F1F0B668B4637s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibAC4A2766028A717FF89985BC85BF5E50s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibAC4A2766028A717FF89985BC85BF5E50s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib134A6C156CA64BF39400F915C8BDE59Bs1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib5240BA2AE676B63D2BF1D706A9016990s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib6BFEF5D5DB4A5344FB9C4EECDA34DD0Ds1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib271FBF1794F6227049944BBE7334C303s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib271FBF1794F6227049944BBE7334C303s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibCE98E50C667012638F8DC9FFF5E6BED2s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib91E5E3BAD15912505C8EA6E8A2FA121Cs1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib91E5E3BAD15912505C8EA6E8A2FA121Cs1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib5A6D6B728959A0B7CB7767C7C2FC8F2As1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib5A6D6B728959A0B7CB7767C7C2FC8F2As1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib73EB5CFA3500B2C808E3D966793C7AF7s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib73EB5CFA3500B2C808E3D966793C7AF7s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bib6EABADEACFE313CD84B51B69C06232B9s1
http://refhub.elsevier.com/S0022-0000(20)30081-7/bibBBB0FA49B525C4264F4AD7A06ADC3E07s1

	Approximating partition functions of bounded-degree Boolean counting Constraint Satisfaction Problems
	1 Introduction
	2 Definitions and statement of main result
	3 Overview of the proof of Theorem 6
	4 Pinning, equality and simulating functions
	4.1 Supporting pinning and equality
	4.2 Realising conditional distributions induced by pinning and equality
	4.3 Simulating hard functions and inapproximability results

	5 Proof sketch
	6 Notation and results from the literature
	6.1 Notation
	6.2 Affine functions
	6.3 A characterisation of IM2
	6.4 The case where f is symmetric: extensions to the asymmetric case

	7 Non-affine Boolean functions either support perfect equality or simulate a hard function
	7.1 A few preparatory lemmas
	7.2 Proof that every non-affine Boolean functions either supports perfect equality or simulates a hard function

	8 The case where f supports perfect equality
	8.1 Constraint satisfaction problems and implementations
	8.2 The case of self-dual functions
	8.3 #BIS-easiness
	8.4 #BIS-hardness
	8.5 NP-hardness
	8.6 Proof of Theorem 18

	9 Proof of Theorem 6
	CRediT authorship contribution statement
	Declaration of competing interest
	References

