
Theoretical Computer Science 262 (2001) 649–667
www.elsevier.com/locate/tcs

Approximation algorithms for channel assignment
with constraints�

Jeannette Janssena;∗, Lata Narayananb

aDepartment of Mathematics and Statistics and Computer Science, Dalhousie University, Halifax,
Nova Scotia, Canada B3H 3J5

bDepartment of Computer Science, Concordia University, Montreal, Quebec, Canada H3G 1M8

Received June 1999; revised July 2000; accepted August 2000
Communicated by M.S. Paterson

Abstract

Cellular networks are generally modeled as node-weighted graphs, where the nodes represent
cells and the edges represent the possibility of radio interference. An algorithm for the chan-
nel assignment problem must assign as many channels as the weight indicates to every node,
such that any two channels assigned to the same node satisfy the co-site constraint, and any
two channels assigned to adjacent nodes satisfy the inter-site constraint. We describe several
approximation algorithms for channel assignment with arbitrary co-site and inter-site constraints
for odd cycles and the so-called hexagon graphs that are often used to model cellular networks.
The algorithms given for odd cycles are optimal for some values of constraints, and have per-
formance ratio at most 1 + 1=(n − 1) for all other cases, where n is the length of the cycle.
Our main result is an algorithm of performance ratio at most 4

3 +
1
100 for hexagon graphs with

arbitrary co-site and inter-site constraints. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Frequency assignment; Approximation algorithms; Radio colouring

1. Introduction

The demand for wireless telephony and other services has been growing dramatically
over the last decade. As a result of this, radio spectrum resources are scarce, and their
e;cient use becomes of critical importance. The cellular concept was proposed as an
early solution to the problem of spectrum congestion. By dividing the service area into
small coverage areas called cells served by low power transmitters, it became possible
to reuse the same frequencies in di<erent cells, provided they are far enough apart.

� Research supported in part by NSERC, Canada.
∗ Corresponding author. Fax: +(902)-494-5130.
E-mail addresses: janssen@mscs.dal.ca (J. Janssen), lata@cs.concordia.ca (L. Narayanan).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00388 -1

650 J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667

Fig. 1. A hexagon graph and a 3-coloring of the nodes of the graph. The hexagonal area around each node
represents the calling area it serves.

With growing demand, it is necessary to perform this reuse as e;ciently as possible,
while ensuring that radio interference is at acceptable levels.
Cellular networks are generally modeled as node-weighted graphs, where the nodes

represent the cells, and the edges represent the possibility of radio frequency inter-
ference. The weight on a node represents the number of calls originating in the cell
represented by the node. The base station in a cell must assign frequency channels
to each call originating in the cell. However, this assignment of channels must satisfy
certain interference constraints. In particular, channels that are too close together may
interfere with each other when they are assigned to calls that originate in the same or
adjacent cells. These interference constraints can be represented by a set of integers
c0¿c1¿c2; : : : ; where ci is the minimum separation required between two channels
assigned to calls in cells that are distance i apart in the network. The parameter c0
which is the minimum gap between two channels assigned to the same cell is called
the co-site constraint and the other constraints are called inter-site constraints. In order
to optimize the use of the spectrum, the objective of the channel assignment algorithm
is to minimize the span of the assignment, that is, the di<erence between the largest
numbered channel used and the smallest channel used.
When c0 = c1 = 1, and ci=0 for all i¿1, the problem reduces to the multicoloring

problem, which has been widely studied. The problem is NP-hard for many classes of
graphs, including the so-called hexagon graphs, which have traditionally been used to
represent cellular networks [5]. Hexagon graphs are subgraphs of the triangular lattice
(see Fig. 1). They are particularly relevant to channel assignment, since they represent
a regular cellular layout where the cells are hexagonal, and interference only occurs
between neighboring cells. Optimal solutions for this restricted channel assignment
problem are possible for some classes of graphs including complete graphs, bipartite
graphs, odd cycles, and outerplanar graphs [6]. When the chromatic number of the
underlying graph is k, an approximation algorithm with a performance ratio of k=2
has been shown [4]. For hexagon graphs, approximation algorithms with performance
ratio of 4

3 are known [5, 6]. For the case c0 = c1 = c2 = 1, and ci=0 for all i¿2, an
approximation algorithm with performance ratio 7

3 is given in [8].

J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667 651

In this paper, we study the more general case c0¿c1 and ci=0 for all i¿1. Thus,
channels assigned to the same cell must di<er by at least c0 and those assigned to
adjacent cells must di<er by at least c1. For the case c1 = 1, Schabanel et al. [7] give a
4
3 approximation algorithm for hexagon graphs. For arbitrary c0 and c1, a tight bound
for cliques was given by Gamst [2], and an optimal algorithm for bipartite graphs was
given by Gerke [3].
We give the Irst known algorithms with provable performance guarantees for chan-

nel assignment with arbitrary constraints in odd cycles and hexagon graphs. The per-
formance of our algorithms is evaluated using known lower bounds based on the
maximum weight on a node, the total weight and the maximal number of nodes
that can receive the same channel, or the weights on a clique and their distribution.
We Irst show six simple algorithms for bipartite graphs, odd cycles, and 3-colorable
graphs. Using these as building blocks, we derive an optimal algorithm for odd cy-
cles when c0¿(2n=(n− 1))c1, where n is the length of the cycle. For the case where
c0 ¡ (2n=(n − 1))c1 we give near-optimal algorithms with performance ratio at most
1 + 1=(n− 1).
For hexagon graphs, we give approximation algorithms with performance ratio at

most 4
3 , when c16c062c1, and 9c1=46c0¡3c1. For the intermediate case 2c1¡c0¡

9c1=4, the performance ratio of the algorithm is less than 4
3 +

1
100 . There is a straight-

forward optimal algorithm for hexagon graphs when c0¿3c1. Thus for arbitrary co-site
and inter-site constraints, our algorithms nearly match the performance of the best-
known algorithm for the case when co-site and inter-site constraints are both exactly
equal to 1.
The rest of the paper is organized as follows. We deIne the problem formally

in Section 2. We give simple (but not necessarily optimal) algorithms for channel
assignment in bipartite graphs, odd cycles, and hexagon graphs in Section 3. Near-
optimal algorithms for odd cycles are given in Section 4 and approximation algorithms
for hexagon graphs are then given in Section 5.

2. Preliminaries

For the basic deInitions of graph theory we refer to [1]. A stable set in a graph is
a set of nodes of which no pair is adjacent. A clique in a graph is a set of nodes of
which every pair is adjacent.
A constrained graph G=(V; E; c0; c1) is a graph G=(V; E) and positive integer

parameters c0 and c1 representing the reuse di<erences prescribed between pairs of
channels assigned to the same node and adjacent nodes, respectively. A constrained,
weighted graph is a pair (G;w) where G is a constrained graph and w is a positive
integral weight vector indexed by the nodes of G. The component of w corresponding
to node u is denoted by w(u) and called the weight of node u. The weight of node
u represents the number of calls to be serviced at node u. We use wmax to denote
max{w(v) | v∈V} and wmin to denote the corresponding minimum weight of any node
in the graph.

652 J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667

A channel assignment for a constrained, weighted graph (G;w), where G=(V; E;
c0; c1) is an assignment f of sets of non-negative integers (which will represent the
channels) to the nodes of G which satisIes the conditions:

|f(u)| = w(u) (u ∈ V);

i ∈ f(u) and j ∈ f(v)⇒ |i − j|¿c1 ((u; v) ∈ E; u �= v);

i; j ∈ f(u) and i �= j ⇒ |i − j|¿c0 (u ∈ V):

The span S(f) of a channel assignment f of a constrained weighted graph is the
di<erence between the lowest and the highest channel assigned by f, in other words,
S(f)= maxf(V)−minf(V), where f(V)= ⋃

u∈V f(u). The span S(G;w) of a con-
strained, weighted graph G and a positive integer vector w indexed by the nodes of G
is the minimum span of any channel assignment for (G;w). We use �(G;w) to denote
the minimal number of channels needed for an assignment of the weighted, uncon-
strained graph G. Note that �((V; E); w)= S((V; E; 1; 1); w)+1, where the additive term
is due to the fact that k consecutive channels have a span of k − 1.
A channel assignment f is said to be optimal for a weighted constrained graph G if

S(f)= S(G;w)+K(1). Here we consider the span to be a function of the weights and
the size of the graph, so the K(1) term can include terms that depend on the constraints
c0 and c1. An approximation algorithm for channel assignment has performance ratio
k when the span of the assignment produced by the algorithm on (G;w) is at most
kS(G;w) + K(1).
The following lower bounds will be used to evaluate our algorithms and calculate

the performance ratio. The Irst bound derives from the fact that any two channels on
the same node must be at least c0 apart. The next two bounds are based on weights
and their distribution on cliques in the graph, and are derived from a bound for cliques
given by Gamst [2]. The last two bounds use the fact that, because of the inter-site
constraint, all nodes that receive channels from any particular channel interval of length
c1 must form a stable set.

Theorem 2.1 (Known lower bounds). Let G=(V; E; c0; c1) be a constrained graph;
and w∈ZV

+ a weight vector for G. Then

S(G;w)¿c0wmax − c0; (1)

S(G;w)¿max{c0w(u) + (2c1 − c0)w(v) | (u; v) ∈ E} − c0 when c062c1; (2)

S(G;w)¿max{c0w(u) + (2c1 − c0)(w(v) + w(t)) | {u; v; t} a clique} − c0

when c062c1; (3)

S(G;w)¿c1 max{w(u) + w(v) + w(t) | {u; v; t} a clique} − c1; (4)

S(G;w)¿
2c1
n− 1

∑
v∈V

w(v)− c1 when G is an odd cycle of length n: (5)

J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667 653

3. Basic algorithms for channel assignment

In this section, we provide six simple algorithms for channel assignment in speciIc
situations. The Irst two, Algorithms A and B, are optimal algorithms for bipartite
graphs for the cases c0¿2c1 and c16c0¡2c1, respectively. Note that essentially the
same algorithms are given and proved to be exactly optimal (without a constant additive
term) in [3]. We give them here for completeness, as we use these algorithms to prove
further results in the next section. Also, our exposition is simpler as we ignore constant
additive terms in our deInition of optimality.
Algorithms C and D both perform channel assignment for odd cycles. Neither of

these algorithms is optimal, but we use them in the next section in combination with
other algorithms to obtain optimal and near-optimal bounds for odd cycles. It is easy
to check that all the algorithms given in this section have linear-time implementations.
Algorithms E and F are for 3-colorable graphs. While Algorithm E’s performance

is always at least as good as that of Algorithm F, the latter has some room for chan-
nel borrowing. Thus, when used in combination with other algorithms, it can have an
advantage over Algorithm E. We will use these two algorithms combined with modi-
Ication techniques and with the algorithms for bipartite graphs, to derive near-optimal
algorithms for hexagon graphs.

Algorithm 3.1. Algorithm A for bipartite graphs when c0¿2c1
Let G=(V; E; c0; c1) be a constrained bipartite graph of n nodes, where c0¿2c1 and
w an arbitrary weight vector. Let each node be colored red or green according to
the bipartition. Red nodes use as many colors as necessary from the set 0; c0; 2c0; : : : ;
(wmax − 1)c0. Green nodes use as many colors as necessary from the set c1; c0 +
c1; : : : ; (wmax − 1)c0 + c1. It is easy to see that the span of the assignment is no more
than c0wmax − c0 + c1.

Algorithm 3.2. Algorithm B for bipartite graphs when c16c062c1
Let G=(V; E; c0; c1) be a constrained bipartite graph of n nodes, where c16c062c1,
and w an arbitrary weight vector. Let each node be colored red or green according to
the bipartition.
Given a node v, deIne p(v)= max{w(u) | (u; v)∈E}. The general idea is that red

nodes always get channels starting from 0 and the green nodes get channels starting
from c1. If a node has demand greater than any of its neighbors then it initially
gets some channels that are 2c1 apart (in order to allow interspersing the channels of
its neighbors) and the remaining distance c0 apart. More precisely, we consider the
following cases:
w(v)¿p(v) and v red: Assign the channels {0; 2c1; : : : ; 2p(v)c1}∪ {2p(v)c1+c0; : : : ;

2p(v)c1 + (w(v)− p(v)− 1)c0}. The span of the channels assigned to such a node is
p(v)(2c1 − c0) + w(v)c0 − c0.
w(v)¿p(v) and v green: Assign the channels {c1; 3c1; : : : ; (2p(v)−1)c1}∪ {(2p(v)−

1)c1 + c0; : : : ; (2p(v)− 1)c1 + (w(v)− p(v))c0}. The span of the channels assigned to

654 J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667

Fig. 2. Channel assignments by Algorithms C (left) and D (right) on a 5-cycle where all nodes have weight
2 and (c0; c1) = (9; 4).

such a node is p(v)(2c1 − c0) + w(v)c0 − c1.
w(v)6p(v) and v red: Assign the channels {0; 2c1; : : : ; (w(v)− 1)2c1}.
w(v)6p(v) and v green: Assign the channels {c1; 3c1; : : : ; (2w(v)− 1)c1}.
It is not di;cult to see that the span of the assignment above is at most max(u; v)∈ E

{c0w(u) + (2c1 − c0)w(v)} (see [3] for a complete explanation).

Algorithm 3.3. Algorithm C for odd cycles
Let G=(V; E; c0; c1) be a constrained cycle of n nodes, where n¿3 is odd, and w be an
arbitrary weight vector. Fix s= max{c0; cR} where cR=2nc1=(n−1). For convenience,
the nodes of the cycle are {1; : : : ; n}, numbered in cyclic order, where node 1 is a node
of maximum weight in the cycle.
The algorithm is based on an initial basic assignment of one channel per node.

Additional channels are then given to each node by adding the appropriate number of
multiples of s to the basic assigned channel of the node. The basic assignment uses
a spectrum [0; s − 1]. Initially, it will proceed by assigning the channel obtained by
adding c1 (modulo s) to the previously assigned channel to the next node in the cycle.
At a certain point, it will switch to an alternating assignment.
More precisely, let m ¿ 1 be the smallest odd integer such that s¿(2m=(m− 1))c1.

Since s¿cR, a value of m6n satisfying this must exist, and m is well-deIned. Note that
the deInition of m implies that s¡(2(m−2)=(m−3))c1. Let b be the basic assignment
assigned as follows:

b(i)=




(i − 1)c1 mod s when 16i6m;

0 when i ¿ m and i is even;

(m− 1)c1 mod s when i ¿ m and i is odd:

To each node i, the algorithm assigns the channels b(i)+js, where j=0; : : : ; w(i)−1.
See Fig. 2 for an example of channel assignment using Algorithm C on a cycle of 5

nodes, where each node has weight 2, and c0 = 9, c1 = 4. It can be veriIed that m=5
in this case.
Correctness: Any two channels assigned to the same node di<er by at least s, and

s¿c0, so the co-site constraint is satisIed.

J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667 655

Fig. 3. Why there is no conOict between nodes b(i) and b(i + 1) for i¿m?

Consider two channels #1 and #2 assigned, respectively, to consecutive nodes i and
i+1. If i¡m, then #1− #2 ≡ c1 mod s. If #1 and #2 di<er by less than s, then |#1− #2|
equals c1 or s − c1. Now, s¿cR¿2c1, so s − c1¿c1, and the inter-site constraint is
respected in this case.
If i¿m, then, without loss of generality, b(i)= 0 and b(i + 1)= (m − 1)c1. So

|#1 − #2|¿min{b(i + 1); s − b(i + 1)}. From the deInition of m, it follows that (m−
2)c1¿((m − 3)=2)s and mc16((m − 1)=2)s, so the largest multiple of s smaller than
(m− 1)c1 is ((m− 3)=2)s. Therefore, b(i+1)= (m− 1)c1− ((m− 3)=2)s¿(m− 1)c1−
(m− 2)c1 = c1 and s− b(i+1)= ((m− 1)=2)s− (m− 1)c1¿mc1− (m− 1)c1 = c1 (see
Fig. 3). So in this case also, the inter-site constraint is respected.
Span of the assignment: The span of the channel assignment described here is at

most wmax max{c0; cR}, where cR=2nc1=(n− 1).

Algorithm 3.4. Algorithm D for odd cycles
Let G=(V; E; c0; c1) be a constrained cycle of n nodes, where n¿3 is odd, and w be
an arbitrary weight vector. We state the following fact about �(G;w).

Fact 3.5. For G an odd cycle of n nodes;

�(G;w) = max
{
2
∑
v∈V

w(v)=(n− 1);max{w(u) + w(v) | (u; v) ∈ E}
}
:

This algorithm is a straightforward adaptation of the optimal algorithm for multicol-
oring an odd cycle (without constraints) given in [6].
Fix s= max{c0; 2c1}, and != max{�(G;w); 2wmax}. We use the spectrum [0; : : : ; s

!=2�], and describe a Ixed sequence of channels to be used from this spectrum in
that order by the multicoloring algorithm. The sequence is(

0; s; 2s; : : : ;
(⌈!
2

⌉
− 1

)
s; c1; s+ c1; 2s+ c1; : : : ;

(⌊!
2

⌋
− 1

)
s+ c1

)
:

It is straightforward to verify that there are exactly ! channels in this sequence. We
now proceed as for multicoloring, using the sequence given here to assign channels
rather than a continuous part of the spectrum.
Precisely, let k be the smallest integer such that

∑2k+1
i=1 w(i)6k!. Nodes 1 through

2k are assigned contiguous channels in a cyclic manner from the spectrum given.
SpeciIcally, for 16j62k, node j is assigned the ‘th through mth channel of the
spectrum, where ‘ and m are between 0 and ! − 1, and ‘≡ 1 +∑j−1

i=1 w(i)mod!

656 J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667

and m≡ ∑j
i=1 w(i)mod!. This assignment is done cyclically, so if ‘¿m, then the

channels “wrap around” from the ‘th channel to the end of the spectrum, and back
from the beginning of the spectrum to the mth channel. The assignment for nodes
2k+1 through n is based on their parity; for 2k+16i6n, node i is assigned the Irst
w(i) channels of the spectrum if i is even, or the last w(i) channels if i is odd.
See Fig. 2 for an example of channel assignment using Algorithm D on a cycle of 5

nodes, where each node has weight 2, and c0 = 9; c1 = 4. In this case, != �(G;w)= 5.
The reader can verify that the sequence of channels to be used is (0; 9; 18; 4; 13).
Correctness: First, we have to show that an integer k that satisIes the condition

always exists. Suppose instead that
∑2k+1

i=1 w(i)¿k! for all k. Then, for k =(n −
1)=2 in particular, we have that

∑n
i=1 w(i)¿(n− 1)=2!¿�(G;w), a contradiction with

Fact 3.5.
It is easy to see that any two consecutive members of the sequence have channels

that are at least c0 apart. Further, since wmax6!=2 and any subsequence of length at
most !=2 from the above sequence has the property that any pair of colors is at least
c0 apart, there can never be conOict between two colors assigned to the same node due
to “wrapping around” the spectrum. Thus the co-site constraint is always respected.
Since any pair of channels in the sequence has a di<erence of at least c1, the inter-site

constraint can only be violated if neighboring nodes are assigned the same channels.
For nodes 1 through 2k and 2k+1 through n this does not happen because the spectrum
contains more than w(i)+w(i+1) channels for any i. There is also no conOict between
node 2k and 2k+1: the last channel from the spectrum assigned to node 2k is channel
number

∑2k
i=1 w(i) − (k − 1)!. Since 2k + 1 is odd, the lowest channel assigned to

node 2k + 1 is channel number(! − w(2k + 1)). The rest follows from the deInition
of k. Finally, there is no conOict between nodes n and 1 because n is odd, so node
n receives the last channels from the spectrum, whereas node 1 is assigned the Irst
channels.
Span of the assignment: The span of the assignment is no more than max{c0; 2c1} ·

max{wmax;
�(G;w)=2�}.

Algorithm 3.6. Algorithm E for 3-colorable graphs
Let G=(V; E; c0; c1) be a 3-colorable graph, and w be an arbitrary weight vector. Fix
s= max{3c1; c0}.
This algorithm uses a coloring of the nodes of the graph with colors red, blue and

green. It assigns at most wmax channels to each node. For j=0; : : : ; wmax − 1, the
channels js are reserved for red nodes, the channels js + c1 are reserved for green
nodes, and the channels js+ 2c1 are reserved for blue nodes. Each node v is assigned
w(v) channels from its own reserved sets of channels.
Correctness: Since any two assigned channels have a separation of c1 or s− c1¿c1,

the inter-site constraints are respected. Any two channels assigned to the same node
have a separation of s¿c0, so the co-site constraint is respected as well.
Span of the assignment: This algorithm produces an assignment of span at most

swmax − c1 = max{3c1; c0}wmax − c1.

J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667 657

Algorithm 3.7. Algorithm F for 3-colorable graphs
Let G=(V; E; c0; c1) be a 3-colorable graph, and w be an arbitrary weight vector. Fix
s= max{c1; c0=2} and T¿3wmax.
We use a spectrum of T channels, with consecutive channels separated by s, where

channels reserved for di<erent colors are interspersed. (This alternation of channels
was Irst used in [7].) We assume for ease of explanation that T is a multiple of 6.
Precisely, the red channels consist of a Irst set R1 = [0; 2s; : : : ; (T=3 − 2)s] and a sec-
ond set R2 = [(T=3 + 1)s+ c0; (T=3 + 3)s+ c0; : : : ; (2T=3− 1)s+ c0]. The blue channels
consist of Irst set B1 = [(T=3)s+c0; (T=3+2)s+c0; : : : ; (2T=3−2)s+c0] and second set
B2 = [(2T=3 + 1)s+ 2c0; (2T=3 + 3)s+ 2c0; : : : ; (T − 1)s+ 2c0], and the green channels
consist of Irst set G1 = [(2T=3)s+2c0; (2T=3+2)s+2c0; : : : ; (T −2)s+2c0] and second
set G2 = [s; 3s; : : : ; (T=3−1)s]. Thus, we can think of the spectrum as being divided into
three parts, each containing T=3 channels, with a separation of s between consecutive
channels. The Irst part of the spectrum consists of alternating channels from R1 and
G2, the second part has alternating channels from B1 and R2, and the third part has
alternating channels from G1 and B2.
Note that there are extra gaps of c0 between these three parts of the spectrum. This

gap is not needed for the correctness of Algorithm F when used exactly as described
here. However, we have included this gap to anticipate the use of this algorithm in
combination with subsequent borrowing and combination phases, as described in the
next section. Note that the extra gaps only add a constant of 2c0 to the span of the
assignment.
Each node v is assigned w(v) channels from those of its color class, where the Irst

set is exhausted before starting on the second set, and lowest numbered channels are
always used Irst within each set.
Correctness: Any two assigned channels have separation at least s¿c1, so the inter-

site constraint is satisIed. Any two channels within the two channel sets of a color
are separated by at least 2s¿c0, so the co-site constraint is satisIed.
Span of the assignment: The span equals sT + 2c0 = max{c1; c0=2}T + 2c0, where

T is at least 3wmax.

4. Near-optimal algorithms for odd cycles

In this section, we will describe how variations and combinations of the algo-
rithms described in Section 3 can be used to derive optimal and near-optimal al-
gorithms for channel assignment in odd cycles. As stated earlier, optimal algorithms
for channel assignment in even cycles were given in [3]. We deal with the cases
c0¿cR, 2c16c0¡cR, and c0¡2c1 separately. In the Irst case, we give an optimal
algorithm, and in the second and third cases, approximation algorithms with perfor-
mance ratio 1 + 1=(4n − 3) or 1 + 1=(n − 1), respectively (n is the length of the
cycle).

658 J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667

Theorem 4.1. For any c0¿cR=2nc1=(n−1); G=(V; E; c0; c1) a constrained odd cycle
of length n; and w an arbitrary weight vector; there is a linear time optimal algorithm
for channel assignment in (G;w).

Proof. Since c0¿cR, Algorithm C gives an assignment using c0wmax channels, and it
follows from lower bound (1) of Theorem 2.1 that it is optimal.

Theorem 4.2. For any 2c16c0¡cR=2nc1=(n−1); G=(V; E; c0; c1) a constrained odd
cycle of length n; and w an arbitrary weight vector; there is a linear time approxi-
mation algorithm for channel assignment in (G;w) that has performance ratio 1+1=
(4n−3) (or; in an alternative formulation; of performance ratio 1+1=(4n)+O(1=n2));
where n is the number of nodes in the cycle.

Proof. Compute (=
∑

v∈V w(v)− (n−1)wmax. If (60, it follows as a consequence of
Fact 3.5 that �(G;w)62wmax. Therefore, we use Algorithm D with spectrum [0; c0wmax].
The span is at most c0wmax, which is within a constant of lower bound (1) of Theorem
2.1, so the assignment is optimal.
If instead (¿0, we combine Algorithm C with either Algorithm A or D to derive an

assignment. Denote by f1 the assignment computed by Algorithm C for (G;w′) where
w′(v)= min{w(v); (}. This assignment has span at most cR(.
We consider the remaining weight Sw after this assignment. Clearly, Swmax =wmax−(.

We will denote by f2 the assignment for (G; Sw), and compute it in two di<erent ways
depending on a key property of Sw. If there is a node v with Sw(v)= 0 at this stage, we
have a bipartite graph left. Then f2 is the assignment computed by Algorithm A for
(G; Sw). This assignment has a span of at most c0 Swmax.
If all nodes have non-zero weight, then

∑
v∈V Sw(v)=

∑
v∈V w(v) − n(. We claim

that Swmax =
∑

v∈V Sw(v)=(n− 1)= �(G; Sw)=2, as shown below:

∑
v∈V

Sw(v) =
∑
v∈V

w(v)− n(

= (n− 1)
(
nwmax −

∑
v∈V

w(v)
)

= (n− 1) Swmax:

Thus, we can use Algorithm D (using !=2 Swmax) to compute f2, the assignment
for (G; Sw). Note that this also has span c0!=2= c0 Swmax. Thus in either case, f2 has
span at most c0 Swmax.
The Inal assignment computed for (G;w) is as follows: for any node v, f(v)=f1(v)

∪{y + cR(+ c0 |y∈f2(v)}. This is a valid assignment, since every channel derived
from the assignment f2 has a di<erence of at least c0 from the highest channel assigned
by f1. The span of the assignment is cR(+ c0 Swmax + c0. Since Swmax =wmax − (, the

J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667 659

span is at most (cR − c0)(+ c0wmax + c0. Now

(cR − c0)
(∑

v∈V
w(v)− (n− 1)wmax

)
+ c0wmax

=
(
2nc1
n− 1 − c0

) ∑
v∈V

w(v) + (nc0 − 2nc1)wmax

=
(
n− c0

n− 1
2c1

)
c1

n− 1
∑
v∈V

w(v) +
(
n(c0 − 2c1)

c0

)
c0wmax:

By the lower bounds (1) and (5) of Theorem 2.1, this implies that the per-
formance ratio of this algorithm is at most n− (c0=2c1)(n− 1)+ (1− 2c1=c0)n+K(1).
Now, the function f(y)= n − y(n − 1) + (1 − 1=y)n achieves its maximum
for positive values of y at y=

√
n=(n− 1), and hence never exceeds

f(
√
n=(n− 1))= 1 + 1=4n + O(1=n2). Also, for n¿3 we have that f(

√
n=(n− 1))

61 + 1=(4n − 3). Thus the performance ratio of the algorithm is as
claimed.

Theorem 4.3. For any c0¡2c1; G=(V; E; c0; c1) a constrained odd cycle of length n;
and w an arbitrary weight vector; there is a linear time approximation algorithm for
channel assignment in (G;w) that has performance ratio 1+1=(n− 1) where n is the
number of nodes in the cycle.

Proof. In this case, we combine Algorithms C and B in the following manner. Denote
by f1 the assignment computed by Algorithm C for (G;w′) where w′(v)=wmin for
every node v. Denote by f2 the assignment computed by Algorithm B for (G;w′′)
where w′′(v)=w(v)− wmin.
Let L= max{c0w(u) + (2c1 − c0)w(v) | (u; v) ∈ E}, the lower bound (2) given by

Theorem 2.1 for S(G;w). Algorithm B for (G;w′′) produces an assignment of span
max{c0w′′(u) + (2c1 − c0)w′′(v) | (u; v)∈E}, which equals L− 2c1wmin.
The Inal assignment for (G;w) is as follows: for any node v, f(v)=f1(v)∪{y +

cRwmin +c0 |y∈f2(v)}. The span of this assignment is cRwmin +L−2c1wmin +c0 =L+
2c1wmin=(n− 1) + c06L(1 + 1=(n− 1)) + K(1). It follows from lower bound (2) that
the algorithm has performance ratio 1 + 1=(n− 1) as claimed.

The results of this section are summarized in Table 1.

Table 1
Upper bounds on performance ratio on odd cycles for di<erent values of c0 and c1

c16c0¡2c1 2c16c0¡2nc1=(n− 1) c0¿2nc1=(n− 1)

Perf. ratio 1 + 1=(n− 1) 1 + 1=(4n− 3) 1

660 J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667

5. Approximation algorithms for hexagon graphs

In this section, we describe approximation algorithms for channel assignment with
constraints in hexagon graphs. The algorithms we describe use a standard 3-coloring
of hexagon graphs, which gives a partition of the nodes into red, blue, and green
nodes (see Fig. 1). The Irst two theorems are based on Algorithm E and give results
for the cases c0¿3c1, where the algorithm is optimal, and for c16c0¡3c1. The last
two theorems use a combination of the algorithms given in Section 3 with additional
modiIcations, and deal with the cases, where 2c16c06(9=4)c1 and c16c062c1, re-
spectively.

Theorem 5.1. For any c0¿3c1; G=(V; E; c0; c1) a constrained hexagon graph; and w
an arbitrary weight vector; there is an optimal linear time approximation algorithm
for channel assignment in (G;w).

Proof. Since c0¿3c1, Algorithm E gives an assignment of span at most c0wmax, and
it follows from lower bound (1) of Theorem 2.1 that this is an optimal assignment.

Theorem 5.2. For any c16c0¡3c1; G=(V; E; c0; c1) a constrained hexagon graph;
and w an arbitrary weight vector; there is a linear time approximation algorithm for
channel assignment in (G;w) that has performance ratio 3c1=c0.

Proof. Since 3c1¿c0, Algorithm E gives an assignment of span at most 3c1wmax. By
lower bound (1), S(G;w)¿c0wmax−c0, so this span is at most (3c1=c0)S(G;w)+K(1),
as claimed.

Note that when c0¿(94)c1, the performance ratio of the above algorithm is at most
4
3 . In the following two theorems, we give algorithms that improve on the performance
ratio given in Theorem 5.2 for values of c0¡(94)c1.
The two remaining algorithms in this section use the same type of strategy. First, each

node is assigned enough channels from those assigned to its color class to guarantee
that there are no triangles left in the graph. Next, each node borrows any available
channels of a designated borrowing color. The resulting graph is then shown to be
a bipartite graph, for which an optimal channel assignment is found. (This general
approach was Irst used for multicoloring of hexagon graphs in [5, 6].) The algorithms
di<er in the initial separation of channels into di<erent color classes. The algorithm of
Theorem 5.4 uses an additional technique of squeezing channels when possible. Both
borrowing and squeezing make use of already assigned parts of the spectrum, and thus
do not add to the total span of the assignment.
In the following, let D represent the maximum weight of any maximal clique

(edge or triangle) in the graph. It follows from lower bound (4) of Theorem 2.1
that S(G;w)¿c1D − c1. For ease of explanation, we assume that D is a multiple

J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667 661

Fig. 4. The orientations of corner nodes. After the borrowing phase, corner nodes of the type in the second
row drop out.

of 6; it is easy to verify that a more careful consideration would only add a constant
additive term to the span of the assignment.
We deIne a corner node to be a node which has at least two neighbors of the same

color class, and no neighbors of the remaining third color class. Based on the color of
the corner node itself and the color of its 2 or 3 neighbors, we can identify six types
of corner nodes (see Fig. 4). Furthermore, we Ix the designated borrowing colors as
follows. For red, the borrowing color is blue, for blue it is green, and for green, it is
red.

Theorem 5.3. For any 2c1¡c06(94)c1; G=(V; E; c0; c1) a constrained hexagon
graph; and w an arbitrary weight vector; there is a linear time approximation
algorithm for channel assignment in (G;w) that has performance ratio 1 + 3(c0 −
2c1)=c0 + (9c1 − 4c0)=3c1.

Proof. The algorithm proceeds in four phases. The Irst two phases assign a total
of D channels, partly according to Algorithm E (Phase 1) and partly according to
Algorithm F (Phase 2). The next phase is a borrowing phase in which nodes borrow
any available channels of the borrowing color, i.e., any channels that are unused by all
of its neighbors of the borrowing color. The resulting graph is shown to be a bipartite
graph, for which an assignment is found in Phase 4 using Algorithm A.
Phase 1: If D¿2wmax, use Algorithm E on (G;w′) where w′(v)= min{w(v); D −

2wmax}. In this case the parameter s prescribing the separation between consecutive
channels at a node equals 3c1, so the span of the assignment is at most (D−2wmax)3c1−
c1. If D62wmax, skip this phase, and take w′(v)= 0 for all v. The span needed for
this phase is no more than max{0; D − 2wmax}3c1.
Phase 2: Let T = min{2wmax; 6wmax − 2D}. Use Algorithm F on (G;w′′), where

w′′(v)= min{w(v)− w′(v); T=3}, taking T as deIned.
Note that in this case the parameter s representing the separation gap between

consecutive channels of the spectrum equals c0=2, so the span of the assignment is
min{2wmax; (6wmax − 2D)}c0=2 + 2c0.

662 J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667

We claim that after this phase, there are no triangles left in the resulting graph. This
is because max{0; (D − 2wmax)}+min{2wmax=3; 2wmax − 2D=3}¿D=3, so in Phases 1
and 2, at least min{w(v); D=3} channels are assigned to each node v. Since in any
triangle, the sum of the weights is at most D, the claim follows.
Phase 3: Any node which has still unfulIlled demand tries to borrow channels

assigned in Phase 2 from its neighbors of the borrowing color. Precisely, let v be a
node with w(v)¿w′(v) + w′′(v), and let wB(v) be the maximum number of channels
used during Phase 2 by any neighbor of v of its borrowing color, so wB(v) is the
maximum of w′′(u) over all three neighbors u of v which are of v’s borrowing color.
Then we assign an additional min{w(v)−w′(v)−w′′(v); T=3−wB(v); T=6} channels to
v from the second channel set of the borrowing color of v, starting from the highest
channels in the set. (T = min{2wmax; 6wmax − 2D}, as deIned in Phase 2.)
Correctness of this phase: Since any two channels assigned to v in this phase are

at least c0 apart, and are not from the two of the three parts of the spectrum where
channels were assigned to v in earlier phases, the co-site constraint is respected. Since
only channels unused by any neighbor are used, and all channels are at least c1 apart,
the inter-site constraint is respected as well. Thus there are no conOicts caused by the
assignment in this phase.
We claim that the resulting graph is bipartite. We show this by arguing that, at

this point, no corner nodes that have neighbors of the non-borrowing color are left.
The argument is only given for red nodes but by symmetry it translates easily into an
analogous argument for blue or green nodes. Recall that for a red node, the borrowing
color is blue.
Let v be a red corner node with at least two green neighbors, that all still survive

in the graph after Phases 1 and 2. Let ,=w(v) − (w′(v) + w′′(v)), and assume that
,¿0. It su;ces to show that v can borrow , channels in Phase 3. In other words, we
need to show that ,6min{T=3− wB(v); T=6}.
Node v has at least two green neighbors of initial weight greater than D=3, so any

blue neighbor of v is contained in a triangle with v and a green node of weight greater
than D=3. It follows that any blue neighbor u of v has initial weight w(u)6D −
D=3− w(v). For any blue neighbor u with w′′(u)¿0; w′′(u)=w(u)− w′(u)62D=3−
w(v) − max{0; (D − 2wmax)}. If D62wmax, then T =2wmax and ,=w(v) − T=3, so
w′′(u)62D=3− w(v)64wmax=3− w(v)=T=3− ,. Also, ,6wmax − T=3=T=6.
If instead D¿2wmax, then T =6wmax − 2D and ,=w(v)− D=3, so w′′(u)62D=3−

w(v) − (D − 2wmax)=T=3 − ,. Also, since w(v) − (D − 2wmax + T=3)63wmax − D −
T=3=T=2− T=3, we have that ,6T=6.
Therefore, in both cases wB(v)6T=3−, and ,6min{T=3−wB(v); T=6} as required.

Since node v could borrow at least , colors in Phase 2, its demand is completely
fulIlled after the Irst three phases.
An analogous argument for the blue and green corner nodes shows that all cor-

ner nodes with at least two neighbors from their non-borrowing color receive enough
channels and drop out before this phase. Since all the remaining corner nodes have the
same “orientation” (see Fig. 4), there can be no cycles in the graph.

J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667 663

Phase 4: Let Sw denote the weight left on the nodes after the assignments of the Irst
three phases. Use Algorithm A to Ind an assignment for (G; Sw), which has a span of
c0 Swmax.
The assignments of all four phases are then combined without causing conOicts, in

the same way as in the theorems for odd cycles. Note that the assignment of Phase 3
does not add to the span. If D¿2wmax, then T =6wmax − 2D and Swmax6wmax − D=3.
So the Inal assignment has span (3D−6wmax)c1+(6wmax−2D)c0=2+c0(wmax−D=3)+
K(1)= (4c0 − 6c1)wmax + (3c1 − 4c0=3)D +K(1).
If D62wmax, then Phase 1 is skipped, and in Phase 2 each node of maximum weight

receives T=3=2wmax=3 channels. So in this case, Swmax6wmax − T=3=wmax=3, and the
Inal assignment has span at most (2wmax)c0=2+c0(wmax=3)+K(1)= (4=3)c0wmax+K(1).
The result then follows from the lower bounds (1) and (4) of Theorem 2.1, and the
fact that (4c0 − 6c1)c0 + (3c1 − 4c0=3)=c1¿ 4

3 when 2c16c06(94)c1.

The above theorem yields an algorithm with performance ratio that is always less
than 4

3 +
1
100 . In particular, the maximum value of the performance ratio is reached

when c0=c1 = 3=
√
2. When c0 = 2c1 or c0 = 9c1=4, the performance ratio is exactly 4

3 .

Theorem 5.4. For any c062c1; G=(V; E; c0; c1) a constrained hexagon graph; and w
an arbitrary weight vector; there is a linear time approximation algorithm for channel
assignment in (G;w) that has performance ratio 4

3 .

Proof. The algorithm consists of four phases. First, Algorithm F is used with a spec-
trum of D channels. In Phase 2, nodes try to borrow available channels of the borrowing
color. In the next phase, some of the channels assigned are “squeezed” closer together
where possible to accommodate more channels. The remaining graph is then bipar-
tite, and Algorithm B is used. The precise description of the phases follows. In the
following, let

L= max{c0w(u) + (2c1 − c0)(w(v) + w(r)) | {u; v; r} a triangle}
and let T be the smallest multiple of 6 larger than max{L; Dc1}=c1. It follows from
lower bounds (3) and (4) of Theorem 2.1 that Tc1 − K(1) is a lower bound for the
span of any assignment.
Phase 1: Use Algorithm F on (G;w′), where w′(v)= min{w(v); T=3} and T is de-

Ined above. In this case s, the separation between channels, equals c1, so the span of
the assignment is Tc1.
Phase 2: Any node v of weight greater than T=3 borrows min{w(v) − T=3; T=3 −

wB(v); T=6} channels from the borrowing color set where wB(v) is the maximum weight
of any neighbor of v of the borrowing color of v. The channels assigned in this phase
are taken only from the second channels set of the borrowing color, and start with the
highest channels. The correctness of this phase follows from the fact that only channels
unused by neighbors are used, and all channels are at least c0 apart from each other,
and at least c1 apart from any neighbor.

664 J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667

Phase 3: Any remaining node for which all neighbors of its borrowing color have
used less than T=6 channels from their Irst color set, will squeeze their assigned
channels from their second set as much as possible. Precisely, let v be a red node with
weight more than T=3, such that each of its blue neighbors has weight at most T=6. Then
replace the last T=6−wB(v) channels from R2 by min{w(v)−T=3−wB(v); (2c1=c0)(T=6−
wB(v))} channels with separation c0 which Ill the part (of length 2(T=6 − wB(v))c1)
of the spectrum occupied by the last T=6− wB(v) channels of R2.
For example, let T =24, c0 = 3, and c1 = 2. Suppose v is a red corner node with at

least two green neighbors, where w(v)= 13 and let wB(v)= 1. In Phase 1, v received
the channels 21; 25; 29; 33 from the set R2, whereas at least one blue neighbor of v
received the channel 19 from B1 and no other channels from B1 or B2 were used
by any neighbor of v. Then in Phase 2, v borrows all four blue channels in B2, and
in Phase 3, squeezes the part of the spectrum [21; 33] of R2 to get Ive channels. In
particular, it uses the channels 21; 24; 27; 30; 33 instead of the four channels mentioned
above. The reader can verify that in this example, co-site and inter-site constraints are
respected.
Correctness of this phase: Since we only squeeze that part of R2 where the in-

terspersed channels of B1 are not being used, the inter-site constraint is not violated.
Since channels with separation c0 are used, the co-site constraint is respected. Thus,
there are no conOicts caused by the assignment in this phase.
Furthermore, we claim that the resulting graph is bipartite, by showing that, at this

point, no corner nodes with non-zero weight are left that have two or more neighbors
of non-borrowing color. Consider a red corner node v and suppose that it still has
two or more green neighbors. Then node v had initial weight at most 2D=362T=3,
since it has green neighbors of initial weight at least T=3¿D=3. Also, since every blue
neighbor of v is contained in a triangle with v and such a green neighbor, wB(v)6D−
w(v)− T=362T=3− w(v).
Suppose, Irst that w(v)=T=3+, with 0¡,6T=6. We then show that v can borrow

, channels in Phase 2. In this case, wB(v)62T=3− w(v)=T=3− ,, so ,6min{T=3−
wB(v); T=6}, as required. So no weight is left on v after Phase 2.
Suppose instead that w(v)=T=2+ ,, where 0¡,6T=6, and wB(v)=T=6− ., where

06.6T=6. Then min{w(v) − T=3; T=3 − wB(v); T=6}=T=6, so in Phase 2, node v
borrows T=6 channels from B2. In Phase 3, node v can replace . of its channels from
R2 by min{,+ .; (2c1=c0).} channels with separation c0. But

Tc1¿L¿ c0w(v) + (2c1 − c0)(wB + T=3)

= c0(T=2 + ,) + (2c1 − c0)(T=2− .)

= Tc1 + c0,− (2c1 − c0).;

so ,6((2c1 − c0)=c0)., and , + .6(2c1=c0)., so in Phase 3, . channels previously
assigned to v are replaced by , + . new channels. So v receives T=3 channels in
Phase 1, T=6 channels in Phase 2, and replaces . channels by , + . channels in

J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667 665

Phase 3. Therefore, the weight left on v after this phase is w(v) − (T=3 + T=6 − . +
(,+ .))= 0.
An analogous argument for the blue and green corner nodes shows that all corner

nodes speciIed in this phase receive enough channels and drop out before this phase.
Since all the remaining corner nodes have the same “orientation” (see Fig. 1), there
can be no cycles in the graph.
Phase 4: Let Sw be the weight vector remaining after Phase 3. We use Algorithm

B to Ind an assignment for (G; Sw), which has a span of L′= max{c0 Sw(u) + (2c1 −
c0) Sw(v) | (u; v)∈E}.
The bound L′ may be achieved at either isolated nodes or edges, and we show

that in each case, L′6Tc1=3. Let v be a red node which has become isolated after
Phases 1–3. Note that in the following case analysis, w(v) refers to the initial weight
of the node, while Sw(v) denotes the weight left on v after Phases 1–3. Recall that
wB(v) is the maximum weight on any blue neighbor of v.
wB(v)¿T=3: In this case, v could not borrow or squeeze, so the remaining weight

on node v is Sw(v)=w(v)− T=3. Since

Tc1¿L¿ c0w(v) + (2c1 − c0)wB(v)

¿ c0 Sw(v) + c0T=3 + (2c1 − c0)T=3;

we have that c0 Sw(v)6Tc1=3.
T=66wB(v)¡T=3: In this case, node v could borrow T=3 − wB(v) channels in the

second phase of Algorithm F, so Sw(v)=w(v)− T=3− (T=3− wB(v)). Since

Tc1¿L¿ c0w(v) + (2c1 − c0)wB(v)

= c0(Sw(v) + 2T=3− wB(v)) + (2c1 − c0)wB(v)

= c0 Sw(v) + c0(2T=3)− (c0 − c1)(2wB(v))

¿ c0 Sw(v) + c0(2T=3)− (c0 − c1)(2T=3);

we have that c0 Sw(v)6Tc1=3.
wB(v)¡T=6: In this case, node v could borrow T=6 channels in the second phase of

Algorithm F, and squeeze a portion of its channels in Phase 2. In Phase 2, .=T=6−
wB channels from R2 with separation 2c1 are replaced by (2c1=c0). channels with
separation c0. Therefore, Sw(v)=w(v)− (T=3 + T=6 + ((2c1 − c0)=c0).), and

Tc1¿L¿ c0w(v) + (2c1 − c0)wB(v)

= c0

(
Sw(v) + T=2 +

2c1 − c0
c0

.
)
+ (2c1 − c0)(T=6− .)

= c0 Sw(v) + c0(T=2) + (2c1 − c0)T=6

= c0 Sw(v) + (c0 + c1)T=3

¿ c0 Sw(v) + (2T=3)c1;

so c0 Sw(v)6Tc1=3.

666 J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667

Table 2
Upper bounds on performance ratio on hexagon graphs for di<erent values of c0 and c1

c16c062c1 2c1¡c0¡9c1=4 9c1=46c0¡3c1 c0¿3c1

Perf. ratio 4=3 4=3 + 1=100 4=3 1

It remains to show the upper bound on L′ when it is achieved at an edge. Let u and
v be the nodes achieving the maximum for L′. Then

L′ = c0 Sw(u) + (2c1 − c0) Sw(v)

6 c0(w(u)− T=3) + (2c1 − c0)(w(v)− T=3)

6 L− 2Tc1=3

6 Tc1=3:

The assignments of di<erent phases are then combined without causing conOicts, in
the same way as in the previous theorems, to give a Inal assignment of span at most
(43)Tc1 + K(1). c1 + K(1), From the deInition of T , we have that Tc1 − K(1) is a
lower bound, which gives the required performance ratio of 4

3 .

Table 2 summarizes the results of this section. Note that the given values are upper
bounds; as c0 approaches 3c1, the performance ratio approaches 1, and similarly, the
performance ratio approaches 4

3 at both ends of the range 2c1¡c0¡9c1=4.

6. Conclusions

We described new algorithms for channel assignment with arbitrary co-site and inter-
site constraints on odd cycles and hexagon graphs. For odd cycles, our algorithms are
optimal or near-optimal. We conjecture that in the cases where we do not achieve op-
timality, the existing lower bounds for odd cycles are inadequate. For hexagon graphs,
for the case c0¡3c1, we give approximation algorithms with performance ratios of at
most 4

3 +
1
100 (when c0¿3c1, there is a straightforward optimal algorithm). We point

out that this matches the performance ratio of the best known algorithm for multicol-
oring on hexagon graphs, for most values in this range, and is only greater by a very
small factor for all values (see Table 2).
Our algorithms are centralized and static algorithms. However, in practice, channel

allocation is a distributed and online task; future work will involve the investigation
of e;cient online and distributed algorithms for this problem.

J. Janssen, L. Narayanan / Theoretical Computer Science 262 (2001) 649–667 667

Acknowledgements

We would like to thank the anonymous referee for suggesting an improvement in
the performance ratio of the algorithm described in Theorem 4.2.

References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan Press Ltd, New York, 1976.
[2] A. Gamst, Some lower bounds for a class of frequency assignment problems, IEEE Trans. Veh. Technol.

35 (1) (1986) 8–14.
[3] S.N.T. Gerke, Colouring weighted bipartite graphs with a co-site constraint, D.Phil. Thesis, Oxford, 2000.
[4] J. Janssen, K. Kilakos, Adaptive multicolouring, Combinatorica 20 (1) (2000) 87–102.
[5] C. McDiarmid, B. Reed, Channel assignment and weighted colouring, Networks, 1997, to appear.
[6] L. Narayanan, S. Shende, Static frequency assignment in cellular networks, Proc. SIROCCO97, Carleton

ScientiIc Press, 1997, pp. 215–227. Algorithmica, to appear.
[7] N. Schabanel, S. Ubeda, J. Zerovnik, A note on upper bounds for the span of frequency planning in

cellular networks, Discrete Appl. Math., submitted.
[8] TomVas Feder, Sunil M. Shende, Online channel allocation in fdma networks with reuse constraints,

Inform. Process. Lett. 67 (6) (1998) 295–302.

