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a b s t r a c t

We present a quadratic identity on the number of perfect matchings of plane graphs by the
method of graphical condensation, which generalizes the results found by Propp [J. Propp,
Generalized domino-shuffling, Theoret. Comput. Sci. 303 (2003) 267–301], Kuo [E.H. Kuo,
Applications of graphical condensation for enumerating matchings and tilings, Theoret.
Comput. Sci. 319 (2004) 29–57], and Yan, Yeh, and Zhang [W.G. Yan, Y.-N. Yeh, F.J. Zhang,
Graphical condensation of plane graphs: A combinatorial approach, Theoret. Comput. Sci.
349 (2005) 452–461].

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, we suppose that G = (V (G), E(G)) is a simple graph with the vertex set V (G) = {1, 2, . . . , n}
and the edge set E(G) = {e1, e2, . . . , em}, if not specified. A perfect matching of G is a set of independent edges of G
covering all vertices of G. Denote the number of perfect matchings of G by M(G). If G is a weighted graph, the weight of
a perfect matching P of G is defined to be the product of weights of edges in P . We also denote the sum of weights of perfect
matchings of G by M(G). Let A = {a1, a2, . . . , as} (resp. E1 = {ei1 , ei2 , . . . , eit }) be a subset of the vertex set V (G) (resp. a
subset of the edge set E(G)). By G − A or G − a1 − a2 − · · · − as (resp. G − E1 or G − ei1 − ei2 − · · · − eit ) we denote the
induced subgraph of G by deleting all vertices in A and the incident edges from G (resp. by deleting all edges in E1). It is well
known that computing M(G) of a graph G is an NP-complete problem (see [4]). In this paper, by using a Pfaffian identity
and a previous result [18], we obtain a quadratic identity on the number of perfect matchings of plane graphs by using the
method of graphical condensation, which generalizes the results by Propp [14], Kuo [8], and Yan, Yeh, and Zhang [17] as
follows:

Theorem 1.1. Let G be a plane weighted graph with 2n vertices. Let vertices a1, b1, a2, b2, . . . , ak, bk (2 ≤ k ≤ n) appear in a
cyclic order on a face of G, and let A = {a1, a2, . . . , ak}, B = {b1, b2, . . . , bk}. Then, for any j = 1, 2, . . . , k, we have

M(G)M(G− A− B) =
k∑
i=1

M(G− aj − bi)M(G− {aj, bi})−
∑

1≤i≤k,i6=j

M(G− ai − aj)M(G− {ai, aj}),

where {aj, bi} = (A ∪ B)\{aj, bi} and {ai, aj} = (A ∪ B)\{ai, aj}.
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The following result is immediate from the above theorem.

Corollary 1.1 (Yan, Yeh, and Zhang [17]). Let G = (U, V ) be a plane weighted bipartite graph in which U = {ui|1 ≤ i ≤ n} and
V = {vi|1 ≤ i ≤ n}. Let vertices a1, b1, a2, b2, . . . , ak, bk appear in a cyclic order on a face of G. If A = {ai|1 ≤ i ≤ k} ⊆ U, and
B = {bi|1 ≤ i ≤ k} ⊆ V , then

M(G)M(G− A− B) =
k∑
i=1

M(G− aj − bi)M(G− (A ∪ B)\{aj, bi})

for any j = 1, 2, . . . , k.

Corollary 1.2 (Kenyon). Let G be a plane graph with four vertices a, b, c and d (in the cyclic order) adjacent to a single face. Then

M(G)M(G− a− b− c − d)+M(G− a− c)M(G− b− d)
= M(G− a− b)M(G− c − d)+M(G− a− d)M(G− b− c).

Corollary 1.2, which was first reported by Kenyon in ‘‘Domino Forum’’ in an email (for details, see [17]), is the special
case of Theorem 2.2 in [17].
Some related work on graphical condensation for enumerating perfect matchings of plane graphs can be found in [14,8,

9,17–19].

2. A Pfaffian identity

Let A = (aij)n×n be a skew symmetricmatrix of order n, where n is even. Suppose thatπ = {(s1, t1), (s2, t2), . . . , (s n2 , t n2 )}
is a partition of [n], that is, [n] = {s1, t1} ∪ {s2, t2} ∪ · · · ∪ {s n2 , t n2 }, where [n] = {1, 2, . . . , n}. Define:

bπ = sgn(s1t1s2t2 . . . s n2 t n2 )

n
2∏
l=1

asltl ,

where sgn(s1t1s2t2 . . . s n2 t n2 ) denotes the sign of the permutation s1t1s2t2 . . . s n2 t n2 . Note that bπ depends neither on the order
in which the classes of the partition are listed nor on the order of the two elements of a class. So bπ indeed depends only on
the choice of the partition π . The Pfaffian of A, denoted by Pf (A), is defined as

Pf (A) =
∑
π

bπ ,

where the summation is over all partitions of [n], which are of the form of π . For the sake of convenience, we define the
Pfaffian of A to be zero if A is a skew symmetric matrix of odd order. The following result, which is called Cayley’s Theorem,
is well known:

Theorem 2.2 ([1]). For any skew symmetric matrix A = (aij)n×n of order n, we have

det(A) = [Pf (A)]2.

If I is a subset of [n], we use AI to denote the submatrix of a skew symmetric matrix A by deleting rows and columns
indexed by I . If I = {i1, i2, . . . , il} ⊆ [n], we use PfA(i1i2 . . . il) =: PfA(I) to denote the Pfaffian of A[n]\I .

Lemma 2.1 (Wenzel [16], Dress and Wenzel [3], and Knuth [7]). For any two subsets I1, I2 ⊆ [n] of odd cardinality and elements
i1, i2, . . . , it ∈ [n] with i1 < i2 · · · < it and {i1, i2, . . . , it} = I14I2 =: (I1\I2) ∪ (I2\I1), if A = (aij)n×n is a skew symmetric
matrix with n even, then

t∑
τ=1

(−1)τPfA(I14{iτ })Pf (I24{iτ }) = 0.

A direct result of Lemma 2.1 is the following lemma.

Lemma 2.2 ([18]). Suppose that A = (aij)n×n is a skew symmetric matrix with n even and α is a subset of [n] of even cardinality.
Let β = {i1, i2, . . . , i2p} ⊆ [n]\α, where i1 < i2 < · · · < i2p. Then, for any fixed s ∈ [2p], we have

PfA(α)PfA(αβ) =
2p∑
l=1

(−1)l+s+1PfA(αisil)PfA(αβ\isil),

where PfA(αisis) = 0.
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3. Pfaffian orientations of graphs

Let G be a weighted graph with the vertex set V (G) = {1, 2, . . . , n}, and let the weight of each edge e in G beωe. Suppose
EG is an orientation of G. The skew adjacency matrix of EG (see [11]), denoted by A(EG) = (aij)n×n, is defined as follows:

aij =

ωeij if (i, j) is an arc of EG,
−ωeij if (j, i) is an arc of EG,
0 otherwise,

where eij denotes the edge of G joining vertices i and j. Obviously, A(EG) is a skew symmetric matrix. It is not difficult to see
that the Pfaffian Pf (A(EG)) of A(EG) can be defined as

Pf (A(EG)) =
∑

π∈M(G)

bπ ,

where the summation is over all perfectmatchingsπ = {(s1, t1), (s2, t2), . . . , (s n2 , t n2 )} inM(G) (the set of perfectmatchings

of G), and bπ = sgn(s1t1s2t2s n2 t n2 )
∏ n

2
i=1 ω(si,ti).

If EG is an orientation of a graph G and C is a cycle of even length, we say that C is oddly oriented in EG if C contains odd
number of edges that are directed in EG in the direction of each orientation of C . We say that EG is a Pfaffian orientation of G
if every nice cycle of even length of G is oddly oriented in EG (a cycle C in G is nice if G− C has perfect matchings). It is well
known that if a graph G contains no subdivision of K3,3 then G has a Pfaffian orientation (see [10]). McCuaig [12], McCuaig
et al. [13], and Robertson et al. [15] found a polynomial–time algorithm to show whether a bipartite graph has a Pfaffian
orientation.

Proposition 3.1 ([6,11]). Let EG be a Pfaffian orientation of a graph G. Then

[M(G)]2 = det(A(EG)),

where A(EG) is the skew adjacency matrix of EG.

Remark 3.1. Let EG be a Pfaffian orientation of a graph G and A(EG) the skew adjacency matrix of EG. By Cayley’s Theorem and
Proposition 3.1, we have

M(G) = ±Pf (A(EG)),

which implies that, for two arbitrary perfect matchings π1 and π2 of G, both bπ1 and bπ2 have the same sign.

Proposition 3.2 (Kasteleyn’s Theorem, [5,6,11]). Every plane graphGhas an orientation EG such that every boundary face—except
possibly the unbounded face—has an odd number of edges oriented clockwise. Furthermore, such an orientation is a Pfaffian
orientation.

4. Proof of the main result

In [18] some new identities on Pfaffians related to the Plücker relation were obtained. As an application of one of these
new identities on Pfaffians, Yeh and the first author of this paper proved the following result which plays a key role in the
proof of our main result:

Theorem 4.3 (Yan and Yeh [18]). Suppose G is a plane weighted graph with an even number of vertices and the weight of every
edge e in G is denoted by ωe. Let e1 = a1b1, e2 = a2b2, . . . , ek = akbk (k ≥ 2) be k independent edges in the boundary of a
face f of G, and let vertices a1, b1, a2, b2, . . . , ak, bk appear in a cyclic order on f and let X = {ei| i = 1, 2, . . . , k}. Then, for any
j = 1, 2, . . . , k,

M(G)M(G− X) = M(G− ej)M(G− X\{ej})+ ωej
∑

1≤i≤k,i6=j

ωei(M(G− bj − ai)M(G− X − aj − bi)

−M(G− bj − bi)M(G− X − aj − ai)).

Let G = (V (G), E(G)) be a weighted graph and e = ab an edge of G. Define a new weighted graph G′ = (V (G′), E(G′))
from G as follows. Delete the edge e = ab from G and add three edges aa′, a′b′, b′b with the weights

√
ωe, 1, and√

ωe, where ωe denotes the weight of edge e. The resulting weighted graph is G′. Hence V (G′) = {a′, b′} ∪ V (G) and
E(G′) = {aa′, a′b′, b′b} ∪ E(G)\{e}. Fig. 1(a) and (b) illustrate this procedure.

Lemma 4.3 (Ciucu [2]). Let G be a weighted graph and e = ab an edge of G, and let G′ be the weighted graph defined above. Then

M(G) = M(G′).
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Fig. 1. (a) The weighted graph G in Lemma 4.3. (b) The weighted graph G′ obtained from G in Lemma 4.3.

Fig. 2. (a) The weighted graph G in the proof of Lemma 4.4. (b) The weighted graph G′ obtained from G in the proof of Lemma 4.4.

We first use the above theorem to prove the following result which is a special case of our main result:

Lemma 4.4. Suppose G is a plane weighted graph with an even number of vertices and the weight of every edge e in G is denoted
by ωe. Let e1 = a1b1, e2 = a2b2, . . . , ek = akbk (k ≥ 2) be k independent edges in the boundary of a face f of G (ωei 6= 0 for
1 ≤ i ≤ k), where vertices a1, b1, a2, b2, . . . , ak, bk appear in a cyclic order on f . Then, for any j = 1, 2, . . . , k, we have

M(G)M(G− A− B) =
k∑
i=1

M(G− aj − bi)M(G− {aj, bi})−
k∑
i=1

M(G− ai − aj)M(G− {ai, aj}),

where A = {ai|1 ≤ i ≤ k}, B = {bi|1 ≤ i ≤ k}, {aj, bi} = (A ∪ B)\{aj, bi}, and {ai, aj} = (A ∪ B)\{ai, aj}.

Proof. Let G′ be the graph obtained from G by deleting k edges e1, e2, . . . , ek and adding 3k edges aia′i, a
′

ib
′

i, b
′

ibi with the
weights√ωei , 1,

√
ωei for i = 1, 2, . . . , k, and leaving all other weights unchanged. Hence, the vertex set of G

′, denoted by
V (G′), is {a′i, b

′

i|1 ≤ i ≤ k} ∪ V (G), and the edge set of G
′, denoted by E(G′), is {aia′i, a

′

ib
′

i, b
′

ibi|i = 1, 2, . . . , k} ∪ E(G)\{ei|1 ≤
i ≤ k}, where V (G) and E(G) are the vertex set and the edge set of G, respectively. For the sake of convenience, denote the
edge a′ib

′

i by e
′

i = a
′

ib
′

i for i = 1, 2, . . . , k. Fig. 2(a) and (b) show this procedure.
Hence, by Lemma 4.3, we have

M(G) = M(G′). (1)

Obviously, by the definition of G′, G′ is a plane weighted graph with an even number of vertices. Furthermore, vertices
a′1, b

′

1, a
′

2, b
′

2, . . . , a
′

k, b
′

k appear in a cyclic order on a face of G
′, and e′1 = a

′

1b
′

1, e
′

2 = a
′

2b
′

2, . . . , e
′

k = a
′

kb
′

k (k ≥ 2) are k
independent edges in the boundary of a face f of G′. Let X ′ = {e′i| i = 1, 2, . . . , k}. Note that the weight of each edge e

′

j in G
′,

for j = 1, 2, . . . , k, equals 1. Then, by Theorem 4.3, for any j = 1, 2, . . . , k,

M(G′)M(G′ − X ′) = M(G′ − e′j)M(G
′
− X ′\{e′j})+

∑
1≤i≤k,i6=j

[M(G′ − b′j − a
′

i)M(G
′
− X ′ − a′j − b

′

i)

−M(G′ − b′j − b
′

i)M(G
′
− X ′ − a′j − a

′

i)]. (2)

It is not difficult to see that the following identities hold:

M(G′ − X ′) =

(
k∏
i=1

ωei

)
M(G− A− B); (3)

M(G′ − e′j) = ωejM(G− aj − bj); (4)

M(G′ − X ′\{e′j}) =

( ∏
1≤i≤k,i6=j

ωei

)
M(G− (A ∪ B)\{aj, bj}); (5)

M(G′ − b′j − a
′

i) =
√
ωeiωejM(G− aj − bi); (6)

M(G′ − X ′ − a′j − b
′

i) =
√
ωeiωej

( ∏
1≤s≤k,s6=i,j

ωes

)
M(G− (A ∪ B)\{aj, bi}); (7)

M(G′ − b′j − b
′

i) =
√
ωeiωejM(G− ai − aj); (8)

M(G′ − X ′ − a′j − a
′

i) =
√
ωeiωej

( ∏
1≤s≤k,s6=i,j

ωes

)
M(G− (A ∪ B)\{ai, aj}). (9)
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Hence the lemma follows from (1)–(9). �

Now we can start to prove our main result.

Proof of Theorem 1.1. Since G is a plane graph, for an arbitrary face F of G there exists a planar embedding of G such that
the face F is the unbounded one. Hence we may assume that vertices a1, b1, a2, b2, . . . , ak, bk appear in a cyclic order in
the boundary of the unbounded face of G. We construct a plane graph G1 from G by adding edge (ai, bi) with weight 1 if
(ai, bi) is not an edge of G for 1 ≤ i ≤ k such that all edges (ai, bi)’s are in the boundary of the unbounded face of G1. If
all (ai, bi)’s are edges of G, then G = G1. Hence, by Lemma 4.4, the theorem holds. So we may assume G 6= G1. Note that
edges e1 = (ai, bi), e2 = (a2, b2), . . . , (ak, bk) are k independent edges in the boundary of the unbounded face of G1. By
Lemma 4.4, we have

M(G1)M(G1 − A− B) =
k∑
i=1

M(G1 − aj − bi)M(G1 − {aj, bi})−
k∑
i=1

M(G1 − ai − aj)M(G1 − {ai, aj}). (10)

On the other hand, by Proposition 3.2 plane graph G1 has a Pfaffian orientation EG1 such that every boundary face–except
possibly the unbounded face—has an odd number of edges oriented clockwise. Let A( EG1) be the skew adjacency matrix
of EG1. Without loss of generality, we suppose that ai = n − 2k + 2i − 1 and bi = n − 2k + 2i for i = 1, 2, . . . , k. Let
β = {n − 2k + 1, n − 2k + 2, . . . , n} = {ai|1 ≤ i ≤ k} ∪ {bi|1 ≤ i ≤ k} = A ∪ B, α = [n]\β , and s = 2j − 1. Then, by
Lemma 2.2, we have

PfA( EG1)(α)PfA( EG1)([n]) =
k∑
i=1

PfA( EG1)(αajbi)PfA( EG1)([n]\{aj, bi})−
k∑
i=1

PfA( EG1)(αajai)PfA( EG1)([n]\{aj, ai}), (11)

which is equivalent to

Pf (A( EG1 − A− B))Pf (A( EG1)) =
k∑
i=1

Pf (A( EG1 − (A ∪ B)\{aj, bi}))Pf (A( EG1 − aj − bi))

−

k∑
i=1

Pf (A( EG1 − (A ∪ B)\{ai, aj}))Pf (A( EG1 − ai − aj)), (11′)

where A( EG1 − A − B) denotes the skew adjacency matrix of EG1 − A − B. Note that all orientations EG1 − A − B, EG1 − (A ∪
B)\{aj, bi}, EG1−aj−bi, EG1− (A∪B)\{ai, aj}, and EG1−ai−aj satisfy the condition in Proposition 3.2 (since all edges (ai, bi)’s
are in the boundary of the unbounded face of G1), and hence are Pfaffian orientations. By Remark 3.1, we have

M(G1) = ±Pf (A( EG1)), M(G1 − A− B) = ±Pf (A( EG1 − A− B)), (12)

M(G1 − aj − bi) = ±Pf (A( EG1 − aj − bi)), (13)

M(G1 − {aj, bi}) = ±Pf (A( EG1 − (A ∪ B)\{aj, bi})), (14)

M(G1 − ai − aj) = ±Pf (A( EG1 − ai − aj)), (15)

M(G1 − {ai, aj}) = ±Pf (A( EG1 − (A ∪ B)\{ai, aj})). (16)

By (10) and (11′), and (12)–(16), we have the following:

Claim 1. All terms Pf (A( EG1 − A − B))Pf (A(Ge1)), Pf (A( EG1 − (A ∪ B)\{aj, bi}))Pf (A( EG1 − aj − bi)), and Pf (A( EG1 − (A ∪
B)\{ai, aj}))Pf (A( EG1 − ai − aj)) have the same sign.

Let EG be the orientation of G obtained from EG1 by deleting the arcs whose end vertices are ai and bi such that (ai, bi) is
not an edge of G for 1 ≤ i ≤ k. Let A(EG) be the skew adjacency matrix of EG. Similar to (11) and (11′), we have

PfA(EG)(α)PfA(EG)([n]) =
k∑
i=1

PfA(EG)(αajbi)PfA(EG)([n]\{aj, bi})−
k∑
i=1

PfA(EG)(αajai)PfA(EG)([n]\{aj, ai}), (17)

which is equivalent to

Pf (A(EG− A− B))Pf (A(EG)) =
k∑
i=1

Pf (A(EG− (A ∪ B)\{aj, bi}))Pf (A(EG− aj − bi))

−

k∑
i=1

Pf (A(EG− (A ∪ B)\{ai, aj}))Pf (A(EG− ai − aj)), (17′)

where A(EG− A− B) denotes the skew adjacency matrix of EG− A− B.
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Note that all edges (ai, bi)’s are in the boundary of the unbounded face of G1. Thus EG satisfies the condition in
Proposition 3.2. Hence it is a Pfaffian orientation. Similarly, all orientations EG− A− B, EG− (A∪ B)\{aj, bi}, EG− aj − bi, EG−
(A ∪ B)\{ai, aj}, and EG− ai − aj satisfy the condition in Proposition 3.2, and hence are also Pfaffian orientations. Thus

M(G) = ±Pf (A(EG)), M(G− A− B) = ±Pf (A(EG− A− B)), (18)

M(G− aj − bi) = ±Pf (A(EG− aj − bi)), (19)

M(G− {aj, bi}) = ±Pf (A(EG− (A ∪ B)\{aj, bi})), (20)

M(G− ai − aj) = ±Pf (A(EG− ai − aj)), (21)

M(G− {ai, aj}) = ±Pf (A(EG− (A ∪ B)\{ai, aj})), (22)

In view of (17′) and (18)–(22), to finish the proof of the theorem, it suffices to prove the following:

Claim 2. All terms Pf (A(EG − A − B))Pf (A(EG)), Pf (A(EG − (A ∪ B)\{aj, bi}))Pf (A(EG − aj − bi)), and Pf (A(EG − (A ∪
B)\{ai, aj}))Pf (A(EG− ai − aj)) have the same sign.

Note that each perfect matching π = {(s1, t1), (s2, t2), . . . , (s n2 , t n2 )} of G is also a perfect matching of G1. By the

definitions of EG and EG1, the term bπ in Pf (A(EG)) has the same sign as bπ in Pf (A( EG1)). Hence both Pf (A(EG)) and Pf (A( EG1))
have the same sign. Similarly, so have both Pf (A(EG − A − B)) and Pf (A( EG1 − A − B)), both Pf (A(EG − (A ∪ B)\{aj, bi}))
and Pf (A( EG1 − (A ∪ B)\{aj, bi})), both Pf (A(EG − aj − bi)) and Pf (A( EG1 − aj − bi)), both Pf (A(EG − (A ∪ B)\{ai, aj})) and
Pf (A( EG1 − (A ∪ B)\{ai, aj})), and both Pf (A(EG− ai − aj)) and Pf (A( EG1 − ai − aj)). Claim 2 follows from Claim 1.
Hence we have finished the proof of the theorem. �

5. Some remarks

Propp [14] and Kuo [8] first found the method of graphical condensation for enumerating perfect matchings of plane
bipartite graphs. For the plane graph (not necessarily bipartite), in an email sent to ‘‘Domino Forum’’ Propp wrote that
Kenyon recently told him about the identity of Pfaff’s (Corollary 1.2) in combination with Kasteleyn’s Pfaffian method.
Professor Krattenthaler told one of the current authors by an email that one could use directly the Plücker relation on
Pfaffians to obtain some Pfaffian identities. In this paper, by using a Pfaffian identity and a result in [18] we generalize
Kenyon’s identity. It is natural to ask whether one can use directly the Plücker relation on Pfaffians to prove Theorem 1.1.
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