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Let M = (T , C, P ) be a security model, where T is a rooted tree, C is a multiset of costs and 
P is a multiset of prizes and let (T , c, p) be a security system, where c and p are bijections 
of costs and prizes. The problems of computing an optimal attack on a security system 
and of determining an edge e ∈ E(T ) such that the maximum sum of prizes obtained from 
an optimal attack in (T , c, p) is minimized when c(e) = ∞ are considered. An O (G2n)-
time algorithm to compute an optimal attack as well as an O (G2n2)-time algorithm to 
determine such an edge are given, in addition to a (1-ε) FPTAS with the time bound 
O ( 1

ε2 n3 log G) and a (1+ε) FPTAS with the time bound O ( 1
ε2 n4 log G) for the first and 

second problems, respectively.
© 2020 Elsevier Inc. All rights reserved.

1. Introduction

In today’s world it is not an overstatement to say that we live in a cyber space. We do our business transactions in 
cyber space. We communicate in social media and basically spend most minutes in cyber space. Unfortunately, criminals 
also find their ways into cyber space. The cyber crimes statistics in 2017 showed that 254 benchmarked companies have 
experienced a total of 635 discernible cyber attacks and the average number of successful attacks per a company each week 
was 2.5 [1]. Moreover, there have also been some other large scale attacks such as WannaCry or NotPetya [2]. In short, 
cyber crimes and other cyber activities with malicious intent continue to be very costly for organizations and nations. In 
terms of dollars Richards et al. [1] reported that the mean annualized cost of cyber crimes for 254 benchmarked companies 
in 2017 was 11.7 million US dollars per year, increasing 22.7 percent from 2016 and 62 percent from the average cost over 
five years. Therefore, we need to understand these critical cyber security issues. Although cyber crimes have risen rapidly, 
cyber security has not been able to catch up. There is an urgent need to improve security and to understand the cyber 
environment. For this reason, Schneider suggested the need for the science of cyber security [3]. Additionally, Dunlavy et 
al. [4] discussed that mathematics must play a key role in improving our understanding and helping to design alternatives. 
Armstrong et al. also explained that complexity science is one of the tools that can be utilized to understand problems in 
the cyber security domain [5]. Since then, there have been some new researches in the science of cyber security.

Measuring cybersecurity is difficult but organizations need to know how effective their cybersecurity systems are. For ex-
ample, chief security officers of Fortune 500 companies listed security metrics among their top three needs [6]. To respond 
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to this need, Pfleeger [6] presented an approach to cybersecurity measurement that uses existing tools to help organizations 
answer some basic questions about whether their networks and systems are secure. To answer these questions, the author 
identified key characteristics for distinguishing the security of one entity from another, where an entity can be a system, 
an organization, an enterprise, a business sector, or a nation. The author then selected attributes that reflect the cyberse-
curity aspects of interest and used appropriate ways to combine these attributes to measure the overall cybersecurity. Grid 
computing is a computing environment that incorporates many different computers via networking mechanism. Security 
in a grid environment is therefore a challenging matter, particularly at the design stage, because of the interoperability 
among possibly unknown entities in the system. Pagliarecci et al. [7] proposed a formal model checking-based verification 
methodology at the design stage for host security verification for grid systems. Their verification methodology was based 
on a reduction of a given grid system model to a model to which it is possible to apply a so-called cutoff theorem to make 
it decidable [7]. In a static and specific setting cybersecurity can be maintained easily because the environment is fixed. 
Indeed, there are solutions to cybersecurity problems that can usually be applied to special cases effectively. However, in a 
dynamically changing environment that is closer to reality, these solutions become far less effective. Shiva et al. [8] applied 
successfully a game theory-based holistic security approach to a dynamically changing scenario by viewing the interaction 
of the attacker and the defender as a game play. In terms of economics organizations often find it difficult to allocate re-
sources to cybersecurity. This is in part due to uncertainty and severity of cybersecurity threats and vulnerabilities plus the 
effectiveness of mitigating measures. Several models for resource allocation in cybersecurity exist to aid decision makers but 
it is not clear which model should be chosen to apply to their organizations. Rue et al. [9] discussed a framework to analyze 
and to compare models and illustrated their framework with an analysis of three commonly-found types of models. Drugs 
and precursor chemicals were commonly moved through river and road networks in South America. The U.S. anti-drug ef-
forts in South America would like to optimally allocate its limited resources to interdict coca, partially processed cocaine 
and precursor chemicals. Wood modeled this problem using a maximum flow problem in a capacitated network [10]. In the 
model an enemy attempted to maximize the flow through the capacitated network while an interdictor tries to minimize 
this maximum flow by stopping flow on network arcs with limited resources. He showed that this problem is NP-complete 
even when the interdiction of an arc requires exactly one unit of resource and developed integer programming models for 
the problem. This problem could also be viewed in a cyber security context. A maximum flow problem can also be used in 
a vulnerability attack graph to compute the best attack path [11]. Once the best attack path is determined, the key fragile 
links of the network system are known and become useful information for security and reinforcement by system adminis-
trators. A deterministic and static nature of a cyber system can enable adversaries to learn about the system by detections 
and, once enough information is gained, an attack can be launched to harm the system or for other malicious purposes. To 
avoid this scenario, a moving target defense was proposed to make the system more random, dynamic, and heterogeneous 
and therefore difficult to learn by the adversaries. Most recent work by Xiong et al. [12] proposed an effectiveness evalu-
ation model for moving target defense based on system attack surface which is a set of ways in which an adversary can 
enter the system and potentially cause damages. In some situations damages caused by malicious activities on a network 
system can be either irrepairable or exorbitant. Hence, we want to prevent these activities from ever taking place by some 
prediction mechanism. In [13] the authors give a survey of all prediction and forecasting methods used in cyber security 
and discuss machine learning and data mining approaches in cyber security that have gained a lot of attention recently.

Defense-in-depth is an information assurance concept in which multiple layers of security controls are placed throughout 
an information technology system. This work focuses solely on defense-in-depth security. We review existing research work 
in defense-in-depth cyber security in this paragraph. Many cyber systems such as antivirus encryption and security firewalls 
contain a layered security or defense-in-depth. The defense-in-depth is a concept of protecting a computer network with a 
series of defense mechanism such that if one mechanism fails, another will already be in place to thwart an attack, more 
details of defense-in-depth have been discussed in [14,15]. In mathematical terms, the defense-in-depth can be described 
in the terms of a rooted weighted tree [16]. Therefore, cyber security systems or more generally layered computer systems 
are modeled as a fixed-weighted tree. For this reason, some researches in a weighted tree can be applied in the defense-
in-depth [17–22]. Agnarsson et al. [16] were the first to propose a theoretical graph-based defense-in-depth cybersecurity 
model from an offensive perspective. In their article the authors considered a tree graph T with a weight function for both 
edges and vertices and wanted to find an attack subtree τ of T that maximizes the total weight on the tree’s vertices under 
a given budget constraint. They showed the time complexities of the variations of this problem and gave an approximation 
scheme for the known NP-complete problem. For the defensive perspective, Agnarsson et al. [23] investigated an optimal 
security system by studying a way to assign a cost to an edge and a prize to a vertex of a given tree so that an attacker with 
a given budget obtains a minimum total prize from the model. They showed that in general it is not possible to develop 
an optimal security system for a given cyber security model. However, if a tree in a given model is a rooted path or a 
rooted star or a rooted 3-caterpillar, or a rooted 4-spider, there is an optimal security system for a certain type of the cyber 
security model. Additionally, they also defined a good security system and showed that it can be constructed in polynomial 
time.

In this article we present new results related to the model in Agnarsson et al. [16,23]. Our investigation is twofold. From 
the offensive perspective, we study how to approximate an optimal attack on the system with a guarantee. In a real life 
security system, one may want to put a strongest security measure on a part of a security system so that an attacker obtains 
a total prize as little as possible. In this defensive perspective, we model our security system with a security measure with 
cost ∞. Let M = (T , C, P ) be a security model, where T = (V , E) is a tree rooted at r, C is a multiset of |E(T )| costs and P
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is a multiset of |V (T )| −1 prizes. Given a security system (T , c, p), where c : E(T ) → C and p : V (T ) \ {r} → P are bijections, 
and a budget B ∈Z+ , the problem is to determine an edge e ∈ E(T ), c(e) = i, such that the maximum total prize obtained 
in an optimal attack in (T , c, p) is minimized when i is replaced by ∞. For both problems, we give pseudo-polynomial time 
algorithms to compute the optimal solutions and fully-polynomial time approximation schemes to approximate the optimal 
solutions.

The outline of this article is as follows: in section 2 we describe some definitions and notations that will be used 
throughout this article; we discuss the complexities of the problems in section 3; a fully-polynomial time approximation 
scheme for the Optimal Attack Optimization Problem is given and discussed in section 4; in section 5 a fully-polynomial 
time approximation scheme for the Infinity Placement Optimization Problem is detailed and shown; the lack of potential 
drastic approximation improvement is then explained in section 6; we give a conclusion in section 7 and discuss relevance 
to real world and limitations of this work in section 8. In section 9 we explain our future work.

2. Definitions and notation

In this section we give the definitions of a cyber security model and its related offensive and defensive problems. The 
cyber security model is borrowed from [23]. Because this article is an extended version of our conference paper [24], some 
definitions and notations are reused here.

Definition 2.1. [Cyber Security Model] A cyber security model M is given by a three-tuple M = (T , C, P ), where T = (V , E)

is a tree rooted at r having n ∈N non-root vertices, C is a multiset of penetration costs c1, . . . , cn ∈Z+ , and P is a multiset 
of prizes p1, . . . , pn ∈Z+ . The attack always begins at the root r and the root always has prize 0.

Observe that, although we use Z+ in our definition, all of our definitions can be applied to rational numbers as well 
because a given set of rational numbers can be multiplied by a common denominator to get an equivalent set of integers.

Definition 2.2. [Security System] A security system (T , c, p) with respect to a cyber security model M = (T , C, P ) is given 
by two bijections c : E(T ) → C and p : V (T ) \ {r} → P . A system attack in (T , c, p) is given by a subtree τ of T that contains 
the root r of T . The cost of a system attack τ with respect to (T , c, p) is given by the cost cst(c, p, τ ) = ∑

e∈E(τ ) c(e). The 
prize of a system attack τ with respect to (T , c, p) is given by the prize pr(c, p, τ ) = ∑

u∈V (τ ) p(u). For a given budget 
B ∈Z+ the maximum prize pr∗(c, p, B) with respect to B is defined by pr∗(c, p, B) = max{pr(c, p, τ )| for all τ ⊆ T , where 
cst(c, p, τ ) ≤ B}. A system attack τ whose prize is maximum with respect to a given budget B is called an optimal attack. 
Every system attack τ is maximal.

Occasionally, we use G = ∑
pi∈P pi to refer to the total prize in the model. Our first problem is from an offensive 

perspective and is defined as follows.

Definition 2.3. [Optimal Attack Optimization Problem]

Instance: A security system S = (T , c, p) associated with M and a budget B ∈Z+ .
Instruction: Compute the maximum total prize pr∗(c, p, B).

The decision version of the Optimal Attack Optimization Problem is known to be NP-hard [16]. From the defensive 
perspective, given a security system and a budget, we want to place a security measure with the cost ∞ into the system 
to minimize the total prize from an optimal attack, assuming ∞ > B for any B . In real applications ∞ may represent the 
strongest preventive measure of security. An infinity placement operation is described. Decision and optimization versions 
of the problem are defined.

Definition 2.4. [Infinity Placement Operation] Given a cyber security model M , let S = (T , c, p) be a security system asso-
ciated with M and (T , c′, p) be a security system in the model after the infinity placement operation has taken place. We 
say that an infinity placement operation replaces an edge cost c(e) with ∞ if for all edges e′ ∈ E(T ) \ {e}, c′(e′) = c(e′) and 
c′(e) = ∞.

Definition 2.5. [Infinity Placement Optimization Problem]

Instance: A security system S = (T , c, p) associated with M and a budget B ∈Z+ .
Instruction: Find an edge e ∈ E(T ) such that pr∗(c′, p, B) is minimized after the infinity placement operation has been 
performed.

Definition 2.6. [Infinity Placement Decision Problem]

Instance: A security system S = (T , c, p) associated with M , a budget B ∈Z+ and a prize target K ∈Z+ .
Question: Is there an edge e ∈ E(T ) such that pr∗(c′, p, B) ≤ K after the infinity placement operation has been performed?
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This decision problem is a natural one because we could repeatedly ask for a value of K to solve the corresponding 
optimization version of it. Observe that the value of K is upper-bounded by the sum of all prizes and the lower bound is 0. 
We can apply binary search to find the optimal value of K .

3. Complexity

In this section we give results related to complexity of the Infinity Placement Decision Problem. Let us first review 
the class coNP. The class coNP consists of all problems whose complement are in NP [25,26]. A decision problem p is 
called coNP-hard if all other problems in coNP polynomially transform to p [27]. Moreover, p is coNP-complete if p is coNP
and p is coNP-hard [27,26]. Additionally, p is coNP-complete if and only if the complement of p is NP-complete, unless 
NP=coNP [26]. We next show that Infinity Placement Decision Problem is coNP-hard. In order to show the hardness result, 
the complement of a known NP-complete problem called Partition is used. The Complement of the Partition Problem can 
be stated as follows.

Definition 3.1. [Complement of the Partition Problem]

Instance: A finite set A and a “size” s(a) ∈Z+ for each a ∈ A.
Question: For each nonempty subset A′ ⊆ A, is 

∑
a∈A′ s(a) not equal to 

∑
a∈A\A′ s(a)?

Theorem 3.1. The Infinity Placement Decision Problem is coNP-hard.

Proof. We show that the Infinity Placement Decision Problem is coNP-hard. We make a reduction from the Complement 
of Partition Problem. Let s(D) = ∑

d∈D s(d) be the total size of all elements in D . We construct a security system (T , c, p), 
a budget B ∈ Z+ , and a prize target K ∈ Z+ such that for each nonempty subset A′ ⊆ A, s(A′) 	= s(A \ A′) if and only if 
there is an edge e ∈ E(T ) such that pr∗(c′, p, B) ≤ K after the infinity placement operation has been performed.

Given a problem instance of the Complement of Partition Problem, we first construct a corresponding model M =
(T , C, P ) as follows. Construct a rooted star T by letting V (T ) = A ∪ {r, x} and E(T ) = {{r, v}| for each v ∈ V (T ) \ {r}}. 
Furthermore, let C be {s(a)| for each a ∈ A} ∪ {1} and P be {s(a)| for each a ∈ A} ∪ { s(A)

2 + 1}. We construct the assignments 
c and p in such a way that for each a ∈ V (T ) \ {r, x}, c({r, a}) = p(a) = s(a), c({r, x}) = 1 and p(x) = s(A)

2 + 1. Finally, we let 
the budget B = s(A)

2 and the prize target K = s(A)
2 − 1. The whole construction of the problem instance can be computed in 

O (n), where n = |A|. We will show that for each nonempty subset A′ ⊆ A, s(A′) 	= s(A \ A′) if and only if there is an edge 
e ∈ E(T ) such that pr∗(c′, p, s(A)

2 ) ≤ s(A)
2 − 1 after the infinity placement operation has been performed.

→ Suppose for each nonempty subset A′ ⊆ A, s(A′) 	= s(A \ A′). We will show that there is an edge e ∈ E(T ) such that 
pr∗(c′, p, s(A)

2 ) ≤ s(A)
2 − 1 after the infinity placement operation has been performed. Because pr∗(c′, p, s(A)

2 ) ≤ s(A)
2 − 1, the 

infinity must be placed on the edge e = {r, x} where c({r, x}) = 1 and p(x) = s(A)
2 + 1. WLOG, assume that s(A′) < s(A \ A′). 

Because B = s(A)
2 and, by construction, c′({r, a}) = p(a) = s(a) for each a ∈ V (T ) \ {r, x}, the attack achieves exactly the sum 

of prizes in the largest subset A′ that is at most s(A)
2 − 1. Let τA′ be such a corresponding attack and it follows that τA′ is a 

maximum attack, which implies pr∗(c′, p, s(A)
2 ) ≤ s(A)

2 − 1 after the infinity placement operation has been performed.

← Suppose there is an edge e ∈ E(T ) such that pr∗(c′, p, s(A)
2 ) ≤ s(A)

2 − 1 after the infinity placement operation 
has been performed. We show that for each nonempty subset A′ ⊆ A, s(A′) 	= s(A \ A′). Let A∗ ⊆ V (T ) be the set 
that yields pr∗(c′, p, s(A)

2 ) ≤ s(A)
2 − 1 < s(A)

2 and A∗ ∪ A∗∗ = A. Because A∗ yields the maximum prize pr∗(c′, p, s(A)
2 )

and pr∗(c′, p, s(A)
2 ) < s(A)

2 , pr(c′, p, τ ) > s(A)
2 , where τ is the system attack that contains all prizes in A∗∗ . This implies 

s(A∗) 	= s(A∗∗). Observe that, given a budget s(A)
2 , all system attacks τ1, τ2, . . . , τq yield at most pr∗(c′, p, s(A)

2 ) < s(A)
2 and 

each such V (τi) corresponds to a subset Ai of vertices (or prizes). Therefore, s(Ai) 	= s(A \ Ai) for all i. Because each 
nonempty subset A′ of A is either Ai or A \ Ai , we conclude that for each nonempty subset A′ ⊆ A, s(A′) 	= s(A \ A′). Hence, 
the theorem holds. �

Theorem 3.1 tells us that it is highly unlikely that a reasonably fast algorithm exists to solve the Infinity Placement 
Decision Problem and its optimization counterpart, unless P = N P . In section 5 we will provide solutions to this problem.

4. Approximation scheme for the optimal attack problem

In this section we consider a fully-polynomial time approximation scheme (FPTAS) as a solution to the Optimal Attack 
Optimization Problem. We carefully note here that Agnarsson et al. gave a O (nB2) pseudo-polynomial time algorithm and a 
O ((1/ε)2n3) FPTAS to solve the Optimal Attack Problem [16] with the cost at most (1 + ε)B . Here we give another O (nG2)

pseudo-polynomial time algorithm and a (1-ε) fully-polynomial time approximation scheme on the optimal prize with the 
time bound O ( 1

ε2 n3 log G). Observe that when the total prize G is less than the total budget B our pseudo-polynomial time 
algorithm is clearly a better alternative. In the following paragraphs we first describe the pseudo-polynomial time algorithm 
and then the FPTAS based on this algorithm.
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4.1. Pseudo-polynomial time algorithm

Our algorithm applies the dynamic programming approach and is very similar to that of Agnarsson et al., which finds a 
maximum prize subtree with a given fixed cost. Our algorithm, on the other hand, finds a minimum cost subtree, given a 
fixed total prize. We review the central idea of their algorithm. We construct a d(u) × (m + 1) matrix for each vertex u in 
the tree T that stores the maximum prize of a subtree rooted at u on at most k edges and that contains only the rightmost 
d(u) − i + 1 branches from u, for each k ∈ {0, 1, ..., m} and i ∈ {1, ..., d(u)}. We assume that our rooted tree T has its vertices 
ordered from left-to-right in some arbitrary but fixed order, that is, T is a planted plane tree. A planted plane tree can be 
decomposed into two rooted subtrees.

For a subtree τ of T rooted at u ∈ V (T ), denote by τ (v) the largest subtree of τ that is rooted at a vertex v (if 
v ∈ T [V (τ )]). Denote by ul the leftmost child of u in τ (if it exists). Let τl = τ (ul) denote the subtree of τ generated 
by ul , that is, the largest subtree of T rooted at ul . Finally, let τ ′′ = τ − V (τl) = T [V (τ )\V (τl)] denote the subtree of τ
generated by the vertices not in τl . The decomposition of τ of T gives two vertex-disjoint subtrees τl and τ ′′ whose roots 
are connected by a single edge e(ul).

In particular, for each vertex u ∈ V (T ), we have a partition of T (u) into T (u)l = T (ul) and T (u)′′ = T ′′(u). Note that if u
is a leaf, then T (u) = T ′′(u) = {u} and ul = T (ul) = ∅. Additionally, if u has exactly one child which is its leftmost child ul , 
then T (u) is the two-path between u and its only child ul , T ′′(u) = {u}, and T (ul) = ul . Let d(u) be the degree of u. We can 
recursively define the trees T 1(u), ..., T d(u)(u) by

T 1(u) = T (u),

T i+1(u) = (T i)′′(u).

For each vertex u ∈ V (T ), we create a d(u) × (B + 1) matrix as follows:

N(u) =

⎡
⎢⎢⎢⎣

N1
0(u) N1

1(u) . . . N1
B(u)

N2
0(u) N2

1(u) . . . N2
B(u)

...

Nd(u)
0 (u) Nd(u)

1 (u) . . . Nd(u)
B (u)

⎤
⎥⎥⎥⎦

where Ni
k(u) is the maximum prize of a subtree of T i(u) rooted at u of total cost at most k for each i ∈ {1, 2, . . . , d(u)} and 

k ∈ {0, 1, . . . , B}. In particular, Ni
0(u) = p(u) for each vertex u and i ∈ {1, 2, . . . , d(u)}. For each leaf u of T , and each i and 

k, we set Ni
k(u) = p(u), and for each internal vertex u we have a recursion given in the following way: for a vertex u and 

an arbitrary subtree τ rooted at u, we let Nk(u; τ ) be the maximum prize of a subtree of τ rooted at u having total cost 
at most k or 0 if vertex u does not exist. If a maximum-prize subtree of τ with total cost at most k does not contain the 
edge from u to its leftmost child ul , then Nk(u; τ ) = Nk(u; τ ′′). Otherwise, such a maximum subtree has a total cost at most 
i − c(e(ul)) from τl and a total cost at most k − i from τ ′′ . The following lemma holds.

Lemma 4.1 (Optimal substructure). The arbitrary subtree τ rooted at u is a maximum-prize subtree of total cost at most k that contains 
the leftmost child ul of u if and only if the included subtree of τl is a maximum-prize subtree of total cost at most i − c(e(ul)) rooted at 
ul and the included subtree of τ ′′ is a maximum-prize subtree of total cost at most k − i rooted at u for some i ∈ {c(e(ul)), . . . , k}.

With the optimal substructure in mind, we have the following recurrence and the following theorem.

Nk(u;τ ) = max

(
Nk(u;τ ′′), max

c(e(ul))≤i≤k
(Ni−c(e(ul))(ul;τl) + Nk−i(u;τ ′′))

)
(1)

Theorem 4.1. If M = (T , c, p, B, G) is a cyber security model, where T has n vertices and c : E(T ) 
→ N takes only positive-integer 
values, then the Optimal Attack Optimization Problem can be solved in O (B2n) time.

Our dynamic programming algorithm is similar with the following matrix, lemma, recurrence, and theorem.
For each vertex u ∈ V (T ), we create a d(u) × (G + 1) matrix as follows:

M(u) =

⎡
⎢⎢⎢⎣

M1
0(u) M1

1(u) . . . M1
G(u)

M2
0(u) M2

1(u) . . . M2
G(u)

...

Md(u)
0 (u) Md(u)

1 (u) . . . Md(u)
G (u)

⎤
⎥⎥⎥⎦

where Mi
k(u) is the minimum cost of subtree of T i(u) rooted at u of total prize at least k for each i ∈ {1, 2, . . . , d(u)} and 

k ∈ {0, 1, . . . , G}, where G = ∑
v∈V (T ) p(v) is the total prize.
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Lemma 4.2 (Revised optimal substructure). The arbitrary subtree τ rooted at u is a minimum-cost subtree of total prize at least k that 
contains the leftmost child ul of u if and only if the included subtree of τl is a minimum-cost subtree of total prize at least j rooted at 
ul and the included subtree of τ ′′ is a minimum-cost subtree of total prize at least k − j rooted at u for some j ∈ {0, 1, 2, . . . , k}.

With the new optimal substructure in mind, a new recurrence can be defined as follows.

Mk(u;τ ) = min

(
Mk(u;τ ′′), min

0≤ j≤k
(M j(ul;τl) + Mk− j(u;τ ′′))

)
(2)

Each vertex u ∈ V (T ) is associated with a d(u) × (G + 1) matrix. Therefore, the number of subproblems is 
∑

u∈V (T )(G +
1) × d(u). By the Handshaking Lemma, we obtain (G + 1) × 2|E| subproblems. Because each subproblem takes O (k) to 
compute, the total time complexity is therefore (G + 1) × 2|E| × O (k) ≤ (G + 1) × 2|E| × O (G) = O (G2n). We have the 
following theorem.

Theorem 4.2. If M = (T , c, p, B, G) is a cyber security model, where T has n vertices and c : E(T ) 
→ N takes only positive-integer 
values, then the Optimal Attack Optimization Problem can be solved in O (G2n) time.

4.2. Fully-polynomial time approximation scheme

In this section we discuss a FPTAS based on the pseudo-polynomial time algorithm in the previous subsection. The main 
idea of the approximation scheme is to scale and round each prize and hope that the effect of scaling and rounding will 
give an approximate solution of at least 1 − ε of the optimal solution.

Assume Popt is an optimal prize from a set Sopt that can be obtained from the attack. Given a security system S =
(T , c, p) associated with M and a budget B ∈ Z+ and an ε , we scale each prize pi ∈ P by a factor of n

εP 2
opt

(
∑

p j∈Sopt
p j). 

After rounding each scaled prize, we have �pi
n

εP 2
opt

(
∑

p j∈Sopt
p j)�. Then we run the pseudo-polynomial time algorithm with 

this new input.

Theorem 4.3. Let ε > 0 be a constant and M = (T , c, p, B, G) be a cyber security model. The pseudo-polynomial time approximation 
scheme yields a solution S with a total prize P S such that P S ≥ (1 − ε)Popt .

Proof. Let Sopt be the optimal set that gives a total prize Popt . Observe that the scaling gives 
∑

pi∈Sopt
pi

n
εP 2

opt
(
∑

p j∈Sopt
p j) =

n
ε . The rounding of each scaled prize reduces each scaled prize by at most one. Hence, the optimal solution after the 
rounding becomes at least n

ε − n. Because the algorithm achieves an optimal solution, we have a scaled total prize at least 
n
ε − n. To obtain the solution in terms of original prizes, we unscale n

ε − n by 
εP 2

opt

n
∑

p j∈Sopt
p j

. We have ( n
ε − n)(

εP 2
opt

n
∑

p j∈Sopt
p j

) =
(1 − ε)Popt . Thus, P S is at least (1 − ε)Popt . The theorem holds. �

A few remarks are in order. The time complexity of the approximation scheme is n
εP 2

opt
(
∑

p j∈Sopt
p j) × O (P 2

optn) =
O ( 1

ε n2 Popt). Observe that with the factor of Popt this time bound is strictly still pseudo-polynomial. We can make this 
time bound fully polynomial by relating n

ε to Popt and eliminating Popt altogether. We need to know Popt to run the exact 
algorithm but we do not. We use guessing. Suppose we guess P ′

opt . If P ′
opt > Popt , the scaled total prize becomes less than 

n
ε . If P ′

opt < Popt , the scaled total prize becomes greater than n
ε . What range of total prizes should we guess for Popt ? We 

note that the scaled optimal solution n
ε becomes the original Popt when unscaled and therefore 2n

ε becomes the original 
Popt

2 . Our guess P ′
opt works if it is in the range of Popt and Popt

2 . Given the two conditions above, we can use binary search 
for this guess. The time for this binary search is O (log G). Because n

ε corresponds to Popt , 2n
ε corresponds to Popt

2 . Hence, we 
have the desired upper bound P ′

opt ≤ 2n
ε . The total time complexity now becomes O ( 1

ε2 n3 log G), which is fully polynomial. 
We have the following main theorem.

Theorem 4.4. Let ε > 0 be a constant and M = (T , c, p, B, G) be a cyber security model. The fully polynomial time approximation 
scheme yields a solution S with a total prize P S such that P S ≥ (1 − ε)Popt and has the time bound O ( 1

ε2 n3 log G).

5. Approximation scheme for the infinity placement problem

In this section we first consider a pseudo-polynomial time algorithm to solve the Infinity Placement Problem for an 
exact solution and then the fully-polynomial time approximation scheme for the problem. Our pseudo-polynomial time 
algorithm is based on the pseudo-polynomial time algorithm that solves the Optimal Attack Optimization Problem in the 
preceding section. The idea is simple. Placing infinity on a different edge at a time, we then execute this pseudo-polynomial 
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time algorithm to obtain a corresponding maximum total prize for this particular placement. We execute the process |E(G)|
times to obtain |E(G)| maximum total prizes for each of the |E(G)| infinity placements. Among all these maximum total 
prizes, the smallest one indicates the optimal infinity placement.

Lemma 5.1. Given a security system S = (T , c, p) associated with M and a budget B, the Infinity Placement Problem can be solved 
in O (G2n2) time, where G = ∑

pi∈P pi .

Proof. We execute the O (G2n) pseudo-polynomial time algorithm to solve the Optimal Attack Optimization Problem |E| =
n times. Hence, the total time complexity is O (G2n2). �

To obtain a PPTAS, we apply a similar scaling and rounding technique to that of the previous section. Assume Popt is an 
optimal prize that can be obtained from an attack at the optimal infinity placement. Given a security system S = (T , c, p)

associated with M and a budget B ∈ Z+ and an ε , we scale each prize pi ∈ P by a factor of n
εP 2

opt
(
∑

p j∈Sopt
p j). After 

rounding each prize pi , we have �pi
n

εP 2
opt

(
∑

p j∈Sopt
p j)�. Then we run the pseudo-polynomial time algorithm with this new 

input.

Corollary 5.1. Let ε > 0 be a constant and M = (T , c, p, B, G) be a cyber security model. The pseudo-polynomial time approximation 
scheme yields a solution S and infinity placement with a total prize P S such that P S ≤ (1 + ε)Popt .

Proof. Let Sopt be the optimal set that gives a total prize Popt . Observe that the scaling gives 
∑

pi∈Sopt
pi

n
εP 2

opt
(
∑

p j∈Sopt
p j) =

n
ε . The rounding of each scaled prize increases each scaled prize by at most one. Hence, the optimal solution af-
ter the rounding becomes at most n

ε + n. Because the algorithm achieves an optimal solution, we have a scaled total 

prize at most n
ε + n. To obtain the solution in terms of original prizes, we unscale n

ε + n by 
εP 2

opt

n(
∑

p j∈Sopt
p j)

. We have 

( n
ε + n

)(
εP 2

opt

n(
∑

p j∈Sopt
p j)

)
= (1 + ε)Popt . Thus, P S is at most (1 + ε)Popt . The corollary holds. �

A few remarks are in order. First, the time complexity of the pseudo-polynomial time approximation scheme is 
n

εP 2
opt

(
∑

p j∈Sopt
p j) × O (P 2

optn
2) = O ( 1

ε n3 Popt). Similar to the running time of the pseudo-polynomial approximation scheme 

in the previous section, the factor Popt in this time bound makes the running time strictly pseudo-polynomial. We can apply 
the same technique to eliminate the factor Popt and make the time bound fully polynomial. We need to know Popt to run 
the exact algorithm but we do not. We again use guessing. Suppose we guess P ′

opt . If P ′
opt > Popt , the scaled total prize 

becomes less than n
ε . If P ′

opt < Popt , the scaled total prize becomes greater than n
ε . What range of total prizes should we 

guess for Popt ? We note that the scaled optimal solution n
ε still becomes the original Popt when unscaled and therefore 2n

ε

becomes the original Popt
2 . Our guessing range is thus in the range of Popt and Popt

2 . Given the two conditions above, we can 
use binary search for this guess. The time for this binary search is O (log G). Because n

ε corresponds to Popt , 2n
ε corresponds 

to Popt
2 . Hence, we have the desired upper bound P ′

opt ≤ 2n
ε . The total time complexity now becomes O ( 1

ε2 n4 log G), which 
is fully polynomial. Our main corollary follows.

Corollary 5.2. Let ε > 0 be a constant and M = (T , c, p, B, G) be a cyber security model. The fully-polynomial time approxima-
tion scheme yields a solution S and infinity placement with a total prize P S such that P S ≤ (1 + ε)Popt and has the time bound 
O ( 1

ε2 n4 log G).

6. Improvability

At this point we have successfully shown pseudo-polynomial time algorithms to find exact solutions for both the Optimal 
Attack Optimization Problem and the Infinity Placement Optimization Problem and fully-polynomial time approximation 
schemes for both problems. The question now seems to be whether any improvement can be made to these time bounds 
and/or solutions. We next show that no polynomial-time approximation algorithm can solve the Optimal Attack Optimiza-

tion Problem with O P T (I) − A(I) ≤ k and no polynomial-time approximation algorithm can solve the Infinity Placement 
Optimization Problem with A(I) − O P T (I) ≤ k for any fixed integer k.

6.1. Optimal attack optimization problem

Let us review the Optimal Attack Optimization Problem. Given a security system S in M and a budget B , we want to 
compute a total prize from an optimal attack on the system. Let O P T (I) be the optimal solution of the problem instance I
and A(I) the solution from an approximation algorithm.
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Theorem 6.1. If P 	= NP, then no polynomial-time approximation algorithm can compute a maximum total prize with O P T (I) −
A(I) ≤ k for any fixed integer k.

Proof. We will prove this claim by contradiction. Suppose there exists a polynomial-time approximation algorithm that can 
compute a maximum total prize with O P T (I) − A(I) ≤ k. We will show that this algorithm can be used to construct an 
optimal solution to any instance I of the problem, thereby a contradiction.

Given a security system S and a budget B , we construct a new instance I ′ by multiplying k + 1 to each pi ∈ P of the 
security system S while the other parts of the instance remain the same as in the original instance I . Observe that every 
feasible solution for I ′ is exactly a feasible solution for I and vice versa. Hence, the value of the solution for I ′ is k + 1
times the value of the solution for I . We run the approximation algorithm on I ′ to obtain the solution A(I ′). This gives us 
a solution σ for I . Clearly, O P T (I ′) − A(I ′) ≤ k. Let f : S(I) 
→Z+ be a function that assigns a value to each solution in the 
set S(I) of all feasible solutions for instance I .

O P T (I ′) − A(I ′) ≤ k

(k + 1)O P T (I) − (k + 1) f (σ ) ≤ k

O P T (I) − f (σ ) ≤ k

k + 1

Since we are dealing with integer values, O P T (I) − f (σ ) ≤ 0. This means the solution σ is optimal and we derive a 
contradiction. Hence, the theorem holds. �

Theorem 6.1 tells us that it is highly unlikely that we could come up with a polynomial time approximation algorithm 
with an absolute guarantee for the Optimal Attack Optimization Problem.

6.2. Infinity placement optimization problem

In this section we discuss the limit of improvement of time and/or solutions to the Infinity Placement Optimization 
Problem. We show that no polynomial-time approximation algorithm can solve the Infinity Placement Optimization Prob-

lem with A(I) − O P T (I) ≤ k for any fixed integer k. Let O P T (I) be the optimal solution of the problem instance I of the
Infinity Placement Optimization Problem and A(I) the solution from an approximation algorithm.

Theorem 6.2. If P 	= NP, then no polynomial-time approximation algorithm can solve the Infinity Placement Optimization Prob-

lem with A(I) − O P T (I) ≤ k for any fixed integer k.

Proof. We will prove this by contradiction. Suppose there exists a polynomial-time approximation algorithm that can com-
pute a minimum total prize with A(I) − O P T (I) ≤ k. We will show that this algorithm can be used to construct an optimal 
solution to any instance I of the problem, thereby a contradiction.

Given a security system S and a budget B , a new instance I ′ is constructed by multiplying k + 1 to each pi ∈ P of the 
security system S while the other parts of the instance remain the same as in the original instance I . Observe that every 
feasible solution for I ′ is exactly a feasible solution for I and vice versa. Hence, the value of the solution for I ′ is k + 1
times the value of the solution for I . We run the approximation algorithm on I ′ to obtain the solution A(I ′). This gives us 
a solution σ for I . Clearly, A(I ′) − O P T (I ′) ≤ k. Let f : S(I) 
→Z+ be a function that assigns a value to each solution in the 
set S(I) of all feasible solutions for instance I .

A(I ′) − O P T (I ′) ≤ k

(k + 1) f (σ ) − (k + 1)O P T (I) ≤ k

f (σ ) − O P T (I) ≤ k

k + 1

Since we are dealing with integer values, f (σ ) − O P T (I) ≤ 0. This means the solution σ is optimal and we derive a 
contradiction. Hence, the theorem holds. �

Theorem 6.2 tells us that it is highly unlikely that we could come up with a polynomial time approximation algorithm 
with an absolute guarantee for the Infinity Placement Optimization Problem.

7. Conclusion

In this article we defined a cyber-security model and a security system associated with the model. Given the model, we 
considered problems from offensive and defensive perspectives. The problem of computing an optimal attack on a security 
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system is known to be NP-complete. We give a O (G2n)-time algorithm to compute an optimal attack. Based on this pseudo-
polynomial algorithm, a (1-ε) fully-polynomial time approximation scheme with the time bound O ( 1

ε2 n3 log G) is given and 
discussed. We also consider determining an edge e ∈ E(T ) such that the maximum sum of prizes obtained from an optimal 
attack in (T , c, p) is minimum when c(e) is replaced by ∞. This problem is proved to be coN P -hard and a O (G2n2)-time 
algorithm is provided for computing an exact solution and a (1+ε) fully-polynomial time approximation scheme with the 
time bound O ( 1

ε2 n4 log G) is shown to solve this problem. In the end we show that no potential drastic improvement can 
be made to solutions and/or time to both problems and thus our fully polynomial time approximation schemes are the best 
possible.

8. Relevance to real world and limitations

In real world a defense-in-depth system might comprise several security layers. An intruder might want to enter the 
system to obtain information or things (i.e., prizes) such as blueprints of high security buildings, details of covert operations, 
or a name list of active intelligence agents. In the Optimal Attack Optimization Problem context, the optimal attack might 
be the one with all of these things and information given that the intruder has the required means (i.e., budget). Because 
this problem is hard to compute optimally, an intruder might want to use an approximation scheme that we provide. In 
terms of the real world defense, the organization might want to improve its defense by putting in place some very strong 
defense (i.e., cost) such as a disk encryption system. The problem of optimally putting the disk encryption system in the 
whole security system is equivalent to the Infinity Placement Optimization Problem. Since this problem is hard to compute, 
again our approximation scheme can be useful here.

When we design an abstract model that represents a real world problem, we must balance between simplicity of the 
model and things we want to study. If our model is too simple, we will not learn anything from the model. If our model 
integrates everything we may want to study, the model will be too complex and we will not see a tree from a forest. 
Consequently, a good model is one representing certain characteristics of the real world problems we want to investigate. 
Like any abstract model, our model has some limitations. First, our model is designed to study defense-in-depth security 
specifically and therefore is not applicable to the other types of defenses. Second, prize and cost functions need to be 
defined by experts. For instance, a national security database and a university database must have different prizes and the 
prizes should vary greatly according to the importance of each database. Likewise, a firewall and an encryption scheme 
should also have different costs of penetration and these costs should be assigned by experts. Third, some cyber systems 
contain a cycle and, therefore, are not trees. This work is not applicable in such cases.

9. Future work

One can approach problems in cyber security in many ways. For example, the authors [13] discussed machine learning 
and data mining approaches in cyber security. Our approach is, however, based on mathematics and complexity theory, 
which responds to the call for the science of cyber security by Schneider [3]. In this context our future work can be listed 
as follows.

• From an attacker’s perspective, we know how to compute an optimal attack on a security system using the dynamic 
programming technique. From a defender’s perspective, we do not want an attacker to compute an optimal attack easily. 
Can we somehow defeat the dynamic programming technique? We know that the dynamic programming paradigm 
depends on the optimal substructure property and repeated subproblems. Can we characterize a security system without 
one of the two properties so that dynamic programming cannot be applied?

• In some cases an attacker does not necessarily want to obtain a maximum prize from a security system. Suppose an 
attacker wants to obtain a fraction f of the maximum prize. Is this problem NP-complete? How does one compute such 
a fraction f of the maximum prize? From a defensive perspective, what can we do to prevent such an attack, given we 
know f ?

• In the Infinity Placement Optimization Problem we considered placing infinity cost on a single edge to minimize an 
optimal attack. What happen if we have k infinity costs to place on k edges? Is this problem NP-complete? Is it harder 
or easier to compute as k grows in value? What is the value of k such that the problem becomes polynomial-time 
computable?

• Similar to the first open problem, a defender may not necessarily want to place infinity to minimize the sum of prizes. 
He might only want to place infinity so that an attacker only obtains at most c times the minimized sum of prizes. Is 
this problem NP-complete? We can also consider this problem with many infinity edge costs.
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