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non-trivial worst-case upper bounds for this problem. Specifically, we show an O(nk)-time
algorithm and an O(n + % k*)-time algorithm. The latter algorithm applies in an extended
way a technique that was very recently developed for the k-mismatch problem Bringmann
et al. (2019) [10].
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1. Introduction

Pattern matching is a fundamental problem in computer science [1]. It consists in finding all substrings of a text T of
length n that match a pattern P of length m. In many real-world applications, a measure of similarity is usually introduced
allowing for approximate matches between the given pattern and substrings of the text. The most widely-used similarity
measure is the Hamming distance between the pattern and all length-m substrings of the text.
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Computing the Hamming distance between P and all length-m substrings of T has been investigated for the past
30 years. The first efficient solution requiring O(n,/mlogm) time was independently developed by Abrahamson [2] and
Kosaraju [3] in 1987. The k-mismatch version of the problem asks for finding only the substrings of T that are close to
P, specifically, at Hamming distance at most k. The first efficient solution to this problem running in O(nk) time was de-
veloped in 1986 by Landau and Vishkin [4]. It took almost 15 years for a breakthrough result by Amir et al. improving
this to O(n\/klogk) [5]. More recently, there has been a resurgence of interest in the k-mismatch problem. Clifford et al.
gave an O((n/m)(k? logk) + npolylogn)-time algorithm [6], which was subsequently improved further by Gawrychowski and
Uznanski to O((n/m)(m + k/m)polylogn) [7]. Very recently, Chan et al. [8] improved the polylogn factors in the latter so-
lution at the cost of (Monte-Carlo) randomization. Moreover, Gawrychowski and Uznanski [7] showed that a significantly
faster “combinatorial” algorithm for this problem is rather unlikely.

The k-mismatch problem has also been considered on compressed representations of the text [9-13], in the parallel
model [14], in the streaming model [15,6,16], and in the setting of dynamic strings [13]. Furthermore, it has been considered
in non-standard stringology models, such as the parameterized model [17] and the order-preserving model [18].

The matching relation (e.g., identity or Hamming distance at most k) in the standard pattern matching setting assumes
that the leftmost and rightmost positions of the pattern are conceptually important. In many real-world applications, such
as in bioinformatics [19-22] or in image processing [23-26], any cyclic shift (rotation) of P is a relevant pattern. In bioin-
formatics, the position where a sequence starts can be totally arbitrary due to, for instance, arbitrariness in the sequencing
of a circular molecular structure or inconsistencies introduced into sequence databases due to different linearization stan-
dards [19]. In image processing, the contours of a shape may be represented through a directional chain code; the latter can
be interpreted as a cyclic sequence if the orientation of the image is not important [23]. Thus one is interested in computing
the minimal distance of every length-m substring of T and any cyclic rotation of P, if this distance is no more than k. This
is the circular pattern matching with k mismatches (k-CPM) problem.

A multitude of papers [27-32] have thus been devoted to solving the k-CPM problem but, to the best of our knowledge,
only average-case upper bounds are known; i.e., in these works the assumption is that text T is uniformly random. The
main result states that, after preprocessing pattern P, the average-case optimal search time of O(nw%) [33] can be
achieved for certain values of the error ratio k/m (see [31,27] for more details on the preprocessing costs). Note that the
exact (no mismatches allowed) version of the CPM problem can be solved as fast as exact pattern matching; namely, in
O(n) time [34].

In this paper, we draw our motivation from (i) the importance of the k-CPM problem in real-world applications and (ii)
the fact that no (non-trivial) worst-case upper bounds are known. Trivial here refers to running the fastest-known algorithm
for the k-mismatch problem [7] separately for each of the m rotations of P. This yields an O(n(m + k/m)polylogn)-time
algorithm for the k-CPM problem. This is clearly unsatisfactory: it is a simple exercise to design an O(nm)-time or an
O(nk?)-time algorithm. In an effort to tackle this unpleasant situation, we present two much more efficient algorithms:
a simple O(nk)-time algorithm and an O(n + %k“)-time algorithm. Our second algorithm applies in an extended way a
technique that was developed very recently for k-mismatch pattern matching in grammar compressed strings by Bringmann
et al. [10]. We also show that both of our algorithms can be implemented in O(m) space.

A preliminary version of this work was published as [35].

Our approach We first consider a simple version of the problem (called ANCHOR-MATCH) in which we are given a position in
T (an anchor) which belongs to potential k-mismatch circular occurrences of P. A simple O(k)-time algorithm is given (after
linear-time preprocessing) to compute all relevant occurrences. By considering separately each position in T as an anchor
we obtain an O(nk)-time algorithm. The concept of an anchor is extended to the so-called matching pairs: when we know a
pair of positions, one in P and the other in T, that are aligned. Then comes the idea of a sample S, which is a fragment of
P of length ®(m/k) which supposedly exactly matches a corresponding fragment in T. We choose O(k) samples and work
for each of them and for windows of T of size 2m. As it is typical in many versions of pattern matching, our solution is
split into periodic and non-periodic cases. If S is non-periodic the sample occurs only O(k) times in a window and each
occurrence gives a matching pair (and consequently two possible anchors). Then we perform ANCHOR-MATCH for each such
anchor. The hard part is the case when S is periodic. Here we compute all exact occurrences of S and obtain O(k) groups
of occurrences, each one being an arithmetic progression. Now each group is processed using the approach “few matches
or almost periodicity” of Bringmann et al. [10]. In the latter case periodicity is approximate allowing up to k mismatches.
Finally, we are able to decrease the exponent of k by one in the complexity using a marking trick.

2. Preliminaries

Let S = S[0]S[1]---S[n— 1] be a string of length |S| =n over an integer alphabet X. The elements of X are called letters.
For two positions i and j on S, we denote by S[i.. j] = S[i]---S[j] the fragment of S that starts at position i and ends
at position j (the fragment is empty, denoted ¢, if j <i). A prefix of S is a fragment that starts at position 0, i.e., of the
form S[O..j], and a suffix is a fragment that ends at position n — 1, i.e., of the form S[i..n — 1]. For an integer p, we
define the pth power of S, denoted by SP, as the string obtained from concatenating p copies of S. The string obtained by
concatenating infinitely many copies of S is denoted by S*. If S and S’ are two strings of the same length, then by S = S’
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Fig. 1. The split point and the anchor for a k-occurrence of P in T.

P=Jaalbbbb T= aacclbbxblaalab

01(3 45 0123456 7®091011
split point=2 anchor=8

roto(P) =[b’b b bla aj

2 3 45 01

Fig. 2. A 1-occurrence of a pattern P = aabbbb in a text T = aaccbbxbaaab at position p = 4 with rotation x = 2; M(4,2) =
{(4,2),(5,3),(6,4),(7,5),(8,0), (9, D}.

we denote the fact that S and S’ have at most k mismatches, that is, that the Hamming distance between S and S’ does
not exceed k.

We say that an integer 1 <q < |S|, is a period of a string S if S[i]=S[i+q] for i=0,...,|S| —q — 1. We denote the
smallest period of S by per(S) and say that a string S is periodic if 2per(S) < |S|. Fine and Wilf’s periodicity lemma [36]
asserts that if a string of length n has periods p and q and n > p + q — gcd(p, q), then the string has a period gcd(p, q).

For a string S and integer 0 < x < |S|, by roty(S) we denote the string that is obtained from S by moving the prefix of S
of length x to the end. More formally,

roty(S) = VU, where S=UV and |U| =x.

We call the string rotx(S) a rotation of S and often represent rotations of S using the underlying values x.
2.1. Anatomy of circular occurrences

In what follows, we denote by m the length of the pattern P and by n the length of the text T. We say that P has a
k-mismatch circular occurrence (in short, a k-occurrence) in T at position p if T[p..p +m — 1] = roty(P) for some rotation x.
In this case, the position x in the pattern is called the split point and the position p + (m — x) mod m in the text’ is called
the anchor. In other words, if P =UV and its rotation VU occurs in T, then the first position of V in P is the split point of
this occurrence, and the first position of U in T is the anchor of this occurrence (see Fig. 1).

The main problem in scope can now be stated as follows.

k-CPM PROBLEM

Input: A text T of length n, a pattern P of length m, and a positive integer k.

Output: The positions of all k-occurrences of P in T.

For an integer z, let us denote W, = [z..z+ m — 1] (a window of size m). Intuitively, this window corresponds to a
length-m fragment of the text T. For a k-occurrence at position p of T with rotation x, we introduce a set of pairs of
positions in the fragment of the text and the corresponding positions from the original (unrotated) pattern P:

M(p,x)={(i,(i—p+x) modm) : i Wy}

The pairs (i, j) € M(p, x) are called matching pairs of an occurrence p with rotation x. In particular, (p+ ((m—x) mod m), 0) €
M(p, x). An example is provided in Fig. 2.

3. An O(nk)-time algorithm

We first introduce an auxiliary problem in which one wants to compute all k-occurrences of P in T with a given anchor
a. This problem describes the core computational task in our first solution.

ANCHOR-MATCH PROBLEM

Input: A text T of length n, a pattern P of length m, a positive integer k, and a position a.
Output: All k-occurrences of P in T with anchor a, represented as a collection of O(k) intervals.

5 The modulo operation is needed to handle the trivial rotation with x =0.
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P?2—-[abaababaabaababalabaababaabaababal

T=bbaabaaaabaaaabbababbababbaabaab

V= 000001[0000010010001000/01000001
o[ 2 3]4 5 6[7_8]9 10111215@171819202122232425262728293031

anchor=16

Fig. 3. An illustration of the setting in Lemma 2 with P = (abaababa)?, the text as in the figure, anchor a = 16, and k = 3. The string V, used in the proof
of the lemma, shows the positions of the at most k mismatches to the left and to the right of the anchor. The output consists of the three intervals [1..3],
[7..8] and [13..14] shown in orange. For example, 7 is a 3-occurrence since the fragment of V of length |P| starting at this position (represented by a
rectangle) contains at most 3 ones. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

For a binary string X, by || X|| we denote the arithmetic sum of characters in X. We define the following auxiliary
problem.

LIGHT-FRAGMENTS PROBLEM

Input: Positive integers m, k and a string V of length n over alphabet {0, 1} containing O(k) non-zero characters. The
string V is specified by its positions with non-zero characters (sorted increasingly).

Output: The set A = {i : |V[i..i+m —1]| < k} represented as a collection of O(k) intervals.

Lemma 1. The LIGHT-FRAGMENTS problem can be solved in O (k) time.

Proof. Let I be the set of positions of V with non-zero characters; |I| = O(k) by definition. We define a piecewise constant
function f:[0..|V|—m+1]— Z such that f(x) =|IN[0..x]|. Let g(x) = f(x+m—1)— f(x—1). Then g(x) = |[IN[x..x+
m — 1]|. The function f has O(k) pieces, so g has O(k) pieces as well, and both can be computed in O(k) time since I is
sorted. In the end, we report the pieces where g has value at most k. O

Let us recall a standard algorithmic tool for preprocessing text T. We denote the length of the longest common prefix
(resp. suffix) of two strings U and V by Icp(U, V) (resp. Ics(U, V)). There is an O(n)-sized data structure answering such
queries over suffixes (resp. prefixes) of T in O(1) time after O(n)-time preprocessing. It consists of the suffix array of T and
a data structure for answering range minimum queries; see [1]. Using the kangaroo method [4,14], these queries can handle
mismatches; after an O(n)-time preprocessing of T, longest common prefix (resp. suffix) queries with up to k mismatches
can be answered in O(k) time.

Lemma 2. After O (n)-time preprocessing of T and P, the ANCHOR-MATCH problem can be solved in O (k) time for any given k and a.

Proof. In the preprocessing, we prepare a data structure for Icp queries in P#T, where # is a special character that occurs
neither in P nor in T.

Consider now a query for an anchor a over T.Let L=T[a—m..a—1] and R =T[a..a+m — 1], with # at out-of-bounds
positions of T. We define a binary string L’ such that L'[i] =1 if and only if L[i] # P[i]. We define R’ analogously. Let L” be
the longest suffix of L’ such that ||L”|| <k and R” be the longest prefix of R’ such that ||R”| <k.

Using the kangaroo method [4,14], the strings L”, R” can be constructed in O(k) time. The ANCHOR-MATCH problem now
reduces to the LIGHT-FRAGMENTS problem for the string V =L"R"”. O

For an illustration of Lemma 2, inspect Fig. 3.
Proposition 3. The k-CPM problem can be solved in O(nk) time and O(n) space.
Proof. We invoke the algorithm of Lemma 2 for all a € [0..n — 1] and obtain O(nk) intervals of k-occurrences of P in T.
Instead of storing all the intervals, we count how many intervals start and end at each position of T. We can then compute
the union of the intervals by processing these counts from left to right. O
4. Algorithmic tools

In this section, we introduce further algorithmic tools to get to our second solution.

4.1. Internal queries in a text

Let T be a string of length n called text. An Internal Pattern Matching (IPM) query, for two given fragments F and G of
the text such that |G| < 2|F|, computes the set of all occurrences of F in G. If there are more than two occurrences, they
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V=0100000000000000
U=0100000000000010 000000000
01 2 3[4 5|6 7[8 9]1011[I213]14 1516 17 18 19 20 21 22 23 24 25 26 27 28

Fig. 4. An instance of the ALIGNED-LIGHT-SUM problem with m =15, k=2, =4, U = 010'210', and V = 010'4. The output is the interval chain
Chaing([4..5],2) shown in orange.

form an arithmetic sequence with difference per(F). A data structure for IPM queries in T can be constructed in O(n) time
and answers queries in O(1) time (see [37] and [38, Theorem 1.1.4]). It can be used to compute all occurrences of a given
fragment F of length p in T, expressed as a union of O(n/p) pairwise disjoint arithmetic sequences with difference per(F),
in O(n/p) time.

4.2. Simple geometry of arithmetic sequences of intervals

We next present algorithms that will be used in subsequent proofs for handling regular sets of intervals.
For an interval I and an integer r, let [ &r = {i+r : i € I}. We define

Chaing(l,a) = TU (U®q) UI®2q) U---U (IPaq).

This set is further called an interval chain (with difference q). Note that a chain can be represented in (1) space using four
integers: a, q, and the endpoints of I. An illustration of an interval chain representing the output for a problem defined in
the next subsection can be found in Fig. 4.

For a given value of g, let us fit the integers from [1..n] into the cells of a grid of width q so that the first row consists
of numbers 1 through g, the second of numbers q+1 to 2q, etc. Let us call this grid Gg. A chain Chaing can be conveniently
represented in the grid G; using the following lemma from [39].

Lemma 4 ([39]). The set Chaing (I, a) is a union of O(1) orthogonal rectangles in Gg. The coordinates of the rectangles can be computed
in O(1) time.

The following lemma can be used to compute a union of interval chains.

Lemma 5. Given c interval chains, all of which have difference q and are subsets of [0..n], the union of these chains, expressed as a
subset of [0..n], can be computed in O(n + c) time.

Proof. By Lemma 4, the problem reduces to computing the union of O(c) rectangles on a grid of total size n. Let t be a
2D array of the same shape as G, initially set to zeroes. For a rectangle with opposite corners (x1, y1) and (xz, y2), with
X1 < x and y1 <y, we increment t[x1, y1], decrement t[x, + 1, y1] and t[xq, y» + 1], and increment t[x; + 1, yo + 1]
(provided that the respective cells are within the array). This takes O(c) time. We then compute prefix sums of t, which
are defined as

Xy
tlx, y1 = > i, jl.
i=1 j=1
Such values can be computed in time proportional to the size of the grid, i.e., in O(n) time. Finally, we note that (x, y) is

contained in t'[x, y] rectangles, concluding the proof. O

Remark 6. The proof of Lemma 5 is essentially based on an idea that was used, for example, for reducing the decision
version of range stabbing queries in 2D to weighted range counting queries in 2D (cf. [40]).

We will also use the following auxiliary lemma.

Lemma 7. Let X and Z be intervals and q be a positive integer. The set

7 :={zeZ:3wxz=x (modq)},

represented as a disjoint union of at most three interval chains, each with difference q, can be computed in O(1) time.

Proof. If |X| > q, then Z’ = Z is an interval and thus an interval chain. If |X| < g, then Z’ can be divided into disjoint
intervals of length smaller than or equal to |X|. The intervals from the second until the penultimate one (if any such exist)
have length | X|. Hence, they can be represented as a single chain, as the first element of each such interval is equal mod g
to the first element of X. The two remaining intervals can be treated as chains as well. O
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4.3. The aligned-light-sum problem

We define the following abstract problem that resembles the LIGHT-FRAGMENTS problem from Section 3.

ALIGNED-LIGHT-SUM PROBLEM

Input: Positive integers m, k, q and strings U, V over alphabet {0, 1}, each containing O(k) non-zero characters. The
strings are specified by their positions with non-zero characters.

Output: The set A = (i : 3; |U[i..i+m—=1]|+IV[j..j+m—=1]| <k A j=i (mod q)}.

Lemma 8. The ALIGNED-LIGHT-SUM problem can be solved in O (k?) time with the output represented as a collection of O (k%) interval
chains, each with difference q.

Proof. Let | and I’ be the positions with non-zero characters in U and V, respectively. We partition [0..|U| — m] into
intervals such that, for all indices j in a single interval, the set W; NI is the same. For this, we use a sliding window
approach. We generate events corresponding to x and x —m + 1 for all x € I and sort them. When j crosses an event, the
set W; NI changes. Thus, we obtain a partition of [0..|U| —m] into intervals Z1,..., Z,,. We obtain a similar partition of
[0..|V|—m)] into intervals Z/, ..., Z,Qz. We have ny, ny = O(k).

Let us now fix Z; and Z;,. First, we check if the condition on the total number of non-zero characters is satisfied for
arbitrary z € Zj and 7z’ € Z’,. If so, we compute the set X = Z;., modqg={z modq:7 € Z;.,}. It is a single circular interval
and can be computed in constant time. The required result is

{zeZj:zmodqe X}.

By Lemma 7, this set can be represented as a union of three chains, each with difference ¢, and, as such, it can be computed
in O(1) time. The conclusion follows. O

5. An O(n + k°)-time algorithm for short texts

In this section, we proceed by assuming that m <n <2m and aim at an O(n + k°)-time algorithm. In the next sections,
we remove this assumption and reduce the exponent of k to 4.

A (deterministic) sample is a short fragment S of the pattern P. An occurrence in the text without any mismatch is called
exact. We introduce a problem of SAMPLE-MATCH that consists in finding all k-occurrences of P in T such that S matches
exactly the corresponding length-|S| fragment of T.

m

We split the pattern P into 2k + 3 samples of length [mJ or {ﬁ—‘ each. In any k-occurrence of P in T, at least

k + 2 of the samples match exactly the corresponding fragments of T (up to k samples may match with a mismatch and at
most one sample may contain the split point).

Remark 9. We require at least k 4+ 2 samples (instead of just one) to match exactly for two reasons: (1) in order to have
more than a half of them match exactly, which will guarantee that the interval chains that are obtained from applications
of the ALIGNED-LIGHT-SUM problem have the same difference and thus can be unioned using Lemma 5 (see the proof of
Proposition 21); and (2) for the marking trick in the next section.

5.1. Matching non-periodic samples

We solve the SAMPLE-MATcH problem for a non-periodic sample S in O(k?) time in two steps. First, we show an O(k)-
time solution of following PAIR-MATCH problem, asking to compute all k-occurrences of P in T which align T[i] with P[j].

PAIR-MATCH PROBLEM

Input: A text T of length n, a pattern P of length m, a positive integer k, and two integers i € [0..n — 1] and j €
[0..m—1].

Output: The set A(i, j) of all positions in T where we have a k-mismatch occurrence of rot,(P) for some x such that
(i, j) is a matching pair.

We then reduce the SAMPLE-MATCH problem to (O(k) instances of the PAIR-MATCH problem, where j is the starting
position of S in P and i is an occurrence of S in T; notice that there are O(k) such occurrences.

Lemma 10. After O(n)-time preprocessing of T and P, the PAIR-MATCH problem can be solved in O (k) time for any given k, i, j, with
the output represented as a collection of O (k) intervals.
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Fig. 5. The two possible anchors for the matching pair of positions (i, j) are shown as bullet points. A possible k-occurrence of P in T corresponding to the
left (resp. right) anchor is shown below T (above T, resp.). Note that P2 = PP.

Proof. Recall that the ANCHOR-MATCH problem returns all k-occurrences of P in T with a given anchor. The PAIR-MATCH
problem can be essentially reduced to the ANCHOR-MATCH problem, since for a given matching pair of characters in P and
T, there are at most two ways of choosing the anchor depending on the relation between j and a split point: these are i — j
and i+ |P| — j (see Fig. 5). Clearly, we choose i — j as an anchor only if i — j>0and i+ |P|— j only if i+ |P|—j < |T|. We
then have to take the intersection of the answer with [i —m + 1..i] to ensure that the k-occurrence contains position i. 0O

Lemma 11. After O(n)-time preprocessing, the SAMPLE-MATCH problem for a non-periodic sample S can be solved in O(k?) time,
which the output represented as a union of O (k2) intervals of occurrences.

Proof. Since S is non-periodic, it has O(k) occurrences in T, which can be computed in O(k) time after an O(n)-time
preprocessing using IPM queries [37,38] in P#T. Let j be the starting position of S in P and i be a starting position of an
occurrence of S in T. For each of the O(k) such pairs (i, j), the computation reduces to the PAIR-MATCH problem for i and
j. The statement follows by Lemma 10. O

5.2. Matching periodic samples

Let us assume that S is periodic with q := per(S) < %|S|. A fragment of T containing an inclusion-maximal arithmetic
sequence of occurrences of S in T with difference q is called here an S-run. If S matches a fragment in the text, then the
match belongs to an S-run. For example, the underlined fragment of T = bbabababaa is an S-run for S = abab.

Lemma 12. If S is periodic, the number of S-runs in the text is O(k) and they can all be computed in O(k) time after O(n)-time
preprocessing of T and P.

Proof. We construct the data structure for IPM queries on P#T. This allows us to compute the set of all occurrences of S in
T as a collection of O(k) arithmetic sequences with difference per(S). We then check for every two consecutive sequences
if they can be joined together. This takes O (k) time and results in O(k) S-runs. O

For two equal-length strings S and S’, we denote the set of their mismatches by

Mis(S,S") ={i €[0..|S| — 1] : S[i] # S'[i]}.

We say that position a in S is a misperiod with respect to a fragment S[i.. j] if S[a] # S[b] where b is the unique position
such that be[i..j]l and (j —i+ 1) | (b —a). We define the set LeftMisper, (S, i, j) as the set of k maximal misperiods that
are smaller than i and RightMisper, (S, i, j) as the set of k minimal misperiods that are greater than j. Each of the sets can
have less than k elements if the corresponding misperiods do not exist. We further define

Misper (S, i, j) = LeftMisper, (S, i, j) U RightMisper, (S, i, j)

and Misper(S, i, j) = Upoo Mispery (S, i, J).
The following lemma captures a combinatorial property behind the new technique of Bringmann et al. [10]. The intuition
is shown in Fig. 6.

Lemma 13. Assume that S = S’ and that S[i.. j1=S'[i.. j]. Let

I = Misper,.1(S, i, j) and I’ = Mispery (S, i, j).
IfINT =@, then Mis(S,S") =1UI', I =Misper(S, i, j), and I’ = Misper(S’, i, j).
Proof. Let | = Misper(S,i, j) and J' = Misper(S’, i, j). We first observe that I U I’ C Mis(S, S’) since INI' =@. Then, S =, S’

implies that [Mis(S, S")| <k and hence |I| <k and |I’| <k, which in turn implies that I = J and I’ = J'. The observation that
Mis(S, S") € J U J’ concludes the proof. O
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Fig. 6. Let S, S/, and X be equal-length strings such that X is a factor of Q*° and S[i..j]=S'[i..jl= X[i..j]= Q. The asterisks in S denote the positions
in Mis(S, X), or equivalently, the misperiods with respect to S[i.. j]. Similarly for S’. One can observe that Mis(S, X) NMis(S’, X) = ¢ holds in this situation,
and therefore Mis(S, X) UMis(S’, X) = Mis(S, S').

T . .

Fig. 7. In the case of a periodic sample, we have two O(k)-periodic fragments U and V. We find all p in U such that for some position x in V, the
fragments of length m starting at positions p and x are at Hamming distance at most k. If q is a period, then i — p =i’ —x (mod q) due to synchronization
of periodicities.

A string S is k-periodic w.r.t. a fragment S[i..i 4+ q — 1] if |Misper(S,i,i+q — 1)| < k. In this case, q is called the k-period.
In particular, in the conclusion of the above lemma, S is |I|-periodic w.r.t. S[i.. j] and S’ is |I'|-periodic w.r.t. S’[i.. j]. This
notion forms the basis of the following auxiliary problem, where we search for k-occurrences in which the rotation of the
pattern and the fragment of the text are k-periodic for the same period q.

Let U and V be two strings and J and J’ be sets containing positions in U and V, respectively. We say that length-m
fragments U[p..p+m—1] and V[x..x+m — 1] are (J, J)-disjoint if the sets (W, N J) & p and (WxN J') ©x are disjoint.

Example 14. If ] ={2,4,11,15,16,17}, J' ={5,6,15,18,19}, and m =12, then U[3..14] and V[6..17] are (J, J')-disjoint
for the following strings, with characters at positions in J and J’ replaced by bullets:

U= abe|aeb abc abe abc|ees

V = abc abe[ebc abc abc ebc|eec

Let us introduce an auxiliary problem that is obtained in the case that is shown in the conclusion of the above lemma
(i.e., when misperiods in the rotation of P and the corresponding fragment of T are not aligned); see also Fig. 7.

PERIODIC-PERIODIC-MATCH PROBLEM

Input: Positive integers k and m, strings U and V such that m < |U|, |V| < 2m, integers i,i’,q such that U[i..i+q—1]
matches V[i’..i’ +q — 1], and two sets of size O(k):

J =Misper(U,i,i+q—1), J =Misper(V,i',i" +q—1).
(The strings U and V are not stored explicitly.)

Output: The set of positions p in U for which there exists a (J, J')-disjoint k-occurrence U[p..p+m—1] of V[x..x+
m — 1] for x such that

i—p=i—x (mod q).

Intuitively, the modulo condition on the output of the PErioDIC-PERIODIC-MATCH problem corresponds to the fact that the
approximate periodicity is aligned.

In the PERIODIC-PERIODIC-MATCH problem, we search for k-occurrences in which none of the misperiods in J and J’
are aligned. In this case, each of the misperiods accounts for one mismatch in the k-occurrence. In the lemma below, we
reduce the PERIODIC-PERIODIC-MATCH problem to the ALIGNED-LIGHT-SUM problem, in which we only require that the total
number of misperiods in an occurrence is at most k. This way, all the (J, J')-disjoint k-occurrences can be found. Also
additional occurrences where two misperiods are aligned can be reported, but they are still valid k-occurrences (actually,
k’-occurrences for some k' < k).
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Data: A periodic fragment S of pattern P, an S-run R in the text T, integers g = per(S) and k.
Result: A compact representation of k-occurrences of P in T including all k-occurrences

where S matches exactly a fragment of R in T.

Let R=T[s..s+|R| —1];

J :=Misper1(T,s,s+q—1); { O(k) time }

J':==Misperi,1 (P2, m+ps.m+ps +q—1); { O(k) time }

U :=frag(T); V :=frag (P?);

Y := PERIODIC-PERIODIC-MATCH(U, V); { O(k?) time }

Y :=Y @& min());

J':= ] mod m;

X := PAIRS-MATCH(T, J, P, J'); { O(k?) time }
return X U Y;

Algorithm 1: Run-Sample-Matching.

Lemma 15. We can compute in O (k?) time a set of k-occurrences of P in T represented as O (k%) interval chains, each with difference
q, that is a superset of the solution to the PERIODIC-PERIODIC-MATCH problem.

Proof. In the PERrIODIC-PERIODIC-MATCH problem, the modulo condition forces the exact occurrences of the approximate
period to match. Hence, it guarantees that all the positions except the misperiod positions match. Now, the ALIGNED-LIGHT-
SumMm problem highlights these positions inside the string.

Claim 16. The PERIODIC-PERIODIC-MATCH problem can be reduced in O (k) time to the ALIGNED-LIGHT-SUM problem so that we obtain
a superset of the desired result. The potential extra positions do not satisfy only the (J, J’)-disjointness condition.

Proof. Let the parameters m, k, and g remain unchanged. We create binary strings U’ and V’ of length |U| and |V]|,
respectively, with positions with non-zero characters in the sets J and J’, respectively. Then we prepend U’ with z =
(i’ — i) mod q zeros. Let A be the solution to the ALIGNED-LIGHT-SUM problem for U’ and V’. Then (A©2z) N Zsp is a
superset of the solution to PERIODIC-PERIODIC-MATCH; the elements of the set that correspond to matches where non-zero
elements of the strings U’, V' were aligned do not satisfy the disjointness condition. O

Now, the thesis follows from Lemma 8. O

Let us further define

PAIRS-MATCH(T, I, P, |) = U PAIR-MATCH(T, i, P, j).
iel,jeJ
Let A be a set of positions in a string S and m be a positive integer. We then denote A modm ={amodm : a € A}
and by frag, (S) we denote the fragment S[min(A).. max(A)]. We provide pseudocode for an algorithm that computes all

k-occurrences of P such that S matches an exact occurrence in T contained in a given S-run (see Algorithm 1); inspect
also Fig. 8. Let ps denote the starting position of S in P, and let mg = |S]|.

Lemma 17. After O(n)-time preprocessing of T and P, algorithm Run-Sample-Matching works in O (k?) time and returns a compact
representation that consists of O(k3) intervals and O (k%) interval chains, each with difference q. Moreover, if there is at least one
interval chain, then some rotation of the pattern P is k-periodic with a k-period per(S).

Proof. See Algorithm 1. The sets J and ]’ can be computed in O(k) time:

Claim 18. If S is a string of length n, then the sets RightMisper, (S, i, j) and LeftMisper, (S, i, j) can be computed in O(k) time after
O(n)-time preprocessing.

Proof. For RightMisper, (S, i, j), we use the kangaroo method [4,14] to compute the longest common prefix with at most k
mismatches of S[j+1..n—1] and U* for U = S[i.. j]. The value Icp(X*°,Y) for a fragment X and a suffix Y of a string S,
occurring at positions a and b, respectively, can be computed in constant time as follows. If lcp(S[a..n — 1], S[b..n —1]) <
|X| then we are done. Otherwise the answer is given by |X| + lcp(S[b..n — 1], S[b + |X|..n — 1]). The computations for
LeftMisper, (S, i, j) are symmetric. O

The O®k3) and O(k?) time complexities of computing X and Y follow from Lemmas 10 and 15, respectively (after
O(n)-time preprocessing). The sets X and Y consist of O(k?) intervals and O(k?) interval chains, each with difference q.

As for the “moreover” statement, by Lemma 13, if any occurrence q is reported in the PERIODIC-PERIODIC-MATCH problem,
then it implies the existence of x such that V[x..x 4+ m — 1] is k-periodic with a k-period q. However, V[x..x+m —1] is a
rotation of the pattern P. This concludes the proof. O
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Fig. 8. More detailed setting in Algorithm 1; J = J1 U J3, J' = J] U J5.
The correctness of the algorithm follows from Lemma 13, as shown in the lemma below.

Lemma 19. Assume n < 2m. Let S be a periodic sample in P with smallest period q and R be an S-runin T. Let X and Y be defined
as in the pseudocode of Run-Sample-Matching. Then X U'Y is a set of k-occurrences of P in T which is a superset of the solution to
SAMPLE-MATCH for S in R.

Proof. Both PAIR-MATCH and PERrIODIC-PERIODIC-MATCH problems return positions of k-occurrences of P in T. It suffices to
show that p € XUY if roty(P) has a k-mismatch occurrence in T at position p such that the designated fragment S matches
a fragment of R exactly. We assume that the split point x in P is to the right of S, i.e., that x > ps + ms. The opposite
case—that x < ps—can be handled analogously.

Let | = Misper,, ((T,s,s+q—1) and J' = Misper; (P2, m+ps,m+ps+q—1). We define L; and L as the subsets of
J and J/, respectively, that are relevant for this k-occurrence, i.e.,

Li=JNW,, Ly=] NWy.

Further let L), = L, mod m. If any i € L1 and j € L, are a matching pair for this k-occurrence, then it will be found in the
PAIRS-MATCH problem, i.e., p € X. Let us henceforth consider the opposite case.

Let S=T[p..p+m—1], S’ =roty(P), and i =m — x + ps be the starting position of Q = S[0..q — 1] in both strings.
Further let I=L; ©p and I’ =L, © x. We have that I NI’ =@ by our assumption that misperiods do not align. We make
the following claim.

Claim 20. Mis(S, Sy = U I’

Proof. Note that [ = Misper,,((S,i,i+q—1) and I’ =Misper,,((S’,i,i+q — 1). The former equality follows from the fact
that Misper, (T, s,s+q — 1) =Misper, (T, t,t +q —1) for any t € [s..s + |R| — q]. We can thus directly apply Lemma 13
to strings S and S’. O

In particular, |I|+ |I’| <k. Moreover, min(J) < p and p+m—1 < max(J) as well as min(J’) < x and x+m—1 < max(J’),
since otherwise we would have |I| > k+ 1 or |I'| > k+ 1. In conclusion, this k-occurrence will be found in the PEriopic-
PERIODIC-MATCH problem, i.e, peY. O

5.3. Algorithm summary
Proposition 21. If m < n < 2m, the k-CPM problem can be solved in O(n + k) time and O(n) space.

Proof. We split the pattern into 2k + 3 fragments and choose a sample S among them in every possible way.

If the sample S is not periodic, we use the algorithm of Lemma 11 for SAMPLE-MATCcH in O (k?) time (after O(n)-time
preprocessing). It returns a representation of k-occurrences as a union of ((k?) intervals.

If the sample S is periodic, we need to find all S-runs in T. By Lemma 12, there are O(k) of them and they can all
be computed in O(k) time (after O(n)-time preprocessing). For every such S-run R, we apply the Run-Sample-Matching
algorithm. Its correctness follows from Lemma 19. By Lemma 17, it takes @ (k) time and returns O(k3) intervals and O (k?)
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interval chains, each with difference per(S), of k-occurrences of P in T (after O(n)-time preprocessing). Over all S-runs,
this takes O(k*) time after the preprocessing and returns O(k%) intervals and O(k?) interval chains.

By Lemma 17, if any interval chains are reported in Run-Sample-Matching, then some rotation of the pattern is k-
periodic with a k-period per(S). Then, at least k + 2 of the 2k + 3 pattern fragments do not contain misperiods and hence
they must have a period q = per(S). This is actually their smallest period, for if one of these fragments S’ had a period
g’ <q, then |S’| > |S| —1 and, by Fine and Wilf's periodicity lemma [36], S’ would have a period q” = gcd(q, q') < q, which
would imply that Q would also have a period q”, and hence S as well. Thus, throughout the course of the algorithm,
Run-Sample-Matching can only return interval chains of period per(S) by the pigeonhole principle.

In total, SAMPLE-MATCH takes O(k*) time for a given sample (after preprocessing), O(n + k°) time in total, and returns
O(k°) intervals and O(k*) interval chains of k-occurrences, each with the same difference q. Let us note that an interval
is a special case of an interval chain with an arbitrary difference, say, 1. We then apply Lemma 5 to compute the union of
all chains of occurrences and the union of all intervals in @(n + k) total time. In the end, we return the union of the two
unions.

In order to bound the space required by our algorithm by O(n), we do not store each interval chain explicitly throughout
the execution of the algorithm. Instead, for each interval chain, we increment/decrement a constant number of cells in a
(Gq-shaped for interval chains or Gq-shaped for intervals) 2D array of size O(n) as in the proof of Lemma 5, and compute
the union of all such interval chains in the end. O

6. An O(n + k*)-time algorithm for short texts

Let us observe that for each non-periodic fragment S, we have to solve O(k) instances of PAIR-MATCH, while for each
periodic fragment S and each S-run, we obtain two sets | and ]/, each of cardinality O(k), where each pair of elements
in J x J’ requires us to solve an instance of PAIR-MATCH. Further, recall that each instance of PAIR-MATCH reduces to two
calls to our O(k)-time algorithm for ANCHOR-MATCcH. We thus solve O (k*) ANCHOR-MATCH instances in total, yielding a total
time complexity of O(k®). As can be seen in the proof of Proposition 21 and the pseudocode, this is the only bottleneck of
our algorithm, with everything else requiring O(n + k*) time. We will decrease the number of calls to ANCHOR-MATCH by
using a marking trick.

We first present a simple application of the marking trick. Suppose that we are in the standard (non-circular) k-mismatch
problem, where we are to find all k-mismatch occurrences of a pattern P of length m in a text T of length n, and n <
2m. Further, suppose that P is square-free, or, in other words, that it is nowhere periodic. Let us consider the following
algorithm: We split the pattern into k + 1 fragments of length roughly m/k each. Then, at each k-occurrence of P in T, at
least one of the k + 1 fragments must match exactly. We then find the O(k) such exact matches of each fragment in T and
each of them nominates a position for a possible k-occurrence of P. We thus have @ (k?) candidate positions in total to
verify.

Now consider the following refinement of this algorithm: We split the pattern into 2k fragments (instead of k + 1), each
of length roughly m/(2k). Then, at each k-occurrence of P in T, at least k of the fragments must match exactly; we exploit
this fact as follows: Each exact occurrence of a fragment in T gives a mark to the corresponding position for a k-occurrence
of P. There are thus O(k?) marks given in total. However, we only need to verify positions with at least k marks and these
are now O(k) in total. An illustration is provided in Fig. 9.

Let us get back to the k-CPM problem. We have the following fact.

Fact 22. The algorithm underlying Proposition 21 returns each k-occurrence either through a call to PERIODIC-PERIODIC-MATCH or
through at least k 4 2 calls to ANCHOR-MATCH.

Proof. Let us fix a k-occurrence p of P in T. Since at least k 4+ 2 out of the 2k + 3 samples must match exactly in this
k-occurrence, the algorithm must return p through at least k 4+ 2 calls to SAMPLE-MATCH. For each of these calls, the k-
occurrence p is returned through a call to PErIODIC-PERIODIC-MATCH or through (at least one) call to ANCHOR-MATCH. Thus,
if p is not returned by any of the calls to PERIODIC-PERIODIC-MATCH, it must be returned by at least k + 2 calls to ANCHOR-
MATCH. O

We run the algorithm yielding Proposition 21 with a single difference: Instead of processing each instance of PAIR-MATCH
separately, we apply the marking trick in order to decrease the exponent of k by one. This is achieved by a reduction in
the number of calls to the algorithm that solves ANCHOR-MATCH. For each of the @ (k*) instances of PAIR-MATCH, we mark
the two possible anchors for a k-occurrence and note that only anchors with at least k 4+ 2 marks need to be verified; these
are O(k?) in total. Finally, for each such anchor, we apply our solution to the ANCHOR-MATCH problem, which requires O (k)
time, hence obtaining an @(n + k*)-time algorithm. The correctness of this approach follows from Fact 22. We arrive at the
following result.

Proposition 23. If m <n < 2m, the k-CPM problem can be solved in O(n + k*) time and O (n) space.
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Fig. 9. We consider k = 4. To the left: a candidate starting position for P given by an exact match of one of the 5 fragments. To the right: a candidate
starting position for P given by exact matches of 4 of the 8 fragments.

7. Final result

Both Propositions 3 and 23 use O(n) space. Moreover, Proposition 23 assumes that n < 2m. In order to solve the general
version of the k-CPM problem, where n is arbitrarily large, efficiently and using O(m) space, we use the so-called standard
trick: we split the text into O(n/m) fragments, each of length 2m (perhaps apart from the last one), starting at positions
equal to 0 mod m.

We need, however, to ensure that the data structures for answering Icp, Ics, and other internal queries over each such
fragment of the text can be constructed in O(m) time when the input alphabet ¥ is large. As a preprocessing step, we hash
the letters of the pattern using perfect hashing. For each key, we assign a unique identifier from {1, ..., m}. This takes O(m)
time (with high probability) and space [41]. When reading a fragment F of length (at most) 2m of the text, we look up its
letters using the hash table. If a letter is in the hash table, we replace it in F by its rank value; otherwise, we replace it by
rank m + 1. We can now construct the data structures in O(m) time, and thus our algorithms can be implemented in O(m)
space.

If ==1{1,...,n°M}, the same bounds can be achieved deterministically. Specifically, we consider two cases. If m > /n,
we sort the letters of every text fragment and of the pattern in O(m) time per fragment because n is polynomial in m
and |X| is polynomial in n. Then, we can merge the two sorted lists and replace the letters in the pattern and the text
fragments by their ranks. Otherwise (if m < \/n), we construct a deterministic dictionary for the letters of the pattern in
O(mlog®logm) time [42]. The dictionary uses O (m) space and answers queries in constant time; we use it instead of
perfect hashing in the previous solution.

We combine Propositions 3 and 23 with the above discussion to get our final result.

Theorem 24. Circular Pattern Matching with k Mismatches can be solved in O(min(nk, n + % k*)) time and O (m) space.

Our algorithms output all positions in the text where some rotation of the pattern occurs with k mismatches. It is not
difficult to extend the algorithms to output, for each of these positions, a corresponding witness rotation of the pattern.
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