
Journal of Computer and System Sciences 115 (2021) 22–53
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Communicating finite-state machines, first-order logic, and

star-free propositional dynamic logic ✩

Benedikt Bollig ∗, Marie Fortin ∗, Paul Gastin ∗

LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, Cachan, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 March 2019
Received in revised form 7 May 2020
Accepted 19 June 2020
Available online 15 July 2020

Keywords:
Communicating finite-state machines
First-order logic
Happened-before relation
Propositional dynamic logic

Message sequence charts (MSCs) naturally arise as executions of communicating finite-state
machines (CFMs), in which finite-state processes exchange messages through unbounded
FIFO channels. We study the first-order logic of MSCs, featuring Lamport’s happened-before
relation. To this end, we introduce a star-free version of propositional dynamic logic (PDL)
with loop and converse. Our main results state that (i) every first-order sentence can be
transformed into an equivalent star-free PDL sentence (and conversely), and (ii) every star-
free PDL sentence can be translated into an equivalent CFM. This answers an open question
and settles the exact relation between CFMs and fragments of monadic second-order logic.
As a byproduct, we show that first-order logic over MSCs has the three-variable property.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

The study of logic-automata connections has ever played a key role in computer science, relating concepts that are
a priori very different. Its motivation is at least twofold. First, automata may serve as a tool to decide logical theories.
Beginning with the work of Büchi, Elgot, and Trakhtenbrot, who established in the early 60s the expressive equivalence
of monadic second-order (MSO) logic and finite automata [13,22,60], the “automata-theoretic” approach to logic has been
successfully applied, for example, to MSO logic on trees [61], temporal logics [63], and first-order logic with two variables
over words with an equivalence relation (aka data words) [4]. Second, automata serve as models of various kind of state-
based systems. Against this background, Büchi-like theorems lay the foundation of synthesis, i.e., the process of transforming
high-level specifications (represented as logic formulas) into faithful system models. In this paper, we provide a Büchi
theorem for communicating finite-state machines (CFMs), which are a classical model of concurrent message-passing systems.

1.1. Context and known results

Let us give a brief account of what was already known on the relation between logic and automata (without claim of
completeness).

Finite automata. As mentioned above, Büchi, Elgot, and Trakhtenbrot proved that finite automata over words are expressively
equivalent to MSO logic [13,22,60]. Finite automata can be considered as single finite-state processes and, therefore, serve

✩ Partly supported by ANR FREDDA (ANR-17-CE40-0013) and ReLaX, UMI2000 (CNRS, ENS Paris-Saclay, Univ. Bordeaux, CMI, IMSc).

* Corresponding authors.
E-mail addresses: bollig@lsv.fr (B. Bollig), fortin@lsv.fr (M. Fortin), gastin@lsv.fr (P. Gastin).
https://doi.org/10.1016/j.jcss.2020.06.006
0022-0000/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2020.06.006
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2020.06.006&domain=pdf
mailto:bollig@lsv.fr
mailto:fortin@lsv.fr
mailto:gastin@lsv.fr
https://doi.org/10.1016/j.jcss.2020.06.006

B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53 23
as a model of sequential systems. Their executions are words, which, seen as a logical structure, consist of a set of positions
(also referred to as events) that carry letters from a finite alphabet and are linearly ordered by some binary relation ≤. The
simple MSO (even first-order) formula ∀x.

(
a(x) =⇒ ∃y.(x ≤ y ∧ b(y))

)
says that every “request” a is eventually followed by

an “acknowledgment” b. In fact, Büchi’s theorem allows one to turn any logical MSO specification into a finite automaton.
The latter can then be considered correct by construction. Though the situation quickly becomes more intricate when we
turn to other automata models, Büchi theorems have been established for expressive generalizations of finite automata that
also constitute natural system models. In the following, we will discuss some of them.

Data automata. Data automata accept (in the context of system models, we may also say generate) words that, in addition
to the linear order ≤ and its direct-successor relation, are equipped with an equivalence relation ∼ [4]. Positions (events)
that belong to the same equivalence class may be considered as being executed by one and the same process, while ≤
reflects a sort of global control. It is, therefore, convenient to also include a predicate that connects successive events in an
equivalence class. Bojańczyk et al. showed that data automata are expressively equivalent to existential MSO logic with two
first-order variables [4]. A typical formula is ¬∃x.∃y.(x 	= y ∧ x ∼ y), which says that every equivalence class is a singleton. It
should be noted that data automata scan a word twice and, therefore, can hardly be seen as a system model. However, they
are expressively equivalent to class-memory automata, which distinguish between a global control (modeling, e.g., a shared
variable) and a local control for every process [12].

Asynchronous automata. Unlike finite automata and data automata, asynchronous automata are models of concurrent shared-
memory systems, with a finite number of processes. In his influential paper [42], Lamport postulated that events in an
execution of a distributed system are partially ordered by what is commonly referred to as the happened-before or causal-
precedence relation, a fundamental concept in distributed computing [3,51,46,56]. In fact, executions of asynchronous
automata are Mazurkiewicz traces [19], where the relation ≤ is no longer a total, but a partial order. Thus, there may
be parallel events x and y, for which neither x ≤ y nor y ≤ x holds. A typical logical specification is the mutual exclusion
property, which can be expressed in MSO logic as ¬∃x.∃y.(CS(x) ∧CS(y) ∧ x ‖ y) where the parallel operator x ‖ y is defined
as ¬(x ≤ y) ∧¬(y ≤ x). The formula says that there are no two events x and y that access a critical section simultaneously.
Asynchronous automata are closed under complementation [64] so that the inductive approach to translating formulas into
automata can be applied to obtain a Büchi theorem [58]. Note that complementability is also the key ingredient for MSO
characterizations of nested-word automata [1] and branching automata running over series-parallel posets (aka N-free
posets) [39,5].

Communicating finite-state machines. The situation is quite different in the realm of communicating finite-state machines
(CFMs), aka communicating automata or message-passing automata, where a fixed number of finite-state processes commu-
nicate by exchanging messages through unbounded FIFO channels [14]. A CFM accepts/generates message-sequence charts
(MSCs), which are similar to UML’s sequence diagrams [2] and standardized by the International Telecommunication Union
[36]. MSCs are equipped with Lamport’s happened-before relation ≤: an event e happens before an event f if, and only if,
there is a “message flow” path from e to f [42]. Additional binary predicates connect (i) the emission of a message with
its reception, and (ii) successive events executed by one and the same process. Unfortunately, the class of MSC languages
accepted by CFMs is not closed under complementation [10] so that an inductive translation of MSO logic into automata
must fail (in fact, CFMs are strictly less expressive than MSO logic).

There have been several attempts to overcome this problem. When channels are bounded, closure under complementa-
tion is recovered so that CFMs are expressively equivalent to MSO logic [35,40,28,29]. Note that, however, the corresponding
proofs are much more intricate than in the case of finite automata. In the unbounded case, since MSO logic is too expres-
sive, first-order (FO) logic is moving into focus. Actually, FO logic can be considered, in many ways, a reference specification
language. Apart from being a natural concept in itself, it plays a key role in automated theorem proving and is central in
the verification of reactive systems. Over words, FO logic even enjoys manifold characterizations: It defines exactly the star-
free languages and coincides with recognizability by aperiodic monoids or natural subclasses of finite (Büchi, respectively)
automata (cf. [17,59] for overviews). Moreover, linear-time temporal logics are usually measured against their expressive
power with respect to FO logic. For example, LTL is considered the yardstick temporal logic not least due to Kamp’s famous
theorem, stating that LTL and FO logic are expressively equivalent [37].

While FO logic on words is well understood, a lot remains to be said once message-passing concurrency enters into the
picture. Actually, algebraic and automata-theoretic approaches that work for words, trees, or Mazurkiewicz traces do not
carry over. On the positive side, it was shown that CFMs with unbounded channels capture FO logic (and, therefore, are
expressively equivalent to existential MSO logic) when dropping the happened-before relation ≤ [10] or when restricting to
two first-order variables [7]. Both results rely on normal forms of FO logic, due to Hanf [32] and Scott [31], respectively.
Hanf’s normal form is a boolean combination of statements of the form “neighborhood N of radius d occurs at least k
times”, where the neighborhood of an event e is an isomorphism type of the substructure induced by the elements that
have distance at most d from e. Hanf’s result requires structures of bounded degree so that the number of possible neigh-
borhoods is actually finite. However, MSCs with the happened-before relation are structures of unbounded degree: Due to
the happened-before relation ≤, all events on a given process have distance at most 1 from each other. To evaluate Scot-
t’s normal form, on the other hand, it is sufficient to determine the type of every event e (the type describing all events

24 B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53
for every possible relationship with e), which can be accomplished by a CFM. However, the normal form only applies to
two-variable logic, while we consider full FO logic, which, already over one process, is strictly more expressive.

It should be noted that distributed automata can also be used as acceptors of the underlying (graph) architecture. In
that case, logical characterizations have been obtained in terms of MSO and modal logics [41,33,52,53]. However, in our
framework, the architecture is fixed and we rather reason about the set of executions of a CFM.

1.2. Contribution

Until now, the following central problem remained open:

Can every first-order sentence, with happened-before relation and arbitrarily many
variables, be transformed into an equivalent communicating finite-state machine,
without any channel bounds?

In this paper, we answer the question positively. To do so, we make a detour through a variant of propositional dynamic
logic (PDL) with loop and converse [23,55], which is another fundamental logic, with applications in artificial intelligence
and verification [34,18,44,43,30]. Actually, we introduce star-free PDL, which serves as an interface between FO logic and
CFMs. That is, there are two main tasks to accomplish:

(i) Translate every FO sentence into a star-free PDL sentence.
(ii) Translate every star-free PDL sentence into a CFM.

Both parts constitute results of own interest. In particular, step (i) implies that, over MSCs, FO logic has the three-
variable property, i.e., every FO sentence over MSCs can be rewritten into one that uses only three different variable names.
Note that this is already interesting in the special case of words, where it follows from Kamp’s theorem [37]. It is also
noteworthy that star-free PDL is a two-dimensional temporal logic in the sense of Gabbay et al. [24,25]. Since every star-
free PDL sentence is equivalent to some FO sentence, we actually provide a (higher-dimensional) temporal logic over MSCs
that is expressively complete for FO logic.1 While step (i) is based on purely logical considerations, step (ii) builds on new
automata constructions that allow us to cope with the loop operator of PDL.

Combining (i) and (ii) yields the translation from FO logic to CFMs. It follows that CFMs are expressively equivalent to
existential MSO logic. Moreover, we can derive self-contained proofs of several results on channel-bounded CFMs whose
original proofs refer to involved constructions for Mazurkiewicz traces (cf. Section 5). In fact, we also extend these results
to infinite MSCs.

1.3. Outline

In Section 2, we recall basic notions such as MSCs, FO logic, and CFMs. We also give a brief overview of what was already
known on the relation between logic and CFMs. Section 3 presents star-free PDL and shows that it captures FO logic over
MSCs. In Section 4, we establish the translation of star-free PDL into CFMs. As corollaries, we obtain the translation of FO
sentences into CFMs and the equivalence between CFMs and existential MSO logic. Several applications of our results are
presented in Section 5. In particular, we obtain known results on CFMs with existentially bounded channels as a corollary.
As a reference, an overview of previously known facts is presented in Section 2.4. We conclude in Section 6.

A preliminary version of this paper has been presented at the 29th International Conference on Concurrency Theory
(CONCUR’18) and is accessible at http://drops .dagstuhl .de /opus /frontdoor.php ?source _opus =9545. There, we considered finite
MSCs. The present paper generalizes our results to infinite MSCs, which require several technical adjustments. Moreover, we
provide full proofs as well as an application to channel-bounded CFMs.

2. Preliminaries

We consider message-passing systems in which processes communicate through unbounded FIFO channels. We fix a
nonempty finite set of processes P and a nonempty finite set of labels �. For all p, q ∈ P such that p 	= q, there is a channel
(p, q) that allows p to send messages to q. The set of channels is denoted Ch.

In the following, we define message sequence charts, which represent executions of a message-passing system, and
logics to reason about them. Then, we recall the definition of communicating finite-state machines and state one of our
main results.

1 It is open whether there is an equivalent one-dimensional one.

http://drops.dagstuhl.de/opus/frontdoor.php?source_opus=9545

B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53 25
e0

g0

e1

f0

e2

g1

f1

g2

e3

f2

f3

g3

e4

g5

e5

f4

f5

g4

e6

g6

e7

g7

e8

g8

p3

p2

p1

. . .

. . .

Fig. 1. An (infinite) message sequence chart (MSC).

2.1. Message sequence charts

A message sequence chart (MSC) (over P and �) is a graph M = (E, →, �, loc, λ) with nonempty, finite or countably infinite
set E of nodes, also called events, edge relations →, �⊆ E × E , and node-labeling functions loc : E → P and λ : E →�. An
example MSC over P = {p1, p2, p3} and � = { , , �} is depicted in Fig. 1. A node e ∈ E is an event that is executed by
process loc(e) ∈ P . In particular, E p := {e ∈ E | loc(e) = p} is the set of events located on p. Note that E p can be finite or
infinite. The label λ(e) ∈� may provide more information about e such as the message that is sent/received at e or “enter
critical section” or “output some value”.

Edges describe causal dependencies between events:

• The relation → contains process edges. They connect successive events executed by the same process, that is, we actually
have →⊆⋃

p∈P (E p × E p). Every process p is sequential so that →∩ (E p × E p) must be the direct-successor relation
of some total order on E p . We let ≤proc :=→∗ and <proc :=→+ , and we require that every event e ∈ E has a “finite
past”, i.e., { f ∈ E | f ≤proc e} is finite.

• The relation � contains message edges. If e � f , then e is a send event and f is the corresponding receive event. In
particular, (loc(e), loc(f)) ∈ Ch. Each event is part of at most one message edge. An event that is neither a send nor a
receive event is called internal. Moreover, for all (p, q) ∈ Ch and (e, f), (e′, f ′) ∈ � ∩ (E p × Eq), we have e ≤proc e′ iff
f ≤proc f ′ (which guarantees a FIFO behavior).

We require that →∪ � be acyclic (intuitively, messages cannot travel backwards in time). The associated partial order
is denoted ≤ := (→∪ �)∗ with strict part < = (→∪ �)+ . Actually, MSCs correspond to the space-time diagrams from
Lamport’s seminal paper [42] when we assume a single FIFO channel between each pair of processes, and ≤ is commonly
referred to as the happened-before relation.

We do not distinguish isomorphic MSCs. Let MSC(P , �) denote the set of MSCs over P and �. An MSC is finite if its
set of events E is finite. We denote the set of finite MSCs by MSCfin(P , �).

It is worth noting that, when P is a singleton, an MSC with events e1 → e2 → e3 → . . . can be identified with the (finite
or infinite) word λ(e1)λ(e2)λ(e3) . . . over �.

Example 1. Consider the (infinite) MSC from Fig. 1 over P = {p1, p2, p3} and � = { , , �}. We have E p1 = {ei | i ∈N},
E p2 = { f0, . . . , f5}, E p3 = {gi | i ∈N}. The process relation is given by ei → ei+1 and gi → gi+1 for all i ∈N , as well as
f i → f i+1 for all i ∈ {0, . . . , 4}. Concerning the message relation, we have e1 � f0, e4 � g5, etc. Moreover, e2 ≤ f3, but
neither e2 ≤ f1 nor f1 ≤ e2.

2.2. MSO logic and its fragments

Next, we give an account of monadic second-order (MSO) logic and its fragments. Note that we restrict our attention to
MSO logic interpreted over MSCs. We fix an infinite supply Vevent = {x, y, . . .} of first-order variables, which range over events
of an MSC, and an infinite supply Vset = {X, Y , . . .} of second-order variables, ranging over sets of events. The syntax of MSO
(P and � are fixed) is given as follows:

� ::= p(x) | a(x) | x= y | x→ y | x � y | x≤ y | x ∈ X |�∨� | ¬� | ∃x.� | ∃X .�

where p ∈ P , a ∈ �, x, y ∈ Vevent , and X ∈ Vset . We use the standard abbreviations to also include implication =⇒, con-
junction ∧, and universal quantification ∀. Moreover, the relation x ≤proc y can be defined by x ≤ y ∧∨

p∈P p(x) ∧ p(y). We
write Free(�) for the set of free variables of �.

Let M = (E, →, �, loc, λ) be an MSC. An interpretation (for M) is a mapping ν : Vevent ∪ Vset → E ∪ 2E assigning to each
x ∈ Vevent an event ν(x) ∈ E , and to each X ∈ Vset a set of events ν(X) ⊆ E . We write M, ν |=� if M satisfies � when the free
variables of � are interpreted according to ν . Hereby, satisfaction is defined in the usual manner. In fact, whether M, ν |=�

holds or not only depends on the interpretation of variables that occur free in �. Thus, we may restrict ν to any set of

26 B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53
variables that contains at least all free variables. For example, for �(x, y) = (x � y), we have M, [x �→ e, y �→ f] |=�(x, y)

iff e � f . For a sentence � ∈MSO (without free variables), we define L(�) := {M ∈MSC(P , �) | M |=�}.
We say that two formulas � and �′ are equivalent, written � ≡�′ , if, for all MSCs M = (E, →, �, loc, λ) and interpreta-

tions ν : Vevent ∪ Vset → E ∪ 2E , we have M, ν |=� iff M, ν |=�′ .
Let us identify two important fragments of MSO logic: First-order (FO) formulas do not make use of second-order quantifi-

cation (however, they may contain formulas x ∈ X). Moreover, existential MSO (EMSO) formulas are of the form ∃X1 . . .∃Xn.�

with � ∈ FO.
Let F be MSO or EMSO or FO and let R ⊆ {→, �, ≤}. We obtain the logic F [R] by restricting F to formulas that do not

make use of {→, �, ≤} \ R . Note that F = F [→, �, ≤]. Moreover, we let L(F [R]) := {L(�) |� ∈ F [R] is a sentence }.
As the reflexive transitive closure of an MSO-definable binary relation is MSO-definable, MSO and MSO[→, �] have the

same expressive power: L(MSO[→, �, ≤]) = L(MSO[→, �]). However, MSO[≤] (without the message relation) is strictly
weaker than MSO [10]. In fact, over totally ordered MSCs, MSO[≤] only has the expressive power of MSO logic over ordinary
words, and hence of finite automata, when restricting to valid linear extensions of MSCs. This allows one to apply a classical
pumping argument to finite automata to show the result.

Example 2. Let us start with an easy formula saying that an MSC is infinite. This can be expressed in FO[→] by � =∨
p∈P ∃x p(x) ∧ ∀x∃y(p(x) =⇒ x → y). Thus, L(�) =MSC(P , �) \MSCfin(P , �).

Example 3. We now give an FO[≤] formula that allows us to recover, at some event f , the most recent event e
that happened in the past on, say, process p. More precisely, we define the predicate latestp(x, y) as x ≤ y ∧ p(x) ∧
∀z
(
(z ≤ y ∧ p(z)) =⇒ z ≤ x

)
. We are interested in the MSC language where process q always maintains the latest infor-

mation that it can have about p. Thus, it is defined by

�latest
p,q = ∀x∀y.

((
latestp(x, y)∧ q(y)

) =⇒ ∨
a∈�

(
a(x)∧ a(y)

)) ∈ FO[≤] .

For example, for P = {p1, p2, p3} and � = { , , �}, the MSC M from Fig. 1 is contained in L(�latest
p1,p3

). In particular, M, [x �→
e5, y �→ g5] |= latestp1 (x, y) and λ(e5) = λ(g5) = .

2.3. Communicating finite-state machines

In a communicating finite-state machine, each process p ∈ P can perform internal actions of the form 〈a〉, where a ∈�,
or send/receive messages from a finite set of messages Msg. A send action 〈a, !qm〉 of process p writes message m ∈ Msg
to channel (p, q), and performs a ∈ �. A receive action 〈a, ?qm〉 reads message m from channel (q, p). Accordingly, we let
Actp(Msg) := {〈a〉 | a ∈�} ∪ {〈a, !qm〉 | a ∈�, m ∈Msg, q ∈ P \ {p}} ∪ {〈a, ?qm〉 | a ∈�, m ∈Msg, q ∈ P \ {p}} denote the set of
possible actions of process p.

Definition 1. A communicating finite-state machine (CFM) over P and � is a tuple A = ((Ap)p∈P , Msg, Acc) consisting of a
finite set of messages Msg and a finite-state transition system Ap = (S p, ιp, �p) for each process p, with finite set of states
S p , initial state ιp ∈ S p , and transition relation �p ⊆ S p × Actp(Msg) × S p . Moreover, we have an acceptance condition Acc,
which is a positive Boolean combination of atomic conditions 〈p, s〉 or 〈p, s〉∞ , where p ∈ P and s ∈ S p .

Intuitively, 〈p, s〉 requires that process p terminates in state s (and, thus, executes only finitely many events), while
〈p, s〉∞ requires that process p enters state s infinitely often (which implies that p executes infinitely many events). This
kind of “mixed” acceptance condition is quite convenient. Using positive Boolean combinations of acceptance conditions for
infinite words was originally proposed in [21]. Other, syntactically different acceptance criteria have been adopted in the
literature, like Büchi or Muller conditions [40,8]. However, it is easily seen that they are all expressively equivalent.

Given a transition t = (s, α, s′) ∈�p , we let source(t) = s and target(t) = s′ denote the source and target states of t . In
addition, if α = 〈a〉, then t is an internal transition and we let label(t) = a. If α = 〈a, !qm〉, then t is a send transition and
we let label(t) = a, msg(t) =m, and receiver(t) = q. Finally, if α = 〈a, ?qm〉, then t is a receive transition with label(t) = a,
msg(t) =m, and sender(t) = q.

A run ρ of A on an MSC M = (E, →, �, loc, λ) ∈MSC(P , �) is a mapping associating with each event e ∈ E p a transi-
tion ρ(e) ∈�p , and satisfying the following conditions:

1. for all events e ∈ E , we have label(ρ(e)) = λ(e),
2. for all →-minimal events e ∈ E , we have source(ρ(e)) = ιp , where p = loc(e),
3. for all process edges (e, f) ∈→, we have target(ρ(e)) = source(ρ(f)),
4. for all internal events e ∈ E , ρ(e) is an internal transition, and
5. for all message edges e � f , ρ(e) and ρ(f) are respectively send and receive transitions such that msg(ρ(e)) =

msg(ρ(f)), receiver(ρ(e)) = loc(f), and sender(ρ(f)) = loc(e).

B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53 27
sp1

p1p1

〈 , !p2 〉
〈 , !p3 〉
〈 , !p2 〉
〈 , !p3 〉

s0
p2

p2p2

s1
p2

s2
p2

〈�,?p1 〉

〈�, !p3 〉

〈�,?p1 〉

〈�, !p3 〉

sp3

p3p3

〈 ,?p1 〉
〈 ,?p2 〉
〈 ,?p1 〉
〈 ,?p2 〉

Fig. 2. A communicating finite-state machine.

We say that ρ is accepting if it satisfies the acceptance condition Acc, written ρ |= Acc. The relation ρ |= Acc is defined
inductively. Disjunction and conjunction are interpreted as usual. Moreover, we let ρ |= 〈p, s〉 if either E p = ∅ and s = ιp , or
E p is a nonempty finite set and s = target(ρ(e)), where e is the last event of E p . Finally, ρ |= 〈p, s〉∞ if s = target(ρ(e)) for
infinitely many events e ∈ E p (which implies that E p is infinite).

The language L(A) of A is the set of MSCs M such that there exists an accepting run of A on M . Moreover, L(CFM) :=
{L(A) | A is a CFM }. Recall that, for these definitions, we have fixed P and �.

Following [35,29,40], we call a CFM A = ((Ap)p∈P , Msg, Acc) deterministic if, for all processes p and transitions t1 =
(s1, α1, s′1) and t2 = (s2, α2, s′2) of Ap such that s1 = s2 and label(t1) = label(t2), the following hold:

• If t1 and t2 are internal transitions, then s′1 = s′2.
• If t1 and t2 are send transitions such that receiver(t1) = receiver(t2), then s′1 = s′2 and msg(t1) =msg(t2).
• If t1 and t2 are receive transitions such that sender(t1) = sender(t2) and msg(t1) =msg(t2), then s′1 = s′2.

Example 4. Consider the simple (deterministic) CFM A depicted in Fig. 2. The set of processes is P = {p1, p2, p3}. Moreover,
we have � = { , , �} and Msg = { , }. Process p1 sends messages to p2 and p3. Each message can be either or ,
and the message sent is made “visible” in terms of �. Process p2 simply forwards every message it receives to p3. In
any case, the action is �. Finally, p3 receives and “outputs” messages from p1 and p2 in any order. Note that, in this
example, there are no local transitions, i.e., every transition is either sending or receiving. As acceptance condition, we take
Acc= 〈p1, sp1 〉∞ , which says that p1 executes infinitely many events.

The CFM A can be seen as a first (naïve) attempt to solve the problem described in Example 3 by the formula �latest
p1,p3

if we restrict to messages sent from pi to p j with i < j. Unfortunately, the protocol implemented by A is erroneous: For
the MSC M in Fig. 1, we have M ∈ L(�latest

p1,p3
), but M /∈ L(A). In A , at g2 and g5, process p3 should announce , but it

outputs . It turns out that it is very difficult to come up with a CFM A latest
p1,p3

such that L(A latest
p1,p3

) =L(�latest
p1,p3

) (even to show
that such a CFM exists at all). This is already a challenging problem in the more specialized setting of Mazurkiewicz traces.
However, we obtain A latest

p1,p3
as a corollary of our logical characterization of CFMs, which we present in the following.

As we have demonstrated in the previous example, it is a worthwhile task to translate (simple) logical specifications like
�latest

p,q into (complicated) machine models, preferably automatically. However, coming up with automata models directly can
be very difficult. One of our main results (Theorem 3) states that every FO formula can be translated into a CFM. Our proof
goes via an intermediate logic, namely star-free propositional dynamic logic (PDLsf), which is introduced in the next section
and shown to be expressively equivalent to FO[→, �, ≤]. Then, in Section 4, we show how to translate PDLsf formulas into
equivalent CFMs.

2.4. An overview of known results

Let us give a brief account of what was already known on the relation between logic and CFMs. Note that we do not
rely on any of these results.

Fact 1 ([13,22,60]). Suppose |P | = 1 (i.e., CFMs are essentially finite automata). We have L(MSO) = L(CFM).

This classical result is known as the Büchi-Elgot-Trakhtenbrot theorem. It was first generalized to CFMs with universally
bounded channels (Fact 2). See Section 5.1 for the formal definition of existentially and universally bounded MSCs. Intu-
itively, a language L of MSCs is universally B-bounded if all linearizations of all MSCs in L can be executed with channel
capacity B . We denote by MSC∀B(P , �) the set of MSCs in MSC(P , �) which are universally B-bounded. Moreover,
MSCfin

∀B(P , �) :=MSC∀B(P , �) ∩MSCfin(P , �).

Fact 2 ([35]). For all B ∈N and L ⊆MSCfin
∀B(P , �), the following are equivalent:

1. L =L(A) for some CFM A ;
2. L =L(A) for some deterministic CFM A ;
3. L =L(�) for some MSO formula �.

Moreover, there is a deterministic CFM A such that L(A) =MSCfin
∀B(P , �).

28 B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53
Kuske generalized the theorem to infinite universally bounded MSCs, while using a different proof technique.

Fact 3 ([40]). For all B ∈N and L ⊆MSC∀B(P , �), the following are equivalent:

1. L =L(A) for some CFM A ;
2. L =L(A) for some deterministic CFM A ;
3. L =L(�) for some MSO formula �.

In the case of finite MSCs, the logical characterization was lifted to existentially bounded MSCs by Genest et al. (cf.
Fact 8). We denote by MSC∃B(P , �) the set of MSCs in MSC(P , �) which are existentially B-bounded, i.e., for which
some linearization can be executed with channel capacity B . We also let MSCfin

∃B(P , �) :=MSC∃B(P , �) ∩MSCfin(P , �).

Fact 4 ([28]). For all B ∈N and L ⊆MSCfin
∃B(P , �), the following are equivalent:

1. L =L(A) for some CFM A ;
2. L =L(�) for some MSO formula �.

Moreover, there is a CFM A such that L(A) =MSCfin
∃B(P , �).

On the other hand, it turns out that deterministic CFMs are now strictly weaker:

Fact 5 ([28]). CFMs are inherently non-deterministic: There is a CFM A such that L(A) ⊆MSCfin
∃B(P , �) and, for all deterministic

CFMs A ′ , we have L(A) 	=L(A ′).

The proofs of Facts 2, 3, and 4 reduce message-passing systems to finite-state shared-memory systems so that involved
results from Mazurkiewicz trace theory [19] can be applied. This generic approach is no longer applicable when the restric-
tion on the channel capacity is dropped. In fact, in general, CFMs do not capture MSO logic:

Fact 6 ([10,7]). For all L ⊆MSCfin(P , �), the following are equivalent:

1. L =L(A) for some CFM A ;
2. L =L(�) for some sentence � ∈ EMSO[→, �];
3. L =L(�) for some sentence � ∈ EMSO2[→, �, ≤].

However, MSO is strictly more expressive than CFMs: There is an MSO sentence � such that L(�) ⊆MSCfin(P , �) and, for all CFMs
A , we have L(�) 	=L(A).

The characterizations from Fact 6 were given for finite MSCs. Over infinite MSCs, EMSO[→, �] is strictly weaker than
CFMs as it cannot express that there are infinitely many events to satisfy some property. Actually, this is already true for
one process, i.e., finite automata and words. However, CFMs can be characterized by the logic EMSO∞[→, �], extending
EMSO[→, �] by the quantifier ∃∞x.�, which requires that there be infinitely many events x such that � holds.

Fact 7 ([8]). For all L ⊆MSC(P , �), the following are equivalent:

1. L =L(A) for some CFM A ;
2. L =L(�) for some sentence � ∈ EMSO∞[→, �].

Note that one of our main results (Theorem 4) is the equivalence of CFMs and EMSO[→, �, ≤], which properly general-
izes Facts 6 and 7. Moreover, we will show in Section 5 how to obtain Fact 4 as a corollary, while generalizing it to infinite
MSCs.

3. Star-free propositional dynamic logic

In this section, we introduce a star-free version of propositional dynamic logic and show that it is expressively equivalent
to FO[→, �, ≤]. This is the second main result of the paper. Then, in Section 4, we show how to translate star-free PDL
formulas into CFMs.

B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53 29
Table 1
The semantics of PDLsf .

M |= Eϕ if M, e |= ϕ for some event e ∈ E

M |= ¬ξ if M 	|= ξ M |= ξ1 ∨ ξ2 if M |= ξ1 or M |= ξ2

M, e |= p if loc(e)= p M, e |= 〈π〉ϕ if ∃ f ∈ �π�M(e) : M, f |= ϕ

M, e |= a if λ(e)= a M, e |= Loop(π) if (e, e) ∈ �π�M

M, e |= ¬ϕ if M, e 	|= ϕ M, e |= ϕ1 ∨ ϕ2 if M, e |= ϕ1 or M, e |= ϕ2

�→�M := {(e, f) ∈ E × E | e→ f } ��p,q�M := {(e, f) ∈ E p × Eq | e � f }
�←�M := {(f , e) ∈ E × E | e→ f } ��−1

p,q�M := {(f , e) ∈ Eq × E p | e � f }
�jumpp,r�M := E p × Er �{ϕ}?�M := {(e, e) | e ∈ E : M, e |= ϕ}
�

ϕ−→�M := {(e, f) ∈ E × E | e <proc f and ∀g ∈ E: e <proc g <proc f =⇒ M, g |= ϕ}
�

ϕ←−�M := {(e, f) ∈ E × E | f <proc e and ∀g ∈ E: f <proc g <proc e =⇒ M, g |= ϕ}
�π1 ·π2�M := {(e, g) ∈ E × E | ∃ f ∈ E : (e, f) ∈ �π1�M ∧ (f , g) ∈ �π2�M}
�π1 ∪π2�M := �π1�M ∪ �π2�M �π c�M := (E × E) \ �π�M

�π1 ∩π2�M := �π1�M ∩ �π2�M

3.1. Syntax and semantics

Originally, propositional dynamic logic (PDL) has been used to reason about program schemas and transition systems
[23]. Since then, PDL and its extension with intersection and converse have developed a rich theory with applications in
artificial intelligence and verification [34,18,44,43,30]. It has also been applied in the context of MSCs [9,48].

Here, we introduce a star-free version of PDL, denoted PDLsf . It will serve as an “interface” between FO logic and CFMs.
The syntax of PDLsf and its fragment PDLsf[Loop] is given by the following grammar:

PDLsf = PDLsf[Loop, ∪, ∩, c]
PDLsf[Loop]
Sentence ξ ::= Eϕ | ξ ∨ ξ | ¬ξ

Event formula ϕ ::= p | a | ϕ ∨ ϕ | ¬ϕ | 〈π〉ϕ | Loop(π)

Path formula π ::=→ |← |�p,q |�−1
p,q |

ϕ−→ | ϕ←− | jumpp,r | {ϕ}? | π ·π π ∪π | π ∩π | π c

where p, r ∈ P , q ∈ P \ {p}, and a ∈ �. We refer to ξ as a sentence, to ϕ as an event formula, and to π as a path formula.
We name the logic star-free because we use the operators (∪, ∩, c, ·) of star-free regular expressions instead of the regular-

expression operators (∪, ·, ∗) of classical PDL. However, the formula
ϕ−→, whose semantics is explained below, can be seen

as a restricted use of the construct π∗ .
A sentence ξ is evaluated with respect to an MSC M = (E, →, �, loc, λ). An event formula ϕ is evaluated with respect

to M and an event e ∈ E . Finally, a path formula π is evaluated over two events. In other words, it defines a binary relation
�π�M ⊆ E × E . We often write M, e, f |= π to denote (e, f) ∈ �π�M . Moreover, for e ∈ E , we let �π�M(e) := { f ∈ E | (e, f) ∈
�π�M}. When M is clear from the context, we may write �π� instead of �π�M . The semantics of sentences, event formulas,
and path formulas is given in Table 1. For a sentence ξ , we let L(ξ) := {M ∈MSC(P , �) | M |= ξ}.

We use the standard abbreviations for sentences and event formulas such as implication and conjunction. Moreover, we
let true := p ∨¬p (for some arbitrary process p ∈ P) and false := ¬true. Finally, we define the event formula 〈π〉 := 〈π〉 true,
and the path formulas +−→ := true−−→ and ∗−→ := +−→∪ {true}?.

The size of a PDLsf formula is defined by mutual induction. We let |Eϕ| = |ϕ| + 1, |¬ξ | = |ξ | + 1, and |ξ1 ∨ ξ2| =
|ξ1| + |ξ2| + 1. For p ∈ P and a ∈ �, |p| = |a| = 1. Moreover, |¬ϕ| = |ϕ| + 1, |〈π〉ϕ| = |π | + |ϕ| + 1, |Loop(π)| = |π | + 1,
and |ϕ1 ∨ ϕ2| = |ϕ1| + |ϕ2| + 1. If π ∈ {→, ←, �p,q, �−1

p,q | (p, q) ∈ Ch} ∪ {jumpp,q | p, q ∈ P }, we let |π | = 1. Moreover,

|{ϕ}?| = | ϕ−→| = | ϕ←−| = |ϕ| + 1 and |π c| = |π | + 1. Finally, |π1 op π2| = |π1| + |π2| + 1 for all op ∈ {∪, ∩, · }.
The usual temporal logic modalities can be expressed easily. For instance, 〈→〉ϕ means that the next event on the same

process satisfies ϕ , and 〈 ϕ−→〉ψ corresponds to the strict until X(ϕ U ψ). The corresponding past modalities can be written
similarly. See Section 5.2 for more modalities.

30 B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53
Example 5. Consider again the MSC M from Fig. 1. For the path formula π =�−1
p1,p3

→�p1,p2→�p2,p3→, we have M, g5 |=
Loop(π). Moreover, (e2, e5) ∈ �−→�M but (e2, e6) /∈ �−→�M . To give an example of an event formula, note that we have
M, e0 |= 〈 +−→〉¬〈 +−→〉¬ (as we eventually see only). Finally, since E p1 is infinite, we also have M |= ¬ E(p1 ∧¬ 〈→〉).

Note that there are some redundancies in the logic. For example (letting ≡ denote logical equivalence), → ≡ false−−→,
π1 ∩ π2 ≡ (π c

1 ∪π c
2)

c , and Loop(π) ≡ 〈{true}?∩π〉. Some of them are necessary to define certain subclasses of PDLsf . For
every R ⊆ {Loop, ∪, ∩, c}, we let PDLsf[R] denote the fragment of PDLsf that does not make use of {Loop, ∪, ∩, c} \ R . In
particular, PDLsf = PDLsf[Loop, ∪, ∩, c]. Syntactically, ∗−→ is not contained in PDLsf[Loop] since union is not permitted.

Given a PDLsf[Loop] path formula π , we denote by Comp(π) the set of pairs (p, q) ∈ P × P such that there may be a
π -path from some event on process p to some event on process q. Formally, we let Comp(→) = Comp(←) = Comp(

ϕ−→) =
Comp(

ϕ←−) = Comp({ϕ}?) = id, where id = {(p, p) | p ∈ P }; Comp(�p,q) = Comp(�−1
q,p) = {(p, q)}; Comp(jumpp,r) = {(p, r)};

and Comp(π1 ·π2) = Comp(π2) ◦Comp(π1) = {(p, r) | ∃q : (p, q) ∈ Comp(π1), (q, r) ∈ Comp(π2)}.
Notice that, for all path formulas π ∈ PDLsf[Loop], the relation Comp(π) is either empty or a singleton {(p, q)} or the

identity id. Moreover, M, e, f |= π implies (loc(e), loc(f)) ∈ Comp(π). Therefore, all events in �π�(e) are on the same
process, and if this set is nonempty (i.e., if M, e |= 〈π〉), then min�π�(e) is well-defined. We also define max�π�(e) ∈
�π�(e) ∪ {∞}, with the convention max�π�(e) =∞ if �π�(e) is infinite. We extend ≤ and ≤proc to E ∪ {∞} by setting
e ≤∞ and e ≤proc ∞ for all e ∈ E ∪ {∞}.

Example 6. Consider π = +−→�p1,p2→�p2,p3→. We have Comp(π) = {(p1, p3)}. Moreover, given the MSC from Fig. 1,

min�π�(e2) = g4 and max�π�(e2) = g5. On the other hand, max�−→ ·�p1,p3�(e5) =∞.

Remark 1. The logic PDLsf[∪] over MSCs is analogous to Conditional XPath [47].2 Formulas from Conditional XPath are
interpreted over ordered unranked trees. Therefore, rather than atomic formulas → and �p,q as well as their inverse
operators, there are tailored formulas allowing one to move to a child or the parent of a given node, or to go to its
immediate left/right sibling. However, while Marx showed that Conditional XPath is expressively complete for FO logic over
ordered unranked trees, our expressive completeness result over MSCs crucially relies on the Loop modality, which is not
contained in PDLsf[∪] and not provided by Conditional XPath.

3.2. From PDLsf to FO3

Let FO3[→, �, ≤] be the set of formulas from FO[→, �, ≤] that use at most three different first-order variables (however,
a variable can be quantified and reused several times in a formula). The main result of this section is that, for formulas with
zero or one free variable, the logics FO[→, �, ≤], FO3[→, �, ≤], PDLsf , and PDLsf[Loop] are expressively equivalent.

Consider FO[→, �, ≤] formulas �0, �1(x), and �2(x, y) with respectively zero, one, and two free variables (hence, �0

is a sentence). Consider also some PDLsf sentence ξ , event formula ϕ , and path formula π . The respective formulas are
equivalent, written �0 ≡ ξ , �1(x) ≡ ϕ , and �2(x, y) ≡ π , if, for all MSCs M and all events e, f in M , we have

M |=�0 iff M |= ξ

M, [x �→ e] |=�1(x) iff M, e |= ϕ

M, [x �→ e, y �→ f] |=�2(x, y) iff M, e, f |= π

We start with a simple observation, which can be shown easily by induction:

Proposition 1. Every PDLsf formula is equivalent to some FO3[→, �, ≤] formula. More precisely, for every PDLsf sentence ξ , event
formula ϕ , and path formula π , there exist some FO3[→, �, ≤] sentence ̃ξ , formula ϕ̃(x) with one free variable, and formula ̃π(x, y)

with two free variables, respectively, such that, ξ ≡ ξ̃ , ϕ ≡ ϕ̃(x), and π ≡ π̃ (x, y).

The main result of this section is a strong converse of Proposition 1: Every FO[→, �, ≤] formula with at most two free
variables is equivalent to some PDLsf formula. This is formally stated and proved in Section 3.5. We first investigate in the
next section some basic properties of PDLsf . Then, we show in Section 3.4 that the complement of a PDLsf[Loop] formula
is equivalent to a finite union of PDLsf[Loop] formulas. This is crucial to deal with negation in the translation from FO to
PDLsf . The other main difficulty is existential quantification, which is dealt with in Section 3.5.

2 Thanks to Sylvain Schmitz for pointing this out.

B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53 31
3.3. Basic properties of PDLsf

First, the converse of a PDLsf formula is definable in PDLsf (easy induction on π).

Lemma 1. Let R ⊆ {Loop, ∪, ∩, c} and π ∈ PDLsf[R] be a path formula. There exists π−1 ∈ PDLsf[R] such that, for all MSCs M,
�π−1�M = �π�−1

M = {(f , e) | (e, f) ∈ �π�M}.

A second observation is that unions in PDLsf[Loop, ∪] path formulas can always be pulled to the front of the formula.

Lemma 2. Every PDLsf[Loop, ∪] path formula is equivalent to a finite union of PDLsf[Loop] path formulas, and every PDLsf[Loop, ∪]
event formula is equivalent to some PDLsf[Loop] event formula.

Proof. This is easy to prove by induction on PDLsf[Loop, ∪] formulas, using the following identities: if (πi)1≤i≤n and
(π ′j)1≤ j≤m are PDLsf[Loop] path formulas, then(⋃

i πi
) · (⋃ j π

′
j

)≡⋃
i, j πi ·π j , Loop(

⋃
i πi)≡∨

i Loop(πi) , 〈⋃i πi〉ϕ ≡∨
i 〈πi〉ϕ . �

The next lemma shows that all PDLsf[Loop] path formulas are, in some sense, monotone.

Lemma 3 (monotonicity). Let π ∈ PDLsf[Loop] be a path formula, M be an MSC, and e, f , e′ be events of M such that M, e, e′ |= π ,
and M, f |= 〈π〉 (i.e., M, f , g |= π for some event g in M).

(a) If e ≤proc f , then there exists f ′ such that e′ ≤proc f ′ and M, f , f ′ |= π .
(b) If f ≤proc e, then there exists f ′ such that f ′ ≤proc e′ and M, f , f ′ |= π .

Proof. We only show (a). Part (b) is similar.
We prove by induction on π that, for all event formulas ψ ∈ PDLsf[Loop], the property holds for π · {ψ}?.

• If π = {ϕ}?, then e′ = e, and we can take f ′ = f .
• If π = jumpp,q , we take f ′ = e′ .
• If π =�p,q , then e � e′ and there exists f ′ such that M, f , f ′ |=�p,q · {ψ}?. In particular, f � f ′ . Since the channels

are FIFO, we have e′ ≤proc f ′ .
• The cases π =�−1

p,q , π =→, and π =← are similar.

• Suppose π = ϕ−→. If f <proc e′ , we take f ′ = e′ . Otherwise, we let f ′ be any event such that M, f , f ′ |= ϕ−→. We then
have e′ ≤proc f <proc f ′ . Similarly, if π = ϕ←−, then either there exists e ≤proc f ′ <proc f such that M, f , f ′ |= ϕ←− ·{ψ}?, or
M, f , e′ |= ϕ←−.

• Suppose π = π1 · π2. There exists e1 such that M, e, e1 |= π1 and M, e1, e′ |= π2 · {ψ}?. In particular, M, e, e1 |=
π1 · {〈π2〉ψ}?. By induction hypothesis on π1, there exists f1 such that e1 ≤proc f1 and M, f , f1 |= π1 · {〈π2〉ψ}?.
By induction hypothesis on π2, there exists f ′ such that M, f1, f ′ |= π2 · {ψ}? and e′ ≤proc f ′ . �

A crucial consequence of Lemma 3 is that, for all path formulas π ∈ PDLsf[Loop] and events e in some MSC, �π�(e)
contains precisely the events that lie in the interval between min�π�(e) and max�π�(e) and that satisfy 〈π−1〉.

Lemma 4. Let π be a PDLsf[Loop] path formula. For all MSCs M and events e such that M, e |= 〈π〉, we have

�π�(e)= { f ∈ E |min�π�(e)≤proc f ≤proc max�π�(e)∧M, f |= 〈π−1〉} .

Proof. The left-to-right inclusion is trivial. For the right-to-left inclusion, we show by induction on π that, for all events e
and f1 ≤proc f ≤proc f2 such that M, e, f1 |= π , M, e, f2 |= π , and M, f |= 〈π−1〉, we have M, e, f |= π .

All cases apart from concatenation are immediate. So assume π = π1 · π2. There exist g1, g2, g such that M, e, gi |= π1,
M, gi, f i |= π2, M, g, f |= π2, and M, g |= 〈π−1

1 〉. We distinguish three cases, illustrated in Fig. 3.

1. If g ≤proc g1, then by Lemma 3(a) applied to π2, g, f , g1, there exists f ′1 ≥proc f such that M, g1, f ′1 |= π2. By induction
hypothesis on π2, we then have M, g1, f |= π2, hence M, e, f |= π1 ·π2.

2. Similarly, if g2 ≤proc g , then by applying Lemma 3(b) to π2, g2, g, f , we find f ′2 ≤proc f such that M, g2, f ′2 |= π2. Using
the induction hypothesis on π2, we obtain M, g2, f |= π2, hence M, e, f |= π1 ·π2.

3. Otherwise, we have g1 ≤proc g ≤proc g2. By induction hypothesis on π1, we get M, e, g |= π1, hence M, e, f |= π1 ·π2. �

32 B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53
e

g1

f1 f ′1f

g ≤proc

π1

π2

≤proc ≤proc

π2 π2
π2

e

g2

f2f ′2 f

g≤proc

π1

π2

≤proc≤proc

π2
π2

π2

e

g1 g2

f1 f2

g

f≤proc ≤proc

π1 π1

π2 π2
π2

≤proc ≤proc

π1

Case 1. Case 2. Case 3.

Fig. 3. Proof of Lemma 4.

(i)

(iii)

(ii)

e

〈π−1〉 〈π−1〉 〈π−1〉 〈π−1〉

min π max π

Fig. 4. Characterization of �π c�(e) for π ∈ PDLsf[Loop].

e

min�π1 · {〈π2〉}?�(e)= f

min�π2�(f)= g

f ′

g′g′′≤proc ≤proc

≤proc

π1

π2π2

Fig. 5. Proof of Lemma 5.

3.4. Characterizing the complement of a path formula

Using Lemma 4, we can give a characterization of �π c�(e) (when π ∈ PDLsf[Loop]) that also relies on intervals delimited
by min�π�(e) and max�π�(e). More precisely, �π c�(e) is the union of the following sets (see Fig. 4):

(i) the interval of all events to the left of min�π�(e),
(ii) the interval of all events to the right of max�π�(e) (assuming max�π�(e) 	=∞),

(iii) the set of events located between min�π�(e) and max�π�(e) and satisfying ¬ 〈π−1〉,
(iv) all events located on other processes than min�π�(e).

This description of �π c�(e) can be used to rewrite π c as a union of PDLsf[Loop] formulas. In a first step, we show that,
if π is a PDLsf[Loop] formula, then the relation {(e, min�π�(e)) | e ∈ E} can also be expressed in PDLsf[Loop].

Lemma 5. Let R = ∅ or R = {Loop}. For every path formula π ∈ PDLsf[R], there exists a PDLsf[R] path formula min π of size O (|π |2)
such that, for all MSCs M and events e, f , we have M, e, f |=min π iff f =min�π�(e).

Proof. Let us first observe that, for all PDLsf[Loop] path formulas π1 and π2, for all MSCs M and events e of M such that
�π1 ·π2�(e) 	= ∅, we have

min�π1 ·π2�(e)=min�π2�(min�π1 · {〈π2〉}?�(e)) . (1)

Indeed, if �π1 ·π2�(e) 	= ∅, then f =min�π1 · {〈π2〉}?�(e) and g =min�π2�(f) are well-defined (and reciprocally). Clearly,
M, e, g |= π1 · π2. To prove minimality, let f ′, g′ such that M, e, f ′ |= π1 and M, f ′, g′ |= π2 (cf. Fig. 5). We have f ≤proc f ′ ,
hence, by Lemma 3(b), there exists g′′ ≤proc g′ such that M, f , g′′ |= π2. Then g ≤proc g′′ ≤proc g′ .

We can now give the definition of min π . Since concatenation of paths is associative, we view π as a nonempty sequence
of atomic steps and we construct min π by induction on the length of π . Without loss of generality, we assume that the
last atomic step of the path formula is {true}?. Hence, the basis of the induction is when π = {true}?, in which case we let
min π = {true}?.

For the inductive case, assume that π = r · π ′ with r an atomic path formula. Inspired by Equation (1), we define
inductively min π = r̂ ·min π ′ , where r̂ is a path formula such that, for all events e and f with M, e, f |= r · {〈π ′〉}?, we have
M, e, f |= r̂ if and only if f =min�r · {〈π ′〉}?�(e). For an atomic path formula r, we define

B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53 33
e

g

f

g′

f ′max�π�(e)=

jumpp,q

π1

+

jumpp,q

π1

e

g

f f ′f ′′

|= 〈π1〉¬ 〈 +−→ ·π−1
1 〉

jumpp,q

max π1

+

jumpp,q ·π1

π1

∗

(a) f =max�π�(e). (b) M, e, f |=max π .

Fig. 6. Proof of Lemma 6 where π = jumpp,q ·π1.

r̂ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r if r ∈ {{ϕ}?,→,←,�p,q,�−1
p,q | (p,q) ∈ Ch}

jumpp,q · {¬ 〈 +←− ·π ′〉}? if r = jumpp,q
ϕ←− ·{¬ϕ ∨¬〈 ϕ←− ·π ′〉}? if r = ϕ←−
ϕ∧¬〈π ′〉−−−−−→ if r = ϕ−→ .

Notice that M, e, f |= r̂ does not imply M, f |= 〈π ′〉. We could enforce this by appending a test {〈π ′〉}? at the end of r̂ , but
this would be redundant due to the right context of r̂ in min π = r̂ ·min π ′ . Finally, note that r̂ is of size O(|π |). We deduce
immediately that min π is of size O(|π |2). �

Moreover, we associate with every path formula π ∈ PDLsf[Loop] a formula max π in PDLsf[Loop]. Note that, for finite
MSCs, we could define max π similarly to min π . However, for infinite MSCs, we cannot use the same definition since we
may have max�π1 ·π2�(e) = f but max�π1 · {〈π2〉 }?�(e) =∞.

Lemma 6. Let R = ∅ or R = {Loop}. For every path formula π ∈ PDLsf[R], there exists a PDLsf[R] path formula max π of size O (|π |2)
such that, for all MSCs M and events e, f , we have M, e, f |=max π iff f =max�π�(e).

In particular, if max�π�(e) =∞, then no event in M will satisfy max π . So we have max�π�(e) =∞ iff M, e |= 〈π〉∧¬ 〈max π〉.

Proof. As in Lemma 5, we view π as a nonempty sequence of atomic steps. If π = r ·π ′ with r an atomic path formula, we
will define inductively max π = r̂ ·max π ′ , where r̂ is a path formula of size O(|π |).

• Without loss of generality, we assume that the last atomic step of the path formula is {true}?. Hence, the basis of the
induction is when π = {true}?, in which case we let max π = {true}?.

• If π = r ·π1, where r ∈ {{ϕ}?, →, ←, �p,q, �−1
p,q | (p, q) ∈ Ch}, we let

max π = r ·max π1 .

• If π = jumpp,q ·π1, we let

max π = jumpp,q · {〈π1〉¬ 〈 +−→ ·π−1
1 〉}? ·max π1 .

To prove the correctness, let M be an MSC, and e, f events of M .
First, assume that f =max�jumpp,q ·π1�(e). Let g such that M, e, g |= jumpp,q and M, g, f |= π1 (see Fig. 6a). We must

have f = max�π1�(g), hence M, g, f |= max π1. Suppose that M, g 	|= 〈π1〉¬ 〈 +−→ ·π−1
1 〉. Then, in particular, M, f |=

〈 +−→ ·π−1
1 〉, i.e., there exist f ′ >proc f and g′ such that M, g′, f ′ |= π1. Since loc(f ′) = loc(f), we also have loc(g′) =

loc(g) = q. Hence M, e, g′ |= jumpp,q and M, e, f ′ |= π , which contradicts the maximality of f .

Conversely, assume that M, e, f |= max π . Let g such that M, e, g |= jumpp,q , M, g |= 〈π1〉¬ 〈 +−→ ·π−1
1 〉, and M, g, f |=

max π1 (see Fig. 6b). Clearly, M, e, f |= jumpp,q · π1. Suppose that f is not maximal, i.e., that there exists f ′ >proc f
such that M, e, f ′ |= π . Then, for all f ′′ such that M, g, f ′′ |= π1, we have f ′′ ≤proc f <proc f ′ (by induction hypothesis),
hence M, f ′′ |= 〈 +−→ ·π−1

1 〉. This contradicts the fact that M, g |= 〈π1〉¬ 〈 +−→ ·π−1
1 〉.

• If π = ϕ←− ·π1, we let

max π = ϕ∧¬〈π1〉←−−−−− ·max π1 .

Let M be an MSC, and e, f events of M . Assume that f =max�π�(e) and let g be such that M, e, g |= ϕ←− and M, g, f |=
π1. We must have f =max�π1�(g). Let g′ be maximal with M, e, g′ |= ϕ←− · {〈π1〉}?. We have M, e, g′ |= ϕ∧¬〈π1〉←−−−−− and
g ≤proc g′ . We deduce from Lemma 3(a) that f =max�π1�(g′).

34 B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53
e g g′

f f ′

π1

ϕ

ϕ

+

π1

+
e g

f f ′f ′′

max π1
ϕ

+

π1

ϕ

∗

π1

(a) f =max�π�(e) and �
ϕ−→�(e) infinite. (b) M, e, f |=max π .

Fig. 7. Proof of Lemma 6 where π = ϕ−→ ·π1.

Conversely, assume that M, e, f |= max π and let g be such that M, e, g |= ϕ∧¬〈π1〉←−−−−− and M, g, f |= max π1. We have
M, e, f |= π . Let f ′, g′ be such that M, e, f ′ |= π , M, e, g′ |= ϕ←−, and M, g′, f ′ |= π1. We have g′ ≤proc g and using
Lemma 3(a) we deduce that f ′ ≤proc f . Therefore, f =max�π�(e).

• If π = ϕ−→ ·π1, we let

max π = ϕ−→ · {ψ1 ∨ψ2}? ·max π1 , where

ψ1 =¬ϕ ∨¬〈 ϕ−→ ·π1〉
ψ2 = 〈π1〉¬ 〈 +−→ ·π−1

1 〉 .
Let M be an MSC, and e, f events of M .

Assume that f = max�π�(e), and that �
ϕ−→�(e) is finite. Then, �

ϕ−→ · {〈π1〉}?�(e) is also finite and non-empty. Let
g = max�

ϕ−→ · {〈π1〉}?�(e). We have M, g |= ψ1. In addition, since �π�(e) is finite, �π1�(g) must be finite, and by
Lemma 3(a), we get max�π1�(g) = f . Hence M, e, f |= max π . Now, assume that �

ϕ−→�(e) is infinite. Let g be any
event such that M, e, g |= ϕ−→ and M, g, f |= π1. By maximality of f , we have M, g, f |= max π1 (see Fig. 7a). Sup-

pose towards a contradiction that M, f |= 〈 +−→ ·π−1
1 〉. Then, there exist f ′ >proc f and g′ such that M, g′, f ′ |= π1. By

Lemma 3(a), g′ >proc g >proc e. Since �
ϕ−→�(e) is infinite, we have M, e, g′ |= ϕ−→, and thus M, e, f ′ |= π , which contradicts

the maximality of f . Hence, M, f |= ¬ 〈 +−→ ·π−1
1 〉, M, g |=ψ2, and M, e, f |=max π .

Conversely, assume that M, e, f |=max π . Let g such that M, e, g |= ϕ−→, M, g |= ψ1 ∨ψ2, and M, g, f |=max π1. If g |=
ψ1, we have g =max�

ϕ−→ · {〈π1〉}?�(e). By Lemma 3(a), we conclude that f =max�π�(e). Now, suppose that M, g |=ψ2,
and that there exists f ′ >proc f such that M, e, f ′ |= π (see Fig. 7b). For all f ′′ such that M, g, f ′′ |= π1, we have
f ′′ ≤proc f <proc f ′ , hence M, f ′′ |= 〈 +−→ ·π−1

1 〉. This contradicts the fact that M, g |= 〈π1〉¬ 〈 +−→ ·π−1
1 〉. �

We are now ready to prove that any Boolean combination of PDLsf[Loop] formulas is equivalent to a positive one, i.e.,
one that does not use complement.

Lemma 7. For all path formulas π ∈ PDLsf[Loop], there exist PDLsf[Loop] path formulas (πi)1≤i≤|P |2+3 such that π c≡⋃1≤i≤|P |2+3 πi .

Proof. We show π c ≡ σ , where

σ = (min π · +←−)∪ (max π · +−→)∪ (π · +−→ · {¬〈π−1〉}?)∪
⋃

(p,q)∈P 2

{¬ 〈π〉q}? · jumpp,q .

Let M = (E, →, �, loc, λ) be an MSC and e, f ∈ E . We write p = loc(e), q = loc(f). Let us show that M, e, f |= π c iff
M, e, f |= σ . If M, e |= ¬ 〈π〉q, then both M, e, f |= π c and M, e, f |= σ hold. In the following, we assume that M, e |= 〈π〉q,
and thus that min�π�(e) ∈ Eq and max�π�(e) ∈ Eq ∪ {∞}. Again, if f <proc min�π�(e) or max�π�(e) <proc f , then both
M, e, f |= π c and M, e, f |= σ hold. And if min�π�(e) ≤proc f ≤proc max�π�(e), then, by Lemma 4, we have M, e, f |= π c iff
M, f |= ¬ 〈π−1〉, iff M, e, f |= σ . �
3.5. From FO to PDLsf

We will now show that every FO[→, �, ≤] formula with at most two free variables can be translated into an equivalent
PDLsf formula, as stated in Theorem 1 below. As we proceed by induction, we actually need a more general statement, which
takes into account arbitrarily many free variables. In the following proposition, π̃ (x, y) refers to the FO formula obtained
from π due to Proposition 1. To obtain a formula π̃ (x, x) with one free variable, we first construct π̃ (x, y) according to
Proposition 1 and then replace y by x.

B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53 35
y j

min π j max π j

y�

min π�

max π�

yk
min πk

max πk

xn

Fig. 8. Proof of Claim 1.

Proposition 2. Every formula � ∈ FO[→, �, ≤] with at least one free variable is equivalent to a positive Boolean combination of
formulas of the form ̃π(x, y), where π ∈ PDLsf[Loop] and x, y ∈ Free(�).

Proof. In the following, we will simply write π(x, y) for π̃ (x, y).
The proof is by induction. For convenience, we assume that � is in prenex normal form. If � is quantifier free, then it is

a Boolean combination of atomic formulas. For x, y ∈ Vevent , atomic formulas are translated as follows:

p(x) ≡ {p}?(x, x) x→ y ≡ →(x, y) x= y ≡ {true}?(x, y)

a(x) ≡ {a}?(x, x) x � y ≡
∨

(p,q)∈Ch

�p,q(x, y)

Moreover, x ≤ y is equivalent to the disjunction of the formulas
(
π ·�p1,p2 · +−→ ·�p2,p3 · · · +−→ ·�pm−1,pm · π ′

)
(x, y), where

1 ≤m ≤ |P |, p1, . . . , pm ∈ P are such that pi 	= p j for all 1 ≤ i < j ≤m, and π, π ′ ∈ { +−→, {true}?}.

Universal quantification. We have ∀x.� ≡¬∃x.¬�. Negation can be eliminated thanks to Lemma 7. Hence, this case reduces
to existential quantification.

Existential quantification. Suppose that � = ∃x.�. If x is not free in �, then � ≡ � and we are done by induction. Oth-
erwise, assume that Free(�) = {x1, . . . , xn} with n > 1, and that x = xn . By induction, � is equivalent to a positive Boolean
combination of formulas of the form π(y, z) with y, z ∈ Free(�). Bringing � into disjunctive normal form, we obtain a fi-
nite disjunction of formulas of the form

∧
j π j(y j, z j), where y j = xi1 and z j = xi2 for some i1 ≤ i2. This step may cause an

exponential blow-up so that the overall construction is nonelementary (which is unavoidable [54]). Note that the variable
ordering can be guaranteed by replacing π j with π−1

j whenever needed.
Now, � = ∃xn.� is equivalent to a finite disjunction of formulas of the form∧

j∈I

π j(y j, z j) ∧ ∃xn.
(∧

j∈ J

π j(y j, xn)∧
∧
j∈ J ′

π j(xn, xn)
)

︸ ︷︷ ︸
=:ϒ

for three finite, pairwise disjoint index sets I, J , J ′ such that y j, z j ∈ {x1, . . . , xn−1} for all j ∈ I , and y j ∈ {x1, . . . , xn−1} for
all j ∈ J . Notice that Free(ϒ) ⊆ {x1, . . . , xn−1}. If J = ∅, then3

ϒ≡
∨

p,q∈P

(
jumpp,q · {

∧
j∈ J ′

Loop(π j)}? · jumpq,p

)
(x1, x1) .

So assume J 	= ∅. We define below a formula ϒ′ and prove that it is equivalent to ϒ. Intuitively, by Lemma 4, we
know that ϒ holds iff the intersection of the intervals [min�π j�(y j), max�π j�(y j)] contains some event satisfying ψ =∧

j∈ J 〈π−1
j 〉∧

∧
j∈ J ′ Loop(π j). The formula ϒ′ identifies some πk such that min�πk�(yk) is maximal (first line), some π�

such that max�π��(y�) is minimal (second line), and tests that there exists an event xn satisfying ψ between the two (third
line). This is illustrated in Fig. 8.

ϒ′ :=
∨

k,�∈ J

⎛⎜⎝
∧

j∈ J ((min π j) · ∗−→ · (min πk)
−1)(y j, yk)

∧ ∧
j∈ J

(
{〈π j〉∧¬〈max π j〉}?(y j, y j)∨ ((max π�) · ∗−→ · (max π j)

−1)(y�, y j)
)

∧ (πk · {ψ}? ·π−1
�)(yk, y�)

⎞⎟⎠

3 In this case, ϒ is a sentence whereas x1 is free in the right hand side. Notice that ≡ does not require the two formulas to have the same free variables.

36 B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53
Claim 1. We have Free(ϒ′) = Free(ϒ) ⊆ {x1, . . . , xn−1} and ϒ≡ϒ′ .

Proof. Assume M, ν |=ϒ. There exists e ∈ E such that M, ν(y j), e |= π j for all j ∈ J , and M, e |= Loop(π j) for all j ∈ J ′ . In
particular, all min�π j�(ν(y j)) and max�π j�(ν(y j)) ∈ E ∪{∞} for j ∈ J are well-defined and on process loc(e) or equal to ∞.
Let k ∈ J such that min�πk�(ν(yk)) is maximal, i.e., min�π j�(ν(y j)) ≤proc min�πk�(ν(yk)) for all j ∈ J . Then, for all j ∈ J , we
have M, ν(y j), ν(yk) |= (min π j) · ∗−→ · (min πk)

−1. Similarly, let � ∈ J such that max�π��(ν(y�)) ∈ E ∪ {∞} is minimal. Then,
for all j ∈ J , either M, ν(y j), ν(y j) |= {〈π j〉∧¬ 〈max π j〉}? (i.e., max�π j�(ν(y j)) =∞), or else M, ν(y�), ν(y j) |= (max π�) ·
∗−→· (max π j)

−1. In addition, we have M, e |=ψ , M, ν(yk), e |= πk , and M, ν(y�), e |= π� . Hence, M, ν(yk), ν(y�) |= πk · {ψ}? ·
π−1

� . So we have M, ν |=ϒ′ .
Conversely, assume M, ν |=ϒ′ . Let k, � ∈ J such that the corresponding sub-formula is satisfied. There exists e ∈ E such

that M, ν(yk), e |= πk , M, e |= ψ , and M, e, ν(y�) |= π−1
� . Note that we have min�πk�(ν(yk)) ≤proc e ≤proc max�π��(ν(y�)).

For all j ∈ J ′ , we have M, e |= Loop(π j), i.e., M, ν[xn �→ e] |= π j(xn, xn). Now, let j ∈ J . We have M, ν(y j), ν(yk) |=
(min π j) · ∗−→ · (min πk)

−1, hence min�π j�(ν(y j)) ≤proc min�πk�(ν(yk)) ≤proc e. Similarly, e ≤proc max�π��(ν(y�)) ≤proc

max�π j�(ν(y j)) ∈ E ∪{∞}. In addition, since M, e |=ψ , we have M, e |= 〈π−1
j 〉. Applying Lemma 4, we get M, ν(y j), e |= π j ,

i.e., M, ν[xn �→ e] |= π j(y j, xn). Hence, M, ν |=ϒ. �(Claim 1)

We conclude that ϒ is equivalent to some positive Boolean combination of formulas π(x, y), with π ∈ PDLsf[Loop]
and x, y ∈ {x1, . . . , xn−1} = Free(�). Therefore, so is �. Note that, due to ∗−→, the formulas (min π j) · ∗−→ · (min πk)

−1 and
(max π�) · ∗−→ · (max π j)

−1 are in PDLsf[Loop, ∪] instead of PDLsf[Loop]. By Lemma 2, these can be transformed into finite
unions of PDLsf[Loop] path formulas. �

We are now able to prove the main result relating FO[→, �, ≤] and PDLsf[Loop].

Theorem 1. Every FO[→, �, ≤] formula with at most two free variables is equivalent to some PDLsf formula. More precisely, for every
FO[→, �, ≤] sentence �0 , formula �1(x) with one free variable, and formula �2(x, y) with two free variables, there exist some
PDLsf[Loop] sentence ξ , PDLsf[Loop] event formula ϕ , and PDLsf[Loop] path formulas πi j , respectively, such that, �0 ≡ ξ , �1(x) ≡ ϕ ,
and �2(x, y) ≡⋃

i

⋂
j πi j .

Proof. Let �2(x1, x2) be an FO[→, �, ≤] formula with two free variables. We apply Proposition 2 to �2(x1, x2) and ob-
tain a positive Boolean combination of path formulas π(y, z) with y, z ∈ {x1, x2}. Next, we replace formula π(x1, x1) by ∨

p,q({Loop(π)}? · jumpp,q)(x1, x2). Similarly, π(x2, x2) is replaced by
∨

p,q(jumpp,q · {Loop(π)}?)(x1, x2). Also, π(x2, x1) is
replaced by π−1(x1, x2). Finally, we transform it into disjunctive normal form: we obtain �1(x1, x2) ≡∨

i

∧
j πi j(x1, x2),

which concludes the proof in the case of two free variables.
Next, let �1(x) be an FO[→, �, ≤] formula with one free variable. As above, applying Proposition 2 to �1(x), we obtain

PDLsf[Loop] path formulas πi j such that �1(x) ≡∨
i

∧
j πi j(x, x). Now, M, [x �→ e] |= πi j(x, x) iff M, e |= Loop(πi j). Hence,

�(x) ≡∨
i

∧
j Loop(πi j).

Finally, an FO[→, �, ≤] sentence �0 is a Boolean combination of formulas of the form ∃x.�1(x). Applying the theorem
to �1(x), we obtain an equivalent PDLsf[Loop] event formula ϕ . Then, we take ξ = Eϕ , which is trivially equivalent to
∃x.�1(x). �

From Theorem 1 and Proposition 1, we deduce that FO has the three variable property:

Corollary 1. L(FO[→, �, ≤]) = L(FO3[→, �, ≤]).

4. From PDLsf[Loop] to CFMs

In this section, we show that, from a PDLsf[Loop] sentence, we can effectively construct an equivalent CFM of exponential
size (Theorem 2). Together with Theorem 1, this implies that every FO sentence can be translated to an equivalent CFM
(Theorem 3).

In the inductive translation of PDLsf[Loop] formulas into CFMs, event formulas will be evaluated by MSC transducers. An
MSC transducer for an event formula ϕ produces a truth value at every event on the given MSC. More precisely, it outputs 1
when ϕ holds at the current event, and 0 otherwise. We introduce MSC transducers formally in the next section. Then, we
present the actual translation of PDLsf[Loop] event formulas into MSC transducers in Section 4.2. We conclude in Section 4.3
with the translation of sentences, PDLsf[Loop] or FO, into CFMs.

4.1. Letter-to-letter MSC transducers

Let � be a nonempty finite output alphabet. A (nondeterministic) letter-to-letter MSC transducer (or simply, transducer) A
over P and from � to � is a CFM over P and � × �. The transducer A accepts the relation

B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53 37
�A�= {((E,→,�, loc, λ), (E,→,�, loc, γ)
) | (E,→,�, loc, λ× γ) ∈L(A)} .

Transducers are closed under product and composition, using standard constructions:

Lemma 8. Let A be a transducer from � to �, and A ′ a transducer from � to �′ . There exists a transducer A × A ′ from � to � × �′
such that

�A × A ′�= {(
(E,→,�, loc, λ), (E,→,�, loc, γ × γ ′)

) |(
(E,→,�, loc, λ), (E,→,�, loc, γ)

) ∈ �A�,(
(E,→,�, loc, λ), (E,→,�, loc, γ ′)

) ∈ �A ′�
}
.

Lemma 9. Let A be a transducer from � to �, and A ′ a transducer from � to �′ . There exists a transducer A ′ ◦ A from � to �′ such
that

�A ′ ◦ A�= �A ′� ◦ �A�= {(M, M ′′) | ∃M ′ ∈MSC(P ,�) : (M, M ′) ∈ �A�, (M ′, M ′′) ∈ �A ′�} .

4.2. Translation of PDLsf[Loop] event formulas into MSC transducers

For a PDLsf[Loop] event formula ϕ and an MSC M = (E, →, �, loc, λ) over P and �, we define an MSC Mϕ = (E, →,�, loc, γ) over P and {0, 1}, by setting γ (e) = 1 if M, e |= ϕ , and γ (e) = 0 otherwise.
The goal of this section is to show that (Proposition 3), from any PDLsf[Loop] event formula ϕ , we can construct an MSC

transducer Aϕ of exponential size which is equivalent to ϕ , that is, �Aϕ� = {(M, Mϕ) | M ∈MSC(P , �)}.
We start with the case of formulas from PDLsf[∅], i.e., without Loop. Lemma 10 actually follows from [9, Theorem 4.16]

since PDLsf[∅] is a restricted fragment of the (loop-free) logic studied in [9]. For completeness, we provide a proof of the
following simpler lemma.

Lemma 10. Let ϕ be a PDLsf[∅] event formula. There exists a transducer Aϕ with 2O (|ϕ|) states per process such that �Aϕ� =
{(M, Mϕ) | M ∈MSC(P , �)}.

Proof. Any PDLsf[∅] event formula is equivalent to some linear-size formula ϕ over the syntax

ϕ ::= p | a | ϕ ∨ ϕ | ¬ϕ | 〈�p,q〉ϕ | 〈�−1
p,q〉ϕ | 〈

ϕ−→〉ϕ | 〈 ϕ←−〉ϕ | 〈jumpp,q〉ϕ

Indeed, we have 〈π1 ·π2〉ϕ ≡ 〈π1〉 (〈π2〉ϕ), and 〈{ϕ}?〉ψ ≡ ϕ ∧ψ . Notice that →≡ false−−→ and ←≡ false←−−.
We define Aϕ by induction on ϕ , by composition of the transducers for the atomic formulas ϕ = p with p ∈ P , or ϕ = a

with a ∈ �, and of transducers B∨ , B¬ , B�p,q , B�−1
p,q

, Bjumpp,q , BXU , and BYS corresponding to each construct of the logic.
These transducers are defined in Fig. 9. For instance, the transducer B¬ from {0, 1} to {0, 1} outputs the negation of the bit
read and B∨ from {0, 1}2 to {0, 1} outputs the disjunction of the two bits read. The transducer B�p,q from {0, 1} to {0, 1}
outputs 1 at an event e iff e is a send event from p to q and the corresponding receive event f is labeled 1. The transducers
B�−1

p,q
and Bjumpp,q are defined similarly. The deterministic transducer BYS from {0, 1}2 to {0, 1} corresponds to the strict

since modality. On each process, it outputs 1 at some event e if there is g <proc e, where the second bit is 1 and for all
g <proc f <proc e the first bit at f is 1. The transducer BXU corresponds to the reverse strict until modality. We then let

Aϕ1∨ϕ2 = B∨ ◦ (Aϕ1 × Aϕ2) A¬ϕ = B¬ ◦ Aϕ

A〈�p,q〉ϕ = B�p,q ◦ Aϕ A〈�−1
p,q〉ϕ = B�−1

p,q
◦ Aϕ

A〈 ϕ1−→〉ϕ2
= BXU ◦ (Aϕ1 × Aϕ2) A〈jumpp,q〉ϕ = Bjumpp,q ◦ Aϕ

A〈 ϕ1←−〉ϕ2
= BYS ◦ (Aϕ1 × Aϕ2) .

This concludes the proof of Lemma 10. �
Next, we look at a single loop where the path π ∈ PDLsf[∅] is functional. We call a path formula π ∈ PDLsf functional if,

for all MSCs M and events e in M , �π�(e) is either empty or a singleton. Abusing notation, when �π�(e) 	= ∅, we simply
write �π�(e) = e′ instead of �π�(e) = {e′}.

We say that a functional path formula π ∈ PDLsf is monotone if, for all MSCs M and events e, f such that �π�(e) 	= ∅,
�π�(f) 	= ∅, and e ≤proc f , we have �π�(e) ≤proc �π�(f).

Notice that, for all path formulas π ∈ PDLsf[Loop], the path formulas min π and max π are functional. Moreover, as a
direct consequence of Lemma 3(a), we obtain:

38 B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53
spp

〈−/1,−〉

sqq 	= p

〈−/0,−〉

Ap

Acc=�

spp

〈a/1,−〉〈b/0,−〉,b 	= a

Aa

Acc=�

spp

〈1/0,−〉〈0/1,−〉

B¬

Acc=�

spp

〈(−,1)/1,−〉〈(1,−)/1,−〉〈(0,0)/0,−〉

B∨

Acc=�

spp

〈−/1, !q1〉
〈−/0, !q0〉
〈−/0,α〉, α 	= !qm

sqq

〈1/0,?p 1〉
〈0/0,?p0〉
〈−/0,α〉, α 	= ?p−

srr /∈ {p,q} 〈−/0,−〉

B�p,q

Acc=�

spp

〈1/0, !q1〉
〈0/0, !q0〉
〈−/0,α〉, α 	= !q−

sqq

〈−/1,?p1〉
〈−/0,?p0〉
〈−/0,α〉, α 	= ?p−

srr /∈ {p,q} 〈−/0,−〉

B�−1
p,q

Acc=�

spp

s0
p

s1
p

〈−/0,−〉

〈−/1,−〉

〈−/0,−〉

〈−/1,−〉

s0
qq s1

q

〈0/0,−〉

〈1/0,−〉

〈−/0,−〉

srr /∈ {p,q}

〈−/0,−〉

Acc= 〈p, sp〉 ∨∨
i=1,2(〈p, si

p〉 ∨ 〈p, si
p〉∞)∧ (〈q, si

q〉 ∨ 〈q, si
q〉∞)

Bjumpp,q

spp s′p

〈(−,0)/0,−〉
〈(−,1)/0,−〉

〈(0,0)/1,−〉

〈(1,0)/1,−〉〈(−,1)/1,−〉

BYS

Acc=�

s0
pp s1

p

s2
p

s3
p

〈(−,−)/1,−〉

〈(−,−)/1,−〉

〈(−,−)/0,−〉

〈(−,1)/1,−〉

〈(1,0)/1,−〉

〈(−,0)/0,−〉

〈(−,1)/1,−〉

〈(1,0)/1,−〉

〈(−,1)/0,−〉
〈(0,0)/1,−〉

〈(0,0)/1,−〉

BXU

Acc=∧
p∈P 〈p, s0

p〉 ∨ 〈p, s3
p〉 ∨ 〈p, s1

p〉∞ ∨ 〈p, s3
p〉∞

Fig. 9. Transducers used to define Aϕ . In a transition labeled 〈a/b, α〉, a is the input letter, b is the output letter, and α is either empty or a read or write
action. Notice that in B�p,q , the automaton for process q has no transitions reading 〈c/0, ?pd〉, with c 	= d, hence a wrong guess by process p cannot lead
to an accepting run. The acceptance condition � means true and is always satisfied.

Lemma 11. All functional PDLsf[Loop] path formulas are monotone.

Lemma 12. Let π be a PDLsf[∅] functional path formula, and ϕ = Loop(π). There exists a transducer Aϕ with 2O (|ϕ|) states per
process such that �Aϕ� = {(M, Mϕ) | M ∈MSC(P , �)}.

Proof. We can assume that Comp(π) ⊆ id. We define Aϕ as the composition of three transducers that will guess and check
the evaluation of ϕ . More precisely, Aϕ will be obtained as an inverse projection α−1, followed by the intersection with
some MSC language K , followed by a projection β .

We first enrich the labeling of the MSC with a color from � = { , , , }. Intuitively, colors and will correspond to
a guess that the formula ϕ is satisfied, and colors and to a guess that the formula is not satisfied. We will construct a
CFM that enforces a coloring that, at every event, correctly reflects the truth value of ϕ . We require that labels from { , }
alternate on a process (Condition 1. below) and that, moreover, for every event e with a color from { , }, there exist a
π -successor and a π−1-successor that both have the same color (Condition 2.). This will then ensure that an event with
color from { , } satisfies ϕ . Moreover, for every { , }-colored event e that has both a π -successor f and a π−1-successor
f ′ , the colors of e, f , and f ′ should not coincide (again, Condition 2.). This, in turn, ensures that e does not satisfy ϕ . Let
us formalize these ideas.

Consider the projection α : MSC(P , � ×�) →MSC(P , �) which erases the color from the labeling. The inverse pro-
jection α−1 can be realized with a transducer A , i.e., �A� = {(α(M ′), M ′) | M ′ ∈MSC(P , � ×�)}.

B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53 39
π π

π
π

π

ππ
π

π
π π π

Fig. 10. Proof of Claim 2: 2-coloring of E0 in Graph G .

Define the projection β : MSC(P , � × �) →MSC(P , {0, 1}) by β((E, →, �, loc, λ × θ)) = (E, →, �, loc, γ), where
γ (e) = 1 if θ(e) ∈ { , }, and γ (e) = 0 otherwise. The projection β can be realized with a transducer A ′′ , i.e., �A ′′� =
{(M ′, β(M ′)) | M ′ ∈MSC(P , � ×�)}.

Finally, consider the language K ⊆MSC(P , � × �) of MSCs M ′ = (E, →, �, loc, λ × θ) satisfying the following two
conditions:

1. Colors and alternate on each process p ∈ P : if e1 < e2 < e3 < · · · are the events in E p ∩ θ−1({ , }), then θ(ei) =
if i is odd, and θ(ei) = if i is even.

2. For all e ∈ E , θ(e) ∈ { , } iff there exist f , f ′ ∈ E such that M, e, f |= π , M, e, f ′ |= π−1, and θ(e) = θ(f) = θ(f ′).

The first property is trivial to check with a CFM. Using Lemma 10, we show that the second property can also be checked
with a CFM. First, from π we construct a PDLsf[∅] event formula ψ over P and � × � such that, for all M ′ = (E, →
, �, loc, λ × θ) ∈MSC(P , � ×�) and events e ∈ E , we have M ′, e |= ψ iff the following holds: θ(e) ∈ { , } iff there are
f , f ′ ∈ E such that θ(e) = θ(f) = θ(f ′), α(M ′), e, f |= π , and α(M ′), e, f ′ |= π−1. Namely, we define

ψ = (∨)⇐⇒
∨

col∈{ , , , }
col ∧ 〈π̂〉 col ∧ 〈π̂−1〉 col

where the state formula col from { , , , } is an abbreviation for
∨

a∈�(a, col) and π̂ is obtained from π by replacing
state formulas a by

∨
col∈�(a, col). Now, the language for the second condition is {M ′ ∈MSC(P , � × �) | every event

of M ′
ψ is labeled with 1}, for which we can easily give a CFM using the transducer Aψ from � × � to {0, 1} given by

Lemma 10.
We deduce that there is a transducer A ′ such that �A ′� = {(M ′, M ′) | M ′ ∈ K }. We let Aϕ = A ′′ ◦ A ′ ◦ A . Notice that

�Aϕ� = {(α(M ′), β(M ′)) | M ′ ∈ K }. From the following two claims, we deduce immediately that �Aϕ� = {(M, Mϕ) | M ∈
MSC(P , �)}.

Claim 2. For all M ∈MSC(P , �), there exists M ′ ∈ K with α(M ′) = M.

Proof of Claim 2. Let M = (E, →, �, loc, λ) ∈MSC(P , �). Let E1 = {e ∈ E | M, e |= ϕ} and E0 = E \ E1. Consider the graph
G = (E, {(e, f) | M, e, f |= π}). Since π is functional, every vertex has outdegree at most 1, and, by Lemma 11, there are
no cycles except for self-loops. So the restriction of G to E0 is a forest, and there exists a 2-coloring χ : E0 → { , } such
that, for all e, f ∈ E0 with M, e, f |= π , we have χ(e) 	= χ(f). This is illustrated in Fig. 10. Moreover, there exists θ : E →�

such that θ(e) = χ(e) for e ∈ E0, and θ(e) ∈ { , } for e ∈ E1 is such that Condition 1 of the definition of K is satisfied. It
is easy to see that Condition 2 is also satisfied. Indeed, if θ(e) ∈ { , }, then e ∈ E1, M, e, e |= π , and M, e, e |= π−1. Now,
if θ(e) /∈ { , }, then e ∈ E0 and either M, e 	|= 〈π〉 or, by definition of θ , we have θ(e) 	= θ(f) for the unique f such that
M, e, f |= π . �(Claim 2)

Claim 3. For all M ′ ∈ K , we have β(M ′) = Mϕ , where M = α(M ′).

Proof of Claim 3. Let M ′ = (E, →, �, loc, λ × θ) ∈ K and M = α(M ′). Suppose towards a contradiction that Mϕ 	= β(M ′) =
(E, →, �, loc, γ).

First, we show that, for all e ∈ E , γ (e) = 0 implies M, e 	|= ϕ . So assume γ (e) = 0. Then, we have θ(e) ∈ { , }. Take any
f , f ′ ∈ E such that M, e, f |= π and M, e, f ′ |= π−1 (if there are no such events, we have M, e 	|= ϕ). Due to Condition 2.,
θ(e) = θ(f) = θ(f ′) does not hold, which implies M, e 	|= ϕ .

So there exists f ∈ E such that γ (f) = 1 and M, f 	|= ϕ . Notice that θ(f) ∈ { , }. Let f ′ be the unique event such that
M, f , f ′ |= π . Such an event exists by Condition 2., and is unique since π is functional.

Suppose f ′ <proc f . Let f0 = f , f1 = f ′ , and for all i ∈N , let f i+1 be the unique event such that M, f i, f i+1 |= π . Note
that, for all i, θ(f i+1) = θ(f i) ∈ { , }. By Condition 1., there exists g0 such that f0 >proc g0 >proc f1 and θ(f0) 	= θ(g0) ∈
{ , }. For an illustration, see Fig. 11. Again, for all i ∈N , let gi+1 be the unique event such that M, gi, gi+1 |= π . Note
that all f0, f1, . . . have the same color, in { , }, and all g0, g1, . . . carry the complementary color. Thus, f i 	= g j for all
i, j ∈N . But, by Lemma 11, this implies f0 >proc g0 >proc f1 >proc g1 >proc · · · , which contradicts the fact that the past of f0
is finite.

Similarly, suppose f <proc f ′ . Let f0 = f ′ , f1 = f , and for all i ∈N , let f i+1 be some event such that M, f i, f i+1 |= π−1

and θ(f i+1) = θ(f i) ∈ { , }. Let us show that f0 >proc f1 >proc f2 >proc · · · , by contradiction. Assume that f i ≤proc f i+1 for

40 B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53
· · ·

f0f1f2 g0g1g2

π
ππππ

Fig. 11. Proof of Claim 3.

some minimal i ≥ 1. Since π is functional, we have �π�(f i) = { f i−1}, and �π�(f i+1) = { f i}. Then, by Lemma 11, f i−1 ≤proc f i ,
which contradicts the minimality of i. �(Claim 3)

This concludes the proof of Lemma 12. �
The general case is more complicated. We first show how to rewrite an arbitrary loop formula using loops on paths of

the form π or π · +−→ where π is functional. Intuitively, this means that loop formulas will only be used to perform the
following test. Given an event e such that there exists a (unique) e′ with M, e, e′ |= π , and e′ is on the same process as e,
which one of the following is true: e′ <proc e, e′ = e, or e <proc e′? Indeed, we have M, e |= Loop(π · +−→) iff e′ <proc e.

Lemma 13. For all PDLsf[Loop] path formulas π ,

Loop(π)≡ Loop(min π)∨
(
〈π−1〉 ∧ Loop((min π) · +−→)∧¬Loop((max π) · +−→)

)
.

Proof. The result essentially follows from Lemma 4, saying that �π�(e) is exactly the set of events in the interval from
min�π�(e) to max�π�(e) that satisfy 〈π−1〉.

First, if we have M, e |= Loop(π) and M, e 	|= Loop(min π), then min�π�(e) <proc e ≤proc max�π�(e) and M, e |= 〈π−1〉,
hence M, e |= 〈π−1〉 ∧ Loop((min π) · +−→)∧¬Loop((max π) · +−→).

Conversely, if we have M, e |= Loop(min π), then M, e |= Loop(π), and if M, e |= 〈π−1〉 ∧ Loop((min π) · +−→) ∧
¬Loop((max π) · +−→), then M, e |= 〈π−1〉 and min�π�(e) <proc e ≤proc max�π�(e). By Lemma 4, this implies M, e, e |= π .
Hence, M, e |= Loop(π). �

Finally, we are ready to prove the general case, translating PDLsf[Loop] event formulas to MSC transducers:

Proposition 3. For every PDLsf[Loop] event formula ϕ , there exists a transducer Aϕ with 2O (|ϕ|2) states per process such that �Aϕ� =
{(M, Mϕ) | M ∈MSC(P , �)}.

Proof. We proceed by induction on the number of loop subformulas in ϕ . The base case is stated in Lemma 10. Let
ψ = Loop(π ′) be a subformula of ϕ such that π ′ contains no loop subformulas and Comp(π ′) ⊆ id. We will show below
that there exists a transducer Aψ with 2O (|ψ |2) states per process such that �Aψ � = {(M, Mψ) | M ∈MSC(P , �)}. Suppose
that we have constructed Aψ . Consider the formula ϕ′ over � × {0, 1} obtained from ϕ by replacing ψ by

∨
a∈�(a, 1), and

all event formulas a, with a ∈�, by (a, 0) ∨ (a, 1). It contains fewer Loop operators than ϕ , so by induction hypothesis, we
have a transducer Aϕ′ for ϕ′ . We then let Aϕ = Aϕ′ ◦ (AId × Aψ), where AId is the transducer for the identity relation.

Thus, all we need to prove is that we can construct such a transducer Aψ . We first apply Lemma 13. We construct trans-

ducers of size 2O (|π ′ |2) for the formulas Loop(min π ′), 〈π ′−1〉, Loop((min π ′) · +−→) and Loop((max π ′) · +−→), and define Aψ

as the expected composition of these transducers. Recall that both min π ′ and max π ′ are functional, and of size O (|π ′|2).
Using Lemmas 12 and 10, we already have transducers for Loop(min π ′) and 〈π ′−1〉.

So it suffices to show that for any functional path formula π ∈ PDLsf[Loop], there exists a transducer of size 2O (|π |) for
the formula ψ = Loop(π · +−→). We assume that Comp(π) ⊆ id.

We start with some easy remarks. Let p ∈ P be some process and e ∈ E p . A necessary condition for M, e |= ψ is that
M, e |= 〈π〉, and since π is functional, that M, e 	|= Loop(π).

We let Eπ
p be the set of events e ∈ E p satisfying 〈π〉. For all e ∈ Eπ

p , we let e′ ∈ E p be the unique event such that
M, e, e′ |= π . The transducer Aψ will establish, for each e ∈ Eπ

p , whether e′ <proc e, e′ = e, or e <proc e′ , and it will output 1
if e′ <proc e, and 0 otherwise. The case e′ = e means M, e |= Loop(π) and can be checked with the help of Lemma 12. So
the difficulty is to distinguish between e′ <proc e and e <proc e′ when M, e |= 〈π〉∧¬Loop(π).

Claim 4. Let ψ = Loop(π · +−→) and let f be the minimal event in Eπ
p (assuming this set is nonempty). Then, M, f |= ψ iff M, f |=

Loop(min (
+←− ·π−1)).

B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53 41
ff ′ g =

min (
+←− ·π−1)

+

π

Fig. 12. Proof of Claim 4.

f f ′ee′
ψ ¬ψ

g
g′

+¬〈π 〉+

π

π

π

min (
+−→ ·π−1)

Fig. 13. Proof of Claim 5(1.)

e e′ f ′ f
ψ ¬ψ

¬〈π 〉
∗∗ ¬〈π 〉

π π

Fig. 14. Proof of Claim 5(2.)

Proof of Claim 4. The right to left implication holds without any hypothesis. Conversely, let f ′ = �π�(f) and assume that
f ′ +−→ f . Then, M, f , f |= +←− · π−1, and g = �min (

+←− ·π−1)�(f) is well-defined and g ≤proc f . This is illustrated in Fig. 12.
Moreover, M, g |= 〈π〉 and by minimality of f in Eπ

p , we conclude that g = f . �(Claim 4)

Claim 5. Let e, f be consecutive events in Eπ
p , i.e., e, f ∈ Eπ

p and M, e, f |= ¬〈π 〉−−−→.

1. If M, e |=ψ , then [M, f |=ψ iff M, f 	|= Loop(π) ∨ Loop(min (
+−→ ·π−1))].

2. If M, e 	|=ψ , then [M, f |=ψ iff M, f |= Loop(max (π · ¬ 〈π 〉−−−→))].

Proof of Claim 5. We show the two statements.

1. Assume that M, e |= ψ . The left-to-right implication holds without any hypothesis. Conversely, assume that M, f 	|=
ψ . If M, f |= Loop(π), we are done. Otherwise, let e′ = �π�(e) and f ′ = �π�(f). We have e′ <proc e and f <proc f ′ .
Moreover, M, f |= 〈 +−→ ·π−1〉, hence g = �min (

+−→ ·π−1)�(f) is well-defined and g ≤proc f . Notice that g ∈ Eπ
p , and

f <proc g′ = �π�(g). If g <proc f (see Fig. 13), we get g ≤proc e, and using Lemma 11, we obtain g′ ≤proc e′ <proc e <proc f ,
a contradiction. Therefore, g = f and M, f |= Loop(min (

+−→ ·π−1)).

2. Assume that M, e 	|=ψ . The right-to-left implication holds easily since �max (π · ¬ 〈π 〉−−−→)� ⊆ �π · +−→�. Conversely, assume
that M, f |= ψ . Let e′ = �π�(e) and f ′ = �π�(f). We have e ≤proc e′ and f ′ <proc f (see Fig. 14). From Lemma 11 we

get e′ ≤proc f ′ and since e, f are consecutive in Eπ
p , we obtain M, f ′, f |= ¬〈π 〉−−−→. Therefore, M, f |= Loop(π · ¬ 〈π 〉−−−→) ≡

Loop(max (π · ¬ 〈π 〉−−−→)).

This concludes the proof of the claim. �(Claim 5).

To conclude the proof of Proposition 3, let us consider the five formulas ϕ1=〈π〉, ϕ2=Loop(π), ϕ3=Loop(min (
+←− ·π−1)),

ϕ4 = Loop(min (
+−→ ·π−1)), and ϕ5 = Loop(max (π · ¬ 〈π 〉−−−→)). We can easily see that ϕ1 ∧¬ϕ2∧¬ϕ4 is a necessary condition

for ψ = Loop(π · +−→). Also, both ϕ3 and ϕ5 are sufficient conditions for ψ . The only case which is not covered is when
M, f |= ϕ1 ∧¬ϕ2 ∧¬ϕ3 ∧¬ϕ4 ∧¬ϕ5. In this case, from Claims 4 and 5, we see that M, f |= ψ iff f is not minimal in Eπ

p
and M, e |=ψ , where e is the predecessor of f in Eπ

p .

42 B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53
By Lemmas 10 and 12, we already have transducers Aϕi for i ∈ {1, 2, 3, 4, 5}. We let Aψ = A ◦ (Aϕ1 × Aϕ2 × Aϕ3 ×
Aϕ4 × Aϕ5), where, at an event f labeled (b1, b2, b3, b4, b5), the transducer A outputs 1 if b3 = 1 or b5 = 1 or if
(b1, b2, b3, b4, b5) = (1, 0, 0, 0, 0) and the output was 1 at the last event e on the same process satisfying ϕ1 (to do so,
each process keeps in its state the output at the last event where b1 was 1), and 0 otherwise. �
4.3. Translation of PDLsf[Loop] and FO Sentences into CFMs

Wrapping-up, we obtain our main results as corollaries. First the translation of PDLsf[Loop] sentences to CFMs:

Theorem 2. For every PDLsf[Loop] sentence ξ , there exists a CFM Aξ with 2O (|ξ |2) states per process such that L(Aξ) =L(ξ).

Proof. Given an event formula ϕ , we can construct Aϕ according to Proposition 3. From Aϕ , it is easy to build CFMs for the
sentences Eϕ and ¬ Eϕ . Closure of L(CFM) under union and intersection takes care of disjunction and conjunction. �

By Theorem 1, every FO[→, �, ≤] sentence � is equivalent to some PDLsf[Loop] sentence ξ , for which there is an
equivalent CFM Aξ by Theorem 2. Therefore, we obtain:

Theorem 3. L(FO[→, �, ≤]) ⊆ L(CFM).

The translation is effective, but inherently non-elementary, already when |P | = 1 [54].
It is standard to prove L(CFM) ⊆ L(EMSO[→, �]): The formula guesses an assignment of transitions to events in terms

of existentially quantified second-order variables (one for each transition) and then checks, in its first-order kernel, that the
assignment is indeed an (accepting) run. As, moreover, the class L(CFM) is closed under projection, we obtain the following
logical characterization of CFMs as a corollary:

Theorem 4. L(EMSO[→, �, ≤]) = L(CFM).

5. Applications

5.1. Existentially bounded MSCs

Though the translation of EMSO/FO formulas into CFMs is interesting on its own, it allows us to obtain some difficult
results for bounded CFMs as corollaries. In fact, we even extend known results to infinite MSCs.

Bounded MSCs. The first logical characterizations of communicating finite-state machines were obtained for classes of
bounded MSCs. Intuitively, this corresponds to restricting the channel capacity. Bounded MSCs are defined in terms of lin-
earizations. A linearization of a given MSC M = (E, →, �, loc, λ) is a total order �⊆ E × E extending ≤ and of order type at
most ω, i.e., ≤⊆� and {e | e � f } is finite for all f ∈ E . For B ∈N , we call � B-bounded if, for all g ∈ E and (p, q) ∈ Ch,
|{(e, f) ∈ � ∩ (E p × Eq) | e � g ≺ f }| ≤ B . In other words, the number of pending messages in (p, q) never exceeds B if
we follow the linearization defined by �. There are (at least) two natural definitions of bounded MSCs: We call M ∃B-
bounded if M has some B-bounded linearization. Accordingly, it is ∀B-bounded if all its linearizations are B-bounded. The
set of ∃B-bounded MSCs is denoted by MSC∃B(P , �), the set of ∀B-bounded MSCs by MSC∀B(P , �). Moreover, we let
MSCfin

∃B(P , �) :=MSC∃B(P , �) ∩MSCfin(P , �) and MSCfin
∀B(P , �) :=MSC∀B(P , �) ∩MSCfin(P , �).

Example 7. The MSC from Fig. 1 is ∃1-bounded, but it is not ∀B-bounded, no matter what B is.

In this subsection, we will consider only ∃B-bounded MSCs. We show the following results. First, for a given chan-
nel bound B , the set MSC∃B(P , �) is FO[→, �, ≤]-definable (essentially due to [45]). By Theorem 4, we obtain [28,
Proposition 5.14] stating that this set is recognized by some CFM. Second, we obtain [28, Proposition 5.3], a Büchi-Elgot-
Trakhtenbrot theorem for existentially bounded MSCs, as a corollary of Theorem 4 in combination with a linearization
normal form from [62].

Known results. Let M = (E, →, �, loc, λ) be some finite or infinite MSC. Given e ∈ E , we write type(e) = p if e is an internal
event on process p, type(e) = p!q if e is a write on channel (p, q), and type(e) = q?p if e is a read from channel (p, q).
We associate with the linearization � a word M� over the alphabet �lin =� × (P ∪ {p!q, q?p | (p, q) ∈ Ch}). Namely, if the
linearization is e1 ≺ e2 ≺ e3 ≺ · · · , we let M� = a1a2a3 · · · where ai = (λ × type)(ei). Note that M can be retrieved from M� .
We let LinB(M) = {M� | � is a B-bounded linearization of M} ⊆�∗ ∪�ω .
lin lin

B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53 43
e

f

p1

p2

p3

p4

↑B e

↑B f

g

Fig. 15. The relation revB for B = 1, and the sets ↑B e and ↑B f .

Fact 8 ([28, Theorem 4.1]). Let B ∈N and L ⊆MSCfin
∃B(P , �). The following are equivalent:

1. L =L(A) for some CFM A .
2. L =L(�) for some MSO formula �.
3. LinB(L) is a regular language (of finite words).

The proof given in [28] relies on the theory of Mazurkiewicz traces. Another major part of the proof is the construction
of a CFM recognizing the set MSCfin

∃B(P , �) of finite ∃B-bounded MSCs [28, Proposition 5.14]. We show below that this
CFM, or more generally, a CFM for the set MSC∃B(P , �) of finite or infinite ∃B-bounded MSCs, can in fact be obtained
as a simple application of Theorem 4. Moreover, we give an alternative proof of (3) =⇒ (1) (Section 5 in [28]), and again
extend the result to infinite MSCs.

As mentioned before, the implication (1) =⇒ (2) follows from a standard translation of CFMs into EMSO. Finally, (2) =⇒
(3) is also easy to prove: the channel bound can be used to translate the MSO sentence � into an MSO sentence over
�lin-labeled words, defining LinB(L).

A CFM for existentially bounded MSCs. The set MSC∃B(P , �) of ∃B-bounded MSCs is in fact FO[�, →, ≤]-definable, and
thus, we can apply Theorem 4 to construct a CFM A∃B recognizing MSC∃B(P , �). We describe below a formula defining
MSC∃B(P , �).

Let us first recall a characterization of ∃B-bounded MSCs. Let M = (E, →, �, loc, λ) be an MSC. We define a relation
revB ⊆ E × E which consists of the set of pairs (f , g) such that f is a receive event from some channel (p, q) with cor-
responding send event e � f , and g is the B-th send on channel (p, q) after event e. The relation revB is illustrated in
Fig. 15 (represented by the dashed edges) for B = 1 and an ∃1-bounded MSC. It can be defined by the PDLsf[∪] path
formula

revB =
⋃
p 	=q

�−1
p,q ·

(¬〈�p,q〉−−−−−→ ·{〈�p,q〉}?
)B

.

For completeness, let us also give a corresponding FO[→, �, ≤] formula:

revB(x, y) := ∃z0, z1, . . . , zB . z0 � x∧ zB = y ∧
∧

1≤i≤B

∃xi . zi � xi ∧ x≤proc xi

∧
∧

0≤i<B

zi <proc zi+1 ∧¬(∃z′, x′. zi <proc z′ <proc zi+1 ∧ z′ � x′ ∧ x≤proc x′) .

Fact 9 ([45]). M is ∃B-bounded if and only if the relation (<∪ revB) is acyclic.

In fact, a linearization � of M is B-bounded iff it contains revB . Indeed, assume that revB ⊆ � and that � is not B-
bounded. Then, we find e0 ≺ e1 ≺ · · · ≺ eB � g ≺ f0 ≺ f1 ≺ · · · ≺ f B with (ei, f i) ∈�p,q ∩ E p × Eq . Without loss of generality,
we can assume that there are no other writes on channel (p, q) between ei and ei+1. This implies (f0, eB) ∈ revB , a contra-
diction. Conversely, if revB � � then we find (f0, eB) ∈ revB with eB ≺ f0. We deduce that e0 ≺ e1 ≺ · · · ≺ eB ≺ f0 ≺ f1 ≺
· · · ≺ f B with (ei, f i) ∈�∩ E p × Eq and the linearization is not B-bounded.

Note that, if (< ∪ revB) contains a cycle, then it contains one of size at most 2|P |. More precisely, M is ∃B-bounded if
and only if it satisfies the PDLsf[Loop, ∪] formula ξ∃B =¬ E Loop(ltB), where

ltB =
⋃ (

(�∪ revB) · +−→)n �=⋃ �p,q .
2≤n≤|P | p 	=q

44 B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53
Again, let us determine an equivalent FO[→, �, ≤] formula:

�∃B =
∧

2≤n≤2|P |
¬
(
∃x0, . . . , xn. x0 = xn ∧

∧
0≤i<n

xi < xi+1 ∨ revB(xi, xi+1)
)

.

Applying Theorem 4 we obtain

Corollary 2. Given B > 0, we can construct a CFM A∃B recognizing the set MSC∃B(P , �) of ∃B-bounded finite or infinite MSCs.

FO-definable linearizations for existentially bounded MSCs. We will make use of canonical linearizations of certain MSCs,
which we adapt from [62, Definition 13] where the definition was given for traces. It is based on the following lemma.
Though it is stated for a special case in [62], the proof can be taken almost verbatim. We only provide the proof for
completeness.

Lemma 14 ([62, Lemma 14]). Let (E, ≤) be a partially ordered set, and �⊆ E × E a strict well-founded total order. For e, f ∈ E, we
write e ‖ f when e � f and f � e, and we let ↑e = { f ∈ E | e ≤ f }. Then the relation ≺⊆ E × E defined by

e ≺ f ⇐⇒
(

e < f

∨ e ‖ f ∧ min�(↑e \ ↑ f) � min�(↑ f \ ↑e)

)
is a strict linear order extending <.

Proof. Notice that, for all e 	= f , we have either e ≺ f or f ≺ e, but not both. Indeed, for all e 	= f , we have ↑e \ ↑ f ∩ ↑ f \
↑e = ∅, and if e ‖ f , then the two sets are nonempty as e ∈ ↑e \ ↑ f and f ∈ ↑ f \ ↑e.

It remains to show that ≺ is transitive. Let e1, e2, e3 ∈ E such that e1 ≺ e2 ≺ e3. Note that e1, e2, e3 are pairwise distinct.
For distinct i, j ∈ {1, 2, 3}, if ↑ei \ ↑e j 	= ∅, we let ei j =min� ↑ei \ ↑e j .

To prove e1 ≺ e3, we distinguish several cases.

Case e1 < e2 < e3: As < is transitive, we get e1 < e3.
Case e1 < e2 ‖ e3: This implies e3 � e1. If e1 < e3, we are done. So suppose e1 ‖ e3. Since e2 ≺ e3, we have e23 � e32. From

↑e2 ⊆↑e1, we deduce ↑e2 \ ↑e3 ⊆↑e1 \ ↑e3. Thus, e13 # e23. Similarly, e32 # e31. We obtain e13 # e23 � e32 # e31.
Case e1 ‖ e2 < e3: This case is very similar to the previous one.
Case e1 ‖ e2 ‖ e3: Since e1 ≺ e2 ≺ e3, we have e12 � e21 and e23 � e32. Suppose e1 � e3 (otherwise, we are done). We have

e3 � e1, since e3 < e1 implies e32 # e12 � e21 # e23, a contradiction.
So we can assume e1 ‖ e3. It remains to show e13 � e31. First, one shows that

e13 # e12 . (2)

If e12 /∈ ↑e3, then (2) is immediate. So suppose e12 ∈ ↑e3, i.e., e12 ∈ ↑e3 \ ↑e2. Then,

e23 � e32 # e12 . (3)

Let us consider two cases. If e23 /∈ ↑e1 then e21 # e23. By (3), we obtain e21 � e12, which contradicts e1 ≺ e2. Hence
e23 ∈ ↑e1 and we get e13 # e23. We deduce that (2) holds.

To conclude the proof, we distinguish once more two cases:

Case e31 ∈ ↑e2: Then, e12 � e21 # e31. Applying (2), we obtain e13 � e31.
Case e31 /∈ ↑e2: Then, e23 � e32 # e31. If e23 ∈ ↑e1, then e13 # e23 � e31 and we are done. If e23 /∈ ↑e1, then

e21 # e23, which implies e12 � e31. By (2), we obtain e13 � e31.

This concludes the proof of Lemma 14. �
We now define a canonical linear order on the events of an ∃B-bounded MSC M = (E, →, �, loc, λ). We fix some strict

total order � on P , and extend it to E as follows: e � f if e <proc f or loc(e) � loc(f). Clearly, � is well-founded and a
strict linear order on E . We apply Lemma 14 with � and ≤B = (≤ ∪ revB)∗ which is a partial order when the MSC M is
∃B-bounded. We obtain a linear order �B of M extending both < and revB .

Example 8. Consider the MSC M in Fig. 15 and suppose p1 � p2 � p3 � p4. We have min�(↑e \ ↑ f) = g and min�(↑ f \
↑e) = f . Since g � f , we obtain e ≺B f .

B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53 45
In general, �B need not be of order type at most ω, i.e., it is not necessarily a linearization. For instance, with two
processes p � q, no communication events, and infinitely many local events on both p and q, the order type of �B is
ω+ω. When the order type of �B is at most ω, it is a B-bounded linearization of M .

Finally, the relation ≺B is FO[→, �, ≤]-definable. Indeed, the strict partial order <B is FO[→, �, ≤]-definable since
it can be expressed with the path formula ltB given above. From its definition, we deduce that the relation ≺B is also
FO[→, �, ≤]-definable.

We are now ready to give our alternative proof of the direction (3) =⇒ (1) in Fact 8.

Proof of Fact 8 (3)=⇒ (1). Let L be a set of ∃B-bounded finite MSCs such that LinB(L) is regular. There exists an EMSO
sentence �lin over �lin-labeled words such that LinB(L) =L(�lin). Since �B is FO[→, �, ≤]-definable, it is easy to translate
�lin into an EMSO[→, �, ≤] formula � such that L(�) ⊆MSCfin

∃B(P , �) and, for all M ∈MSCfin
∃B(P , �), we have M |=�

if and only if M�B |= �lin . Let A be a CFM such that L(A) = L(� ∧ �∃B). Then, for all M ∈ L, M is ∃B-bounded and
M�B |=�lin , hence M |=� ∧�∃B , i.e., M ∈L(A). Conversely, if M ∈L(A), then M ∈MSCfin

∃B(P , �) and �B is a linearization
of M . Moreover, M�B ∈ LinB(L), hence M ∈ L. �

The extension of Fact 8 to infinite MSCs requires some extra work since the order type of �B need not be at most ω.
We denote by MSCω

∃B(P , �) the set of infinite ∃B-bounded MSCs.

Theorem 5. Let B ∈N and L ⊆MSCω
∃B(P , �). The following are equivalent:

1. L =L(A) for some CFM A .
2. L =L(�) for some MSO formula �.
3. LinB(L) is an ω-regular language.

The rest of Section 5.1 is devoted to the proof of (3) =⇒ (1), while (1) =⇒ (2) and (2) =⇒ (3) are again standard.
Recall that we cannot exactly proceed as in the case of finite MSCs, as the canonical linear order associated with an infinite
existentially bounded MSC is not necessarily of order type ω. We therefore adopt decomposition techniques and results
from [62] and [40], where Mazurkiewicz traces and universally bounded MSCs are considered, respectively. We first define a
decomposition of an existentially bounded MSC into a finite part and boundedly many disconnected infinite parts M j such
that the canonical linear order of each M j is in fact of order type ω, i.e., a canonical linearization (Lemma 16). Similarly,
the given ω-regular word language LinB(L) can be described as the composition of regular (and therefore EMSO-definable)
finite and shuffled infinite parts such that the infinite parts correspond to linearizations of the MSCs M j (Lemmas 18–20).
The corresponding EMSO formulas over words can then be transformed into EMSO formulas over MSCs using FO-definability
of canonical linearizations (Lemma 21). In this step, it is crucial that the separate infinite parts M j actually have canonical
linearizations. This guarantees that word formulas for linearizations are faithfully simulated by the associated formulas over
MSCs. Using our main result, Theorem 4, we can now conclude that there is a CFM for the target language L.

Let us be precise. We start by defining a decomposition of infinite MSCs such that in each component of the decompo-
sition, �B is of order type at most ω.

Let M = (E, →, �, loc, λ) ∈MSCω
∃B(P , �). We denote by Typesfin(M) (resp. Typesinf(M)) the set of types that occur

finitely many times (resp. infinitely often) in M:

Typesfin(M)= {type(e) | e ∈ E ∧ { f ∈ E | type(e)= type(f)} is finite}
Typesinf(M)= {type(e) | e ∈ E ∧ { f ∈ E | type(e)= type(f)} is infinite} .

We then let

Efin = {e ∈ E | ∃ f ∈ E : e ≤B f ∧ type(f) ∈ Typesfin(M)} and E inf = E \ Efin .

Recall that ≤B = (≤ ∪ revB)∗ . The definition of Efin and E inf depends not only on M , but also on the given bound B . Note
that Efin and E inf are not necessarily �-closed: there may be some send events in Efin whose matching receive events are
in E inf (the converse is not possible, since Efin is downward closed). However, since M is B-bounded, there are at most B
unmatched sends in Efin for every channel (p, q).

Lemma 15. There exists a B-bounded linearization � of M such that for all e ∈ Efin and f ∈ E inf , e � f .

Proof. Recall that a linearization of M is B-bounded if and only if it contains ≤B .
Let � be any B-bounded linearization of M , and �′ the concatenation of its restrictions to Efin and E inf. That is, e �′ f

if and only if e ∈ Efin and f ∈ E inf, or e � f and e, f ∈ Efin, or e � f and e, f ∈ E inf. Clearly, �′ is a total order on E . Let us
show that for all e ≤B f , we have e �′ f . Since � is a B-bounded linearization of M , we have e � f , and thus, if e, f ∈ Efin

or e, f ∈ E inf, we get e �′ f . If e ∈ Efin and f ∈ E inf, then e �′ f by definition. Finally, we cannot have e ∈ E inf and f ∈ Efin

since Efin is downward-closed with respect to ≤B . �

46 B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53
We further decompose E inf into its connected components, as follows. We denote by P1, . . . , Pm the maximal connected
components of the undirected communication graph at infinity (P , {{p, q} | Typesinf(M) ∩ {p!q, q!p} 	= ∅}). For all 1 ≤ j ≤m,
we then let

E j = E inf ∩
⋃

p∈P j

E p .

Note that, by definition, every E j is infinite.
Finally, we associate with Efin, E inf, and each E j the following MSCs over �lin:

Mfin = (Efin,→∩ Efin × Efin,�∩ Efin × Efin, loc|Efin , (λ× type)|Efin)

M inf = (E inf,→∩ E inf × E inf,�∩ E inf × E inf, loc|E inf , (λ× type)|E inf)

M j = (E j,→∩ E j × E j,�∩ E j × E j, loc|E j , (λ× type)|E j) .

Note that send events of M which are located in Efin and whose matching receive event is in E inf become internal events
in Mfin, and similarly for unmatched receive events in the infinite part. Adding the types of all events to the labeling allows
us to maintain any information on M in its decomposition.

Lemma 16. For all M j with 1 ≤ j ≤m, �B is of order type ω.

Proof. This is in fact true of any linear extension of ≤B , and not just the canonical �B . We want to prove that for every
e ∈ E j , the set { f ∈ E j | f �B e} is finite. To do so, it suffices to prove that for all p ∈ P j , there exists f ∈ E j

p such that e ≤B f
(and thus e �B f). By definition of P j , there exists a path p1, . . . , p� such that p1 = loc(e), p� = p, and for all 1 ≤ i < �, M j

contains infinitely many events of type pi !pi+1 or pi?pi+1. If M j contains infinitely many events of type pi !pi+1, then for all
e′ on process pi , there exist f ′ on process pi and g′ on process pi+1 such that e′ ≤proc f ′ and f ′ � g′ , hence e′ ≤B g′ . If M j

contains infinitely many events of type pi ?pi+1, then for all e′ on process pi , there exist f ′ on process pi and g′ on process
pi+1 such that e′ ≤proc f ′ and f ′ revB g′ , hence e′ ≤B g′ . Therefore, we obtain events e2, . . . , e� on processes p2, . . . , p� = p
such that e ≤B e2 ≤B · · · ≤B e� . �

To avoid any ambiguity, in this proof, we write e.g. FO[�, P , ≤, �] or FO[�lin, P , ≤, �], rather than FO[≤, �], so as to
distinguish between formulas over MSCs over � and P , and MSCs over �lin and P coming from decompositions. We also
denote by FO[�lin, �], EMSO[�lin, �], and MSO[�lin, �] formulas over word linearizations, �lin being the alphabet, and �
the underlying total order.

In the rest of the proof, we restrict to MSCs M having a fixed set T = Typesinf(M) of types at infinity, with maximal
connected components of the induced communication graph at infinity being P1, . . . , Pm . We decompose �lin into disjoint
subalphabets �fin

lin , �1
lin, . . . , �

m
lin as follows. First, we denote by �inf

lin the set of all (a, t) ∈ �lin such that t ∈ T and �fin
lin =

�lin \�inf
lin . We further decompose �inf

lin into �1
lin, . . . , �

m
lin , where � j

lin denotes the set of pairs of the form (a, p), (a, p!q) or
(a, p?q) with p ∈ P j (by definition of the decomposition, this is also equivalent to q ∈ P j). Note that, while every event in
M j is labeled with a letter in � j

lin , events in Mfin may have labels in any of the alphabets �fin
lin , �1

lin, . . . , �
m
lin . However, the

labels of all ≤B -maximal events of M j are in �fin
lin .

For words u, v ∈ �∗lin ∪�ω
lin , we denote by u $$v the shuffle of u and v , i.e., the set of words w ∈ �∗lin ∪�ω

lin that are a
possible interleaving of u and v .

Now, let L ⊆MSCω
∃B(P , �) be a set of MSCs with types at infinity T . We decompose words in LinB(L) according to

the decomposition of their corresponding MSCs. More precisely, for w ∈ LinB(L), we denote by wfin, w inf, w1, . . . , wm the
restrictions of w to positions denoting events located respectively in the parts Mfin, M inf, M1, . . . , Mm of the corresponding
MSC M ∈ L. That is, wfin ∈ �∗lin�

fin
lin ∪ {ε} denotes a linearization of Mfin, w inf ∈ (

�inf
lin

)ω
denotes a linearization of M inf,

and w j ∈
(
�

j
lin

)ω
denotes a linearization of M j . Moreover, w is a shuffle of wfin and w inf, and w inf is itself a shuffle of

w1, . . . , wm .

Lemma 17. For all w ∈ LinB(L), we have wfin w inf ∈ LinB(L) and wfin ·$$m
j=1 w j ⊆ LinB(L).

Proof. Let M ∈ L be the MSC corresponding to w . As in Lemma 15, the word wfin w inf is also a B-bounded linearization of
M , and thus in LinB(L). In addition, any v ∈$$m

j=1 w j corresponds to a possible B-bounded linearization of M inf . Indeed,
since there are no causal dependencies between events in distinct M j , any interleaving of the B-bounded linearizations
w1, . . . , wm of the different components yields a B-bounded linearization of M inf . This means that we also have wfin v ∈
LinB(L). �

B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53 47
Lemma 18. If LinB(L) is an ω-regular language then there is a finite sequence of pairs of regular languages (K1, L1), . . . , (Kk, Lk),
with Ki ⊆�∗lin and Li ⊆�ω

lin, such that{
(wfin, w inf) | w ∈ LinB(L)

}
=

⋃
1≤i≤k

Ki × Li .

Moreover, for all 1 ≤ i ≤ k and (v1, . . . , vm) ∈ (�1
lin

)ω × · · · × (
�m

lin

)ω
, if Li ∩$$m

j=1 v j 	= ∅ then $$m
j=1 v j ⊆ Li .

Proof. In order to distinguish, in a linearization, between positions that correspond to the finite or infinite part of the
MSC, we define a formula x ≤B y such that, for all prefixes u of B-bounded linearizations w ∈ �ω

lin of some MSC M ∈
MSCω

∃B(P , �), and for all positions i and j in u, we have u, [x �→ i, y �→ j] |= x ≤B y if and only if the pair of events in
M associated to positions (i, j) is in the relation ≤B . We first introduce an MSO[�lin, �] formula x � y with an analogous
semantics. The formula simply says that (i) x is a write to channel (p, q) and y a read from channel (p, q), for some
(p, q) ∈ Ch, (ii) between x and y, there are less than B messages sent, and read, on channel (p, q), (iii) the count modulo B
of messages sent on channel (p, q) up until x, and of messages read from channel (p, q) up until y, are identical. We also
let x ≤proc y := x � y ∧ proc(x) = proc(y), where proc(x) = proc(y) is a simple disjunction on the possible labels of x and y.
It is then easy to define x ≤B y from the formulas x � y and x ≤proc y.

We can now define the regular language K ⊆ �∗lin by the MSO[�lin, �] formula ∀x.∃y.
(

x≤B y ∧∨
(a,t)∈�fin

lin
(a, t)(y)

)
.

Notice that K contains all finite parts wfin of words w ∈ LinB(L).
Let ∼⊆ K × K be the equivalence relation defined by u ∼ v if u−1LinB(L) = v−1LinB(L). Since LinB(L) is regular, ∼ is of

finite index. We let K1, . . . , Kk be the elements of K/∼, and for all 1 ≤ i ≤ k, Li =
(

K−1
i LinB(L)

)
∩ (�inf

lin

)ω
.

Let w ∈ LinB(L). By Lemma 17, we have wfin w inf ∈ LinB(L). Moreover, wfin ∈ K , so there exists i such that wfin ∈ Ki . Then
w inf ∈ K−1

i LinB(L) ∩ (
�inf

lin

)ω
, thus (wfin, w inf) ∈ Ki × Li . Conversely, if (u, v) ∈ Ki × Li , then u′v ∈ LinB(L) for some u′ ∈ Ki .

Hence, u ∼ u′ and w = uv ∈ LinB(L). In addition, since v contains only letters from �inf
lin , u contains all positions from wfin.

Since u is in K , it also contains only positions from wfin, that is, u = wfin. It follows that v = w inf.
Finally, we prove that each Li is closed under commutation of letters in distinct subalphabets � j

lin . Let (v1, . . . , vm) ∈(
�1

lin

)ω × · · · × (
�m

lin

)ω
such that there exists some v ∈ Li ∩$$m

j=1 v j . Since v ∈ Li , there exist u ∈ Ki and w ∈ LinB(L) such
that u = wfin and v = w inf. Since the alphabets � j

lin are disjoint, this implies v j = w j for all j. By Lemma 17, this means
u ·$$m

j=1 v j ⊆ LinB(L), hence $$m
j=1 v j ⊆ u−1LinB(L) ∩ (�inf

lin

)ω = Li . �
To further decompose each Li according to the partition of w inf into w1, . . . , wm , we apply the lemma below, proven

e.g. in [40, Theorem 4.11].

Lemma 19. Let R be an ω-regular language over a finite alphabet � =�1 % · · · %�m. Suppose that every word from R contains every
letter from � infinitely often and that, for all (u1, . . . , um) ∈ �ω

1 × · · · ×�ω
m, u1 $$ · · · $$um ∩ R 	= ∅ implies u1 $$ · · · $$um ⊆ R.

Then R is a finite union of languages of the form R1 $$ · · · $$Rm, where R j is an ω-regular language over � j .

Lemma 20. If LinB(L) is an ω-regular language then there is a finite sequence of tuples of regular languages (K ′1, L1
i , . . . , L

m
i)1≤i≤�

such that{
(wfin, w1, . . . , wm) | w ∈ LinB(L)

}
=

⋃
1≤i≤�

K ′i × L1
i × · · · × Lm

i .

Proof. We apply Lemma 18 and then Lemma 19 to each Li . We obtain a finite family (K ′i , L
1
i , . . . , L

m
i)1≤i≤� such that all

K ′i ⊆�∗lin are regular languages and all L j
i ⊆ (�

j
lin)

ω
are ω-regular languages, and

{
(wfin, w inf) | w ∈ LinB(L)

}
=

⋃
1≤i≤k

K ′i ×
m$$

j=1

L j
i .

Moreover, for all w ∈ LinB(L), (w1, . . . , wm) is the unique decomposition of w inf as a shuffle of words in the subalphabets
�1

lin, . . . , �
m
lin , which means that w inf ∈$$m

j=1 L j
i if and only if (w1, . . . , wm) ∈ L1

i × · · · × Lm
i . We obtain{

(wfin, w1, . . . , wm) | w ∈ LinB(L)
}
=

⋃
K ′i × L1

i × · · · × Lm
i . �
1≤i≤�

48 B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53
Since all languages K ′i and L j
i from Lemma 20 are regular or ω-regular, they can be defined in EMSO[�lin, �]. This

translates into a set of tuples of EMSO[�lin, �, ≤] formulas over MSC decompositions (using the canonical decomposition
similarly to the proof for finite MSCs):

Lemma 21. If LinB(L) is an ω-regular language then there exists a finite set of tuples of EMSO[�lin, P , �, ≤] sentences
(�i, �1

i , . . . , �
m
i)1≤i≤� such that for all M ∈MSCω

∃B(P , �) with Typesinf(M) = T , we have M ∈ L if and only if there exists i

such that Mfin |=�i and M j |=�
j
i for all 1 ≤ j ≤m.

Proof. Let (K ′1, L1
i , . . . , L

m
i)1≤i≤� be as in Lemma 20. There are EMSO[�lin, �] formulas �̂i, ̂�1

i , . . . , ̂�
m
i such that K ′i =L(�i)

and L j
i = L(�

j
i) for all i, j. Let �i, �1

i , . . . , �
m
i be the EMSO[�lin, P , ≤, �] formulas obtained by replacing, in these

EMSO[�lin, �] formulas, every predicate x � y with the FO[�lin, P , ≤, �] formula defining the canonical linearization �B .
Let M ∈MSCω

∃B(P , �) with types at infinity T , and let u ∈�∗lin, v1 ∈ (�1
lin)

ω
, . . . , vm ∈ (�m

lin)
ω be the canonical lineariza-

tions of the MSCs M inf, M1, . . . , Mm (by Lemma 16, this is well-defined). Let w ∈ u · $$m
j=1 v j . Then w is a B-bounded

linearization of M .
We have M ∈ L if and only if w ∈ LinB(L), which means, by Lemma 20, if and only if there exists i such that u |= �̂i and

v j |= �̂
j
i for all j, that is, if and only if there exists i such that M inf |=�i and M j |=�

j
i for all j. �

Finally, we conclude the proof of Theorem 5 (3) =⇒ (1). First, we can assume that all MSCs M ∈ L have the same set T =
Typesinf(M) of types at infinity. Indeed, properties (1), (2), and (3) hold for L if and only if they hold for every restriction of L
to a particular set T of types at infinity. Now, by Theorem 4, definability of MSCω

∃B(P , �) and Lemma 21, it is now enough
to construct an EMSO[�, P , �, ≤] formula � such that, for all M ∈MSCω

∃B(P , �), we have M |=� if and only if there exists
i such that Mfin |=�i and M j |=�

j
i for all 1 ≤ j ≤m. First, we can define FO[�, P ,�,≤] formulas fin(x), inf 1(x), . . . , inf m(x)

that hold precisely at events in Mfin, M1, . . . , Mm , respectively. Let �̃i be the FO[�, P ,�,≤] formula obtained from �i by
(i) restricting every quantification to events in Mfin, for instance, replacing ∃x.ξ with ∃x.fin(x) ∧ ξ , and (ii) replacing �lin

predicates in a straightforward way, for instance, the formula (a, p?q)(x) is replaced with a(x) ∧ p(x) ∧ ∃y.q(y) ∧ y � x. We
define similarly formulas �̃ j

i relativized to M j . We then let

�=
∨

1≤i≤�

⎛⎝�̃i ∧
∧

1≤ j≤m

�̃
j
i

⎞⎠ .

5.2. Temporal logic

The transformation of temporal-logic formulas into automata has many applications, ranging from synthesis to verifi-
cation. Temporal logics are well understood in the realm of sequential systems where formulas can reason about linearly
ordered sequences of events. As we have seen, executions of concurrent systems are actually partially ordered. Over partial
orders, however, there is no longer a canonical temporal logic like LTL over words. Several natural temporal logics have
been studied over Mazurkiewicz traces (see [26] for an overview). Starting from a formula in all these logics, we can always
construct an equivalent asynchronous automaton [64], a standard model of shared-memory systems. We will show below
that this is still true when formulas are interpreted over MSCs and the system model is given in terms of CFMs.

Many temporal logics over partial orders are captured by the following generic language, which we will call
TL(Co, �, �−1, Ũ, S̃). Its formulas are defined as follows:

ϕ ::= a | p | ϕ ∨ ϕ | ¬ϕ | Coϕ | 〈�〉ϕ | 〈�−1〉ϕ | ϕ Ũ ϕ | ϕ S̃ ϕ where a ∈�, p ∈ P .

A formula ϕ ∈ TL(Co, �, �−1, Ũ, S̃) is interpreted over events of MSCs. We say that M, e |= a if λ(e) = a; similarly, M, e |= p
if loc(e) = p. The Co modality jumps to a parallel event: M, e |= Coϕ if there exists f ∈ E such that e 	≤ f , f 	≤ e, and
M, f |= ϕ . The message modality goes to the matching receive: M, e |= 〈�〉ϕ if e � f for some f ∈ E such that M, f |= ϕ .
The definition is symmetric for 〈�−1〉ϕ . We use strict versions of until and since:

M, e |= ϕ1 Ũ ϕ2 if there exists f ∈ E such that e < f and M, f |= ϕ2
and, for all e < g < f , M, g |= ϕ1

M, e |= ϕ1 S̃ ϕ2 if there exists f ∈ E such that f < e and M, f |= ϕ2
and, for all f < g < e, M, g |= ϕ1 .

We define derived modalities Xp , Yp and Up , with the following meaning: Xp moves to the first event on process p that
is in the strict future of the current event, while Yp moves to the last event on process p that is in the strict past of the
current event; finally, Up is the usual LTL (non-strict) until for a single process p, evaluated at the current event if it is on
process p, or the first event of its future that is on process p otherwise:

B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53 49
Xp ϕ := ¬p Ũ (p ∧ ϕ)

Yp ϕ := ¬p S̃ (p ∧ ϕ)

ϕ1 Up ϕ2 := p ∧
(
ϕ2 ∨

(
ϕ1 ∧ (¬p ∨ ϕ1) Ũ (p ∧ ϕ2)

))
.

This temporal logic and others have been studied in the context of Mazurkiewicz traces [26,27,57,16]. The logic intro-
duced by Thiagarajan in [57] uses an until modality similar to Up , except that if the current event is not on process p, the
evaluation starts at the latest event on process p in the past of the current event (or the first event of process p if none
exists). The second temporal modality of this logic is a unary modality Op interpreted as follows: Op ϕ holds at e if the first
event on process p that is not in the past of e satisfies ϕ . Both can similarly be expressed in TL(Co, �, �−1, Ũ, S̃).

All these modalities can be easily translated into FO[→, �, ≤], and thus we can apply Theorem 1 and Proposition 3 to
translate any TL(Co, �, �−1, Ũ, S̃) formula into a transducer which determines the set of events where the formula holds.
However, this approach does not give any guarantee on the size of the resulting transducer. Instead, we present a direct
translation from TL(Co, �, �−1, Ũ, S̃) to PDLsf[Loop], leading to a transducer of size exponential in the size of the formula
and doubly exponential in the number of processes.

Theorem 6. For all ϕ ∈ TL(Co, �, �−1, Ũ, S̃, Xp, Yp, Up), there exists a transducer Aϕ with 2|ϕ|·2O (|P | log |P |)
states per process such

that �Aϕ� = {(M, Mϕ) | M ∈MSC(P , �)}.

Proof. Similarly to the proof of Lemma 10, we will first translate every modality Mod into a transducer BMod . In particular,
if Mod is a unary modality, then BMod is a transducer from {0, 1} to {0, 1}, and if it is binary, then BMod is a transducer
from {0, 1}2 to {0, 1}. Consider, for example, Mod= Co. For M = (E, →, �, loc, λ × γ) with λ, γ : E → {0, 1}, we will have
M ∈L(BCo) iff, for all events e ∈ E ,

M, e |= out ⇐⇒ M, e |= Co in

with temporal-logic formulas out =∨
a∈{0,1}(a, 1) and in =∨

b∈{0,1}(1, b). Now suppose Mod = Ũ. Then, for M = (E, →,

�, loc, λ × γ) with λ : E →{0, 1}2 and γ : E →{0, 1}, we will get M ∈L(BŨ) iff, for all events e ∈ E ,

M, e |= out ⇐⇒ M, e |= in1 Ũ in2 ,

where out =∨
a,b∈{0,1}((a, b), 1), in1 =∨

a,b∈{0,1}((1, a), b), and in2 =∨
a,b∈{0,1}((a, 1), b). In the following, we will exploit

that, in the unary and the binary case, the formulas out, in, in1, and in2 can also be considered as event formulas from
PDLsf[Loop].

The number of states per process of BMod will be bounded by 22O (|P | log |P |)
. We then compose these transducers for a

given formula ϕ ∈ TL(Co, �, �−1, Ũ, S̃, Xp, Yp, Up), just like in the proof of Lemma 10, so that we finally obtain the desired
transducer Aϕ with 2|ϕ|·2O (|P | log |P |)

states per process. Note that this procedure is in the spirit of [26,27], where formulas
from temporal logics with MSO-definable modalities over Mazurkiewicz traces are translated into small Büchi automata.

We obtain BMod as the transducer AξMod according to Theorem 2, where

ξMod = A
(
out ⇐⇒ ψMod

)
is a PDLsf[Loop] sentence of size 2O (|P | log |P |) . It remains to specify the event formulas ψMod , which we address in the
following.

Let � denote the set of PDLsf[∅] path formulas

π = π1 ·�p1,p2 · +−→ ·�p2,p3 · · · +−→ ·�pm−1,pm ·π2

with 1 ≤m ≤ |P |, p1, . . . , pm ∈ P and pi 	= p j for 1 ≤ i < j ≤m, π1, π2 ∈ { +−→, {true}?} and π 	≡ {true}?. Note that for all
events g, h, we have g < h if and only if M, g, h |= π for some π ∈ �. Given π ∈ �, we then define a state formula
is-next(π) in PDLsf[Loop] such that for all events e, we have M, e |= is-next(π) if and only if min�π�(e) is well-defined, and
is the minimal event on its process which is in the future of e:

is-next(π)= 〈π〉∧
∧

π ′∈�

¬Loop(min π · +←− · (π ′)−1) .

Symmetrically, we let

is-latest(π)= 〈π−1〉∧
∧

π ′∈�

¬Loop(max (π−1) · +−→ ·π ′)

so that M, e |= is-latest(π) if and only if there exists p ∈ P such that �max π−1�(e) = max{g ∈ E p | g < e}. Note that ∅ 	=
�π−1�(e) ⊆ {g ∈ E p | g < e} which is finite, hence its maximum is well-defined. Given the special shape of π , we can

50 B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53
simplify the definitions of min π and max π−1 to obtain formulas of size O (|P |), so that both is-next(π) and is-latest(π)

are of size 2O (|P | log |P |) . For instance, if π =�p1,p2 · +−→ ·�p2,p3 · · · +−→ ·�pm−1,pm · +−→, we have

max π−1 ≡ {¬〈�−1
pm−1,pm 〉}?←−−−−−−−−−− ·�−1

pm−1,pm
· {¬ 〈�

−1
pm−2,pm−1

〉}?←−−−−−−−−−−− ·�−1
pm−2,pm−1

· · ·�−1
p1,p2

.

We now determine the formulas ψMod for each modality in the temporal logic. The base cases and message modalities
are trivial.

• Suppose that Mod= Xp (the case Mod= Yp is similar). We let

ψXp =
∨
π∈�

〈π〉 p ∧ is-next(π)∧ 〈min π〉 in ,

where, as above, in=∨
b∈{0,1}(1, b). The formula ψXp is of size 2O (|P | log |P |) . Notice that if we are already on process p

then we get a simpler, constant size, formula ψp∧Xp = 〈→〉 in.
• Suppose that Mod= Up . We use the constant size formula

ψUp = p ∧
(

in2 ∨
(
in1 ∧ 〈 in1−→〉 in2

))
.

• Suppose that Mod= Ũ (the case Mod= S̃ is similar). Notice that in order to determine if ψŨ is true at a given event e,
it suffices to consider all potential “minimal” events f > e such that M, f |= in2 and check whether M, g |= in1 for all
e < g < f . More precisely, we have M, e |= in1 Ũ in2 if and only if there exists π ∈� such that f = �min (π · {in2}?)�(e)
is well-defined and for all e < g < f , M, g |= in2, that is, if and only if M, e |=ψŨ , where

ψŨ =
∨
π∈�

〈π〉 in2 ∧
∧

σ ,τ∈�

¬Loop(σ · {¬in1}? · τ · (min (π · {in2}?))−1) .

The formula ψŨ is of size 2O (|P | log |P |) .
• Suppose that Mod= Co. Given e, f ∈ E with loc(f) = q 	= loc(e), we have f ‖ e if and only if one of the following holds:

(a) all events on process q are parallel with e, (b) no event on q is in the past of e, and f <proc min{g ∈ Eq | e < g}, (c) no
event on q is in the future of e, and max{g ∈ Eq | g < e} <proc f , (d) max{g ∈ Eq | g < e} <proc f <proc min{g ∈ Eq | e < g}.
This leads to the following definition:

ψCo =
∨
p 	=q

σ ,τ∈�\{ +−→}

(
〈jumpp,q〉 in∧

∧
π∈�

¬〈π〉q ∧¬〈π−1〉q

)
∨

(
is-next(τ)∧ 〈min τ · +←−〉 (q ∧ in)∧

∧
π∈�

¬〈π−1〉q

)
∨

(
is-latest(σ)∧ 〈max (σ−1) · +−→〉 (q ∧ in)∧

∧
π∈�

¬〈π〉q

)
∨

(
is-latest(σ)∧ is-next(τ)∧ Loop(max (σ−1) · +−→ · {in}? · +−→ · (min τ)−1)

)
.

The formula ψCo is of size 2O (|P | log |P |) .

This concludes the proof of Theorem 6. �
Note that the transducer constructed in Theorem 6 is non-deterministic. Informally, a transducer from � to � is deter-

ministic if it can be obtained from a deterministic CFM over P and � by adding one output to each transition. So here a
first source of non-determinism is that all the transducers we constructed essentially “guess” their output. However, even if
we fix the output as part of the MSC and only want to construct a CFM which checks that the output is correct, it is not
possible to avoid non-determinism. We cannot even avoid it for simple past formulas, which is in contrast to what happens
for words or Mazurkiewicz traces.

Proposition 4. Assume that |�| ≥ 2 and |P | ≥ 3. For p ∈ P and a ∈ �, there is no deterministic CFM A over � × {0, 1} such that
L(A) = {(E, →, �, loc, λ × γ) | γ (e) = 1 iff (E, →, �, loc, λ), e |= Yp a}.

B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53 51
0

e0

1

e1

g0 g1

0

e2

1

e3

g2 g3

0

e4

1

e5

g4 g5

0

e6

1

e7

g6 g7

0

e8

1

e9

g8 g9

0

f0

0

f1

0

f2

1

f3

1

f4

1

f5

1

f6

1

f7

1

f8

1

f9

q

r

p

k n n− k

sk tk

Fig. 16. Definition of Mk . We only indicate the value of λ on process p, and of γ k on process q.

Proof. Let P = {p, q, r} and � = {0, 1}. We show that there exists no deterministic CFM recognizing the set L of MSCs
M = (E, →, �, loc, λ × γ) such that for all e ∈ Eq , γ (e) = 1 if and only if (E, →, �, loc, λ), e |= Yp 1. Assume that there
exists a deterministic CFM A = (Ap, Aq, Ar, Msg, Acc) such that L(A) = L. Fix n > |Sq|2, where Sq is the set of states of Aq .
For all k ∈ {0, . . . , n − 1}, we define an MSC Mk = (E, →, �k, loc, λ × γ k), as depicted in Fig. 16 (for n = 5 and k = 2):

• E p = {ei | 0 ≤ i < 2n}, Eq = { f i | 0 ≤ i < 2n}, and Er = {gi | 0 ≤ i < 2n}, with e0 → e1 → ·· · → e2n−1, f0 → f1 → ·· · →
f2n−1, and g0 → g1 → ·· ·→ g2n−1.

• For all 0 ≤ i < k, e2i �k f i , and for all k ≤ i < n, e2i �k fn+i .
For all 0 ≤ i < n, e2i+1 �k g2i , and g2i+1 �k fk+i .

• For all 0 ≤ i < n, λ(e2i) = 0 and λ(e2i+1) = 1.
For all h ∈ Er ∪ Eq , λ(h) = 0.

• For all 0 ≤ i < 2k − 1, γ k(f i) = 0, and for all 2k − 1 ≤ i < 2n, γ k(f i) = 1.
For all h ∈ E p ∪ Er , γ k(h) = 0.

Clearly, Mk ∈ L(A). Let sk and tk be the states before reading respectively fk and fk+n in the unique run ρk of A on Mk:
sk = source(ρk(fk)) and tk = source(ρk(fk+n)).

Note that for all k, the sequence of send and receive actions performed by process p or process r in Mk are the same, so
the runs of A on MSCs Mk only differ on process q. In particular, the sequence of n messages sent by process r to process
q is the same for all k. Moreover, since n > |Sq|2, there exist 0 ≤ k < k′ < n such that sk = sk′ and tk = tk′ . We can then
combine the runs of A on Mk and Mk′ to define a run where process q receives the messages from process p and r in
the same order as in Mk , but behaves as in Mk′ in the middle part where it receives the n messages from process r. More
precisely, let M = (E, →, �k, loc, λ × γ), where (E, →, �k, loc, λ) is as in Mk , and γ is defined as follows: γ (h) = 0 for all
h ∈ E p ∪ Er , γ (f i) = 0 for all 0 ≤ i < k + k′ − 1, and γ (f i) = 1 for all k + k′ − 1 ≤ i < n. Then, M ∈ L(A), but M /∈ L. �
5.3. The gossip problem

Gossiping is a technique used to maintain a consistent view of the global system state in a distributed system. The prob-
lem can be stated as follows: whenever process q receives a message from process r, q has to decide, for all processes p,
whether it has more recent information on p than r. This problem is at the heart of many distributed algorithms. Interest-
ingly, gossip protocols and related techniques, such as asynchronous mappings, have also been exploited in formal methods,
in particular when it comes to establishing the expressive power of automata models [50,15,49,20]. In particular, gossip
protocols are the key to simulating high-level specifications, which include message sequence graphs and monadic second-
order logic [35,28,40,64,58]. All known techniques and algorithms, however, require that communication be synchronous or
accomplished through FIFO channels with limited capacity.

We show that we can apply our results to construct a CFM that solves the gossip problem. This is defined more pre-
cisely below. Let M = (E, →, �, loc, λ) be an MSC and e ∈ E . For all processes p such that { f ∈ E p | f < e} 	= ∅, we let
latestp(e) =max{ f ∈ E p | f < e}. The gossip transducer should determine, for all processes p and all receive events e with
f � e, whether latestp(e) < latestp(f). We show that this property can be expressed in PDLsf[Loop] so that we can obtain
the gossip transducer as a corollary of Proposition 3.

Let � and is-latest(π) be defined as in the proof of Theorem 6. The property described above is expressed by the
PDLsf[Loop] formula below. It states that the event latestp(e) is obtained from e with max (σ−1) and the event latestp(f) is
obtained from f with max (τ−1). Then, it compares the two events using the loop modality.

52 B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53
∨
σ ,τ∈�
q,r∈P

〈σ−1〉 p ∧ is-latest(σ)∧ 〈�−1
q,r 〉 (〈τ−1〉 p ∧ is-latest(τ))

∧ Loop(max (σ−1) · +−→ · (max (τ−1))−1 ·�q,r) .

Note that the gossip CFM is unavoidably nondeterministic (this follows from Proposition 4). This is in contrast to the
deterministic protocols for synchronous communication or message-passing environments with bounded channels [50,15,
49,20].

6. Conclusion

In this paper, we showed that every FO[→, �, ≤] formula over MSCs is effectively equivalent to a CFM. As an intermedi-
ate step, we used a purely logical transformation of own interest, relating FO logic with a star-free fragment of PDL. While
star-free PDL constitutes a two-dimensional temporal logic over MSCs, we leave open whether there is a one-dimensional
one, with a finite set of FO-definable modalities, that is expressively complete for FO[→, �, ≤].

Though our result closes an important gap concerning the expressive power of CFMs, there remain interesting open
questions addressing both CFMs and automata on graphs in general:

First, it is still open whether every formula from the full PDL logic over MSCs can be translated into CFMs. In [9], only a
unidirectional fragment was considered. The difficulty comes with unrestricted usage of the star operator, which allows one
to go forth and back in an MSC unboundedly many times. While such two-way mechanisms do not add expressive power
in the setting of words, the situation is unclear in the realm of MSCs. It would already be interesting to solve this question
for more specialized structures such as pictures, which also come with natural notions of recognizability in terms of graph
acceptors and two-way automata [38].

Second, it is worthwhile to also study architectures with one unbounded FIFO channel per process (as considered, e.g.,
in [6]), or including pushdown processes. The latter give rise to multiply nested words, and it is an open question whether
every first-order formula over multiply nested words (including the total order and the push-pop relation) can be translated
into an equivalent multi-pushdown automaton (aka nested-word automaton). Unlike in MSCs, the matching relation of a
nested word is not monotone so that the techniques presented in this paper do not apply. Note that, when dropping the
total order and restricting to two nesting relations, one can still take advantage of Hanf’s theorem [11].

Finally, it will be interesting to see whether the technique from Section 5 can be applied to other meaningful classes of
MSCs so as to obtain logical characterizations of restricted CMFs in terms of full MSO logic.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

References

[1] R. Alur, P. Madhusudan, Adding nesting structure to words, J. ACM 56 (3) (2009) 1–43.
[2] João Araújo, Formalizing sequence diagrams, in: Proceedings of the OOPSLA’98 Workshop on Formalizing UML. Why? How?, in: ACM SIGPLAN Notices,

vol. 10, ACM Press, New York, 1998.
[3] H. Attiya, J. Welch, Distributed Computing: Fundamentals, Simulations and Advanced Topics, John Wiley & Sons, 2004.
[4] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin, Two-variable logic on data words, ACM Trans. Comput. Log. 12 (4) (2011) 27.
[5] N. Bedon, Logic and branching automata, Log. Methods Comput. Sci. 11 (4) (2015).
[6] A. Bouajjani, C. Enea, K. Ji, S. Qadeer, On the completeness of verifying message passing programs under bounded asynchrony, in: Proceedings of

CAV’18, Part II, in: LNCS, vol. 10982, Springer, 2018, pp. 372–391.
[7] B. Bollig, M. Fortin, P. Gastin, Communicating finite-state machines and two-variable logic, in: 35th Symposium on Theoretical Aspects of Computer

Science (STACS 2018), in: Leibniz International Proceedings in Informatics, vol. 96, Leibniz-Zentrum für Informatik, 2018, pp. 17:1–17:14.
[8] B. Bollig, D. Kuske, Muller message-passing automata and logics, Inf. Comput. 206 (9–10) (2008) 1084–1094.
[9] B. Bollig, D. Kuske, I. Meinecke, Propositional dynamic logic for message-passing systems, Log. Methods Comput. Sci. 3 (2010) 16.

[10] B. Bollig, M. Leucker, Message-passing automata are expressively equivalent to EMSO logic, Theor. Comput. Sci. 358 (2–3) (2006) 150–172.
[11] B. Bollig, On the expressive power of 2-stack visibly pushdown automata, Log. Methods Comput. Sci. 4 (4-16) (2008).
[12] H. Björklund, T. Schwentick, On notions of regularity for data languages, Theor. Comput. Sci. 411 (4–5) (2010) 702–715.
[13] J. Büchi, Weak second order logic and finite automata, Z. Math. Log. Grundl. Math. 5 (1960) 66–92.
[14] D. Brand, P. Zafiropulo, On communicating finite-state machines, J. ACM 30 (2) (1983).
[15] R. Cori, Y. Métivier, W. Zielonka, Asynchronous mappings and asynchronous cellular automata, Inf. Comput. 106 (1993) 159–202.
[16] V. Diekert, P. Gastin, Pure future local temporal logics are expressively complete for Mazurkiewicz traces, Inf. Comput. 204 (11) (2006) 1597–1619.
[17] V. Diekert, P. Gastin, First-order definable languages, in: Jörg Flum, Erich Grädel, Thomas Wilke (Eds.), Logic and Automata: History and Perspectives,

in: Texts in Logic and Games, vol. 2, Amsterdam University Press, 2008, pp. 261–306.
[18] G. De Giacomo, M. Lenzerini, Boosting the correspondence between description logics and propositional dynamic logics, in: Proceedings of the 12th

National Conference on Artificial Intelligence, Seattle, WA, USA, July 31-August 4, 1994, vol. 1, AAAI Press/The MIT Press, 1994, pp. 205–212.
[19] V. Diekert, G. Rozenberg (Eds.), The Book of Traces, World Scientific, Singapore, 1995.
[20] D. Dolev, N. Shavit, Bounded concurrent time-stamping, SIAM J. Comput. 26 (2) (1997) 418–455.
[21] E.A. Emerson, C.-L. Lei, Modalities for model checking: branching time logic strikes back, Sci. Comput. Program. 8 (3) (Jun 1987) 275–306.
[22] C.C. Elgot, Decision problems of finite automata design and related arithmetics, Trans. Am. Math. Soc. 98 (1961) 21–52.
[23] M.J. Fischer, R.E. Ladner, Propositional dynamic logic of regular programs, J. Comput. Syst. Sci. 18 (2) (1979) 194–211.

http://refhub.elsevier.com/S0022-0000(20)30065-9/bib12F8F791B90A994093E7CF70243C066As1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib78D8F282C5DE7FE8B157CF733D542B04s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib78D8F282C5DE7FE8B157CF733D542B04s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib58D23F3EC2E2FB8B73521477A2F5D03Es1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib6D78E110D753C561028D2431D4ACE486s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib8AD55E435FD08824BE7C7D5D21464C10s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibE7460AF57DDE238044D892A52859A55Es1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibE7460AF57DDE238044D892A52859A55Es1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib90512BCC284131D52CFE770C5F86B8CDs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib90512BCC284131D52CFE770C5F86B8CDs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib898433477021BFFE64C573CBCC266AECs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibB2EEECE402F0CAE1FFED72A92770F2F6s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib8727F24AC8562396D29C54BC830BF8B2s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib74AB0BA848B7FD0ED980ED88D5AF6585s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib8FD22DD4695945D1B4C3E2C49E339370s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibAF24A942703E2D2FF5E52840BA536258s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib5F9BF17139D5BE43282AF50DC96E9E93s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib954CDDE9B8F98F0B9D6C548671FDA536s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib94AE5055A6911F012B0C20504ECEDEBDs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibE22D8E7094A5B3D595140F0E05BE4D73s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibE22D8E7094A5B3D595140F0E05BE4D73s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib0005F4EBF49C1BF54875A659F38E2B3Ds1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib0005F4EBF49C1BF54875A659F38E2B3Ds1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib0B05C7653B1FBF9449C60C49342E39A1s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib01532422848D7BEDCE508A41A55A0F14s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibBF9D6647015B05033529E4682ED3F44Fs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib9AD332F878F8C7915583DA9C0AFE335Fs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibB368E9051921432810C4CBFEE0B54569s1

B. Bollig et al. / Journal of Computer and System Sciences 115 (2021) 22–53 53
[24] D.M. Gabbay, Expressive functional completeness in tense logic, in: Uwe Mönnich (Ed.), Aspects of Philosophical Logic: Some Logical Forays into Central
Notions of Linguistics and Philosophy, Springer, Netherlands, Dordrecht, 1981, pp. 91–117.

[25] D.M. Gabbay, I. Hodkinson, M.A. Reynolds, Temporal Logic: Mathematical Foundations and Computational Aspects, vol. 1, Oxford University Press, 1994.
[26] P. Gastin, D. Kuske, Uniform satisfiability in PSPACE for local temporal logics over Mazurkiewicz traces, Fundam. Inform. 80 (1–3) (2007) 169–197.
[27] P. Gastin, D. Kuske, Uniform satisfiability problem for local temporal logics over Mazurkiewicz traces, Inf. Comput. 208 (7) (2010) 797–816.
[28] B. Genest, D. Kuske, A. Muscholl, A Kleene theorem and model checking algorithms for existentially bounded communicating automata, Inf. Comput.

204 (6) (2006) 920–956.
[29] B. Genest, D. Kuske, A. Muscholl, On communicating automata with bounded channels, Fundam. Inform. 80 (1–3) (2007) 147–167.
[30] S. Göller, M. Lohrey, C. Lutz, PDL with intersection and converse: satisfiability and infinite-state model checking, J. Symb. Log. 74 (1) (2009) 279–314.
[31] E. Grädel, M. Otto, On logics with two variables, Theor. Comput. Sci. 224 (1–2) (1999) 73–113.
[32] W. Hanf, Model-theoretic methods in the study of elementary logic, in: J.W. Addison, L. Henkin, A. Tarski (Eds.), The Theory of Models, North-Holland,

Amsterdam, 1965.
[33] L. Hella, M. Järvisalo, A. Kuusisto, J. Laurinharju, T. Lempiäinen, K. Luosto, J. Suomela, J. Virtema, Weak models of distributed computing, with connec-

tions to modal logic, Distrib. Comput. 28 (1) (2015) 31–53.
[34] J.Y. Halpern, Y. Moses, A guide to completeness and complexity for modal logics of knowledge and belief, Artif. Intell. 54 (2) (1992) 319–379.
[35] J.G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni, P.S. Thiagarajan, A theory of regular MSC languages, Inf. Comput. 202 (1) (2005) 1–38.
[36] ITU-TS, ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC99), Technical report, ITU-TS, Geneva, 1999.
[37] H. Kamp, Tense Logic and the Theory of Linear Order, PhD thesis, University of California, Los Angeles, 1968.
[38] J. Kari, C. Moore, New results on alternating and non-deterministic two-dimensional finite-state automata, in: Proceedings of STACS’01, Springer, 2001,

pp. 396–406.
[39] D. Kuske, Infinite series-parallel posets: logic and languages, in: Proceedings of ICALP’00, in: LNCS, vol. 1853, Springer, 2000, pp. 648–662.
[40] D. Kuske, Regular sets of infinite message sequence charts, Inf. Comput. 187 (2003) 80–109.
[41] A. Kuusisto, Modal logic and distributed message passing automata, in: Proceedings of CSL’13, in: LIPIcs, vol. 23, Schloss Dagstuhl - Leibniz-Zentrum

fuer Informatik, 2013, pp. 452–468.
[42] L. Lamport, Time, clocks, and the ordering of events in a distributed system, Commun. ACM 21 (7) (1978) 558–565.
[43] M. Lange, Model checking propositional dynamic logic with all extras, J. Appl. Log. 4 (1) (2006) 39–49.
[44] M. Lange, C. Lutz, 2-ExpTime lower bounds for propositional dynamic logics with intersection, J. Symb. Log. 70 (5) (2005) 1072–1086.
[45] M. Lohrey, A. Muscholl, Bounded MSC communication, Inf. Comput. 189 (2) (2004) 160–181.
[46] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers Inc., 1996.
[47] M. Marx, Conditional XPath, ACM Trans. Database Syst. 30 (4) (2005) 929–959.
[48] R. Mennicke, Propositional dynamic logic with converse and repeat for message-passing systems, Log. Methods Comput. Sci. 9 (2:12) (2013) 1–35.
[49] M. Mukund, K. Narayan Kumar, M.A. Sohoni, Bounded time-stamping in message-passing systems, Theor. Comput. Sci. 290 (1) (2003) 221–239.
[50] M. Mukund, M.A. Sohoni, Keeping track of the latest gossip in a distributed system, Distrib. Comput. 10 (3) (1997) 137–148.
[51] M. Raynal, Distributed Algorithms for Message-Passing Systems, Springer, 2013.
[52] F. Reiter, Distributed graph automata, in: Proceedings of LICS’15, IEEE Computer Society, 2015, pp. 192–201.
[53] F. Reiter, Asynchronous distributed automata: a characterization of the modal mu-fragment, in: Proceedings of ICALP’17, in: LIPIcs, vol. 80, Schloss

Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, pp. 100:1–100:14.
[54] L.J. Stockmeyer, The Complexity of Decision Problems in Automata Theory and Logic, PhD thesis, MIT, 1974.
[55] R.S. Streett, Propositional dynamic logic of looping and converse, in: Proceedings of STOC’81, ACM, 1981, pp. 375–383.
[56] G. Tel, Introduction to Distributed Algorithms, 2nd edition, Cambridge University Press, 2001.
[57] P.S. Thiagarajan, A trace based extension of linear time temporal logic, in: LICS’94, IEEE Computer Society, 1994, pp. 438–447.
[58] W. Thomas, On logical definability of trace languages, Report TUM-I9002, in: Proceedings of Algebraic and Syntactic Methods in Computer Science

(ASMICS), Technical University of Munich, 1990, pp. 172–182.
[59] W. Thomas, Languages, automata and logic, in: A. Salomaa, G. Rozenberg (Eds.), Handbook of Formal Languages, vol. 3, Springer, 1997, pp. 389–455.
[60] B.A. Trakhtenbrot, Finite automata and monadic second order logic, Sib. Math. J. 3 (1962) 103–131, in Russian, English translation in Amer. Math. Soc.

Transl. 59 (1966) 23–55.
[61] J.W. Thatcher, J.B. Wright, Generalized finite automata theory with an application to a decision problem of second-order logic, Math. Syst. Theory 2 (1)

(1968) 57–81.
[62] P.S. Thiagarajan, I. Walukiewicz, An expressively complete linear time temporal logic for Mazurkiewicz traces, Inf. Comput. 179 (2) (2002) 230–249.
[63] M.Y. Vardi, P. Wolper, An automata-theoretic approach to automatic program verification, in: Proceedings of LICS’86, IEEE Computer Society, 1986,

pp. 332–344.
[64] W. Zielonka, Notes on finite asynchronous automata, RAIRO Theor. Inform. Appl. 21 (1987) 99–135.

http://refhub.elsevier.com/S0022-0000(20)30065-9/bib1FA994CC97E09EB17DE9D28955D956CAs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib1FA994CC97E09EB17DE9D28955D956CAs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib27B333E9A536A29E36A26029A6E001B3s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibF89F610A0C0EF114DF573390F69B8B73s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibA16024070DD44D3F46A6698F02490DA2s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib3C9F32AB0021AAF26B7758BD94D01B31s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib3C9F32AB0021AAF26B7758BD94D01B31s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibE6272641CC88BAEBB0FA5C4FDA9CE407s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib8CFB22179154856701AC5E14AA96919As1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib26C55443F28F9A194CE40B449F3D32DAs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib99010580A388B710ADD1FC659BC15E03s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib99010580A388B710ADD1FC659BC15E03s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib818498A40072341D1F238B59AB28703Cs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib818498A40072341D1F238B59AB28703Cs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib44B83E9B2A39D33836D08E7ABDB5AC21s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibF7759414FE17E436E49CD645524F05C4s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib023BEE1BF2F4D210DC4832C5EC04EF6Bs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibDC4A9B4AC6B980C9DB10FB616B55585Bs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibE39B36281BCAB6EF322679AA7A816E7Es1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibE39B36281BCAB6EF322679AA7A816E7Es1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib525E5A2B1582F10A1814DB7039CC59ECs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib47174AEF271E1F170DEF965F1F1C268Fs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib285C3C26641913E779EB57FFA4923EE8s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib285C3C26641913E779EB57FFA4923EE8s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib9B177C6C18B74F2D5D432158918FA893s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibD55004A740884C5A5A8FA8A5176A72B9s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibC31F28B1707DC596276D4A1BB53602EBs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibCFDED017D2B9213699A54B7D67AC6C27s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib7FE8618A0C8E29C86988A1EB76500399s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib8854F13D7250325CF78A1311A9FEA7CFs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib337C22ACF86B676762DC546AC50167A4s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibE886FE042F77D00A3FCD462552F2CD7Bs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib059B53B4018EC3AA5C034B3AE5539841s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib3F30F6E6E1F7268B6FC0D4FFC8C6346Cs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibDA2C3B7253162EF653EE24B30490BE0As1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibA8916FBB9313C21652D9F48450F06010s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibA8916FBB9313C21652D9F48450F06010s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib84016F8B34E893C3F4D3A026979AC429s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibFA7897EFBD1153CAB21703F6B028AD06s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib1F32B5F6972240380A6F049D87EA3065s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib0C7C05430F1E2AEA7CB8DECF5BFCFA7As1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibF00284AE218664A5CAB9A8B83306A06Es1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibF00284AE218664A5CAB9A8B83306A06Es1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibB6205724708B1256F41BF7EB53BE1A19s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib755EBEAA31A9C143EE8FD9AB884CA74Bs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib755EBEAA31A9C143EE8FD9AB884CA74Bs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibD8929C01DCA948C631FDE6BDC78638F4s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibD8929C01DCA948C631FDE6BDC78638F4s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib6853CDA880EBE26DFA8EE9B77AF9BD0Cs1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib09A76EB8219461C6F872DE28C5EACDA0s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bib09A76EB8219461C6F872DE28C5EACDA0s1
http://refhub.elsevier.com/S0022-0000(20)30065-9/bibD2470A4E50173EB319546826C5815B09s1

	Communicating finite-state machines, first-order logic, and star-free propositional dynamic logic
	1 Introduction
	1.1 Context and known results
	1.2 Contribution
	1.3 Outline

	2 Preliminaries
	2.1 Message sequence charts
	2.2 MSO logic and its fragments
	2.3 Communicating finite-state machines
	2.4 An overview of known results

	3 Star-free propositional dynamic logic
	3.1 Syntax and semantics
	3.2 From PDLsf to FO3
	3.3 Basic properties of PDLsf
	3.4 Characterizing the complement of a path formula
	3.5 From FO to PDLsf

	4 From PDLsf[Loop] to CFMs
	4.1 Letter-to-letter MSC transducers
	4.2 Translation of PDLsf[Loop] event formulas into MSC transducers
	4.3 Translation of PDLsf[Loop] and FO Sentences into CFMs

	5 Applications
	5.1 Existentially bounded MSCs
	5.2 Temporal logic
	5.3 The gossip problem

	6 Conclusion
	References

