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a b s t r a c t

Many applications need to solve the deadline guaranteed packet scheduling problem.
However, it is a very difficult problem if three or more deadlines are present in a set
of packets to be scheduled. The traditional approach to dealing with this problem is to
use EDF (Earliest Deadline First) or similar methods. Recently, a non-EDF based algorithm
was proposed that constantly produces a higher throughput than EDF-based algorithms
by repeatedly finding an optimal scheduling for two classes. However, this new method
requires the two classes be non-overloaded, which greatly restricts its applications. Since
the overloaded situation is not avoidable from one iteration to the next in dealing
with multiple classes, it is compelling to answer the open question: Can we find an
optimal schedule for two overloaded classes efficiently? This paper first proves that this
problem is NP-complete. Then, this paper proposes an optimal preprocessing algorithm
that guarantees to drop a minimum number of packets from the two classes such that the
remaining set is non-overloaded. This result directly improves on the new method.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Because traditional output queued switches have poor scalability, input queuing (IQ) schemes become widely used
switching architecture [2–8]. In an input-queued switch, incoming packets are first queued on the input side, and then
scheduled so that they will be transmitted to destined output ports without output contention. A number of scheduling
algorithms have been proposed that are based on various maximumweighted matching (MWM), or maximal matching [3–
6]. They compute a (maximum or maximal) matching for each time slot. Since a matching pairs each input port to a unique
output port and vice versa, a packet from an input port can be transmitted to its matched output port without contention
in a scheduled slot.
Although some of these existing algorithms provide 100% throughput statistically [3–5], they do not provide

deterministic packet delay guarantees, which affects advanced applications. Moreover, they need to compute the matching
for every time slot, independently. As the slot time becomes shorter and shorter due to increasing line speed, a scalability
problem arises.
To reduce the time complexity, the frame-based packet scheduling has been proposed [9,10], where a frame consists of a

fixed number of consecutive time slots. The scheduling algorithm fetches the arriving packets buffered in the input side once
for each frame instead of each slot. When all packets in the current cycle (frame) are scheduled, the scheduling algorithm
fetches the packets in the buffer received during the current cycle and repeats the computation again. Depending on the
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size of the frame, the algorithm could produce schedules for many time slots in one execution. Since the frame length can be
designed according to the complexity of the algorithm, the frame-based scheduling effectively reduces the computational
complexity.
In order to provide guaranteed delay performance for IQ switches, we consider the following frame-based scheduling

problem: Given a set of packets each of which has a deadline, canwe find a feasible contention-free schedule such that every
packet can be transferred to its destined output port before its deadline? If no such a feasible schedule exists, how canwe find
a schedule that allows a maximum number of packets to meet their deadlines? These two related questions are called the
schedulability problem and the optimization problem, respectively [1]. Since deadline guarantee implies throughput and rate
guarantees, they have also been hot problems studied in the fields ofmulti-periodic satellite switches (SS/TDMA) scheduling,
optical network scheduling and real-time scheduling, etc. [12–15]. The deadlines for packets in these systems are either pre-
specified or determined by the current period [12,13], or derived from traffic requirements [14]. Paper [16] elaborates how
to compute the virtual time stamps (expected arrival and departing times) from the end-to-end delay requirement and
insert them into packets.
For the simplest case, where all packets have the same deadline, we can apply the Birkhoff-Von Neumann algorithm to

decompose the traffic matrix into a linear combination of permutation matrices, each corresponding to a contention-free
schedule for one time slot [11]. However,when three ormore deadlines are present in the packet set, the scheduling problem
becomes NP-complete [12]. Traditionally, EDF (Earliest Deadline First) algorithm or its variants are used to schedule the set.
Paper [13] provides a good survey of these algorithms.
Recently, we proposed a non-EDF based algorithm [1] called Flow-based Iterative Packet Scheduling (FIPS). A key

component of this algorithm is a procedure that produces an optimal schedule for a packet set with two classes (deadlines).
An optimal schedule is one that allows maximum number of packets to be transmitted before their deadlines. FIPS solves
the multi-class scheduling problem by repeatedly applying the procedure for two classes. Although this method seems very
promising, the existing procedure for two classes is only applicable when the traffic of the two classes is non-overloaded
(defined in Theorem 1, Section 2). Since the procedure may create an overloaded situation from one iteration to the next
(even all classes are non-overloaded initially), it is very much desired to know: Can we find an optimal schedule efficiently
for two overloaded classes?
This paper proves that the above optimization problem is NP-complete if both classes are overloaded. In order to deal

with the NP-completeness, this paper proposes a preprocessing algorithm that guarantees to drop a minimum number of
packets such that the remaining set is non-overloaded. This result directly improves on the current FIPS algorithm.
The rest of this paper is organized as follows. Section 2 introduces necessary notations and background to the deadline

guaranteed packet-scheduling problem. Section 3 proves the optimal scheduling problem for two overloaded classes is NP-
complete. Section 4 presents an optimal preprocessing algorithm and Section 5 concludes this paper.

2. Preliminaries

Consider an N × N input-queued switch. We assume that all packets have a fixed size. (Variable lengths are dealt with
by the segmentation and reassembly technique.) Accordingly, the time is divided into slots of a fixed length that equals to
the transmission time of a packet. Moreover, let T consecutive slots constitute a frame. In each time slot, according to a
schedule, the switch controller establishes N one-to-one connections from input ports to output ports that allow at most
one packet be transferred from each input port to the paired output port. Slots in each frame are numbered from 0. Slot k
covers time interval [tk, tk+1). A triple (i, j, d) is associated with a packet that is to be transmitted from input port i to output
port j with deadline td. It is possible that multiple packets have the same triple (i, j, d). If a packet of (i, j, d) is scheduled in
slot k, 0 ≤ k ≤ d, we say that it is deadline guaranteed.
Let S be a set of packets to be scheduled. For each fixed i, j, and d, 1 ≤ i, j ≤ N , let Sdi,j = {all packets of triple (i, j, d)}.

Also, let pdi,j =
∣∣Sdi,j∣∣, pdi =∑N

j=1 p
d
i,j, and q

d
j =

∑N
i=1 p

d
i,j.

Our goal is to find a schedule that allows a maximum number of packets to meet their deadlines. Packets that miss their
deadlines would be dropped. If a dropped packet has a deadline greater than T , it will join the next frame with its deadline
reduced by T from the current one.
Let Si,j(k) = {packets of (i, j, d) that are scheduled in slot k} and pi,j(k) =

∣∣Si,j(k)∣∣.
Since at most one packet can be transferred between an input port and an output port in any time slot, for any k, the

following conditions must be satisfied
N∑
j=1

pi,j(k) ≤ 1, i = 1, . . . ,N, and

N∑
i=1

pi,j(k) ≤ 1, j = 1, . . . ,N. (1)

Definition 1. A packet set S is called schedulable if a schedule exists such that conditions of (1) are satisfied and every packet
is deadline guaranteed.
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Definition 2. The schedulability problem is to determine whether a given packet set S is schedulable.

Let D be the set of distinct deadlines that occur in packet set S, D = {d1, d2, d3, . . . , dk}, 0 < d1 < d2 < d3 < · · · < dk.
The set of all packets with deadline di is called class i, i = 1, 2, . . . , k.
A necessary condition for set S to be schedulable is called non-overloaded conditions [1,11], which is stated in Theorem 1.

Theorem 1. Let S be a set of packets with distinct deadlines d1 < d2 < d3 < · · · < dk. The set S is schedulable only if the
following non-overloaded conditions are satisfied:

m∑
l=1

pdli ≤ dm + 1 and
m∑
l=1

qdlj ≤ dm + 1 for any i, j, and m, 1 ≤ i, j ≤ N, 1 ≤ m ≤ k. (2)

Theorem1 is obviously true because the number of packets arriving at any specific input port i (or destined to any specific
output port j) with deadlines less than or equal to dm cannot be larger than the number of time slots availablewhich is dm+1.
If set S is not schedulable, we wish to find a schedule that guarantees a maximum number of packets to meet their

deadlines. We define a related optimization problem.

Definition 3. Given a packet set S, an optimal schedule without priority structure is one that allows the maximum number of
packets tomeet their deadlines, or equivalently, it is one that drops theminimumnumber of packets such that the remaining
packets are schedulable.

Definition 4. Let S be a packet set with distinct deadlines d1 < d2 < d3 < · · · < dk. Let R be a feasible schedule after
dropping ni packets of class i, i = 1, 2, . . . , k. R is called an optimal schedule with priority structure if the sequence n1, n2, . . . ,
nk is lexicographically the smallest.

When S is schedulable, there is an optimal schedule that guarantees all packets to meet their deadlines without packet
dropping. It is proved that the schedulability problem is NP-complete when |D| ≥ 3. When |D| ≤ 2, some cases are solved
and some remains open. We summarize the results as follows.

A. The case |D| = 1.
In this case, the necessary condition (2) becomes a sufficient condition also [11]. We state it in Theorem 2.

Theorem 2. A packet set S is schedulable, where all packets have a common deadline d, if and only if (pdi ≤ d+1) and (q
d
j ≤ d+1)

for all i, j, 1 ≤ i, j ≤ N.

When condition (2) is satisfied, an optimal schedule can be found efficiently [1].
B. The case |D| = 2.
For this case, paper [1] showed an efficient algorithm for solving the schedulability problem and the optimization

problem with priority structure when the traffic is non-overloaded. An open question is whether the optimization problem
is polynomial solvable when the traffic is overloaded.

3. NP-completeness of the optimization problem for two classes

Suppose two deadlines, d1 < d2, are present in a packet set S that is to be scheduled on an N × N input-queued switch.
Let A = {packets with deadline d1}, B = {packets with deadline d2}, and S = A ∪ B. From Theorem 1, the non-overloaded
conditions are:

pd1i ≤ d1 + 1 (i = 1, . . . ,N) and qd1j ≤ d1 + 1 (j = 1, . . . ,N) (3)

and

pd1i + p
d2
i ≤ d2 + 1 (i = 1, . . . ,N) and qd1j + q

d2
j ≤ d2 + 1 (j = 1, . . . ,N). (4)

We will show that if neither condition (3) nor condition (4) is satisfied, then the optimal scheduling problem is NP-
complete. For convenience, class 1 and class 2 are also called class A and class B (or set A and set B), respectively. Before we
present the proof, we need to define a corresponding decision problem.

Definition 5. Let S be a packet set as defined above. The two-class dropping problem with priority structure is to determine
whether S can be scheduled by dropping at most p1 packets of class A and at most p2 packets of class B. We denote this
problem by Two-Class-Dropping-with-Priority(A, B, p1, p2).

Definition 6. For set A, we define the excess degree for each input port i and each output port j to be ad1i = p
d1
i − (d1 + 1)

and bd1j = q
d1
j − (d1 + 1) for all i, j, 1 ≤ i, j ≤ N , respectively.

Definition 7. For set A, we define the vacancy degree for each input port i and each output port j to be cd1i = d1 + 1 − p
d1
i

and ed1j = d1 + 1− q
d1
j for all i, j, 1 ≤ i, j ≤ N , respectively.
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Fig. 1. Vacancy degrees and excess degrees for set Awith d1 = 2 and set Bwith d2 = 4.

Fig. 1(a) shows an example of set A for a 5 × 5 switch with d1 = 2. The number at entry (i, j) is the number of class A
packets from input port i to output port j(= pd1i,j ), for all i, j, 1 ≤ i, j ≤ N . The vacancy degree and excess degree for each
input and output port are also given in Fig. 1(a). Note that cd1i = −a

d1
i and e

d1
j = −b

d1
j for all i, j, 1 ≤ i, j ≤ N .

Obviously, if an input (or output) port has a positive excess degree p, then at least p class A packets from (or to) this port
must be dropped.

Definition 8. For set B, we define the excess degree for each input port i and each output port j to be ad2i = p
d2
i − (d2 − d1)

and bd2j = q
d2
j − (d2 − d1) for all i, j, 1 ≤ i, j ≤ N , respectively.

Fig. 1(b) shows an example for set B, where d2 = 4.
If an input (or output) port has a positive excess degree p in set B, then at least p class B packets from (or to) this port

must be scheduled before time d1 or dropped. Those class B packets scheduled before time d1 are said to be promoted to
class A.

Theorem 3. The Two-Class-Dropping-with-Priority(A, B, p1, p2) problem is NP-complete.

Proof. Since this problem is clearly in NP class, we only need to show it is NP-hard. In the following, we show how to reduce
the 3-SAT problem [18] to this scheduling problem. Consider a Boolean formula φ that contains n Boolean variables, y1, y2,
. . . , yn.We assume thatφ is in 3-CNF (Conjunctive Normal Form)which consists ofm clauses connected by and (∧) operators,
φ = C1 ∧ C2 ∧ · · · ∧ Cm, where each Ci (1 ≤ i ≤ m) consists of exactly three distinct literals connected by or (∨) operators.
Given a 3-CNF formula, the 3-SAT problem is: Does there exist an assignment of the n variables such that the truth value of
the formula is true? If yes, we say that the 3-CNF is satisfiable.
Given a 3-CNF formula with n variables and m clauses, we construct a packet set S for the Two-Class-Dropping-with-

Priority(A, B, p1, p2) problem such that the 3-CNF formula is satisfiable if and only if the answer to the Two-Class-Dropping-
with-Priority(A, B, p1, p2) problem is true.
In our construction, we use d1 = 0 and d2 = 2. Details are given by the following two steps.

Step 1 For each variable x ∈ {y1, y2, . . . , yn}, construct a set of class A packets and class B packets as follows.
Suppose x occurs k times in φ and x occurs l times. Without loss of generality, let k ≥ l. The set of packets

constructed for these literals is illustrated by Fig. 2. We use xi (1 ≤ i ≤ k) to represent the ith occurrence of x
and xj (1 ≤ j ≤ l) to represent the jth occurrence of x.
In Fig. 2, each edge from an input port to an output port represents a packet. So, there are 4k class A packets and

7k class B packets related to variable x. Each of labels bi, xi, ui, vi, xi, 1≤ i ≤ k, represents a distinct port. Literal xi
corresponds to input port xi (1 ≤ i ≤ k) and literal xi corresponds to input port xi (1 ≤ i ≤ l). Because l ≤ k, ports
xi (l < i ≤ k) have no corresponding literals. If l > k, the construction can be done similarly, So, we assume l ≤ k for
every variable. Let us make some observations.
Because d1 = 0, either packet (bi, xi, 0) or (bi, xi, 0) in class Amust be dropped, 1≤ i ≤ k. Because of the priority

structure, we must drop exactly k packets from the 4k class A packets. Otherwise, the schedule cannot be optimal.
In addition, because input ports ui (1 ≤ i ≤ k) have an excess degree in class B but no vacancy degree in class A, we
must drop one class B packet from input port ui (1 ≤ i ≤ k). Therefore, at least we need to drop k class B packets.
Let variable yj (1 ≤ j ≤ n) occurs kj times in formula φ and yj occurs lj times, kj ≥ lj. Then, we need to drop at

least p1 =
∑n
j=1 kj class A packets and the same number of p2 = p1 =

∑n
j=1 kj class B packets to make the remaining

set schedulable.
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Fig. 2. The set of packets for variable x.

Fig. 3. Three more class B packets are added for each clause.

Step 2 For each clause Ci (1 ≤ i ≤ m), we construct three more class B packets as follows. Let α, β ,γ be the three literals
contained in Ci. We add three more class B packets as illustrated in Fig. 3, where Ci is a distinct port.

Now, we prove that the 3-CNF formula φ is satisfiable if and only if we can schedule the packets constructed above by
dropping p1 =

∑n
j=1 kj class A packets and the same number of p2 = p1 =

∑n
j=1 kj class B packets.

(i) Suppose formula φ is satisfiable. We schedule the packets in the following way.
We check each variable x ∈ {y1, y2, . . . , yn}. If x is assigned value true and occurs k times inφ, then all its k occurrences

must be assigned true and all occurrences of xmust be false. Thus, we drop all packets of (bi, xi, 0) (1 ≤ i ≤ k) from class
A. The remaining class A packets are obviously schedulable. Next, we promote all packets of (xi, xi, 2) (1≤ i ≤ k) from
class B to class A. Because (bi, xi, 0) has been dropped, the vacant output ports xi can be used for (xi, xi, 2) (1 ≤ i ≤ k).
Third, we drop all packets of (ui, xi, 2) (1 ≤ i ≤ k) from class B. Now, all remaining packets constructed in Step 1 are
schedulable. The case where x is assigned false is just a symmetric case. We omit details.
Now, we check each clause Ci (1 ≤ i ≤ m). Let α, β ,γ be the three literals contained in Ci. One of them must

be assigned true, say α is assigned true. Then we promote the packet (α, Ci, 2) to class A. Because α is assigned true,
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(α, α, 2) is not promoted. So, input ports α and output port Ci are available in slot 0 for (α, Ci, 2). Obviously, the two
remaining packets constructed in Step 2 are schedulable after this promotion. Therefore, we have proved that if formula
φ is satisfiable, then the packet set we constructed are schedulable by dropping p1 =

∑n
j=1 kj class A packets and the

same number of class B packets.
(ii) Suppose that the packet set we constructed is schedulable by dropping p1 =

∑n
j=1 kj class A packets and the same

number of class B packets. We shall show that the formula is satisfiable.
From the observations made in Step 1, for variable yj, we must drop kj class A packets of (bi, xi, 0) or (bi, xi, 0),

(1 ≤ i ≤ kj). We also must drop one class B packet from input port ui (1 ≤ i ≤ kj). Because class B packets have
excess degree one at each output port xi and xi, in order not to drop more packets, either (ui, xi, 2) or (ui, xi+1, 2) must be
dropped (1 ≤ i ≤ kj), where i+ 1 is assumed to be (i+ 1)mod kj, so that (i+ 1)mod kj = 1, when i = kj.
Consider the set U of packets (or edges) we discussed above for possible dropping.

U = {(bi, xi, 0) and (bi, xi, 0)|(1 ≤ i ≤ kj)} ∪ {(ui, xi, 2) and (ui, xi+1, 2)|(1 ≤ i ≤ kj)}.

Since all edges in set U form a single cycle, we must drop all packets of (bi, xi, 0) or all packets of (bi, xi, 0). If we drop
all packets of (bi, xi, 0), then we must promote all packets of (xi, xi, 2) and drop all packets of (ui, xi, 2), (1 ≤ i ≤ kj).
If we drop all packets of (bi, xi, 0), then we must promote all packets of (xi, xi, 2) and drop all packets of (ui, xi+1, 2),
(1 ≤ i ≤ kj). This means that if the packets constructed in Step 1 are schedulable after dropping p1 =

∑n
j=1 kj class A

packets and the same number of class B packets, then any feasible schedule must leave all input ports xi open in time
slot 0 or all input ports xi open, but not both. These two situations correspond to the two Boolean values of yj. If all ports
xi open in time slot 0 and yj occurs in clause Ci, then the packet (yj, Ci, 2) constructed in Step 2 for this occurrence can
be promoted to class A. However, any packet of (yj,Ci, 2) cannot be promoted. Because the packets set is schedulable
by dropping p1 =

∑n
j=1 kj class A packets and the same number of class B packets, at least one packet from clause Ci

is promoted to class A. Therefore, we assign true to literal α if packet (α, Ci, 2) is promoted to class A. This is a valid
assignment because, for any literal α, a packet of (α, Ci, 2) and a packet of (α, Cj, 2) cannot both be promoted. Moreover,
this assignment satisfies formula φ because at least one literal in each clause is assigned true. �

Now, we prove that the two-class dropping problem without priority structure is also NP-complete.

Definition 9. Let S be the same packet set as that in Definition 5. The two-class dropping problem without priority structure
is to determine whether S can be scheduled by dropping at most p packets that can belong to class A or class B. We denote
this problem by Two-Class-Dropping-without-Priority(A, B, p).

Theorem 4. The Two-Class-Dropping-without-Priority(A, B, p) problem is NP-complete.

Proof. The proof is almost the same as that for Theorem 3. We reduce the 3-SAT problem to this scheduling problem also.
Given a 3-CNF formula φ with n variables and m clauses, we construct a packet set S in exactly the same way as we did
in Theorem 3. Now we prove that formula φ is satisfiable if and only if the set S is schedulable by dropping a total of
p = 2

∑n
j=1 kj packets of class A or B.

(i) Suppose formula φ is satisfiable. Then we can drop p1 =
∑n
j=1 kj class A packets and the same number of class B packets

as we did in the proof of Theorem 3 such that the remaining set is schedulable. Obviously, the set S is schedulable by
dropping a total of p = 2

∑n
j=1 kj packets of class A or B.

(ii) Suppose that the packet set S is schedulable by dropping p = 2
∑n
j=1 kj class A or class B packets. We shall show that the

formulaφ is satisfiable.We notice that tomake S schedulable, among the packets constructed for variable yj, (1 ≤ j ≤ n),
we must drop at least the following packets:
(a) packet (bi, xi, 0) or (bi, xi, 0) in class A(1 ≤ i ≤ kj).
(b) one packet whose input port is ui, (1 ≤ i ≤ kj). That is, one of the four packets of (ui, ui, 0), (ui, xi, 2), (ui, xi+1, 2), (ui,
ui, 2) must be dropped (1 ≤ i ≤ kj). This is because the total number of available slots is three and there are four
packets at this port, one class A packet and three class B packets. Without priority structure, we allow to drop (ui, ui,
0) which is a class A packet.

Since the total number of packets we must drop in (a) and (b) is at least p = 2
∑n
j=1 kj, we must drop exactly one of (bi,

xi, 0) or (bi, xi, 0) in class A. Since we also have one excess degree at output pots xi and xi (1 ≤ i ≤ kj) in class B, in order
not to drop more packets, we must promote kj class B packets from these ports and drop kj class B packets from these ports,
which implies that we must drop kj class B packets of (ui, xi, 2) or (ui, xi+1, 2) (1 ≤ i ≤ kj) in part (b).
Therefore, we conclude that:

(1) All packets of (bi, xi, 0) (or all packets of (bi, xi, 0)) in class A(1 ≤ i ≤ kj) are dropped, but not both.
(2) Correspondingly, all packets of (ui, xi, 2) (or all packets of (ui, xi+1, 2)) (1 ≤ i ≤ kj) are dropped.
(3) All packets of (xi, xi, 2) (or all packets of (xi, xi, 2)) (1 ≤ i ≤ kj) are promoted.

Then the remaining proof can be done in exactly the same way we did for Theorem 3. �
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(a) The bipartite graph for set A. (b) The bipartite graph for set B.

Fig. 4. An illustration of bipartite graphs for set A and set B.

Fig. 5. An illustration of Step 4.

4. An optimal preprocessing algorithm

In order to deal with the NP-hardness of the two-class scheduling problem when the traffic is overloaded, we propose
a preprocessing algorithm that drops a minimum number of packets such that the remaining set is non-overloaded. Given
traffic matrices A and B as we defined in Section 3, we will transform them to a network flow problem, where every edge in
the network is labeled with two non-negative integers (α, β), where α is called a lower bound and β an upper bound. The
following procedure shows the steps for the transformation. We use the example in Fig. 1 to illustrate.

ProcedureNetwork-Graph (A, B,G)
Step 1 Compute excess degrees ad1i and b

d1
j for set A and excess degrees a

d2
i and b

d2
j for set B(1 ≤ i ≤ N).

Step 2 Construct a bipartite graph G1(U1, V1, E1) for set A, where U1 = {u1, u2, . . . , uN} are N vertices corresponding to
N input ports, V1 = {v1, v2, . . . , vN} are N vertices corresponding to N output ports. An edge (ui, vj) ∈ E1(1 ≤
i, j ≤ N) if there is a packet of (i, j, d1) in set A. The two bounds for this edge are α = 0, and β = p

d1
i,j , meaning

that a legal flow f (ui, vj) (an integer) on this edge must be between the two bounds and f (ui, vj) packets will be
dropped from set Sd1i,j . Fig. 4(a) shows the graph for the set A of Fig. 1, where, for clarity, the label on an edge is
not shown if it is (0, 1).

Step 3 Construct a bipartite graph G2(U2, V2, E2) for set B in the same way as for set A. Fig. 4(b) shows the graph for the
set B of Fig. 1. For this graph, U2 = {w1, w2, . . . , wN} and V2 = {z1, z2, . . . , zN}. The label for edge (wi, zj) is (0,
pd2i,j ).

Step 4 Union the two graphs constructed in Step 2 and Step 3 into a single bipartite graph. Then add N vertices
{x1, x2, . . . , xN } to the left side of the graph and another N vertices {y1, y2, . . . , yN } to the right side of the graph.
Fig. 5 shows the construction obtained from the two graphs of Fig. 4. Moreover, two edges (xi, ui ) and (xi, wi )
are added for each xi (1 ≤ i ≤ N) and two edges (vj, yj ) and (zj, yj ) are added for each yj (1 ≤ i, j ≤ N).
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Fig. 6. The final network graph G(V , E).

The two bounds of edge (xi, ui ) are α = max(0, a
d1
i ), β = p

d1
i , meaning that we must drop at least a

d1
i class A

packets from input port i such that the remaining set can satisfy condition (3). β is the number of class A packets
at input port i before dropping. The label of edge (xi,wi ) is (0, p

d2
i ), meaning that wemay need to drop some class

B packets from input port i and there are a total of pd2i packets to choose from.
The label of edge (vj, yj ) is α = max(0, b

d1
j ), β = q

d1
j , meaning that we must drop at least b

d1
j class A packets

that go to output port j but cannot be more than qd1j . The label of edge (zj, yj ) is (0, q
d2
j ), meaning that we may

need to drop some class B packets that go to output port j and there are a total of qd2j packets to choose from.
Let us denote the graph constructed in this step by G′(V ′, E ′).

Step 5 To finish the construction of the network graphG(V , E), we add a source vertex s to the left side of graphG′(V ′, E ′)
and a sink vertex t to the right side of G′(V ′, E ′). There is an edge from s to each xi and an edge from each yj to
t(1 ≤ i, j ≤ N). Fig. 6 shows the final network graph for the example of Fig. 1. The two bounds on edge (s, xi) are
α = max[0, (pd1i +p

d2
i )−(d2+1)] = max(0, a

d1
i +a

d2
i ), β = p

d1
i +p

d2
i , meaning thatwemust drop at least a total

of ad1i +a
d2
i packets from input port i to satisfy condition (4). β is the total number of packets at input port i before

dropping. Similarly, the two bounds on edge (yj, t) are α = max[0, (q
d1
j + q

d2
j )− (d2 + 1)] = max(0, b

d1
j + b

d2
j ),

β = qd1j + q
d2
j .

Step 6 End.

From the explanations of each step in Procedure Network-Graph, it is easy to see that if we can find a legal flow for
the network graph G(V , E), then after dropping the packets according to the flow on each edge of the bipartite graph (in
the middle of G(V , E)), the remaining packet set satisfies conditions (3) and (4). Conversely, if we can drop some packets
to make the remaining set to satisfy conditions (3) and (4), then we can construct a corresponding legal flow from these
dropped packets. Therefore, the problem becomes how to find a legal flow that is minimum. Obviously, a legal flow exists.
For example, setting a flow on any edge to its upper bound is a legal flow, which corresponds to deleting all packets of A
and B. By doing so, the remaining set becomes empty which satisfies conditions (3) and (4) obviously. What we need is
the minimum legal integral flow which corresponds to the minimum dropping. This minimum legal flow can be found by
an existing algorithm given by [17]. Moreover, the complexity of this algorithm remains the same as that for computing a
maximum flow for a regular network, which is at most O(N3) [17,18]. We omit the details.

5. Conclusions

In this paper, we have proved that, if the traffic of both classes is overloaded, that is, both conditions (3) and (4) are not
satisfied, then finding an optimal schedule for an input-queued switch is an NP-complete problem. To cope with the NP-
hardness, this paper proposes an optimal preprocessing algorithm that shapes the traffic into a non-overloaded traffic by
dropping a minimum number of packets. This result provides theoretical and practical guidelines to improve on the current
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FIPS algorithm, a non-EDF based scheduling algorithm. As a future work, we will investigate the NP-completeness for the
case if either condition (3) or (4) is satisfied but the other is not.
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