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We consider a family of skew tent maps fa on the unit interval, determined by the 
parameter a, with 0 < a < 1. We give a decision procedure, that on input a and a point 
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iterates of fa on x0 reaches one of the two fixed points of fa after a finite number of 
iterations.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

We consider a family of skew tent maps fa on the unit interval, determined by the parameter a (0 < a < 1) and defined 
as fa(x) = x

a for 0 ≤ x ≤ a and fa(x) = 1−x
1−a for a < x ≤ 1 (illustrated, further on, in Fig. 1). The maps in this family have two 

fixed points (that is, points for which fa(x) = x). One question about the dynamics of such maps concerns the decidability 
of the so-called point-to-fixed-point problem. This question asks for an algorithm to determine, on input a and a point x0
in the unit interval, whether or not the sequence x0, fa(x0), f 2

a (x0), ... of iterates of fa on x0 reaches one of the two fixed 
points of fa after a finite number of iterations. The main contribution of this paper is a decision algorithm for this problem 
for rational input values a and x0.

This decision problem originates from dynamical system theory [2,3,5] but is also relevant to database theory [4]. In this 
context, iterates of functions f : Rn → Rn (by R we denote the real numbers) are studied and the decidability of properties 
such as “mortality”, “nilpotency”, “termination” and “point-to-fixed-point” is investigated.

A function f : Rn → Rn is called mortal if f (0) = 0 and if for each x ∈ Rn there exists a natural number k ≥ 1 such that 
f k(x) = 0 (here 0 denotes the origin of Rn) and a function f : Rn → Rn is called nilpotent if f (0) = 0 and if there exists 
a natural number k ≥ 1 such that for all x ∈ Rn , f k(x) = 0 [3]. Mortality and nilpotency are known to be undecidable for 
piecewise affine functions from R2 to R2 and for functions from R to R the (un)decidability of these properties is open [3].

The transitive closure of the graph of a function f : Rn → Rn , viewed as a binary relation over Rn , can be computed 
by determining iteratively the 2n-ary relations T C1( f ), T C2( f ), T C3( f ), . . . , where T C1( f ) = graph( f ) and T Ci+1( f ) :=
T Ci( f ) ∪ {(x, y) ∈ R2n | (∃z) ((x, z) ∈ T Ci( f ) ∧ f (z) = y)}. We call a function f terminating if there exists a k ≥ 1 such that 
T Ck+1( f ) = T Ck( f ). Termination of functions from R2 to R2 is undecidable but termination of continuous semi-algebraic 
functions from R to R is decidable [4]. The decidability of this problem has implications in the area of database theory, 
where it is used to obtain extensions of first-order logics with recursion, based on a transitive-closure operator [4] for 
constraint databases [6].
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Fig. 1. The graph of the skew tent map fa , with the graph of �a in red and the graph of ra in blue. The two fixed points of fa , ϕa
1 or ϕa

2 , are indicated 
and x0 is an example of a number for which f 2

a (x0) = ϕa
2 . (For interpretation of the colours in the figure, the reader is referred to the web version of this 

article.)

The point-to-fixed-point problem is another decision problem in this context, which asks whether for a given algebraic 
point x and a given piecewise affine function f : Rn → Rn , the sequence x, f (x), f 2(x), f 3(x), . . . reaches a fixed point, i.e., 
whether there exists a k ≥ 1 such that f k(x) = f k+1(x) [2,5]. As in the case of mortality and nilpotency, the point-to-
fixed-point problem is undecidable for piecewise affine functions from R2 to R2. The decidability of the point-to-fixed-point 
problem is open in dimension 1, even for piecewise linear functions with only two non-constant pieces [2,5]. The problem 
we address in this paper should be seen in this context and we propose a solution for a particular subclass of this problem 
in dimension 1. We study this problem in the more convenient setting of functions on an interval. A general solution for 
arbitrary linear functions with two pieces remains open. This is also the case for functions with three or more linear pieces. 
The decidability of the point-to-fixed-point problem has also implications in database theory. The termination of query 
evaluation in certain extensions of first-order logic with transitive closure operations depends on this problem [4].

This paper is organised as follows. In Section 2, we give the necessary definitions and state the main result. Preliminary 
considerations and properties are given in Section 3. A decision procedure for the point-to-fixed-point problem for skew tent 
maps is described in Section 4. In Section 5, we end this paper with a discussion of possible extensions of the proposed 
methods.

2. Definitions, notations, and main result

Let a be a number, with 0 < a < 1, and let the function fa : [0, 1] → [0, 1] be defined as

fa(x) :=
{

x
a if 0 ≤ x ≤ a,

1−x
1−a if a < x ≤ 1.

The function fa is a skew tent map (where the adjective “skew” can be dropped only when a = 1
2 ) with top at (a, 1). 

We use the abbreviations �a(x) := x
a and ra(x) := 1−x

1−a for the left and right part of the function fa . If fa(x) = x for some 
x ∈ [0, 1], we call x a fixed point of the function fa . The function fa has two fixed points, namely ϕa

1 = 0 and ϕa
2 = 1

2−a . 
Fig. 1 gives an illustration of the graph of the function fa along with its two fixed points.

We denote the set of the natural numbers by N and the set of the real numbers by R. By N0 we denote the set N \ {0}. 
We use the notation f 0

a (x) := x and f i+1
a (x) := fa( f i

a(x)), for i ∈ N, to denote the iterates of fa on x ∈ [0, 1]. We also use the 
notions of forward and backward orbit, as follows: for x, y ∈ [0, 1], the forward orbit of x (under fa), denoted Orb+( fa, x), 
is the set { f n

a (x) | n ∈ N} and the backward orbit of y (under fa), denoted Orb−( fa, y), is the set {x ∈ [0, 1] | there is an n ∈
N such that f n

a (x) = y}. If x ∈ Orb−( fa, y), we say “x reaches y (under fa)” or “ f reaches y from x”. For an overview of such 
concepts, we refer to [1,7,8].

For example, the point x0, shown in Fig. 1, reaches the fixed point ϕa
2 after two iterations of fa , that is, f 2

a (x0) = ϕa
2.

In this paper, we are interested in algorithmically deciding whether a point x0 ∈ [0, 1] reaches a fixed point of fa after a 
finite number of iterations of fa on x0. This decision problem can be viewed as deciding the language PtoFP (abbreviating 
“point-to-fixed-point”), with

PtoFP = {〈a, x0〉 | 0 ≤ x0 ≤ 1 and 0 < a < 1 and x0 ∈ Orb−( fa,ϕ
a
1) ∪ Orb−( fa,ϕ

a
2)},

where 〈a, x0〉 represents a finite encoding of the numbers a and x0. For reasons of finite representability, we assume a and 
x0 to be rational numbers. We agree that a rational number A is encoded as pair (p, q), with p, q ∈ N (given in binary), 
q �= 0, p and q relatively prime and A = p . Obviously, other encodings may be considered.
q
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The main result of this paper is summarised in the following theorem.

Theorem 1. There is a decision procedure that, on input two rational numbers a and x0 (encoded as described before), decides whether 
〈a, x0〉 ∈ PtoFP. �
3. Preliminary considerations and properties

Our decision procedure is called PtoFP(a, x0) and it is described in Section 4. Obviously, the order conditions 0 ≤ x0 ≤ 1
and 0 < a < 1 are easily checked by comparing the natural numbers that encode these two rational numbers. So, we focus 
on the non-trivial part, namely, deciding the existence of a n ∈ N0 such that f n

a (x0) is a fixed point of fa .
Our approach is, given an input 〈a, x0〉, to establish an upper bound Ma,x0 for the values of n for which f n

a (x0) can be 
a fixed point of fa . Once this upper bound Ma,x0 is determined, it remains to be checked whether one of the numbers 
f 1
a (x0), f 2

a (x0), ..., f Ma,x0
a (x0) actually is a fixed point of fa . In fact, we determine an upper bound Ma,x0

1 for fixed point 
ϕa

1 and an upper bound Ma,x0
2 for fixed point ϕa

2 and Ma,x0 is then defined to be the largest of these two values. The 
determination of the upper bound Ma,x0 depends on the uniqueness of a particular form in which a rational number can 
be written. This form is derived by observing that, when fa is repeatedly applied to x0, this repetition involves alternating 
applications of powers of �a and ra and our results rely on the general form that such an alternation of applications of �a

and ra can produce. An iteration f n
a (x) of fa on some x ∈ [0, 1] is therefore of the form

r jk
a �

ik
a r

jk−1
a �

ik−1
a · · · r j1

a �
i1
a (x),

for some k ∈ N0, where i1 > 0 if 0 ≤ x ≤ a and i1 = 0 if a < x ≤ 1, jk ≥ 0, j1, i2, j2, ..., ik−1, jk−1 > 0 and i1 + j1 + · · · + ik +
jk = n.

In this section, we give an explicit formula for such an alternating application of two affine functions on some real point. 
Throughout this paper, we use the notation [A]i , to abbreviate the sum 1 + A + A2 + · · · + Ai−1, for A ∈ R and i ∈ N. This 
means that

[A]i =
{

i if A = 1 and
1−Ai

1−A if A �= 1,

for i ∈ N.
Now, we introduce some abbreviations for sums of exponents, that are used throughout this paper.

Notation 1. Let i0, i1, i2, ... and j0, j1, j2, ... be two sequences of natural numbers, and let n, m ∈ N. For n ≤ m, we define 
Im
n := in + in+1 + · · · + im and Jm

n := jn + jn+1 + · · · + jm . For m < n, we define Im
n := 0 and Jm

n := 0. �
The following property gives the general form of an alternated application of powers of two linear functions F and G on 

some real point x. Its straightforward induction proof is given, for completeness, in the Appendix.

Property 1. Let A, B, C, D ∈ R. Let F : R → R : x �→ Ax + B and G : R → R : x �→ Cx + D be affine functions. If k ∈ N0 and 
i1, ..., ik, j1, ..., jk ∈ N, then

G jk F ik G jk−1 F ik−1 · · · G j1 F i1(x) = AIk
1 C Jk

1 x +
k∑

ν=1

{AIk
ν+1 C Jk

ν+1(B[A]iν C jν + D[C] jν )}. � (†1)

We remark that, for jk = 0, the equality (†1) becomes

F ik G jk−1 F ik−1 · · · G j1 F i1(x) = AIk
1 C Jk−1

1 x +
k−1∑
ν=1

{AIk
ν+1 C Jk−1

ν+1(B[A]iν C jν + D[C] jν )} + B[A]ik . (†2)

4. A decision procedure for the point-to-fixed-point problem

In this section, we describe the decision procedure PtoFP(a, x0), which accepts the input (a, x0), when fa reaches ϕa
1

from x0 or fa reaches ϕa from x0. The first test is described in Section 4.1 and the second is described in Section 4.2.
2
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4.1. The points that reach the fixed point ϕa
1 = 0

The backward orbit of ϕa
1 = 0 contains infinitely many points besides 0 and 1 since fa(a) = 1 and fa(a2) = a, fa(1 − a +

a2) = a, etc. In fact, Orb−( fa,ϕ
a
1) certainly contains a, a2, a3, ..., which reach a under �a , besides infinitely many points (like 

1 − a + a2) from the domain of ra .
The following theorem implies a decision procedure to establish whether a point x0 ∈ [0, 1] is in Orb−( fa,ϕ

a
1), as we 

explain following its proof.

Theorem 2. Let fa be a skew tent map, as before. Let a = p
q , with p, q ∈ N0 , gcd (p,q) = 1 and 0 < p < q. Then fa reaches its fixed 

point ϕa
1 = 0 from x0 ∈ [0, 1] if and only if x0 = 0 or if there exists an n ∈ N0 such that 2q−p

q x0 is of the form N
qn , with N ∈ N0 and 

gcd (q, N) = 1 and f n
a (x0) = 0.

Proof. Let a = p
q , with p, q ∈ N0, gcd (p,q) = 1 and 0 < p < q. Let fa be a skew tent map with left part �a and right part ra , 

as explained in Section 2. Therefore, we have

fa(x) =
{

qx
p if 0 ≤ x ≤ a,

q(1−x)
q−p if a < x ≤ 1.

We first prove the only-if direction. Since fa(0) = �a(0) = 0, we do not have to consider x0 = 0 any further. We remark 
that also for x0 = 1, 2q−p

q x0 is of the requested form N
qk with N = 2q − p and k = 1, since gcd (2q − p,q) = 1 follows from 

the assumption gcd (p,q) = 1. The same holds for x0 = a, in which case 2q−p
q x0 = (2q−p)p

q2 and we have N = (2q − p)p and 
k = 2. Also here, gcd (p,q) = 1 implies gcd ((2q − p)p,q) = 1.

Assume that x0 ∈ Orb−( fa,0) and x0 /∈ {0, 1, a}. Then there exists an n ∈ N0, with n > 2, such that f n
a (x0) = 0. This 

implies that there exists a k ∈ N0 and i1, j1, . . . , ik, jk ∈ N such that

r jk
a �

ik
a r

jk−1
a �

ik−1
a · · · r j1

a �
i1
a (x0) = 0,

where i1 > 0 if 0 ≤ x ≤ a and i1 = 0 if a < x ≤ 1 and i1 + j1 + · · · + ik + jk = n and j1, i2, .., ik, jk > 0. Since 0 can only be 
reached via a and 1 (that is, ra(�a(a)) = ra(1) = 0), we also know that jk = 1 and ik ≥ 1.

If then we apply (†1) from Property 1, with A = 1
a , B = 0, C = 1

a−1 and D = −1
a−1 , we obtain

(
1

a
)Ik

1(
1

a − 1
) Jk

1 x0 +
k∑

ν=1

{(1

a
)Ik

ν+1(
1

a − 1
) Jk

ν+1(
−1

a − 1
[ 1

a − 1
] jν )} = 0.

When we substitute p
q for a, the above equation becomes

(
q

p
)Ik

1(
q

p − q
) Jk

1 x0 +
k∑

ν=1

{( q

p
)Ik

ν+1(
q

p − q
) Jk

ν+1(
−q

p − q
[ q

p − q
] jν )} = 0.

We remark that q
p−q �= 1. Indeed, if we assume q

p−q = 1, we get 2q = p, which is impossible, since p < q (or a < 1). There-

fore, −q
p−q [ q

p−q ] jν = −q
2q−p

q jν −(p−q) jν

(p−q) jν
. If we use this fact, then the above equality, after dividing both sides by ( q

p )Ik
1 (

q
p−q ) Jk

1 , 
becomes

2q − p

q
x0 = 1

qIk
1+ Jk

1

k∑
ν=1

{qIk
ν+1+ Jk

ν+1 pIν1 (p − q) Jν−1
1 (q jν − (p − q) jν )}

or 2q−p
q x0 = N

qIk1+ Jk
1

with

N =
k∑

ν=1

{qIk
ν+1+ Jk

ν+1 pIν1 (p − q) Jν−1
1 (q jν − (p − q) jν )}.

Since, jk = 1 and ik ≥ 1, we have, for ν < k, that Ik
ν+1 + J k

ν+1 ≥ ik + jk ≥ 2 and thus q | qIk
ν+1+ Jk

ν+1 (and even q2 |
qIk

ν+1+ Jk
ν+1 ). From this observation follows that gcd (q, N) = 1. Indeed, let d ∈ N be a common divisor of q and N (that is, 

d | q and d | N), then d | pIk
1 (p − q) Jk−1

1 (q jk − (p − q) jk ) and thus d | pIk
1+ Jk

1 . From gcd (p,q) = 1, d | q and d | pIk
1+ Jk

1 , d | 1
follows. So, we can conclude that gcd (q, N) = 1.

We see that from the assumption f n
a (x0) = 0, it follows that 2q−p

q x0 = N

qIk1+ Jk
1

= N
qn , with N ∈ N and gcd (q, N) = 1.

The if-direction is clear. �
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To see that this theorem implies a decision procedure to test whether 0 can be reached from a given point x0 ∈ (0, 1], 
we need the following property on the unique expression of some rational numbers.

Property 2. Let q ∈ N with q > 1. If α is a rational number, then there exists at most one k ∈ N such that α = N
qk with N ∈ N0 and 

gcd (q, N) = 1.

Proof. Let α be a rational number. If α cannot be expressed in the form N
qk (for instance, when α is 0 or negative), then 

the statement is true. Suppose, for the sake of contradiction that α = N
qk and α = N ′

qk′ , with gcd (q, N) = 1, gcd (q, N ′) = 1. In 

the case k = k′ , we have N = N ′ which gives uniqueness. For k < k′ , we obtain qk′−k N = N ′ from these two equalities. Since 
k′ − k ≥ 1, this implies that q | N ′ . But then gcd (q, N ′) = q > 1, contradicting the assumption gcd (q, N ′) = 1. So, in all cases 
α can be expressed in at most one way as a fraction of the form N

qk . �
Theorem 2 implies that if 2q−p

q x0 cannot be written in the form N
qn for some n ∈ N and N ∈ N0, with gcd (q, N) = 1, then 

x0 does not reach the fixed point 0 of fa .
On the other hand, if, for x0 �= 0, 2q−p

q x0 can be written in the form N
qn for some n, N ∈ N with gcd (q, N) = 1, then by 

Property 2, this n is unique and it suffices to check whether f n
a (x0) equals 0. Following this observation, we give in the 

following corollary the upper bound Ma,x0
1 , as introduced in Section 3, on the number of iterations of fa on x0 to reach the 

fixed point ϕa
1 = 0.

Corollary 1. Let a = p
q , with p, q ∈ N0 , gcd (p,q) = 1 and 0 < p < q and let x0 ∈ (0, 1]. If 2q−p

q x0 can be written in the form N
qn , then 

we have Ma,x0
1 = n.

This concludes the description of the part of PtoFP(a, x0) that tests whether x0 reaches ϕa
1 under fa .

We end this section by remarking that the condition that 2q−p
q x0 can be written in the form N

qn for some n, N ∈ N with 
gcd (q, N) = 1 is a necessary but not sufficient condition. We consider the example of a = 1

2 (with p = 1 and q = 2). For 
x0 = 1

12 , we have 2q−p
q x0 = 1

23 , which is of the required form, but x0 does not reach the fixed point 0 (rather, it reaches the 

second fixed point ϕ
1
2

2 = 2
3 , since 1

12
�a−→ 1

6
�a−→ 1

3
�a−→ 2

3 ). On the other hand, for x0 = 1
4 , we have 2q−p

q x0 = 3
23 , which again is 

of the required form, and in this case x0 reaches the fixed point ϕ
1
2

1 = 0, since 1
4

�a−→ 1
2

�a−→ 1 ra−→ 0.

4.2. The points that reach the fixed point ϕa
2 = 1

2−a

The following theorem implies a decision procedure to establish whether a point x0 ∈ (0, a) reaches ϕa
2 under fa , as we 

explain following its proof. There, we also explain, how this procedure can be extended to x0 ∈ [0, 1].

Theorem 3. Let fa be a skew tent map, as before. Let a = p
q , with p, q ∈ N0 , gcd (p,q) = 1 and 0 < p < q. Then fa reaches its fixed 

point ϕa
2 = 1

2−a from x0 ∈ (0, a) if and only if there exists an n ∈ N0 such that 2q−p
q x0 is of the form N

qn , with N ∈ N0 and gcd (q, N) = 1
and f n

a (x0) = ϕa
2 .

Proof. Let a = p
q , with p, q ∈ N0, gcd (p,q) = 1 and 0 < p < q. Let fa be a skew tent map with left part �a and right part ra , 

as explained in Section 2. Let x0 ∈ (0, a).
We first prove the only-if direction. We assume that x0 ∈ Orb−( fa,ϕ

a
2). Then there exists an n ∈ N0, such that f n

a (x0) =
ϕa

2. This implies that there exists a k ∈ N0 and i1, j1, . . . , ik ∈ N0 such that

�
ik
a r

jk−1
a �

ik−1
a · · · r j1

a �
i1
a (x0) = ϕa

2,

where i1 + j1 + · · · + ik = n. We remark that i1 > 0 because x0 ∈ (0, a) and that ik > 0 because ϕa
2 can only be reached via 

�a .
If then we apply (†2) from Property 1, with A = 1

a , B = 0, C = 1
a−1 and D = −1

a−1 , we obtain

(
1

a
)Ik

1(
1

a − 1
) Jk−1

1 x0 +
k−1∑
ν=1

{(1

a
)Ik

ν+1(
1

a − 1
) Jk−1

ν+1(
−1

a − 1
[ 1

a − 1
] jν )} = ϕa

2.

Since a �= 2, −1
a−1 [ 1

a−1 ] jν = −ϕa
2(( 1

a−1 ) jν − 1) and thus the above equality, using a = p
q , becomes

(
q

p
)Ik

1(
q

p − q
) Jk−1

1 x0 = ϕa
2(1 +

k−1∑
{( q

p
)Ik

ν+1(
q

p − q
) Jk−1

ν+1(
q jν − (p − q) jν

(p − q) jν
)}).
ν=1
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After dividing both sides by ( q
p )Ik

1 (
q

p−q ) Jk−1
1 and by ϕa

2 = q
2q−p , we obtain

2q − p

q
x0 = N

qIk
1+ Jk−1

1

with

N = pIk
1(p − q) Jk−1

1 +
k−1∑
ν=1

{qIk
ν+1+ Jk−1

ν+1 pIν1 (p − q) Jν−1
1 (q jν − (p − q) jν )}.

Since, Ik
ν+1 + J k−1

ν+1 ≥ ik > 0 for all ν ≤ k − 1, we see that q | qIk
ν+1+ Jk−1

ν+1 . From this observation follows that gcd (q, N) = 1. 
Indeed, let d ∈ N be a common divisor of q and N , then d | pIk

1 (p − q) Jk−1
1 and thus d | pIk

1+ Jk−1
1 . From gcd (p,q) = 1, d | q

and d | pIk
1+ Jk−1

1 , d | 1 follows. So, we can conclude that gcd (q, N) = 1.
We see that from the assumption f n

a (x0) = ϕa
2, it follows that 2q−p

q x0 = N

qIk1+ Jk
1

= N
qn , with N ∈ N0 and gcd (q, N) = 1.

The if-direction is clear. �
Theorem 3 implies a decision procedure to test whether ϕa

2 can be reached from a given point x0 ∈ (0, a). Indeed, 
equivalently, this theorem says that if 2q−p

q x0 cannot be written in the form N
qn for some n, N ∈ N, with gcd (q, N) = 1, then 

x0 does not reach ϕa
2.

On the other hand, if, for x0 ∈ (0, a), 2q−p
q x0 can be written in the form N

qn for some n, N ∈ N with gcd (q, N) = 1, then 
by Property 2, this n is unique and it suffices to check whether f n

a (x0) is ϕa
2. Indeed, we know that if f n′

a (x0) = ϕ1 for an 
n′ > n, then 2q−p

q x0 can also be written as N ′
qn′ for some n′ ∈ N and N ′ ∈ N0, with gcd (q, N ′) = 1, contradicting Property 2.

We already know that 0, a and 1 reach 0 (and thus do not reach ϕa
2) and that ϕa

2 reaches itself. Therefore, what remains 
is to give a procedure to determine whether x0 ∈ (a, 1) \ {ϕa

2} reaches ϕa
2.

Hereto, we define the sequence αi := r−i
a (a), for i ∈ N. The following property gives an expression for αi .

Property 3. For i ∈ N, we have αi = (a − 1)i(a − ϕa
2) + ϕa

2 .

Proof. Clearly, we have r−1
a (x) = (a − 1)x + 1. By Lemma 2 in the Appendix, we obtain that r−i

a (x) = (a − 1)i x + [a − 1]i . 
Since ϕa

2 = 1
2−a we have [a − 1]i = −ϕa

2((a − 1)i − 1). So, we get r−i
a (x) = (a − 1)i x −ϕa

2((a − 1)i − 1) = (a − 1)i(x −ϕa
2) +ϕa

2. 
This implies that αi = r−i(a) = (a − 1)i(a − ϕa

2) + ϕa
2. �

We have α0 = a and we can extend the sequence by setting α−1 := ra(a) = 1 (taking ra(a) = �a(a)). Since a < ϕa
2, we 

derive α2i < ϕa
2 and ϕa

2 < α2i+1, for i ∈ N0, from this property. Also from this property and the observation that 0 <
(a − 1)2 < 1 for 0 < a < 1, a straightforward calculation gives the following ordering of the αi :

a = α0 < α2 < α4 < α6 < · · · < ϕa
2 < · · · < α5 < α3 < α1 < α−1 = 1.

We observe that all αi eventually reach a and thus 0 under fa and will never reach ϕa
2. For the other x0 ∈ (a, 1), we 

first determine between which values in the above ordering x0 is situated to test whether x0 reaches ϕa
2. If x0 ∈ (α1, 1), 

then fa(x0) = ra(x0) ∈ (0, a). Therefore, x0 ∈ (α1, 1) reaches ϕa
2 if and only if fa(x0) reaches ϕa

2. If x0 ∈ (a, α2), then fa(x0) =
ra(x0) ∈ (α1, 1) and this case reduces to the previous one. For k ∈ N0, if x0 ∈ (α2k, α2k+2), then f 2k

a (x0) = r2k(x0) ∈ (a, α2)

and if x0 ∈ (α2k+1, α2k−1), then f 2k
a (x0) = r2k(x0) ∈ (α1, 1) and these cases also reduce to the previous ones.

Following these observations, we give in the following corollary the upper bound Ma,x0
2 , as introduced in Section 3, on 

the number of iterations of fa on x0 to reach the fixed point ϕa
2.

Corollary 2. Let a = p
q , with p, q ∈ N0 , gcd (p,q) = 1 and 0 < p < q and let x0 ∈ (0, 1]. If x0 ∈ (0, a) and 2q−p

q x0 can be written in 
the form N

qn , then we have Ma,x0
2 = n. For x0 ∈ (a, 1), we distinguish between the following cases:

• if x0 = ϕa
2 , then we have Ma,x0

2 = 1;

• if x0 ∈ (α2k, α2k+2), for some k ∈ N, and if 2q−p
q f 2k+2

a (x0) can be written in the form N
qn , then we have Ma,x0

2 = 2k + 2 +
Ma, f 2k+2

a (x0)

2 = 2k + 2 + n; and

• if x0 ∈ (α2k+1, α2k−1), for some k ∈ N, and if 2q−p
q f 2k+1

a (x0) can be written in the form N
qn , then we have Ma,x0

2 = 2k + 1 +
Ma, f 2k+1

a (x0)

2 = 2k + 1 + n.

These observations complete the description of the part of PtoFP(a, x0) that tests whether x0 reaches ϕa under fa .
2
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5. Discussion

We discuss some possible extensions of the proposed methods. Another class of tent maps that can be considered is 
the family of skew tent maps fa,b defined by fa,b(x) = bx

a for 0 ≤ x ≤ a and fa(x) = b(1−x)
1−a for a < x ≤ 1, with an extra 

parameter b. In this paper, we discuss the case b = 1. On the unit interval, the interesting case occurs when a < b ≤ 1. 
The techniques of this paper can also be used in this setting, when a = p

q , b = u
v , with gcd (p,q) = 1, gcd (u, v) = 1 and 

the denominators q and v have not too many factors in common. When gcd (q, v) < q our techniques still work (using an 
extension of Property 2), but when (a power of) q divides v , this is no longer clear. A decision procedure for point-to-fixed-
point problem for the family of skew tent maps fa,b would bring us close to a solution for arbitrary linear functions with 
two pieces, since many cases can be reduced to this case via topological conjugacy [1,7,8]. The general case of tent maps 
with b ≤ 1 is also connected to the case of unimodal maps [1], which (under certain conditions) are semi-conjugate to such 
tent maps. The one-dimensional case for functions with three or more linear pieces remains open.

In this paper, we describe a decision procedure for the case where a and x0 are rational. The restriction to rational takes 
care of the finite representability of the input. Obviously a wider class of real numbers in the unit interval can be encoded 
in a finite way. We can think of the Turing-computable real numbers or the more restricted class of the algebraic real 
numbers. It is not obvious how the techniques of this paper can be extended to these settings.

We conclude by remarking that the proposed techniques can also be used to decide the “point-to-point” problem (instead 
of “point-to-fixed-point”), where both the initial and final point are two arbitrary points of the unit interval given as inputs, 
along with the parameter a.
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Appendix A

In this appendix, we give the proof of Property 1. We start with two straightforward lemmas. The first lemma follows 
directly from the definition.

Lemma 1. We have [A]0 = 0 and [A]i+1 = A[A]i + 1, for A ∈ R and i ∈ N. �
The following lemma gives an expression for the result of iterating a linear function F i times on a point x.

Lemma 2. Let F : R → R : x �→ Ax + B, with A, B ∈ R, be an affine function. For i ∈ N and x ∈ R, we have F i(x) = Ai x + B[A]i . �
Proof. We prove this by induction on i. For i = 0, we have F 0(x) = x and A0x + B[A]0 = x. For the induction step, we have 
F i+1(x) = F (F i(x)), which equals A(Ai x + B[A]i) + B by the induction hypothesis. This equals Ai+1x + B(A[A]i + 1) and this 
is Ai+1x + B[A]i+1 by Lemma 1. This concludes the induction proof. �

We are now ready for the proof of Property 1.

Proof of Property 1. We prove this lemma by induction on k. For k = 1 and j1 = 0, clearly, F i1 (x) = Ai1 x + B[A]i1 by 
Lemma 2 and this is the desired expression, since the empty sum in (†2) equals zero. For k = 1 and j1 > 0, we 
get G j1 F i1 (x) = G j1 (F i1 (x)) = C j1 (Ai1 x + B[A]i1) + D[C] j1 = Ai1 C j1 x + B[A]i1 C j1 + D[C] j1 , again using Lemma 2. Since 
AI1

2 C J 1
2 = A0C0 = 1, this is the desired expression.

For the induction step, we assume that the property holds for k ≥ 1 and we have, for jk+1 = 0, F ik+1 G jk F ik · · ·
G j1 F i1 (x) = F ik+1 (G jk F ik · · · G j1 F i1 (x)) which, using Lemma 2 and the induction hypothesis (†1), is Aik+1 (AIk

1 C Jk
1 x +∑k

ν=1{AIk
ν+1 C Jk

ν+1 (B[A]iν C jν + D[C] jν )}) + B[A]ik+1 . This expression equals AIk+1
1 C Jk

1 x + ∑k
ν=1{AIk+1

ν+1 C Jk
ν+1 (B[A]iν C jν +

D[C] jν )} + B[A]ik+1 , which is (†2) for the value k + 1.
For jk+1 > 0, we have, using the previous expression and Lemma 2, that G jk+1 F ik+1 G jk F ik · · · G j1 F i1 (x), which equals 

G jk+1 (F ik+1 G jk F ik · · · G j1 F i1 (x)) is equal to

C jk+1(AIk+1
1 C Jk

1 x +
k∑

ν=1

{AIk+1
ν+1 C Jk

ν+1(B[A]iν C jν + D[C] jν )} + B[A]ik+1) + D[C] jk+1 .

This expression equals

AIk+1
1 C Jk+1

1 x +
k∑

{AIk+1
ν+1 C Jk+1

ν+1(B[A]iν C jν + D[C] jν )} + B[A]ik+1 C jk+1 + D[C] jk+1 .
ν=1
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Since AIk+1
k+2 C Jk+1

k+2 = 1, we get (†1) for the value k + 1. This is the desired result and the induction proof is finished. �
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