
Theoretical Computer Science 262 (2001) 501–523
www.elsevier.com/locate/tcs

Dot operators�

Bernd Borcherta, Riccardo Silvestrib ; ∗

aUniversit	at Heidelberg, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany
bDipartimento di Matematica Pura ed Applicata, via Vetoio, Universit'a de L’Aquila, Coppito,

L’Aquila, Italy

Received 23 April 1999; revised 6 June 2000; accepted 18 July 2000
Communicated by O. Watanabe

Abstract

Well-known examples of dot operators are the existential, the counting, and the BP-operator.
We will generalize this notion of a dot operator so that every language A will determine an
operator A·. In fact, we will introduce the more general notion of promise dot operators for
which the BP-operator is an example. Dot operators are a re5nement of the leaf language concept
because the class determined by a leaf language A equals A · P. Moreover, we are able to represent
not only classes but reducibilities, in fact most of the known polynomial-time reducibilities can
be represented by dot operators. We show that two languages determine the same dot operator if
and only if they are reducible to each other by polylog-time computable monotone projections.
c© 2001 Elsevier Science B.V. All rights reserved.

1. Introduction

Well-known examples of dot operators are the existential operator [35], the counting
operator [35], and the BP-operator [22]. For a survey see the book of K?obler et al.
[17]. Such operators have been used (for example in [35, 22, 28, 29, 17, 8]) to de5ne
new classes and hierarchies, for instance, the counting hierarchy [35]. In general, dot
operators have been used as a tool to study the relationship between complexity classes.
In Section 2 we will generalize this notion of a dot operator so that every language
A will determine an operator A·. In fact, we will introduce the more general notion of
promise dot operators for which the BP-operator is an example.
In Section 3 we will study properties of dot operators. We will see for exam-

ple that dot operators turn out to be a re5nement of the leaf language concept (see

� A preliminary version with the title “The General Notion of a Dot-Operator” was presented at the 12th
Annual IEEE Conference on Computational Complexity (1997).

∗ Corresponding author.
E-mail addresses: bb@math.uni-heidelberg.de (B. Borchert), silvestri@dsi.uniromal.it (R. Silvestri).

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00323 -6

502 B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523

[6, 33, 12, 14, 16, 21, 5], and the recent survey [34]) because the class determined by
a leaf language A equals A ·P. Furthermore, we show that dot operators are closed
under composition, and that complementary dot operators keep the property of classes
to have a many-one complete set.
In Section 4 we show that for two languages A; B it holds: A ·C is a subset of B ·C

for all classes C if and only if A is reducible to B by polylog-time uniform monotone
projections. It can be viewed as an analog of the main result (for the complementary
case) of Bovet et al. [6] about the relativization of leaf language classes.
In Section 5 we show that dot operators are able to represent not only classes but

reducibilities. For example, we will construct a language T such that for all classes C
the class T ·C is the polynomial-time Turing closure P(C) of C. In fact, we will see that
most of the known polynomial-time reducibilities can be represented by dot operators.
This shows that with dot operators we get a proper re5nement of the leaf language
concept. Also, this concept of representation allows to talk about the computational
complexity of a reducibility.

2. The de�nition of dot operators

A well-known operator is the existential operator ∃·. For a class C the class ∃ ·C
is de5ned the following way (where 〈 ; 〉 is a usual pairing function).
The class ∃ ·C is the set of languages L for which there is a set H in C and a
polynomial p such that

x ∈ L ⇔ there is a y of size at most p(|x|) such that 〈x; y〉 ∈ H:

It holds for example ∃ ·P=NP;∃ ·NP=NP, and ∃ · co-NP=�p
2 . The existential opera-

tor was 5rst de5ned by Wagner [35] using the symbol ∨, afterwards the above notation
– with or without the dot – was used for example in [3, 17].

Convention. In this paper, we will assume that classes are closed downward w.r.t
polynomial-time many-one reducibility 6p

m, i.e. from A6p
m B and B∈C it follows

A∈C. Or equivalently, if we have an operator applied to a class C then implicitly we
assume that C stands for the downward closure 6p

m (C) of C. Moreover, we assume
that classes are not included in {∅; �∗}.
Under this assumption the above de5nition is equivalent to the following one. The

main reason to introduce this slightly diKerent de5nition – whose additional feature is
the length delimiting function l – is that it is more Lexible and slightly more powerful.
The class ∃ ·C is the set of languages L for which there is a language H in C

and a polynomial-time computable function l :�∗→N (numbers are represented
in binary) such that

x ∈ L ⇔ there is a binary number y; 16y6l(x) such that 〈x; y〉 ∈ H:

B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523 503

This de5nition can be rewritten to the following one (Hx denotes the letter 0 if x =∈H
and the letter 1 if x∈H ; 0∗ is the language consisting of the words which contain the
letter 1).
The class ∃ ·C is the set of languages L for which there is a language H in C

and a polynomial-time computable function l : �∗→N (numbers are represented
in binary) such that

x ∈ L ⇔ H 〈x; 1〉H 〈x; 2〉 · · ·H 〈x; l(x)〉 ∈ 0∗:

The reason to rewrite the de5nition of the existential operator is that now we get
other well-known dot operators just by replacing in the above de5nition the language
0∗ by other languages. For example, the reader may verify that we get the counting
operator C· (also originally from Wagner in [35], see also [20, 30]) if we replace 0∗
by the language which consists of the words which contain at least as many 1’s as
0’s. Likewise, we get the universal operator ∀· (the exact counting operator C=·, the
parity operator ⊕·) after replacing 0∗ by the language consisting of the words which
do not contain the letter 0 (the language consisting of the words which have as many
1’s as 0’s, the language consisting of the words which have an odd number of 1’s).
By these examples, it seems reasonable to give the following general de5nition which

assigns a dot operator A· to any language A.

De�nition 2.1 (complementary dot operator). For a language A de5ne the comple-
mentary dot operator A·, which maps classes to classes, the following way. For a class
of languages C let A · C be the class consisting of the languages L for which there
is a language H ∈C and a polynomial-time computable function l :�∗→N (numbers
are represented in binary) such that for all x it holds

x ∈ L ⇔ H 〈x; 1〉H 〈x; 2〉 · · ·H 〈x; l(x)〉 ∈ A:

Examples of complementary dot operators
• Our typical example above was the existential operator ∃·=0∗·. It holds for example,
∃ ·�p

k =�p
k+1;∃ ·�p

k =�p
k , and ∃ ·PSPACE=PSPACE.

• Dually, we have the universal operator ∀·=1∗·. For the universal operator it holds
for example ∀ ·�p

k =�p
k ;∀ ·�p

k =�p
k+1, and also of course ∀ ·PSPACE=

PSPACE.
• Also the well-known counting operators C· and C=· were mentioned above. It was al-
ready mentioned that C ·= {w | #1(w)¿#0(w)}· and C= ·= {w|#1(w)= #0(w)}·,
where #0(w) (#1(w)) denotes the number of 0’s (1’s) in a word w. It holds for
example C ·P=PP and C= ·P=C=P.

• The operators MODm· are characterized by MODm ·= {w | #1(w)= 0 (modm)}·. A
special case is ⊕ ·=MOD2·. It holds for example MODm ·P=MODm P.

• The language 1�∗ (the set of words starting with a 1) determines the identity oper-
ator id·, it holds 1�∗ ·C=C (by our convention all classes C are closed downward
w.r.t. 6p

m). Dually, the language 0�∗ determines the complementation operator co·

504 B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523

(attention: the complementation operator is a complementary operator). It holds that
0�∗ ·C is the set of complements of the languages in C. Note that ∀ · =co · ◦∃ · ◦ co·.

• We will de5ne in Section 5, Theorem 5.2(a)(x) a language T that represents the
Turing-reducibility 6p

T , that is, for all the languages L; X it holds that L∈PX ⇔
L6p

T X ⇔L∈T ·6p
m (X). We will call T · the Turing-operator. For example, it holds

that T ·�p
k =�p

k+1 and T ·�p
k =�p

k+1.

We did not cover by our de5nition the well-known BP-operator (we will see later
that this is not possible). But with an extension of our concept we are able to write
the de5nition of the BP-operator in the fashion of De5nition 2.1. Let Y (Y ′) be the
language consisting of the words with at least three quarters (at most one quarter) of
1’s among its letters.
The class BP ·C is the set of languages L for which there is a language H in C

and a polynomial-time computable function l :�∗→N (numbers are represented
in binary) such that

x ∈ L ⇔ H 〈x; 1〉H 〈x; 2〉 · · ·H 〈x; l(x)〉 ∈ Y;

x =∈ L ⇔ H 〈x; 1〉H 〈x; 2〉 · · ·H 〈x; l(x)〉 ∈ Y ′:

The special point about this operator is that it forbids some possible outcomes for the
word H 〈x; 1〉H 〈x; 2〉 · · ·H 〈x; l(x)〉; namely the outcomes with a share of 1’s between
1
4 and

3
4 . In other words, it promises not to have the forbidden possible outcomes. We

will generalize this notion of a promise dot operator the following way. Let a promise
language be a pair (A; B) of disjoint languages which are not both empty.

De�nition 2.2 (promise dot operator). For a promise language (A; B) de5ne the
promise dot operator (A; B)·, which maps classes to classes, the following way. For a
class of languages C let (A; B) ·C be the class consisting of the languages L for which
there is a language H ∈C and a polynomial-time computable function l :�∗→N (num-
bers are represented in binary) such that for all x it holds

x ∈ L ⇔ H 〈x; 1〉H 〈x; 2〉 · · ·H 〈x; l(x)〉 ∈ A;

x =∈ L ⇔ H 〈x; 1〉H 〈x; 2〉 · · ·H 〈x; l(x)〉 ∈ B:

A complementary dot operator is a promise dot operator because A· equals (A; QA)·. By
this fact, we will sometimes identify a language A with the promise language (A; QA), and
we will call a promise dot operator often just a dot operator. We remark that according
to the terminology of Papadimitriou’s book [21] one would call complementary dot
operators syntactical dot operators and promise dot operators semantic dot operators.
We chose our terminology because the word ‘promise’ is quite intuitive.

Examples of promise dot operators
• The typical example of a promise dot operator is the BP-operator BP · =({w | #1(w)
¿3#0(w)}, {w | #0(w)¿3#1(w)})·. Of course it holds BP · P=BPP.

B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523 505

• The RP-operator is characterized by RP · =({w | #1(w)¿#0(w)}; 0∗)·. It holds RP ·
P=R.

• A U-operator could be de5ned as U · =({w | #1(w)= 1}, {w | #1(w)= 0})·, that way
it holds U·P=UP.

Remark. We should mention that one could generalize De5nitions 2.1 and 2.2 in
order to get function operators like #· (see [13]). Instead of taking in De5nition 2.1
a language A (which can be considered to be a function from �∗ to {0; 1}) we
let A be a function from �∗ to some set, for example N. For instance, if we let A
be the function mapping a word w to the number of 1’s in w, then we have that
A · equals #·.

3. Properties of dot operators

In this section we state some properties. The 5rst one directly follows from the
de5nitions.

Proposition 3.1. Dot operators are monotone; i.e. for all promise languages (A; B) it
holds: if C⊆C′ then (A; B) · C⊆ (A; B) · C′.

By the next proposition, dot operators are a generalization of the leaf language
concept. Here is the original de5nition of balanced leaf language classes: (see [6]). For
any promise language (A; B);C(A; B) is the class of languages L for which there exist
two polynomial-time computable functions R :�∗ ×N→�∗ and ‘ :�∗→N such that,
for every string x; x∈L⇔R(x; 1)R(x; 2) · · ·R(x; ‘(x))∈A and x =∈L⇔R(x; 1)R(x; 2) · · ·
R(x; ‘(x))∈B.

Proposition 3.2. For any promise language (A; B) it holds that C(A; B)= (A; B) · P;
where C(A; B) is the polynomial-time leaf language class determined by (A; B).

The following property of dot operators is natural but hard to prove (at least the
authors did not 5nd a shorter proof).

Theorem 3.3. The composition of two (complementary) dot operators is still a
(complementary) dot operator.

Proof. We show that there exists a general and uniform way to de5ne a dot operator
that is equivalent to the composition of two given dot operators. Let (A′; B′)· and
(A; B)· be any two dot operators. We de5ne a dot operator (�[A′; A; B]; �[B′; A; B])·
such that

∀X (�[A′; A; B]; �[B′; A; B]) · 6p
m (X) = (A′; B′) · ((A; B) ·6p

m(X)):

506 B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523

The form of the languages �[A′; A; B] and �[B′; A; B] is quite natural

�[A′; A; B] = {z | �(z; 1); : : : ; �(z; �(|z|))
∈ A ∪ B ∧ A(�(z; 1)) · · ·A(�(z; �(|z|))) ∈ A′};

�[B′; A; B] = {z | �(z; 1); : : : ; �(z; �(|z|))
∈ A ∪ B ∧ A(�(z; 1)) · · ·A(�(z; �(|z|))) ∈ B′};

where � is a function from �∗ ×N into �∗ and � is a function from N into N.
The not-easy part is the de5nition of � and �, since they must possess some special
properties. Informally, �(z; 1); : : : ; �(z; �(|z|)) must be substrings of z and, depending
on z, their lengths and positions have to be rather Lexible. At the same time, each bit
of �(z; i) must be computable in polynomial time given in input the length of z and
having access to the bits of z. In order to ensure that, we introduce some notations. Let
U be a universal deterministic Turing machine. That is, a machine such that for any
deterministic Turing machine M there exists an index y such that ∀x U (y; x)=M (x).
Also, U can be de5ned so that for every machine M there exists an index y for M
and a constant c such that, if the computation M (x) halts within t steps then U (y; x)
halts within ct2 steps. Function � can be de5ned as follows, for every n¿1,

�(n) =

U (y; 〈x〉) if ∃y; x; u : n = 〈y; x; u〉 ∧ U (y; 〈x〉)
halts within |n| steps ∧ U (y; 〈x〉)¿1;

1 otherwise:

To de5ne � we need the following functions, for every n¿1 and every i with
16i6�(n),

"(n; i) =

U (y; 〈x; i; 0〉) if ∃y; x; u : n = 〈y; x; u〉 ∧ U (y; 〈x; i; 0〉)
halts within |n| steps ∧; 16U (y; 〈x; i; 0〉)6n;

1 otherwise;

#(n; i) =

U (y; 〈x; i; 1〉) if ∃y; x; u : n = 〈y; x; u〉 ∧ U (y; 〈x; i; 1〉)
halts within |n| steps ∧; "(n; i) + U (y; 〈x; i; 1〉)−6n;

1 otherwise:

Now, for every z and every i with 16i6�(|z|), de5ne

�(z; i) = z("(|z|; i))z("(|z|; i) + 1) · · · z("(|z|; i) + #(|z|; i)− 1)

that is, �(z; i) is the substring of z of length #(|z|; i) that begins at the "(|z|; i)th symbol
of z.
Firstly, we prove that, for every X ,

(A′; B′) · ((A; B) ·6p
m(X))⊆(�[A′; A; B]; �[B′; A; B]) ·6p

m(X):

B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523 507

Let L be a language in (A′; B′) · ((A; B) · 6p
m (X)). Then, there exists a language

H ∈ (A; B) · 6p
m (X) and a polynomial-time function l such that, for every x,

x ∈ L ⇔ H 〈x; 1〉H 〈x; 2〉 · · ·H 〈x; l(x)〉 ∈ A′;

x =∈L ⇔ H 〈x; 1〉H 〈x; 2〉 · · ·H 〈x; l(x)〉 ∈ B′:

Since H ∈ (A; B) ·6p
m (X), there exist two polynomial-time functions S and t such that,

for every z,

z ∈ H ⇔ X (S(z; 1))X (S(z; 2)) · · ·X (S(z; t(z))) ∈ A;

z =∈H ⇔ X (S(z; 1))X (S(z; 2)) · · ·X (S(z; t(z))) ∈ B:

By combining the conditions for L with those for H , we obtain that

x ∈ L ⇔ A(w〈x;1〉)A(w〈x;2〉) · · ·A(w〈x;l(x)〉) ∈ A′;

x =∈L ⇔ A(w〈x;1〉)A(w〈x;2〉) · · ·A(w〈x;l(x)〉) ∈ B′;

where w〈x; i〉 denotes the string X (S(〈x; i〉; 1))X (S(〈x; i〉; 2)) · · ·X (S(〈x; i〉; t(〈x; i〉))). For
proving that L∈ (�[A′; A; B]; �[B′; A; B]) · 6p

m (X) it suTces to 5nd two polynomial-
time functions T and r such that, for every x, the string zx :=X (T (x; 1))X (T (x; 2)) · · ·
X (T (x; r(x))) satis5es �(|zx|)= l(x) and, for every i with 16i6l(x); �(zx; i)=w〈x; i〉.
To this end, we de5ne T and r so that zx has the form zx = z1x z

2
x · · · zl(x)x u with

|z1x |= |z2x |= · · · |zl(x)x |=2q(|x|) and w〈x; i〉 is a pre5x of zix, where q is a polynomial
such that |w〈x; i〉|62q(|x|), for every x and every i6l(x). We can now de5ne T , for
every x and every j¿1,

T (x; j) =

S(〈x; i〉; j − (i − 1) · 2q(|x|)) if ∃i: 16i6l(x) and (i − 1) · 2q(|x|)
¡ j6i · 2q(|x|);

0 othewise:

The de5nition of the function r is more delicate. We have to ensure that r(x), that is
|zx|, contains suTcient information so that "(|zx|; i)= (i− 1) · 2q(|x|) + 1 and #(|zx|; i)=
t(〈x; i〉). It is easy to see that there exists an index Qy and a polynomial p such that,
for every x and every i with i6l(x), it holds U (Qy; 〈x〉)= l(x); U (Qy; 〈x; i; 0〉)= (i −
1) ·2q(|x|) +1; U (Qy; 〈x; i; 1〉)= t(〈x; i〉), and all the computations U (Qy; 〈x〉); U (Qy; 〈x; i; 0〉);
U (Qy; 〈x; i; 1〉) halt within p(|x|) steps. Thus, we can de5ne r(x)= 〈 Qy; x; l(x) ·
2q(|x|)+p(|x|)〉, for every x. It is easy to verify that T and r witness that L∈ (�[A′; A; B];
�[B′; A; B]) · 6p

m (X).
Conversely, let L be a language in (�[A′; A; B]; �[B′; A; B]) · 6p

m (X). Then, there
exist two polynomial-time functions R and l such that

x ∈ L ⇔ X (R(x; 1))X (R(x; 2)) · · ·X (R(x; l(x))) ∈ �[A′; A; B];

x =∈L ⇔ X (R(x; 1))X (R(x; 2)) · · ·X (R(x; l(x))) ∈ �[B′; A; B]:

508 B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523

For every x, let zx denote the string X (R(x; 1))X (R(x; 2)) · · ·X (R(x; l(x))). De5ne the
following language

H = {〈x; j〉 | (j6�(|zx|) ∧ �(zx; j) ∈ A) ∨ (j ¿ �(|zx|) ∧ �(zx; 1) ∈ A)}:

Now, it is easy to show that H ∈ (A; B) · 6p
m (X). In fact, de5ne for all x and j,

t(〈x; j〉) =
{

#(|zx|; j) if j6�(|zx|);
#(|zx|; 1) otherwise:

s(〈x; j〉; i) =
{

R(x; "(|zx|; j) + i − 1) if j6�(|zx|);
R(x; "(|zx|; 1) + i − 1) otherwise:

Since |zx|= l(x), it is clear that �(|zx|); #(|zx|; j) and "(|zx|; j) can be computed in
polynomial time in the length of x. It follows that the functions t and S are polynomial-
time computable. It is easy to verify that, for all x and j,

X (S(〈x; j〉; 1))X (S(〈x; j〉; 2)) · · ·X (S(〈x; j〉; t(〈x; j〉))) =
{

�(zx; j) if j6�(|zx|);
�(zx; 1) otherwise:

Also, since zx ∈�[A′; A; B] ∪ �[B′; A; B], it holds that �(zx; j)∈A ∪ B for every j with
j6�(|zx|). Thus, S and t witness that H ∈ (A; B)·6p

m (X). For proving that L∈ (A′; B′)·
6p

m (H) it suTces to observe that, for every x, it holds that

H 〈x; 1〉H 〈x; 2〉 · · ·H 〈x; �(l(x))〉 = A(�(zx; 1))A(�(zx; 2)) · · ·A(�(zx; �(|zx|))):

Finally, we observe that if (A′; B′) and (A; B) are complementary then also (�[A′; A;
B]; �[B′; A; B]) is complementary. This shows that the composition of two complemen-
tary dot operators is a complementary dot operator.

Remark. Because dot operators are mappings, their composition is associative. The
following example shows that the composition is not commutative. Let A be an oracle
such that �p

2 (A) �=�p
2 (A) (see [4]). It holds that

∃ · ∀ ·6p
m(A) = �p

2 (A) �=�p
2 (A) = ∀ · ∃ ·6p

m(A):

A class is a set of languages. We say that a class C is closed downward if it is
closed downward w.r.t. polynomial-time many-one reducibility, i.e. from A6p

m B and
B∈C it follows A∈C. The join A⊕B of two languages A; B is the set 0A∪ 1B. A set
C of languages is closed under join if from A; B∈C it follows A⊕B∈C. An 6p

m-
ideal is a set I of languages which is closed downward and under join. A language B
is 6p

m-complete for a class C if B∈C and for each language A∈C it holds A6p
m B.

A principal 6p
m-ideal is a set of languages which has a 6

p
m-complete language and is

closed downward, note that closedness under join follows from this. It was proven in
[6] that the promise leaf language classes C(A; B) are exactly the 6p

m-ideals, and the

B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523 509

complementary leaf language classes C(A) are exactly the principal 6p
m-ideals. The

following result can be shown with the methods of [6, Fact 2.8 and Th. 4.2] and
[5, Prop. 4 and Th. 6].

Theorem 3.4. (a) Let (A; B) be a promise language and let C be an 6p
m-ideal. Then

(A; B) ·C is an 6p
m-ideal.

(b) Let A be a language and let C be a principal 6p
m-ideal. Then A ·C is a principal

6p
m-ideal.

Note that Theorem 3.4(b) implies that A ·C has a 6p
m-complete language. Because

the Polynomial Hierarchy and the Counting Hierarchy are de5ned, starting with the
principal 6p

m-ideal P, by iterative use of the complementary dot operators ∃ ·;∀ ·;C ·,
we have the following well-known corollary. (Of course, a similar result holds for all
classes de5ned by iterative use of a given set of complementary dot operators, starting
with P.)

Corollary 3.5 (Stockmeyer [27], Wrathall [36], Wagner [35]). The classes of the
Polynomial Hierarchy and the Counting Hierarchy have 6p

m-complete sets.

Remark. Let the 6p
m-degree of a language A be the set of languages polynomial-time

equivalent to A. 6p
m transfers consistently to the 6p

m-degrees. It is easy to see that
principals 6p

m-ideals and 6
p
m-degrees correspond to each other by the mapping which

maps a principal 6p
m-ideal to its set of 6

p
m-complete languages. This mapping is an

isomorphism of the partial order ⊆ on the principal 6p
m-ideals and the partial order

6p
m on the 6p

m-degrees. Therefore, realizing that degrees are a much better-known
concept than principal 6p

m-ideals, we may by the above Theorem 3.4(b) also con-
sider a complementary dot operator to be a function which maps 6p

m-degrees to 6
p
m-

degrees.

4. Comparison of dot operators

The natural way of comparing (dot) operators is the following.

De�nition 4.1 (partial order on operators). Let O1 and O2 be any two operators map-
ping classes to classes. De5ne the partial order 6op on operators by

O16opO2 ⇔ for all classes C it holds O1C⊆O2C:

Recall that we assume all the classes are closed downward and that they are not
included in {∅; �∗}. Without the latter assumption, Lemma 4.4 would not be true.
We will also simply write (A; B)6op (A′; B′) instead of (A; B) ·6op (A′; B′) ·. We

will see that there is a close connection of this order on dot operators to the following
de5nition.

510 B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523

De�nition 4.2 (monotone projections; Skyum and Valiant [26]). A function f :�∗
→�∗ is a monotone projection if there exist two functions l :N→N and � :N×N→N
such that for every word x1 · · · xm it holds

f(x1 · · · xm) = [m; �(m; 1)][m; �(m; 2)] · · · [m; �(m; l(m))];

where [;] is the function N ×N→{0; 1} de5ned by

[m; j] :=

xj if 16j6m;

0 if j = 0;

1 if j ¿ m:

Call a monotone projection polylog-time uniform if l and � are polynomial-time com-
putable (the log-shift is caused by the binary representation of numbers).

Examples of polylog-time uniform monotone projections are functions like f(x1x2
· · · xm)= xm · · · x2x1, or f(x1x2 · · · xm)= x10x1.
Monotone projections induce the following reducibility. Note that by our convention

A=(A; QA) we will have de5ned the reducibility also on usual languages.

De�nition 4.3 (monotone projection reducibility). A promise language (A; B) is
polylog-time monotone projection reducible to a promise language (A′; B′), written
(A; B)6plt

mp (A′; B′), if there is a polylog-time uniform monotone projection f such
that; for every z;

z ∈ A ⇒ f(z) ∈ A′;

z ∈ B ⇒ f(z) ∈ B′:

A similar kind of reducibility is studied in [32] (see also [15]). The next Lemma
4.4 represents the easy direction of Theorem 4.6 below.

Lemma 4.4. Let (A1; B1) and (A2; B2) be two promise languages. Then; it holds that

(A1; B1)6plt
mp(A2; B2)⇒ (A1; B1)6op(A2; B2):

Proof. Since (A1; B1)6
plt
mp (A2; B2), there is a projection f such that, for every z; z ∈A1

⇔f(z)∈A2 and z ∈B1⇔f(z)∈B2. Let � and l be two functions that, according to
De5nition 4.2, witness that f is a polylog-time uniform monotone projection. Let L be
a language in (A1; B1) ·6p

m (X). Then, there exist two polynomial-time functions R and
t such that, for every x, it holds that x∈L⇔X (R(x; 1))X (R(x; 2)) · · ·X (R(x; t(x)))∈A1
and x =∈ L ⇔ X (R(x; 1))X (R(x; 2)) · · ·X (R(x; t(x))) ∈ B1. It is easy to de5ne

B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523 511

polynomial-time functions T and s such that, for every x,

f(X (R(x; 1))X (R(x; 2)) · · ·X (R(x; t(x))))

= X (T (x; 1))X (T (x; 2)) · · ·X (T (x; s(x))):

In fact, for every x and every i¿1,

s(x) = l(t(x)) and T (x; i) =

R(x; �(t(x); i)) if 16�(t(x); i)6t(x);

u1 if �(t(x); i)¿t(x) + 1;

u0 if �(t(x); i) = 0;

where u0 and u1 are two 5xed strings such that X (u0)= 0 and X (u1)= 1 (at this place
we need the requirement that classes are not included in {∅; �∗}). It is immediate to
verify that T and s witness that L∈ (A2; B2) ·6p

m (X).

The following result is a corollary of the above Lemma 4.4.

Corollary 4.5. Let A be a language. If membership in A only depends on length then
A · is a constant function. Otherwise; it holds id ·6op A · or co ·6op A · (or both).

Proof. If membership in A only depends on length then it immediately follows from
the de5nition that A· is a constant function.
If this is not the case then there are two strings w1 and w2 of the same length n such

that w1 ∈A and w2 =∈A and there is only one index i such that w1(i) �=w2(i). Consider
the following projection f(z)=w1(1) · · ·w1(i − 1)z(1)w1(i + 1) · · ·w1(n). If w1(i)= 1
then f shows that 1�∗6plt

mp A. Otherwise, f shows that 0�∗6plt
mp A. From Lemma 4.4

it follows that either id ·6op A · or co ·6op A · (or both).

The following Theorem 4.6 and its Corollary 4.7 may be considered to be the main
result of this paper.

Theorem 4.6. Let A be a language and let (C;D) be a promise language. Then; it
holds that

A6plt
mp(C;D) ⇔ A6op(C;D):

Proof. One direction has been proved in Lemma 4.4. It remains to show that A�plt
mp

(C;D) implies the existence of a language H such that A ·6p
m (H)* (C;D) ·6p

m (H).
Assume that A�plt

mp (C;D). It is easy to see that only the following two cases can
happen:

(1) There is an Qm¿1 such that, for every polylog-time uniform monotone projection
f, there is a string z of length Qm for which either z ∈A and f(z) =∈C or z =∈A and
f(z) =∈D.

512 B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523

(2) For every polylog-time uniform monotone projection f, there are in5nitely many
z such that either z ∈A and f(z) =∈C or z =∈A and f(z) =∈D. 1

Consider the 5rst case. If A=�∗ then it must be the case that C = ∅. Thus, it is easy
to verify that �∗ ·6p

m (�∗)* (∅; D) ·6p
m (�∗). Assume that A �=�∗. For any language

X , de5ne L1(X)= {0n | 2n¿ Qm∧X (0n)X (0n−11) : : : X (Qmn)∈A} where Qmn is the Qmth
string of length n, in the lexicographic order. Clearly, it holds that L1(X)∈A ·6p

m (X)
whenever X �= ∅; �∗. Let {(Ri; li)}i¿1 be an enumeration of all the pairs of polynomial-
time computable functions such that Ri :�∗×N→�∗ and li :�∗→N. For every i¿1,
let pi be a polynomial such that for every n; pi(n) bounds the running time of Ri(z; k)
for every z of length at most n and every k6li(z). Also, let p0(n)= n for all n. We
need the following notation: for every n and for every z, let Bn; z be the language

Bn; z = {x | |x| = n and z(j) = 1; being x the jth string of length n}:
We construct the language H by stages.

Begin construction
Stage 0: H0 := ∅ and n0 := Qm.
Stage k¿1: Set nk :=pk−1(nk−1) + 1: For any z, let Hz =Hk−1 ∪Bnk ; z and let

gkz =Hz(Rk(0nk ; 1))Hz(Rk(0nk ; 2)) · · ·Hz(Rk(0nk ; lk(0nk))):

Let u be a string of length Qm such that (u∈A∧ gku =∈C)∨ (u =∈A∧ gku =∈D). Set
Hk :=Hk−1 ∪Bnk ; u.

End construction
Let H =

⋃
k Hk . If at every stage, there always exists a string u satisfying the require-

ments, then it is easy to see that L1(H) =∈ (C;D) ·6p
m (H). We have only to prove that

such a string u always exists. Consider stage k and suppose by the way of contradiction
that, for every z of length Qm, it holds that

z ∈ A ⇒ gkz ∈ C and z =∈ A ⇒ gkz ∈ D:

We show the existence of a polylog-time uniform monotone projection f such that
f(z)= gk

z for all the strings z of length Qm. Such a projection f can be de5ned by the
functions � and l below

∀n l(n) =

{
lk(0nk) if n = Qm;

1 otherwise:

1 In fact, if there is a polylog-time uniform monotone projection g such that for all z but 5nitely many it
holds that z∈A⇒ g(z)∈C and z =∈A⇒ g(z)∈D, then there exists an Qm¿1 for which every polylog-time
uniform monotone projection fails to be a reduction from A to (C; D) on strings of length Qm. For otherwise,
being n1; : : : ; nk the 5nite set of lengths on which g fails to be a reduction from A to (C; D), there would exist
polylog-time uniform monotone projections f1; : : : ; fk such that fi is, on strings of length ni , a reduction
from A to (C; D). Thus, combining g with f1; : : : ; fk ; we could obtain a polylog-time uniform monotone
projection witnessing A6plt

mp (C; D), contradicting the assumption.

B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523 513

∀i6t(n) �(n; i) =

j if n = Qm and Rk(0nk ; i) is the jth string of length

nk and j6 Qm;

Qm+ 1 if n = Qm and |Rk(0nk ; i)| ¡ nk and

Hk−1(Rk(0nk ; i)) = 1;

0 otherwise:

It follows that f is a reduction, on strings of length Qm, from A to (C;D), contradicting
the assumption.
Consider now the second case. We assume that every polylog-time uniform monotone

projection fails to be a reduction from A to (C;D) on in5nitely many lengths. For any
language X , de5ne L2(X)= {z |X (0|z|+1)X (0|z|1) · · ·X (rz)∈A} where rz denotes the
zth string of length |z|+1. It is clear that L2(X)∈A ·6p

m (X): We construct by stages
a language E such that L2(E) =∈ (C;D) ·6p

m (E): For every string z we denote by ‖z‖
the length of the binary representation of |z|.
Begin construction
Stage 0: E0 := ∅ and n0 := 1.
Stage k¿1: For any y let Ey =Ek−1 ∪B‖y‖+1; y and let

hky = Ey(Rk(|y|; 1))Ey(Rk(|y|; 2)) · · ·Ey(Rk(|y|; lk(|y|))):

Let v be the least string such that ‖v‖¿pk−1(nk−1) and (v∈A∧ hkv =∈C)∨ (v =∈A∧
hkv =∈D).
Set Ek :=Ek−1 ∪B‖v‖; v and nk := ‖v‖.

End construction
Let E=

⋃
k Ek . If at every stage, there always exists a string v satisfying the require-

ments, then it is easy to see that L2(E) =∈ (C;D) ·6p
m (E). We have only to prove that

such a string v always exists. Consider stage k and suppose by the way of contradiction
that, for every y with ‖y‖¿pk−1(nk−1), it holds that

y ∈ A ⇒ hky ∈ C and y =∈ A ⇒ hky ∈ D:

We show the existence of a polylog-time uniform monotone projection f such that
f(y)= hky for every y with ‖y‖¿pk−1(nk−1). Such a projection can be de5ned by the
functions � and l below

∀n l(n) = lk(n)

∀i6t(n) �(n; i) =

j if Rk(n; i) is the jth string of length |n|+ 1
and j6n;

n+ 1 if |Rk(n; i)| ¡ |n|+ 1 and Ek−1(Rk(n; i)) = 1;

0 otherwise:

514 B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523

It follows that, for all the strings y except at most 5nitely many, y∈A⇒f(y)∈C
and y =∈A⇒f(y)∈D. Hence, f is a polylog-time uniform monotone projection that
reduces A to (C;D) on all the lengths except at most 5nitely many, contradicting the
assumption.

For the complementary case we have an isomorphism between 6plt
mp and 6op.

Corollary 4.7. Let A; B be two languages. Then; it holds that

A6plt
mpB ⇔ A6opB:

Obviously we have the following result stated in the abstract.

Corollary 4.8. Let A; B be two languages. Then; it holds that

A ≡plt
mp B ⇔ A ≡op B ⇔ A· = B · :

The next result shows that Theorem 4.6 cannot be extended as to hold for promise
dot operators in the fashion of Corollary 4.8.

Proposition 4.9. There exist two promise languages (V;W) and (E; F) such that

(V;W)�plt
mp (E; F) and (V;W)6op(E; F):

Proof. Let ANP =�∗ − {0}∗. Let I be an immune set (i.e. I is an in5nite set with
no in5nite recursively enumerable subset). De5ne a promise language (V;W) and a
language E as follows

V = {z | |z| ∈ I ∧ z ∈ ANP}; W = {z | |z| ∈ I ∧ z =∈ ANP};
E = {z | z = xy ∧ |x| = �log |z|� ∧ x ∈ ANP}:

Firstly, we show that (V;W)�plt
mp E. Suppose the contrary. Let f be a polylog-time

uniform monotone projection such that, for every z,

z ∈ V ⇒ F(z) ∈ E and z ∈ W ⇒ f(z) =∈ E:

Let � and l be two functions witnessing that f is a polylog-time uniform monotone
projection. This implies that, for every z; |f(z)|= l(|z|). Since l is polynomial-time
computable, there exists a polynomial p such that l(x)62p(|x|) for every x. It follows
that, for every z; |f(z)|62p(‖z‖). Since I is an in5nite set, there is Qn such that Qn∈I

and p(|Qn|)¡Qn−1. Consider the function f on inputs of length Qn. It holds that, for every
z with |z|= Qn; |f(z)|= l(Qn)62p(|Qn|)¡2Qn−1. Thus, letting Qm= �log(l(Qn))�, it holds that
Qm6Qn−1. For any z of length Qn, let �z be the pre5x of length Qm of f(z). Since f is a
projection from (V;W) to E, it must be the case that �z ∈ANP⇔ z ∈ANP. Since Qm¡Qn,
there exists Qk with 16Qk6Qn such that �(Qn; i) �= Qk for all i=1; : : : ; Qm. Also, if z=0 Qn

then �z =0 Qm. Thus, �(Qn; i)6Qn for all i=1; : : : ; Qm. It follows that if z=0 Qk−110 Qn−Qk then
�z =0 Qm, contradicting the assumption about f.

B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523 515

Now, we prove that (V;W)6opE. Let X �=�∗ and let L be a language in (V;W) ·6p
m

(X). There exist two polynomial-time functions R and l such that, for every z,

z ∈ L ⇔ X (R(z; 1)) · · ·X (R(z; l(z))) ∈ V and

z =∈ L ⇔ X (R(z; 1)) · · ·X (R(z; l(z))) ∈ W:

This implies that, for every z; X (R; (z; l)) · · ·X (R(z; l(z))) ∈ V ∪W . Thus, letting L=
{l(z) | z ∈�∗} it holds that L⊆I. Since I is an immune set and L is recursively
enumerable, it must be the case that L is a 5nite set. Let m be such that l(z)6m; for
all z. Consider the functions S and t so de5ned

∀z; i t(z) = 2m S(z; i) =
{
R(z; i) if 16i6l(z);
u0 otherwise;

where u0 is a 5xed string such that X (u0)= 0. It is very easy to verify that S and t
witness that L∈E·6p

m (X).

The reader may ask what happens if in De5nitions 4.2 and 4.3 one takes projections
instead of monotone projections. We get a result similar to Corollary 4.7 which involves
polynomial-time 1-tt reducibility. By going through the analogous proof of Theorem
4.6 we get the following theorem.

Theorem 4.10. For all languages A; B it holds: A is polylog-time uniform projection
reducible to B if and only if for all languages X

A ·6p
1−tt(X)⊆B ·6p

1−tt(X):

Compare Theorem 4.10 with the following theorem of [6].

Theorem 4.11 (Bovet et al. [6]). For all languages A; B it holds: A is polylog-time
reducible to B if and only if for all languages X

A ·6p
T (X)⊆B ·6p

T (X):

The 6plt
mp -degree structure is an upper semi-lattice: For two degrees represented by

languages A and B the least upper bound is given by the language {x0|x| | x∈A}∪
{x0|x|+1 | x∈B}. By Corollary 4.7 this can be transferred to 6op.

Corollary 4.12. The partial order 6op on the complementary dot operators is an
upper semi-lattice.

5. Representation of reducibilities

With dot operators it is not only possible to represent classes (like leaf languages
do) but reducibilities. We will see that in fact most of the known polynomial-time
reducibilities can be represented by dot operators.

516 B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523

De�nition 5.1. An operator (A; B) · represents a reducibility 6r if for all languages L
and X �= ∅; �∗ it holds L6rX ⇔L∈ (A; B) ·6p

m (X).

Observe that if (A; B) · represents a reducibility 6r then 6r is transitive if and only
if operator (A; B) · is idempotent.
We say that a promise language (A; B) represents 6r if the corresponding operator

(A; B) · represents it.
The following theorem covers most of the polynomial-time reducibilities known to

the authors. An example for a polynomial-time reducibility not representable is the
polynomial-time 1-1-reducibility (because it is stronger than many-one).

Theorem 5.2. (a) The following polynomial-time reducibilities can be represented by
complementary dot operators:

(i) 6p
m (many-one reducibility);

(ii) 6p
k−tt (k-truth-table [18]),

(iii) 6p
k−c (k-conjunctive [18]);

(iv) 6p
k−d (k-disjunctive [18]);

(v) 6p
k−ptt (k-positive truth-table [18]);

(vi) 6p
k−T (k-Turing);

(vii) 6p
tt (truth-table [18]);

(viii) 6p
c (conjunctive [18]);

(ix) 6p
d (disjunctive [18]);

(x) 6p
T (Turing);

(xi) 6NP
m (nondeterministic many-one [18]);

(xii) 6NP
c (nondeterministic conjunctive [18]);

(xiii) 6NP
T (nondeterministic Turing [18]);

(xiv) 6PS
T (PSPACE Turing [24]);

(b) The following reducibilities can be represented by promise dot operators but
not by complementary dot operators:

(i) 6p
btt (bounded-truth-table [18]);

(ii) 6SN
T (strong nondeterministic Turing [19]);

(iii) 6RP
m (random many-one [1; 31]);

(iv) 6BPP
m (BPP many-one [1; 31]);

(c) The following reducibilities can be represented by promise dot operators (but
the authors do not know whether they can be represented by complementary dot
operators).

(i) 6p
ptt (positive truth-table [18]);

(ii) 6p
rptt (locally right positive truth-table [11]);

(iii) 6p
lptt (locally left positive truth-table [11]);

(iv) 6p
pos (positive Tuning [23]),

(v) 6p
rpos (locally right positive Turing [11]);

B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523 517

(vi) 6p
lpos (locally left positive Turing [11]);

(vii) 6SN
m (strong nondeterministic many-one [1; 19]);

(viii) 6SN
c (strong nondeterministic conjunctive [19]);

(ix) 6SN
d (strong nondeterministic disjunctive [19]);

(x) 6SN
ptt (strong nondeterministic positive truth-table [19]);

(xi) 6SN
tt (strong nondeterministic truth-table [19]);

(xii) 6RS
T (robustly strong nondeterministic Turing [9]).

Proof. (a)(x): First, we show how to represent the Turing-reducibility. This is a con-
crete example for illustrating the general technique that we use to provide reducibility
representations. In order to represent 6p

T , we 5rst need some notations. Consider a
complete ordered binary tree t whose nodes are labeled by symbols in {0; 1}. For such
a tree t there is a special path that we can call the correct path of t, de5ned as follows:
starting from the root, at any node v we go to its left son if the label of v is 0 and
we go to its right son if the label is 1. The value of t is the value (i.e. the label) of
the leaf of the correct path of t. Any complete ordered binary tree t whose nodes are
labeled by symbols in {0; 1} can be encoded by a string z in {0; 1}∗ which is obtained
by concatenating the levels of t starting from the top level. Notice that if t has depth
‘ then |z|=2‘ − 1. In this way, each node u of t can be identi5ed by an index i such
that z(i) is the label of u. Thus, for instance, 1 is the index of the root of t and 2
and 3 are, respectively, the indices of the left son and the right son of the root. A dot
operator T · that represents the 6p

T -reducibility can be de5ned as follows:

T = {z | (∃‘)|z| = 2‘ − 1 ∧ the value of the tree encoded by z is 1}:
We prove that T · represents 6p

T . Let L6
p
T X (X �= ∅; �∗) by a polynomial-time oracle

Turing machine M . Without loss of generality, we can assume that, for every x, the
tree T(x) of all the possible queries that can be made by M on input x is a complete
tree. Since T(x) is a complete ordered binary tree we can think that each node of
T(x) is identi5ed by an index as explained above. Let d(x) denote the depth of T(x)
and, for every i=1; : : : ; 2d(x) − 1, let q(x; i) be the query that corresponds to the node
of T(x) identi5ed by i. We extend the tree T(x) by adding to it one more level.
The extended tree T′(x) is such that if v is a leaf of T(x) then the left (respectively,
the right) son of v in T′(x) is labeled by the output of the computation of M on
input x which follows the path of queries determined by v and whose last query (i.e.
the query that corresponds to v) receives answer 0 (respectively, 1). For every x and
j=2d(x); : : : ; 2d(x)+1 − 1, let m(x; j) be the label of the leaf of T′(x) identi5ed by j.
Now, we can de5ne the following two functions

∀x ‘(x) = 2d(x)+1 − 1;

R(x; i) =

q(x; i) if 16i62d(x) − 1;

y0 if 2d(x)6i6l(x) and m(x; i) = 0;

y1 if 2d(x)6i6l(x) and m(x; i) = 1;

518 B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523

where y0 and y1 are two 5xed strings such that X (y0)= 0 and X (y1)= 1. Moreover,
let Y = {〈x; i〉} |R(x; i)∈X }. It is clear that Y∈6p

m (X) and it is easy to see that Y
and l witness that L∈T · 6p

m (X). Conversely, if L∈T · 6p
m (X) it is very easy to

derive a polynomial-time oracle Turing machine witnessing that L6p
T X .

(a)(vi): Of course, the bounded versions 6p
k−T of the Turing reducibility are repre-

sentable by the following dot operators Ak−T .

Ak−T = {z | |z| = 2k − 1 ∧ the value of the tree encoded by z is 1}:

Now, we outline a general strategy for representing reducibilities. This strategy only
provides representations by promise dot operators and thus it will be used for the
reducibilities for which better (e.g. complementary) ad hoc representations do not seem
exist. Consider a reducibility 6r . Generally, 6r is de5ned by some kind of machines.
More precisely, suppose that there exists a universal machine Ur such that, for all the
languages E and F; E6r F iK there is a index y such that the machine (eTciently)
simulated by Ur with index y together with oracle F satisfy some property "r and
the machine with oracle F accepts E. In most cases "r can be decomposed into local
properties, that is, the machine simulated by Ur with index y together with oracle O
satisfy "r iK for every x, the computation of Ur with index y and input x together
with O∩ �p(|x|) (where p is a polynomial that depends on y) satisfy property #r .
To illustrate this quite abstract setting consider, for instance, the not-too-trivial case
of the locally right positive Turing reducibility 6p

rpos. Recall that E6
p
rpos F if there

is a machine M witnessing that E6p
T F and such that, for every x and for every

D, if MF(x) accepts then MF∪D(x) accepts. In this case, the universal machine Urpos

simulates all the deterministic polynomial-time oracle Turing machines, that is, for each
such a machine M there is an index y such that, ∀O ∀x Urpos(y; x)=MO(x). Also, there
is some 5xed polynomial q such that if MO(x) halts within t steps then Urpos(y; x)
halts within q(t) steps. Property #rpos, with regard to Urpos(y; x) and O⊆ �p(|x|) (where
p is a polynomial bounding the length of the queries made by computation Urpos(y; x),
regardless of the oracle), requires that, for every D⊆ �p(|x|), if UO

rpos(y; x) accepts then
UO∪D

rpos (y; x) must accept too. Returning to the general case, a dot operator (Ar; Br)·
which represents 6r can be de5ned as follows.

Ar = {z | (∃t; x; y)[|z| = 〈1t ; y; x〉 ∧ Ur(y; x) halts within t steps and together with

Oz satisfy property #r ∧ UOz
r (y; x) accepts]};

Br = {z | (∃t; x; y)[|z| = 〈1t ; y; x〉 ∧ Ur(y; x) halts within t steps and together with

Oz satisfy property #r ∧ UOz
r (y; x) rejects]};

where, for every z; Oz is the oracle language such that Oz(u)= z(u) for 16u6|z|
and Oz(u)= 0 otherwise. It is not hard to see that this strategy works for all the
reducibilities listed above but the 6p

btt-reducibility.

B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523 519

(c)(i–xii), (b)(ii): Indeed, for some reducibilities either there are no better rep-
resentations or we have not been able to 5nd them. These are: 6p

ptt ; 6
p
rptt ; 6

p
lptt ;

6p
pos; 6

p
rpos ; 6

p
lpos ; 6

SN
m ; 6SN

c ; 6SN
d ; 6SN

ptt ; 6
SN
tt ; 6RS

T , and 6
SN
T .

As regards the other reducibilities, either complementary or simpler representations
exist (as for the cases of 6p

T and 6p
k−T).

(a)(i) It is immediate to verify that the dot operator Am · = {1�∗}· represents 6p
m.

Now, consider the truth-table reducibilities. First, recall their de5nitions (see [18]).
A tt-condition is a string of the type 〈"; y1; : : : ; yk〉 where " and y1; : : : ; yk (possibly
k =0) are binary strings and " is supposed to be the encoding of a boolean function. A
tt-condition generator is a recursive mapping of �∗ into the set of tt-conditions. A tt-
condition evaluator is a recursive mapping of the set {("; z) | "; z ∈ �∗} into {0; 1}. Let
e be the tt-condition evaluator and let H be a language. A tt-condition 〈"; y1; : : : ; yk〉
is e-satisBed by H if e("; H (y1) · · ·H (yk))= 1. A language L is polynomial-time tt-
reducible to a language H , written L6p

tt H , if there is a polynomial-time computable
generator g and a polynomial-time computable evaluator e such that x∈L iK g(x)
is e-satis5ed by H . By restricting the tt-conditions evaluators, strengthened versions
of polynomial-time reducibilities may be de5ned. L is polynomial-time conjunctive
reducible to H (L6p

c H) if the evaluator has the property that e("; z)= 1 iK z=1|z|. L
is polynomial-time disjunctive reducible to H (L6p

d H) if the evaluator has the property
that e("; z)= 0 iK z=0|z|. L is polynomial-time positive tt-reducible to H (L6p

ptt H)
if the evaluator has the property that if e("; z)= 1 and y is such that |y|= |z| and
z(i)= 1 ⇒ y(i)= 1, for i=1; : : : ; |z|, then e("; y)= 1. By bounding the number of
queries, the above reducibilities can be further strengthened. Let k be a positive integer.
A language L is polynomial-time k-tt-reducible to a language H; (L6p

k−tt H), if there
is a polynomial-time computable generator g that outputs only tt-condition of arity
at most k and a polynomial-time computable evaluator e such that x∈L iK g(x) is
e-satis5ed by H . Similarly, the reducibilities 6p

k−c; 6
p
k−d, and 6

p
k−ptt are de5ned.

(a)(ii–v): The bounded versions can easily be represented. Let f1; f2; : : : ; f22k be an
enumeration of all the boolean functions of arity k. Let Ak−tt = {z0y | |z|= k ∧ 16y6
22

k ∧fy(z)= 1}. It is easy to see that Ak−tt · represents 6p
k−tt . In a very similar way it

is possible to de5ne Ak−c·; Ak−d·, and Ak−ptt · that represent, respectively, 6p
k−c; 6

p
k−d,

and 6p
k−ptt .

(b)(i): Between the bounded and the unbounded versions there is the 6p
btt-redu-

cibility. This is the only one that requires a non-recursive representation:

Abtt = {z | (∃k; ‘)[|z| = 〈k; ‘〉 ∧ k ∈ I ∧ z(1)z(2) · · · z(‘) ∈ Ak−tt]};
Bbtt = {z | (∃k; ‘)[|z| = 〈k; ‘〉 ∧ k ∈ I ∧ z(1)z(2) · · · z(‘) =∈ Ak−tt]};

where I is an immune set.
(a)(vii–ix): Now, consider the unbounded versions. Let U be a universal determinis-

tic Turing machine. That is, a machine such that for any deterministic Turing machine
M there exists an index i such that ∀x U (i; x)=M (x). Also, U can be de5ned so
that there is a constant c for which for any machine M and any index j for M , if

520 B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523

the computation M (x) halts within t steps then U (j; x) halts within ct2 steps. Now,
consider the following language:

Att = {z | (∃k; t; y)[|z| = 1k0t1y ∧ U (y; z(1)z(2) · · · z(k))
halts within t steps in an accepting state]}:

It is not hard to verify that Att · represents 6p
tt . The case of the conjunctive reducibility

is easier. Let Ac= {z | (∃k; y)[z=1k0y ∧ k = log�|z|�]}. In a very similar way can be
de5ned a dot operator Ad· that represents 6p

d .
(a)(xi–xii): As regards the nondeterministic reducibilities, it is immediate to ver-

ify that ∃· represents 6NP
m . Also, it is easily seen that the composition of ∃· and

Ac· represents 6NP
c and the composition of ∃· and AT · represents 6NP

T . Thus, from
Theorem 3.3 both reducibilities can be represented by complementary dot operators.
(b)(iii, iv): The reducibility 6BPP

m can be represented by the BP-operator BP· and
6RP

m is represented by the RP-operator RP·.
(a)(xiv): In order to show a dot operator representing the 6PS

T -reducibility we need
some notations. For every n we consider any string z of length n2n as describing a
direct graph Gz on 2n vertices as follows. Let y1; y2; : : : ; y2n be such that z=y1y2 · · ·y2n
and |y1|= |y2|= · · · = c|y2n |= n, the vertices of Gz are all the strings of length n and
there is an edge from u to v iK it holds that v=yj being u the jth string of length n
(in the lexicographic order). Note that all the vertices of Gz have out-degree at most
one. De5ne the following language

APS = {z | (∃n)|z| = n2n ∧ Gz has an oriented path from 0n to 1n}:
We show that the dot operator APS · represents the 6PS

T -reducibility. Let E6PS
T F

via a polynomial-space bounded machine M . It is easy to see that there is a way
to encode any possible instantaneous con5guration (included the content of the oracle
tape) of a computation of M on any input x as a string of length q(|x|), for some 5xed
polynomial q. Also, we can assume that this encoding has the following properties:
(1) any instantaneous con5guration in the query state is not encoded, instead of it are
encoded the two successive con5gurations corresponding to the two possible answers
of the oracle; (2) the answer of the oracle is encoded by a speci5c bit of the encoding
string (say the last bit); (3) the initial con5guration is encoded by the string of all 0’s
and the accepting con5guration is encoded by the string of all 1’s. By using this type
of encoding it is not hard to see that E ∈APS ·6PS

T (F). The converse is easier and it
is left to the reader.
(b): From Theorem 3.4(b) and the existence of relativized worlds in which the

following classes BH [7], NP∩ co-NP [25], RP [25], and BPP [10] lack complete lan-
guages, it follows from the representability of 6p

T that reducibilities 6
p
btt ; 6

SN
T ; 6BPP

m ,
and 6RP

m cannot be represented by complementary dot operators.
(c): For all the reducibilities of (c) but 6p

lpos and 6
p
rpos it is easy to see that

P=NP implies that they can be represented by complementary dot operators. This
leaves open the question whether they admit complementary representations. For the

B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523 521

strong reducibilities 6SN
m ; 6SN

c ; 6SN
d ; 6SN

ptt ; 6
SN
tt , and 6

RS
T , it seems unlikely since it

would imply that NP∩ co-NP has complete languages. We also suspect that 6p
lpos and

6p
rpos cannot be represented by complementary dot operators.

It was shown by Ambos-Spies [2] for every language A that its polynomial-time
Turing closure P(A)=6p

T (A) has a 6
p
m-complete language. By Theorem 3.4 we can

generalize this to all reducibilities shown to be representable by complementary dot
operators in the above Theorem 5.2(a).

Corollary 5.3. Let A be any language. The reducibility closures 6p
k−tt (A); 6

p
k−c (A);

6p
k−d (A); 6

p
k−ptt (A); 6

p
k−T (A); 6

p
tt (A); 6

p
c (A); 6

p
d (A); 6

p
T (A); 6

NP
m (A);6NP

T (A);
and 6PS

T (A) are principal 6p
m-ideals (this implies that they have a 6p

m-complete
language).

The following result shows a limit on the representability of reducibilities by dot
operators. Namely: If for a reducibility there is no polynomial bound on the size of
the asked questions then it is not representable by a dot operator. The proposition can
be proven by straightforward diagonalization.

Proposition 5.4. The many-one and Turing reducibilities given by PSPACE or EXP-
TIME computations (without restriction on the size of the questions) are not repre-
sentable by dot operators.

We have represented reducibilites by languages. This allows to apply computational
complexity notions to reducibilites: Say that a reducibility 6r can be represented in a
complexity class C if 6r is represented by a language in C (an extended de5nition
can be given for promise languages). For example, all the reducibilities in Theorem
5.2(a) are representable in LOGSPACE. The natural way to compare reducibilities is
by the re5nement relation: reducibility 6r1 reBnes reducibility 6r2 if for all L and
E; L6r1E implies L6r2E. For instance, 6p

tt re5nes 6
p
T . The usual completeness notion

for preorders can be applied to the re5nement relation: A reducibility 6r is complete
w.r.t. the re5nement relation for a set of reducibilities R if 6r ∈R and for every 6s ∈R
it holds that 6s re5nes 6r . The following proposition follows from the de5nitions.

Proposition 5.5. Let 6r1 and 6r2 be two reducibilities represented by the languages
A1 and A2; respectively. It holds that 6r1 reBnes 6r2 if and only if A16opA2.

The following theorem uses Corollary 4.7.

Theorem 5.6 (completeness of reducibilities). (a)(i) The reducibility 6p
T is complete

w.r.t. the reBnement relation for the set of reducibilities representable in LOGTIME;
and also for the set of reducibilities representable in POLYLOGTIME. (ii) Any
representable reducibility that is not representable in POLYLOGTIME does not
reBne 6p

T .

522 B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523

(b)(i) The reducibility 6PS
T is complete w.r.t. the reBnement relation for the set

of reducibilities representable in LOGSPACE; and also for the set of reducibilities
representable in POLYLOGSPACE. (ii) Any representable reducibility that is not
representable in POLYLOGSPACE does not reBne 6PS

T .

Proof. (a)(i): It is easy to see that the language T is complete for LOGTIME and
POLYLOGTIME w.r.t. 6plt

mp, i.e. (1) T is in LOGTIME and (2) every set in POLY-
LOGTIME is 6plt

mp-reducible to T . By (1), 6p
T is representable in LOGTIME, and

by (2), Lemma 4.4 and Proposition 5.5 every reducibility representable in POLYLOG-
TIME re5nes 6p

T .
(a)(ii): It follows from the easy fact that POLYLOGTIME is closed downward w.r.t.

6plt
mp together with Theorem 4.6 and Proposition 5.5.
(b): It is analogous to (a). It suTces to observe that the language APS (de5ned

in the proof of Theorem 5.2) representing 6PS
T is complete for LOGSPACE and

POLYLOGSPACE w.r.t. 6plt
mp, and POLYLOGSPACE is closed downward

w.r.t. 6plt
mp.

6. Open question

The authors could give several examples of operators and reducibilities which can
be represented as dot operators according to De5nitions 2.1 and 2.2. But they could
not give a characterization of the set of (complementary) dot operators (like they gave
for example for the set of (complementary) leaf language classes [5]).

Acknowledgements

The authors are grateful to Klaus Ambos-Spies, Andreas Eisenbl?atter, Wolfgang
Merkle, Frank Stephan, and the referees for helpful comments.

References

[1] L.M. Adleman, K. Manders, Reducibility, randomness, and intractability, ACM Symp. on Theory of
Computing, 1977, pp. 151–163.

[2] K. Ambos-Spies, A note on complete problems forcomplexity classes, Inform. Process. Lett. 23 (1986)
227–230.

[3] J. Balcazar, J. Diaz, J. Gabarro, Structural Complexity I, Springer, Berlin, 1988.
[4] T. Baker, A. Selman, A second step toward the polynomial hierarchy, Theoret. Comput. Sci. 8 (1979)

431–442.
[5] B. Borchert, R. Silvestri, A characterization of the leaf language classes, Inform. Process. Lett. 63

(1997) 153–158.
[6] D.P. Bovet, P. Crescenzi, R. Silvestri, A uniform approach to de5ne complexity classes, Theoret.

Comput. Sci. 104 (1992) 263–283.
[7] J. Cai, L.A. Hemachandra, The Boolean hierarchy: hardware over NP, Proc. 1st Structure in Complexity

Theory Conf., Lecture Notes in Computer Science, vol. 223, Springer, Berlin, 1994, pp. 105–124.

B. Borchert, R. Silvestri / Theoretical Computer Science 262 (2001) 501–523 523

[8] A. Eisenbl?atter, ?Uber einige zentrale Operatoren in der Komplexit?atstheorie, Diploma Thesis, Universit?at
Heidelberg, 1994.

[9] R. GavaldWa, J. BalcXazar, Strong and robustly strong polynomial time reducibilities to sparse sets, Theoret.
Comput. Sci. 88 (1) (1991) 1–14.

[10] J. Hartmanis, L. Hemachandra, Complexity classes without machines: on complete languages for UP,
Theoret. Comput. Sci. 58 (1988) 129–142.

[11] L.A. Hemachandra, S. Jain, On the limitations of locally robust positive reductions, Internat. J. Found.
Comput. Sci. 2 (3) (1991) 237–255.

[12] U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, K. Wagner, On the power of polynomial time
bit-reductions, Proc. 8th IEEE Structure in Complexity Theory Conf., 1993, pp. 200–207.

[13] L. Hemaspaandra, H. Vollmer, The Satanic notations: counting classes beyond #P and other de5nitional
adventures, SIGACT News 26 (1) (1995) 2–13.

[14] U. Hertrampf, H. Vollmer, K. Wagner, On balanced vs. unbalanced computation trees, Universit?at
W?urzburg, Tech. Rep. no. 82, May 1994.

[15] N. Immerman, Languages that capture complexity classes, SIAM J. Comput. 16 (1987) 760–778.
[16] B. Jenner, P. McKenzie, D. ThXerien, Logspace and logtime leaf languages, Proc. 9th IEEE Structure in

Complexity Theory Conf., 1994, pp. 242–254.
[17] J. K?obler, U. Sch?oning, J. Toran, The Graph Isomorphism Problem: Its Structural Complexity,

Birkh?auser, Basel, 1993.
[18] R. Ladner, N. Lynch, A. Selman, A comparison of polynomial time reducibilities, Theoret. Comput.

Sci. 1 (1975) 103–123.
[19] T.J. Long, Strong nondeterministic polynomial-time reducibilities, Theoret. Comput. Sci. 21 (1982)

1–25.
[20] C.H. Papadimitriou, Games against nature, J. Comput. System Sci. 31 (1985) 288–301.
[21] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[22] U. Sch?oning, Probabilistic complexity classes and lowness, Proc. 2nd IEEE Structure in Complexity

Theory Conf., 1987, pp. 2–8.
[23] A. Selman, Reductions on NP and P-selective sets, Theoret. Comput. Sci. 19 (1982) 287–304.
[24] I. Simon, J. Gill, Polynomial reducibilities and upward diagonalizations, Proc. 9th ACM Symp. on

Theory of Computing, 1977, pp. 186–194.
[25] M. Sipser, On relativization and the existence of complete sets, Proc. 9th Internat. Colloq. on Automata,

Languages and Programming (ICALP), Lecture Notes in Computer Science, vol. 140, Springer, Berlin,
1982, pp. 523–531.

[26] S. Skyum, L.G. Valiant, A complexity theory based on Boolean algebra, J. ACM 32 (1985) 484–505.
[27] L. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1977) 23–33.
[28] S. Tang, O. Watanabe, On tally relativizations of BP-complexity classes, SIAM J. Comput. 18 (1989)

449–462.
[29] S. Toda, M. Ogiwara, Counting classes are at least as hard as the polynomial-time hierarchy, SIAM J.

Comput. 21 (1992) 316–328.
[30] J. Toran, Complexity classes de5ned by counting quanti5ers, J. ACM 38 (1991) 753–774.
[31] L.G. Valiant, V.V. Vazirani, NP is easy as detecting unique solutions, Theoret. Comput. Sci. 47 (1986)

85–93.
[32] H. Veith, Succinct representations and leaf languages, Proc. 11th IEEE Conf. on Computational

Complexity, 1996, pp. 118–126.
[33] N.K. Vereshchagin, Relativizable and nonrelativizable theorems in the polynomial theory of algorithms,

Russian Acad. Sci. Izv. Math. 42 (1994) 261–298.
[34] H. Vollmer, Uniform characterizations of complexity classes, ACM SIGACT-Newslett. 30 (1) (1999)

17–27.
[35] K. Wagner, The complexity of combinatorial problems with succinct input representations, Acta Inform.

23 (1986) 325–356.
[36] C. Wrathall, Complete sets and the polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1977) 23–33.

