
Theoretical Computer Science 409 (2008) 521–529

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Dynamic bin packing of unit fractions itemsI

Joseph Wun-Tat Chan a,∗, Tak-Wah Lam b, Prudence W.H. Wong c
a Department of Computer Science, King’s College London, Strand, London WC2R 2LS, UK
b Department of Computer Science, University of Hong Kong, Hong Kong
c Department of Computer Science, University of Liverpool, UK

a r t i c l e i n f o

Article history:
Received 28 February 2007
Received in revised form 27 May 2008
Accepted 12 September 2008
Communicated by A. Fiat

Keywords:
Bin packing
Online algorithms
Competitive analysis

a b s t r a c t

This paper studies the dynamic bin packing problem, in which items arrive and depart at
arbitrary times. We want to pack a sequence of unit fractions items (i.e., items with sizes
1/w for some integer w ≥ 1) into unit-size bins, such that the maximum number of bins
ever used over all time isminimized. Tight and almost-tight performance bounds are found
for the family of any-fit algorithms, including first-fit, best-fit, and worst-fit. In particular,
we show that the competitive ratio of best-fit and worst-fit is 3, which is tight, and the
competitive ratio of first-fit lies between 2.45 and 2.4942. We also show that no on-line
algorithm is better than 2.428-competitive.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The bin packing problem has been studied since the early 70’s and different variants of the problem continue to attract
researchers’ attention (see the survey [7,10,11]). In the classical bin packing problem, we want to pack a sequence of items,
each with size in the range (0, 1] into a minimum number of unit-size bins. One of the generalizations of the problem
is known as the dynamic bin packing problem [9], in which items arrive and depart at arbitrary times. The objective is to
minimize themaximumnumber of bins ever used over all time. In this paper, we study dynamic bin packing of unit fractions
items. A unit fraction item has size of the form 1/w for some integer w ≥ 1. We analyze the performance of the family of
any-fit algorithms, which includes first-fit, best-fit and worst-fit, and provide tight and almost-tight performance bounds.
There is a long history of results for the classical bin packing problem and its variants [7,10,11]. Most of the previous

work considered ‘‘static’’ bin packing in the sense that items do not depart. In this ‘‘static’’ model, the off-line bin packing
problem is NP-hard [12]. For the on-line version of the problem, each item must be assigned to a bin, without knowledge
of subsequent items. Moreover, no migration of items is allowed, i.e., items cannot be moved from one bin to another. The
performance of an on-line algorithm ismeasured by its competitive ratio (see [3] for a survey). The current best upper bound
is due to Seiden [14], who proved that the algorithm Harmonic++ has a competitive ratio at most 1.58889. The current best
lower bound is due to vanVliet [15]who showed that no on-line algorithm can achieve a competitive ratio less than 1.54014.
In many real applications, item sizes are often not arbitrary real numbers in (0, 1]. Bar-Noy et al. [2] initiated the study of

the unit fractions bin packing problem (UFBP), a restricted version of the classical bin packing problem, inwhich all sizes are of
the form 1/w for some integerw ≥ 2. In the on-line setting, they gave an algorithmwith a competitive ratio 1+O(1/

√
H),

where H denotes the sum of sizes of all items. Note that this algorithm is asymptotically optimal. Bin packing with other
restricted form of item sizes includes divisible item sizes [8] (where each possible item size can be divided by the next
smaller item size), and discrete item sizes [6] (where possible item sizes are {1/k, 2/k, . . . , j/k} for some 1 ≤ j ≤ k).

I A preliminary version of this paper appeared in ‘‘The 32nd International Colloquium on Automata, Languages and Programming, ICALP, 2005’’.
∗ Corresponding author. Tel.: +44 0 2078482843; fax: +44 0 2078482851.
E-mail addresses: joseph.chan@kcl.ac.uk (J.W.-T. Chan), twlam@cs.hku.hk (T.-W. Lam), pwong@liverpool.ac.uk (P.W.H. Wong).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.09.028

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:joseph.chan@kcl.ac.uk
mailto:twlam@cs.hku.hk
mailto:pwong@liverpool.ac.uk
http://dx.doi.org/10.1016/j.tcs.2008.09.028


522 J.W.-T. Chan et al. / Theoretical Computer Science 409 (2008) 521–529

Table 1
Summary of results
Algorithms Upper bounds Lower bounds

First-fit 2.4942 2.45
Best-fit 3 3
Worst-fit 3 3
Any-fit 3 2.428
Any on-line algorithms – 2.428

Dynamic bin packing is a generalization of the classical bin packing problem introduced by Coffman et al. [9]. This
generalization assumes that items may depart at arbitrary time. The objective is to minimize the maximum number of
bins ever used over all time. It was shown in their paper that the on-line algorithm first-fit has a competitive ratio lying
between 2.75 and 2.897, and no on-line algorithm can achieve a competitive ratio better than 2.5. Note that these results
assume a very general optimal off-line algorithm, which can re-pack the items. Coffman et al. [9] also gave a lower bound of
2.388 when the off-line algorithm is not allowed to re-pack the items. This lower bound was recently improved to 2.5 [5].
Ivkovic and Lloyd [13] studied an even more general problem called the fully dynamic bin packing problem, where migration
of items is allowed, and gave a 1.25-competitive on-line algorithm for this problem.
This paper studies dynamic bin packing of unit fractions items, the main contributions are several very close upper

and lower bounds (see Table 1). We show that any-fit algorithms, which include first-fit, best-fit and worst-fit, are
3-competitive. We further show that the performance of best-fit and worst-fit are indeed tight, i.e., they cannot be better
than 3-competitive. On the other hand, we show that first-fit has a better performance, its competitive ratio lies between
2.45 and 2.4942. By contrast to the lower bound 2.5 [5] for packing general items, it can be said that packing unit fractions
items is indeed ‘‘easier’’. In addition, we prove that no on-line algorithm can be better than 2.428-competitive for packing
unit fractions items.
There is a problem related toUFBP, called thewindows scheduling problem (WS) [1,2,4], as pointed out by Bar-Noy et al. [2].

Similar to UFBP, the input of WS is a sequence of items, each with awindow represented by an integer. Each item represents
a piece of information to be broadcast to all clients. Assume that all items are of the same length, which take the same
amount of time to broadcast. The objective of WS is to use the minimum number of broadcast channels to broadcast each
item periodically, such that the duration between two consecutive broadcasts of the same item does not exceed thewindow
of that item. By letting the bins as broadcast channels, and the reciprocal of item sizes as windows, UFBP can be considered
as a special case of WS, and hence the lower bound result on UFBP applies to WS. (Note that the upper bound on UFBP does
not carry over to WS.) Chan and Wong [4] considered the dynamic version of WS, in which items may also depart. They
gave a 5-competitive algorithm, and showed that no on-line algorithm can be better than 2-competitive. The lower bound
of dynamic bin packing of unit fractions items in this paper improves the lower bound for the dynamic version of WS to
2.428.
The rest of the paper is organized as follows. Section 2 gives the definitions of the problem and the family of any-fit

algorithms. Section 3 analyzes the performance of the family of any-fit algorithms. This includes the upper and lower bounds
for first-fit (Sections 3.1 and 3.2, respectively), and the upper and lower bounds for best-fit and worst-fit (Section 3.3).
Section 4 gives a lower bound for any on-line algorithm. Finally, some concluding remarks are given in Section 5.

2. Preliminaries

In this section, we give the definition of the dynamic bin packing problem with unit fractions items and the necessary
notations for further discussion. There is a sequence of items to be packed into bins of unit-capacity. The items arrive and
depart at arbitrary times. We denote the i-th item by mi and its arrival time by ai. Each item mi is associated with a size si,
which is a reciprocal of an integer, i.e., si = 1/wi for some integer wi ≥ 1. When item mi arrives at ai, it must be assigned
to a bin immediately. At any time, the load of a bin refers to the total size of items that are currently assigned to the bin and
have not yet departed, and this load must be at most 1 due to unit bin capacity. Migration is not allowed, in the sense that
once an item is assigned to a bin, it cannot be re-assigned to another bin. The objective is tominimize themaximumnumber
of bins ever used over all time.
As with previous work, wemeasure the performance of an on-line algorithm by its competitive ratio. Given a sequence σ

of items and an on-line bin packing algorithmA, letA(σ , t) denote the number of bins used byA at time t . We say thatA is
c-competitive if there exists a constant k such that for any input sequence σ , we have maxt A(σ , t) ≤ c ·maxt O(σ , t)+ k,
where O is the optimal off-line algorithm.
We consider several on-line algorithms: any-fit, first-fit, best-fit, andworst-fit.When an item arrives, all these algorithms

pack the item into an occupied bin, as long as there exists such a bin that can accommodate the item; a new bin is only used
if otherwise. The algorithms differ in the rule of choosing the occupied bin for the newly arrived item.
When a new item mi of size 1/wi arrives, if there are occupied bins with load no more than 1−1/wi, the algorithms

assignmi to one of these bins as follows:



J.W.-T. Chan et al. / Theoretical Computer Science 409 (2008) 521–529 523

Table 2
Values of α〈x, y〉 for 1 ≤ x, y ≤ 6

α〈x, y〉 y = 1 2 3 4 5 6

x = 1 1 1 1 1 1 1
2 1/2 1 1 1 1 1
3 1/3 2/3 5/6 5/6 5/6 1

=1/2+ 1/3
4 1/4 7/12 3/4 5/6 5/6 11/12

=1/3+ 1/4 =2/3+ 1/4
5 1/5 8/15 7/10 47/60 5/6 17/20

=1/3+ 1/5 =1/2+ 1/5 =1/3+ 1/4+ 1/5 =1/4+ 3/5
6 1/6 8/15 7/10 23/30 49/60 17/20

=3/5+ 1/6 =1/4+ 2/5+ 1/6

Any-fit (AF) assignsmi to any of these bins arbitrarily.
First-fit (FF) assignsmi to the bin which has been occupied for the longest time.
Best-fit (BF) assignsmi to the heaviest loaded bin; ties are broken arbitrarily.
Worst-fit (WF) assignsmi to the lightest loaded bin; ties are broken arbitrarily.

As pointed out by Coffman et al. [9], for analyzing the performance of first-fit, it suffices to consider the input sequences
with the following two properties.

1. FF uses the maximum number of bins when the last item is packed but not before.
2. No occupied bin ever becomes empty during the execution of FF on input sequences, satisfying the first property.
Otherwise, if there is an occupied bin that becomes empty, we can consider the same sequence of items without all
the items that are packed to that bin before the bin becomes empty. First-fit will work out the same final packing, and
the maximum number of bins used will remain unchanged.

By the second property, we can label the occupied bins by the order they become occupied, such that bin i refers to the i-th
bin used by first-fit. It is obvious that the labels never change. Moreover, among a set of occupied bins, the bin that has been
occupied for the longest time is the bin with the smallest bin label.

3. Performance of the family of any-fit algorithms

In this section we analyze the performance of the family of any-fit algorithms. In Sections 3.1 and 3.2 we give an upper
bound of 2.4942 and a lower bound of 2.45, respectively, for the competitive ratio of FF. Then, in Section 3.3 we show that
both BF and WF cannot be better than 3-competitive and then give the matching upper bounds.

3.1. Upper bound of first-fit

The upper bound of first-fit is proved in a case analysis. We compute the performance ratio of first-fit against the optimal
algorithm in each case, thus obtain a worst case bound of 2.4942. The building blocks of the general case, where individual
cases are identified, require some new notations that are defined in the following paragraphs.
Let x and y be any positive integers. Suppose that a bin is already packed with some items whose sizes are chosen from

the set {1, 1/2, . . . , 1/x}. We define a notion of the minimum load of such a bin that an additional item of size 1/y cannot
fit into the bin. This minimum load is denoted precisely by a function,

α〈x, y〉 = min
1≤j≤x and nj≥0

{n1 + n2/2+ · · · + nx/x | n1 + n2/2+ · · · + nx/x > 1− 1/y}.

For example, when x = 4 and y = 2, we have α〈4, 2〉 = 7/12 and correspondingly n1 = 0, n2 = 0, n3 = 1 and n4 = 1. We
have the following two trivial facts about α〈x, y〉:

α〈x, y〉 > 1− 1/y and α〈x, 1〉 = 1/x. (1)

The values of α〈x, y〉 for 1 ≤ x, y ≤ 6 are given in Table 2 (which are computed by brute force exhaustion); some of these
values are required for subsequent analysis.
With respect to an input sequence σ , we define a sequence of integer pairs (bi, ri) as follows. Let b1 denote themaximum

number of bins used by FF over all time. Suppose the smallest item that FF ever packs into bin b1 is of size 1/r1. We define
bi and ri iteratively for i ≥ 2 as follows. Let bi < bi−1 be the largest integer, such that FF ever packs an item of size smaller
than 1/ri−1 into bin bi. The size of the smallest item that FF ever packs into bin bi is denoted as 1/ri. Let k be the largest value
of i that bi and ri can be defined. Notice that b1 > b2 > · · · > bk and r1 < r2 < · · · < rk.
Now we are ready to describe the general case, and the lower bound on the number of bins ever used by the optimal

algorithm in the general case. The lower bound is, in fact, themaximumamong the total loads of all bins at the time instances,
ti for 1 ≤ i ≤ k, denoting the timewhen FF packs an item of size 1/ri into bin bi. Consider the time instance tk when FF packs



524 J.W.-T. Chan et al. / Theoretical Computer Science 409 (2008) 521–529

Table 3
Division of cases and the parameters x1 and x2 in the relation b1 ≤ x1`+ x2
for each of the cases

Type (1) cases x1 x2

k = 1 1 1
k = 2, r1 = 1 2 1
k = 3, r1 = 1, r2 = 2 2.25 1
k = 4, r1 = 1, r2 = 2, r3 = 3 2.3834 0.9334
k = 5, r1 = 1, r2 = 2, r3 = 3, r4 = 4 2.4309 0.9017
k = 6, r1 = 1, r2 = 2, r3 = 3, r4 = 4, r5 = 5 2.456 0.8808
k = 7, r1 = 1, r2 = 2, r3 = 3, r4 = 4, r5 = 5, r6 = 6 2.4635 0.874

Type (2) cases x1 x2

k ≥ 2, r1 ≥ 2 2 1
k ≥ 3, r1 = 1, r2 ≥ 3 2.4445 0.6667
k ≥ 4, r1 = 1, r2 = 2, r3 ≥ 4 2.4792 0.8334
k ≥ 5, r1 = 1, r2 = 2, r3 = 3, r4 ≥ 5 2.4942 0.8625
k ≥ 6, r1 = 1, r2 = 2, r3 = 3, r4 = 4, r5 ≥ 6 2.4935 0.8669
k ≥ 7, r1 = 1, r2 = 2, r3 = 3, r4 = 4, r5 = 5, r6 ≥ 7 2.4926 0.8646

Type (3) cases x1 x2

k ≥ 8, r1 = 1, r2 = 2, r3 = 3, r4 = 4, r5 = 5, r6 = 6 2.4939 0.864

The maximum among the x1 ’s is 2.4942.

an item X of size 1/rk into bin bk. Since k is the largest index of bi that can be defined, no item of size smaller than 1/rk has
ever appeared or been packed into any bin, in particular bins 1 to bk − 1. Together with the fact that FF packs X into bin bk
but not bins 1 to bk− 1, we can conclude that at time tk, each of bins 1 to bk− 1 must have a load at least α〈rk, rk〉. Including
the item X , the total load of all occupied bins at time tk is at least

`k = 1/rk + (bk − 1) · α〈rk, rk〉. (2)

Next, for any integer 1 ≤ i ≤ k− 1, consider a time ti when FF packs an item Xi of size 1/ri into bin bi. By the definition of bi
and ri, we can use a similar argument as before to show that (1) each of the bins 1 to bk must have load at least α〈rk, ri〉; (2)
for any integer p with i + 1 ≤ p < k, each of the bins bp+1 + 1 to bp must have a load at least α〈rp, ri〉; and (3) each of the
bins bi+1 + 1 to bi − 1 must have a load at least α〈ri, ri〉. Including the item Xi, the total load of all occupied bins at time ti is
at least

`i = 1/ri + (bi − bi+1 − 1) · α〈ri, ri〉 +
k−1∑
p=i+1

(bp − bp+1) · α〈rp, ri〉 + bk · α〈rk, ri〉. (3)

Let ` = max1≤i≤k `i. The number of bins used by the optimal off-line algorithm is at least `. On the other hand, themaximum
number of bins used by FF is b1. By the case analysis given later, we prove that b1 ≤ 2.4942`+1, which implies that first-fit
is 2.4942-competitive.
The case analysis studies all possible values of k and ri for 1 ≤ i ≤ k, which are divided into a number of cases. The

idea for the case division is as follows. We can first partition all cases into two: {k = 1} and {k ≥ 2}. Then, the case of
{k ≥ 2} can be further divided into three subcases {k = 2, r1 = 1}, {k ≥ 2, r1 ≥ 2}, and {k ≥ 3, r1 = 1}. Similarly, the
case of {k ≥ 3, r1 = 1} can be further divided into three subcases {k = 3, r1 = 1, r2 = 2}, {k ≥ 3, r1 = 1, r2 ≥ 3}, and
{k ≥ 4, r1 = 1, r2 = 2}. Repeating this method of case division, we can always partition, for any integer c ≥ 1, all cases into
three types of cases.

Type (1): {k = i, r1 = 1, r2 = 2, . . . , ri−1 = i− 1} for 1 ≤ i ≤ c.
Type (2): {k ≥ i, r1 = 1, r2 = 2, . . . , ri−2 = i− 2, ri−1 ≥ i} for 2 ≤ i ≤ c.
Type (3): {k ≥ c + 1, r1 = 1, r2 = 2, . . . , rc−1 = c − 1}.

Note that there is only one case instance for the Type (3). We analyze for each case, the corresponding relation between
b1 and `. Precisely, in each case we obtain an inequality in the form of b1 ≤ x1` + x2 for some constants x1 and x2. The
competitive ratio of first-fit can be upper bounded by the maximum value of x1 over all cases. Since this method of case
division consists of a variable c , which can be any positive integer, we first describe how to determine the value of c , so
as to achieve the best possible competitive ratio by this method. For cases of Types (1) and (2), the increase of value of c
implies more cases to consider, which also means a possibly larger maximum value of x1 that is obtained. On the contrary,
the increase of value of c for Type (3) casemeans amore specific case, thus a possibly smaller value of x1 is obtained. Sincewe
want to minimize the overall maximum value of x1, we find a value of c that balances the two sides. By trying the different
values of c , starting from c = 1, 2, . . ., it happens that assigning c = 8 gives the smallest maximum value of x1. With c = 8,
the exact cases we considered and their corresponding values of x1 obtained, i.e., the competitive ratios, are summarized in
Table 3.



J.W.-T. Chan et al. / Theoretical Computer Science 409 (2008) 521–529 525

In the following, we show how to obtain the relation b1 ≤ x1` + x2 for the cases in Table 3. We pick the Type (2) case
k ≥ 5, r1 = 1, r2 = 2, r3 = 3, r4 ≥ 5 as an example. The other cases can be analyzed similarly, using the same approach.
By using Eqs. (1)–(3), we can obtain an inequality for each of `i for 1 ≤ i ≤ 5, as follows.

`1 =
1
r1
+ (b1 − b2 − 1)α〈r1, r1〉 +

k−1∑
p=2

(bp − bp+1)α〈rp, r1〉 + bkα〈rk, r1〉

≥ 1+ (b1 − b2 − 1)α〈1, 1〉 + (b2 − b3)α〈2, 1〉 + (b3 − b4)α〈3, 1〉 + (b4 − b5)α〈r4, 1〉

≥ 1+ (b1 − b2 − 1)+
1
2
(b2 − b3)+

1
3
(b3 − b4)+

1
r4
(b4 − b5)

≥ b1 −
1
2
b2 −

1
6
b3 −

(
1
3
−
1
r4

)
b4 −

1
r4
b5 (4)

`2 =
1
r2
+ (b2 − b3 − 1)α〈r2, r2〉 +

k−1∑
p=3

(bp − bp+1)α〈rp, r2〉 + bkα〈rk, r2〉

=
1
2
+ (b2 − b3 − 1)α〈2, 2〉 + (b3 − b4)α〈3, 2〉 +

k−1∑
p=4

(bp − bp+1)α〈rp, 2〉 + bkα〈rk, 2〉

≥
1
2
+ (b2 − b3 − 1)+

2
3
(b3 − b4)+

1
2
b4

≥ b2 −
1
3
b3 −

1
6
b4 −

1
2

(5)

`3 =
1
r3
+ (b3 − b4 − 1)α〈r3, r3〉 +

k−1∑
p=4

(bp − bp+1)α〈rp, r3〉 + bkα〈rk, r3〉

≥
1
3
+
5
6
(b3 − b4 − 1)+

2
3
b4

≥
5
6
b3 −

1
6
b4 −

1
2

(6)

`4 =
1
r4
+ (b4 − b5 − 1)α〈r4, r4〉 +

k−1∑
p=5

(bp − bp+1)α〈rp, r4〉 + bkα〈rk, r4〉

≥
1
r4
+ (b4 − 1)

(
1−

1
r4

)
≥

(
1−

1
r4

)
b4 −

(
1−

2
r4

)
. (7)

If k = 5, by Eqs. (1) and (2), we have

`5 =
1
r5
+ (b5 − 1)α〈r5, r5〉 ≥ (b5 − 1)

(
1−

1
r5

)
≥
5
6
b5 −

5
6
. (8)

Otherwise, by Eqs. (1) and (3), we can obtain the same inequality.

`5 =
1
r5
+ (b5 − b6 − 1)α〈r5, r5〉 +

k−1∑
p=6

(bp − bp+1)α〈rp, r5〉 + bkα〈rk, r5〉

≥ (b5 − 1)
(
1−

1
r5

)
≥
5
6
b5 −

5
6
.

Since ` ≥ max1≤i≤5{`i}, we can substitute ` for `i in the above five inequalities. The aim is to solve the system of
inequalities, and get a bound on b1 with a function of `. This can be done by using the bound on b4 from Eq. (7) to get
the bound on b3 from Eq. (6). Then, we can use the bounds on b4 and b3 to get the bounds on b2 from Eq. (5), and hence the
bounds on b1 from Eq. (4) using also the bound on b5 from Eq. (8). As a result, we have b1 ≤

143(r4)2−102r4−72
60r4(r4−1)

` + 1035
1200 ≤

2993
1200`+

1035
1200 ≤ 2.4942`+ 0.8625 because

143(r4)2−102r4−72
60r4(r4−1)

≤
2993
1200 < 2.4942 for r4 ≥ 5.

After computing the relation b1 ≤ x1` + x2 for each of the cases, as shown in Table 3, we have the maximum value for
x1 to be 2.4942 and x2 to be 1. Thus, we have the relation b1 ≤ 2.4942` + 1 for all cases, and that implies the following
theorem.



526 J.W.-T. Chan et al. / Theoretical Computer Science 409 (2008) 521–529

Theorem 1. First-fit is 2.4942-competitive.

3.2. Lower bound of first-fit

We derive the lower bound of FF by constructing an adversary sequence, so that the maximum number of bins ever
used by FF is at least 2.45 times that used by the optimal off-line algorithm. First, we introduce a notation which is used in
describing the adversary. Consider two positive integers x and y and a bin that contains only items of size 1/x. Let β〈x, y〉
denote the minimum number of items the bin must contain, so that an additional item of size 1/y cannot fit into the bin.
Precisely,

β〈x, y〉 = min
Integer z≥1

{z | z/x > 1− 1/y},

i.e., β〈x, y〉 = 1+ x− dx/ye. For example, if x = 4 and y = 3, then β〈x, y〉 = 3.
The adversary consists of n stages. Generally speaking, the adversary is characterized by a sequence of integers

k1, k2, . . . , kn in descending order, i.e., ki > ki+1 for 1 ≤ i ≤ n−1. (The values of the integers will be determined later in the
analysis.) In Stage i, for each 1 ≤ i ≤ n, the adversary releases a number of items of size 1/ki for some integer ki and then
let some of them depart. In particular, in Stage 1, D1k1 items of size 1/k1 are released, for some large integer D1. FF packs all
D1k1 items into D1 bins, and each bin is fully packed.
At the beginning of each subsequent stage, i.e., Stage i, for 2 ≤ i ≤ n, the adversary forces the following invariant on the

packing that FF creates.

• The total size of the items in all bins is D1;
• Each occupied bin contains only items of the same size; and
• A bin that contains items of size 1/x contains β〈x, ki−1〉 such items.

The invariant holds at the beginning of Stage 2, since each of the D1 occupied bins contains β〈k1, k1〉 = k1 items of size 1/k1.
Stage i consists of the following two steps.

1. For each occupied bin containing items of size 1/x, β〈x, ki−1〉 − β〈x, ki〉 items depart, i.e., β〈x, ki〉 items remained.
2. Let Di be the total size of all the departed items in Step 1 of this stage. (With a sufficiently large D1, Di is an integer, as
proved in Lemma 3.) Diki items of size 1/ki are released.

Since each bin with items of size 1/x contains β〈x, ki〉 such items, none of the newly released items can be packed into any
occupied bin. Therefore, FF uses Di new bins to pack these items, where each new bin contains ki = β〈ki, ki〉 items. Thus,
the invariant also holds at the beginning of Stage i+ 1.
We analyze the performance of FF on this input sequence. By the adversary, FF uses

∑n
i=1 Di bins after Stage n. On the

other hand, the optimal off-line algorithm uses, at most, D1 bins at any time (Lemma 4). The competitive ratio of FF is at
least

∑n
i=1 Di/D1. By the adversary, Di for 2 ≤ i ≤ n can be computed as

Di =
i−1∑
j=1

{
Dj
kj
(β〈kj, ki−1〉 − β〈kj, ki〉)

}
.

Note that the competitive ratio is independent of the value of D1. Let ri = Di/D1. We have

ri =
i−1∑
j=1

{
rj
kj
(β〈kj, ki−1〉 − β〈kj, ki〉)

}
and the competitive ratio is equal to

∑n
i=1 ri, in which its value depends on the values of k1, k2, . . . , kn.

The following lemma shows that there is an actual instance of the adversary, such that the competitive ratio of FF, i.e.,∑n
i=1 ri, is at least 2.45. Therefore, FF is at least 2.45-competitive. (Theorem 5).

Lemma 2. There exits a sequence of n integers k1, k2, . . . , kn in descending order such that
∑n
i=1 ri > 2.45.

Proof. If we let n = 16 and the values 100 000, 97, 37, 23, 19, 13, 11, 10, 9, 7, 6, 5, 4, 3, 2, 1 for k1, . . . , k16, respectively,
we have

∑n
i=1 ri > 2.45. The detailed mathematics are omitted. �

Lemma 3. If D1 =
∏n
j=1 kj, for 1 ≤ i ≤ n, Di is an integer, and in particular, Di is a multiple of ki.

Proof. We prove by induction on i, that Di is a multiple of
∏n
x=i kx, which is a multiple of ki. By the adversary, Di =∑i−1

j=1(Dj/kj)(β〈kj, ki−1〉 − β〈kj, ki〉). Since the function β gives an integer output and Dj/kj for 1 ≤ j ≤ i − 1 is an integer
multiple of

∏n
x=j+1 kx, the summation gives an integer multiple of

∏n
x=i kx. �

Lemma 4. The optimal off-line algorithm uses, at most, D1 bins at any time.



J.W.-T. Chan et al. / Theoretical Computer Science 409 (2008) 521–529 527

Proof. We give an algorithm O that packs the items in the sequence using, at most, D1 bins at any time. In this proof,
permanent items refer to the items remain after Stage n and temporary items refer to the items depart in some stage. The
algorithmO runs as follows. In each stage, when new items are released,O packs the new items using theminimumnumber
of empty bins, such that a bin contains solely permanent items, or solely temporary items that will depart in the same stage.
What we need to prove is that, for all 1 ≤ i < j ≤ n, the total size of the temporary items of size 1/ki that depart in
Stage j is an integer. In that case, we can guarantee that in each stage algorithm O can fully pack each bin, so that in total
exactly D1 bins are used. By the construction, the total size of the temporary items of size 1/ki that depart in Stage j is
(Di/ki)(β〈ki, kj−1〉 − β〈ki, kj〉), which is an integer because by Lemma 3, Di/ki is an integer. Therefore, algorithm O, and
hence the optimal off-line algorithm, uses at most D1 bins at any time. �

Theorem 5. First-fit is at least 2.45-competitive.

3.3. Performance of other any-fit algorithms

We show that BF and WF have a worse performance than FF, precisely, we show that BF and WF cannot be better
than 3-competitive. On the other hand, we give the matching upper bounds. We prove that AF, including BF and WF, is
3-competitive.

Theorem 6. Any-fit is 3-competitive.

Proof. Consider any input sequence σ . Suppose that AF uses, at most, n bins. The proof is based on two notions.

1. Let t1 be the time when AF uses n occupied bins, and m be the number of occupied bins containing an item of size 1 at
time t1. Note that the optimal off-line algorithm uses at leastm occupied bins at time t1.

2. Let k be the largest integer, such that AF packs an item X of size swith s ≤ 1/2 into a new bin and there are already k− 1
occupied bins. Suppose this happens at time t2. At time t2, each of the k − 1 occupied bins has load greater than 1 − s;
otherwise, AF canpackX into one of these bins, rather than a newbin. Thus, the total load is at least (k−1)(1−s)+s ≥ k/2,
and the optimal off-line algorithm uses at least dk/2e bins.

We claim that k ≥ n−m. At time t1, there must be at most k occupied bins containing an item of size 1/2 or less; otherwise,
there is an item of size 1/2 or less packed into a new bin, when there are already k or more occupied bins, which contradicts
the definition of Notion (2). By simple arithmetic, we have n ≤ m+ k ≤ 3 ·max{m, bk/2c} (the worst case happens when
m = bk/2c). Since the optimal off-line algorithm uses at least max{m, bk/2c} bins, AF is 3-competitive. �

We give an idea on how an adversary forWF can be constructed. The adversary can forceWF, at some stage, to use n bins
each with only one very small item for any integer n > 0. This is done, by alternating releasing item of size 1/2 and a very
small item. All items of size 1/2 then depart, leaving one very small item in each bin. Finally, n/2 items of size 1 are released
and none of them can be packed into existing bins and thus require n/2 new bin. Therefore, WF uses 3n/2 bins. On the other
hand, the optimal off-line algorithm uses only n/2+ 1 where one bin is used for packing all very small items and n/2 bins
for all items of sizes 1/2 and 1. This can be done, because all the n/2 items of size 1 are released after all the n items of size
1/2 depart. Hence, we have the following theorem.

Theorem 7. Worst-fit is no better than 3-competitive.

Next, we give an adversary for BF. This adversary has a similar target as the one for WF: to force BF to use n bins each
with only one very small item. Due to the difference between BF and WF, it takes more careful design of item release and
departure to achieve the same aim. We give an inductive argument on how this can be done. Suppose there are already k
bins each with only one very small item. k+1 items of size 1/2 are released, where k of them are packed into the k occupied
bins, but the remaining one must be packed into a new bin. Then, the first k items of size 1/2 depart leaving the bin with an
item of size 1/2 the heaviest bin. A very small item is then released, and BF will pack the item into the bin with an item of
size 1/2. When this item of size 1/2 departs, we have k + 1 bins each with only one very small item. Similar to the case of
WF, we can also force BF to use 3n/2 bins, while the optimal off-line algorithm uses only n/2 + 1 bins. Again, the optimal
off-line algorithm uses one bin for packing all very small items and n/2 bins for all items of sizes 1/2 and 1. It is clear that,
at any time instance, there are at most n items of size 1/2 or at most n/2 items of size 1. Similar to the adversary for WF, all
the n/2 items of size 1 are released after all the items of size 1/2 depart. Therefore, the optimal off-line algorithm uses only
n/2+ 1 bins. The following theorem then follows.

Theorem 8. Best-fit is no better than 3-competitive.



528 J.W.-T. Chan et al. / Theoretical Computer Science 409 (2008) 521–529

4. General lower bound

We give an adversary sequence, such that the maximum number of bins used by any on-line algorithm is at least 2.428
times that used by the optimal off-line algorithm. The adversary has the same framework as the adversary presented in
Section 3.2. It consists of n stages, and is characterized by a sequence of integers k1, k2, . . . , kn in descending order. The
integer ki represents the size of the items released in the i-th stage. In Stage 1, F1k1 items of size 1/k1 are released, for some
large integer F1. Any algorithmA uses at least F1 bins to pack the F1k1 items. If more than F1 bins are used, except the first F1
bins, all other bins are made empty with all their items departed. Each of the subsequent stages, i.e., Stage i, for 2 ≤ i ≤ n,
consists of the following three steps.

1. For each occupied bin, an item with the smallest size remains and all other items depart.
2. Let Ri be the total size of all the items that remain. The adversary releases (F1−Ri)ki items of size 1/ki. (With a sufficiently
large F1, F1−Ri is an integer, as shown in Lemma 10.) Note that at this point the total size of the items in all bins becomes
F1 again.

3. Suppose that in Stage j for 1 ≤ j < i, Fj new bins are used. Since 1/kj < 1/ki, each of these bins (with a single item of size
1/kj) can accommodate at most ki − 1 items of size 1/ki. The number of new bins used in this stage is at least

Fi = F1 −
i−1∑
j=1

Fj

(
1
kj
+
ki − 1
ki

)
.

If more than Fi new bins are used, except the first Fi new bins, all other new bins are made empty with all their items
departed.

We analyze the performance of any algorithm on this input sequence. In the n stages, any algorithm uses at least
∑n
i=1 Fi

bins. On the other hand, the optimal off-line algorithm uses F1 bins (Lemma 11). The competitive ratio of any algorithm is
at least

∑n
i=1 Fi/F1, where Fi = F1−

∑i−1
j=1 Fj(1/kj+ (ki− 1)/ki). Note that the competitive ratio is independent of the value

of F1. Let si = Fi/F1. We have

si = 1−
i−1∑
j=1

sj

(
1
kj
+
ki − 1
ki

)
and the competitive ratio is equal to

∑n
i=1 si, in which its value depends on the values of k1, k2, . . . , kn.

The following lemma shows that there is an actual instance of the adversary, such that the competitive ratio of any
algorithm, i.e.,

∑n
i=1 si, is at least 2.428. Therefore, the competitive ratio for any algorithm is at least 2.428 (Theorem 12).

Lemma 9. There exists a sequence of n integers k1, k2, . . . , kn in descending order such that
∑n
i=1 si > 2.428.

Proof. If we let n = 81 and the value 1000 000 for k1 and the values 80, 79, . . . , 1 for k2, k3, . . . , k81, respectively, we have∑n
i=1 si > 2.428. The detailed mathematics are omitted. �

Lemma 10. If F1 = k1
∏n
j=2 k

2
j , for 1 ≤ i ≤ n, Fi and Ri are integers, and in particular, Fi is a multiple of ki.

Proof. We prove by induction on i that Fi is a multiple of ki
∏n
j=i+1 k

2
j , which is a multiple of ki. By the adversary, Fi =

F1 −
∑i−1
j=1 Fj(1/kj + (ki − 1)/ki). As Fj is a multiple of kj

∏n
x=j+1 k

2
x for 1 ≤ j ≤ i − 1, and hence Fj/(kjki) is a multiple of

ki
∏n
x=i+1 k

2
x , Fi is a multiple of ki

∏n
x=i+1 k

2
x . By the adversary, Ri =

∑i−1
j=1 Fj/kj. Since Fj is a multiple of kj, Ri is an integer. �

Lemma 11. The optimal off-line algorithm uses at most F1 bins at any time.

Proof. Denote an item that remains after Stage n as a permanent item. We can see that Fi permanent items of size 1/ki are
released in Stage i for each 1 ≤ i ≤ n. The optimal off-line algorithm can pack the Fi permanent items to Fi/ki bins, and the
other (F1−Ri)ki−Fi items to (F1−Ri)−Fi/ki bins and every bin is fully packed as Fi is amultiple of ki by Lemma 10. Therefore,
the optimal off-line algorithm can fully pack each bin in each stage, and hence it uses at most F1 bins at any time. �

Theorem 12. Any on-line algorithm is at least 2.428-competitive.

5. Concluding remarks

In this paper, we have analyzed the performance of the family of any-fit algorithms, including first-fit, best-fit and
worst-fit, on the dynamic bin packing problem with unit fractions items. We find that all the any-fit algorithms are, at
most, 3-competitive. In further analysis, we show that first-fit can perform better, and its competitive ratio lies between
2.45 and 2.4942, while the competitive ratio for best-fit and worst-fit are tight. We also prove that no on-line algorithm can
be better than 2.428-competitive on dynamic bin packing of unit fractions items.
An immediate open question for the dynamic bin packing of unit fractions items iswhetherwe can close the gap between

the 2.4942 upper bound and the 2.428 lower bound. Recall that, in this paper we assume items cannot be repacked. A



J.W.-T. Chan et al. / Theoretical Computer Science 409 (2008) 521–529 529

further work is to consider when repacking of items is allowed. Another direction is to consider resource augmentation
in which the on-line algorithm can use bins of larger size than the optimal off-line algorithm. To our best knowledge, the
study of dynamic bin packing problem has been bounded to the on-line version only. No prior work has been done for the
off-line version of the problem. Note that the off-line dynamic bin packing problem is NP-hard, as it is a general case of the
off-line bin packing problem. While the family of any-fit algorithms gives a constant approximation ratio for the problem,
it is interesting to see if there are approximation algorithms with better approximation ratios.

Acknowledgements

This research was supported in part by Hong Kong RGC Grant HKU-5172/03E when the first author was with the
Department of Computer Science, University of Hong Kong, Hong Kong. The third author’s research was supported in part
by Nuffield Foundation Grant NAL/01004/G.

References

[1] A. Bar-Noy, R.E. Ladner, Windows scheduling problems for broadcast systems, SIAM J. Comput. 32 (4) (2003) 1091–1113.
[2] A. Bar-Noy, R.E. Ladner, T. Tamir, Windows scheduling as a restricted version of bin packing, ACM Trans. Algorithms 3 (3) (2007) 28.
[3] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge University Press, 1998.
[4] W.-T. Chan, P.W.H. Wong, On-line windows scheduling of temporary items, in: Proc. 15th Annual International Symposium on Algorithms and
Computation, ISAAC, 2004, pp. 259–270.

[5] W.-T. Chan, P.W.H. Wong, F.C.C. Yung, On dynamic bin packing: An improved lower bound and resource augmentation analysis, Algorithmica
(in press). http://dx.doi.org/10.1007/s00453-008-9185-z. The conference version appeared in the proceedings of the Twelfth Annual International
Computing and Combinatorics Conference (COCOON’06), in: Lecture Notes in Computer Science (LNCS), vol. 4112, 2006, pp. 309–319.

[6] E.G. Coffman Jr., C. Courcoubetis, M.R. Garey, D.S. Johnson, P.W. Shor, R.R. Weber, M. Yannakakis, Bin packing with discrete item sizes, Part I: Perfect
packing theorems and the average case behavior of optimal packings, SIAM J. Discrete Math. 13 (2000) 38–402.

[7] E.G. Coffman Jr, G. Galambos, S. Martello, D. Vigo, Bin pakcing approximation algorithms: Combinatorial analysis, in: D.-Z. Du, P.M. Pardalos (Eds.),
Handbook of Combinatorial Optimization, Kluwer Academic Publishers, 1998.

[8] E.G. Coffman Jr., M. Garey, D. Johnson, Bin packing with divisible item sizes, J. Complexity 3 (1987) 405–428.
[9] E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Dynamic bin packing, SIAM J. Comput. 12 (2) (1983) 227–258.
[10] E.G. Coffman Jr., M.R. Garey, D.S. Johnson, Bin packing approximation algorithms: A survey, in: D.S. Hochbaum (Ed.), Approximation Algorithms for

NP-Hard Problems, PWS Publishing, 1996, pp. 46–93.
[11] J. Csirik, G.J. Woeginger, On-line packing and covering problems, in: On-line Algorithms—The State of the Art, in: LNCS, vol. 1442, 1996, pp. 147–177.
[12] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, 1979.
[13] Z. Ivkovic, E.L. Lloyd, Fully dynamic algorithms for bin packing: Being (mostly) myopic helps, SIAM J. Comput. 28 (2) (1998) 574–611.
[14] S.S. Seiden, On the online bin packing problem, J. ACM 49 (5) (2002) 640–671.
[15] A. van Vliet, An improved lower bound for on-line bin packing algorithms, Inf. Process. Lett. 43 (5) (1992) 277–284.


	Dynamic bin packing of unit fractions items
	Introduction
	Preliminaries
	Performance of the family of any-fit algorithms
	Upper bound of first-fit
	Lower bound of first-fit
	Performance of other any-fit algorithms

	General lower bound
	Concluding remarks
	Acknowledgements
	References


