
Theoretical Computer Science 262 (2001) 569–582
www.elsevier.com/locate/tcs

E!cient web searching using temporal factors�

Artur Czumaja ;1, Ian Finchb, Leszek G.asieniecb ;2, Alan Gibbonsb, Paul Lengb,
Wojciech Rytterb ;3, Michele Zitob ;∗;4

aDepartment of Computer and Information Science, New Jersey Institute of Technology,
University Heights, Newark, NJ 07102, USA

bDepartment of Computer Science, University of Liverpool, Peach Street, L69 7ZF, UK

Received 8 March 2000; revised 31 May 2000; accepted 7 August 2000
Communicated by M. Crochemore

Abstract

We study the issues involved in the design of algorithms for performing information gathering
more e!ciently, by taking advantage of anticipated variations in access times in di:erent regions
at di:erent times of the day or week. We look at the problem theoretically, as a generalisation
of single processor sequencing with release times and deadlines, in which performance times
(lengths) of the tasks can change in time. The new problem is called Variable Length Sequencing
Problem (VLSP). We show that although the decision version of VLSP seems to be intractable in
the general case, it can be solved optimally for lengths 1 and 2. This result opens the possibility
of practicable algorithms to schedule searches e!ciently when expected access times can be
categorised as either slow or fast. Some algorithms for more general cases are examined and
complexity results derived. c© 2001 Elsevier Science B.V. All rights reserved.

Keywords: Web searching; Sequencing; Matching; Approximation; Random

� A preliminary version has appeared in F. Dehne, A. Gupta, J.-R. Sack, and R. Tamassia, editors,
Algorithms and Data Structures, Sixth International Workshop, WADS’99, vol. 1663, Lecture Notes
in Computer Science, pp. 294–305, Vancouver, Canada, August 11–14, Springer, Berlin, 1999.

∗Corresponding author.
E-mail addresses: czumaj@cis.njit.edu (A. Czumaj), ian@csc.liv.ac.uk (I. Finch), leszek@csc.liv.ac.uk

(L. G.asieniec), amg@csc.liv.ac.uk (A. Gibbons), phl@csc.liv.ac.uk (P. Leng), rytter@csc.liv.ac.uk
(W. Rytter), michele@csc.liv.ac.uk (M. Zito).

1 Work partly done while the author was with Heinz Nixdorf Institute and Department of Mathematics
& Computer Science at the University of Paderborn, D-33095 Paderborn, Germany, and while visiting the
University of Liverpool. Research supported in part by DFG-Sonderforschungsbereich 376.

2 Supported in part by NUF-NAL (The Nu!eld Foundation Awards to Newly Appointed Lecturers) award.
3 Instytut Informatyki, Uniwersytet Warszawski, Banacha 2, 02-097, Warszawa, Poland.
4 Supported by EPSRC grant GR=L=77089.

0304-3975/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00366 -2

570 A. Czumaj et al. / Theoretical Computer Science 262 (2001) 569–582

Fig. 1. Access rates for USA and Asia over 24 h. (Derived from data posted by the Anderson News Network
http:==www.internettra!creport.com=.)

1. Introduction

The algorithmics of the World Wide Web is an important subject, because of the
rapidly growing size of the web, see [1, 4, 3], and one of the crucial factors is the
speed of access to the desired information. The access speeds to particular sites on
the World Wide Web can vary depending on the time of access. The speed of access
from a client site A to a server site B is inLuenced by at least two load factors: Mrstly,
the local load at the server B, which may inLuence the speed at which requests are
serviced, and secondly, the tra!c load on the paths taken between A and B. Both these
factors may be subject to temporal variation. For example, local loads and tra!c may
both be expected to be heavier during daytime hours in the local region, and lowest
during periods in the middle of the night. It may also be expected that loads will
vary through the week, and perhaps over longer periods, under the inLuence of local
working patterns.
The variations in access rates show di:erent patterns in di:erent regions. Fig. 1

superimposes the plot of variations for sites in Asia on that for those in the USA,
for the same 24-h period. In this case, the di:erent peaks of access speed for each
region are clearly apparent. These variations create the possibility of reducing overall
traversal times by scheduling accesses to take account of expected access times. In this
paper, we discuss some computational complexity aspects of algorithms which attempt
to make use of this information.
We study the following problem. Assume that we have a single central computer

which is being used to collect all the information stored in a certain number of web
documents, located at various sites. The information is gathered by scheduling a number
of consecutive client=server connections with the required web sites, to collect the
information page by page. We assume that the loading time of any particular page
from any site may be di:erent at di:erent times, e.g. the access to the page is much
slower in peak hours than in o:-peak hours. Having a list of pages to be collected
along with some information about the access time at any given instant, the goal is to
download the pages as quickly as possible.

A. Czumaj et al. / Theoretical Computer Science 262 (2001) 569–582 571

We deMne a class of simpliMed versions of this problem. We prove that under
fairly reasonable assumptions the general version of the problem is rather di!cult
to solve exactly in time polynomial in the number of sites to be connected. How-
ever, if connection times are coarsely classiMed as “fast” or “slow” we prove that
information gathering is possible in polynomial time. Then we describe some ap-
proximation results with both worst case and average case performance
guarantees.
More formally, we deMne the Variable Length Sequencing Problem (VLSP) as fol-

lows:
There are n tasks (sets of pages to be collected), each of which will be denoted

by an integer in the interval {1; : : : ; n}. For each task t and time (unit) i∈N+,
let l(t; i)∈N+ be the length (or performance time) of task t when started at
time i.
An execution sequence � is a function specifying for each task t a starting time

�(t)∈N+ with the property that for every t if �(t)= i then no other task w can have
�(w)∈{i; : : : ; i + l(t; i)− 1}.
The cost of an execution sequence �, C(�) is the time unit at which the latest task

is completed; that is k + l(tmax; k)− 1 where

k = �(tmax) = max
{1;:::; n}

�(t):

The VLSP problem asks for an execution sequence of minimum cost.
A few words of comment are needed before proceeding to describe some important

algorithmic properties of the problem deMned above.
First, it is important to stress that we assume that time proceeds in a sequence of

discrete unit time intervals, which we called time units, starting from a Mrst interval
which, without loss of generality, can be denoted by the integer 1. This seems a rea-
sonable assumption because, although time is a continuous quantity, computer clocks
always tick with a Mxed predeMned discrete frequency. So, for example, if there were
just two tasks in the system, each taking i time units if scheduled at time i the optimal
execution sequence would use 3 time units, thus having a cost of 3, according to the
deMnition above.
Second, we assume that a table containing some measure of the performance time

of any given task at any given time unit is available in advance. Thus algorithms
for VLSP will produce an execution sequence in an “o:-line” manner. This model
is a representation of the case we might wish to apply in a practical web searching
algorithm, in which predicted values are known for each l(t; i) on the basis of historical
data, similar to those shown in Fig. 1.
Finally, note that we measure the cost of an execution sequence, relative to the point

at which we start making measurements of the task lengths. In a practical situation the
system may have access time statistics over a long period of time and be interested
in computing the optimal cost of an execution sequence with respect to a given initial
point.

572 A. Czumaj et al. / Theoretical Computer Science 262 (2001) 569–582

2. NP-hardness of the general VLSP problem

In this section we prove that the decision version of VLSP is at least as hard as the
following SEQUENCING problem.
Instance: A set T of tasks and, for each task t ∈T , a positive integer length l(t), a

release time r(t)∈N, and d(t)∈N the completion deadline for the task t.
Question: Does there exists a feasible schedule for T , that is, a function � : T → N

such that, for each t ∈T ,
�(t)¿r(t), �(t) + l(t)6d(t), and, if t′ ∈T\{t}, then either �(t′) + l(t′)6�(t) or

�(t′)¿�(t) + l(t)?
SEQUENCING was proved to be NP-complete in the strong sense by Garey and

Johnson [6].

Theorem 1. VLSP is NP-hard.

Proof. We prove that there is a polynomial time reduction from SEQUENCING to the
decision version of VLSP. The same number of tasks is used in both SEQUENCING
and VLSP. Let D= maxt∈T d(t). For any task t in SEQUENCING deMne length in
VLSP as follows:

l(t; i) =



l(t) + r(t)− i for all 16i ¡ r(t);
l(t) for all r(t)6i6d(t)− l(t);
D − i + 1 for all i ¿ d(t)− l(t):

A feasible schedule for the given instance of SEQUENCING is also an execution
sequence for the corresponding instance of VLSP. Therefore, if one such a schedule
exists the optimal solution for the corresponding instance of VLSP has cost at most D.
Conversely, a solution for a given instance of SEQUENCING can be obtained from

a solution of cost at most D for the instance of VLSP deMned as described above. Let
� be an execution sequence for the instance of VLSP, with C(�)6D.
We deMne a feasible schedule for the original instance of SEQUENCING. Three

cases need to be considered. By the Mrst constraint in the deMnition of the instance of
VLSP if we start to process task t at any time unit before its release time r(t) in this
instance of SEQUENCING, then task t will be always completed at time l(t) + r(t).
This means that if in the solution of VLSP there is a task t that is executed before
its release time in the corresponding instance of SEQUENCING, it can always be ex-
ecuted at time r(t) without causing any delay. We deMne �(t)= r(t) in this case. The
second constraint deals with the case in which execution times of a given task are
the same in both SEQUENCING and VLSP. In this case we deMne �(t)= �(t) − 1.
The third constraint prevents execution of tasks in VLSP when it is too late to do
so, i.e. when in the instance of SEQUENCING the deadline for task execution is
too close.

A. Czumaj et al. / Theoretical Computer Science 262 (2001) 569–582 573

The NP-hardness of VLSP follows from the fact that SEQUENCING is NP-
hard.

3. VLSP with slow=fast completion times

Motivated by the intractability of the general setting of VLSP we show that the
problem can be solved in polynomial time in some particular cases.
We focus on the possible values of an entry l(t; i). If S ⊂N+, we let VLSP(S) denote

the VLSP restricted to those instances having l(t; i)∈ S for all tasks t and i∈N+. In
this section we consider the case when S = {1; 2}. This simple abstraction of VLSP has
some importance. The values one and two are meant to model an environment in which
completion times are coarsely classiMed as “slow” or “fast”. In practice, this may be a
realistic simpliMcation since estimates based on historical data might be imprecise. An
optimal solution to an instance of VLSP({1; 2}) will consist of an execution sequence
that maximises the number of fast tasks.
A similar simpliMcation has been used in the context of the Travelling Salesman

Problem (TSP); see e.g. [2, 5, 9]. TSP remains NP-hard even in the case when the
only legal values for the city distances are 1 and 2. Recently Engebretsen, see [5] has
proved that it is NP-hard to approximate TSP with distances 1 and 2, within 4709

4708 − �
for any �¿0. Surprisingly, however, VLSP({1; 2}) can be solved in polynomial time
by the reduction to a classical graph theoretic problem.
Given an instance I of VLSP({1; 2}) and a value N ∈{n; n + 1; : : : ; 2n} two types

of graphs can be associated with I .
• DeMne a bipartite graph BN =(V; E) such that V =T ∪ N, where T= {t1; t2; : : : ; tn}
corresponds to the set of tasks and N= {1; 2; : : : ; N} represents the sequence of time
units. An edge connects nodes ti and j i: task i can be performed in one time unit
if its execution starts during time unit j.

• DeMne the graph GN on the same vertex set as BN with edge set

E ∪ {(j; j + 1) : j = 1; : : : ; N − 1}:

Edges in E are called horizontal edges, all the others are vertical edges.

Example. Let N =8, n=6. Assume that the length function l(t; i) is deMned by
Table 1.
The graph BN representing the correspondence between tasks and time units that

allow a fast completion is shown in Fig. 2(a). Fig. 2(b) shows the corresponding graph
GN which is instrumental to the polynomial time algorithm described in Theorem 3.

A matching in a graph is a set of non-adjacent edges. The following lemma relates
the existence of a short execution sequence for VLSP({1; 2}) to the existence of a
fairly large matching in GN .

574 A. Czumaj et al. / Theoretical Computer Science 262 (2001) 569–582

Table 1
Table with the task lengths if started at di:erent time units

Time units

Task 1 2 3 4 5 6 7 8

1 1 2 2 2 2 2 2 2
2 1 2 2 2 2 2 2 2
3 2 1 2 1 2 1 2 2
4 1 2 2 2 1 2 2 2
5 1 2 1 2 1 2 2 2
6 2 2 2 2 2 2 1 1

Fig. 2. The graphs BN and GN in the given example.

Lemma 2. GN has a matching of size at least n if and only if there is an execution
sequence � to VLSP({1; 2}) such that C(�)6N .

Proof. Any matching M of size n in GN is formed by h horizontal edges and v vertical
edges with h + v= n. DeMne the execution sequence of the associated VLSP instance
by setting �(t)= j if (t; j)∈M and assigning to all other tasks a starting time given
by the smallest index of one of the vertical edges in M .
Conversely if the VLSP can be solved in time N and there are h tasks which take

one time step to complete, then N − h=2(n − h). We get a matching of size n in
GN by using h horizontal edges (edge (t; j)∈M if and only if l(t; j)= 1) and n − h
vertical edges corresponding to those n− h tasks whose length is 2.

Going back to the example before the lemma, the thick edges in Fig. 3(a) represent
the edges in M . The presence of the horizontal edges {2; 1}; {3; 4}; {5; 5} and {6; 5}
in M imply that tasks 2, 3, 5, and 6 can be started in time units 1, 4, 5, and 8, respec-
tively. The vertical edges {2; 3} and {6; 7} imply that the tasks left unassigned can be

A. Czumaj et al. / Theoretical Computer Science 262 (2001) 569–582 575

Fig. 3. A matching in GN and a graphical representation of the task allocation.

started during time unit 2 or 6 and they will be completed by the end of successive time
unit. The choice of which task to assign to which time unit is completely immaterial.
Fig. 3(b) gives a graphical representation for one possible resulting execution
sequence.
We are now in a position to state the main result in this section.

Theorem 3. VLSP({1; 2}) can be solved optimally in polynomial time.

Proof. Test all possible values of N between n and 2n and take the smallest N such
that GN has a matching of size n. One such matching can be found using any of
the algorithms for Mnding a maximum cardinality matching in a graph (see [10] for
example).

4. Approximation algorithm for VLSP({k1; k2})

From the analysis in the preceding sections we may conclude that, although a gen-
eral instance to the sequencing problem for web searching is intractable, we may be
able to Mnd an optimal sequence e!ciently if we know that accessing popular sites
is sometimes fast and sometimes slow. Of course, this situation is only theoretically
optimal since in practice, the interpretation of “fast” and “slow” is both variable and
approximate; an access time which is expected to be fast may in fact turn out to be
slow. The motivation for applying the theoretical solution in a practical algorithm is the
expectation that the theoretical optimal solution would be at least a “good” practical
solution.

576 A. Czumaj et al. / Theoretical Computer Science 262 (2001) 569–582

A more general model than the slow=fast access case is obtained if the two possible
lengths can be speciMed arbitrarily. This is consistent with the practical situation in
which tasks are still classiMed as “fast” or “slow” but there is also a measure of how
much slower a slow task is than a fast one.
Unfortunately the complexity of VLSP({k1; k2}) with k1; k2 ∈N is open. In this sec-

tion, we deMne an algorithm which always Mnds an execution sequence whose cost is
close to the cost C∗ of an optimal sequence if k1 is a Mxed constant. Let � be an
execution sequence. For i=0; : : : ; k1 − 1, let xi be the number of tasks that are allo-
cated at a time unit j with j≡ imod k1 and are completed in k1 units in the execution
sequence �.

Lemma 4. For every execution sequence � on n tasks; leading to a sequencing of
cost C(�) there exists an ibig ∈{0; : : : ; k1 − 1} such that

xibig¿
nk2 − C(�)
k1(k2 − k1)

:

Proof. Let x=
∑k1−1

i=0 xi. There must be an i∈{0; : : : ; k1 − 1} such that xi¿x=k1. The
statement of the lemma is true for this particular i. DeMne ibig to be this value of i. If
y= n− x then



xibig + (x − xibig) + y = n;

k1xibig + k1(x − xibig) + k2y6C(�)

(the second inequality holds because there can be times when it is better not to allocate
any task). From these we have

xibig¿
nk2 − C(�)
k2 − k1

− (x − xibig)

and therefore (using x − xibig¡(k1 − 1)xibig),

xibig¿
nk2 − C(�)
k1(k2 − k1)

:

The algorithm A1, which is shown below, works in a number of iterations, deMning
an execution sequence in each case and returning the shortest sequence. The value of
C0 is deMned in Theorem 5.

A. Czumaj et al. / Theoretical Computer Science 262 (2001) 569–582 577

Algorithm A1

for N = k1n to k2n do
for i=0 to k1 − 1 do

if N¿C0 then
return an execution sequence of cost k2n by deMning
�iN (t)= k2(t − 1) + 1 for every t ∈T .

else (∗ N6C0 ∗)
Create a bipartite graph BiN =(U; V; E) with

U =T ,
V = {j : 16j6N; j≡ i mod k1}
{u; v}∈E if and only if l(u; v)= k1.

Let M be a maximum matching in BiN .
for each u∈U such that {u; v}∈M do

Let �iN (u)= v
Let {t1; : : : ; tl} be the set of unassigned tasks
for each tj ∈{t1; : : : ; tl} do

Let �iN (tj)=N + k2(j − 1) + 1
Return the execution sequence �iN of minimal cost.

Theorem 5. Algorithm A1 achieves an approximation ratio 1 + k1(k2 − k1)=k2.

Proof. The algorithm will always produce a solution of cost either k2n or N +
k2(n−xi). We focus on the iteration when N =C(�opt) and on the stage ibig as deMned in
Lemma 4.
Since xibig tasks are allocated using a maximum matching computation, if xoptibig is the

number of tasks allocated to time units that are congruent to ibig modulus k1 by the
optimal execution sequence, then xoptibig6xibig . Therefore

N + k2(n− xi)6C(�opt) + k2(n− xoptibig)

6C(�opt) + k2

[
n− nk2 − C(�opt)

k1(k2 − k1)

]

=
C(�opt)(k2 + k1k2 − k21) + nk2(k1k2 − k21 − k2)

k1(k2 − k1)
:

578 A. Czumaj et al. / Theoretical Computer Science 262 (2001) 569–582

This is an increasing function of C. Equating the cost of the solution if N is large
with this expression we Mnd C0.

k2n =
C(�opt)(k2 + k1k2 − k21) + nk2(k1k2 − k21 − k2)

k1(k2 − k1)

implies C0 = k22n=(k2 + k1(k2 − k1)) and the approximation ratio is therefore

k2n
k22n=(k2 + k1(k2 − k1))

=
k2 + k1(k2 − k1)

k2
= 1 +

k1(k2 − k1)
k2

:

5. Probabilistic approach

One of the problems with NP-hardness results is that they only show the exis-
tence of particular instances of a problem which under some reasonable assumptions
are di!cult to solve exactly in time which is polynomial in the input size. In real
life such hard instances may never appear as input values. Therefore, it is reason-
able to study the complexity of our sequencing problems under the assumption that
input instances (expected access times) only appear according to a certain probability
distribution.
In this section, we study the VLSP problem in the probabilistic setting by assuming

that each value l(t; i) is chosen independently and uniformly at random from a set
S ⊂N+. This is equivalent to saying that the input instance is chosen uniformly at
random among all those instances with the general completion time and given range
set S. Although the model we analyse in this section is perhaps an oversimpliMcation of
a realistic setting (e.g., we assume no dependencies=relations between the time required
by a task in two consecutive time units), it seems to capture some critical issues and
to lead to algorithms which are simple to implement.
In what follows a statement holds with high probability if it fails with probability

at most 1=nc for some constant c¿0. Moreover, in the algorithms presented below, we
often use a statement of the form

Let x = SelectAtRandom(Y);

where x is an integer and Y is a set of integers, with the intended meaning that an
element of Y is chosen uniformly at random and assigned to x.
We begin with the simple situation when S = {1; : : : ; n}. We present an algorithm

that for random input with high probability returns a schedule of cost O(n ln n); such
that for each task there exists a time unit in which the task is started and
completed.

A. Czumaj et al. / Theoretical Computer Science 262 (2001) 569–582 579

Algorithm A2

Let N =2n ln n and let P=T
for i=1 to N do

Let Ti be the set of tasks t with l(t; i)= 1
if Ti �= ∅ then

Let t=SelectAtRandom(Ti)
if t ∈P then

Let �(t)= i
Let P=P\{t}

Let i=N + 1.
for each t ∈P do sequentially

Let �(t)= i
Let i= i + l(t; i)

Theorem 6. Algorithm A2 returns a schedule of cost 2n ln n with high probability.

Proof. We show that the algorithm terminates in the Mrst loop with high probability.
For that, let us deMne the following “coupon collector’s algorithm”:

Algorithm CC
Let B= {1; : : : ; n}
repeat

With probability 1− e−1

Let i=SelectAtRandom({1; : : : ; n})
Let B=B\{i}

until B= ∅

It is well known (see, e.g., [11, Chapter 3.6]) that with high probability the “coupon
collector’s algorithm” terminates in less than 1:1n ln n1=(1−e−1)62n ln n rounds. Now,
one can easily show that the size of P after i steps of algorithm A2 in the Mrst loop
is stochastically dominated (i.e., informally, it is not worse in the probabilistic sense)
by the size of B after i steps of the “coupon collector’s algorithm” CC. This follows
from the fact that, since the selections of the tasks t in the Mrst loop of algorithm A2

are independent,

Pr[Ti �= ∅] = 1−
(
1− 1

n

)n
¿1− e−1;

580 A. Czumaj et al. / Theoretical Computer Science 262 (2001) 569–582

and hence the probability that a random task is chosen in step i of the Mrst loop
in algorithm A2 is at least 1 − e−1. Therefore after N steps P is empty with high
probability.

Theorem 6:1 does not seem to give the optimal answer. We are currently trying
to prove that if the values l(t; i) are random numbers between 1 and n then with
probability approaching 1 for n su!ciently large, there exists an execution sequence
of linear cost.
Also notice that it is easy to extend the above algorithm to the case when S =

{k1; : : : ; kn}, and 16k1¡k2¡ · · ·¡kn, to obtain an execution sequence of cost n(2 ln n+
k1 − 1) with high probability.
Now we consider the case S = {k1; k2; : : : ; km}, for 16k1¡k2¡ · · ·¡km and m6

n=3 ln n. The trivial lower bound for the cost of any execution sequence in this context
is k1n. We prove that there exists an algorithm which, with high probability, returns
an execution sequence matching this lower bound.

Algorithm A3

Create a bipartite graph G=(V;W; E) with
V = {v1; : : : ; vn}
W = {w1; : : : ; wn}
E= {{vt ; wi} : l(t; k1 (i − 1) + 1)= k1}

Find a maximum cardinality matching M of G
(∗) for each {vt ; wi}∈M do

Let �(t)= k1 (i − 1) + 1
Let i= nk1 + 1
for each task t not scheduled in Step (∗) do sequentially

Let �(t)= i
Let i= i + l(t; i).

In the analysis of this algorithm we shall use the following fact.

Fact 7. Graph G has a perfect matching with high probability.

Proof. The expected degree of each vertex is at least 3 ln n since

Pr[(vt ; wi) ∈ E] =
1
m
¿
3 ln n
n

:

Moreover, a standard application of the Cherno: bounds [8] implies that the minimum
degree of G is at least 4 with probability at least

1− exp{−(3=2)(log n− 1)2= log n}:

A. Czumaj et al. / Theoretical Computer Science 262 (2001) 569–582 581

Walkup [12] proved that a random directed bipartite graph with n vertices on each
side and outdegree at least 2 has a perfect matching (after removal of the orientations
from the graph) with high probability. Since G is a random graph with the minimum
degree at least 4, one can easily conclude from the result of Walkup that G has a
perfect matching with high probability.

Once we know that M is a perfect matching with high probability, the following
theorem follows immediately.

Theorem 8. Algorithm A3 returns a schedule of cost k1n.

6. Conclusion

In this paper, we have considered the possibility of using information about known
or expected page access times to Mnd an e!cient ordering of a sequence of such
accesses. Empirical evidence suggests that it may be possible to estimate the likely
access time for any particular web document to be fetched at a particular time of day,
and that these access times will vary signiMcantly over time, so a good ordering could
lead to signiMcant gains for web crawling robots. We have shown that the problem
of Mnding an optimal ordering, in the most general case, is a generalisation of a task
scheduling problem which is known to be computationally hard. In practice, however,
the precision of access time estimates, based on historical data, is likely to be relatively
low. Hence, a reasonable engineering solution may be postulated for cases in which the
expected access times are categorised with a coarse granularity. We have shown that
in such simplest case, an optimal solution may be computationally feasible. In other
cases, some simple algorithms have been identiMed which may give useful performance.
A number of aspects of the analysis remain as open problems: for example, what is
the complexity of an instance of VLSP with values 1 and 3, is it NP-hard? If it is, can
we Mnd a better approximation than the 5

3 achieved by our approximation algorithm?
Our analysis, although essentially theoretical, points the way to a number of pos-

sible practical implementations. In particular, we wish to investigate two scheduling
strategies. In the Mrst strategy, the web crawler would make use of a matrix of ex-
pected access times to implement one of the ordering algorithms suggested above. In
the second case, access time data would be obtained dynamically while the crawler is
in progress, and used to drive a heuristic ordering of tasks. We propose to carry out
practical experiments to examine the performance of such strategies in real situations.

Acknowledgements

Our thanks are due to Jon Harvey and Dave Shield for their assistance in the prepa-
ration of this paper.

582 A. Czumaj et al. / Theoretical Computer Science 262 (2001) 569–582

References

[1] A.V. Aho, D.S. Johnson, R.M. Karp, S.R. Kosaraju, C.C. McGeoch, C.H. Papadimitriou, P. Pevzner,
Theory of computing: goals and directions, Special Report of the National Science Foundation of the
USA, 1996.

[2] N. ChristoMdes, Worst-case analysis of a new heuristic for the travelling salesman problem, Tech.
Report TR CS-93-13, Graduate School of Industrial Administration, Carnegie Mellon University,
Pittsburgh, 1976.

[3] Cyberatlas, How big is the Internet? January 1998, Available at: http:==www.cyberatlas.com.
[4] D. Eichmann. The RBSE spider – balancing e:ective search against Web load, Proc. 1st Internat.

World-Wide Web Conference, CERN, Geneva, Switzerland, May 25–27, 1994. Elsevier Science, BV,
Amsterdam, the Netherlands.

[5] L. Engebretsen, An explicit lower bound for TSP with distances one and two, in: C. Meinel, S.
Tison (Eds.), Proc. 16th Annual Symp. on Theoretical Aspects of Computer Science, Lecture Notes
in Computer Science, vol. 1563, Trier, Germany, March 4–6, Springer, Berlin, 1999, pp. 1–15.

[6] M.R. Garey, D.S. Johnson, Two-processor Scheduling with Start-times and Deadlines, SIAM J.
Comput. 6 (1977) 416–426.

[7] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
Freeman, New York, NY, 1979.

[8] T. Hagerup, C. RWub, A guided tour of Cherno: bounds, Inform. Process. Lett. 33 (1990) 305–308.
[9] D.S. Johnson, C.H. Papadimitriou, Computational complexity, in: E.L. Lawler, J.K. Lenstra, A.H.G.

Rinnooy Kan, D.B. Shmoys (Eds.), The Traveling Salesman Problem, Wiley, New York, NY, 1985,
pp. 37–85 (Chapter 3).

[10] S. Micali, V.V. Vazirani, An O(
√

|v|·|E|) algorithm for Mnding maximum matching in general graphs,
Proc. 21st Annual Symp. on Foundations of Computer Science, Syracuse, NY, October 13–15, IEEE
Computer Society Press, Los Alamitos, CA, 1980, pp. 17–27.

[11] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, New York, NY,
1995.

[12] D.W. Walkup, Matchings in random regular bipartite digraphs, Discrete Math. 31 (1980) 59–64.

