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A decidability proof for bisimulation equivalence of first-order grammars is given. It is an 
alternative proof for a result by Sénizergues (1998, 2005) that subsumes his affirmative 
solution of the famous decidability question for deterministic pushdown automata. The 
presented proof is conceptually simpler, and a particular novelty is that it is not given as 
two semidecision procedures but it provides an explicit algorithm that might be amenable 
to a complexity analysis.
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1. Introduction

Decision problems for semantic equivalences have been a frequent topic in computer science. For pushdown automata 
(PDA) language equivalence was quickly shown undecidable, while the decidability in the case of deterministic PDA (DPDA) is 
a famous result by Sénizergues [1]. A finer equivalence, called bisimulation equivalence or bisimilarity, has emerged as another 
fundamental behavioural equivalence [2]; for deterministic systems it essentially coincides with language equivalence. By [3]
we can exemplify the first decidability results for infinite-state systems (a subclass of PDA, in fact), and refer to [4] for a 
survey of results in a relevant area.

One of the most involved results in this area shows the decidability of bisimilarity of equational graphs with finite 
out-degree, which are equivalent to PDA with alternative-free ε-steps (if an ε-step is enabled, then it has no alternative); 
Sénizergues [5] has thus generalized his decidability result for DPDA.

We recall that the complexity of the DPDA problem remains far from clear, the problem is known to be PTIME-hard 
and to be in TOWER (i.e., in the first complexity class beyond elementary in the terminology of [6]); the upper bound was 
shown by Stirling [7] (and formulated more explicitly in [8]). For PDA the bisimulation equivalence problem is known to be 
nonelementary [9] (in fact, TOWER-hard), even for real-time PDA, i.e. PDA with no ε-steps. For the above mentioned PDA 
with alternative-free ε-steps the problem is even not primitive recursive; its Ackermann-hardness was shown in [8].

The decidability proofs, both for DPDA and PDA, are involved and hard to understand. This paper aims to contribute to a 
clarification of the more general decidability proof, showing an algorithm deciding bisimilarity of PDA with alternative-free 
ε-steps.

The proof is shown in the framework of labelled transition systems generated by first-order grammars (FO-grammars), 
which seems to be a particularly convenient formalism; it is called term context-free grammars in [10]. Here the states (or 
configurations) are first-order terms over a specified finite set of function symbols (or “nonterminals”); the transitions are 
induced by a first-order grammar, which is a finite set of labelled rules for rewriting the roots of terms. This framework is 
equivalent to the framework of [5]; cf., e.g., [11,10] and the references therein, or also [12] for a concrete transformation 
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of PDA to FO-grammars. The proof here is in principle based on the high-level ideas from the proof in [5] but with var-
ious simplifications and new modifications. The presented proof has resulted by a thorough reworking of the conference 
paper [13], aiming to get an algorithm that might be amenable to a complexity analysis.

Proof overview. We give a flavour of the process that is formally realized in the paper. It is standard to characterize 
bisimulation equivalence (also called bisimilarity) in terms of a turn-based game between Attacker and Defender, say. If two 
PDA-configurations, modelled by first-order terms E, F in our framework, are non-bisimilar, then Attacker can force his win 
within k rounds of the game, for some number k ∈N; in this case k−1 for the least such k can be viewed as the equivalence-
level el(E, F ) of terms E, F : we write E ∼k−1 F and E �k F . If E, F are bisimilar, i.e. E ∼ F , then Defender has a winning 
strategy and we put el(E, F ) = ω. A natural idea is to search for a computable function f attaching a number f (G, E, F ) ∈N
to terms E, F and a grammar G so that it is guaranteed that el(E, F ) ≤ f (G, E, F ) or el(E, F ) = ω; this immediately yields 
an algorithm that computes el(E, F ) (concluding that el(E, F ) = ω when finding that el(E, F ) > f (G, E, F )).

We will show such a computable function f by analysing optimal plays from E0 � F0; such an optimal play gives rise 
to a sequence (E0, F0), (E1, F1), . . . , (Ek, Fk) of pairs of terms where el(Ei, Fi) = el(Ei−1, Fi−1) − 1 for i = 1, 2, . . . , k, and 
el(Ek, Fk) = 0 (hence el(E0, F0) = k). This sequence is then suitably modified to yield a certain sequence

(E ′
0, F ′

0), (E ′
1, F ′

1), . . . , (E ′
k, F ′

k) (1)

such that (E ′
0, F

′
0) = (E0, F0) and el(E ′

i, F
′
i ) = el(Ei, Fi) for all i = 1, 2, . . . , k; here we use simple congruence properties (if 

E ′ arises from E by replacing a subterm H with H ′ such that H ∼k H ′ , then E ∼k E ′). Doing this modification carefully, 
adhering to a sort of “balancing policy” (inspired by one crucial ingredient in [1,5], used also in [14]) we derive that if k is 
“large”, then the sequence (1) contains a “long” subsequence

(E1σ , F 1σ), (E2σ , F 2σ), . . . , (Ezσ , F zσ), (2)

called an (n, s, g)-sequence, where the variables in all “tops” E j , F j are from the set {x1, . . . , xn}, σ is the common “tail” 
substitution (maybe with “large” terms xiσ ), and the size-growth of the tops is bounded: Size(E j, F j) ≤ s + g · ( j−1) for 
j = 1, 2, . . . , z. The numbers n, s, g are elementary in the size of the grammar G . Then another fact is used (whose ana-
logues in different frameworks could be traced back to [1,5] and other related works): if el(E1, F 1) = e < � = el(E1σ , F 1σ), 
then there is i ∈ {1, 2, . . . , n} and a term H �= xi reachable from E1 or F 1 within e moves (i.e. root-rewriting steps) such that 
xiσ ∼�−e Hσ . This entails that for j = e+2, e+3, . . . , z the tops (E j, F j) in (2) can be replaced with (E j[xi/H ′], F j[xi/H ′]), 
where H ′ is the regular term H[xi/H][xi/H][xi/H] · · · , without changing the equivalence-level; hence el(E jσ , F jσ) =
el(E j[xi/H ′]σ , F j[xi/H ′]σ). Though H ′ might be an infinite regular term, its natural graph presentation is not larger than 
the presentation of H . Moreover, xi does not occur in H ′ , and thus the term xiσ ceases to play any role in the pairs 
(E j[xi/H ′]σ , F j[xi/H ′]σ) ( j = e+2, e+3, . . . , z).

By continuing this reasoning inductively (“removing” one xiσ in each of at most n phases), we note that the length of 
(n, s, g)-sequences (2) is bounded by a (maybe large) constant determined by the grammar G . By a careful analysis we then 
show that such a constant is, in fact, computable when a grammar is given.

Further remarks on related research. Further work is needed to fully understand the bisimulation problems on PDA and 
their subclasses, also regarding their computational complexity. E.g., even the case of BPA processes, generated by real-time 
PDA with a single control-state, is not quite clear. Here the bisimilarity problem is EXPTIME-hard [15] and in 2-EXPTIME [16]
(proven explicitly in [17]); for the subclass of normed BPA the problem is polynomial [18] (see [19] for the best published 
upper bound). Another issue is the precise decidability border. This was also studied in [20]; allowing that ε-steps can have 
alternatives (though they are restricted to be stack-popping) leads to undecidability of bisimilarity. This aspect has been 
also refined, for branching bisimilarity [21]. For second-order PDA the undecidability is established without ε-steps [22]. We 
can refer to the survey papers [23,24] for the work on higher-order PDA, and in particular mention that the decidability of 
equivalence of deterministic higher-order PDA remains open; some progress in this direction was made by Stirling in [25].

Finally we remark that recently (while this paper was under review) the author cooperated with Sylvain Schmitz on 
developing a concrete version of the algorithm suggested here, and its complexity analysis has revealed an Ackermannian 
upper bound; with the lower bound from [8] this yields the Ackermann-completeness of the studied equivalence prob-
lem [26].

Organization of the paper. After the preliminaries in Section 2 we state the main theorem in Section 3. The theorem is 
proven in Section 7, using the notions and results discussed in Sections 4, 5, and 6; each of these sections starts with an 
informal summary.

2. Basic notions and facts

In this section we define basic notions and observe their simple properties. Some standard definitions are restricted 
when we do not need full generality.

By N and N+ we denote the sets of nonnegative integers and of positive integers, respectively. By [i, j], for i, j ∈ N , 
we denote the set {i, i+1, . . . , j}. For a set A, by A∗ we denote the set of finite sequences of elements of A, which are 
also called words (over A). By |w| we denote the length of w ∈ A∗ , and by ε the empty sequence; hence |ε| = 0. We put 
A+ =A∗

� {ε}.
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Labelled transition systems. A labelled transition system, an LTS for short, is a tuple L = (S, �, ( a−→)a∈�) where S is a 
finite or countable set of states, � is a finite or countable set of actions and a−→ ⊆S × S is a set of a-transitions (for each 
a ∈ �). We say that L is a deterministic LTS if for each pair s ∈ S , a ∈ � there is at most one s′ such that s a−→ s′ (which stands 
for (s, s′) ∈ a−→). By s w−→ s′ , where w = a1a2 . . .an ∈ �∗ , we denote that there is a path s = s0

a1−→ s1
a2−→ s2 · · · an−→ sn = s′; the 

length of such a path is n, which is zero for the (trivial) path s ε−→ s. If s w−→ s′ , then s′ is reachable from s. By s w−→ we denote 
that w is enabled in s, or w is performable from s, i.e., s w−→ s′ for some s′ . If L is deterministic, then the expressions s w−→ s′

and s w−→ also denote a unique path.

Bisimilarity, eq-levels. Given L = (S, �, ( a−→)a∈�), a set D ⊆ S ×S covers (s, t) ∈ S ×S if for any s a−→ s′ there is t a−→ t′

such that (s′, t′) ∈ D, and for any t
a−→ t′ there is s a−→ s′ such that (s′, t′) ∈ D. For D, D′ ⊆ S × S we say that D′ covers D

if D′ covers each (s, t) ∈ D. A set D ⊆ S × S is a bisimulation if D covers D. States s, t ∈ S are bisimilar, written s ∼ t , if 
there is a bisimulation D containing (s, t). A standard fact is that ∼⊆ S × S is an equivalence relation, and it is the largest 
bisimulation, namely the union of all bisimulations.

We also put ∼0= S × S , and define ∼k+1⊆ S × S (for k ∈ N) as the set of pairs covered by ∼k . It is obvious that ∼k
are equivalence relations, and that ∼0 ⊇∼1 ⊇∼2 ⊇ · · · · · · ⊇∼. For the (first limit) ordinal ω we put s ∼ω t if s ∼k t for all 
k ∈N; hence ∼ω= ⋂

k∈N ∼k . We will only consider image-finite LTSs, where the set {s′ | s a−→ s′} is finite for each pair s ∈ S , 
a ∈ �. In this case 

⋂
k∈N ∼k is a bisimulation (for each (s, t) ∈ ⋂

k∈N ∼k and s a−→ s′ , in the finite set {t′ | t
a−→ t′} there must 

be one t′ such that s′ ∼k t′ for infinitely many k, which entails (s′, t′) ∈ ⋂
k∈N ∼k), and thus ∼= ⋂

k∈N ∼k =∼ω .
To each pair of states s, t we attach their equivalence level (eq-level):

el(s, t) = max {k ∈N ∪ {ω} | s ∼k t}.
Hence el(s, t) = 0 iff {a ∈ � | s a−→} �= {a ∈ � | t

a−→} (i.e., s and t enable different sets of actions). The next proposition 
captures a few additional simple facts; we should add that we handle ω as an infinite amount, stipulating ω > n and 
ω + n = ω − n = ω for all n ∈N .

Proposition 1.

1. If el(t, t′) > el(s, t), then el(s, t) = el(s, t′).

2. If ω > el(s, t) > 0, then there is either a transition s a−→ s′ such that for all transitions t a−→ t′ we have el(s′, t′) ≤ el(s, t) − 1, or a 
transition t a−→ t′ such that for all transitions s a−→ s′ we have el(s′, t′) ≤ el(s, t) − 1.

3. If |w| ≤ el(s, t) and s w−→ s′ , then t w−→ t′ for t′ such that el(s′, t′) ≥ el(s, t) − |w|.

Proof. 1. If s ∼k t , s �k+1 t , and t ∼k+1 t′ , then s ∼k t′ and s �k+1 t′ .
The points 2 and 3 trivially follow from the definition of ∼k (for k ∈N ∪ {ω}). �

First-order terms, regular terms, finite graph presentations. We will consider LTSs in which the states are first-order 
regular terms.

The terms are built from variables taken from a fixed countable set

Var = {x1, x2, x3, . . . }
and from function symbols, also called (ranked) nonterminals, from some specified finite set N ; each A ∈ N has arity(A) ∈N . 
We reserve symbols A, B, C, D to range over nonterminals, and E, F , G, H, T , U , V , W to range over terms. An example of 
a finite term is E1 = A(D(x5, C(x2, B)), x5, B), where the arities of nonterminals A, B, C, D are 3, 0, 2, 2, respectively. Its 
syntactic tree is depicted on the left of Fig. 1.

We identify terms with their syntactic trees. Thus a term over N is (viewed as) a rooted, ordered, finite or infinite tree 
where each node has a label from N ∪ Var; if the label of a node is x ∈ Var, then the node has no successors, and if the 
label is A ∈ N , then it has m (immediate) successor-nodes where m = arity(A). A subtree of a term E is also called a 
subterm of E . We make no difference between isomorphic (sub)trees, and thus a subterm can have more (maybe infinitely 
many) occurrences in E . Each subterm-occurrence has its (nesting) depth in E , which is its (naturally defined) distance from 
the root of E . E.g., C(x2, B) is a depth-2 subterm of E1; x5 is a subterm with a depth-1 and a depth-2 occurrences.

We also use the standard notation for terms: we write E = xi or E = A(G1, . . . , Gm) with the obvious meaning; in the 
latter case root(E) = A ∈ N , m = arity(A), and G1, . . . , Gm are the ordered depth-1 occurrences of subterms of E , which 
are also called the root-successors in E .

A term is finite if the respective tree is finite. A (possibly infinite) term is regular if it has only finitely many subterms 
(though the subterms may be infinite and may have infinitely many occurrences). We note that any regular term has at 
least one graph presentation, i.e. a finite directed graph with a designated root, where each node has a label from N ∪ Var; 
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Fig. 1. Finite terms E1, E2, and a graph presenting a regular infinite term E3.

if the label of a node is x ∈ Var, then the node has no outgoing arcs, if the label is A ∈ N , then it has m ordered outgoing 
arcs where m = arity(A). We can see an example of such a graph presenting a term E3 on the right in Fig. 1. The standard 
tree-unfolding of the graph is the respective term, which is infinite if there are cycles in the graph. There is a bijection 
between the nodes in the least graph presentation of E and (the roots of) the subterms of E .

Sizes, heights, and variables of terms. By TermsN we denote the set of all regular terms over N (and Var); we do not 
consider non-regular terms. By a “term” we mean a general regular term unless the context makes clear that the term is 
finite.

By Size(E) we mean the number of nodes in the least graph presentation of E . E.g., in Fig. 1 Size(E1) = 6 (E1 has 
six subterms) and Size(E3) = 5. By Size({E1, E2, . . . , En}) we mean the number of nodes in the least graph presentation 
in which a distinguished node ri corresponds to the (root of the) term Ei , for each i ∈ [1, n]. (Since E1, E2, . . . , En can 
share some subterms, Size({E1, E2, . . . , En}) can be smaller than 

∑
i∈[1,n] Size(Ei).) We usually write Size(E, F ) instead of 

Size({E, F }). E.g., Size(E1, E2) = 9 in Fig. 1.
For a finite term E we define Height(E) as the maximal depth of a subterm; e.g., Height(E1) = 3 in Fig. 1.
We put var(E) = {x ∈ Var | x occurs in E} and var(E, F ) = {x ∈ Var | x occurs in E or F }. E.g., var(E1, E2) = {x2, x5} in 

Fig. 1.

Substitutions, associative composition, iterated substitutions. A substitution σ is a mapping σ : Var → TermsN whose 
support

supp(σ ) = {x ∈ Var | σ(x) �= x}
is finite; we reserve the symbol σ for substitutions. By applying a substitution σ to a term E we get the term Eσ that arises 
from E by replacing each occurrence of x ∈ Var with σ(x); given graph presentations, in the graph of E we just redirect 
each arc leading to a node labelled with x towards the root of σ(x) (which includes the special “root-designating arc” 
when E = x). Hence E = x implies Eσ = xσ = σ(x). The natural composition of substitutions, where σ = σ1σ2 is defined by 
xσ = (xσ1)σ2, can be easily verified to be associative. We thus write Eσ1σ2 instead of (Eσ1)σ2 or E(σ1σ2). For i ∈ N we 
define σ i inductively: σ 0 is the empty-support substitution, and σ i+1 = σσ i .

By [xi1/H1, xi2/H2, . . . , xik /Hk], where i j �= i j′ for j �= j′ , we denote the substitution σ such that xi j σ = H j for all j ∈
[1, k] and xσ = x for all x ∈ Var � {xi1 , xi2 , . . . , xik }. We will use σω = σσσ · · · just for the special case σ = [xi/H], where 
σω is clearly well-defined; a graph presentation of the term xiσ

ω arises from a graph presentation of H by redirecting each 
arc leading to xi (if any exists) towards the root; we have xiσ

ω = H if xi /∈ var(H), or if H = xi . In Fig. 1, for σ = [x2/E1]
we have E2 = E1σ and E3 = E1σ

ω .
By σ[−xi ] we denote the substitution arising from σ by removing xi from its support (if it is there): hence xiσ[−xi ] = xi

and xσ[−xi ] = xσ for all x ∈ Var � {xi}.
We note a trivial fact (for later use):

Proposition 2. If H �= xi , then for the term H ′ = H[xi/H][xi/H][xi/H] · · · we have xi /∈ var(H ′), and thus H ′σ = H ′σ[−xi ] for any 
σ . We also have Size(H ′) ≤ Size(H).

First-order grammars. A first-order grammar, or just a grammar for short, is a tuple G = (N , �, R) where N is a finite 
nonempty set of ranked nonterminals, viewed as function symbols with arities, � is a finite nonempty set of actions (or 
“letters”), and R is a finite nonempty set of rules of the form

A(x1, x2, . . . , xm)
a−→ E (3)

where A ∈ N , arity(A) = m, a ∈ �, and E is a finite term over N in which each occurring variable is from the set 
{x1, x2, . . . , xm}; we can have E = xi for some i ∈ [1, m].
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Fig. 2. Path A(T1, T2, B(T3, T4))
r1−→ C(D(T2, B(T3, T4)), B(T3, T4))

r2−→ B(T3, T4)
r3r4−−→ in Lr

G .

LTSs generated by rules, and by actions, of grammars. Given G = (N , �, R), by Lr

G we denote the (rule-based) LTS 

Lr

G = (TermsN , R, ( r−→)r∈R) where each rule r of the form A(x1, x2, . . . , xm) a−→ E induces transitions A(x1, . . . , xm)σ
r−→ Eσ

for all substitutions σ . The transition induced by σ with supp(σ ) = ∅ is A(x1, . . . , xm) r−→ E .

Using terms from Fig. 1 as examples, if a rule r1 is A(x1, x2, x3) 
b−→ x2, then we have E3

r1−→ x5 (since E3 can be written as 
A(x1, x2, x3)σ where x2σ = x5); the action b only plays a role in the LTS La

G defined below (where we have E3
b−→ x5). For a 

rule r2 : A(x1, x2, x3) 
a−→ C(x2, D(x2, x1)) we deduce E1

r2−→ C(x5, D(x5, D(x5, C(x2, B)))); we note that the third root-successor 
in E1 thus “disappears” since x3 /∈ var(C(x2, D(x2, x1))).

By definition, the LTS Lr

G is deterministic (for each F and r there is at most one H such that F
r−→ H). We note that 

variables are dead (have no outgoing transitions). We also note that F
w−→ H implies var(H) ⊆ var(F ) (each variable occurring 

in H also occurs in F ) but not var(F ) ⊆ var(H) in general.

Remark. Since the rhs (right-hand sides) E in the rules (3) are finite, all terms reachable from a finite term are finite. The 
“finite-rhs version” with general regular terms in LTSs has been chosen for technical convenience. This is not crucial, since 
the equivalence problem for the “regular-rhs version” can be easily reduced to the problem for our finite-rhs version.

The deterministic rule-based LTS Lr

G is helpful technically, but we are primarily interested in the (image-finite non-

deterministic) action-based LTS La

G = (TermsN , �, ( a−→)a∈�) where each rule A(x1, . . . , xm) a−→ E induces the transitions 

A(x1, . . . , xm)σ
a−→ Eσ for all substitutions σ . (Hence the rules r1 and r2 in the above examples induce E3

b−→ x5 and 
E1

a−→ C(x5, D(x5, D(x5, C(x2, B)))).)

Fig. 2 sketches a path in some LTS Lr

G where we have, e.g., r1 : A(x1, x2, x3) 
a1−→ C(D(x2, x3), x3) and r2 : C(x1, x2) 

a2−→ x2

for some actions a1, a2 (which would replace r1, r2 in the LTS La

G ). In the rectangle just a part of a regular-term presentation 
is sketched. Hence the initial root-node A might be accessible from later roots due to its possible undepicted ingoing arcs. 
On the other hand, the root-node D after the steps r1r2r3 is not accessible (and can be omitted) in the presentation of the 
final term.

Eq-levels of pairs of terms. Given a grammar G = (N , �, R), by el(E, F ) we refer to the equivalence level of (reg-
ular) terms E, F in La

G , with the following adjustment: though variables xi are handled as dead also in La

G , we stipulate 

el(xi, H) = 0 if H �= xi (while el(xi, xi) = ω); this would be achieved automatically if we enriched La

G with transitions x ax−→ x
where ax is a special action added to each variable x ∈ Var. This adjustment gives us the point 1 in the next proposition on 
compositionality.

We put σ ∼k σ ′ if xσ ∼k xσ ′ for all x ∈ Var, and define

el(σ ,σ ′) = max
{

k ∈N ∪ {ω} | σ ∼k σ ′}.
Proposition 3. For all σ , σ ′, σ ′′, E, F , and k ∈N ∪ {ω} the following conditions hold:

1. If σ ′ ∼k σ ′′ , then σ ′σ ∼k σ ′′σ . Hence el(σ ′, σ ′′) ≤ el(σ ′σ , σ ′′σ).
In particular, el(E, F ) ≤ el(Eσ , Fσ).

2. If σ ′ ∼k σ ′′ , then σσ ′ ∼k σσ ′′ . Hence el(σ ′, σ ′′) ≤ el(σσ ′, σσ ′′).
In particular, el(σ ′, σ ′′) ≤ el(Eσ ′, Eσ ′′).
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Proof. It suffices to prove the claims for k ∈ N , since ∼ω= ⋂
k∈N ∼k . We use an induction on k, noting that for k = 0 the 

claims are trivial.
Assuming k > 0 and E ∼k F , we show that Eσ ∼k Fσ : We cannot have {E, F } = {xi, H} for some H �= xi (since then 

el(E, F ) = 0 by our definition). Hence either E = F = x for some x ∈ Var, in which case Eσ = Fσ , or E /∈ Var and F /∈ Var. 
In the latter case every transition Eσ

a−→ G (Fσ
a−→ G) is, in fact, Eσ

a−→ E ′σ (Fσ
a−→ F ′σ ) where E

a−→ E ′ (F
a−→ F ′), and there 

must be a corresponding transition F
a−→ F ′ (E

a−→ E ′) such that E ′ ∼k−1 F ′ (by Proposition 1(3)); by the induction hypothesis 
E ′σ ∼k−1 F ′σ , which shows that Eσ ∼k Fσ (since (Eσ , Fσ) is covered by ∼k−1).

This gives us the point 1. For the point 2 we note that σ ′ ∼k σ ′′ implies Eσ ′ ∼k Eσ ′′ , which is even more straightforward 
to verify. �

The next lemma shows a simple but important fact (whose analogues in different frameworks could be traced back 
to [1,5] and other related works). Its claim is sketched in a part of Fig. 3. (We recall that E, F denote general regular terms 
when we do not say that they are finite.)

Lemma 4. If el(E, F ) = k < � = el(Eσ , Fσ), then there are xi ∈ supp(σ ), H �= xi , and w ∈ �∗ , |w| ≤ k, such that E w−→ xi , F
w−→ H

or E w−→ H, F w−→ xi , and xiσ ∼�−k Hσ .

Proof. We assume el(E, F ) = k < � = el(Eσ , Fσ) and use an induction on k. If k = 0, then necessarily {E, F } = {xi, H} for 
some xi �= H (since E /∈ Var, F /∈ Var would imply el(Eσ , Fσ) = 0 as well); the claim is thus trivial (if xi /∈ supp(σ ), i.e. 
xiσ = xi , then H = x j and x jσ = xi , which entails that x j ∈ supp(σ )).

For k > 0 we must have E /∈ Var, F /∈ Var. There must be a transition E
a−→ E ′ (or F

a−→ F ′) such that for all F
a−→ F ′ (for 

all E
a−→ E ′) we have el(E ′, F ′) ≤ k−1 (by Proposition 1(2)). On the other hand, for each Eσ

a−→ G1 (and each Fσ
a−→ G2) 

there is Fσ
a−→ G2 (Eσ

a−→ G1) such that el(G1, G2) ≥ �−1 (by Proposition 1(3)); since E /∈ Var and F /∈ Var, the transitions 
Eσ

a−→ G1, Fσ
a−→ G2 can be written Eσ

a−→ E ′σ , Fσ
a−→ F ′σ , respectively, where E

a−→ E ′ , F
a−→ F ′ . Hence there is a pair of 

transitions E
a−→ E ′ , F

a−→ F ′ such that el(E ′, F ′) = k′ ≤ k−1 and el(E ′σ , F ′σ) = �′ ≥ �−1. We apply the induction hypothesis 
and deduce that there are xi ∈ supp(σ ), H �= xi , and w ∈ �∗ , |w| ≤ k′ , such that E ′ w−→ xi , F ′ w−→ H or E ′ w−→ H , F ′ w−→ xi , and 
xiσ ∼�′−k′ Hσ , which entails xiσ ∼�−k Hσ (since � − k = (� − 1) − (k − 1) ≤ �′ − k′). Since E

aw−→ xi , F
aw−→ H or E

aw−→ H , 
F

aw−→ xi , we are done. �
Bounded growth of sizes and heights. We fix a grammar G = (N , �, R), and note a few simple facts to aid later 

analysis; we also introduce the constants SInc (size increase), HInc (height increase) related to G . We recall that the rhs-
terms E in the rules (3) are finite, and we put

HInc = max
{

Height(E)−1 | E is the rhs of a rule in R
}

. (4)

We add that in this paper we stipulate max ∅ = 0.
By NtSize(E) we mean the number of nonterminal nodes in the least graph presentation of E (hence the number of 

non-variable subterms of E). We put

SInc = max
{

NtSize(E) | E is the rhs of a rule in R
}

. (5)

The next proposition shows (generous) upper bounds on the size and height increase caused by (sets of) transition 
sequences. (It is helpful to recall Fig. 2, assuming that the rectangle contains a presentation of G .)

Proposition 5.

1. If G w−→ F , then Size(F ) ≤ Size(G) + |w| · SInc.

2. If G w−→ F where G is a finite term, then Height(F ) ≤ Height(G) + |w| · HInc.

3. If G v1−→ F1 , G v2−→ F2 , · · · , G 
v p−→ F p , where |vi| ≤ d for all i ∈ [1, p], then Size({F1, F2, . . . , F p}) ≤ Size(G) + p · d · SInc.

Proof. The points 1 and 2 are immediate. A “blind” use of 1 in the point 3 would yield Size({F1, F2, . . . , F p}) ≤ p ·(Size(G) +
d · SInc

)
. But since the terms Fi can share subterms of G , we get the stronger bound Size(G) + p · d · SInc. �

Shortest sink words. If A(x1, . . . , xarity(A)) 
w−→ xi in Lr

G (hence w ∈ R+), then we call w an (A, i)-sink word. We note 

that such w can be written rw ′ where A(x1, . . . , xarity(A)) 
r−→ E

w ′−→ xi ; hence w ′ “sinks” along a branch of E to xi , or w ′ = ε

when E = xi . This suggests a standard dynamic programming approach to find and fix some shortest (A, i)-sink words 
w[A,i] for all elements (A, i) of the set NA = {(B, j) | B ∈ N , j ∈ [1, arity(B)]} for which such words exist. We can clearly 
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(generously) bound the lengths of w[A,i] by h|NA| where h = 2 + HInc (i.e., h = 1 + max
{

Height(E) | E is the rhs of a rule in 
R

}
). We put

d0 = 1 + max { |w[A,i]|; A ∈ N , i ∈ [1,arity(A)] }. (6)

The above discussion entails that d0 is a (quickly) computable number, whose value is at most exponential in the size of 
the given grammar G .

Remark. For any grammar G we can construct a “normalized” grammar G′ in which w[A,i] exists for each (A, i) ∈ NA, while 
the LTSs La

G and La

G′ are isomorphic. (We can refer to [27] for more details.) We do not need such normalization in this 
paper.

Convention. When having a fixed grammar G = (N , �, R), we also put

m = max
{

arity(A) | A ∈ N
}

(7)

but we will often write A(x1, . . . , xm) even if arity(A) might not be maximal. This is harmless since such m could be always 
replaced with arity(A) if we wanted to be pedantic. (In fact, the grammar could be also normalized so that the arities of 
nonterminals are the same [27] but this is a superfluous technical issue here.)

3. Main result (computability of equivalence levels)

Small numbers. We use the notion of “small” numbers determined by a grammar G; by saying that a number d ∈N is 
small we mean that it is a computable number (for a given grammar G) that is elementary in the size of G .

E.g., the numbers m, HInc, SInc (defined by (7), (4), (5)) are trivially small, and we have also shown that d0 (defined 
by (6)) is small. In what follows we will also introduce further specific small numbers, summarized in Table 1 at the end of 
the paper.

Main theorem. We first note a fact that is obvious (by induction on k):

Proposition 6. There is an algorithm that, given a grammar G , terms T , U , and k ∈N , decides if T ∼k U in the LTS La

G .

Hence the next theorem adds the decidability of ∼ (i.e., of ∼k for k = ω).

Theorem 7. For any grammar G = (N , �, R) there is a small number c and a computable (not necessarily small) number E such that 
for all T , U ∈ TermsN we have:

if T � U then el(T , U ) ≤ c · (E · Size(T , U ) + (Size(T , U ))2). (8)

Corollary 8. It is decidable, given G , T , U , if T ∼ U in La

G .

Theorem 7 is proven in Section 7; the proof uses the notions and results from Sections 4, 5, and 6. Each section starts 
with an informal summary, and the collection of these summaries yields a more detailed informal overview of the proof 
than that given in the introduction.

4. Bounding the lengths of “(n, s, g)-sequences”

The top of Fig. 3 depicts (a prefix of) a sequence of the form

(E1σ , F1σ), (E2σ , F2σ), . . . , (Ezσ , F zσ)

(Ei, Fi being regular terms) where we assume that the eq-levels are finite and decreasing:

ω > el(E1σ , F1σ) > el(E2σ , F2σ) > · · · > el(Ezσ , F zσ).

We then have el(E1, F1) = k ≤ � = el(E1σ , F1σ) (for some k, � ∈ N), by Proposition 3. If σ is the empty-support substitu-
tion, then k = � and the sequence length z is bounded by 1 + k. If k < �, then Lemma 4 yields some xi and H �= xi (xi = x1
in Fig. 3) where xiσ ∼�−k Hσ ; hence in each pair (E jσ , F jσ) where j ∈ [2 + k, z] we can (repeatedly) replace xiσ with 
Hσ without changing the eq-level of the pair. This is depicted in Fig. 4; since el(E2+kσ , F2+kσ) = �′ < � − k, the respective 
eq-levels do not change due to Propositions 3 and 1.

If, moreover, we are guaranteed that the size growth of (E j, F j) is controlled, i.e.,

Size(E j, F j) ≤ s + g · ( j−1)
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Fig. 3. In an (n, s, g)-sequence, (E1, F1) helps to get rid of one term in the tail-substitution σ .

Fig. 4. Support of σ can be safely decreased after the eq-level drops sufficiently.

for some fixed constants s and g (and j ∈ [1, z]), and var(E j, F j) ⊆ {x1, . . . , xn} for some fixed n (which bounds the support 
of σ ), then a bound on the lengths z of such (n, s, g)-sequences is determined by the respective grammar G (independently 
of the sizes of terms xiσ ). This is straightforward, as we now show.

Given n, s, g , the number of respective pairs (E1, F1) is bounded, and there is thus e ∈N that is the largest el(E1, F1) for 
such pairs (we recall that ω > el(E1σ , F1σ) ≥ el(E1, F1)); at this moment we do not claim that e is computable. For each 
(n, s, g)-sequence (E1σ , F1σ), (E2σ , F2σ), . . . , (Ezσ , F zσ) where z > 1+e we have (el(E1, F1) < el(E1σ , F1σ) and) either 
E1

w−→ xi and F1
w−→ H , or E1

w−→ H and F1
w−→ xi , |w| ≤ e, for the respective xi, H discussed above and illustrated in Figs. 3

and 4; hence Size(H) ≤ Size(E1, F1) + e · SInc (by Proposition 5(1)). This entails that replacing xiσ with H ′σ[−xi ] where H ′ =
H[xi/H][xi/H][xi/H] · · · (recall Proposition 2) in the pairs (E jσ , F jσ) for j = 1+e+1, 1+e+2, . . . , z gives us an (n−1, s′, g)-
sequence of length z−(1+e), where s′ = s + g · (1+e) + s +e ·SInc (which bounds the size of terms E2+e, F2+e extended by a 
shared subterm H ′). To be precise, for the terms E ′

j = E j[xi/H ′] and F ′
j = F j[xi/H ′] we only have var(E ′

j, F
′
j) ⊆ {x1, . . . , xn} �

{xi}, and xn can occur in them (when xi �= xn). In this case we just replace xn with xi in all E ′
j, F

′
j ( j = 1+e+1, 1+e+2, . . . , z) 

and use the tail-substitution σ ′ that arises from σ by putting xiσ
′ = xnσ and xnσ

′ = xn . An inductive argument thus 
establishes that there is indeed a claimed bound (on the lengths of (n, s, g)-sequences) determined by the grammar.

We will later show that such a bound is even computable when G, n, s, g are given. Moreover, we will also show how to 
compute small n, s, g to a given G so that the computable bound on the length of (n, s, g)-sequences gives us the number 
E in Theorem 7.

In the rest of this section we formalize the above ideas showing that (n, s, g)-sequences are bounded. In this formal-
ization we also define the notion of (n, s, g)-candidates, candidates for “non-equivalence bases”; intuitively, the base Bn,s,g

is intended to collect all possible “tops” (E j, F j), (E j[xi/H ′], F j[xi/H ′]), . . . from all (eqlevel-decreasing) (n, s, g)-sequences 
that undergo the above described inductive transformation.
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Eqlevel-decreasing (n, s, g)-sequences. We fix a grammar G = (N , �, R). By an eqlevel-decreasing sequence we mean 
a sequence (T1, U1), (T2, U2), . . . , (T z, U z) of pairs of terms (where z ∈ N+) such that ω > el(T1, U1) > el(T2, U2) > · · · >

el(T z, U z). The length z of such a sequence is obviously at most 1 + el(T1, U1).
For n, s, g ∈N we say that an eqlevel-decreasing sequence in the form

(E1σ , F1σ), (E2σ , F2σ), . . . , (Ezσ , F zσ) (9)

is an (n, s, g)-sequence if var(E j, F j) ⊆ {x1, . . . , xn} and Size(E j, F j) ≤ s + g · ( j−1) for all j ∈ [1, z]. (The size of “tops” 
(E j, F j) is at most s at the start, and g bounds the “growth-rate” of tops; the terms xiσ , i ∈ [1, n], might be large but the 
“tail substitution” σ is the same in all elements of the sequence.)

Candidates for (non-equivalence) bases. To show a bound on the lengths of (n, s, g)-sequences in a convenient form 
(in Lemma 10), we introduce further notions; we start with a piece of notation. For any n, s ∈ N we put

• Pairs var :n = {
(E, F ) ∈ TermsN × TermsN | var(E, F ) = {x1, . . . , xn}},

• Pairs size≤s = {
(E, F ) ∈ TermsN × TermsN | Size(E, F ) ≤ s

}
,

• Pairsn,s = Pairs var :n ∩ Pairs size≤s .

Given n, s, g ∈N , we say that B ⊆ TermsN × TermsN is an (n, s, g)-candidate (intended to collect the tops of (n, s, g, )-
sequences that undergo the above described inductive transformation) if the following conditions 1–3 hold (in which an 
implicit induction on n is used):

1. B ⊆ (
Pairs var : 0 ∪ Pairs var : 1 ∪ · · · ∪ Pairs var :n

)∩ � .
2. (B ∩ Pairs var :n) ⊆ Pairs size≤s .
3. If n > 0, then the set B′ = B� Pairs var :n is an (n−1, s′, g)-candidate where

s′ = 2s + g · (1+e) + e · SInc for e = max
{

el(E, F ) | (E, F ) ∈ B ∩ Pairs size≤s}. (10)

Every (n, s, g)-candidate B yields a bound En,s,g
B ∈ N+ , denoted just EB when n, s, g are clear from the context; in the 

above notation (around (10)) we define En,s,g
B as follows:

if n = 0, then En,s,g
B = 1 + e; if n > 0, then En,s,g

B = 1 + e + En−1,s′,g
B′ .

An (n, s, g)-candidate B is full below an eq-level e ∈ N ∪ {ω} if each pair (E, F ) ∈ (
Pairs var : 0 ∪ Pairs var : 1 ∪ · · · ∪

Pairs var :n
)∩Pairs size≤s such that el(E, F ) < e belongs to B, and, moreover, in the case n > 0 the (n−1, s′, g)-candidate 

B′ is full below e. We say that B is full if it is full below ω (in which case B contains all relevant non-equivalent pairs).

Proposition 9. For any n, s, g there is the unique full (n, s, g)-candidate, denoted Bn,s,g .

Proof. Given n, s, g , the full (n, s, g)-candidate B = Bn,s,g is defined as follows: B ∩ Pairs size≤s = (
Pairs var : 0 ∪ Pairs var : 1 ∪

· · · ∪ Pairs var :n
)∩Pairs size≤s ∩� and, moreover, in the case n > 0 the set B′ = B� Pairsn,s is the full (n−1, s′, g)-candidate 

(where s′ is defined as in (10)). �
The unique full (n, s, g)-candidate Bn,s,g will be also called the (n, s, g)-base.

The (n, s, g)-sequences have bounded lengths. We show the announced bound.

Lemma 10. If (E1σ , F1σ), (E2σ , F2σ), . . . , (Ezσ , F zσ) is an (n, s, g)-sequence and B is an (n, s, g)-candidate that is full below 
1 + el(E1σ , F1σ), then z ≤ EB ; in particular, z ≤ EBn,s,g .

Proof. We consider an (n, s, g)-sequence (E1σ , F1σ), (E2σ , F2σ), . . . , (Ezσ , F zσ) as in (9), and an (n, s, g)-candidate B that 
is full below 1 +el(E1σ , F1σ). Since ω > el(E1σ , F1σ) ≥ el(E1, F1) (by Proposition 3(1)), we have (E1, F1) ∈ B∩Pairs size≤s . 
This entails

el(E1, F1) = k ≤ e = max
{

el(E, F ) | (E, F ) ∈ B ∩ Pairs size≤s}.
If el(E1σ , F1σ) = el(E1, F1) = k, which is surely the case when n = 0 (in this case (E1σ , F1σ) = (E1, F1)), then z ≤ 1 + k, 
due to the required eqlevel-decreasing property of (n, s, g)-sequences; in this case z ≤ 1 + e ≤ EB .

We proceed inductively (on n), assuming n > 0 and el(E1σ , F1σ) = � > k = el(E1, F1). By Lemma 4 there is xi ∈ supp(σ ), 
i ∈ [1, n], and H �= xi such that E1

w−→ xi and F1
w−→ H , or E1

w−→ H and F1
w−→ xi , for some w ∈ �∗ with |w| ≤ k, where 

xiσ ∼�−k Hσ . Hence σ ∼�−k [xi/H]σ , which entails that σ ∼�−k [xi/H] jσ for all j ∈ N (by applying Proposition 3(2) re-
peatedly). We can also easily check that [xi/H]�−kσ ∼�−k [xi/H]ωσ (by induction on � − k), hence
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xiσ ∼�−k H ′σ[−xi ] where H ′ = H[xi/H][xi/H][xi/H] · · ·
(We also recall Proposition 2.) We note that

Size(H ′) ≤ Size(H) ≤ max{Size(E1),Size(F1)} + k · SInc ≤ s + e · SInc

(by using Proposition 5(1)). For each j ∈ [k+2, z] we now put

(E ′
j, F ′

j) = (E j[xi/H ′], F j[xi/H ′]), hence (E ′
jσ , F ′

jσ) = (E ′
jσ[−xi ], F ′

jσ[−xi ]),

and note that el(E jσ , F jσ) = el(E ′
jσ[−xi ], F ′

jσ[−xi ]), since el(E jσ , F jσ) < �−k (for each j ≥ k+2); here we use that 
el(E jσ , E j[xi/H ′]σ) ≥ �−k and el(F jσ , F j[xi/H ′]σ) ≥ �−k, and we recall Proposition 1(1). We also note that for each 
j ∈ [k+2, z] we have

Size(E ′
j, F ′

j) ≤ Size(E j, F j) + Size(H ′) ≤ s + g · ( j−1) + s + e · SInc = 2s + g · ( j−1) + e · SInc.

Hence Size(E ′
k+2, F

′
k+2) ≤ 2s + g · (1 + k) + e · SInc ≤ 2s + g · (1 + e) + e · SInc = s′ (recall s′ from (10)). Thus the sequence

(E ′
k+2σ[−xi ], F ′

k+2σ[−xi]), (E ′
k+3σ[−xi ], F ′

k+3σ[−xi ]) . . . , (E ′
zσ[−xi ], F ′

zσ[−xi ])

is “almost” an (n−1, s′, g)-sequence. The only problem is that xn can occur in E ′
j, F

′
j . But we use the fact that xi does not 

occur in E ′
j, F

′
j , and we replace xn with xi , while replacing σ[−xi ] with σ ′ where xnσ

′ = xn , xiσ
′ = xnσ[−xi ] , and xσ ′ = xσ[−xi ]

for all x ∈ Var � {xi, xn}.
We note that the (n−1, s′, g)-candidate B′ = B � Pairs var :n is full below 1 + el(E ′

k+2σ[−xi ], F ′
k+2σ[−xi ]) (since B′ is full 

below 1 + el(E1σ , F1σ), and el(E ′
k+2σ[−xi ], F ′

k+2σ[−xi ]) = el(Ek+2σ , Fk+2σ) < el(E1σ , F1σ)). By the induction hypothesis 
z−(k+1) ≤ EB′ , and thus z ≤ 1+k+EB′ ≤ 1+e+EB′ = EB . �

In the final argument of the proof of Theorem 7 (in Section 7) we will use EBn,s,g as E in (8), for some specific small 
n, s, g . Though we have defined the (n, s, g)-base Bn,s,g only semantically, it will turn out that it coincides with an effectively 
constructible “sound” (n, s, g)-candidate. But we first need some further technicalities to clarify the specific n, s, g (as well 
as c in (8)).

5. Plays (of bisimulation game) and their balancing

In Section 1 we discussed the notion of optimal plays, which we make more precise now. We assume a given grammar 
G = (N , �, R); for r ∈ R of the form A(x1, . . . , xm) a−→ E we put lab(r) = a. For technical convenience, by a play we only 
mean an optimal play from a non-equivalent pair, i.e., a sequence

T0
U0

r1−→
r′

1

T1
U1

r2−→
r′

2

T2
U2

· · · rk−→
r′

k

Tk
Uk

(11)

where for each i ∈ [1, k] we have ri, r′
i ∈ R, lab(ri) = lab(r′

i), Ti−1
ri−→ Ti , Ui−1

r′
i−→ Ui (in the LTS Lr

G ); moreover, ω >

el(T0, U0) and el(Ti, Ui) = el(Ti−1, Ui−1) − 1 for each i ∈ [1, k] (in the LTS La

G ). If el(Tk, Ek) = 0, then it is a completed play, 
in which case el(T0, U0) = k. (We recall that T0, U0 can be regular terms of a large size.) The length of the play (11) is (de-

fined to be) k, and another presentation of the play is T0
U0

u−→
u′

Tk
Uk

, or also just T0
U0

u−→
u′ , where u = r1r2 · · · rk and u′ = r′

1r′
2 · · · r′

k .

Our aim is to bound the lengths of completed plays in the way stated in Theorem 7. To facilitate this task, in this section 
we show a particular transformation of a completed play (11) into a sequence of plays of the same overall length (i.e., the 
sum of lengths) that are connected by so-called eqlevel-concatenation �; such concatenation[

T
U

u1−→
u′

1

T ′
U ′

]
�

[
T ′′
U ′′

u2−→
u′

2

T ′′′
U ′′′

]

is defined if (and only if) el(T ′, U ′) = el(T ′′, U ′′), though the pairs (T ′, U ′) and (T ′′, U ′′) can differ. The overall length of 
this concatenation is |u1| + |u2|; if T ′′

U ′′
u2−→
u′

2

T ′′′
U ′′′ is a completed play, then this length (|u1| + |u2|) is obviously the same as the 

length of any completed play starting with (T , U ).
In the first phase of the mentioned transformation of a completed play (11) we will replace it with the concatenation of 

two plays in the form[
T0
U0

v0u1−→
v ′ u′

T ′
1

U ′

]
�

[
T ′′

1

U ′′
v−→
v ′

]

0 1 1 1
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where v0u1 is a certain prefix of u = r1r2 · · · rk , v ′
0u′

1 is a prefix of u′ = r′
1r′

2 · · · r′
k (of the same length as v0u1), and 

[
T ′′

1

U ′′
1

v−→
v ′

]

is a completed play (while v (v ′) is generally not a suffix of u (u′)). Further we replace 

[
T ′′

1

U ′′
1

v−→
v ′

]
with 

[
T ′′

1

U ′′
1

v1u2−→
v ′

1u′
2

T ′
2

U ′
2

]
�[

T ′′
2

U ′′
2

v̄−→̄
v ′

]
where v1u2 is a certain prefix of v , v ′

1u′
2 is a prefix of v ′ , and 

[
T ′′

2

U ′′
2

v̄−→̄
v ′

]
is a completed play; we continue in this 

way, doing � phases for a certain number �, until finally getting[
T0
U0

v0−→
v ′

0

T̄1

Ū1

u1−→
u′

1

T ′
1

U ′
1

]
�

[
T ′′

1

U ′′
1

v1−→
v ′

1

T̄2

Ū2

u2−→
u′

2

T ′
2

U ′
2

]
�

[
T ′′

2

U ′′
2

v2−→
v ′

2

· · · · · · T̄�

Ū�

u�−→
u′

�

T ′
�

U ′
�

]
�

[
T ′′

�

U ′′
�

v�−→
v ′

�

T̄�+1

Ū�+1

]
(12)

where 

[
T ′′

�

U ′′
�

v�−→
v ′

�

T̄�+1

Ū�+1

]
is completed and “non-transformable”; the overall length of (12) is thus equal to k = el(T0, U0). In 

fact, we have � = 0 when already (11) is non-transformable; we thus put (T ′′
0 , U ′′

0) = (T0, U0) for convenience. (Later we 
repeat (12) as (17) without the bars in the notation T̄ j, Ū j ; now the bars are added to avoid the confusion with T j, U j
in (11).)

More concretely, we will perform the transformation so that for each phase j ∈ [1, �] we have |u j | = d0 (for d0 defined 
by (6)), one of the terms T̄ j, Ū j is the pivot W j , and the pair (T ′′

j , U
′′
j ) is the balancing result, or the bal-result for short, 

related to the pivot W j .
In fact, if W j = Ū j , then we have U ′′

j = U ′
j (and T ′′

j �= T ′
j ); in this case the j-th phase consists in replacing the completed 

play 

[
T ′′

j−1

U ′′
j−1

v−→
v ′

]
with the eqlevel-concatenation 

[
T ′′

j−1

U ′′
j−1

v j−1−→
v ′

j−1

T̄ j

Ū j

u j−→
u′

j

T ′
j

U ′
j

]
�

[
T ′′

j

U ′
j

v̄−→̄
v ′

]
(where 

[
T ′′

j−1

U ′′
j−1

v j−1−→
v ′

j−1

T̄ j

Ū j

u j−→
u′

j

T ′
j

U ′
j

]
is a prefix 

of 

[
T ′′

j−1

U ′′
j−1

v−→
v ′

]
); this is called a left balancing step (the left term in (T ′

j, U
′
j) has been replaced with T ′′

j so that el(T ′
j, U

′
j) =

el(T ′′
j , U

′
j)). Similarly, if W j = T̄ j , then we have T ′′

j = T ′
j , and we have performed a right balancing step, replacing U ′

j with 
U ′′

j .
We thus have pivots W1, W2, . . . , W� , each having its related bal-result. Since the sequence

(T ′′
1 , U ′′

1), (T ′′
2 , U ′′

2), . . . , (T ′′
� , U ′′

� )

of bal-results is eqlevel-decreasing, no pair can repeat in the sequence.
We will “balance” in a way that will also yield a pivot path

W0
w0−→ W1

w1−→ W2
w2−→ · · · W�

w�−→ W�+1 (13)

where w0 ∈R∗ , w j ∈R+ for j ∈ [1, �], W0 ∈ {T0, U0}, W�+1 ∈ {T̄�+1, Ū�+1}, and we will guarantee the following properties:

1. There is some small n such that for each j ∈ [1, �] there are small finite terms G, E, F , with var(E, F ) ⊆ var(G) ⊆
{x1, . . . , xn}, such that

W j = Gσ and (T ′′
j , U ′′

j ) = (Eσ , Fσ),

for a substitution σ (with supp(σ ) ⊆ {x1, . . . , xn}). (Hence the terms in the bal-result arise from the pivot W by replac-
ing a small top of W by other small tops.) This is depicted in Fig. 5 for some W j and W j+1 (and in more detail in 
Fig. 6).

2. Each pivot-path segment W j
w j−→ W j+1 (for j ∈ [0, �]) is either short (i.e., its length is small), or it has a short prefix 

and a short suffix while the middle part is “quickly sinking” (to a deep subterm of W j if this part is long).

We note that we do not exclude that a pivot W occurs more than once in the pivot path (W = W j and W = W j′ for j �= j′), 
but the number of its occurrences must be small; this follows from the point 1 which entails that there is only a small 
number of possible bal-results related to one pivot, and from the fact that the bal-results cannot repeat.

Fig. 5 depicts a “non-sinking segment” on the pivot path. (In such a segment, no root-successor of the starting term is 
exposed.) By the above point 2 it is intuitively clear that any long non-sinking segment must contain a large number of 
pivots, and that the possible increase of (the tops of) the pivots is controlled. Hence any long non-sinking segment of the 
pivot path gives rise to a long (n, s, g)-sequence, for some small n, s, g; here we use the point 1 (and recall Fig. 5). This is 
a crucial fact for our proof of Theorem 7.

In this section, our task is to show a transformation that guarantees a suitable pivot path (13) and the above properties 
1 and 2.
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Fig. 5. Non-sinking segment on the pivot path gives rise to an (n, s, g)-sequence.

A concrete way how we do a left balancing step is captured by Fig. 6. Informally speaking, if the left-hand side does not 
sink to a root-successor within less than d0 moves (for d0 defined by (6)), which is the case in Fig. 6 due to A(x1, . . . , xm) u−→
E ′ , then the other side (U = Gσ in Fig. 6) can become a pivot, and the bal-result can be created as depicted; the original 
root-successors in the left-hand side are replaced by suitable terms that are shortly reachable from the pivot, so that the 
respective eq-level does not change (el(E ′σ ′, U ′) = el(E ′σ ′′, U ′) in Fig. 6). The existence of such a transformation (we claim 
nothing about its effectiveness) is clear by Propositions 1 and 3. Right balancing steps are analogous (they are eligible when 
the right-hand side does not sink within less than d0 moves).

We observe that any path W
v−→ W ′ can sink to some depth-|v| subterm of W at most, surely not deeper; hence W ′

arises from W by replacing its “|v|-top” with another top; the size of these tops is small when v is short. This observation 
now easily entails the above property 1, guaranteed by our transformation.

To guarantee a suitable pivot path (13) and its property 2, as a first attempt we consider the following procedure in the 

j-th phase (of the transformation of (11) into (12)): when we are about to replace the completed play 

[
T ′′

j−1

U ′′
j−1

v−→
v ′

]
, we use 

its shortest prefix of the form 

[
T ′′

j−1

U ′′
j−1

v j−1−→
v ′

j−1

T̄ j

Ū j

u j−→
u′

j

T ′
j

U ′
j

]
where 

[
T̄ j

Ū j

u j−→
u′

j

T ′
j

U ′
j

]
enables a (left or right) balancing step (i.e., some 

side does not sink to a root successor within less than d0 moves).
But doing this balancing as suggested would complicate our task of creating a suitable pivot path (13), as we now discuss. 

First we note that we can smoothly define W0
w0−→ W1: it is U0

v0−→ U1 if W1 = U1, and T0
v0−→ T1 if W1 = T1. Similarly 

we define W�
w�−→ W�+1 as Ū�

u′
�v ′

�−−→ Ū�+1 if W� = Ū� , and as T̄�
u�v�−−→ T̄�+1 if W� = T̄� . If in the consecutive phases j and 

j+1 we have the pivot on the same side, say W j = Ū j and W j+1 = Ū j+1, then we have no problem either: we define 

W j
w j−→ W j+1 simply as Ū j

u′
j v ′

j−−→ Ū j+1 (which is legal since U ′
j = U ′′

j ).

A problem to define W j
w j−→ W j+1 arises when there is a switch of balancing sides. Hence we add a simple condition to 

be satisfied when such a switch is allowed to occur. Suppose W j = U j , and let Fig. 6 describe the respective left balancing 
step. In the ( j+1)-th phase of the transformation we have

[
T0
U0

v0−→
v ′

0

T̄1

Ū1

u1−→
u′

1

T ′
1

U ′
1

]
� · · · �

[
T ′′

j−1

U ′′
j−1

v j−1−→
v ′

j−1

T̄ j

W j

u j−→
u′

j

E ′σ ′
U ′

j

]
�

[
E ′σ ′′
U ′

j

v−→
v ′

]

and we are about to replace the (current) completed play 

[
E ′σ ′′
U ′

j

v−→
v ′

]
. We would prefer to do another left balancing, ideally 

for a short prefix of this completed play. This is not possible only if the path E ′σ ′′ v−→ is quickly sinking in the beginning, 
i.e., within each segment of length d0 a root-successor of the term starting the segment is exposed; the path E ′σ ′′ v−→ thus 
has a short prefix E ′σ ′′ v j1−−→ xiσ

′′ for some xi (since E ′ is a small finite term and the path sinks along one of its branches). 
But xiσ

′′ is reachable from the last pivot W j (W j = U j ) by a short word v̄ (e.g., if xiσ
′′ = V 2 in Fig. 6, then we use the 

path U
v̄2−→ V 2). Hence only after such a short prefix 

[
E ′σ ′′
U ′

j

v j1−→
v ′

j1

xiσ
′′

U

]
we allow to balance on both sides (if a left balancing 

is not possible earlier).
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A(x1,...,xm)σ ′ w[A,i]−→ xiσ
′ (or w[A,i] does not exist) ρ = A(x1,...,xm)σ ′

U

u−→
u′

E ′σ ′
U ′

ρ ′ = A(x1,...,xm)σ ′
U

u−→
u′

E ′σ ′
U ′ � E ′σ ′′

U ′ where xiσ
′′ = V i

U
v̄i−→ V i (V i = U when w[A,i] does not exist)

Fig. 6. Balancing step ρ �L ρ ′ (|u| = d0, i ranges over [1,m], el(xiσ
′, V i) > el(E ′σ ′, U ′)).

If a switch of balancing sides indeed happens in our discussed case, then we can write the j-th and the ( j+1)-th play 
in the sequence (12) in the form[

T ′′
j−1

U ′′
j−1

v j−1−→
v ′

j−1

T̄ j

W j

u j−→
u′

j

E ′σ ′
U ′

j

]
�

[
E ′σ ′′
U ′

j

v j1−→
v ′

j1

xiσ
′′

U

v j2−→
v ′

j2

W j+1

Ū j+1

u j+1−→
u′

j+1

T ′
j+1

U ′
j+1

]

and define W j
w j−→ W j+1 as W j

v̄−→ xiσ
′′ v j2−−→ W j+1 (where v̄ is shorter than the short word u j v j1 but this does not matter). 

To summarize: for the consecutive phases j and j+1 where the j-th phase is a left-balancing step captured by Fig. 6, we 
get [

T ′′
j−1

U ′′
j−1

v j−1−→
v ′

j−1

T̄ j

W j

u j−→
u′

j

E ′σ ′
U ′

j

]
�

[
E ′σ ′′
U ′

j

v j−→
v ′

j

T̄ j+1

Ū j+1

u j+1−→
u′

j+1

T ′
j+1

U ′
j+1

]

where either v j is short and W j+1 = Ū j+1 or we can write v j = v j1 v j2 where v j1 is short and we have E ′σ ′′ v j1−−→ xiσ
′′ . In 

the latter case we can write[
E ′σ ′′
U ′

j

v j−→
v ′

j

T̄ j+1

Ū j+1

u j+1−→
u′

j+1

T ′
j+1

U ′
j+1

]
=

[
E ′σ ′′
U ′

j

v j1−→
v ′

j1

xiσ
′′

U

v j2−→
v ′

j2

T̄ j+1

Ū j+1

u j+1−→
u′

j+1

T ′
j+1

U ′
j+1

]
(14)

where W j+1 ∈ {T̄ j+1, Ū j+1}, and both paths xiσ
′′ v j2−−→ T̄ j+1 and Ū

v ′
j2−−→ Ū j+1 (that may be long) are quickly sinking (since 

there is no balancing possibility there).

Hence the above property 2 of the pivot path is also clear (including the case W j+1 = Ū j+1, where W j
w j−→ W j+1 is 

Ū j

u′
j v ′

j1 v ′
j2−−−−−→ Ū j+1).

Now we define the described transformation in a more formal way.

Modified optimal plays, and their eqlevel-concatenation. We still assume a fixed grammar G = (N , �, R). Now we let 
u, v, w (with subscripts etc.) range over R∗ (not over �∗); hence E

w−→ F determines one path in the LTS Lr

G . For r ∈ R of 

the form A(x1, . . . , xm) a−→ E we put lab(r) = a; this is extended to the respective homomorphism lab :R∗ → �∗ .
An optimal play, or just a play for short, is a sequence

(T0, U0)(r1, r′
1)(T1, U1)(r2, r′

2)(T2, U2) · · · (rk, r′
k)(Tk, Uk),

denoted as

T0
U0

r1−→
r′

T1
U1

r2−→
r′

T2
U2

· · · rk−→
r′

Tk
Uk

, (15)

1 2 k
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where T0 � U0 and for each j ∈ [1, k] we have T j−1
r j−→ T j , U j−1

r′
j−→ U j , lab(r j) = lab(r′

j), and el(T j, U j) = el(T j−1, U j−1) −
1. It is clear (by Proposition 1(2,3)) that for any T0 � U0 there is a play of the form (15) such that k = el(T0, U0) (and 
el(Tk, Uk) = 0).

A play μ of the form (15) is a play from Start(μ) = (T0, U0) to End(μ) = (Tk, Uk), and is also written as T0
U0

u−→
u′

Tk
Uk

, 

or just as T0
U0

u−→
u′ , where u = r1r2 · · · rk and u′ = r′

1r′
2 · · · r′

k; we put length(μ) = k and Pairs(μ) = {(Ti, Ui) | i ∈ [0, k]}. We 

also consider the trivial plays of the form (T0, U0) with the length k = 0 (for T0 � U0). A play (15) is a completed play if 
el(Tk, Uk) = 0.

The standard concatenation μν of plays μ = T
U

u−→
u′

T ′
U ′ and ν = T ′′

U ′′
v−→
v ′

T ′′′
U ′′′ is defined if (and only if) (T ′, U ′) = (T ′′, U ′′); in 

this case μν is the play T
U

uv−→
u′v ′

T ′′′
U ′′′ (hence End(μ) and Start(ν) get merged).

We aim to show a bound of the form (8) on the lengths of completed plays from (T , U ). The use of (n, s, g)-sequences, 
bounded by Lemma 10, will become clear after we introduce a special modification of plays. Generally,

a modified play π is a sequence of plays μ1,μ2, . . . ,μ� (� ≥ 1)

where for each j ∈ [1, �−1] we have el(End(μ j)) = el(Start(μ j+1)) but End(μ j) �= Start(μ j+1); it is a modified play from
Start(π) = Start(μ1) to End(π) = End(μ�), and it is a completed modified play if el(End(μ�)) = 0. (As expected, if End(μ) =
(T , U ), then by el(End(μ)) we refer to the eq-level el(T , U ); similarly in the other cases.)

We put length(π) = ∑
j∈[1,�] length(μ j), and Pairs(π) = ⋃

j∈[1,�] Pairs(μ j). We do not consider peculiar modified plays 
where End(μ j) = Start(μ j+p) for p ≥ 2, in which case μ j+1, μ j+2, · · · , μ j+p−1 are zero-length plays; we implicitly deem 
the modified plays to be normalized by (repeated) replacing such segments μ j, μ j+1, · · · , μ j+p−1, μ j+p with μ jμ j+p . E.g., a 
modified play μ1, μ2, μ3 of the form T0

U0

u1−→
u′

1

T
U
, T ′

U ′, 
T
U

u2−→
u′

2

T ′′
U ′′ (where el(T , U ) = el(T ′, U ′)) is replaced with μ1μ3 = T0

U0

u1u2−→
u′

1u′
2

T ′′
U ′′ .

Proposition 11. For any T � U there is a completed play from (T , U ), and we have length(π) = el(T , U ) for each completed 
modified play π from (T , U ); moreover, no pair can appear at two different positions in π (we thus have no repeat of a pair in π ).

Proof. The eq-levels of pairs in π = μ1, μ2, . . . , μ� are dropping in each μ j; we have el(End(μ j)) = el(Start(μ j+1)) but 
End(μ j) �= Start(μ j+p) for p ≥ 1 by definition (which includes the normalization). �

We also define a partial operation on the set of modified plays that is called the eqlevel-concatenation and denoted by 
� . For modified plays π = μ1, μ2, . . . , μk and ρ = ν1, ν2, . . . , ν� , the eqlevel-concatenation π � ρ is defined if (and only 
if) el(End(π)) = el(Start(ρ)); we recall that End(π) = End(μk) and Start(ρ) = Start(ν1). Suppose that π � ρ , in the 
above notation, is defined. If End(μk) �= Start(ν1), then π �ρ = μ1, μ2, . . . , μk, ν1, ν2, . . . , ν�; if End(μk) = Start(ν1), then 
π � ρ = μ1, μ2, . . . , μk−1, μkν1, ν2, ν3, . . . , ν� . (We implicitly assume a normalization in the end, if necessary; but this will 
not be needed in our concrete cases.)

We note that the operation � is associative.
In what follows, by writing the expression π � ρ for modified plays π, ρ we implicitly claim that π � ρ is defined (and 

we refer to the resulting modified play π � ρ). By writing πρ we implicitly claim that End(π) = Start(ρ), and πρ refers 
to the modified play π � ρ .

We now show a particular modification of plays, a first step towards creating (n, s, g)-sequences. In this process we will 
frequently replace a (sub)play of the type ρ = T

U

u−→
u′

T ′
U ′ with a modified play ρ ′ = T

U

u−→
u′

T ′
U ′ � T ′′

U ′ that has the same length by 

definition; essentially it means that we have replaced T ′ with T ′′ while guaranteeing that el(T ′, U ′) = el(T ′′, U ′).

Balancing steps, their pivots and balanced results. Informally speaking, a play T
U

u−→
u′

T ′
U ′ enables left balancing if T

u−→ T ′

misses the opportunity to sink to a root-successor as quickly as possible (recall w[A,i] and d0 defined around (6)). A left 
balancing is illustrated in Fig. 6 (in both a pictorial and a textual form). We start with a simple example, and only then we 
give a formal definition.

Let us consider a play of the form

T =A(G1,G2)

U

r1−→
r′

1

B(C(G2,G1),G1)

U1

r2−→
r′

2

B ′(G1,C(G2,G1))=T ′
U ′

where r1 is A(x1, x2) 
a1−→ B(C(x2, x1), x1), and r2 is B(x1, x2) 

a2−→ B ′(x2, x1). Let r3 be A(x1, x2) 
a3−→ x1, hence we also have 

A(G1, G2) 
a3−→ G1. (Therefore the path T

r1r2−−→ T ′ clearly missed the opportunity to sink to G1 as quickly as possible.) Since 
T

a3−→ G1, there must be a transition U
a3−→ V 1, generated by a rule r′

3, such that el(G1, V 1) ≥ el(T , U ) − 1 (by Proposi-
tion 1(3)); hence el(G1, V 1) > el(T ′, U ′) (since el(T ′, U ′) = el(T , U ) −2 by the definition of plays). In T ′ = B ′(G1, C(G2, G1))

we can thus replace G1 with V 1 without affecting el(T ′, U ′); indeed, we have el(T ′, B ′(V 1, C(G2, V 1)) ≥ el(G1, V 1) (using 
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Proposition 3(2)), and el(G1, V 1) > el(T ′, U ′) thus entails that el(B ′(V 1, C(G2, V 1)), U ′) = el(T ′, U ′) (by Proposition 1(1)). 

If also G2 can be reached from A(G1, G2) in less than two steps, we similarly get V 2, where U
r′

4−→ V 2 for some r′
4, so that 

el(B ′(V 1, C(V 2, V 1)), U ′) = el(T ′, U ′); hence

A(G1,G2)

U

r1r2−→
r′

1r′
2

T ′
U ′ � B ′(V 1,C(V 2,V 1))

U ′

is a well-defined modified play in this case. Here U is the “pivot”, and we note that U ′, V 1, V 2 are all reachable from U in at 
most two steps. Hence if we present U in a “2-top form”, say U = Gσ where G = A0(A1(x1, x2), A2(x3, x4)), then we have 

U ′ = Fσ , V 1 = F1σ , V 2 = F2σ where G 
r′

1r′
2−−→ F , G 

r′
3−→ F1, G 

r′
4−→ F2. Now the “bal-result” (T ′′, U ′) = (B ′(V 1, C(V 2, V 1)), U ′)

can be presented as (Eσ , Fσ) where E = B ′(F1, C(F2, F1)); we note that in U = Gσ the top G is small, hence also E, F are 
small, while the terms xσ might be large. We now formalize (and generalize) the observation that has been exemplified.

We again consider a fixed general grammar G = (N , �, R), and the numbers m (7) and d0 (6). We say that a play

ρ = T
U

u−→
u′

T ′
U ′ enables L-balancing if |u| = d0 (hence also |u′| = d0) and T

u−→ T ′ is root-performable, i.e., T = A(x1, . . . , xm)σ ′ , 

A(x1, . . . , xm) u−→ E ′ , and thus T ′ = E ′σ ′ (where A ∈N , E ′ ∈ TermsN , var(E ′) ⊆ {x1, . . . , xm}). We can thus write

ρ = T
U

u−→
u′

T ′
U ′ = A(x1,...,xm)σ ′

U

u−→
u′

E ′σ ′
U ′ .

(We have not excluded that E ′ = xi for some i ∈ [1, m].)
In the described case, in T ′ we can replace each occurrence of a root-successor of T (which is xiσ

′ for i ∈ [1, m]) with 
a term that is shortly reachable from U so that el(T ′, U ′) is unaffected by this replacement; we now make this claim more 
precise, referring again to the illustration in Fig. 6.

Suppose A(x1, . . . , xm) 
w[A,i]−−−→ xi (cf. the definitions around (6)), hence T

w[A,i]−−−→ xiσ
′; since el(T , U ) = d0 + el(T ′, U ′) ≥ d0

and |w[A,i]| < d0, there must be v̄ i ∈ R+ and a term V i such that |v̄ i | = |w[A,i]|, lab(v̄ i) = lab(w[A,i]), U
v̄i−→ V i , and 

el(xiσ
′, V i) ≥ el(T , U ) − |w[A,i]| > el(T , U ) − d0 = el(T ′, U ′) (we use Proposition 1(3)). We can thus reason for all i ∈ [1, m]. 

If there is no w[A,i] for some i ∈ [1, m], then xiσ
′ is not “exposable” in T = A(x1, . . . , xm)σ ′ , hence not in T ′ = E ′σ ′ either, 

and xiσ
′ can be replaced by any term without changing the equivalence class of T ′; in this case we put V i = U , thus having 

U
ε−→ V i . Therefore el(E ′σ ′, U ′) = el(E ′σ ′′, U ′) where xiσ

′′ = V i for all i ∈ [1, m] (by using Propositions 3(2) and 1(1)).

Hence for a play ρ = T
U

u−→
u′

T ′
U ′ in the above notation we can soundly define an L-balancing step ρ �L ρ ′ where ρ ′ is a 

modified play ρ ′ = ρ � (E ′σ ′′, U ′), depicted in Fig. 6. For such an L-balancing step ρ �L ρ ′ , the term U is called the pivot
and the pair (E ′σ ′′, U ′) is called the bal-result.

An R-balancing step ρ �R ρ ′ is defined symmetrically: if in ρ = T
U

u−→
u′

T ′
U ′ we have |u| = |u′| = d0 and U

u′−→ U ′ is root-

performable, and presented as A(x1, . . . , xm)σ ′ u′−→ F ′σ ′ , then we can soundly define

T
A(x1,...,xm)σ ′

u−→
u′

T ′
F ′σ ′ �R T

A(x1,...,xm)σ ′
u−→
u′

T ′
F ′σ ′ � T ′

F ′σ ′′ ;

here T is the pivot and (T ′, F ′σ ′′) is the bal-result.

Relation of the tops of the pivot and of the bal-result. We now look in more detail at the fact that the pivot of a 
balancing step and the respective bal-result can be written Gσ and (Eσ , Fσ) for specifically related small “tops” G, E, F (as 
is also depicted in Fig. 6).

We say that a finite term G is a p-top, for p ∈N+ , if Height(G) ≤ p, each depth-p subterm is a variable, and var(G) =
{x1, . . . , xn} for some n ∈N; hence n ≤ mp (for m being the maximum arity of nonterminals (7)).

We note that each term W has a p-top form Gσ , i.e., W = Gσ , G is a p-top, supp(σ ) ⊆ var(G), and we have 
xσ ∈ Var for each x occurring in G in depth less than p. (Only a branch of W that finishes with a variable in depth less 
than p gives rise to such a branch in G .) E.g., a 2-top form of A(B(x9, C(x3, x6)), x9) is Gσ where G = A(B(x1, x2), x3)

and σ = [x1/x9, x2/C(x3, x6), x3/x9]; another 2-top form of this term is G ′σ ′ where G ′ = A(B(x1, x2), x1) and σ ′ =
[x1/x9, x2/C(x3, x6)]. (We could strengthen the definition to get the unique p-top form to each term, but this is not neces-
sary.)

We say that Gσ is a p-safe form of W if W = Gσ and W
v−→, |v| ≤ p, implies G v−→ (i.e., each word v ∈ R∗ of length at 

most p that is performable from W is also performable from G). We easily observe that each p-top form Gσ of W is also 
a p-safe form of W .

The next proposition follows immediately from the definition of balancing steps.

Proposition 12. Let W be the pivot and (T ′′, U ′′) the bal-result of an L-balancing step. Then for any d0-safe form Gσ of W we have 
(T ′′, U ′′) = (Eσ , Fσ) where
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• G u′−→ F for some u′ ∈R+ , |u′| = d0;

• E = E ′σ where A(x1, . . . , xm) u−→ E ′ for some A ∈ N , u ∈ R+ , |u| = d0 , and for all i ∈ [1, m] we have G 
vi−→ Fi where Fi = xiσ , 

for some vi , |vi | < d0 (hence T ′′ = Eσ = E ′σσ = E ′σ ′′ where W
vi−→ xiσ

′′ , for all i ∈ [1, m]).

A symmetric claim holds if W , (T ′′, U ′′) correspond to an R-balancing step.

We note a concrete consequence for future use. (Fig. 2 might be again helpful.)

Corollary 13. Let Gσ be a d0-safe form of W . If W is the pivot of a balancing step, then the respective bal-result can be written as 
(Eσ , Fσ) where var(E, F ) ⊆ var(G) and

Size(E, F ) ≤ Size(G) + (m+2) · d0 · SInc.

Proof. W.l.o.g. we assume an L-balancing step, and use E = E ′σ and F guaranteed by Proposition 12, where xiσ = Fi for 
all i ∈ [1, m]. We thus have

Size(E, F ) ≤ NtSize(E ′) + Size({F , F1, F2, . . . , Fm}),
since for presenting E we redirect each arc in E ′ that leads to xi towards the root of Fi (for i ∈ [1, m]). Since A(x1, . . . , xm) u−→
E ′ where |u| = d0, we have NtSize(E ′) ≤ d0 ·SInc. Since all F , F1, F2, . . . , Fm are reachable from G in at most d0 steps, we get 
Size({F , F1, F2, . . . , Fm}) ≤ Size(G) + (m + 1) · d0 · SInc by Proposition 5(3); moreover, all sets var(F ) and var(Fi), i ∈ [1, m], 
are thus subsets of var(G). The claim follows. �

We derive a small bound on the number of bal-results when the pivot is fixed. We put

d1 = 2 · |N | · (max{d0, |R|d0})m+2 (16)

(referring to the grammar G = (N , �, R)).

Proposition 14. The number of bal-results related to a fixed pivot W is at most d1.

Proof. Given W , we fix its d0-safe form Gσ (e.g., a d0-top form). Now we suppose that W = Gσ is the pivot of an L-
balancing step; let (Eσ , Fσ) = (E ′σσ , Fσ) be the respective bal-result, as captured by Proposition 12. We have at most 
|R|d0 options for u′ determining F , and at most |N | · |R|d0 options for E ′ . For each i ∈ [1, m], we have at most 1 + |R|1 +
|R|2 · · · + |R|d0−1 ≤ max{d0, |R|d0} options for Fi . Altogether we get no more than |N | · (max{d0, |R|d0})m+2 options for 
the bal-result. The same number bounds the possible bal-results of R-balancing steps with the pivot W , hence the claim 
follows. �

Balanced modified plays, and pivot paths. We now describe a balancing policy, yielding a sequence of balancing steps 
that transform a completed play to a “balanced” modified play; the idea of this policy (in a different framework) can be 
traced back to Sénizergues [1] (and was also used by Stirling [14]).

Let T0 � U0 and let π be a completed play π from (T0, U0). We show a sequence of transformation phases; after j
phases we will get a completed modified play from (T0, U0) of the form

π j = μ0ρ
′
1μ1ρ

′
2 · · ·μ j−1ρ

′
jπ

′
j

where π ′
j is a play to be transformed in the ( j+1)-th phase. We start with π0 = π ′

0 = π . In general π ′
j is not a suffix of 

π but the lengths of the modified plays π0, π1, π2, . . . are the same (recall Proposition 11). In the end we get a balanced 
modified play π� = μ0ρ

′
1μ1ρ

′
2 · · ·μ�−1ρ

′
�π

′
� (for some � ≥ 0) where π ′

� is non-transformable; this final modified play π� =
μ0ρ

′
1μ1ρ

′
2 · · ·μ�−1ρ

′
�μ� (where μ� = π ′

�) can be also presented as[
T0
U0

v0−→
v ′

0

T1
U1

][
T1
U1

u1−→
u′

1

T ′
1

U ′
1

� T ′′
1

U ′′
1

][
T ′′

1

U ′′
1

v1−→
v ′

1

T2
U2

][
T2
U2

u2−→
u′

2

T ′
2

U ′
2

� T ′′
2

U ′′
2

]
· · ·

[
T�

U�

u�−→
u′

�

T ′
�

U ′
�

� T ′′
�

U ′′
�

][
T ′′

�

U ′′
�

v�−→
v ′

�

T�+1

U�+1

]

where μ j is T0
U0

v0−→
v ′

0

T1
U1

for j = 0 and T ′′
j

U ′′
j

v j−→
v ′

j

T j+1

U j+1
for j ∈ [1, �], and ρ ′

j is T j

U j

u j−→
u′

j

T ′
j

U ′
j

� T ′′
j

U ′′
j

(for j ∈ [1, �]). By ρ j we denote 

T j

U j

u j−→
u′

j

T ′
j

U ′
j

, and we have either ρ j �L ρ ′
j or ρ j �R ρ ′

j . (Hence all μ j and ρ j are plays, while ρ ′
j is a modified play resulting 

from ρ j by a balancing step.) By our conventions (and associativity of �) we can present π� = μ0ρ
′
1μ1ρ

′
2 · · ·μ�−1ρ

′
�μ� also 

as
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[
T0
U0

v0−→
v ′

0

T1
U1

u1−→
u′

1

T ′
1

U ′
1

]
�

[
T ′′

1

U ′′
1

v1−→
v ′

1

T2
U2

u2−→
u′

2

T ′
2

U ′
2

]
�

[
T ′′

2

U ′′
2

v2−→
v ′

2

· · · · · · T�

U�

u�−→
u′

�

T ′
�

U ′
�

]
�

[
T ′′

�

U ′′
�

v�−→
v ′

�

T�+1

U�+1

]
. (17)

There are � (occurrences of) pivots W1, W2, · · · , W� in (17), where W j ∈ {T j, U j} for each j ∈ [1, �]; the bal-result cor-
responding to W j is (T ′′

j , U
′′
j ). Though the pivots W j can be changing their sides (we can have, e.g., W j = U j and 

W j+1 = T j+1), they will be on one specific pivot path in the LTS Lr

G , denoted

W0
w0−→ W1

w1−→ W2 · · · w�−1−−−→ W�
w�−→ W�+1 (18)

and defined below; we will have W0 ∈ {T0, U0} and W�+1 ∈ {T�+1, U�+1} but W0, W�+1 are no pivots, except the case 
w0 = ε and W0 = W1. The pivot path will be a useful ingredient for applying our bound on (n, s, g)-sequences (Lemma 10).

Now we describe the transformation phases (as non-effective procedures), giving also a finer presentation of μ j ( j ∈
[1, �]) as μ j = μu

j or μ j = μu

j μ
s

j (u for “unclear”, s for “sinking”) to be discussed later. The first phase, starting with 
π0 = π , works as follows:

1. If possible, present π0 as μ0ρ1π
′ where ρ1 enables a balancing step (on any side) and μ0ρ1 is the shortest possible. If 

there is no such presentation of π0, then put μ0 = π0 and halt (here � = 0). In this case we do not need to define the 
path (18).

2. Replace ρ1 with ρ ′
1 where ρ1 �L ρ ′

1 or ρ1 �R ρ ′
1 (choosing arbitrarily when ρ1 allows both L-balancing and R-

balancing). Finally replace π ′ with a completed play π ′
1 from the bal-result, i.e., from End(ρ ′

1), thus getting π1 =
μ0ρ

′
1π

′
1 where μ0ρ

′
1 = T0

U0

v0−→
v ′

0

T1
U1

u1−→
u′

1

T ′
1

U ′
1

� T ′′
1

U ′′
1

. We also define the prefix W0
w0−→ W1 of (18): if we have ρ1 �L ρ ′

1, hence 

W1 = U1, then this prefix is U0
v ′

0−→ U1; if ρ1 �R ρ ′
1, hence W1 = T1, then the prefix is T0

v0−→ T1.

For j ≥ 1, the ( j+1)-th phase starts with π j = μ0ρ
′
1μ1ρ

′
2 · · ·μ j−1ρ

′
jπ

′
j where the last balancing step was either left, ρ j �L

ρ ′
j , or right, ρ j �R ρ ′

j . We describe the ( j+1)-th phase for the case ρ j �L ρ ′
j ; the other case is symmetric. We recall Fig. 6

and present ρ ′
jπ

′
j as

A(x1,...,xm)σ ′
U j

u j−→
u′

j

E ′σ ′
U ′

j

� E ′σ ′′
U ′

j

v−→
v ′ .

We have also already defined the prefix W0
w0−→ W1

w1−→ W2 · · · w j−1−−−→ W j of (18), and we have W j = U j in our considered 
case ρ j �L ρ ′

j .
Informally, the ( j+1)-phase aims to make a balancing step in π ′

j as early as possible but balancing at the opposite side 
than previously is a bit constrained. In our case a future right balancing would entail that the next pivot is on the path 
E ′σ ′′ v−→, and we first have to wait until a term xiσ

′′ is exposed (i.e., until a prefix of v exposes one of V 1, V 2 in Fig. 6, 
where U represents the last pivot U j ). Only then a right balancing is allowed. This exposing must obviously happen soon 
(i.e., for a short prefix of v) if a further left balancing is not enabled for a while (since in this case E ′σ ′′ v−→ must be quickly 
sinking along a branch of E ′). Hence if even under this constraint the earliest next balancing will be a right balancing, then 
the next pivot T j+1 will be the final term on a path E ′σ ′′ v j1−−→ xiσ

′′ v j2−−→ T j+1 where v j1 v j2 is a prefix of v and v j1 is 

short. Since xiσ
′′ is reachable by a short v̄ from the last pivot U j (e.g., if xiσ

′′ = V 2 in Fig. 6, then we use U
v̄2−→ V 2), we 

continue building the pivot path smoothly: in our case W j
w j−→ W j+1 will be defined as U j

v̄−→ xiσ
′′ v j2−−→ T j+1. When a left 

(unconstrained) balancing is the earliest possibility, W j
w j−→ W j+1 will be defined simply as U j

u′
j v ′

j−−→ U j+1 for the respective 
prefix v ′

j of v ′ . (We note that the pivot path gets a bit shorter than the modified play (17) whenever a switch of balancing 
sides occurs.) Now we describe the ( j+1)-phase more formally (assuming ρ j �L ρ ′

j).

1. If possible, present π ′
j = E ′σ ′′

U ′
j

v−→
v ′ as μ jρ j+1π

′ with the shortest possible μ jρ j+1 where

a) either ρ j+1 enables L-balancing,

b) or ρ j+1 does not enable L-balancing but it enables R-balancing and the path E ′σ ′′ v j−→ T j+1 in the play μ j = E ′σ ′′
U ′

j

v j−→
v ′

j

T j+1

U j+1
can be written E ′σ ′′ v j1−−→ xiσ

′′ v j2−−→ T j+1 where E ′ v j1−−→ xi , for some i ∈ [1, m]. (We recall that U j
v−→ xiσ

′′ where 

|v| < d0.)
If there is no such presentation of π ′

j , then put μ j = π ′
j and halt (here � = j). In this case we have ρ ′

�μ� =
A(x1,...,xm)σ ′

W�

u�−→
u′

E ′σ ′
U ′ � E ′σ ′′

U ′
v�−→
v ′

T�+1

U�+1
and we define W�

w�−→ W�+1 as W�

u′
� v ′

�−−→ U�+1.

� � � �
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In each case we get μ j = E ′σ ′′
U ′

j

v j−→
v ′

j

T j+1

U j+1
, and if E ′σ ′′ v j−→ T j+1 can be written E ′σ ′′ v j1−−→ xiσ

′′ v j2−−→ T j+1 where E ′ v j1−−→ xi

(which holds in the case b) by definition), then we put μ j = μu

j μ
s

j where μu

j = E ′σ ′′
U ′

j

v j1−→
v ′

j1

xiσ
′′

U j

and μs

j = xiσ
′′

U j

v j2−→
v ′

j2

T j+1

U j+1
; 

otherwise μ j = μu

j .
(We note that the “unclear” play μu

j is always short. The “sinking” play μs

j can be nonempty even if there is no 
switch in balancing sides, and μs

j can be long, but both paths in μs

j are quickly sinking [since no balancing possibility 
appears].)

2. Replace ρ j+1 with ρ ′
j+1 where ρ j+1 �L ρ ′

j+1 in the case a), and ρ j+1 �R ρ ′
j+1 in the case b). Finally replace π ′ with a 

completed play π ′
j+1 from the bal-result, i.e., from End(ρ ′

j+1), thus getting π j+1 = μ0ρ
′
1μ1ρ

′
2 · · ·μ jρ

′
j+1π

′
j+1.

In the case ρ j+1 �L ρ ′
j+1 we have ρ ′

jμ j = A(x1,...,xm)σ ′
W j

u j−→
u′

j

E ′σ ′
U ′

j

� E ′σ ′′
U ′

j

v j−→
v ′

j

T j+1

W j+1
and we put w j = u′

j v ′
j , thus defining 

W j
w j−→ W j+1.

In the case ρ j+1 �R ρ ′
j+1 we have ρ ′

jμ j = A(x1,...,xm)σ ′
W j

u j−→
u′

j

E ′σ ′
U ′

j

� E ′σ ′′
U ′

j

v j1−→
v ′

j1

xiσ
′′

U j

v j2−→
v ′

j2

W j+1

U j+1
and we define W j

w j−→ W j+1 by 

putting w j = v v j2 for a respective v , |v| < d0, for which W j
v−→ xiσ

′′ .

As already mentioned, the work of the ( j+1)-phase in the case ρ j �R ρ ′
j is symmetric; here we have R-balancing in the 

“unconditional” case a), and L-balancing in the case b) that now requires a prefix μu

j = T ′
j

F ′σ ′′
v j1−→
v ′

j1

T j

xiσ ′′ (where xiσ
′′ is shortly 

reachable from the last pivot T j).

6. Analysis of balanced modified plays

Assuming a given grammar G = (N , �, R), we have shown a transformation of a completed play π starting in (T0, U0)

(where T0, U0 can be large regular terms) to a balanced modified play π� = μ0ρ
′
1μ1ρ

′
2 · · ·μ�−1ρ

′
�μ� in the form (17), 

repeated here:[
T0
U0

v0−→
v ′

0

T1
U1

u1−→
u′

1

T ′
1

U ′
1

]
�

[
T ′′

1

U ′′
1

v1−→
v ′

1

T2
U2

u2−→
u′

2

T ′
2

U ′
2

]
�

[
T ′′

2

U ′′
2

v2−→
v ′

2

· · · · · · T�

U�

u�−→
u′

�

T ′
�

U ′
�

]
�

[
T ′′

�

U ′′
�

v�−→
v ′

�

T�+1

U�+1

]
. (19)

In this section we perform a technical analysis of such π� , to verify that we indeed get specific small numbers n, s, g and c
yielding (8), where E = EB for a “sound” (n, s, g)-candidate B (which will turn out equal to the base Bn,s,g , as discussed in 
Section 7). First we recall the discussion at the beginning of Section 5 and give an informal overview of the future analysis.

We recall that in the pivot path

W0
w0−→ W1

w1−→ W2 · · · w�−1−−−→ W�
w�−→ W�+1

we have W j ∈ {T j, U j} for j ∈ [0, �+1], and the pivots W1, W2, . . . , W� have the respective related (eqlevel-decreasing) bal-
results (T ′′

1 , U ′′
1), (T ′′

2 , U ′′
2), . . . , (T ′′

� , U ′′
� ). Referring to (19), we recall that ui (hence also u′

i ) are short since |ui | = |u′
i | = d0 for 

all i ∈ [1, �] (and d0 from (6)). Recalling the discussion around (14), we can present (19) in a refined form as[
T0
U0

v0−→
v ′

0

T1
U1

u1−→
u′

1

T ′
1

U ′
1

]
�

[
T ′′

1

U ′′
1

v11−→
v ′

11

T 1

U 1

v12−→
v ′

12

T2
U2

u2−→
u′

2

T ′
2

U ′
2

]
� · · · �

[
T ′′

�

U ′′
�

v�1−→
v ′

�1

T �

U �

v�2−→
v ′

�2

T�+1

U�+1

]
; (20)

here 

[
T ′′

j

U ′′
j

v j−→
v ′

j

T j+1

U j+1

u j+1−→
u′

j+1

T ′
j+1

U ′
j+1

]
, for j ∈ [1, �], is presented as 

[
T ′′

j

U ′′
j

v j1−→
v ′

j1

T j

U j

v j2−→
v ′

j2

T j+1

U j+1

u j+1−→
u′

j+1

T ′
j+1

U ′
j+1

]
where v j1 is short and both paths 

T j
v j2−−→ T j+1 and U j

v ′
j2−−→ U j+1 are d0-sinking (i.e., in each segment of length d0 of these paths a root-successor in the term 

that starts the segment is exposed); we can have v j2 = ε.

The first segment W0
w1−→ W1 is one of the paths T0

v0−→ T1 and U0
v ′

0−→ U1; each of these two paths is d0-sinking (since 
otherwise the first balancing would be possible earlier). For the segment W j

w j−→ W j+1, j ∈ [1, �], we have four options:

• U j

u′
j v ′

j1−−−→ U j

v ′
j2−−→ U j+1, if W j = U j and W j+1 = U j+1;

• T j
u j v j1−−−→ T j

v j2−−→ T j+1, if W j = T j and W j+1 = T j+1;

• U j
v̄−→ T j

v j2−−→ T j+1 for some v̄ , |v̄| < d0, if W j = U j and W j+1 = T j+1;
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• T j
v̄−→ U j

v ′
j2−−→ U j+1 for some v̄ , |v̄| < d0, if W j = T j and W j+1 = U j+1.

Hence each W j
w j−→ W j+1 has a short “unclear” prefix (it is unclear if it sinks or not), followed by a d0-sinking suffix (which 

might be empty, or short, or long ...).
This entails that if the path W j

w j−→ W j+1 visits a subterm of W0, which is surely the case for W0
w0−→ W1, then W j+1 is 

shortly reachable from a subterm of W0. Indeed, if W j
w j−→ W j+1 is W j

w ′
j−→ V

w ′′
j−→ W j+1 where V is the last subterm of W0

visited by the path W j
w j−→ W j+1, then w ′′

j has a short unclear prefix (maybe empty) followed by a d0-sinking suffix; but 
if this suffix was not short, then it would necessarily expose a root-successor in V , which is another subterm of W0; this 
would contradict the choice of V . (Fig. 2 might be again helpful to realize this fact.)

For each subterm V of W0 we certainly have only a small number of terms W that are shortly reachable from V . Since 
there is only a small number of possible bal-results related to each concrete pivot W , and the bal-results do not repeat, we 
get that the number of indices j ∈ [0, �] for which W j

w j−→ W j+1 visits a subterm of W0 is bounded by d · Size(T0, U0) for a small 
constant d. (We recall that W0 ∈ {T0, U0}.)

We say that a segment of the pivot path of the form

V
w−→ W j+1

w j+1−−−→ W j+2 · · · w j+z−1−−−−→ W j+z
w ′−→ V ′

is crucial if w is a nonempty suffix of w j , 1 ≤ z ≤ �− j, w ′ is a prefix of w j+z , V is a subterm of W0, and no subterm 
of W0 is visited inside the segment; moreover, either V ′ is a subterm of W0 or V ′ = W�+1 (the end of the pivot path). 
(We can again look at Fig. 2, and imagine that W0 is the (maybe large regular) term in the rectangle and V is its subterm 
determined in the third rectangle, whose root is B . The next two steps can be viewed as a prefix of a crucial segment that 
could finish after many steps later when some of the root-successors of B in the rectangle is exposed and becomes the 
current root.)

Since each crucial segment is non-sinking (until the last step), it gives rise to an (n, s, g)-sequence (for some small 
n, s, g), as was depicted in Fig. 5 and discussed in the informal beginning of Section 5. It is thus intuitively clear that the 
length of any crucial segment of the pivot path, as well as the length of its corresponding segment of the modified play (19), is 
bounded by d′ · EBn,s,g for a small constant d′ (and the (n, s, g)-base Bn,s,g , by Lemma 10).

Since each crucial segment is fully determined by the segment W j
w j−→ W j+1 in which it starts (and which vis-

its a subterm of W0), there are at most d · Size(T0, U0) crucial segments, and their overall length is thus bounded by 
d · Size(T0, U0) · d′ · EBn,s,g . Hence we are approaching the required bound

el(T0, U0) ≤ c · (EBn,s,g · Size(T0, U0) + (Size(T0, U0))
2),

for a small constant c. The bound c · (Size(T0, U0))
2 serves for bounding the sum of lengths of subpaths of W j

w j−→ W j+1
(and the corresponding subplays in (19)) when both sides are quickly sinking “inside” the (regular) terms T0 and U0, 
respectively. (An extreme case is when there is no balancing since both paths from T0 and U0, respectively, are d0-sinking 
all the time.) Since the eq-level drops by one in each step of each play in (19), we cannot have a repeat of a pair there. 
Hence there is some small c such that c · (Size(T0, U0))

2 bounds the number of those pairs in (19) in which both members 
are “close to” subterms of T0 or U0. This bounds the sum of lengths of the respective segments of (19) that are sinking 
“closely to T0, U0” on both sides.

The claim of Theorem 7 is now almost clear; it will be completed in Section 7 where we show that the respective 
constant E = EBn,s,g is indeed computable. In the rest of this section we perform a routine (and somewhat tedious) analysis 
to show some concrete numbers n, s, g, c (cf. Table 1 at the end of the paper).

Refined presentations of balanced modified plays. Assuming a given grammar G = (N , �, R), we fix a completed play 
π from some (maybe large regular terms) (T0, U0) and its transformation π� = μ0ρ

′
1μ1ρ

′
2 · · ·μ�−1ρ

′
�π

′
� in the previous 

notation; in fact, we also use a finer form and write

π� = μs

0ρ
′
1μ

u

1μ
s

1ρ
′
2μ

u

2μ
s

2 · · ·ρ ′
�μ

u

�μ
s

� (21)

(where the superscript u can be read as “unclear” and s as “sinking”). We add that μs

0 = μ0 and that we view ε (the empty 
sequence) also as the empty play, and we put μs

j = ε in the cases where μs

j has not been defined explicitly. As expected, 
we stipulate length(ε) = 0, Pairs(ε) = ∅, and με = εμ = μ for all (modified) plays μ.

The presentation (17) is accordingly refined (as in (20)) to[
T0
U0

v0−→
v ′

T1
U1

u1−→
u′

T ′
1

U ′

]
�

[
T ′′

1

U ′′
v11−→
v ′

T 1

U

v12−→
v ′

T2
U2

u2−→
u′

T ′
2

U ′

]
� · · · �

[
T ′′

�

U ′′
v�1−→
v ′

T �

U

v�2−→
v ′

T�+1

U�+1

]
(22)
0 1 1 1 11 1 12 2 2 � �1 � �2



P. Jančar / Journal of Computer and System Sciences 115 (2021) 86–112 105
where, for j ∈ [1, �], we have μu

j = T ′′
j

U ′′
j

v j1−→
v ′

j1

T j

U j

, and either μs

j = T j

U j

v j2−→
v ′

j2

T j+1

U j+1

or μs

j = ε in which case v j2 = v ′
j2 = ε, T j = T j+1, 

U j = U j+1.
To explain the use of the superscript s (“sinking”) in μs

j , we introduce a few notions.

An (A, i)-sink word v ∈ R+ (satisfying A(x1, . . . , xm) v−→ xi ) is also called a sink-segment; any path of the form V
v−→ V ′

is then also understood as a sink-segment (presentable as A(x1, . . . , xm)σ
v−→ xiσ ). We say that a path V

v−→ V ′ is d0-sinking, 
if v = v1 v2 · · · vk+1 where |v j| < d0 for all j ∈ [1, k+1] and v j , j ∈ [1, k], are sink-segments. A zero-length path V

ε−→ V is 
d0-sinking, by putting k = 0 and vk+1 = ε.

A play μ = T
U

v−→
v ′

T ′
U ′ is d0-sinking if both its paths T

v−→ T ′ and U
v ′−→ U ′ are d0-sinking. In particular, a zero-length play 

μ = T
U

is d0-sinking, and we also view the empty play ε as d0-sinking.

The above transformation (of π to π�) guarantees that all plays μ0, μs

1, μs

2, . . . , μs

� are d0-sinking (therefore we have put 
μ0 = μs

0). Indeed, if some μs

j ( j ∈ [0, �]) was not d0-sinking, then there would be a possibility to make a “legal” balancing 
step earlier in the respective transformation phase.

The presentations (21) and (22) also yield the corresponding refined version of the pivot path (18):

W0
ws

0−→ W1
wu

1−→ W 1
ws

1−→ W2
wu

2−→ W 2
ws

2−→ · · · W�

wu

�−→ W �

ws

�−→ W�+1 (23)

where each segment W j

ws

j−→ W j+1 (for j ∈ [0, �] when putting W 0 = W0) corresponds to one of the paths in the play μs

j , 

and is thus d0-sinking. More concretely, W0
ws

0−→ W1 (where ws

0 = w0) is either T0
v0−→ T1 or U0

v ′
0−→ U1, and W j

ws

j−→ W j+1

is either T j
v j2−−→ T j+1 or U j

v ′
j2−−→ U j+1. Each (“unclear”) segment W j

wu

j−→ W j is one of the following paths:

• U j

u′
j v ′

j1−−−→ U j , if W j = U j and W j+1 = U j+1 (in which case U ′
j = U ′′

j );

• T j
u j v j1−−−→ T j+1, if W j = T j and W j+1 = T j+1 (in which case T ′

j = T ′′
j );

• U j
v−→ T j for some v , |v| < d0, if W j = U j and W j+1 = T j+1;

• T j
v−→ U j for some v , |v| < d0, if W j = T j and W j+1 = U j+1.

We now note that the length of each segment ρ ′
jμ

u

j = T j

U j

u j−→
u′

j

T ′
j

U ′
j

� T ′′
j

U ′′
j

v j1−→
v ′

j1

T j

U j

, and of the respective pivot-path segment 

W j

wu

j−→ W j , can be bounded by the small number

d2 = d0 + (1 + d0 · HInc) · (d0 − 1). (24)

Proposition 15. For each j ∈ [1, �] we have |wu

j | ≤ length(ρ ′
jμ

u

j ) ≤ d2 .

Proof. We have |wu

j | ≤ length(ρ ′
jμ

u

j ) by the above definitions (since length(ρ ′
jμ

u

j ) ≥ d0, and either |wu

j | = length(ρ ′
jμ

u

j )

or |wu

j | < d0).
W.l.o.g. we suppose ρ j �L ρ ′

j (illustrated in Fig. 6) and present ρ ′
jμ

u

j accordingly as

ρ ′
jμ

u

j = A(x1,...,xm)σ ′
U j

u j−→
u′

j

E ′σ ′
U ′

j

� E ′σ ′′
U ′

j

v j1−→
v ′

j1

T j

U j

where A(x1, . . . , xm) 
u j−→ E ′ and |u j | = d0; hence Height(E ′) ≤ 1 + d0 · HInc. We have T j = T j+1 if μs

j = ε, and T j = xiσ
′′

(for some i ∈ [1, m]) if μs

j �= ε.

The path E ′σ ′′ v j1−−→ T j must be d0-sinking (otherwise there would be an earlier next balancing step). Hence |v j1| ≤
Height(E ′) · (d0 − 1). We thus get

length(ρ ′
jμ

u

j ) = |u j| + |v j1| ≤ d0 + (1 + d0 · HInc) · (d0 − 1) = d2. �
Having bounded the parts ρ ′

jμ
u

j , we will now bound the total length of the suffixes of μs

j that are “close to” T0, U0; 
then we will finally bound the number and the length of so-called “crucial segments” of π� starting with pivots that are 
also close to T0, U0 in a sense.
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Close sink-parts in π�. Since μ0 = μs

0 = T0
U0

v0−→
v ′

0

T1
U1

is d0-sinking, both paths T0
v0−→ T1 and U0

v ′
0−→ U1 are frequently 

visiting subterms of the terms T0 and U0. Using the fact that no pair repeats along π� (recall Proposition 11), we now 
derive a bound on the length of μ0 and other segments that are “close” to (T0, U0).

For each j ∈ [1, �] where μs

j �= ε we define the presentation μs

j = μus

j μcs

j (the superscript us for “unclear sinking” and 

cs for “close sinking”) as follows: If some of the paths in the play μs

j = T j

U j

v j2−→
v ′

j2

T j+1

U j+1
never visits a subterm of T0 or U0, then 

μus

j = μs

j and μcs

j = ε. Otherwise we write μs

j as T j

U j

v j2−→
v ′

j2

T j

U j

v j2−→
v

′
j2

T j+1

U j+1
for the shortest prefix μus

j = T j

U j

v j2−→
v ′

j2

T j

U j

such that each 

of the paths T j
v j2−−→ T j and U j

v ′
j2−−→ U j visits a subterm of T0 or U0; in this case μcs

j = T j

U j

v j2−→
v

′
j2

T j+1

U j+1
. (Since μs

j is d0-sinking, 

both paths T j
v j2−−→ T j+1 and U j

v
′
j2−−→ U j+1 are frequently visiting subterms of the terms T0 and U0.) If μs

j = ε, then we put 
μus

j = μcs

j = ε; we also put μ0 = μs

0 = μcs

0 (while μus

0 = ε).
The balanced modified play π� (21) can be thus presented in more detail as

π� = μcs

0 ρ ′
1μ

u

1μ
us

1 μcs

1 ρ ′
2μ

u

2μ
us

2 μcs

2 · · ·ρ ′
�μ

u

�μ
us

� μcs

� . (25)

We refer to μcs

j , j ∈ [0, �], as to close sink-parts. The next proposition bounds the total length of close sink-parts in (25), 
using the small number

d3 = (max{d0, |R|d0})2 (26)

(determined by G = (N , �, R)).

Proposition 16. 
∑

j∈[0,�] length(μcs

j ) ≤ d3 · (Size(T0, U0))
2 .

Proof. The number of subterms of T0 and U0 is Size(T0, U0), and each term can reach at most max{|R|d0 , d0} terms within 
less than d0 steps (since |R|0 + |R|1 + · · · + |R|d0−1 ≤ |R|d0 when |R| ≥ 2). Hence there are at most 

(
max{|R|d0 , d0} ·

Size(T0, U0) 
)2

elements in 
⋃

j∈[0,�] Pairs(μcs

j ). Since there is no repeat of a pair in π� , the claim follows. �
Crucial segments of π�. For π� = μcs

0 ρ ′
1μ

u

1μ
us

1 μcs

1 ρ ′
2μ

u

2μ
us

2 μcs

2 · · ·ρ ′
�μ

u

�μ
us

� μcs

� and the respective pivot path W0
w0−→

W1
w1−→ W2

w2−→ · · · W�
w�−→ W�+1, assuming � ≥ 1, we say that W j , j ∈ [1, �] is close (which is another variant of closeness 

to (T0, U0)) if the path W j−1
w j−1−−−→ W j visits a subterm of T0 or U0; in this case we also write W j−1

w j−1−−−→ W j as

W j−1

w ′
j−1−−−→ V j−1

w ′′
j−1−−−→ W j

where V j−1 is the last subterm of T0 or U0 in the path (not excluding the cases V j−1 = W j−1 and V j−1 = W j). We note 
that W1 is close, since W0 ∈ {T0, U0}.

Let { j ∈ [1, �] | W j is close} = {k1, k2, . . . , kp} where 1 = k1 < k2 < k3 · · · < kp ≤ �; for technical reasons we also put 
kp+1 = �+1. The pivot path can be thus written

W0
w ′

0−→ [V 0
w ′′

0−→ W1
w1−→ · · · Wk2−1]

w ′
k2−1−−−→ · · · [Vkp−1

w ′′
kp−1−−−→ Wkp

wkp−−→ · · · W�] w�−→ W�+1 (27)

where the brackets are just highlighting the corresponding segments. We use the segmentation (27) of the pivot path to 
induce the following segmentation of π�:

μcs

0

[
ρ ′

1 · · ·μus

k2−1

]
μcs

k2−1

[
ρ ′

k2
· · ·μus

k3−1

]
μcs

k3−1 · · · · · · [ρ ′
kp

· · ·μus

�

]
μcs

� .

The highlighted segments are called the crucial segments (of π�). The total length of “non-crucial” segments μcs

0 , μcs

k2−1, 
μcs

k3−1, · · · , μcs

� is bounded by Proposition 16. We note that μcs

j inside the crucial segments are empty since otherwise we 
had a close pivot there.

For bounding the number p of crucial segments and their lengths, it is useful to use the notions of stairs and their 
simple-stair decompositions.

Stairs, simple stairs, simple-stair decompositions. A word v ∈ R∗ is a stair if v = ε or v = rv ′ where r ∈ R, let r be 

A(x1, . . . , xm) a−→ E , and E
v ′−→ F for some F /∈ Var. If v is a stair, then any path of the form V

v−→ V ′ is also called a stair (in 
the form A(x1, . . . , xm)σ

v−→ Fσ ). Hence no prefix of a stair is a sink-segment.
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We say that v = rv ′ ∈ R+ (r ∈ R) is a simple stair if A(x1, . . . , xm) r−→ E
v ′−→ F (for r being A(x1, . . . , xm) a−→ E) where F is 

a subterm of E with a nonterminal root (hence F /∈ Var) and v ′ is a (possibly empty) concatenation of (possibly long) sink-

segments (hence v ′ = u1u2 · · · uk where ui , i ∈ [1, k], are sink-segments). If v is a simple stair, then also any path V
v−→ V ′

is called a simple stair.

Proposition 17.

1. Any stair v ∈R∗ has the unique simple-stair decomposition v = v1 v2 · · · vq (q ∈N) where vi , i ∈ [1, q], are simple stairs.

2. If G 
v1 v2···vq−−−−−→ G ′ where vi are simple stairs, then Size(G ′) ≤ Size(G) + q · SInc; moreover, if G is finite, then Height(G ′) ≤

Height(G) + q · HInc.

Proof. 1. By induction on |v|, for stairs v . If v = ε, then q = 0. If |v| > 0, then we write v = v1 v ′ for the shortest v1 ∈ R+
such that v ′ is a stair; v ′ has the unique simple-stair decomposition by the induction hypothesis. We can easily verify that 
v1 is a simple stair, and that we cannot have v1 v ′ = v ′

1 v ′′ where v ′
1 is a simple stair, v ′′ is a stair (decomposed into simple 

stairs), and v ′
1 �= v1.

2. We recall that A(x1, . . . , xm) r−→ E entails Size(Eσ) ≤ Size(A(x1, . . . , xm)σ ) + SInc, and we have Size(Fσ) ≤ Size(Eσ)

for any subterm F of E; moreover, if A(x1, . . . , xm)σ is finite, then Height(Fσ) ≤ Height(Eσ) ≤ Height(A(x1, . . . , xm)σ ) +
HInc. �

Bounding the number of crucial segments. To bound the number p of crucial segments, we use the small number

d4 = d1 · (1+|Srhs|)d2+d0−1 (28)

where Srhs = {F | F is a subterm of the rhs of a rule in R and F /∈ Var}.

Proposition 18. The number p of crucial segments is at most d4 · Size(T0, U0).

Proof. First we note that we can have W j = W j′ for different j, j′ ∈ [1, �]; but for each W we can have W = W j for at 
most d1 indices j ∈ [1, �], since there are at most d1 possible bal-results for each pivot (Proposition 14) and the bal-results 
(T ′′

j , U
′′
j ), j ∈ [1, �], are all pairwise different (Proposition 11).

Hence if we get a bound on the cardinality of the set SP = {Wk1 , Wk2 , . . . , Wkp } of “starting pivots” of the crucial 
segments (where k1 = 1), then multiplying this bound by d1 yields a bound on p.

We fix j ∈ [1, p], and note that the stair Vk j−1

w ′′
k j−1−−−→ Wk j is a suffix of the path Wk j−1

wu

k j−1−−−→ W k j−1

ws

k j−1−−−→ Wk j , where 

|wu

k j−1| ≤ d2 and W k j−1

ws

k j−1−−−→ Wk j can be written W k j−1
w−→ W

w−→ Wk j where w is a sequence of sink-segments and 

|w| < d0. The simple-stair decomposition of Vk j−1

w ′′
k j−1−−−→ Wk j is thus a sequence of at most d2+(d0−1) simple stairs.

Hence a (generous) upper bound on |SP| is Size(T0, U0) · (1+|Srhs|)d2+d0−1. This yields p ≤ Size(T0, U0) ·
(1+|Srhs|)d2+d0−1 · d1 = d4 · Size(T0, U0) as claimed. �

Bounding the lengths of crucial segments. For j ∈ [1, p], we view the number k j+1 − k j as the index length of the 
crucial segment 

[
ρ ′

k j
· · ·μus

k j+1−1

]
. We first bound the index length, defining n, s, g and using the bound on (n, s, g)-sequences 

(Lemma 10), and then we bound the standard length.
We first note that each highlighted segment in (27) is a stair. Indeed, if the path

[
Vk j−1

w ′′
k j−1−−−→ Wk j

wk j−−→ Wk j+1

wk j+1−−−→ Wk j+2 · · ·
wk j+1−2−−−−−→ Wk j+1−1

]
(for j ∈ [1, p]) had a prefix that is a sink-segment, then one of Wk j+1, Wk j+2, . . . , Wk j+1−1 would be also close, since Vk j−1

is the last subterm of T0 or U0 in Wk j−1

wk j−1−−−→ Wk j , and each subterm of Vk j−1 is also a subterm of T0 or U0.
Thus the index length of crucial segments is bounded due to the next lemma, for which we define the following small 

numbers:

n = md0 ; (29)

s = md0+1 + (m + 2) · d0 · SInc + (d2 + d0 − 1) · SInc ; (30)

g = (d2 + d0 − 1) · SInc . (31)
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Lemma 19. We assume a balanced modified play π� = μcs

0 ρ ′
1μ

u

1μ
us

1 μcs

1 · · ·ρ ′
�μ

u

�μ
us

� μcs

� and the respective pivot path W0
w0−→

W1
w1−→ · · · W�

w�−→ W�+1 . Let

V
w−→ W j+1

w j+1−−−→ W j+2 · · · w j+k−1−−−−→ W j+k (32)

be a segment of the pivot path that is a stair, where j ≥ 0, k ≥ 1, j + k ≤ �, and w is a suffix of w j. Let e = 1 + el(End(ρ ′
j+1)) (where 

End(ρ ′
j+1) is the bal-result related to the pivot W j+1 , hence (T ′′

j+1, U
′′
j+1) in (22)).

Then k ≤ EB for each (n, s, g)-candidate B that is full below e; in particular, k ≤ EBn,s,g . (Here n, s, g are the numbers defined 
by (29), (30), (31).)

Proof. We will show that the (eqlevel-decreasing) sequence End(ρ ′
j+1), End(ρ ′

j+2), . . . , End(ρ ′
j+k) of the bal-results corre-

sponding to the pivots W j+1, W j+2, . . . , W j+k can be presented as an (n, s, g)-sequence

(E1σ , F1σ), (E2σ , F2σ), . . . , (Ekσ , Fkσ). (33)

The claim then follows by Lemma 10. Hence it remains to show the presentation (33) of the respective bal-results. By the 
definition of stairs, we can present (32) as

A(x1, . . . , xm)σ ′ w−→ G ′
1σ

′ w j+1−−−→ G ′
2σ

′ · · · w j+k−1−−−−→ G ′
kσ

′

where

A(x1, . . . , xm)
w−→ G ′

1
w j+1−−−→ G ′

2 · · · w j+k−1−−−−→ G ′
k; (34)

we thus have W j+i = G ′
iσ

′ (for i ∈ [1, k]) where G ′
i are finite terms with nonterminal roots.

Recalling the refined presentation (23), we write the path W j+i

wu

j+i−−−→ W j+i

ws

j+i−−−→ W j+i+1, for each i ∈ [0, k−1], as 

W j+i

wu

j+i−−−→ W j+i
wi−→ W j+i

wi−→ W j+i+1 where W j+i
wi−→ W j+i is a sequence of sink-segments of lengths less than d0, and 

|wi | < d0. We thus present (34) as

A(x1, . . . , xm)
w−→ G ′

1

wu

j+1−−−→ G1
w1−→ G1

w1−→ G ′
2 · · · wu

j+k−1−−−−→ Gk−1
wk−1−−−→ Gk−1

wk−1−−−→ G ′
k .

We recall that |wu

j+i | ≤ d2 (for all i ∈ [0, k−1]). Since w is a suffix of wu

j ws

j = wu

j w0 w0, we note that the simple-stair 

decomposition of the stair A(x1, . . . , xm) w−→ G ′
1 is a sequence of at most d2+(d0−1) simple stairs. More generally, for each 

i ∈ [1, k], the simple-stair decomposition of the stair

A(x1, . . . , xm)
w−→ G ′

1

wu

j+1−−−→ G1
w1−→ G1

w1−→ G ′
2 · · · wu

j+i−1−−−−→ Gi−1
wi−1−−−→ Gi−1

wi−1−−−→ G ′
i

is a sequence of at most i · (d2+(d0−1)) simple stairs; hence

Size(G ′
i) ≤ Size(A(x1, . . . , xm)) + i · (d2+d0−1) · SInc (35)

(recalling Proposition 17). We recall the relation of a pivot, W j+i = G ′
iσ

′ in our case, and its bal-result, as captured by 
Proposition 12 (and illustrated in Fig. 6). We note that G ′

iσ
′ might not be a d0-safe form of W j+i (due to possible short 

branches of G ′
i ). This leads us to present V = A(x1, . . . , xm)σ ′ in a d0-top form, as A(x1, . . . , xm)σσ where A(x1, . . . , xm)σ

is the respective d0-top.
Putting Gi = G ′

iσ , we get W j+i = G ′
iσ

′ = G ′
iσσ = Giσ , for each i ∈ [1, k]. We have var(Gi) ⊆ var(A(x1, . . . , xm)σ ) ⊆

{x1, . . . , xn} (for n = md0 ), and any word v ∈ R∗ with |v| ≤ d0 that is performable from W j+i = Giσ is performable from Gi
as well.

Since Giσ is thus a d0-safe form of W j+i , the bal-result related to W j+i = Giσ can be written as (Eiσ , Fiσ) where 
var(Ei, Fi) ⊆ var(Gi) ⊆ {x1, . . . , xn}, and Size(Ei, Fi) ≤ Size(Gi) + (m+2) ·d0 ·SInc (by Corollary 13). By mimicking the deriva-
tion of the bound (35), we get

Size(Gi) ≤ Size(A(x1, . . . , xm)σ ) + i · (d2+(d0−1)) · SInc.

Since Size(A(x1, . . . , xm)σ ) ≤ md0+1, and g = (d2+d0−1) · SInc, we get

Size(Gi) ≤ md0+1 + i · g, for all i ∈ [1,k].
From Size(Ei, Fi) ≤ Size(Gi) + (m+2) · d0 · SInc we derive, for all i ∈ [1, k], that

Size(Ei, Fi) ≤ md0+1 + (m + 2) · d0 · SInc + i · g = s + (i − 1) · g .

Hence the sequence End(ρ ′
j+1), End(ρ ′

j+2), . . . , End(ρ ′
j+k) can be indeed presented as an (n, s, g)-sequence (E1σ , F1σ),

(E2σ , F2σ), . . . , (Ekσ , Fkσ). �
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Corollary 20. For each crucial segment ρ ′
k j

· · ·μus

k j+1−1 we have k j+1 − k j ≤ EB for each (n, s, g)-candidate B that is full below 
1 + el(End(ρ ′

k j
)); in particular, k j+1 − k j ≤ EBn,s,g .

We will now bound the (standard) length of a crucial segment by multiplying its index length, increased by 1, by the 
small number

d5 = (d2 + d0 − 1) · (1 + (d0 − 1) · HInc) . (36)

Proposition 21. For each j ∈ [1, p] we have length(ρ ′
k j

· · ·μus

k j+1−1) ≤ d5 · (1+k j+1−k j).

Proof. We fix a crucial segment ρ ′
k j

· · ·μus

k j+1−1. We make a convenient notational change (using j+1 for the previous k j , 
and k for k j+1−k j ) and present this segment as

ρ ′
j+1μ

u

j+1μ
us

j+1ρ
′
j+2μ

u

j+2μ
us

j+2 · · ·ρ ′
j+kμ

u

j+kμ
us

j+k

(for i ∈ [1, k−1] we have μus

j+i = μs

j+i since μcs

j+i = ε). In a more detailed presentation, the segment is a prefix of

T j+1

U j+1

u j+1−→
u′

j+1

T ′
j+1

U ′
j+1

� T ′′
j+1

U ′′
j+1

v j+1,1−→
v ′

j+1,1

T j+1

U j+1

v j+1,2−→
v ′

j+1,2

T j+2

U j+2
· · · T j+k

U j+k

u j+k−→
u′

j+k

T ′
j+k

U ′
j+k

� T ′′
j+k

U ′′
j+k

v j+k,1−→
v ′

j+k,1

T j+k

U j+k

v j+k,2−→
v ′

j+k,2

T j+k+1

U j+k+1
(37)

finishing somewhere in the part T j+k

U j+k

v j+k,2−→
v ′

j+k,2

T j+k+1

U j+k+1
, as determined by μcs

j+k (which might be empty or nonempty). We also 

consider the related pivot-path stair

V
w−→ W j+1

wu

j+1−−−→ W j+1

ws

j+1−−−→ W j+2 · · · wu

j+k−1−−−−→ W j+k−1

ws

j+k−1−−−−→ W j+k (38)

where V
w−→ W j+1 is related to the part ρ ′

jμ
u

j μ
s

j that precedes our crucial segment: the path V
w−→ W j+1 is the suffix 

V j

w ′′
j−→ W j+1 of W j

wu

j−→ W j

ws

j−→ W j+1 for the respective last subterm V j of T0 or U0. We present the stair (38) similarly 
as the stair (32) in the proof of Lemma 19. We get V = A(x1, . . . , xm)σ ′ and

A(x1, . . . , xm)
w−→ G ′

1

wu

j+1−−−→ G1
w1−→ G1

w1−→ G ′
2 · · · wu

j+k−1−−−−→ Gk−1
wk−1−−−→ Gk−1

wk−1−−−→ G ′
k .

We will show that

length(ρ ′
j+1 · · ·μus

j+k−1) ≤ d5 · k − (d0−1) · Height(G ′
k) (39)

and

length(ρ ′
j+kμ

u

j+kμ
us

j+k) ≤ d5 + (d0−1) · Height(G ′
k) , (40)

which yields length(ρ ′
j+1 · · ·μus

j+k) ≤ d5 · (1+k) and thus finishes the proof.
We show (39): Similarly as (35), we derive Height(G ′

i) ≤ 1 + i · (d2+d0−1) · HInc, for all i ∈ [1, k]. Since |wu

j+i | ≤
length(ρ ′

j+iμ
u

j+i) ≤ d2, |wi wi | = length(μs

j+i), Gi
wi−→ Gi is a sequence of sink-segments of lengths less than d0, and 

|wi | < d0, we also derive

|wi | ≤ (d0−1) · (Height(Gi) − Height(Gi)), and

Height(G ′
i+1) ≤ Height(G ′

i) + (d2 + d0−1) · HInc − (Height(Gi) − Height(Gi)).

For Sum = ∑k−1
i=1

(
Height(Gi − Height(Gi))

)
we thus get

Height(G ′
k) ≤ 1 + k · (d2 + d0−1) · HInc − Sum, and (41)

length(ρ ′
j+1 · · ·μus

j+k−1) ≤ (k−1) · (d2+d0−1) + (d0−1) · Sum. (42)

Replacing Sum in (42) with its upper bound 1 + k · (d2 + d0−1) · HInc − Height(G ′
k) (derived from (41)), we get

length(ρ ′
j+1 · · ·μus

j+k−1) ≤ k · (d2+d0−1 + (d0−1)(d2+d0−1) · HInc

) − (d0−1) · Height(G ′
k).

This yields (39).
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Table 1
Small upper bounds determined by a given grammar G .

m (7) maximum arity of nonterminals
HInc (4) height-increase in one step
SInc (5) size-increase in one step
d0 (6) lengths of shortest (A, i)-sink words (plus 1)
d1 (16) number of bal-results related to one pivot
d2 (24) length of “unclear” part after a pivot, followed by d0-sinking
d3 (26) d3 · (Size(T0, U0))2 bounds the total length of close sink-parts
n = md0 (29) number of variables in “(n, s, g)-tops” (Ei , Fi) of the bal-results

related to pivots on a pivot-path stair
s (30) Size(E1, F1) for the first such (n, s, g)-top
g (31) maximal growth-rate of (n, s, g)-tops
d4 (28) d4 · Size(T0, U0) bounds the number of crucial segments
d5 (36) d5 · (1+EBn,s,g ) bounds the length of each crucial segment
c (44) max

{
d3 ,2 d4 d5

}
, the number c in (8) in Theorem 7

We show (40): We recall that length(ρ ′
j+kμ

u

j+k) ≤ d2, and aim to bound μus

j+k , assuming μus

j+k �= ε. In this case 

Start(μus

j+k) = (T j+k, U j+k), and both paths T j+k
v j+k,2−−−→, U j+k

v j+k,2−−−→ of the play μus

j+kμ
cs

j+k (recall (37)) are d0-sinking. 
In the worst case the play μus

j+k finishes when each of these two paths visits a subterm of T0 or U0 (in which case 
μcs

j+k �= ε follows). Due to the construction of ρ ′
j+kμ

u

j+k we have that both T j+k and U j+k are reachable from the pivot 
W j+k = G ′

kσ
′ ∈ {T j+k, U j+k} in at most d2 steps (in fact, one even in less than d0 steps).

We recall that var(G ′
k) ⊆ {x1, . . . , xm} and that xqσ

′ is a subterm of T0 or U0, for each q ∈ [1, m] (since V =
A(x1, . . . , xm)σ ′ is a subterm of T0 or U0). Thus if the respective paths G ′

kσ
′ v−→ T j+k and G ′

kσ
′ v−→ U j+k , where |v| ≤ d2

and |v| ≤ d2, “sink inside” the terms xqσ
′ , they visit subterms of T0 or U0 at such moments. The pair (T j+k, U j+k) can 

be thus surely presented as (Eσ1, Fσ2) where var(E) and var(F ) are subsets of {x1, . . . , xm}, the terms xqσ1 and xqσ2 are 
subterms of T0 or U0, for each q ∈ [1, m], and both Height(E) and Height(F ) are bounded by Height(G ′

k) + d2 · HInc.
Therefore μus

j+k cannot be longer than (d0−1) ·(Height(G ′
k) +d2 ·HInc). This yields length(ρ ′

j+kμ
u

j+kμ
us

j+k) ≤ d2 +(d0−1) ·
(Height(G ′

k) + d2 · HInc), which implies (40). �

7. Completing the proof of Theorem 7

Below we repeat the statement of Theorem 7, and show a proof based on the previous results. In fact, it remains to 
prove that E = EBn,s,g is computable. The idea is that we stepwise increase an under-approximation of Bn,s,g and of the 
respective E ; the pairs (E, F ) (of the respective sizes) that are in this process so far deemed to be equivalent (i.e., assumed 
to satisfy E ∼ F ) are verified by using the assumption (43) for the current (under-approximation of) E . If we find that 
el(E, F ) ≤ c · (

E · Size(E, F ) + (Size(E, F ))2
)

for some of such pairs (E, F ) (which can be checked Proposition 6), then we 
adjust (increase) the under-approximation. This process must clearly terminate, and at the end the claim (43) holds for all 
T � U , as can be easily shown by contradicting the existence of a violating pair T � U with the least eq-level.

Theorem 7. For any grammar G = (N , �, R) there is a small number c and a computable (not necessarily small) number E such that 
for all T , U ∈ TermsN we have:

if T � U then el(T , U ) ≤ c · (E · Size(T , U ) + (Size(T , U ))2). (43)

Proof. We fix a grammar G = (N , �, R), which determines the small numbers in Table 1, and two terms T0, U0 such that 
T0 � U0. Let

π� = μcs

0 ρ ′
1μ

u

1μ
us

1 μcs

1 ρ ′
2μ

u

2μ
us

2 μcs

2 · · ·ρ ′
�μ

u

�μ
us

� μcs

�

be a respective balanced modified play for which we use the above developed notions and notation; we recall that 
length(π�) = el(T0, U0). Highlighting the crucial segments, we write π� as

μcs

0

[
ρ ′

k1
· · ·μus

k2−1

]
μcs

k2−1

[
ρ ′

k2
· · ·μus

k3−1

]
μcs

k3−1 · · · · · · [ρ ′
kp

· · ·μus

�

]
μcs

� .

We have p = 0 (and � = 0) if π� = μcs

0 ; otherwise 1 = k1 < k2 < k3 · · · < kp < kp+1 = � + 1. The close sink-segments 
μcs

k j−1, for j ∈ [1, p+1], might be empty or nonempty, but all close sink-segments inside the crucial segments are empty. 
The total length of the close sink-segments is bounded by d3 · (Size(T0, U0))

2 (by Proposition 16), the number p of the 
crucial segments is bounded by d4 · Size(T0, U0) (by Proposition 18), and the length of each crucial segment is bounded by 
d5 · (1 + EBn,s,g ) (by Corollary 20 and Proposition 21).
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Hence length(π�) (and thus el(T0, U0)) is bounded by

d3 · (Size(T0, U0))
2 + d4 · Size(T0, U0) · d5 · (1 + EBn,s,g ).

Putting

c = max
{

d3 , 2 · d4 · d5
}
, (44)

and recalling that EB ≥ 1 for any (n, s, g)-candidate B, we get

el(T0, U0) ≤ c · (EBn,s,g · Size(T0, U0) + (Size(T0, U0))
2).

It remains to show that EBn,s,g is computable. We first recall that EBn,s,g in the bound d5 · (1 + EBn,s,g ) on the length of each 
crucial segment can be refined, as stated in Corollary 20. For all terms T , U we thus get the following implication:

if T � U , then el(T , U ) ≤ c · (EB · Size(T , U ) + (Size(T , U ))2) (45)

for any (n, s, g)-candidate B that is full below el(T , U ). (In this case B is surely full below 1 + el(Eσ , Fσ) for the first, and 
each further, bal-result (Eσ , Fσ) in any balanced modified play from (T , U ), if there is any balancing step there at all.)

For k ∈N we define the (reflexive and symmetric) relation ≈k on TermsN as follows:

T ≈k U ⇔df el(T , U ) > c · (k · Size(T , U ) + (Size(T , U ))2);

hence ∼ ⊆ ≈k for all k ∈N . We say that an (n, s, g)-candidate B is k-sound (for k ∈N) if (Pairsn,s �B) ⊆≈k and, moreover, 
in the case n > 0 the (n−1, s′, g)-candidate B′ is k-sound (we use the notation (10)). An (n, s, g)-candidate B is sound if it 
is EB-sound. We note that the full candidate Bn,s,g is sound (since all relevant pairs outside Bn,s,g are in ∼, and thus in ≈k
for all k).

There is an obvious algorithm that constructs a sound (n, s, g)-candidate B, for the above defined small n, s, g , and c. 
(Just a systematic brute-force search would do.)

We will now observe that for each sound (n, s, g)-candidate B we have ≈EB = ∼ (on the set TermsN ), and thus B =
Bn,s,g ; by this the proof will be finished. For the sake of contradiction we suppose a sound (n, s, g)-candidate B and some 
(T , U ) ∈ ≈EB ∩ � where el(T , U ) is the least possible. Then B is full below el(T , U ) (for any (T ′, U ′) with el(T ′, U ′) <
el(T , U ) we have T ′ �≈EB U ′ , hence all relevant (T ′, U ′) with el(T ′, U ′) < el(T , U ) must be in B since B is sound). But 
then (45), applied to our T , U , B, contradicts the assumption T ≈EB U . �
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