
Theoretical Computer Science 409 (2008) 471–476

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Expanders and time-restricted branching programs
Stasys Jukna
Institute of Mathematics and Computer Science, Akademijos 4, Vilnius, Lithuania

a r t i c l e i n f o

Article history:
Received 1 August 2005
Received in revised form 27 November
2007
Accepted 5 September 2008
Communicated by A. Razborov

Keywords:
Computational complexity
Branching programs
Lower bounds
Expander graphs
Ramanujan graphs

a b s t r a c t

The replication number of a branching program is the minimum number R such that along
every accepting computation at most R variables are tested more than once; the sets of
variables re-tested along different computations may be different. For every branching
program, this number lies between 0 (read-once programs) and the total number n of
variables (general branching programs). The best results so far were exponential lower
bounds on the size of branching programswith R = o(n/ log n). We improve this to R ≤ εn
for a constant ε > 0. This also gives an alternative and simpler proof of an exponential
lower bound for (1 + ε)n time branching programs for a constant ε > 0. We prove these
lower bounds for quadratic functions of Ramanujan graphs.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Sparse expander graphs, that is, small degree but highly connected graphs, have numerous and often surprising
applications in mathematics and computer science; see [6] for a nice survey. In this paper we apply expanders to prove
lower bounds on the size of time restricted branching programs.
We consider the standard model of (deterministic) branching programs. Recall that such a program is just a directed

acyclic graph with one source node and two sinks, i.e., nodes of out-degree 0. The sinks are labeled by 1 (accept) and by 0
(reject). Each non-sink node has out-degree 2, and the two outgoing edges are labeled by the tests xi = 0 and xi = 1, for some
i ∈ {1, . . . , n}. Such a program computes a boolean function f : {0, 1}n → {0, 1} in a natural way: given an input vector
a ∈ {0, 1}n, we start in the source node and follow the (unique) path whose tests are consistent with the corresponding bits
of a; this path is the computation on a. This way we reach a sink, and the input a is accepted iff this is the 1-sink.
The length of a computation is the number of tests along it, and its replication number is the number of re-tested bits, i.e.,

the number of bits testedmore than once along the computation; the sets of variables re-tested along different computations
may be different.
We are interested in the following parameters of a branching program:

◦ the size S = the number of nodes;
◦ the computation time T = the length of a longest computation, and
◦ the replication number R= the maximum replication number of an accepting computation.

Note that for every branching program in n variables we have 0 ≤ R ≤ n. Moreover, every boolean function f in n
variables can be computed by a branching program with T = n and R = 0: just take a complete binary tree of depth n.
However, the size S of such (trivial) branching programs is then exponential for most functions. It is therefore interesting to
understandwhether S can be substantially reduced by allowing larger values for T and/or R. This is a so-called ‘‘space versus
time’’ problem for branching programs.

E-mail address: jukna@thi.informatik.uni-frankfurt.de.

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.09.012

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:jukna@thi.informatik.uni-frankfurt.de
http://dx.doi.org/10.1016/j.tcs.2008.09.012

472 S. Jukna / Theoretical Computer Science 409 (2008) 471–476

Thus, given a boolean function f in n variables, we are interested in the smallest size S of a branching program computing
f when either the computation time T or the replication number R (or both) are limited.
Note that T and R are ‘‘semantic’’ restrictions: they concern only consistent paths (computations), i.e, paths that do not

contain two contradicting tests xi = 0 and xi = 1 on some bit i. The ‘‘syntactic’’ case, where the restriction is on all paths (be
they consistent or not), is usually easier to deal with, and exponential lower bounds on the size S in this case were obtained
for T = o(n log n) [13,5,8] as well as for1 R = o(n1/3/ log2/3 n) [16,15].
In the non-syntactic case, the first super-polynomial lower bounds on the size S for R = o(

√
n/ log2 n) were proved

in [17]. This was improved to R = o(n/ log3 n) in [14], and further improved to R = o(n/ log n) in [9]. These bounds hold
also for T = (1+ ε)nwith ε = o(1/ log n).
The first exponential lower bound on S for T = (1+ ε)nwith a (very small but constant!) ε > 0 was proved in [3] (the

proof works for ε = 0, 0178). Shortly after, this was substantially improved in [1] to T = cn for an arbitrary constant c > 0;
see also [4] for some further improvements of this result.
In this paperwe use expander graphs to improve the lower bounds of [17,14,9] by giving an exponential lower bounds on

the size S when R ≤ εn for a constant ε > 0 (Theorem 7). Our argument is entirely different from those used in the previous
papers. This also gives a new proof of the lower bound of [3] for T = (1 + ε)n (see Remark 2). Moreover, the amazing
simplicity of our proofs (modulo some known deep constructions of expander graphs) indicates that expander graphs could
be good candidates to construct hard boolean functions for time-restricted branching programs.
We prove our lower bounds for quadratic forms f (x) = x>Ax over GF(2), where A is an adjacency matrix of particular

Ramanujan graphs. Let us note that quadratic forms (over different fields) were used in most papers on time-restricted
branching programs: Sylvester and generalized Fourier matrices in [5,3,4], Hankel matrices in [1,4], etc. The ‘‘hardness’’
of the resulting functions was achieved by special algebraic properties of the underlying matrices A: every large enough
submatrix must have large rank. The difference of our proof is that we use the combinatorial properties of the underlying
matrices A: they must have relatively few 1’s and still do not have large all-0 submatrices. Such are, in particular, adjacency
matrices of good expander graphs, including the Ramanujan graphs. Given any such graph G = (V , E)with V = {1, . . . , n},
we define a boolean function fn in n variables by:

fn(x1, . . . , xn) = (x1 ⊕ · · · ⊕ xn ⊕ 1) ∧
⊕
{i,j}∈E

xixj.

That is, given an input vector a ∈ {0, 1}n, we remove all vertices iwith ai = 0, and let fn(a) = 1 iff the number of 1’s in a is
even and the number of survived edges is odd.
Our main result (Theorem 7) states that there is an absolute constant ε > 0 such that any deterministic branching

program computing fn with the replication number R ≤ εn requires size S = 2Ω(n).

2. A general lower bound

Let n be an even natural number. A subset A ⊆ {0, 1}n of binary vectors is a combinatorial rectangle, or just a rectangle, if
there is a partition of {1, . . . , n} into sets S and T of size |S| = |T | = n/2 and subsets of vectors A1 ⊆ {0, 1}S and A2 ⊆ {0, 1}T
such that A = A1 × A2. In other words, a set A is a rectangle if its characteristic function χA(X) (χA(a) = 1 iff a ∈ A) can be
represented as an AND χA(X) = f1(X1) ∧ f2(X2) of two boolean functions with X1 ∩ X2 = ∅ and |X1| = |X2| = n/2.
We say that a boolean function f in n variables is rectangle-free if there is an absolute constant δ > 0 such that f −1(1)

contains no rectangle A of size |A| > 2n−δn. We also say that f is dense if it accepts at least 2n−o(n) vectors, and good if any
two accepted vectors differ in at least two bits.

Theorem 1. Let f be a good and dense boolean function in n variables. If f is rectangle-free, then there is a constant ε > 0 such
that any deterministic branching program computing f with the replication number R ≤ εn must have size S = 2Ω(n).

Remark 2. In any branching program computing a good boolean function in n variables, any accepting computation must
test all n bits at least once. This means that for branching programs computing good functions we always have R ≤ T − n.
Hence, Theorem 7 yields exponential lower bounds also for the class of time (1 + ε)n branching programs for a constant
ε > 0.

We postpone the proof of Theorem 1 to Section 4, and turn to its applications.

3. Explicit lower bounds

To apply Theorem 1 we need explicit dense boolean functions that do not contain large rectangles with respect to any
balanced partition of their variables. We define such functions as quadratic functions of particular expander graphs.

1 In the literature, branching programs with the replication number R are also called ‘‘(1,+R)-branching programs.’’

S. Jukna / Theoretical Computer Science 409 (2008) 471–476 473

Let G = (V , E) be an undirected graph on V = {1, . . . , n}. The quadratic function of G over GF(2) is a boolean function

fG(x1, . . . , xn) =
∑
{i,j}∈E

xixj mod 2.

Say that a graph is s-mixed if every two disjoint sets of at least s vertices are joined by at least one edge. A graph with n
vertices ismixed if it is δn-mixed for some constant δ < 1/2.

Lemma 3. If G is a mixed graph of constant degree, then its quadratic function fG is rectangle-free.

Proof. Fix an arbitrary balanced partition of the vertices of G into two parts, and call an edge crossing if it lies between these
parts. An inducedmatching is a set of vertex disjoint edges such that the endpoints of any two of these edges are not adjacent
in G.

Claim 4. At least m = Ω(n) crossing edges of G form an induced matching.

Proof of Claim 4. We can construct such a matching by repeatedly taking a crossing edge and removing it together with all
its neighbors. In each step we remove at most 2d + 1 vertices, where d is the degree of G. Since the graph is s-mixed and
each part of the bipartition has at least bn/2c vertices, the procedure will run form steps as long as bn/2c− (2d+ 1)m is at
least s. Since in our case s = δn for a constant δ < 1/2 and the degree d is constant, the procedure will run for m = Ω(n)
steps. �

The partition of the vertices of G corresponds to a partition X = X1 ∪ X1 of the variables of fG. Let A ⊆ {0, 1}n be an
arbitrary rectangle with respect to this partition, and χA(X) = χ1(X1) ∧ χ2(X2) its characteristic function. Suppose that all
the vectors of A are accepted by fG, i.e. χA(x) ≤ fG(x) for all x ∈ {0, 1}n. Our goal is to show that then |A| ≤ 2n−Ω(n).
By Claim 4, some set M = {x1y1, . . . , xmym} of m = Ω(n) crossing edges, with xi ∈ X1 and yi ∈ X2, forms an induced

matching of G. We set to 0 all variables corresponding to vertices outside the matching M . Since M is an induced subgraph
of G, the obtained subfunction of fG is just the inner product function

IP2m(x1, . . . , xm, y1, . . . , ym) =
m∑
i=1

xiyi mod 2.

The obtained subfunction χ ′A = χ ′1(x1, . . . , xm) ∧ χ
′

2(y1, . . . , ym) of the characteristic function χA(X) = χ1(X1) ∧ χ2(X2)
of the rectangle A is also the characteristic function of some rectangle B = B1 × B2 with Bi ⊆ {0, 1}m. Since all vectors of A
were accepted by fG, all vectors of Bmust be accepted by the inner product function IP2m.
The corresponding to IP2m matrix H is an N × N matrix with N = 2m rows and columns labeled by vectors x ∈ {0, 1}m

whose entries are defined by H[x, y] = (−1)IP2m(x,y). Since, for every x 6= 0, IP2m(x, y) = 1 for exactly half of vectors y, this
is a Hadamardmatrix, that is H tH = nI , where I is the identity matrix. For suchmatrices we have the following well-known
fact (we include its short proof for completeness).

Lemma 5 (Lindsey’s Lemma). The absolute value of the sum of all entries in any s× t submatrix of an N × N Hadamard matrix
H does not exceed

√
stN.

Proof. By the definition of H , the matrixM = 1
√
N
H is unitary:M tM = I . Since such matrices preserve the euclidean norm,

for every real vector v, we have ‖Mv‖ = ‖v‖, and hence, ‖Hv‖ =
√
N‖v‖.

Now, if we denote by vS the characteristic 0-1 vector of S ⊆ {1, . . . , n}, with vS(i) = 1 iff i ∈ S, then the absolute value
of the sum of all entries in an |S| × |T | submatrix of H is the absolute value of the scalar product of vectors vS and HvT . By
the Cauchy–Schwarz inequality, this value does not exceed ‖vS‖ · ‖HvT‖ =

√
N‖vS‖‖vT‖ =

√
N|S||T |. �

By Lindsey’s Lemma, we have that∣∣∣∑
b∈B

(−1)IP2m(b)
∣∣∣ ≤ √2m|B|.

In particular, IP2m can be constant on B only if |B| ≤ 2m. Hence, the subfunction χ ′ of χA can accept at most 2m vectors. Since
χ ′ was obtained from χA by setting to 0 at most n − 2m variables, the function χA can accept at most 2m · 2n−2m = 2n−m
vectors, implying that |A| ≤ 2n−m = 2n−Ω(n).
This completes the proof of Lemma 3. �

By Lemma 3, the quadratic function fG of a graph G is rectangle-free, if G has constant degree and is still mixed enough.
The following useful bound, observed bymany researchers (see, e.g., [2]), says that good expander graphs have this property.

Lemma 6 (Expander Mixing Lemma). If G is a d-regular graph on n vertices andλ is the second largest eigenvalue of its adjacency
matrix, then the number e(S, T) of edges between every two (not necessarily disjoint) subsets S and T of vertices satisfies∣∣∣e(S, T)− d|S||T |

n

∣∣∣ ≤ λ√|S||T |.

474 S. Jukna / Theoretical Computer Science 409 (2008) 471–476

Proof. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrixM of G, and let x1, . . . , xn be the corresponding
orthonormal basis of eigenvectors; here x1 is 1

√
n times the all-1 vector

E1. Let vS and vT be the characteristic vectors of S and
T . Expand these two vectors as linear combinations vS =

∑n
i=1 aixi and vT =

∑n
i=1 bixi of the basis vectors. Since the xi are

orthonormal eigenvectors,

e(S, T) = vtSMvT =
(n∑
i=1

aixi
)t
M
(n∑
i=1

bixi
)
=

n∑
i=1

λiaibi. (1)

Since the graph G is d-regular, we have λ1 = d. The first two coefficients a1 and b1 are scalar products of x1 = 1
√
n
E1 with vS

and vT ; hence, a1 = |S|/
√
n and b1 = |T |/

√
n. Thus, the first term λ1a1b1 in the sum (1) is precisely

d|S||T |
n . Since λ = λ2

is the second largest eigenvalue, the absolute value of the sum of the remaining n − 1 terms in this sum does not exceed
λ
∑n
i=2 |aibi|which, by Cauchy–Schwarz inequality, does not exceed λ‖Ea‖‖Eb‖ = λ‖vS‖‖vT‖ = λ

√
|S||T |. �

Hence, a d-regular graph is s-mixed, that is, e(S, T) > 0 holds for disjoint sets S and T with |S| = |T | = s, if ds2/n−λs > 0,
or equivalently if λ < ds/n. Hence, we need graphs, for which λ is as small as possible.
For this purpose we take Ramanujan graphs RG(n, q). These are (q+1)-regular graphs with the property that |λ| ≤ 2

√
q.

Explicit constructions of Ramanujan graphs on n vertices for every prime q ≡ 1(mod 4) and infinitely many values of n
were given in [11,10]; these were later extended to the case where q is an arbitrary prime power in [12,7]. According to
the Expander Mixing Lemma, Ramanujan graphs G = RG(n, q) are s-mixed for s = 2n/

√
q, and hence, are δn-mixed for a

constant δ < 1/2, as long as q > 16.
By Lemma 3, the quadratic functions fG of these graphs are rectangle-free. As a consequence, Theorem 1 implies the

following lower bound.

Theorem 7. Let G be an n-vertex Ramanujan graph of sufficiently large but constant degree. Then there is a constant ε > 0 such
that any deterministic branching program computing the function f = fG∧ (x1⊕ x2⊕· · ·⊕ xn⊕ 1)with the replication number
R ≤ εn requires size 2Ω(n).

Proof. We consider the AND with the parity function just to ensure the goodness (accepted vectors must lie at Hamming
distance at least two). It is clear that the resulting function f remains rectangle-free. Hence, it is enough to verify that f is
dense. This follows from the well-known characterization of the minimum distance of Reed–Muller codes.

Claim 8 (Folklore). Every nonzero polynomial of degree k in n variables over GF(2) has at least 2n−k nonzero points.

Proof of Claim 8. In each such polynomial f (x1, . . . , xn) we can find a monomial XI =
∏
i∈I xi with |I| = k such that no

monomial XJ with J ⊃ I is present in f . Hence, after each of 2n−k assignments a of constants to variables xj with j 6∈ I , we
obtain a polynomial fa in k variables {xi: i ∈ I}whose all monomials, other than XI , have degree strictly less than k, implying
that fa 6= 0. �

In our case f is a polynomial of degree at most 3. Moreover, f is nonzero because f (a) = 1 for an input vector a ∈ {0, 1}n
with precisely two 1’s corresponding to the endpoints of some edge of G. Hence, f accepts at least 2n−3 vectors.
This completes the proof of Theorem 7. �

4. Proof of Theorem 1

Let f be a good and dense boolean function in n variables. Suppose also that the function f is rectangle-free, that is, f −1(1)
does not contain a rectangle of size larger than 2n−δn, for some constant δ > 0. Take an arbitrary deterministic branching
program computing f with replication number R ≤ εn, where ε > 0 is a sufficiently small constant to be specified later.
Our goal is to prove that then the program must have at least 2Ω(n) nodes.
For an input a ∈ {0, 1}n accepted by f , let comp(a) denote the (accepting) computation path on a. Since the function

f is good, all n bits are tested at least once along each of these paths. Split each of the paths comp(a) into two parts
comp(a) = (pa, qa), where pa is an initial segment of comp(a) alongwhich n/2 different bits are tested. Hence, the remaining
part qa can test at most n/2 + R different bits.2 Looking at segments pa and qa as monomials (ANDs of literals), we obtain
that f can be written as an OR of ANDs P ∧ Q of DNFs satisfying the following three conditions:

(i) All monomials have length at least n/2 and at most n/2+ R. This holds by the choice of segments pa and qa.
(ii) Any two monomials in each DNF are inconsistent, that is, one contains a variable and the other contains its negation.
This holds because the program is deterministic: the paths must split before they meet.

(iii) For all monomials p ∈ P and q ∈ Q , either pq = 0 (the monomials are inconsistent) or |X(p) ∩ X(q)| ≤ R and
|X(p) ∪ X(q)| = n, where X(p) is the set of variables in a monomial p. This holds because the program has replication
number R.

2 Note that we count only the number of tests of different bits—the total length of (the number of tests along) comp(a)may be much larger than n+ R.

S. Jukna / Theoretical Computer Science 409 (2008) 471–476 475

Fix now one AND P ∧ Q for which the set B of accepted vectors is the largest one; hence, the programmust have at least
|f −1(1)|/|B| ≥ 2n−o(n)/|B| nodes, and it remains to show that the set B cannot be too large, |B| ≤ 2n−Ω(n). We do this by
showing that otherwise the set B, and hence, also the set f −1(1), would contain a large rectangle in contradiction with the
rectangle-freeness of f .
When doing this we only use the fact that all vectors of Bmust be accepted by an AND of DNFs satisfying the properties

(i)-(iii) above. By (iii) we know that every vector a ∈ Bmust be accepted by some pair of monomials p ∈ P and q ∈ Q such
that |X(p) ∩ X(q)| ≤ R. A (potential) problem, however, is that for different vectors a the corresponding monomials p and
q may share different variables in common. This may prohibit their combination into a rectangle (see Remark 10). To get
rid of this problem, we just fix a set Y of |Y | ≤ R variables for which the set A ⊆ B of all vectors in B accepted by pairs of
monomials with X(p) ∩ X(q) = Y is the largest one. Hence,

|A| ≥ |B|
/ R∑
i=0

(
n
i

)
≥ |B| · 2−n·H(ε) ,

where H(x) = −x log2 x− (1− x) log2(1− x) is the binary entropy function.

Claim 9. The set A contains a rectangle C of size

|C | ≥
1
9
|A|2/2n+R.

By the rectangle-freeness of f , we know that |C | ≤ 2n−δn for a constant δ > 0. Hence, if R ≤ εn for a constant ε > 0
satisfying ε + 2H(ε) < δ, then |B| ≤ |A| · 2H(ε)n ≤ 2n−Ω(n).
It remains therefore to prove the claim.

Proof of Claim 9. Each monomial of length at most k accepts at least a 2−k fraction of all vectors from {0, 1}n. Hence, there
can be at most 2k mutually inconsistent monomials of length at most k. By (i) and (ii), this implies that

|P| ≤ 2n/2 and |Q | ≤ 2n/2+R. (2)

For each monomial p ∈ P ∪ Q , let Ap = {a ∈ A: p(a) = 1} be the set of all vectors in A accepted by p; we call these vectors
extensions of p. Note that, by the definition of A, a ∈ Ap iff pq(a) = 1 for somemonomial q ∈ Q with X(p)∩ X(q) = Y . Since,
by (ii), themonomials in P aremutually inconsistent, no two of them can have a common extension. Since every vector from
A is an extension of at least one monomial p ∈ P , the sets Ap with p ∈ P form a partition of A into |P| disjoint blocks. The
average size of a block in this partition is |A|/|P|. Say that a monomial p ∈ P is rich if the corresponding block Ap contains
|Ap| ≥ 1

3 |A|/|P| vectors. Similarly for monomials in Q . By averaging, at least two-thirds of vectors in Amust be extensions of
rich monomials in P . Since the same holds also for monomials in Q , at least one vector x ∈ Amust be an extension of some
rich monomial p ∈ P and, at the same time, of some rich monomial q ∈ Q .
Let y be the projection of x onto Y = X(p) ∩ X(q). Since all variables in Y are tested in both monomials p and q, all the

vectors in Ap and in Aq coincide with y on Y . Consider the set of vectors C = C1× {y} × C2, where C1 is the set of projections
of vectors in Aq onto the set of variables X \ X(q), and C2 is the set of projections of Ap onto the set of variables X \ X(p).
Since both monomials p and q have at least n/2 variables, the set C is a rectangle of size

|C | = |C1| · |C2| = |Ap| · |Aq| ≥
|A|
3|P|
·
|A|
3|Q |

≥
1
9
|A|
2n/2
·
|A|
2n/2+R

=
1
9
|A|2

2n+R
.

Hence, it remains to verify that C ⊆ A, i. e., that all vectors c ∈ C are accepted by P ∧ Q .
The vector x belongs to C and has the form x = (x1, y, x2)with xi ∈ Ci. Take now an arbitrary vector c = (c1, y, c2) in C .

The vector (x1, y, c2) belongs to Ap. Hence, there must be a monomial q′ ∈ Q such that X(p) ∩ X(q′) = Y and pq′ accepts
this vector. Since all bits of x1 are tested in p and none of them belongs to Y , none of these bits is tested in q′. Hence, q′ must
accept also the vector c = (c1, y, c2). Similarly, using the fact that (c1, y, x2) belongs to Aq, we can conclude that the vector
c = (c1, y, c2) is accepted by some monomial p′ ∈ P . Thus, the vector c is accepted by the monomial p′q′, and hence, by
P ∧ Q .
This completes the proof of the proof of Claim 9, and thus, the proof of Theorem 7. �

Remark 10. Note that in the last step of the proof it was important that every vector from A is accepted by a pair of
monomials shearing the same set of variables Y . Would A not have this property, then the rectangle C would not necessarily
lie within the set A. Take for example P = {x1, x̄1} and Q = {x2, x1x̄2} with p = x1 and q = x2. The AND P ∧ Q accepts the
set of vectors A = {11, 01, 10}. The projection of Aq = {11, 01} onto X \ X(q) = {x1} is C1 = {0, 1}, and the projection of
Ap = {11, 10} onto X \ X(p) = {x2} is also C2 = {0, 1}. But C = C1 × C2 6⊆ A, because 00 does not belong to A.

476 S. Jukna / Theoretical Computer Science 409 (2008) 471–476

5. Conclusion and an open problem

We have used a new argument to prove exponential lower bounds for deterministic branching programswith replication
number R ≤ εn for a constant ε > 0. Previous arguments could only do this for R = o(n/ log n).
Important in our proof was that the branching program is deterministic: this resulted in the property (ii) in the proof of

Theorem 7, and hence, into upper bounds (2) on the number of monomials. In non-deterministic branching programs (see,
e. g., [5]) we do not necessarily have this property, and in this case no exponential lower bounds are known even for R = 1.
Even worse, no exponential lower bounds are known for read-once switching-and-rectifying networks. Such a network

is just a directed acyclic graph whose edges are labeled by variables and their negations. A network is read-once if, along any
consistent path from the source to a sink, each variable is tested at most once. Important here is that the restriction is only
on consistent paths—along paths, containing a variable and its negation, each variable may appear many times. As noted in
[9], such networks seem to be the weakest nondeterministic model, for which no nontrivial lower bounds are known.

Acknowledgement

I would like to thank Martin Sauerhoff, Detlef Sieling and the referee for useful comments. Research was supported by
the DFG grant SCHN 503/4-1.

References

[1] M. Ajtai, A non-linear time lower bound for boolean branching programs, Theory Comput. 1 (2005) 149–176.
[2] N. Alon, F.R.K. Chung, Explicit construction of linear sized tolerant networks, Discrete Math. 72 (1989) 15–19.
[3] P. Beame, T.S. Jayram, M. Saks, Time-space tradeoffs for branching programs, J. Comput. System Sci. 63 (4) (2001) 542–572.
[4] P. Beame,M. Saks, X. Sun, E. Vee, Time–space trade-off lower bounds for randomized computation of decision problems, J. ACM50 (2) (2003) 154–195.
[5] A. Borodin, A. Razborov, R. Smolensky, On lower bounds for read-k times branching programs, Comput. Complexity 3 (1993) 1–18.
[6] S. Hoory, N. Linial, A. Wigderson, Expander graphs and their applications, Bull. AMS 43 (4) (2006) 439–561.
[7] J.W. Jordan, R. Livné, Ramanujan local systems on graphs, Topology 36 (5) (1997) 1007–1024.
[8] S. Jukna, A note on read-k-times branching programs, Theoret. Inform. Appl. 29 (1) (1995) 75–83.
[9] S. Jukna, A. Razborov, Neither reading few bits twice nor reading illegally helps much, Discrete Appl. Math. 85 (1998) 223–238.
[10] A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan graphs, Combinatorica 8 (3) (1988) 261–277.
[11] G.A. Margulis, Explicit constructions of concentrators, Probl. Peredachi Inf. 9 (1973) 71–80 (in Rusian). Translation: Problems of Inf. Transm. (1975)

323–332.
[12] M. Morgenstern, Existence and explicit constructions of q+1 regular Ramanujan graphs for every prime power q, J. Comb. Theory Ser. B 62 (1) (1994)

44–62.
[13] E.A. Okolnishnikova, Lower bounds for branching programs computing characteristic functions of binary codes, in: Metody diskretnogo analiza, vol.

51, 1991, pp. 61–83. (in Russian).
[14] P. Savický, S. Žák, A lower bound on branching programs reading some bits twice, Theoret. Comput. Sci. 172 (1–2) (1997) 293–301.
[15] D. Sieling, New lower bounds and hierarchy results for restricted branching programs, J. Comput. System Sci. 53 (1) (1996) 79–87.
[16] D. Sieling, I. Wegener, New lower bounds and hierarchy results for restricted branching programs, in: Lecture Notes in Comput. Sci., vol. 903, Springer,

Berlin, 1994, pp. 359–370.
[17] S. Žák, A superpolynomial lower bound for (1,+k(n))-branching programs, in: Lecture Notes in Comput. Sci., vol. 969, Springer, Berlin, 1995,

pp. 319–325.

	Expanders and time-restricted branching programs
	Introduction
	A general lower bound
	Explicit lower bounds
	Proof of thm:main1thmTheorem Theorems
	Conclusion and an open problem
	Acknowledgement
	References

