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a b s t r a c t

We study 4 problems in string matching, namely, regular expression matching,
approximate regular expression matching, string edit distance, and subsequence indexing,
on a standard word RAM model of computation that allows logarithmic-sized words to
be manipulated in constant time. We show how to improve the space and/or remove a
dependency on the alphabet size for each problem using either an improved tabulation
technique of an existing algorithm or by combining known algorithms in a new way.
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1. Introduction

We study 4 problems in string matching on a standard word RAM model of computation that allows logarithmic-sized
words to be manipulated in constant time. This model is often called the transdichotomous model. We show how to improve
the space and/or remove a dependency on the alphabet size for each problem. Three of the results are obtained by improving
the tabulation of subproblems within an existing algorithm. The idea of using tabulation to improve algorithms is often
referred to as the Four Russian Technique after Arlazarov et al. [1] who introduced it for boolean matrix multiplication. The
last result is based on a new combination of known algorithms. The problems and our results are presented below.

Regular expression matching. Given a regular expression R and a string Q , the Regular Expression Matching problem is
to determine if Q is a member of the language denoted by R. This problem occurs in several text processing applications,
such as in editors like Emacs [24] or in the Grep utilities [30,21]. It is also used in the lexical analysis phase of compilers
and interpreters, regular expressions are commonly used to match tokens for the syntax analysis phase, and more recently
for querying and validating XML databases, see e.g., [12,13,16,6]. The standard textbook solution to the problem, due to
Thompson [25], constructs a non-deterministic finite automaton (NFA) for R and simulates it on the string Q . For R and Q
of sizes m and n, respectively, this algorithm uses O(mn) time and O(m) space. If the NFA is converted into a deterministic
finite automaton (DFA), the DFA needs O(m

w
22mσ)words, where σ is the size of the alphabetΣ andw is the word size. Using

clever representations of the DFA the space can be reduced to O(m
w
(2m+σ)) [31,23]. Efficient average case algorithms were

given by Baeza-Yates and Gonnet [4].
Normally, it is reported that the running time of traversing the DFA is O(n), but this complexity analysis ignores the

word size. Since nodes in the DFAmay needΩ(m) bits to be addressed, wemay needΩ(m/w+1) time to identify the next
node in the traversal. Therefore the running time becomes O(mn/w + n + m) with a potential exponential blowup in the
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space. Hence, in the transdichotomous model, wherew isΘ(log(n+m)), using worst-case exponential preprocessing time
improves the query time by a log factor.
The fastest known algorithm is due to Myers [17], who showed how to achieve O(mn/k + m2k + (n + m) logm) time

and O(2km) space, for any k ≤ w. In particular, for k = ε log n, for constant 0 < ε < 1, this gives an algorithm using
O(mn/ log n+ (n+m) logm) time and O(mnε) space.
In Section 2, we present an algorithm for Regular Expression Matching that takes time O(nm/k + n + m logm) time

and uses O(2k + m) space, for any k ≤ w. In particular, if we pick k = ε log n, for constant 0 < ε < 1, we are (at least) as
fast as the algorithm of Myers, while achieving O(nε +m) space.
We note that for large word sizes (w > log2 n) one of the authors has recently devised an even faster algorithm using

very different ideas [7]. This research was done after the work that led to the results in this paper.

Approximate regular expressionmatching. Motivated by applications in computational biology,Myers andMiller [18] studied
the Approximate Regular Expression Matching problem. Here, we want to determine if Q is within edit distance d to any
string in the language given by R. The edit distance between two strings is the minimum number of insertions, deletions,
and substitutions needed to transform one string into the other. Myers and Miller [18] gave an O(mn) time and O(m) space
dynamic programming algorithm. Subsequently, assuming as a constant sized alphabet, Wu, Manber and Myers [32] gave
an O(mn log(d+2)log n + n+m) time and O(m

√
n log(d+2)
log n + n+m) space algorithm. Recently, an exponential space solution based

on DFAs for the problem has been proposed by Navarro [22].
In Section 3, we extend our results of Section 2 and give an algorithm,without any assumption on the alphabet size, using

O(mn log(d+2)k + n+m logm) time and O(2k +m) space, for any k ≤ w.

String edit distance. We conclude by giving a simple way to improve the complexity of the String Edit Distance problem,
which is defined as that of computing the minimum number of edit operations needed to transform given string S of
length m into given string T of length n. The standard dynamic programming solution to this problem uses O(mn) time
and O(min(m, n)) space. The fastest algorithm for this problem, due toMasek and Paterson [14], achieves O(mn/k2+m+n)
time and O(2k +min(n,m)) space for any k ≤ w. However, this algorithm assumes a constant size alphabet. For long word
sizes faster algorithms can be obtained [19,5]. See also the survey by Navarro [20].
In Section 4, we show how to achieve O(nm log2 k/k2 + m+ n) time and O(2k +min(n,m)) space for any k ≤ w for an

arbitrary alphabet. Hence, we remove the dependency of the alphabet at the cost of a log2 k factor to the running time.

Subsequence indexing. We also consider a special case of regular expression matching. Given text T , the Subsequence
Indexing problem is to preprocess T to allow queries of the form ‘‘is Q a subsequence of T?’’ Baeza-Yates [3] showed that
this problem can be solved with O(n) preprocessing time and space, and query time O(m log n), where Q has length m and
T has length n. Conversely, one can achieve queries of time O(m) with O(nσ) preprocessing time and space. As before, σ is
the size of the alphabet.
In Section 5, we give an algorithm that improves the former results to O(m log log σ) query time or the latter result to

O(nσ ε) preprocessing time and space.

2. Regular expression matching

Given an string Q and a regular expression R the Regular Expression Matching problem is to determine if Q is in the
language given by R. Let n and m be the sizes of Q and R, respectively. In this section we show that Regular Expression
Matching can be solved in O(mn/k+ n+m logm) time and O(2k +m) space, for k ≤ w.

2.1. Regular expressions and NFAs

We briefly review Thompson’s construction and the standard node set simulation. The set of regular expressions overΣ
is defined recursively as follows:

• A character α ∈ Σ is a regular expression.
• If S and T are regular expressions then so is the catenation, (S) · (T ), the union, (S)|(T ), and the star, (S)∗.

Unnecessary parentheses can be removed by observing that · and | are associative and by using the standard precedence of
the operators, that is ∗ precedes ·, which in turn precedes |. Furthermore, we will often remove the · when writing regular
expressions. The language L(R) generated by R is the set of all strings matching R. The parse tree T (R) of R is the rooted and
ordered tree representing the hierarchical structure of R. All leaves are represented by a character inΣ and all internal nodes
are labeled ·, |, or ∗. We assume that parse trees are binary and constructed such that they are in one-to-one correspondence
with the regular expressions. An example parse tree of the regular expression ac|a∗b is shown in Fig. 2(a).
A finite automaton A is a tuple A = (G,Σ, θ,Φ) such that,

• G is a directed graph,
• Each edge e ∈ E(G) is labeled with a character α ∈ Σ or ε,
• θ ∈ V (G) is a start node,
• Φ ⊆ V (G) is the set of accepting nodes.
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Fig. 1. Thompson’s NFA construction. The regular expression for a character α ∈ Σ correspond to NFA (a). If S and T are regular expression then N(ST ),
N(S|T ), and N(S∗) correspond to NFAs (a), (b), and (c), respectively. Accepting nodes are marked with a double circle.

Fig. 2. (a) The parse tree for the regular expression ac|a∗b. (b) A clustering of (a) into node-disjoint connected subtrees C1 , C2 , and C3 . Here, x = 3. (c) The
clustering from (b) extended with pseudo-nodes. (d) The automaton for the parse tree divided into subautomata corresponding to the clustering. (e) The
subautomaton A1 with pseudo-edges corresponding to the child automata.

A is a deterministic finite automaton (DFA) if A does not contain any ε-edges, and for each node v ∈ V (G) all outcoming edges
have different labels. Otherwise, A is a non-deterministic automaton (NFA). We say that A accepts a string Q if there is a path
from θ to a node inΦ which spells out Q .
Using Thompson’s method [25] we can recursively construct an NFA N(R) accepting all strings in L(R). The set of rules is

presented below and illustrated in Fig. 1.

• N(α) is the automaton consisting of a start node θα , accepting node φα , and an α-edge from θα to φα .
• Let N(S) and N(T ) be automata for regular expression S and T with start and accepting nodes θS , θT , φS , and φT ,
respectively. Then, NFAs for N(S · T ), N(S|T ), and N(S∗) are constructed as follows:
N(ST ): Merge the nodes φS and θT into a single node. The new start node is θS and the new accepting node is φT .
N(S|T ): Add a new start node θS|T and new accepting node φS|T . Then, add ε edges from θS|T to θS and θT , and from φS

and φT to φS|T .
N(S∗): Add a new start node θS∗ and new accepting node φS∗ . Then, add ε edges from θS∗ to θS and φS∗ , and from φS to

φS∗ and θS .

By construction, N(R) has a single start and accepting node, denoted θ and φ, respectively. θ has no incoming edges and φ
has no outcoming edges. The total number of nodes is at most 2m and since each node has at most 2 outgoing edges that
the total number of edges is less than 4m. Furthermore, all incoming edges have the same label, and we denote a node with
incoming α-edges an α-node. Note that the star construction in Fig. 1(d) introduces an edge from the accepting node of N(S)
to the start node of N(S). All such edges in N(R) are called back edges and all other edges are forward edges. We need the
following important property of N(R).
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Lemma 1 (Myers [17]). Any cycle-free path in N(R) contains at most one back edge.

For a string Q of length n the standard node-set simulation of N(R) on Q produces a sequence of node-sets S0, . . . , Sn. A
node v is in Si iff there is a path from θ to v that spells out the ith prefix of Q . The simulation can be implemented with the
following simple operations. Let S be a node-set in N(R) and let α be a character inΣ .

Move(S, α): Compute and return the set of nodes reachable from S via a single α-edge.
Close(S): Compute and return the set of nodes reachable from S via 0 or more ε-edges.

The number of nodes and edges in N(R) is O(m), and both operations are implementable in O(m) time. The simulation
proceed as follows: Initially, S0 := Close({θ}). If Q [j] = α, 1 ≤ j ≤ n, then Sj := Close(Move(Sj−1, α)). Finally, Q ∈ L(R) iff
φ ∈ Sn. Since each node-set Sj only depends on Sj−1 this algorithm uses O(mn) time O(m) space.

2.2. Outline of algorithm

Our result is based on a new and more compact encoding of small subautomata used within Myers’ algorithm [17]
supporting constant timeMove and Close operations. For our purposes and for completeness, we restate Myers’ algorithm
in Sections 2.3 and 2.4, such that the dependency on the Move and Close operations on subautomata is exposed. The new
encoding is presented in Section 2.5.

2.3. Decomposing the NFA

In this section we show how to decompose N(R) into small subautomata. In the final algorithm transitions through these
subautomata will be simulated in constant time. The decomposition is based on a clustering of the parse tree T (R). Our
decomposition is similar to the one given in [17,32]. A cluster C is a connected subgraph of T (R). A cluster partition CS is
a partition of the nodes of T (R) into node-disjoint clusters. Since T (R) is a binary tree, a bottom-up procedure yields the
following lemma.

Lemma 2. For any regular expression R of size m and a parameter x, it is possible to build a cluster partition CS of T (R), such that
|CS| = O(m/x) and for any C ∈ CS the number of nodes in C is at most x.

An example clustering of a parse tree is shown in Fig. 2(b).
Before proceeding, we need some definitions. Assume that CS is a cluster partition of T (R) for a some yet-to-be-

determined parameter x. Edges adjacent to two clusters are external edges and all other edges are internal edges. Contracting
all internal edges induces amacro tree, where each cluster is represented by a singlemacro node. Let Cv and Cw be two clusters
with corresponding macro nodes v andw. We say that Cv is a parent cluster (resp. child cluster) of Cw if v is the parent (resp.
child) ofw in the macro tree. The root cluster and leaf clusters are the clusters corresponding to the root and the leaves of the
macro tree.
Next we show how to decompose N(R) into small subautomata. Each cluster C will correspond to a subautomaton A

and we use the terms child, parent, root, and leaf for subautomata in the same way we do with clusters. For a cluster C , we
insert a special pseudo-node pi for each child cluster C1, . . . , C` in the middle of the external edge connecting C and Ci. Now,
C ’s subautomaton A is the automaton corresponding to the parse tree induced by the set of nodes V (C) ∪ {p1, . . . , p`}. The
pseudo-nodes are alphabet placeholders, since the leaves of a well-formed parse tree must be characters.
In A, child automaton Ai is represented by its start and accepting node θAi and φAi and a pseudo-edge connecting them. An

example of these definitions is given in Fig. 2. Any cluster C of size at most x has less than 2x pseudo-children and therefore
the size of the corresponding subautomaton is at most 6x. Note, therefore, that automata derived from regular expressions
can be thus decomposed into O(m/z) subautomata each of size at most z, by Lemma 2 and the above construction.

2.4. Simulating the NFA

In this section we show how to do a node-set simulation of N(R) using the subautomata. We compactly represent
node-set of each subautomata in a bit string and in the next section we will show how to manipulate these node-set
efficiently using a combination of the Four Russian Technique and standard word operations. This approach is often called
bit-parallelism [2].
Recall that each subautomaton has size less than z. Topologically sort all nodes in each subautomaton A ignoring back

edges. This can be done for all subautomata in total O(m) time.We represent the current node-set S ofN(R) compactly using
a bitvector for each subautomaton. Specifically, for each subautomaton Awe store a characteristic bitvector EB = [b1, . . . , bz],
where nodes in EB are indexed by the their topological order, such that EB[i] = 1 iff the ith node is in S. If A contains fewer than
z nodes we leave the remaining values undefined. For simplicity, we will refer to the state of A as the node-set represented
by the characteristic vector stored at A. Similarly, the state of N(R) is the set of characteristic vectors representing S. The
state of a node is the bit indicating if the node is in S. Since any child A′ of A overlap at the nodes θA′ and φA′ we will ensure
that the state of θA′ and φA′ is the same in the characteristic vectors of both A and A′.
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Below we present appropriate move and ε-closure operations defined on subautomata. Due to the overlap between
parent and child nodes these operations take a bit b which will use to propagate the new state of the start node. For each
subautomaton A, characteristic vector EB, bit b, and character α ∈ Σ define:

MoveA(EB, b, α): Compute the state EB′ of all nodes in A reachable via a single α edge from EB. If b = 0, return EB′, else return
EB′ ∪ {θA}.

CloseA(EB, b): Return the set EB′ of all nodes in A reachable via a path of 0 or more ε-edges from EB, if b = 0, or reachable
from EB ∪ {θA}, if b = 1.

We will later show how to implement these operations in constant time and total 2O(k) space when z = Θ(k). Before doing
so we show how to use these operations to perform the node-set simulation of N(R). Assume that the current node-set of
N(R) is represented by its characteristic vector for each subautomaton. The followingMove and Close operations recursively
traverse the hierarchy of subautomata top-down. At each subautomata the current state of N(R) is modified using primarily
MoveA and CloseA. For any subautomaton A, bit b, and character α ∈ Σ define:

Move(A, b, α): Let EB be the current state of A and let A1, . . . , A` be children of A in topological order of their start node.

1. Compute EB′ := MoveA(EB, b, α).
2. For each Ai, 1 ≤ i ≤ `,
(a) Compute fi := Move(Ai, bi, α), where bi = 1 iff θAi ∈ EB

′.
(b) If fi = 1 set EB′ := EB′ ∪ {φAi}.

3. Store EB′ and return the value 1 if φA ∈ EB′ and 0 otherwise.

Close(A, b): Let EB be the current state of A and let A1, . . . , A` be children of A in topological order of their start node.

1. Compute EB′ := CloseA(EB, b).
2. For each child automaton Ai, 1 ≤ i ≤ `,
(a) Compute fi := Close(Ai, bi), where bi = 1 if θAi ∈ EB

′.
(b) If fi = 1 set EB′ := EB′ ∪ {φAi}.
(c) EB′ := CloseA(EB, b).

3. Store EB′ and return the value 1 if φA ∈ EB′ and 0 otherwise.

The ‘‘store’’ in line 3 of both operations updates the state of the subautomaton. The node-set simulation of N(R) on string Q
of length n produces the states S0, . . . , Sn as follows. Let Ar be the root automaton. Initialize the state of N(R) to be empty,
i.e., set all bitvectors to 0. S0 is computed by calling Close(Ar , 1) twice. Assume that Sj−1, 1 ≤ j ≤ n, is the current state of
N(R) and let α = Q [j]. Compute Sj by callingMove(Ar , 0, α) and then calling Close(Ar , 0) twice. Finally, Q ∈ L(R) iff φ ∈ Sn.
We argue that the above algorithm is correct. To do this we need to show that the call to theMove operation and the two

calls to the Close operation simulates the standardMove and Close operations.
First consider theMove operation. Let S be the state of N(R) and let S ′ be the state after a call toMove(Ar , 0, α). Consider

any subautomaton A and let EB and EB′ be the bitvectors of A corresponding to states S and S ′, respectively. We first show
by induction that after Move(A, 0, α) the new state EB′ is the set of nodes reachable from EB via a single α-edge in N(R). For
Move(A, 1, α) a similar argument shows that new state is the union of the set of nodes reachable from EB via a single α-edge
and {θA}.
Initially, we compute EB′ := MoveA(EB, 0, α). Thus EB′ contains the set of nodes reachable via a single α-edge in A. If A

is a leaf automaton then EB′ satisfies the property and the algorithm returns. Otherwise, there may be an α-edge to some
accepting node φAi of a child automaton Ai. Since this edge is not contained A, φAi is not initially in EB

′. However, since each
child is handled recursively in topological order and the new state of start and accepting nodes are propagated, it follows
that φAi is ultimately added to EB

′. Note that since a single node can be the accepting node of a child Ai and the start node of
child Ai+1, the topological order is needed to ensure a consistent update of the state.
It now follows that the state S ′ of N(R) after Move(Ar , 0, α), consists of all nodes reachable via a single α-edge from S.

Hence,Move(Ar , 0, α) correctly simulates a standardMove operation.
Next consider the two calls to the Close operation. Let S be the state of N(R) and let S ′ be the state after the first call

to Close(Ar , 0). As above consider any subautomaton A and let EB and EB′ be the bitvectors of A corresponding to S and S ′,
respectively. We show by induction that after Close(A, 0) the state EB′ contains the set of nodes in N(R) reachable via a path
of 0 or more forward ε-edges from EB. Initially, EB′ := CloseA(EB, 0), and hence EB′ contains all nodes reachable via a path of 0
or more ε-edges from EB, where the path consists solely of edges in A. If A is a leaf automaton, the result immediately holds.
Otherwise, there may be a path of ε-edges to a node v going through the children of A. As above, the recursive topological
processing of the children ensures that v is added to EB′.
Hence, after the first call to Close(Ar , 0) the state S ′ contains all nodes reachable from S via a path of 0 or more forward

ε-edges. By a similar argument it follows that the second call to Close(Ar , 0) produces the state S ′′ that contains all the nodes
reachable from S via a path of 0 or more forward ε-edge and 1 back edge. However, by Lemma 1 this is exactly the set of
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nodes reachable via a path of 0 or more ε-edges. Furthermore, since Close(Ar , 0) never produces a state with nodes that are
not reachable through ε-edges, it follows that the two calls to Close(Ar , 0) correctly simulates a standard Close operation.
Finally, note that if we start with a state with no nodes, we can compute the state S0 in the node-set simulation by calling

Close(Ar , 1) twice. Hence, the above algorithm correctly solves Regular Expression Matching.
If the subautomata have size at most z and MoveA and CloseA can be computed in constant time the above algorithm

computes a step in the node-set simulation in O(m/z) time. In the following section we show how to do this in O(2k) space
for z = Θ(k). Note that computing the clustering uses an additional O(m) time and space.

2.5. Representing subautomata

To efficiently represent MoveA and CloseA we apply the Four Russian trick. Consider a straightforward code for MoveA:
Precompute the value of MoveA for all EB, both values of b, and all characters α. Since the number of different bitvectors is
2z and the size of the alphabet is σ , this table has 2z+1σ entries. Each entry can be stored in a single word, so the table also
uses a total of 2z+1σ space. The total number of subautomata is O(m/z), and therefore the total size of these tables is an
unacceptable O(mz · 2

zσ).
To improve this we use a more elaborate approach. First we factor out the dependency on the alphabet, as follows. For

all subautomata A and all characters α ∈ Σ define:

SuccA(EB): Return the set of all nodes in A reachable from EB by a single edge.
EqA(α): Return the set of all α-nodes in A.

Since all incoming edges to a node are labeled with the same character it follows that,

MoveA(EB, b, α) =
{
SuccA(EB) ∩ EqA(α) if b = 0,
(SuccA(EB) ∩ EqA(α)) ∪ {θA} if b = 1.

Hence, given SuccA and EqA we can implement MoveA in constant time using bit operations. To efficiently represent EqA,
for each subautomaton A, store the value of EqA(α) in a hash table. Since the total number of different characters in A is at
most z the hash table EqA contains at most z entries. Hence, we can represent EqA for all subautomata is O(m) space and
constant worst-case lookup time. The preprocessing time is O(m) w.h.p.. To get a worst-case preprocessing bound we use
the deterministic dictionary of [11] with O(m logm)worst-case preprocessing time.
We note that the idea of using EqA(α) to represent the α-nodes is not new and has been used in several string matching

algorithms, for instance, in the classical Shift-Or algorithm [2] and in the recent optimized DFA construction for regular
expression matching [23].
To represent Succ compactly we proceed as follows. Let Â be the automaton obtained by removing the labels from edges

in A. SuccA1 and SuccA2 compute the same function if Â1 = Â2. Hence, to represent Succ it suffices to precompute Succ on
all possible subautomata Â. By the one-to-one correspondence of parse trees and automata we have that each subautomata
Â corresponds to a parse tree with leaf labels removed. Each such parse tree has at most x internal nodes and 2x leaves. The
number of rooted, ordered, binary treeswith atmost 3xnodes is less than 26x+1, and for each such tree each internal node can
have one of 3 different labels. Hence, the total number of distinct subautomata is less than 26x+13x. Each subautomaton has
at most 6x nodes and therefore the result of SuccA has to be computed for each of the 26x different values for EB using O(x26x)
time. Therefore we can precompute all values of Succ in O(x212x+13x) time. Choosing x such that x+ log x

12+log 3 ≤
k−1

12+log 3 gives
us O(2k) space and preprocessing time.
Using an analogous argument, it follows that CloseA can be precomputed for all distinct subautomata within the same

complexity. By our discussion in the previous sections and since x = Θ(k)we have shown the following theorem:
Theorem 1. For regular expression R of length m, string Q of length n, and k ≤ w, Regular ExpressionMatching can be solved
in O(mn/k+ n+m logm) time and O(2k +m) space.

3. Approximate regular expression matching

Given a string Q , a regular expression R, and an integer d ≥ 0, the Approximate Regular Expression Matching
problem is to determine if Q is within edit distance d to a string in L(R). In this section we extend our solution for Regular
ExpressionMatching toApproximate Regular ExpressionMatching. Specifically, we show that the problem can be solved
in O(mn log(d+2)k + n+m logm) time and O(2k +m) space, for any k ≤ w.
Our result is achieved through a new encoding of subautomata within an algorithm by Wu et al. [32] in a style similar

to the above result for Regular Expression Matching. For completeness we restate the algorithm of Wu et al. [32] in
Sections 3.1 and 3.2. The new encoding is given in Section 3.3.

3.1. Dynamic programming recurrence

Our algorithm is based on a dynamic programming recurrence due to Myers and Miller [18], which we describe below.
Let ∆(v, i) denote the minimum over all paths P between θ and v of the edit distance between P and the ith prefix of Q .
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The recurrence avoids cyclic dependencies from the back edges by splitting the recurrence into two passes. Intuitively, the
first pass handles forward edges and the second pass propagates values from back edges. The pass-1 value of v is denoted
∆1(v, i), and the pass-2 value is∆2(v, i). For a given i, the pass-1 (resp. pass-2) value of N(R) is the set of pass-1 (resp. pass-2)
values of all nodes of N(R). For all v and i, we set∆(v, i) = ∆2(v, i).
The set of predecessors of v is the set of nodes Pre(v) = {w | (w, v) is an edge}. We define Pre(v) = {w |

(w, v) is a forward edge}. For notational convenience, we extend the definitions of ∆1 and ∆2 to apply to sets, as follows:
∆1(Pre(v), i) = minw∈Pre(v)∆1(w, i) and ∆1(Pre(v), i) = minw∈Pre(v)∆1(w, i), and analogously for ∆2. The pass-1 and
pass-2 values satisfy the following recurrence:

∆2(θ, i) = ∆1(θ, i) = i 0 ≤ i ≤ n.

∆2(v, 0) = ∆1(v, 0) = min
{
∆2(Pre(v), 0)+ 1 if v is aΣ-node,
∆2(Pre(v), 0) if v 6= θ is an ε-node.

For 1 ≤ i ≤ n,

∆1(v, i) =
{
min(∆2(v, i− 1)+ 1,∆2(Pre(v), i)+ λ(v,Q [i]),∆1(Pre(v), i)+ 1) if v is aΣ-node,
∆1(Pre(v), i) if v 6= θ is an ε-node,

where λ(v,Q [i]) = 1 if v is a Q [i]-node and 0 otherwise,

∆2(v, i) =
{
min(∆1(Pre(v), i),∆2(Pre(v), i))+ 1 if v is aΣ-node,
min(∆1(Pre(v), i),∆2(Pre(v), i)) if v is a ε-node.

A full proof of the correctness of the above recurrence can be found in [18,32]. Intuitively, the first pass handles forward
edges as follows: For Σ-nodes the recurrence handles insertions, substitution/matches, and deletions (in this order). For
ε-nodes the values computed so far are propagated. Subsequently, the second pass handles the back edges. For our problem
we want to determine if Q is within edit distance d. Hence, we can replace all values exceeding d by d+ 1.

3.2. Simulating the recurrence

Our algorithm now proceeds analogously to the case with d = 0 above. We will decompose the automaton into
subautomata, and we will compute the above dynamic program on an appropriate encoding of the subautomata, leading to
a small-space speedup.
As before, we decompose N(R) into subautomata of size less than z. For a subautomaton A we define operations NextA1

and NextA2 which we use to compute the pass-1 and pass-2 values of A, respectively. However, the new (pass-1 or pass-2)
value of A depends on pseudo-edges in a more complicated way than before: If A′ is a child of A, then all nodes preceding
φA′ depend on the value of φA′ . Hence, we need the value of φA′ before we can compute values of the nodes preceding φA′ .
To address this problem we partition the nodes of a subautomaton as described below.
For each subautomaton A topologically sort the nodes (ignoring back edges) with the requirement that for each child A′

the start and accepting nodes θA′ and φA′ are consecutive in the order. Contracting all pseudo-edges in A this can be done
for all subautomata in O(m) time. Let A1, . . . , A` be the children of A in this order. We partition the nodes in A, except
{θA} ∪ {φA1 , . . . , φA`} , into `+ 1 chunks. The first chunk is the nodes in the interval [θA + 1, θA1 ]. If we let φA`+1 = φA, then
the ith chunk, 1 ≤ i ≤ `+1, is the set of nodes in the interval [φAi−1+1, θAi ]. A leaf automaton has a single chunk consisting
of all nodes except the start node. We represent the ith chunk in A by a characteristic vector ELi identifying the nodes in the
chunks, that is, ELi[j] = 1 if node j is in the ith chunk and 0 otherwise. From the topological order we can compute all chunks
and their corresponding characteristic vectors in total O(m) time.
The value of A is represented by a vector EB = [b1, . . . , bz], such that bi ∈ [0, d + 1]. Hence, the total number of bits

used to encode EB is z dlog d+ 2e bits. For an automaton A, characteristic vectors EB and EL, and a character α ∈ Σ define the
operations NextA1(EB, EL, b, α) and NextA2(EB, EL, b) as the vectors EB1 and EB2, respectively, given by:

EB1[v] = B[v] if v 6∈ EL

EB1[v] =
{
min(EB[v] + 1, EB[Pre(v)] + λ(v, α), EB1[Pre(v)] + 1) if v ∈ EL is aΣ-node,
EB1[Pre(v)] if v ∈ EL is an ε-node

EB2[v] = B[v] if v 6∈ EL

EB2[v] =
{
min(EB[Pre(v)], EB2[Pre(v)] + 1) if v ∈ EL is aΣ-node,
min(EB[Pre(v)], EB2[Pre(v)]) if v 6∈ EL is an ε-node.

Importantly, note that the operations only affect the nodes in the chunk specified by EL. We will use this below to compute
newvalues ofA by advancing one chunk at each step.Weuse the following recursive operations. For subautomatonA, integer
b, and character α define:
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Next1(A, b, α): Let EB be the current value of A and let A1, . . . , A` be children of A in topological order of their start node.

1. Set EB1 := EB and EB1[θA] := b.
2. For each chunk Li, 1 ≤ i ≤ `,
(a) Compute EB1 := NextA1(EB1, ELi, α).
(b)Compute fi := Next1(Ai, EB1[θAi ], α).
(c) Set EB1[φAi ] := fi.

3. Compute EB1 := NextA1(EB1, EL`+1, α).
4. Return EB1[φA].

Next2(A, b): Let EB be the current value of A and let A1, . . . , A` be children of A in topological order of their start node.

1. Set EB2 := EB and EB2[θA] := b.
2. For each chunk Li, 1 ≤ i ≤ `,
(a) Compute EB2 := NextA2(EB2, ELi).
(b)Compute fi := Next2(Ai, EB2[θAi ]).
(c) Set EB2[φAi ] := fi.

3. Compute EB2 := NextA2(EB2, EL`+1).
4. Return EB2[φA].

The simulation of the dynamic programming recurrence on a stringQ of length n proceeds as follows: First encode the initial
values of the all nodes in N(R) using the recurrence. Let Ar be the root automaton, let Sj−1 be the current value of N(R), and
let α = Q [j]. Compute the next value Sj by calling Next1(Ar , j, α) and then Next2(Ar , j, α). Finally, if the value of φ in the
pass-2 value of Sn is less than d, report a match.
To see the correctness, we need to show that the callsNext1 andNext2 operations correctly compute the pass-1 and pass-

2 values of N(R). First consider Next1, and let A be any subautomaton. The key property is that if p1 is the pass-1 value of θA
then after a call to Next1(A, p1, α), the value of A is correctly updated to the pass-1 value. This follows by a straightforward
induction similar to the exact case. Since the pass-1 value of θ after reading the jth prefix of Q is j, the correctness of the call
to Next1 follows. For Next2 the result follows by an analogous argument.

3.3. Representing subautomata

Next we show how to efficiently represent NextA1 and NextA2 . First consider NextA1 . Note that again the alphabet size is a
problem. Since the EB1 value of a node in A depends on other EB1 values in A we cannot ‘‘split’’ the computation of NextA1 as
before. However, the alphabet character only affects the value of λ(v, α), which is 1 if v is anα-node and 0 otherwise. Hence,
we can represent λ(v, α) for all nodes in Awith EqA(α) from the previous section. Recall that EqA(α) can be represented for
all subautomata in totalO(m) space.With this representation the total number of possible inputs toNextA1 can be represented
using (d + 2)z + 22z bits. Note that for z = k

log(d+2) we have that (d + 2)
z
= 2k. Furthermore, since NextA1 is now alphabet

independent we can apply the same trick as before and only precompute it for all possible parse trees with leaf labels
removed. It follows that we can choose z = Θ( k

log(d+2 ) such that NextA1 can precomputed in total O(2
k) time and space. An

analogous argument applies to NextA2 . Hence, by our discussion in the previous sections we have shown that,

Theorem 2. For regular expression R of length m, string Q of length n, and integer d ≥ 0 Approximate Regular Expression
Matching can be solved in O(mn log(d+2)k + n+m logm) time and O(2k +m) space, for any k ≤ w.

4. String edit distance

The String Edit Distance problem is to compute the minimum number of edit operations needed to transform a string
S into a string T . Let m and n be the size of S and T , respectively. The classical solution to this problem, due to Wagner and
Fischer [29], fills in the entries of an m+ 1× n+ 1 matrix D. The entry Di,j is the edit distance between S[1..i] and T [1..j],
and can be computed using the following recursion:

Di,0 = i
D0,j = j
Di,j = min{Di−1,j−1 + λ(i, j),Di−1,j + 1,Di,j−1 + 1}

where λ(i, j) = 0 if S[i] = T [j] and 1 otherwise. The edit distance between S and T is the entry Dm,n. Using dynamic
programming the problem can be solved in O(mn) time. When filling out the matrix we only need to store the previous row
or column and hence the space used is O(min(m, n)). For further details, see the book by Gusfield [10, Chap. 11].
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The best algorithm for this problem, due to Masek and Paterson [14], improves the time to O(mn
k2
+ m + n) time and

O(2k+min(m, n)) space, for any k ≤ w. This algorithm, however, assumes that the alphabet size is constant. In this section
we give an algorithmusingO(mn log

2 k
k2
+m+n) time andO(2k+min(m, n)) space, for any k ≤ w, that works for any alphabet.

Hence, we remove the dependency of the alphabet at the cost of a log2 k factor.
We first describe the algorithm by Masek and Paterson [14], and then modify it to handle arbitrary alphabets. The

algorithm uses the Four Russian Technique. The matrix D is divided into cells of size x × x and all possible inputs of a cell
is then precomputed and stored in a table. From the above recursion it follows that the values inside each cell C depend
on the corresponding substrings in S and T , denoted SC and TC , and on the values in the top row and the leftmost column
in C . The number of different strings of length x is σ x and hence there are σ 2x possible choices for SC and TC . Masek and
Paterson [14] showed that adjacent entries in D differ by at most one, and therefore if we know the value of an entry there
are exactly three choices for each adjacent entry. Since there are at mostm different values for the top left corner of a cell it
follows that the number of different inputs for the top row and the leftmost column is m32x. In total, there are at m(σ3)2x
different inputs to a cell. Assuming that the alphabet has constant size, we can choose x = Θ(k) such that all cells can be
precomputed in O(2k) time and space. The input of each cell is stored in a single machine word and therefore all values in a
cell can be computed in constant time. The total number of cells in the matrix is O(mn

k2
) and hence this implies an algorithm

using O(mn
k2
+m+ n) time and O(2k +min(m, n)) space.

We show how to generalize this to arbitrary alphabets. The first observation, similar to the idea in Section 3, is that the
values inside a cell C does not depend on the actual characters of SC and TC , but only on the λ function on SC and TC . Hence,
we only need to encode whether or not SC [i] = TC [j] for all 1 ≤ i, j ≤ x. To do this we assign a code c(α) to each character
α that appears in TC or SC as follows. If α only appears in only one of SC or TC then c(α) = 0. Otherwise, c(α) is the rank of
α in the sorted list of characters that appears in both SC and TC . The representation is given by two vectors ESC and ETC of size
x, where ESC [i] = c(SC [i]) and ETC [i] = c(TC [i]), for all i, 1 ≤ i ≤ x. Clearly, SC [i] = TC [j] iff ESC [i] = ETC [j] and ESC [i] > 0 and
ETC [j] > 0 and hence ESC and ETC suffices to represent λ on C .
The number of characters appearing in both TC and SC is at most x and hence each entry of the vectors is assigned an

integer value in the range [1, x]. Thus, the total number of bits needed for both vectors is 2x dlog x+ 1e. Hence, we can
choose x = Θ( k

log k ) such that the input vectors for a cell can be represented in a single machine word. The total number

of cells becomes O(mn
x2
) = O( nm log

2 k
k2

). Hence, if the input vectors for each cell is available we can use the Four Russian

Technique to get an algorithm for String Edit Distance using O( nm log
2 k

k2
+ m + n) time and O(2k + min(m, n)) space as

desired.
Next we show how to compute vectors efficiently. Given any cell C , we can identify the characters appearing in both SC

and TC by sorting SC and then for each index i in TC use a binary search to see if TC [i] appears in SC . Nextwe sort the characters
appearing in both substrings and insert their ranks into the corresponding positions in ESC and ETC . All other positions in the
vectors are given the value 0. This algorithm uses O(x log x) time for each cell. However, since the number of cells is O( nm

x2
)

the total time becomes O( nm log xx ), which for our choice of x is O( nm(log k)
2

k ). To improve this we group the cells into macro
cells of y × y cells. We then compute the vector representation for each of these macro cells. The vector representation for
a cell C is now the corresponding subvectors of the macro cell containing C . Hence, each vector entry is now in the range
[0, . . . , xy] and thus uses dlog(xy+ 1)e bits. Computing the vector representation uses O(xy log(xy)) time for each macro
cell and since the number of macro cells is O( nm

(xy)2
) the total time to compute it is O( nm log(xy)xy + m + n). It follows that we

can choose y = k log k and x = Θ( k
log k ) such that vectors for a cell can be represented in a single word. With this choice of

x and y we have that xy = Θ(k2) and hence all vectors are computed in O( nm log(xy)xy + m + n) = O( nm log k
k2
+ m + n) time.

Computing the distance matrix dominates the total running time and hence we have shown:

Theorem 3. For strings S and T of length n and m, respectively, String Edit Distance can be solved in O(mn log
2 k

k2
+m+ n) time

and O(2k +min(m, n)) space.

5. Subsequence indexing

The Subsequence Indexing problem is to preprocess a string T to build a data structure supporting queries of the form:‘‘is
Q a subsequence of T?’’ for any string Q . This problem was considered by Baeza-Yates [3] who showed the trade-offs listed
in Table 1. We assume throughout the section that T and Q have n andm, respectively. For properties of automata accepting
subsequences of string and generalizations of the problem see the recent survey [8].
Using recent data structures and a few observations we improve all previous bounds. As a notational shorthand,

we will say that a data structure with preprocessing time and space f (n, σ ) and query time g(m, n, σ ) has complexity
〈f (n, σ ), g(m, n, σ )〉
Let us consider the simplest algorithm for Subsequence Indexing. One can build a DFA of size O(nσ) for recognizing all

subsequences of T . To do so, create an accepting node for each character of T , and for node vi, corresponding to character
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Table 1
Trade-offs for Subsequence Indexing
Space Preprocessing Query

O(nσ) O(nσ) O(m)
O(n log σ) O(n log σ) O(m log σ)
O(n) O(n) O(m log n)

T [i], create an edge to vj on character α if T [j] is the first α after position i. The start node has edges to the first occurrence
of each character. Such an automaton yields an algorithm with complexity 〈O(nσ),O(m)〉.
An alternative is to build, for each character α, a data structure Dα with the positions of α in T . Dα should support fast

successor queries. The Dα ’s can all be built in a total of linear time and space using, for instance, van Emde Boas trees
and perfect hashing [27,28,15]. These trees have query time O(log log n). We use these vEB trees to simulate the above
automaton-based algorithm: whenever we are in state vi, and the next character to be read from P is α, we look up the
successor of i in Dα in O(log log n) time. The complexity of this algorithm is 〈O(n),O(m log log n〉.
We combine these two data structures as follows: Consider an automaton consisting of nodes u1, . . . , un/σ , where node

ui corresponds to characters T [σ(i − 1), . . . , σ i − 1], that is, each node ui corresponds to σ nodes in T . Within each such
node, apply the vEB based data structure. Between such nodes, apply the full automaton data structure. That is, for node
wi, compute the first occurrence of each character α after T [σ i − 1]. Call these long jumps. A edge takes you to a node uj,
and as many characters of P are consumed with uj as possible. When no valid edge is possible within wj, take a long jump.
The automaton uses O( n

σ
· σ) = O(n) space and preprocessing time. The total size of the vEB data structures is O(n). Since

each ui consist of at most σ nodes, the query time is improved to O(log log σ). Hence, the complexity of this algorithm is
〈O(n),O(m log log σ)〉. To get a trade-off we can replace the vEB data structures by a recent data structure of Thorup [26,
Thm. 2]. This data structure supports successor queries of x integers in the range [1, X] using O(xX1/2

`
) preprocessing time

and space with query time O(`+ 1), for 0 ≤ ` ≤ log log X . Since each of the n/σ groups of nodes contain at most σ nodes,
this implies the following result:

Theorem 4. Subsequence Indexing can be solved in
〈
O(nσ 1/2

`
),O(m(`+ 1))

〉
, for 0 ≤ ` ≤ log log σ .

Corollary 1. Subsequence Indexing can be solved in 〈O(nσ ε),O(m)〉 or 〈O(n),O(m log log σ)〉.

Proof. We set ` to be a constant or log log σ , respectively. �

We note that using a recent data structure for rank and select queries on large alphabets by Golynski et al. [9] we can also
immediately obtain an algorithm using time O(m log log σ) and space n log σ + o(n log σ) bits. Hence, this result matches
our fastest algorithm while improving the space from O(n)words to the number of bits needed to store T .
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