
Modelling Patterns of Gene Regulation in the
bond-calculus

Thomas Wright1,3 Ian Stark2

Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh, UK

Abstract

The bond-calculus is a language for modelling interactions between continuous populations of biomolecular
agents. The calculus combines process-algebra descriptions of individual agent behaviour with affinity
patterns, which can specify a wide variety of patterns of interactions between the sites of different agents.
These affinity patterns extend binary molecular affinities to multiway reactions, general kinetic laws, and
cooperative interactions. In this paper we explore bond-calculus modelling of gene regulation at both
the molecular and network levels. At the molecular level, we show how affinity patterns can succinctly
describe the λ-switch, a prototypical example of cooperative regulation. Moving to the network level, we
develop a general model of gene regulatory networks using affinity patterns and an expanded Hill kinetic
law. We illustrate the approach with a specific example: the complex plant circadian clock. We analyse
these models via the bond-calculus’s differential equation and stochastic semantics, and validate our results
against existing models from the literature.
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1 Introduction

Early applications of process calculi to biochemical modelling followed Regev et

al’s process-as-molecule approach, representing individual molecules as processes

and reactions as binary message-passing (send and receive) with reaction rates

following the rule of mass action [70, 73]. However, whilst many case studies

demonstrated the ability of this framework to model a wide range of biological

systems [12, 23, 52, 55, 60], these also revealed that common features of biological

1 Email: thomas.wright@ed.ac.uk
2 Email: ian.stark@ed.ac.uk
3 Thanks to Jane Hillston, Stephen Gilmore, and the rest of the Edinburgh PEPA group for invaluable
discussions and feedback during the development of the bond-calculus, and to our anonymous reviews for
their thorough comments. Thanks also go to Juliet Cooke and Jos Gibbons for commenting on a draft of
this paper. This work was supported by grant EP/L01503X/1 for the University of Edinburgh School of
Informatics Centre for Doctoral Training in Pervasive Parallelism (http://pervasiveparallelism.inf.ed.ac.uk/)
from the UK Engineering and Physical Sciences Research Council (EPSRC).

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 350 (2020) 117–138

1571-0661/© 2020 The Author(s). Published by Elsevier B.V.

www.elsevier.com/locate/entcs

https://doi.org/10.1016/j.entcs.2020.06.007

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:thomas.wright@ed.ac.uk
mailto:ian.stark@ed.ac.uk
http://pervasiveparallelism.inf.ed.ac.uk/
http://www.elsevier.com/locate/entcs
https://doi.org/10.1016/j.entcs.2020.06.007
https://doi.org/10.1016/j.entcs.2020.06.007
http://www.sciencedirect.com
http://creativecommons.org/licenses/by/4.0/


systems do not easily fit within this style of interaction, requiring complex encod-

ings to model effectively. For example, gene regulation networks involve multiway

interactions and general kinetic laws at the network level, as well as contextual

(cooperative) interactions between multiple sites at the molecular level. These

challenges spurred the development of new languages for biochemical modelling:

such as process algebras with communication mechanisms that better model bio-

logical interactions [28, 49, 54]; and rule-based languages [10, 30, 35, 64] that replace

an agent-based viewpoint with schemes of reactions specified via pattern match-

ing. Some later languages have also adopted a population-level process-as-species

abstraction [28,57], in which processes represent not individual molecules as in the

process-as-molecule abstraction, but representative individuals of continuous popu-

lations of chemical species. Each approach leads to a different modelling style and

new perspectives on the systems studied [20], motivating the continued investiga-

tion of a mixed population of modelling formalisms and their application to different

types of biological systems.

The bond-calculus [87] is a process algebra for modelling complex interactions

in biological systems, with a novel communication mechanism based on affinity pat-

terns which capture the interaction capabilities of reaction sites in the presence of

multiway and contextual reactions. The concept of reaction site affinity typically

refers to the degree of compatibility between pairs of reaction sites, and binary

forms of affinity based communication has been proposed as an extension to the

name/coname based communication of π-style process calculi [33, 71]. As well as

better matching our conceptual model of protein reaction sites, this has several other

practical advantages, such as separating the kinetic constants of a model from its

agents, and making it possible to study the evolution of sites alongside the evolution

of molecular agents. The bond-calculus goes further, and allows affinity patterns,

which use pattern matching to specify the overall rate of more complex patterns

of interaction, involving clusters of sites spanning several molecules according to a

general kinetic law. This provides a more realistic model of molecular site affinity

reflecting the importance of context dependant and multiway interactions in real

biological systems. This approach gains some of the flexibility of rule based mod-

elling in expressing contextual interactions, however, retains the agent based style of

traditional process calculi, since interactions are still built up by pairwise communi-

cations between agents whilst affinity patterns merely specify compatibility between

sites. Affinity patterns also correspond to a natural graphical representation of site

affinity, extending the affinity networks of the continuous π-calculus [57].

In this paper we present the syntax of the bond-calculus and explore its use

in expressing common patterns of interaction in gene regulation. To this end we

will start by demonstrating the ability of the bond-calculus to model cooperative

interactions at the λ-switch based on the classical stochastic π-calculus model of

Kuttler and Niehren [55]. This is a key case study of the importance of contextual

interactions in transparently modelling biological systems, and has subsequently

been used to demonstrate different communication operations in a number of other

languages [7, 24, 25, 49]. Next we turn to the network level modelling and demon-
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strate the ability of the bond-calculus to combine a general purpose process based

model of gene regulation with affinity patterns specifying the structure of a par-

ticular network. Finally, we give an example of this with a compact model of the

complex plant circadian clock [31, 32, 68]. We also demonstrate the ability of the

bond-calculus to simulate these models using its continuous differential equations

semantics and a stochastic semantics based on chemical reaction networks. We

hope by exploring new ways of modelling these well known and important biologi-

cal systems to explore appropriate modelling styles for capturing common patterns

of interaction in the bond-calculus, and enable easier comparison to existing frame-

works and models [7, 28, 39, 49, 54, 55, 72, 79].

The structure of this paper is as follows. Section 1 contains this introduction

and the related work. Section 2 briefly introduces the syntax of the bond-calculus.

Section 3 contains our model of the λ-switch. Section 4 turns to general modelling

of gene regulatory networks. Section 5 discusses conclusions and future work.

1.1 Related work

Gene regulation has been modelled at a number of different levels across existing

process algebras and in rule based languages. Existing molecular levels of gene

regulation include [7, 24, 52, 53, 55]. Blossey and Cardelli [11] proposed a general

compositional approach to network-level modelling of gene regulation in stochas-

tic π, where processes represent regulatory interactions rather than individual

genes and use mass action kinetics; extensions of this model include [12, 47, 66, 74].

Whilst individual-level nondeterministic or stochastic semantics are most common

among biological process algebras, there has been much work to develop population

level semantics based on Ordinary Differential Equations (ODEs) or chemical reac-

tions [15, 22, 38, 42, 45, 51, 59, 80, 83]. Most rule based languages — being based on

chemical reactions — also support population level ODE semantics [10, 21, 35, 64].

Affinity was first used in β-binders [33, 71] to quantify compatibility between

protein sites, and are also included in its extension BlenX [34]. The continuous

π-calculus [57] also includes a graphical form of affinity network, and has been

used to study molecular evolution through mutations of both agents and affinity

networks [56, 58]. These languages are both restricted to binary communication,

although BlenX has been extended with quantitative transactions as a means of

combining binary interactions to form atomic multiway reactions [26]. On the other

hand, languages with CSP style multiway synchronisation such as PEPA [44] are

able to directly model n-way interactions and have been applied to modelling bio-

chemical networks [19]. Bio-PEPA [28] is an extension of PEPA explicitly designed

for biochemical modelling and has been applied to modelling many gene regula-

tory networks [28, 68] using general kinetic laws. The communication mechanisms

of PEPA/Bio-PEPA are quite different from that of the bond-calculus, relying on

CSP-style synchronization on shared actions rather than matching of compatible

channels/sites representing protein domains, and these languages do not include

a mechanism for dynamic complex formation. The link-calculus [13] is one of the

few agent based calculi which mix mobility with multiway synchronisation, and has
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been applied to modelling membranes interactions [14]. Being based on chemical re-

actions, rule-based languages also directly support modelling of multiway reactions

and dynamic complex formation [10,30, 35].

Contextual interactions have also been studied extensively in rule based lan-

guages, and have been cited as a major advantage to rule based approaches in mod-

elling gene regulation [53]. On the other hand, a number of agent based languages

have applied more expressive communication operations as a means of more directly

expressing biochemical interactions [48, 49, 84]. Under one light, languages with

affinity based communications such as the bond-calculus can be seen as an interme-

diate step, since they combine agent based species definitions with sites governed

by global rules, however, we argue that they are closer to traditional agent based

languages since reactions still arise via pairwise communication between agents,

and affinity patterns simply define the interaction capabilities of sites [87]. There

has long been an exchange of ideas between process algebras and rule based lan-

guages including languages such as κ admitting process calculi style semantics and

a translation into the π-calculus when restricted to binary interactions [30], whilst

the addition of hyperedges and reaction constraints allows the rule based language

React(C) to transparently encode the stochastic π-calculus [50]. Nevertheless, each

approach leads to a very different style of modelling, and a different perspective

on the systems modelled, motivating continued investigation of different formalisms

and modelling styles.

2 Modelling in the bond-calculus

In this section we will briefly introduce the bond calculus. Since the main focus of

this paper is exploring the modelling capabilities of the bond-calculus, we will focus

on summarising the syntax of the language, and refer the interested reader to [87]

for a more complete introduction to the language and its semantics.

The chief component of a bond-calculus model is a mixture:

M � [A1]A1 ‖ . . . ‖ [An]An .

This represents a chemical solution of different species A1, . . . , An at real valued

concentrations [A1] , . . . , [An] ∈ R≥0 respectively. Species are described by process-

algebraic terms that indicate their potential behaviour. In particular, species offer

interaction at certain sites s, e, p, . . ., which may also be annotated with locations

�,m, . . . that indicate spatial proximity on a molecular complex.

The declaration of which sites are compatible and the quantitative rates of in-

teraction between them appears in a separate affinity network,

A � {γ1 @ L1, . . . ,γn @ Ln }

which is made up of affinity patterns γ @ L. Each affinity pattern combines a

pattern γ of reaction sites with a general kinetic law L : Rm → R for the corre-

sponding reaction rate. Patterns themselves are structured γ = p1 ‖ . . . ‖ pm where
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each component is either a single site pi = s, or a cluster of multiple colocated sites

pi = (s1| . . . |sti). For example, a simple pattern a ‖ b ‖ c allows chemical reactions

to occur between three distinct molecules presenting sites a, b, and c respectively;

whilst the pattern a ‖ (b|c) allows reactions between site a on one molecule with sites

b and c on another; and a pattern (a|b|c) allows unimolecular reactions involving a,

b, and c all on a single molecular complex.

The process-algebra terms describing the species in a model are given as a series

of definitions D(�1, . . . , �n) � A, parameterized by locations �1, . . . , �n. The species

bodies A, B in these definitions have the following grammar:

A,B ::= 0 | π1.A1 + . . .+ πn.An | A |B | (ν �1, . . . , �n)A | D(�1, . . . , �n)

These are in turn: the empty species 0; a choice π1.A1 + . . . + πn.An of different

species A1, . . . , An, guarded by prefixes π1, . . . , πn; a parallel composition A | B of

species A and B, a restriction (ν �1, . . . , �n)A of locations �1, . . . , �n in a species A;

or finally, an application D(�1, . . . , �n) of the definition D at locations �1, . . . , �n.

The prefixes here capture possible interactions offered by species: each prefix

πi is either a site s, possibly located s@�, or a binding prefix s(m1, . . . ,mn). Re-

striction (ν �)(. . . ) expresses formation of a complex of colocated molecules; and

where sites are annotated with locations this can determine the type of their in-

teractions: sites at different locations interact via chemical reactions between dif-

ferent molecules, whilst sites at the same location interact allosterically within a

molecule. Furthermore, the division of species into distinct molecular complexes

is governed by connectivity of locations, using a structural congruence ≡ which

includes rules for equivalence of species and mixture, along with a compatibility

condition [A]A ≡ [A]B ‖ [A]C if A ≡ B |C. For example, given compatible sites a

and b, two agents,

A � a(�1).a
∗@�1.A B � b(�2).b

∗@�2.B

may react to dynamically form the bimolecular complex

C � (ν �)(a∗@�.A | b∗@�.B) .

Locations �1 and �2 are replaced by � in a form of simultaneous agreement inspired

by the πI-calculus [76], whilst the resulting shared location � binds the two half of the

parallel composition | into a complex which cannot be broken down into distinct

species. This form of communication models the symmetric nature of molecular

bonding, and extends naturally to multiway reactions.

Suppose we want to complete this with a description of quantitative reaction

rates following the law of mass action, defined by 4

MAk([X1] , . . . , [Xn]) � k [X1] . . . [Xn] .

4 Here we assume the units in units concentration, so there is no explicit dependency on the cellular volume
V — kinetic laws are given assuming different sites on independent species and the bond-calculus will adjust
the rates [87] depending on the combinatorics of sites similarly to [10,21].
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We can use affinity pattern a ‖ b @ MAk1 to declare that sites a and b are com-

patible and interact at rate MAk1([a] , [b]) = k1[a][b] where [a] and [b] are the total

concentrations of species carrying sites a and b respectively — the sites in the affin-

ity pattern are associated to the arguments of the rate law in a positional manner

indicating that in this case the concentrations of a and b correspond to the first and

second arguments of the rate law respectively. Finally, we can specify the initial

state of the system as a mixture M � [A]A ‖ [B]B.

The semantics of the language is described in [87] via a compositional transition

semantics for individual species, which is extended to a compositional population

level semantics for mixtures. This semantics then allows us to directly define the

evolution of the system as a vector field of mixtures (equivalent to a system of

differential equations), or, indirectly extract a chemical reaction network allowing

a broader range of simulation methods including stochastic simulation. We have

a preliminary implementation [86] which can perform numerical simulation of ex-

tracted ODEs, or stochastic simulation via the StochPy [62] library.

For example, in the mixture M specified above, A offers site a and B offers

site b: which are compatible according to the pattern a ‖ b; this results in the

reaction, A ‖ B →k1 C which consumes species A and B whilst producing species

C at overall rate MAk1([A], [B]) = k1[A][B], or the differential equations

d[C]

dt
= −d[A]

dt
= −d[B]

dt
= k1[A][B] .

Similarly, we can introduce and unbinding reaction C →k−1 A ‖ B by using the

affinity pattern (a∗|b∗) @ MAk−1 , where sites a∗ and b∗ are now colocated on C.

3 Molecular level modelling: cooperativity at the λ-
switch

In this section we will demonstrate how the bond-calculus can be used to build

detailed mechanistic models of gene regulation, through the running example of the

lysis-lysogenesis decision circuit of λ-phage infected E. Coli (the λ-switch). The λ-

phage is a bacteriophage which infects E. Coli cells by inserting the λ-switch genetic

circuit into their DNA, placing them into one of two growth phases: the lysogenic

phase in which the viral DNA is passively reproduced by the normal reproduction of

the E. Coli cells, and the lytic phase when the virus reprograms the cell to produce

many copies of the phage which are released upon the initiation of lysis breaking

down the cell wall (see Fig. 2).

The λ-switch has been the subject of a number of mathematical models including

[1, 4, 40, 41, 63, 77, 79, 81], and has became a standard benchmark for modelling

gene regulation. Kuttler and Niehren’s model of the λ-switch is a classic model

of cooperative gene regulation in the stochastic π-calculus [55] and provides the

basis of our model. Unlike individual level stochastic process calculi, the bond-

calculus takes a continuous view of biological systems, modelling the state of a

system via the concentration of each species of agents. Hence, a bond-calculus
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Fig. 1. Schema of E. Coli infection by
phage λ.

Fig. 2. Gene regulation at the λ-switch.

model allows us to analyse a system not only via stochastic simulation, but also

by extracting a system of differential equations: in this section we will focus on

these differential equations to compare them to the stochastic simulations from the

original model [55]. Since π-based process calculi rely on a binary communication

mechanism, they require cooperative interactions involving multiple sites of the

operator region to be modelled as internal state updates with instantaneous reaction

rates (modelled via update channels [24, 25, 49, 55] or the visitor pattern [54]) —

other potential methods of modelling such interactions include transactions [29] or

priorities [84]. This raises a question of how to model the switch in continuous

process calculi such as continuous π [57] and the bond-calculus whose differential

equation semantics do not include instantaneous rates, however, we will see that

affinity patterns are expressive enough to capture cooperativity directly as a type

of multiway synchronisation. This is somewhat similar to how rule-based languages

capture cooperativity using schemes of reaction rules spanning multiple sites [7,53],

however, whilst rules specify the whole effect of the reaction, affinity patterns are

more narrowly focused on the interaction capacities of sites, leaving the effect of

reactions to be determined by the agents involved, similarly to traditional process

calculi.

3.1 The basics of the model

The mechanisms of transcription regulation at the λ-switch underlying Kuttler and

Niehren’s model are described in depth in [55]; here we will recall some of the

key features of the switch. The dynamics of gene regulation at the λ-switch should

implement a bistable switch [77] based on the levels of the two proteins, Rep and Cro,

exhibiting either high levels of Rep and the exclusion of Cro (leading to lysogeny),

or high levels of Cro and the exclusion of Rep (leading to lysis). The protein Rep

is produced from the gene cI by the binding of RNA Polymerase (RNAP) to its

promoter region PRM, whilst the protein Cro is produced by the binding of RNAP

to its promoter region PR (Fig. 2). The proteins Rep and Cro form into dimers

which act as repressors by binding to each of the three operator regions OR1, OR2,

and OR3 which overlap with the promoter sites for PR and PRM, so that the binding

of repressors at OR3 and RNAP at PRM are mutually exclusive, and the binding

of repressors at OR1 and OR2 and RNAP at PR are mutually exclusive. The final

key component of the switch is cooperative binding : the binding of a Rep dimer at
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Fig. 3. Schematic of dimerization.

joinRep MA2×KaRepDimer

unjoinRep | unjoinRep MAKdRepDimer

degradeRep MAKdRep

Fig. 4. Affinity network ARep for dimerisation
reactions.

OR1 significantly increases the affinity for the Rep dimer at OR2; in this way a Rep

dimer at OR1 recruits another at OR2.

All values of the model’s rate parameters are taken from [55, Fig. 4], with the

exception of three new parameters defined by,

Kd_OR2_boost � Kd_OR2_rep− Kd_OR2_rep_coop = 3.835

Kf_prm_boost � Kf_prm_promoted− Kf_prm = 0.081

Kd_rep � 0.0.

To allow direct comparison between our model and the existing stochastic model,

we will assume throughout that our units of concentration have been rescaled to

coincide with copy numbers; under these units the macroscopic and stochastic rate

parameters coincide.

3.2 Modelling autoreactive sites: repressor dimerization

A key feature of λ-switch is the binding of pairs of Rep proteins (or equally pairs of

Cro proteins) to form dimers, which then act as repressors. The schema of reaction

among Rep proteins is shown in Fig. 3. The unbound Rep protein can either

degrade by interacting on the degradeRep site, causing it to decay into nothing,

or bind to another copy of itself by interacting on the joinRep site. This type of

homodimerization reaction in gene regulation, plays an important role in controlling

noise, and can be one source of cooperativity at binding sites [18]. Despite the

ubiquity of this mechanism, it is not a particularly natural fit for the communication

mechanisms of traditional π-based calculi [55], since the symmetrical nature of the

reaction needs to be broken into two halves modelling Rep by an agent such as

Rep � joinRep!.Rep2 + joinRep?.0

which offers itself a choice between sending on the joinRep! site or receiving on

the joinRep? site. This departs from the underlying chemistry firstly in breaking

the symmetry of the underlying reaction, but also, once we add in the quantitative

reaction rate KaRepDimer, splitting the reaction site into two might be expected to

result in twice the reaction rate expected from the law of mass action [50,51,67] 5 .

5 Some stochastic process calculi semantics including the original reduction semantics for stochastic π (but
not subsequent versions of the language [67, 72]) remedy this with a special rule for homodimerizations,
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In contrast, in the bond-calculus we are able to model the Rep protein as agents

representing the bond/unbound state of the protein,

Rep � degradeRep.0+ joinRep(�).RepD(�)

RepD(�) � unjoinRep@�.Rep+ bindRep@�.0

On dimerization each Rep agent and its binding partner will agree on a shared

location � and each will transition into the bound state RepD(�): overall this will

result in a dynamic complex, Rep2 � (ν �)(RepD(�) |RepD(�)), as a parallel com-

position (|) of two bound subunits held together by a shared location �. In its bound

state, RepD(�), a Rep molecule may either become unbound from the dimer by com-

municating on joinRep, or bind again, this time to an operator of the λ-switch 6 .

The interactions capacities of these agent’s reaction sites follow the affinity network,

ARep =
{
joinRep ‖ joinRep @MA2×KaRepDimer,

unjoinRep | unjoinRep @MAKdRepDimer,

degradeRep @MAKdRep

}

Here the pattern joinRep ‖ joinRep specifies that the joinRep is compatible

with itself, resulting in a dimerization reaction between two separate molecules

containing a joinRep site, whilst the pattern unjoinRep | unjoinRep results in an

undimerization reaction involving a single molecule with two parallel components,

each having a unjoinRep site. Importantly, since our model faithfully captures the

fact that the dimerization reaction is between multiple instances of a single site on

a single species, our semantics halves the resultant rate in accordance with the law

of mass action, and accordingly our rate parameter is twice that specified in the

stochastic π model.

We can also view the affinity network graphically as the hypergraph in Fig. 4, by

considering each cluster of sites as a node, and patterns as hyperedges (this directly

generalises the affinity networks of continuous π, which are labelled graphs).

The above model demonstrates how the combination of affinity patterns and our

communication mechanism based on location agreement can capture the symmetri-

cal nature of dimerization. Another advantage of this symmetry is that it allows us

to, for example, consider variants of the mechanism such as replacing dimerization

with tetramerization (as considered in [17]) simply by replacing the patterns for

binding/unbinding with,

joinRep ‖ joinRep ‖ joinRep ‖ joinRep @ MAk1

unjoinRep|unjoinRep|unjoinRep|unjoinRep @ MAk−1

without the need to modify the definitions of the agents involved in the reactions.

however, this approach breaks the strict correspondence between channels (or rather, channel ends) and
protein domains, and does not extend to multiway interactions.
6 For simplicity, we will not model dynamic binding of Reps to operators explicitly, as we have done for
dimerization and as is done in [55].
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Fig. 5. Rep, starting from low level (left) and a high level (right); this reproduces the concentration
dependent equilibrium of Rep and matches [55, Fig. 25].

Thus, affinity patterns effectively separate how agents respond to communication

at given sites, and the patterns of interaction these sites engage in.

We may use the bond-calculus tool to perform stochastic simulation, or extract

a system of ODEs describing the dynamics of dimerization. Two ODE simulation

results showing how the equilibrium shifts depending on whether we start at low or

high Rep concentration are shown in Fig. 5; these graphs are consistent with the

stochastic simulation results shown in [55, Fig. 25].

The definitions for Cro and its affinity network ACro are nearly identical to

those for Rep except the sites are renamed appropriately.

3.3 Modelling the switch: agents

We now get to the heart of the model, the λ-switch itself. Just as in Fig. 2, the

λ-switch is described as consisting of the three operators, OR1, OR2, OR3, and the

two promoters, PRM and PR; this is captured in our model as a parallel composition

of individual agents representing each of these operators and promoters, bound

together at a shared location �,

Switch � (ν �)(PRM(�) |OR3(�) |OR1(�) |OR2(�) | PR(�))

We must now give definitions for each of these constituent agents. We start with

the operators ORi (i = 1, 2, 3). These will each have three possible states: the

unbound state ORi, and the bound states ORiRep and ORiCro for Rep and Cro
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respectively.

ORi(�) � bindORiCro@�(m).ORiCro(m)

+ bindORiRep@�(m).ORiRep(m)

+ unboundORi@�.ORi(�)

+ noRepORi@�.ORi(�)

ORiRep(�) � unbindORiRep@�(m).(ORi(�) |RepD(m) |RepD(m))

+ boundORi@�.ORiRep(�)

+ hasRepORi@�.ORiRep(�)

ORiCro(�) � unbindORiCro@�(m).(ORi(�) |CroD(m) |CroD(m))

+ boundORi@�.ORiCro(�)

+ noRepORi@�.ORi(�)

Note that unlike in previous models, we have a single uniform definition for each

operator, which makes no mention of the reaction rates, or updates of neighbour-

ing sites; this is because we will describe all of the quantitative features of the

operators in the affinity network. We should note that as well as the sites for bind-

ing/unbinding, operators indicate their binding status to the other sites using their

boundORi/unboundORi sites, and, more specifically, whether they are bound to a

Rep molecule using their hasRepORi/noRepORi sites. Next we describe the agent

for the promoter PRM,

PRM(�) � bindPRM@�.PRMBound(�)

+ unboundPRM@�.PRM(�)

PRMBound(�) � unbindPRM@�.(PRM(�) |RNAP)

+ transcribeRep@�.(MRNAcI | PRM(�) |RNAP)

The agent for the promoter PR is defined nearly identically (with appropriately

renamed channels). Finally, the RNAP agent is defined as

RNAP � bindRNAP .0

3.4 Modelling the switch: affinity network

It now remains to give affinity networks, specifying the dynamics of interac-

tions at the λ-switch. Interactions at the operators are specified in the networks

AOR1 , AOR2 , and AOR3 . For example, Rep2 binding is specified via the pat-

terns in Fig. 6, allowing Rep dimers to bind to the sites at OR1, OR2, and OR3,

whilst ensuring mutual exclusion with RNAP at PR/PRM by matching against the
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unboundPR/unboundPRM sites. The full affinity network for OR1 is,

AOR1 =
{
bindOR1Cro|unboundPR ‖ bindCro|bindCro @ MAKa_protein,

bindOR1Rep|unboundPR ‖ bindRep|bindRep @ MAKa_protein,

unbindOR1Rep @ MAKd_OR1_rep,

unbindOR1Cro @ MAKd_OR1_cro

}

Here, in addition to the patterns for Rep/Cro binding, we have unary patterns

bindOR1Rep @ MAKd_OR1_rep and bindOR1Cro @ MAKd_OR1_cro which specify the

rates of unbinding for Rep/Cro dimers.

bindRep | bindRepKa_protein

Ka_protein

Ka_protein

bindOR1Rep | unboundPR bindOR2Rep | unboundPR bindOR3Rep | unboundPRM

Fig. 6. Affinity patterns for binding of Rep dimers to the operators.

The full affinity network for OR2 is,

AOR2 =
{
bindOR2Cro|unboundPR ‖ bindCro|bindCro @ MAKa_protein,

bindOR2Rep|unboundPR ‖ bindRep|bindRep @ MAKa_protein,

unbindOR2Rep @ MAKd_OR2_rep,

unbindOR2Rep|noRepOR1 @ MAKd_OR2_boost,

unbindOR2Cro @ MAKd_OR2_cro

}

Here the pattern unbindOR2Rep|noRepOR1 @ MAKd_OR1_boost captures cooperativ-

ity at OR2 by decreasing the dissociation rate by Kd_OR1_boost whenever Rep is

not bound at OR1. The affinity network AOR3 is analogous to AOR1 except that

binding is mutually exclusive with PRM rather than PR (Fig. 6) so we will not list

it in full.

bindPR | unboundOR1 | unboundOR2

bindRNAP

Ka_RNAP

Ka_RNAP
bindPRM | unboundOR3

Fig. 7. Affinity patterns for RNAP binding.

Finally, interactions at the promoters are specified in the two networks APR
and

APRM
. The key elements of these are the patterns for RNAP binding shown in

Fig. 7, which specify that RNAP may bind to PR whenever both OR1 and OR2 are

unbound, and to PR whenever both OR3 is unbound. The full network for PR is
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defined as

APR
=

{
bindPR|unboundOR1|unboundOR2 ‖ bindRNAP @ MAKa_RNAP,

unbindPR @ MAKd_PR_RNAP,

transcribeCro @ MAKf_pr

}

which has additional patterns for the unbinding of RNAP and for the transcription

of Cro, whilst the full network for PRM is defined as,

APRM
=

{
bindPRM |unboundOR3 ‖ bindRNAP @ MAKa_RNAP,

unbindPRM @ MAKd_PRM_RNAP,

transcribeRep @ MAKf_prm,

transcribeRep|hasRepOR2 @ MAKf_prm_boost,
}

In the network APRM
, the extra pattern transcribeRep|hasRepOR2 @ MAKf_prm_boost

captures cooperative modification by increasing the Rep transcription rate by

Kf_prm_boost whenever Rep is bound at OR2.

3.5 Overall model

We can put together the components of our model by defining the mixture

M � 1 · Switch ‖ [Cro] ·Cro ‖ [Rep] ·Rep ‖ [RNAP] ·RNAP

and defining the overall affinity network containing the patterns for each component,

A � ARep ∪ ACro ∪ AOR1 ∪ AOR2 ∪ AOR3 ∪ APR
∪ APRM

.

We can then use this bond-calculus description to generate more conventional math-

ematical models for simulation and analysis. Our tool translates this particular

model into a chemical reaction network with 47 species and 181 reaction rules: of

the 47 species, 40 correspond to the different possible binding states of the right

operator of the λ-switch, and these match the states enumerated combinatorially

in [79, Table 2]. The tool also generates from this bond-calculus model a system of

coupled ODEs. These differential equations should be viewed with caution since the

low copy numbers of molecules involved in gene regulation (especially the switch

itself) mean that stochastic or hybrid stochastic models [16] might give a more faith-

ful view of the dynamics. We also note that for more practical analysis analysis of

the system these ODEs could be reduced via appropriate equilibrium assumptions

as in [7, 79], or by network level modelling using general kinetic laws as considered

in the next section. Nevertheless, these ODEs give a useful indication of the mean

behaviour of the switch under similar assumptions to existing thermodynamic mod-

els [1,77]. In Fig. 8 we see the binding curves for repressors at each operator of the

switch, computed by simulation of the ODEs at different levels of Rep concentra-

tion; this matches [55, Fig. 28], which records the mean behaviour of the original

stochastic π model.
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Fig. 8. The mean occupancy of each operator over 5000 seconds, given initial Rep concentration [Rep], and
no RNAP or Cro. Based on numerical simulation of bond-calculus ODEs: this matches [55, Fig. 28], which
was generated using stochastic simulation.

4 Network level modelling

In Section 3 we saw how gene regulation can be modelled at a molecular level, by

modelling all possible binding states of the regulatory region. This level of detail

is not, however, necessary to give a useful model of the regulatory interactions in

a network. In this section we will give a general purpose, high level model of gene

transcription and translation in the bond-calculus, and show how affinity patterns

and general kinetic laws may be used to capture the patterns of regulation which

interconnect them. We will then look at the specific example of the Plant Circadian

Clock [32].

4.1 Modelling the central dogma

To begin our modelling of gene regulation we need to define species capturing the

agents involved in the production of a generic protein which we will denote X. To

this end we will define three species: GeneX which denotes the gene encoding X,

mRNAX which denotes the RNA form of X, and ProteinX which denotes the

protein form of X. We define these species as follows,

GeneX � cX .(GeneX |mRNAX)

mRNAX � dMX .0+ tX .(mRNAX | ProteinX)

ProteinX � dX .0+ iX .ProteinX .

These species can interact at a number of sites according to the central dogma of

molecular biology : interaction at site cX causes GeneX to be transcribed into its

RNA form mRNAX , whilst interaction at site tX causes mRNAX to be translated

into its protein form ProteinX . We also allow the mRNAX to decay by inter-

acting at site dMX and for ProteinX to decay by interacting at site dX . Finally,

ProteinX has an additional site iX (influence) which does not change its state,

but will allow it to act as an activator or repressor for other reactions.
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4.2 Gene gates via general kinetics and affinity patterns

In order to model the dynamics of concrete gene regulatory networks, we need to

supplement the skeletal model of translation and transcription given in the previous

section with an affinity network which specifies the dynamics of the network accord-

ing to general kinetic laws. If we have a detailed knowledge of the mechanism of

binding (similar to our model in Section 3), it is possible to derive suitable kinetic

laws based on the probability of binding at equilibrium [1, 8, 9], however, in prac-

tice, since this knowledge is rarely available, a more pragmatic approach is pursued

where kinetic laws are used as phenomenological models to fit experimental data.

One common such model derives from the Hill equation [43], which approximates

the occupancy of an operator O by a protein P as

f[P ],K,n =
[P ]n

Kn + [P ]n
=

(
[P ]
K

)n

1 +
(
[P ]
K

)n

where K ∈ R≥0 is the protein concentration producing 50% operator occupancy,

and the Hill coefficient n ∈ R which measures the degree of cooperativity. Whilst

the Hill equation was originally derived as an equilibrium model for cooperative

binding at n binding sites [43], in practice the Hill coefficient n is used to capture

many different types of positive cooperativity and rarely corresponds precisely to

the number of binding sites [85].

We may then define the general kinetic laws,

Hill+v,K,n([G] , [P ]) � vf[P ],K,n [G]

Hill−v,K,n([G] , [P ]) � v(1− f[P ],K,n) [G]

which give the rate of transcription of a gene G under positive or negative regulation

by protein P respectively.

For example, this allows us to model a simple gene regulatory network where

transcription of B is activated by A and A is repressed by B (Fig. 9) using the

affinity patterns,

Fig. 9: A simple gene regulatory

network, exhibiting positive and

negative regulation.

cA ‖ iB @ Hill+k1,K1,n1
,

cB ‖ iA @ Hill−k2,K2,n2
,

plus extra patterns to account for degrada-

tion and translation, and the mixture defined

by,

Π � [A]GeneA ‖ [B]GeneB.

For the case of a general gene gate with n activators A1, . . . , An and m inhibitors
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Fig. 10. Compact gene regulation network for the
plant circadian clock of [32, Fig. 1]: each gene rep-
resents two genes of the underlying network.

iCL

cP97 Hillv;l;k

iP51 iEL

Fig. 11. Affinity pattern for transcription regula-
tion at P97 where v = (v2A, v2B), l = (K3), and
k = (K4,K5).

I1, . . . , Im, we can use generalised Hill-type laws 7 such as [32],

Hillv;l;k;s;t([G] ; [A1] , . . . , [Am] ; [I1] , . . . , [In]) �
v0 +

v1
(

[A1]
l1

)s1
+...+vm

(
[Am]
lm

)sm

1+
(

[A1]
l1

)s1
+...+

(
[Am]
lm

)sm

1 +
(
[I1]
k1

)tn
+ . . .+

(
[In]
kn

)tn
[G]

Here we have a vector of parameters v = (v0, v1, . . . , vm) for the activation veloc-

ities, l = (l1, . . . , lm) and k = (k1, . . . , kn) for the activation/repression fractional

occupancies, and s = (s1, . . . , sm) and t = (t1, . . . , tn) for the Hill coefficients for

activators/inhibitors. For the remainder of this paper we will consider only Hill

coefficients s1 = . . . = sm = t1 = . . . = tn = 2, and write simply, Hillv;l;k for the

corresponding kinetic laws.

4.3 Example: compact plant circadian clock

In this section we will look at the plant circadian clock, a complex genetic circuit

consisting of at least a dozen genes sustaining regular oscillations through a number

of interconnected positive and negative transcriptional feedback loops [65]. The

circadian clock of model organism Arabidopsis thaliana in particular has been the

subject of a series of increasingly sophisticated mathematical models over the last

decade [36, 61, 68, 69, 78, 88]. Bio-PEPA has been used to analyse the stochastic

properties of plant circadian clock [39] starting from Pokhilko et al’s continuous

model [68], along with several other clocks [2, 3, 5, 28], whilst the Kai-based (non-

transcriptional) circadian clock [5,57] is a standard case study for continuous π. Here

we will take as our basis the compact model of [31, 32] which expresses qualitative

behaviour of the clock using only four species (Fig. 10), and for simplicity we restrict

our model to constant daylight conditions (the original model includes separate rates

for light/dark conditions [31] which can be modelled either as discrete events [27,37]

or smooth transition functions [39, 75]).

We start our model with a mixture covering all of the genes in the network,

7 Here we have used the same form of Hill-type function as [32], however, there are many variants in use
in the literature e.g. [8, 46,69,82].
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Fig. 12. Plant circadian clock protein levels, with ODE simulation on the left (with parameter values based
on [32]), and stochastic simulation with discrete levels of step size h = 0.01 on the right.

constructed by instantiating the species defined in Section 4.1.

M � 1 ·GeneCL ‖ 1 ·GeneP97 ‖ 1 ·GeneP51 ‖ 1 ·GeneEL

These species only represent the various agents implementing the mechanism of

gene regulation. The main regulatory interactions between the various genes are

specified separately via the affinity network,

AReg =
{
cCL ‖ iP97 ‖ iP51 @ Hill(v1);;(K1,K2),

cP97 ‖ iCL ‖ iP51 ‖ iEL @ Hill(v2A,v2B);(K3);(K4,K5),

cP51 ‖ iCL ‖ iP51 @ Hill(v3);();(K6,K7),

cEL ‖ iCL ‖ iP51 ‖ iEL @ Hill(v4);();(K8,K9,K10)

}

These patterns assign sites as the arguments of the kinetic law in a positional

manner so, for example, the affinity pattern cCL ‖ iP97 ‖ iP51 @ Hill(v1);();(K1,K2)

indicates that the transcription of the CL mRNA is inhibited by the P97 and P51

proteins whilst the affinity pattern cP97 ‖ iCL ‖ iP51 ‖ iEL @ Hill(v2A,v2B);(K3);(K4,K5)

(displayed graphically in Fig. 11) indicates that the transcription of the P97 mRNA

is activated by the CL protein and is inhibited by the P51 and EL proteins (as in

Fig. 10). Additionally the degradation and translation rates are captured in the

network,

ARest =
{
dMCL @ MAk1L , dCL @ MAd1 , tCL @ MAp1T ,

dM P97 @ MAk2 , dP97 @ MAd2L , tP97 @ MAp2 ,

dM P51 @ MAk3 , dP51 @ MAd3L , tP51 @ MAp3 ,

dM EL @ MAk4 , dEL @ MAd4L , tEL @ MAp4

}

This demonstrates the ability of bond-calculus to capture a general model of gene

regulation as agents, whilst the affinity network captures the specific interactions

in the network with dynamics following a general kinetic law.

Generating ODEs from this bond-calculus model gives a system of differential
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equations that coincides with the model of [32] under constant daylight conditions;

Fig. 12 (left) shows the result of numerical simulation. This give a reasonable

agreement with a single run of stochastic simulation in Fig. 12 (right), also generated

from the bond-calculus model.

5 Conclusion

In this paper we applied the bond-calculus to modelling gene regulation, at the

molecular and network levels. At the molecular level, we saw that affinity patterns

are able to succinctly capture cooperative interactions at the λ-switch, and that sim-

ulation results from the bond-calculus’s differential equation semantics reproduces

the mean behaviour of previous stochastic process algebra models (Fig. 2). At the

network level, we showed how the bond-calculus is able to model general gene reg-

ulatory networks using affinity patterns and general kinetic laws, and looked at the

specific case of the Plant Circadian Clock [32]. Through these examples we see how

the bond-calculus is able to adopt modelling styles to effectively capture common

patterns of interaction in gene regulatory networks. Whilst these draw upon the

modelling styles of several existing biochemical process algebras [28,55,57,71,72,84]

and also of rule-based languages [7,53], we argue that the overall style of our models

is quite distinctive: the agents model each component of the system and their inter-

nal evolution, whilst affinity patterns describe contextual interactions between sites

without reference to the internal structure of agents or specifying how agents should

respond to interactions, and correspond to a natural graphical representation of the

interactions between sites (Fig. 6 and Fig. 11).

So far we have focused on expressing models in the bond-calculus, however,

more work needs to be done to develop techniques to analyse these models. One

approach would be to extend the Logic of Behaviour in Context (LBC) [6], which can

verify properties of continuous π models using temporal logic and continuous π’s

ODE semantics. This includes both standard temporal operators and a context

operator M� ϕ, allowing us to ask whether a temporal property ϕ holds once the

system is composed with a context mixture M. This makes it possible to carry

out quantitative experiments which modify the context of a model over time, and

to express quite general questions about its behaviour under perturbation [6]. We

could also extend LBC with new types of context operators which extend or modify

the affinity network of the system, which would, for example, offer a new way to

reason about the entrainment [27, 32, 39] of the plant circadian clock to night/day

cycles.
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[32] De Caluwé, J., Q. Xiao, C. Hermans, N. Verbruggen, J.-C. Leloup and D. Gonze, A compact model for
the complex plant circadian clock, Frontiers in plant science 7 (2016).

[33] Degano, P., D. Prandi, C. Priami and P. Quaglia, Beta-binders for biological quantitative experiments,
Electronic Notes in Theoretical Computer Science 164 (2006), pp. 101 – 117, proceedings of the 4th
International Workshop on Quantitative Aspects of Programming Languages (QAPL 2006).
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[88] Zeilinger, M. N., E. M. Farré, S. R. Taylor, S. A. Kay and F. J. Doyle, A novel computational model
of the circadian clock in Arabidopsis that incorporates PRR7 and PRR9, Molecular Systems Biology
2 (2006).

T. Wright, I. Stark / Electronic Notes in Theoretical Computer Science 350 (2020) 117–138138

https://github.com/twright/bondwb
https://arxiv.org/abs/1804.07603

	Introduction
	Related work

	Modelling in the bond-calculus
	Molecular level modelling: cooperativity at the -switch
	The basics of the model
	Modelling autoreactive sites: repressor dimerization
	Modelling the switch: agents
	Modelling the switch: affinity network
	Overall model

	Network level modelling
	Modelling the central dogma
	Gene gates via general kinetics and affinity patterns
	Example: compact plant circadian clock

	Conclusion
	References

