
Journal of Computer and System Sciences 115 (2021) 1–21
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Searching by heterogeneous agents ✩

Dariusz Dereniowski a,1, Łukasz Kuszner b, Robert Ostrowski a,∗
a Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Poland
b Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Poland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 5 November 2019
Received in revised form 23 March 2020
Accepted 29 June 2020
Available online 17 July 2020

Keywords:
Edge search
Graph searching
Mobile agent computing
Monotonicity
Pursuit-evasion

In this work we introduce and study a pursuit-evasion game in which the search is
performed by heterogeneous entities. We incorporate heterogeneity into the classical edge
search problem by considering edge-labeled graphs: once a search strategy initially assigns
labels to the searchers, each searcher can be only present on an edge of its own label.
We prove that this problem is not monotone even for trees and we give instances in
which the number of recontamination events is asymptotically quadratic in the tree size.
Other negative results regard the NP-completeness of the monotone, and NP-hardness of
an arbitrary (i.e., non-monotone) heterogeneous search in trees. These properties show that
this problem behaves very differently from the classical edge search. On the other hand, if
all edges of a particular label form a (connected) subtree of the input tree, then we show
that optimal heterogeneous search strategy can be computed efficiently.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Consider a scenario in which a team of searchers should propose a search strategy, i.e., a sequence of their moves, that
results in capturing a fast and invisible fugitive hiding in a graph. This strategy should succeed regardless of the actions
of the fugitive and the fugitive is considered captured when at some point it shares the same location with a searcher.
In a strategy, the searchers may perform the following moves: a searcher may be placed/removed on/from a vertex of the
graph, and a searcher may slide along an edge from currently occupied vertex to its neighbor. The fugitive may represent
an entity that does not want to be captured but may as well be an entity that wants to be found but is constantly moving
and the searchers cannot make any assumptions on its behavior. There are numerous models of graph searching that have
been introduced and studied and these models can be produced by enforcing some properties of the fugitive (e.g., visibility,
speed, randomness of its movements), properties of the searchers (e.g., speed, type of knowledge provided as an input
or during the search, restricted movements, radius of capture), types of graphs (e.g., simple, directed) or by considering
different optimization criteria (e.g., number of searchers, search cost, search time).

One of the central concepts in graph searching theory is monotonicity. Informally speaking, if a search strategy has the
property that once a searcher traversed an edge (and by this action it has been verified that in this very moment the fugitive
is not present on this edge) it is guaranteed (by the future actions of the searchers) that the edge remains inaccessible to

✩ Research partially supported by National Science Centre (Poland) grant number 2015/17/B/ST6/01887. Partially supported under ministry subsidy for
research for Gdansk University of Technology. A preliminary version of this paper appeared in the Proc. 11th International Conference on Algorithms and
Complexity (CIAC 2019).

* Corresponding author.
E-mail addresses: deren@eti.pg.edu.pl (D. Dereniowski), lkuszner@inf.ug.edu.pl (Ł. Kuszner), robostro@student.pg.gda.pl (R. Ostrowski).

1 Full postal address: Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk, Poland.
https://doi.org/10.1016/j.jcss.2020.06.008
0022-0000/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2020.06.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2020.06.008&domain=pdf
mailto:deren@eti.pg.edu.pl
mailto:lkuszner@inf.ug.edu.pl
mailto:robostro@student.pg.gda.pl
https://doi.org/10.1016/j.jcss.2020.06.008

2 D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21
the fugitive, then we say that the search strategy is monotone. In most graph searching models, including the edge search
recalled above, it is not beneficial to consider search strategies that are not monotone. Such a property is crucial for two
main reasons: firstly, knowing that monotone strategies include optimal ones reduces the algorithmic search space when
finding good strategies and secondly, monotonicity places the problem in the class NP.

To the best of our knowledge, all searching problems studied to date are considering the searchers to have the same
characteristics. More precisely, the searchers may have different ‘identities’ which allows them to differentiate their actions
but their properties like speed, radius of capture or interactions with the fugitive are identical. However, there exist pursuit-
evasion games in which some additional device (like a sensor or a trap) is used by the searchers [7–9,36]. In this work we
introduce a searching problem in which searchers are different: each searcher has access only to some part of the graph.
More precisely, there are several types of searchers, and for each edge e in the graph, only one type of searchers can slide
along e. We motivate this type of search twofold. First, referring to some applications of graph searching problems in the
field of robotics, one can imagine scenarios in which the robots that should physically move around the environment to
execute a search strategy may not be all the same. Thus some robots, for various reasons, may not have access to the entire
search space. Our second motivation is an attempt to understand the concept of monotonicity in graph searching. In general,
the graph searching theory lacks of tools for analyzing search strategies that are not monotone, where a famous example
is the question whether the connected search problem belongs to NP [2]. (In a connected search we require that at each
point of the strategy the subgraph that is guaranteed not to contain the fugitive is connected; for a formal definition see
Section 2.1.) In the latter, the simplest examples that show that recontamination may be beneficial for some graphs are quite
complicated [38]. The variant of searching that we introduce has an interesting property: it is possible to construct relatively
simple examples of graphs in which multiple recontaminations are required to search the graph with the minimum number
of searchers. Moreover, it is interesting that this property holds even for trees.

1.1. Related work

In this work we adopt two models of graph searching to our purposes. Those models are the classical edge search [33,34],
which is historically the first model studied, and its connected variant introduced in [3]. As an optimization criterion we
consider minimization of the number of searchers a strategy uses.

The edge search problem is known to be monotone [5,28] but the connected search is not [38]. See also [22] for a more
unified approach for proving monotonicity for particular graph searching problems. Knowing that the connected search is
not monotone, a natural question is what is the ‘price of monotonicity’, i.e., what is the ratio of the minimum number
of searchers required in a monotone strategy and an arbitrary (possibly non-monotone) one? It follows that this ratio is a
constant that tends to 2 [15]. We remark that if the searchers do not know the graph in advance and need to learn its
structure during execution of their search strategy then this ratio is �(n/ log n) even for trees [26]. An example of recently
introduced model of exclusive graph searching shows that internal edge search with additional restriction that at most one
searcher can occupy a vertex behaves very differently than edge search. Namely, considerably more searchers are required
for trees and exclusive graph searching is not monotone even in trees [6,30]. Few other searching problems are known not
to be monotone and we only provide references for further readings [12,23,38]. Also see [21] for a searching problem for
which determining whether monotonicity holds turns out to be a challenging open problem.

Since we focus on trees in this work, we briefly survey a few known results for this class of graphs. An edge search
strategy that minimizes the number of searchers can be computed in linear time for trees [31]. Connected search is mono-
tone and can be computed efficiently for trees [2] as well. However, if one considers weighted trees (the weight of a vertex
or edge indicates how many searchers are required to clean or prevent recontamination), then the problem turns out to be
strongly NP-complete, both for edge search [32] and connected search [13]. On the other hand, due to [14,15] both of these
weighted problems have constant factor approximations. The class of trees usually turns out to be a very natural subclass to
study for many graph searching problems — for some recent algorithmic and complexity examples see e.g. [1,16,18,24]. See
also [25] for an approximation algorithm for general graphs that performs by adopting optimal search strategies computed
for spanning trees of the input graph.

We conclude by pointing to few works that use heterogeneous agents for solving different computational tasks, mostly
in the area of mobile agent computing. These include modeling traffic flow [35], meeting [29] or rendezvous [17,19,20]. We
also note that heterogeneity can be introduced by providing weights to mobile agents, where the meaning of the weight
is specific to a particular problem to be solved [4,10,27], while in [11] authors consider patrolling by robots with distinct
speeds and visibility ranges.

1.2. Our work — a short outline

We focus on studying monotonicity and computational complexity of our heterogeneous graph searching problem that
we formally define in Section 2.1. We start by proving that the problem is not monotone in the class of trees (Section 3).
Then in Section 4 we show that, also in trees, monotone search with heterogeneous searchers is NP-complete. In Section 5
we prove that the general, non-monotone, searching problem is NP-hard for trees.

Our investigations suggest that the essence of the problem difficulty is hidden in the properties of the availability areas
of the searchers. For example, the problem becomes hard for trees if such areas are allowed to be disconnected. To formally

D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21 3
argue that this is the case we give, in Section 6, a polynomial-time algorithm that finds an optimal search strategy for
heterogeneous searchers in case when each color class induces a connected subtree. This result holds also for the connected
version of the heterogeneous graph search problem.

Section 2 is concluded with Table 1 that points out the complexity and monotonicity differences between the classical
and connected edge search with respect to our problem.

2. Preliminaries

In this work we consider simple edge-labeled graphs G = (V (G), E(G), c), i.e., without loops or multiple edges, where
c : E(G) → {1, . . . , z} is a function that assigns labels, called colors, to the edges of G . Then, if c({u, v}) = i, {u, v} ∈ E(G),
then we also say that vertices u and v have color i. Note that vertices may have multiple colors, so by c(v) := {c({u, v}) :
{u, v} ∈ E(G)} we will refer to the set of colors of a vertex v ∈ V (G).

2.1. Problem formulation

We will start by recalling the classical edge search problem [33] and then we will formally introduce our adaptation of
this problem to the case of heterogeneous searchers.

An (edge) search strategy S for a simple graph G = (V (G), E(G)) is a sequence of moves S = (m1, . . . , m�). Each move mi
is one of the following actions:

(M1) placing a searcher on a vertex,
(M2) removing a searcher from a vertex,
(M3) sliding a searcher present on a vertex u along an edge {u, v} of G , which results in a searcher ending up on v .

We often write for brevity ‘move i’ in place of ‘move mi ’.
Furthermore, we recursively define for each i ∈ {0, . . . , �} a set Ci such that Ci , i > 0, is the set of edges that are clean

after the move mi and C0 is the set of edges that are clean prior to the first move of S . Initially, we set C0 = ∅. For i > 0
we compute Ci in two steps. In the first step, let C′

i = Ci−1 for moves (M1) and (M2), and let C′
i = Ci−1 ∪ {{u, v}} for a

move (M3). In the second step compute Ri to consists of all edges e in C′
i such that there exists a path P in G such that

no vertex of P is occupied by a searcher at the end of move mi , one endpoint of P belongs to e and the other endpoint
of P belongs to an edge not in Ci−1.2 We stress out that it is enough that only one such path exists, and in particular,
if a contaminated edge is adjacent to a clean edge e, then e becomes contaminated when their common vertex v is not
occupied by a searcher. In such case, P consists of the vertex v only. Then, set Ci = C′

i \Ri . If Ri �= ∅, then we say that the
edges in Ri become recontaminated (or that recontamination occurs in S if it is not important which edges are involved). If
le is the number of times the edge e becomes recontaminated during a search strategy, then the value

∑
e∈E(G) le is referred

to as the number of unit recontaminations. Finally, we define Di = E(G) \ Ci to be the set of edges that are contaminated at
the end of move mi , i > 0, where again D0 refers to the state prior to the first move. Note that D0 = E(G). We require from
a search strategy that C� = E(G).

Denote by V (mi) the vertices occupied by searchers at the end of move mi . We write |S| to denote the number of
searchers used by S understood as the minimum number k such that at most k searchers are present on the graph in each
move. Then, the search number of G is

s(G) = min
{|S| ∣∣ S is a search strategy for G

}
.

If the graph induced by edges in Ci is connected for each i ∈ {1, . . . , �}, then we say that S is connected. We then recall
the connected search number of G:

cs(G) = min
{|S| ∣∣ S is a connected search strategy for G

}
.

We now adopt the above classical graph searching definitions to the searching problem we study in this work. For an
edge-labeled graph G = (V (G), E(G), c), a search strategy assigns to each of the k searchers used by a search strategy a
color: the color of searcher j is denoted by c̃(j). This is done prior to any move, and the assignment remains fixed for the
rest of the strategy. Then again, a search strategy S is a sequence of moves with the following constraints: in move (M1)
that places a searcher j on a vertex v it holds c̃(j) ∈ c(v); move (M2) has no additional constraints; in move (M3) that
uses a searcher j for sliding along an edge {u, v} it holds c̃(j) = c({u, v}). Note that, in other words, the above constraints
enforce the strategy to obey the requirement that at any given time a searcher may be present on a vertex of the same
color and a searcher may only slide along an edge of the same color. To stress out that a search strategy uses searchers

2 We point out that another way of computing the set Ci is possible. Namely, start again with the same set C′
i . Then, check if the following condition

holds: there exists an edge e in C′
i that is adjacent to an edge not in C′

i and their common vertex is not occupied by a searcher. In such case, remove e
from C′

i . Keep repeating such an edge removal from C′
i until there is no such edge e. Then, set Ci = C′

i and Ri = E(G) \ C′
i .

4 D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21
Table 1
Monotonicity and complexity summary of our problems in comparison with the classical and connected edge search problems for trees and arbitrary
graphs.

Monotone Non-monotone Complexity

Edge search arbitrary graphs [33,34,32,31] P for trees [31], NPC for weighted trees [32], NPC for arbitrary
graphs [31]

Connected edge search trees [2,3] arbitrary graphs [38] P for trees [2], NPC for weighted trees [13], NPH for arbitrary
graphs [2]

HGS trees [Theorem 1] NPH for trees [Theorem 4]

with color assignment c̃, we refer to as a search c̃-strategy. We write c̃S(j) to refer to the number of searchers with color j
in a search strategy S .

Then we introduce the corresponding graph parameters hs(G) and hcs(G) called the heterogeneous search number and
heterogeneous connected search number of G , where hs(G) (respectively hcs(G)) is the minimum integer k such that there
exists a (connected) search c̃-strategy for G that uses k searchers.

Whenever we write s(G) or cs(G) for an edge-labeled graph G = (V , E, c) we refer to s(G ′) and cs(G ′), respectively,
where G ′ = (V , E) is isomorphic to G .

We say that a search strategy S is monotone if no recontamination occurs in S . Analogously, for the search numbers
given above, we define monotone, connected monotone, heterogeneous monotone and connected heterogeneous monotone search
numbers denoted by ms(G), mcs(G), mhs(G) and mhcs(G), respectively, to be the minimum number of searchers required
by an appropriate monotone search strategy.

The decision versions of the combinatorial problems we study in this work are as follows:

Heterogeneous Graph Searching Problem (HGS)
Given an edge-labeled graph G = (V (G), E(G), c) and an integer k, does it hold hs(G) ≤ k?

Heterogeneous Connected Graph Searching Problem (HCGS)
Given an edge-labeled graph G = (V (G), E(G), c) and an integer k, does it hold hcs(G) ≤ k?

In the optimization versions of both problems an edge-labeled graph G is given as an input and the goal is to find the
minimum integer k, a labeling c̃ of k searchers and a (connected) search c̃-strategy for G .

2.2. Additional notation and remarks

For some nodes v in V (G) we have |c(v)| > 1, such connecting nodes we will call junctions. Thus a node v is a junction
if there exist two edges with different colors incident to v .

We define an area in G to be a maximal subgraph H of G such that for every two edges e, f of H , there exists a path
P in H connecting an endpoint of e with and endpoint of f such that P contains no junctions. We further extend our
notation to denote by c(H) the color of all edges in area H . Note that two areas of the same color may share a junction. Let
Areas(G) denote all areas of G . Two areas are said to be adjacent if they include the same junction.

Fact 2.1. If T is a tree and v is a junction that belongs to some area H in T , then v is a leaf (its degree is one) in H. �
Fact 2.2. If T is a tree, then any two different areas in T have at most one common node which is a junction. �
Lemma 2.1. Given a tree T = (V (T), E(T), c) and any area H in T , any search c̃-strategy for T uses at least s(H) searchers of color
c(H).

Proof. If there are less than s(H) searchers of color c(H), then the area H can not be cleaned, as searchers of other colors
can only be placed on leafs of H . �

We now use the above lemma to obtain a lower bound for the heterogeneous search number of a graph G =
(V (G), E(G), c : E(G) → {1, . . . , z}). Define

β(G) =
z∑

i=1

max
{
s(H)

∣∣ H ∈ Areas(G), c(H) = i
}
.

Using Lemma 2.1 for each area we obtain the following:

Lemma 2.2. For each tree T it holds hs(T) ≥ β(T). �

D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21 5
Fig. 1. The construction of T3 (l = 3) from the trees T ′
1, T ′

2 and T ′′
3 . Regular, heavy and dashed edges have labels 1,2 and 3, respectively.

3. Lack of monotonicity

Restricting available strategies to monotone ones can lead to increase of heterogeneous search number, even in case of
trees. We express this statement in form of the following main theorem of this section:

Theorem 1. There exists a tree T such that mhs(T) > hs(T).

In order to prove this theorem we provide an example of a tree Tl = (V , E, c), where l ≥ 3 is an integer, which cannot be
cleaned with β(Tl) searchers using a monotone search strategy, but there exists a non-monotone strategy, provided below,
which achieves this goal. Our construction is shown in Fig. 1.

We first define three building blocks needed to obtain Tl , namely subtrees T ′
1, T ′

2 and T ′′
l . We use three colors, i.e., k ≥ 3.

The construction of the tree T ′
i , i ∈ {1, 2}, starts with a root vertex qi , which has 3 further children connected by edges of

color 1. Each child of qi has 3 children connected by edges of color 2.
For the tree T ′′

l , l ≥ 3, take vertices v0, . . . , vl+1 that form a path with edges ex = {vx, vx+1}, x ∈ {0, . . . , l}. We set
c(ex) = x mod 3 + 1. We attach one pendant edge with color x mod 3 + 1 and one with color (x − 1) mod 3 + 1 to
each vertex vx, x ∈ {1, . . . , l}. Next, we take a path P with four edges in which two internal edges are of color 2 and two
remaining edges are of color 3. To finish the construction of T ′′

l , identify the middle vertex of P , incident to the two edges
of color 2, with the vertex v0 of the previously constructed subgraph.

We link two copies of T ′
i , i ∈ {1, 2}, by identifying two endpoints of the path P with the roots q1 and q2 of T ′

1 and T ′
2,

respectively, obtaining the final tree Tl shown in Fig. 1.
Now, we are going to analyze a potential monotone search c̃-strategy S using β(Tl) = 3 searchers. Thus, by Lemma 2.1,

S uses one searcher of each color. We define a notion of a step for S = (m1, . . . , ml) to refer to some particular moves of
this strategy. We distinguish the following steps that will be used in the lemmas below:

1. step ti, i ∈ {1, 2}, equals the minimum index j such that at the end of move m j all searchers are placed on the vertices
of T ′

i (informally, this is the first move in which all searchers are present in T ′
i);

2. step t′
i, i ∈ {1, 2}, is the maximum index j such that at the end of move m j all searchers are placed on the vertices of T ′

i
(informally, this is the last move in which all searchers are present in T ′

i);
3. steps t3, t′

3 are, respectively, the minimum and maximum indices j such that at the end of move m j all searchers are
placed on the vertices in V (P) ∪ V (T ′′

l).

We skip a simple proof that all above steps are well defined, i.e., for any search strategy using 3 searchers for T each of
the steps ti, t′

i , i ∈ {1, 2, 3}, must occur (for trees T ′
1 and T ′

2 this immediately follows from s(T ′
i) = 3 for i ∈ {1, 2}).

Lemma 3.1. For each monotone c̃-search strategy S for T3 it holds: t1 ≤ t′
1 < t3 ≤ t′

3 < t2 ≤ t′
2 or t2 ≤ t′

2 < t3 ≤ t′
3 < t1 ≤ t′

1 .

Proof. Intuitively, we prove the lemma using the following argument: in the process of cleaning T ′
i , i ∈ {1, 2}, all three

searchers are required for some steps, and therefore a monotone strategy could not have partially cleaned T ′
3−i or T ′′

3 prior
to this point.

6 D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21
The arguments used to prove this lemma do not use colors, so atomic statements about search strategies for subgraphs
can be analyzed using simple and well known results for edge search model. Furthermore, due to the symmetry of T , it is
enough to analyze only the case when t1 < t2. Note that ti ≤ t′

i, i ∈ {1, 2, 3}, follows directly from the definition. The vertices
qi , i ∈ {1, 2}, have to be guarded at some point between move ti and move t′

i because s(T ′
i) = 3. Because each step t j ,

j ∈ {1, 2, 3}, uses all searchers, it cannot be performed if a searcher preventing recontamination is required to stay outside
of subtree related to the respective step. The subtrees T ′

1 and T ′
2 contain no common vertices, so t1 < t2 implies t2 > t′

1, as
stated in the lemma.

Suppose for a contradiction that t3 < ti for each i ∈ {1, 2}. In move t3, since neither of moves t′
i has occurred, both

subtrees T ′
1, T

′
2 contain contaminated edges. Moreover, some of the contaminated edges are incident to vertices qi . Thus,

any edge of T ′′
l that is clean becomes recontaminated in the step min{t1, t2}. Therefore, t1 < t3 as required.

Now we prove that t′
1 < t3. Suppose for a contradiction that t1 < t3 < t′

1. Consider the move of index t′
1. By t3 < t′

1, T ′′
l

contains clean edges. By t′
1 < t2, q2 is incident to contaminated edges in T ′

2. Thus, there is a searcher outside of T ′
1 which

prevents recontamination of clean edges in T ′′
l . Contradiction with the definition of t′

1.
In move t2 there are no spare searchers left to guard any contaminated area outside T ′

2 which bypasses q2 and could
threaten recontamination of T ′

1, so all edges, including the ones in T ′′
l , between those two trees should have been clean

already. Therefore step t′
3 has to have already occurred, which allows us to conclude t′

3 < t2. �
Due to the symmetry of Tl , we consider further only the case t1 ≤ t′

1 < t3 ≤ t′
3 < t2 ≤ t′

2.

Lemma 3.2. During each move of index t ∈ [t′
1, t2] there is a searcher on a vertex of P .

Proof. By t ≥ t′
1, q1 is incident to some clean edges of T ′

1. By t ≤ t2, q2 is incident to some contaminated edges from T ′
2.

Hence there has to be a searcher on q1, q2 or a vertex of the path P between them to prevent recontamination. �
Let f i, i ∈ {1, . . . , l − 1}, be the index of a move such that one of the edges incident to vi is clean, one of the edges

incident to vi is being cleaned and all other edges incident to vi are contaminated.
Notice that s(T ′′

l) = 2, and therefore an arbitrary search strategy S ′ using two searchers to clean a subtree without
colors that is isomorphic to T ′′

l follows one of these patterns: either the first searcher is placed, in some move of S ′ , on v1
and throughout the search strategy it moves from v1 to vl−1 or the first searcher starts at vl−1 and moves from vl−1 to v1
while S ′ proceeds. If for each i ∈ {1, . . . , l − 1} the edge {vi−1, vi} becomes clean prior to the edge {vi, vi+1} — we say that
such S ′ cleans T ′′

l from v1 to vl−1 and if the edge {vi−1, vi} becomes clean after {vi, vi+1} — we say that such S cleans T ′′
l

from vl−1 to v1.

Lemma 3.3. Each move of index f i, i ∈ {1, . . . , l − 1}, is well defined. Either f1 < f2 < . . . < fl−2 < fl−1 or fl−1 < fl−2 < . . . < f2 <

f1 .

Proof. Consider a move of index f which belongs to [t3, t′
3] in a search strategy S . By Lemma 3.1 and Lemma 3.2, a

searcher is present on a vertex of P in the move of index f . Hence, only two searchers can be in T ′′
l in the move f , so

S cleans T ′′
l from v1 to vl−1 or cleans T ′′

l from vl−1 to v1. Note that during an execution of such a strategy there occur
moves which satisfy the definition of f i , and therefore there exists well defined f i . When S cleans T ′′

l from v0 to vl , then
f1 < f2 < . . . < fl−2 < fl−1 is satisfied and when S cleans T ′′

l from vl to v0, then fl−1 < fl−2 < . . . < f2 < f1 is satisfied. �
Lemma 3.4. There exists no monotone search c̃-strategy that uses 3 searchers to clean Tl when l ≥ 7.

Proof. We use the following intuition in the proof: whenever a search strategy tries to clean the path composed of the
vertices v0, . . . , vl+1, together with the corresponding incident edges, then it periodically needs searchers of all three colors
on this path. While doing this, different vertices of the path P need to be guarded. More precisely, when the search moves
along the former path, it needs to move along P as well. Due to the fact that l is large enough, the path P is not long
enough to avoid recontamination.

The vertex vi, i ∈ {1, . . . , l − 1}, is incident to edges of colors i mod 3 + 1 and (i − 1) mod 3 + 1, and therefore each move
f i uses both searchers of colors i mod 3 + 1 and (i − 1) mod 3 + 1. By Lemma 3.2, the third searcher, which is of color
(i − 2) mod 3 + 1, stays on P .

Consider a sequence f6 < f5 < . . . < f2 < f1. Note that it implies that T ′′
3 is cleaned from vl−1 to v1. Let us show that it

is impossible to place a searcher on the vertices of P such that no recontamination occurs in each f i, i ∈ {1, . . . , 6}.
Consider the move of index f6, where searchers of colors 1 and 3 are in T ′′

l and 2 is on P . Before move f6 an edge
incident to v6 is clean (by definition of f6). No edge incident to v1 is clean and, by Lemma 3.1, T ′

j has a clean edge,
j ∈ {1, 2}. In order to prevent recontamination of T ′

j , the searcher is present on P , particularly on a vertex of the path from
q j to v0. It cannot be the vertex q j , because 2 /∈ c(q j), so the edge of color 3 incident to q j is clean, and the searcher is on
one of the remaining two vertices. Consider the move of index f5, in which the searcher of color 1 is on a vertex v of P .

D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21 7
The vertex between q j and v0 cannot be occupied, due to its colors, and occupying q j would cause recontamination — only
the vertex v0 is available, v = v0. Consider the move of index f4. The vertex v0 cannot be occupied, due to its colors. The
edge e0 cannot be clean before e4 is clean, because T ′′

l is cleaned from vl−1 to v1. Therefore, the searcher on v0 cannot be
moved towards q2. Monotone strategy fails.

The argument is analogical for a sequence f1 < f2 < . . . < f5 < f6. By Lemma 3.3, T ′′
l is cleaned either from v1 to vl−1

or the other way, which implies that considering the two above cases completes the proof. �
Lemma 3.5. There exists a non-monotone c̃-strategy S that cleans Tl using three searchers for each l ≥ 3.

Proof. The strategy we describe will use one searcher for each of the three colors. The strategy first cleans the subtree T ′
1

(we skip an easy description how this can be done) and finishes by cleaning the path connecting q0 with v0. Denote the
vertex on the path from v0 to q2 as v .

Now we describe how the strategy cleans T ′′
l from v1 to vl−1. For each i ∈ {1, . . . , l}, the vertex vi is incident to edges

of colors i mod 3 + 1 and (i − 1) mod 3 + 1 therefore each move f i uses both searchers of colors i mod 3 + 1 and
(i − 1) mod 3 + 1. By Lemma 3.2, the third searcher which is of color (i − 2) mod 3 + 1, stays on P . Informally, while
progressing along T ′′

l , the strategy makes recontaminations within the path P .
We will define j-progress, j ∈ {1, . . . , l − 1}, as a sequence of consecutive moves which clean edges of colors in c(v j) in

T ′′
l and contain the move of index f j . Similarly, we introduce i-reconfig(u), i ∈ {1, 2, 3}, as a minimal sequence of consecutive

moves, such that there is a searcher on some vertex u of P in the first move of i-reconfig(u) and the searcher of color i is
present on P in the last move of i-reconfig(u). Let ub be the occupied vertex of P after the last move of b-th i-reconfig(u)

in S . Additionally let u0 = v0. Clean T ′′
l by iterating for each j ∈ {1, . . . , l − 1} (in this order) the following: a-reconfig(u j−1),

followed by j-progress, where a = (j − 2) mod 3 + 1.
Because determining moves in j-progress is straightforward, as they correspond to those in monotone c̃-strategy when

f1 < f2 < . . . < fl−2 < fl−1, we focus on describing i-reconfig(u) for each i ∈ {1, 2, 3}. 1-reconfig(u0) consists of a sliding
move from v0 to v and a move which places the searcher of color 3 on u1 = v . 2-reconfig(u1) consists of a sliding move
from v to v0, which causes recontamination, and a move which places the searcher of color 1 on u2 = v0. 3-reconfig(u2)

does not contain any sliding moves and places the searcher of color 2 on u3 = v0. Because a = (j − 2) mod 3 + 1 and
u j−1 = u j+2 a-reconfig(u j) is identical to a + 3-reconfig(u j+3), thus we can describe a strategy which cleans T ′′

l for any
given l.

When T ′′
l is clean, the vertex v0 is connected to a clean edge and the remaining edges of path P can be searched without

further recontaminations. The strategy cleans subtree T ′
2 in the same way as a monotone one.

Note that the proposed strategy requires new recontamination whenever a sequence of f i of length 3 repeats itself. Thus,
this c̃-strategy cleaning Tl has �(l) unit recontaminations. Note that the size of the tree Tl is �(l). �

Lemma 3.5 provides a non-monotone search c̃-strategy which succeeds with fewer searcher than it is possible for a
monotone one, as shown in Lemma 3.4, which proves Theorem 1.

Theorem 2. There exist trees such that each search c̃-strategy that uses the minimum number of searchers has �(n2) unit recontami-
nations.

Proof. As a proof we use a tree Hl obtained through a modification of the tree Tl . In order to construct Hl , we replace
each edge on the path P with a path Pm containing m vertices, where each edge between them is in the same color as
the replaced edge in Tl . Clearly hs(Hl) = hs(Tl). Note that we can adjust the number of vertices in T ′′

l and Pm of Hl
independently of each other. While the total number of vertices is n = �(m + l), we take m = �(n), l = �(n) in Hl .

In order to clean Hl , we employ the strategy provided in Theorem 3.5 adjusted in such a way, that any sliding moves
performed on edges of P are replaced by O (m) sliding moves on the corresponding paths of Pm . As shown previously, the
number of times an edge of P in Tl , or path Pm in Hl , which contains �(m) elements, has to be recontaminated depends
linearly on size of T ′′

l . In the later case the c̃-strategy cleaning Hl has �(ml) = �(n2) unit recontaminations. �
4. NP-hardness for trees

We show that the decision problem HGS is NP-complete for trees if we restrict available strategies to monotone ones.
Formally, we prove that the following problem is NP-complete:

Monotone Heterogeneous Graph Searching Problem (MHGS)
Given an edge-labeled graph G = (V (G), E(G), c) and an integer k, does it hold mhs(G) ≤ k?

Thus, the rest of this section is devoted to a proof of the following theorem.

Theorem 3. The problem MHGS is NP-complete in the class of trees.

8 D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21
Fig. 2. Construction of T : (a) the subgraph Hz ; (b) the subgraph Lx; (c) the subgraph L′
x′ .

Fig. 3. Construction of T : attachment of subgraphs Hz and the subgraphs Lx and L′
x′ to the path P .

In order to prove the theorem, we conduct a polynomial-time reduction from Boolean Satisfiability Problem where each
clause is limited to at most three literals (3-SAT). The input to 3-SAT consists of n variables x1, . . . , xn and a Boolean formula
C = C1 ∧ C2 ∧· · ·∧ Cm , with each clause of the form Ci = (li,1 ∨ li,2 ∨ li,3), where the literal li, j is a variable xp or its negation,
xp , p ∈ {1, . . . , n}. The answer to decision problem is YES if and only if there exists an assignment of Boolean values to the
variables x1, . . . , xn such that the formula C is satisfied.

Given an input to 3-SAT, we construct a tree TSAT which can be searched monotonously by the specified number of
searchers if and only if the answer to 3-SAT is YES. We start by introducing the colors and, informally speaking, we
associate them with respective parts of the input:

• color Vp , p ∈ {1, . . . , n}, represents the variable xp ,
• color Fp (respectively Tp), p ∈ {1, . . . , n}, is used to express the fact that to xp may be assigned the Boolean value false

(true, respectively),
• color Cd , d ∈ {1, . . . , m}, is associated with the clause Cd .

We will also use an additional color to which we refer as R.
We denote the set of all above colors by Q. Note that |Q| = 3n + m + 1. In our reduction we set k = |Q| + 1 + m to be

the number of searchers.
The construction of the tree starts with a path P of color R consisting of l = 4n + 3m + 4 + 1 vertices vi, i ∈ {1, 2, . . . , l}.

We add 2 pendant edges of color R to both v1 and vl . Define a subgraph Hz (see Fig. 2(a)) for each color z ∈ Q \ {R}: take
a star of color R with three edges, attach an edge e of color z to a leaf of the star and then attach an edge e′ of color R
to e, so that the degree of each endpoint of e is two. For each z ∈ Q \ ({R} ∪ {C1, . . . , Cm}) take a subgraph Hz and join
it with P in such a way that the endpoint of e′ of degree one in Hz is identified with a different vertex in {v2, . . . , va},
a = 3n + 2m + 1. For each z ∈ {C1, . . . , Cm} take two copies of Hz and identify each endpoint of e′ of degree one in Hz with
a different vertex in {v2, . . . , va}, which has no endpoint of e′ attached to it yet. The above attachments of the subgraphs
Hz are performed in such a way that the degree of vi is three for each i ∈ {2, . . . , a} (see Fig. 3). We note that, except for
the requirement that no two subgraphs Hz are attached to the same vi , there is no restriction as to which Hz is attached
to which vi . The star of color R in the subgraph Hz attached to the vertex vi is denoted by Ai .

For each color x in X = {Ti, Fi
∣∣ i ∈ {1, . . . , n}} we define a subtree Lx (see Fig. 2(b)). We start with a root having a single

child and an edge of color R between them. Then we add an edge e of color Vi to this child, where i is selected so that
it matches x which is either Ti or Fi . The leaf of e has three further children attached by edges of color x. We finish by

D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21 9
Fig. 4. Construction of T : (a) the variable component constructed from S−p and S p ; (b) the clause component that corresponds to Cd .

attaching 2 edges of color R to each of the three previous children. For each color x′ ∈ X ′ = {C1, . . . , Cm} construct a subtree
L′

x′ (see Fig. 2(c)) in the same shape but colored in a different way. The edges of color different than R in the construction
of Lx are replaced by edges of color x′ . We draw attention to the fact that L′

x′ contains an area of color x′ that is a star
with four edges. We attach to the path P five copies of subtree Lx for each x ∈ X and five copies of L′

x′ for each x′ ∈ X ′ by
unifying their roots with the vertex va+1 of P (see Fig. 3).

We attach five further copies of L′
x′ for each x′ ∈ X ′ by unifying their roots with the vertex vl−1 of P .

For each variable xp we construct two subtrees, S p and S−p , in the following fashion (see Fig. 4(a)): take a star of color R
with three edges and attach an endpoint of a path with four edges to a leaf in this star of color R; the consecutive colors of
the path, starting from the endpoint at the star of color R are: Vp , R, Fp , R in S−p and Vp , R, Tp , R in S p . For each subtree
S p and S−p , p ∈ {1, . . . , n} attach the endpoint of its path of degree one to va+1+p . The star of color R in S p attached to vi
is denoted by Ai and the one in S−p by A−i .

For each clause Cd, d ∈ {1, . . . , m} we attach three subtrees Ld, j, j ∈ {1, 2, 3}, to the vertex vb+d , where b = 4n + 2m + 3,
one for each literal ld, j (see Fig. 4(b)). Note that the maximal value of b + d is l − 2. We construct Ld, j by taking an edge
e of color R and adding three edges to its endpoint: two of color Ci , and one either of color Tp if ld, j = xp or of color Fp

if ld, j = xp . Add two children by the edge of color R to each of these three edges. Then attach the endpoint of degree one
of the edge e in Ld, j to vb+d . We attach a single edge of color R to vb . The tree obtained through this construction will be
denoted by TSAT.

The area of color R which contains the path P is denoted by A0. Notice that all areas Ai of color R have search number
two, s(Ai) = 2. For a search strategy for TSAT, we denote the index of the first move in which all searchers of color R
are in the area Ai as step ti and the index of the last such move as step t′

i , i ∈ I = {2, . . . , a} ∪ {a + 2, . . . , b − 1} ∪ {−(b −
1), . . . , −(a + 2)} ∪ {0}. Let R = {a + 2, . . . , b − 1} ∪ {−(b − 1), . . . , −(a + 2)} and L = I \ {R ∪ {0}} = {2, . . . , a} be the two sets
which cover all indices of areas Aa : a ∈ I \ {0}. Note that by definition a + 1 /∈ L and a + 1 /∈ R , and the path from v1 to
va+1 contains no vertex v j, j ∈ R . Similarly, the path from va+1 to vl contains no vertex vi, i ∈ L. Informally, we divide the
indices in I \ {0} into two sets: L to the left of va+1 and R to the right.

Lemma 4.1 (Color assignment). A search c̃-strategy using k = 3n + 2m + 2 searchers has to color them in the following fashion: one
searcher for each color in {Tp, Fp, Vp

∣∣ p ∈ {1, . . . , n}} and two searchers for each color in {R} ∪ {C1, . . . , Cm}.

Proof. We first compute the lower bound β(TSAT). By Lemma 2.1, at least 3n searchers take colors Fp , Tp and Vp, p ∈
{1, . . . , n}. Recall that L′

x′ contains as a subgraph an area T ′ of color x′ ∈ {C1, . . . , Cm} that is a star with three edges and
hence s(T ′) = 2. Since there are m such subtrees L′

x′ , 2m searchers receive colors C1, . . . , Cm . The last two searchers have
to be of color R in order to clean areas Ai, i ∈ I . Thus, we have shown that β(TSAT) ≥ 3n + 2m + 2 and this lower bound is
met by the assignment of colors to searchers, as indicated in the lemma. Using Lemma 2.2 we complete the proof. �
Lemma 4.2. Let x1, . . . , xn and a Boolean formula C = C1 ∧ C2 . . . ∧ Cm be an input to 3-SAT. If the answer to 3-SAT is YES, then
there exists a search c̃-strategy using 2 + 3n + 2m searchers for TSAT.

Proof. We first note the main point as to how a Boolean assignment provides the corresponding search strategy. Whether
a variable is true or false, this dictates which searcher, either of color Fp or Tp , is placed in the corresponding variable
component. The vertices occupied by these searchers form a separator that disconnects A0 from areas Ai , i ∈ R . The strategy

10 D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21
cleans first the latter areas that are protected from recontamination. As a result, all Ai , i ∈ R , become clean. Then, A0 is
cleaned with the clause components along the way: here the fact that the initial Boolean assignment was satisfied ensures
that searchers of appropriate colors are available to clean the subsequent clause components.

Suppose that a Boolean assignment to the variables satisfies C . The strategy is described as a sequence of instructions.

1. We start by placing a searcher of color dictated by the Boolean assignment in each variable component. For each S p

(respectively S−p), place a searcher of color Tp (respectively Fp) on the vertex that is incident to the edge of color Tp

and does not belong to A0 if xp is false (respectively true).
2. Then, clean Aa+1+p (respectively A−(a+1+p)) and then the edges in S p (respectively S−p) that connect this star of color

R to the vertex guarded by the searcher of color Tp (respectively Fp). Note that this cleaning uses two searchers of color
R and the searcher of color Vp . Then, place the searcher of color Vp on the vertex that belongs to the edge of color Vp

in S−p (respectively S p) and area A−(a+1+p) (respectively Aa+1+p). Clean A−(a+1+p) (respectively Aa+1+p).
By repeating the above for each index p, we in particular obtain that all areas Ai , i ∈ R are clean. Note that if xp = f alse
(respectively xp = true), then the searcher of color Tp (respectively Fp) stays in S p (respectively S−p) and the searcher
of color Fp (respectively Tp) is available. Let X denote the colors of available searchers among those in colors Fp and Tp .

3. Then we start cleaning A0 from the vertex vl and move towards vb . Clean copies of L′′
Cd

, d ∈ {1, . . . , m} attached to vl−1.
Consider each approached vertex vh, h ∈ {b + 1, b + 2, . . . , l − 2}, and its three subtrees Ld,i, i ∈ {1, 2, 3}, d ∈ {1, . . . , m}
separately. We denote the color different than R and Cd in Ld,i as xd,i . Because C is satisfied, at least one of the literals
in each clause is true and for each d ∈ {1, . . . , m} there always exists Ld,i such that xd,i matches the color of the searcher
not assigned to neither S p nor S−p , i.e., xd,i ∈ X . Clean each such Ld,i by using searchers of color Cd , R and xd,i . Hence,
at this point each Ld,i for which the literal ld,i is satisfied in C is clean. Place the two searchers of color Cd in each
remaining contaminated Ld,i on vertex belonging to A0. Because at least one subtree Ld,i is clean for each d ∈ {1, . . . , m},
two searchers of color Cd are sufficient. Then, continue cleaning A0 towards the next vh .

4. We now describe the moves of the search strategy performed once a vertex v j , j ∈ R , is reached while cleaning A0.
Clean all remaining contaminated edges of S p and S−p rooted in v j . Remove the searchers of colors Tp, Fp, Vp when
they are no longer necessary.

5. Once va+1 has been reached, clean all remaining contaminated subtrees Ld,i (it follows directly from previous steps that
searchers of appropriate colors are available) and perform moves as in colorless strategy with the addition of necessary
switching of searchers on vertices with multiple colors. Repeat this strategy for each Lx, x ∈ {Ti, Fi

∣∣ i ∈ {1, . . . , n}}, and
L′

x′ , x′ ∈ {C1, . . . , Cm}.
6. For each color z ∈ Q \ {R} set a searcher of color z on the common vertex of the subtree Hz and A0. Then clean all

edges incident to each vertex vi, i ∈ L, which finishes cleaning A0. The finishing touches of our strategy are simple.
Once A0 is clean, the remaining contaminated parts of subtrees Hz , containing Ai , i ∈ L, can be searched in an arbitrary
sequence. �
Now we will give a series of lemmas that allow us to prove the other implication, namely that a successful monotone

strategy implies a valid solution to 3-SAT. The next lemma says that between the first and last moves when all searchers of
color R are in an area Ai , no move having all searchers of color R in a different area A j is possible. The proof is due to a
counting argument.

Lemma 4.3. No step t j can occur between any two steps ti, t′
i :

[
ti, t′

i

] ∩
[
t j, t′

j

]
= ∅, i �= j.

Proof. The proof is by contradiction. First note that if t′
i = t j for any i �= j, that would imply that four searchers of color

R are present in a graph at once: two in Ai and two in A j . Hence, we suppose for a contradiction that there exists j �= i
such that ti < t j < t′

i or ti < t′
j < t′

i . Consider a step t ∈ [
ti, t′

i

]
. At least one searcher of color R is in Ai because it is partially

clean. If t ∈ {t j, t′
j}, then there are two red searchers in A j , which contradicts color composition imposed by Lemma 4.1. �

We say that a subtree T ′ is guarded by a searcher q on a vertex v if removal of q leads to recontamination of an
edge in T ′ . Note that v does not have to belong to T ′ , or in other words, T ′ is any subtree of the entire subgraph that
becomes recontaminated once the searcher q is removed. We extend our notation to say that T ′ is guarded from T ′′ if T ′′ is
contaminated and removal of q produces a path that is free of searchers and connects a node of T ′ with a node of T ′′ .

Informally, the next lemma states the following. Prior and after the moves that have all searchers of color R on A0, there
must be moves having all searchers of color R on some Ai , i �= 0. The argument is due to the fact that we do not have
sufficiently many searchers, in total, to guard A0 from all other Ai ’s (or, conversely, all other Ai ’s from A0).

Lemma 4.4. The step t0 cannot be the first one and t′
0 cannot be the last one in a sequence of steps containing each ti , i ∈ I , i.e.,

min{ti
∣∣ i ∈ I} < t0 ≤ t′ < max{ti

∣∣ i ∈ I}.
0

D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21 11
Proof. Suppose for a contradiction that t0 is the first step, i.e., t0 < ti , for each i ∈ I \ {0}. By Lemma 4.3, ti > t′
0 for each

i ∈ I \ {0}. Thus, each area Ai contains contaminated edges in step t0. In step t′
0 all edges of the path P are clean. Hence, P

is guarded by at least one searcher from Ai for each i ∈ I \ {0}. A simple counting argument implies that two searchers of
color Vp, p ∈ {1, . . . , n}, are used — a contradiction. The second case, when t′

0 is the last step, can be argued analogously. �
We draw attention to the two ways of searching A0 (to which we refer as a folklore). Since A0 is a caterpillar, one can

assume without loss of generality that it is cleaned by S by the two searchers of color R in the following way. Either, the
first searcher of color R is placed, in some move of S , on v1 and throughout the search strategy it moves along P from v1
to vl — we say that such S cleans P from v1 to vl , or the first searcher starts at vl and moves along P from vl to v1 while
S proceeds — we say that such S cleans P from vl to v1. In both cases, the second searcher of color R is responsible for
cleaning edges incident to vi , i ∈ {1, . . . , l}, when the first searcher is on vi .

We say that an edge search strategy S ′ is a reversal of a search strategy S that consists of l moves if it is constructed as
follows: if the move i of S places (respectively removes) a searcher on a node v , then the move (l − i + 1) of S ′ removes
(respectively places) the searcher on v , and if the move i of S slides a searcher from u to v , then the move (l − i + 1) of S ′
slides the searcher from v to u. It has been proved in [37] that if S is a (monotone) edge search strategy, then S ′ indeed
is a (monotone) edge search strategy. We skip a proof (it is analogous to the one in [37]) that if S is a monotone search
c̃-strategy, then its reversal is also a monotone search c̃-strategy. This allows us to assume the following for the search
strategy S for TSAT we consider in this section:

(*) S cleans P from vl to v1.

Let R-pr(vi), i ∈ {1, . . . , l}, be the index of the first move such that two searchers of color R are in vi (either at the start
or end of the move). Such moves are well defined because the degree of vi is greater than two. Note that without loss of
generality due to (*), R-pr(vl) = t0.

Observe that the removal of edges {va, va+1} and {va+1, va+2} from TSAT gives three connected components and let
Ta+1 be the subtree of TSAT that equals the connected component that contains va+1. For each subtree T ′ , let Clean(T ′, t)
(Cont(T ′, t), respectively) denote the set of clean (contaminated, respectively) edges in T ′ immediately prior to the move t .

Intuitively, Lemma 4.5 says that when we reach the vertices va, va+1, va+2 while moving along A0, then the tree Ta+1 is
constructed in such a way that while cleaning it there exists a move in which no searcher is used to guard any Ai with i ∈ R
or any clause component. The configurations of the colors of searchers for the guarding of Ai ’s and the clause components
are those in the family K below.

Lemma 4.5. Let

K = {{R,C1}, . . . , {R,Cm}, {R,V1,T1}, . . . , {R,Vn,Tn}, {R,V1,F1}, . . . , {R,Vn,Fn}}
For each K ∈ K, between moves R-pr(va+2) and R-pr(va), there exists a move tK which requires all searchers of colors from the set
K to be in Ta+1 .

Proof. An intuition explaining the proof is as follows. Recall that Ta+1 consists of multiple copies of subtrees Lx and L′
x′ .

Arguments are the same for both Lx and L′
x′ . We consider which edges of Ta+1 are clean in the move R-pr(va+2): Lx it is

either contaminated or contains a guarding searcher. Then we consider which edges of Ta+1 are clean in the move R-pr(va):
in this case Lx it is either clean or contains a guarding searcher. We count how many guarded Lx ’s can exist in the move
R-pr(va). A counting argument reveals that at least three Lx ’s are clean in the move R-pr(va). From all of the above, these
3 subtrees Lx must have been cleaned after R-pr(va+2). Among the moves of cleaning 3 subtrees Lx , a move tK exists.

Consider what can be deduced about Clean(Ta+1, R-pr(va+2)) and Cont(Ta+1, R-pr(va+2)) from (*) and the defini-
tion of R-pr(va+2). Recall that by (*), the strategy we consider cleans P from vl to v1. Hence, the edge {va, va+1}
is contaminated before move R-pr(va+2). Furthermore, the vertex va+1 cannot be occupied by a searcher during move
R-pr(va+2), because both searchers of color R are on the vertex va+2, by the definition of R-pr(va+2). Therefore, no subtree
Lx, x ∈ X = {Ti, Fi

∣∣ i ∈ {1, . . . , n}}, or L′
x′ , x′ ∈ X ′ = {C1, . . . , Cm}, can be fully clean and unguarded in the move R-pr(va+2),

because these subtrees are incident to va+1. For each subtree Lx , there are two possibilities: either Clean(Lx, R-pr(va+2)) = ∅
or Clean(Lx, R-pr(va+2)) �= ∅ in which case Lx contains at least one guarded vertex. The same holds for any L′

x′ .
Next consider what is known about Clean(Ta+1, R-pr(va)) and Cont(Ta+1, R-pr(va)). Because va+1 is not guarded in the

move R-pr(va) as both searchers of color R are in vertex va , the vertex va+1 is not incident to contaminated edges at this
point. Otherwise all edges of P connecting va+1 and vl would be contaminated which contradicts (*). The spread of contam-
ination at move R-pr(va) from each Lx and L′

x′ through va+1 can be prevented only in the following way: Clean(P , R-pr(va))

is guarded from the contaminated edges in subtrees Lx and L′
x′ and their copies, and all remaining subtrees in Ta+1 are

clean. Again there are two possibilities: either Clean(Lx, R-pr(va)) = E(Lx) or if Clean(Lx, R-pr(va)) �= E(Lx), then Lx con-
tains at least one guarded vertex. The same holds for any L′

x′ .
By the above paragraphs, each subtree Lx and L′

x′ at some point between R-pr(va+2) and R-pr(va) is either being
guarded from or is fully searched. Suppose for a contradiction, that three out of five copies of a subtree Lx or L′ ′ contain
x

12 D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21
a guarding searcher in the move R-pr(va). A simple counting argument suffices to show that they have to be guarded on
a common vertex: for Lx , there are two searchers of color R, and they are placed on the vertex va , and one in each of the
colors x and Vi where i is selected so that x ∈ {Ti, Fi}. Similarly for any L′

x′ there are only two searchers of color x′ which
can be placed in it. The only common vertex is va+1 — contradiction with the definition of R-pr(va).

Because we eliminated the option of guarding three subtrees Lx and L′
x′ at the move R-pr(va), the only remaining

possibility is that at least three of the subtrees Lx and L′
x′ are clean before the move R-pr(va). Consider a move after

which the first subtree has been cleaned. This subtree is guarded on va+1 until all edges connected to va+1 are clean, so in
subsequent moves at least one of the copies of each Lx and L′

x′ is cleaned while va+1 is guarded by a searcher of color R. By
construction, for each of the following sets: B ∈ B = {{R, V1, T1}, . . . , {R, Vn, Tn}} and F ∈ F = {{R, V1, F1}, . . . , {R, Vn, Fn}}
there exists a subtree Lx requiring searchers in these colors. Note that s(Lx) = 3, so all of those searchers will be required
simultaneously in at least one move, whose number is denoted by tB or tF respectively, when Lx is being searched. Similarly
L′

x′ will require all searchers of colors G ∈ G = {{R, C1}, . . . , {R, Cm}} to be present in T ′ in a single move, whose number is
denoted by tG . B ∪F ∪ G =K, so tK exists for each K ∈K. �
Lemma 4.6. Let

K′′ = {{R,C1}, . . . , {R,Cm}}
For each K ′′ ∈K′′ , between moves R-pr(vl) and R-pr(vl−2), there exists a move t′′

K which requires all searchers of colors from the set
K ′′ to be in one of the subtrees L′′

Cd
, d ∈ {1, . . . , m}. �

We skip the proof because it is analogous to the one of Lemma 4.5.

Let T be the set of subtrees Hz, z ∈ Q \ {R}, and S p, S−p, p ∈ {1, . . . , n}. For G ∈ T let τ (G) be the index i such that G
contains the vertex vi .

We say in Lemma 4.7, informally, that we need to entirely clean all areas Ai with i ∈ R prior to the part of the search
strategy that uses all searchers of color R on A0. The latter part is the one that cleans A0 entirely.

Lemma 4.7. The step t0 is placed in the search sequence in the following way:

t j ≤ t′
j < t0 ≤ t′

0

for each j ∈ R.

Proof. We first summarize the intuitions used in the proof. We start by using Lemma 4.3 and 4.4, which give us that
A0 is not the first nor the last area Ai cleaned. We define two sets of numbers (U− and U+ below) corresponding to
indices of Ai ’s whose cleaning happens before and after cleaning A0. During the moves t0, . . . , t′

0 (i.e., those that clean A0)
the clean subgraph of A0 has to be guarded from the contaminated Ai ’s, and the cleaned Ai ’s have to be guarded from
the contaminated part of A0 Intuitively, once cleaning of A0 extends past a vertex vi to which a subtree containing Ai
is attached, this Ai needs to be guarded if it’s ‘status’ (being clean or contaminated) is different than that of the area A0.
Consider a move, which we denote by la+1 below in the proof, in which the vertex va+1 divides the clean and contaminated
parts of P . We analyze which A j ’s, j ∈ R , could have been left contaminated and which ones are guarded in the move la+1 .
We obtain that there exists a move tK , K ∈ K, described in the Lemma 4.5, which can be identified with la+1. There is not
enough searchers to perform tK while A j is guarded — a contradiction.

Now we start the formal proof. Define

U− = {i ∈ I
∣∣ ti ≤ t′

i < t0}
and

U+ = {i ∈ I
∣∣ t′

0 < ti ≤ t′
i}.

By Lemmas 4.3 and 4.4, U− �= ∅, U+ �= ∅ and U− ∪ U+ = I \ {0}. Note that U− ∩ U+ = ∅ because the strategy is monotone.
Given this notation we restate the lemma as U− contains all indices of steps t j, j ∈ R , i.e., R ⊆ U− .

Let u− ∈ U− and u+ ∈ U+ be selected arbitrarily. Let g|i|, i ∈ I be the index of the first move in
[
t0, t′

0

]
such that v |i|

is incident to a clean edge. There exists G ∈ T such that τ (G) = ∣∣u+∣∣ and G has a contaminated edge between moves of
numbers g∣∣u+∣∣ and t′

0 because t′
0 < tu+ . Thus, Clean(A0, t), t ∈

[
g∣∣u−∣∣, t′

0

]
, is guarded from contaminated edges of G .

Let g′|i|, i ∈ I , be the index of the last move in
[
t0, t′

0

]
such that v |i| is incident to a contaminated edge on P . There exists

G ′ ∈ T such that τ (G ′) = ∣∣u−∣∣ and G ′ has a clean edge between steps t0 and g∣∣u−∣∣ because tu− < t0. Thus, Clean(G ′, t), t ∈[
t0, g′∣∣ −∣∣

]
, is guarded from contaminated edges of P .
u

D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21 13
Let la+1 be an arbitrary move number such that the edge {va, va+1} is contaminated and the edge {va+1, va+2} is clean.
By (*) such a move exists.

Suppose for a contradiction that R � U− , which is equivalent to R ∩ U+ �= ∅. During the move la+1 the following subtrees
are guarded:

Clean(A0, la+1) from A j, j ∈ R ∩ U+, because ∀ j∈R∩U+ g| j| < la+1

and

Clean(Ai, la+1) from Cont(A0, la+1), i ∈ L ∩ U− because ∀i∈U−∩L la+1 < g′|i|
By Lemma 4.5, there exists a move tK , K ∈K, which requires all searchers of colors belonging to K to be present in Ta+1.

Every edge incident to va cannot be clean before the last move which places two searchers of color R in va has occurred,
therefore R-pr(va) ≤ g′

a . Two searchers of color R cannot be placed in va+2 before at least one edge incident to it is clean,
therefore ga+2 ≤ R-pr(va+2). This gives us ga+2 ≤ R-pr(va+2) < tK < R-pr(va) ≤ g′

a , and with the fact that in the moves tK
and la+1 the vertex va+1 is occupied, allows us to conclude that for each tK there exists la+1 such that tK = la+1.

Let G ∈ T be such that τ (G) > a + 1. Recall that if j ∈ R and τ (G) = | j|, then G is isomorphic to some S p or S−p . Due to
construction of S p and S−p , searcher used to guard Clean(A0, la+1) from Cont(G, la+1) is in one of the following colors: R,
Vp , Tp if j > 0 or R, Vp , Fp if j < 0. Let DG denote a set of colors in G for each G ∈ T . Note that for each DG there exists
K ∈ K such that DG ⊆ K , and therefore there exists a move tDG such that all searchers in colors DG are in T ′ . Consider
a move tDG = la+1, which requires a searcher of one of the colors in DG to be present in G , such that it contains an area
Aw , w ∈ R ∩ U+ . Because T ′ and G ∈ T contain no common vertices, such a move cannot exist — a contradiction with the
Lemma 4.5. �

The statement of the following lemma is more specific with respect to the previous one: in Lemma 4.8 we examine
those moves in which each area A j , j ∈ R , is clean and guarded from A0. Additionally we are concerned with the colors of
searchers guarding these areas. More precisely, between the time when cleaning of A0 starts and reaches vb , all subgraphs
Ai, i ∈ R , contain clean edges which are guarded from the contaminated edges of A0. Only searchers of colors R and either
Tp or Fp can be used for the guarding.

Lemma 4.8. In an arbitrary move t ∈ [t0, R-pr(vb)], each subgraph Clean(A j, t) for each j ∈ R is guarded from Cont(A0, t) by
searchers on at least one of these two vertices: a vertex with colors {Tp, R} in S p or {Fp, R} in S−p .

Proof. Informally, we analyze the state of the strategy when A0 is being cleaned but vb has not been reached, i.e., in a
move t from the lemma. In the moves t0 and R-pr(vb) each of S p and S−p has some clean edges that need to be guarded.
In the proof, we consider several cases as to which vertices can be guarded to protect those clean edges in moves t0 and
R-pr(vb). Then, we observe that, due to monotonicity, the set of clean edges when the two searchers of color R are on
vb could not be smaller than in any move prior to it. Thus, if both a vertex with colors {Tp, R} and a vertex with colors
{Fp, R} need not be guarded between these moves, then a recontamination occurs in the move R-pr(vb) which leads to a
contradiction.

From Lemma 4.7 we have t j ≤ t′
j < t0 ≤ t′

0 for each j ∈ R . All stars of color R in subtrees S p and S−p attached to vertices
v | j|, j ∈ R , contain clean edges before the move t0, so at the move t0 each such star is guarded from contaminated edges in
A0.

Consider the moves number t0 and R-pr(vb). In these moves both searchers of color R are in A0, and v | j| are not
attached to any clean edges, so guarding searchers are still necessary at move R-pr(vb). Recall that by the definition of
R , b ≥ | j|. Because searchers of color R are in A0, the vertices with the following colors are occupied by searchers: Fp
or Vp in S−p and Vp or Tp in S p, p ∈ {1, . . . , n}. Because only one searcher of color Vp is available, at least one other
searcher is placed on vertex with either Fp or Tp color, denoted by c. In each S p and S−p there are only two such vertices
separated by an edge of color c. It remains to be proven that at least one of them has to be guarded in an arbitrary move
t ∈ [t0, R-pr(vb)].

Assume for a contradiction that both vertices with color Fp and Tp are no longer guarded in a move t ∈ [t0, R-pr(vb)],
thus all edges incident to vertices with color c are clean. By monotonicity, all these edges are clean in the move R-pr(vb).
Edges of color R incident to the vertex vi such that τ (G) = i are contaminated. Since the two searchers of color R are in
vb in the move R-pr(vb), they are not in G . Thus, the searcher of color c is the only one that can be used for guarding
Clean(G, R-pr(vb)) from Cont(A0, R-pr(vb)). Since all edges incident to the vertex occupied by this searcher are clean, some
recontamination occurs. �
Lemma 4.9. Let x1, . . . , xn and a Boolean formula C = C1 ∧ C2 . . . ∧ Cm be an input to 3-SAT. If there exists a search strategy using
2 + 3n + 2m searchers for TSAT , then the answer to 3-SAT is YES.

Proof. The proof revolves around the configuration of searchers in the move R-pr(vb). We start by recalling the construction
of subtrees based on clauses that must have been cleaned up to this point and the colors of searchers required to clean

14 D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21
them. Then, we will use Lemma 4.8 to address the availability of these colors. We define a Boolean assignment as follows:
xp is true if and only if a searcher of color Tp does not guard the area Aa+1+p in the move R-pr(vb), otherwise xp is false.
Let X ⊂ {Ti, Fi

∣∣ i ∈ {1, . . . , n}} denote the colors of those searchers. By Lemma 4.8, a valid assignment will occur during
execution of arbitrary successful search strategy using 2 + 3n + 2m searchers. We argue that some literal in each clause
Cd, d ∈ {1, . . . , m}, is true under the above assignment.

By construction of TSAT, vh, h ∈ {b + 1, b + 2, . . . , l − 1}, is the root of a subtree Ld,i, i ∈ {1, 2, 3}. Ld,i contains an edge of
color Tp if and only if the clause Cd contains a variable xp , and it contains an edge of color Fp if and only if Cd contains a
variable’s negation, xp . Let us denote this color as xd,i .

Consider the step t0. It is impossible for any Ld,i to be completely clean because all edges incident to vh, h ∈ {b + 1, b +
2, . . . , l − 1}, are contaminated (there are not enough searchers of color R). Consider the move R-pr(vb) > t0. Each Ld,i is
completely clean or Clean(A0, R-pr(vb)) is guarded by searchers of colors xd,i and Cd because vh is connected to clean
edges and unguarded (there are not enough searchers of color R). There are only two searchers of color Cd , so for each
d one of the subtrees Ld,i has a searcher of other color or is clean. Because s(Ld,i) = 3, three out of five searchers in the
following colors can be used: R, xd,i, Cd . The only searcher which is present in Ld,i at move R-pr(vb) has color xd,i . Without
loss of generality we assume that the strategy cleans a subtree if possible before guarding other subtrees rooted in the same
vertex. Consider a move md,i such that s(Ld,i) searchers are used in Ld,i . Due to the way the subtree is colored, a searcher
in each color R, xd,i, Cd has to be used in order to clean it. After t0 a searcher of color R guards clean part of A0, so only
one searcher out of those five, namely the one of color Cd , can be present outside of Ld,i . Ld,i can be fully cleaned only if
searcher of color xd,i is available at this point during [t0, R-pr(vb)], or all edges of color xd,i were clean in the move t0. Due
to its color this searcher can not be used to replace any searcher of color xd,i outside of Ld,i .

Let us address what follows if an edge of color xd,i was clean in the move t0. By construction, it can be guarded from
contaminated edges of P by a searcher of one of the following colors: xd,i , Cd , R in the moves of numbers from the interval
[R-pr(vl), R-pr(vl−2)]. By Lemma 4.6, there exists a move of number in this interval such that all searchers of colors Cd
and R are not in Ld,i . Thus, in order to avoid recontamination, clean edges of color xd,i can be guarded only by a searcher
of the same color.

Suppose for contradiction that no literal in a clause Ci, i ∈ {1, . . . , n} is true and a search strategy for TSAT exists. By
Lemma 4.8, one of the searchers of color x ∈ {Tp, Fp}, or a searcher of color R is placed outside of Ld,i during [t0, R-pr(vb)].
By the definition of a Boolean assignment x ∈ X . Additionally Lemma 4.8 guarantees that no searcher of color x is used
during cleaning any Ld,i . If x = xd,i then md,i can not be performed and Ld,i is guarded in the move R-pr(vb). Because there
are only two searchers of color Cd , in order for a strategy to exist at least one subtree Ld,1, Ld,2, Ld,3 for each d is cleaned
before R-pr(vb), or all three have to be guarded, and for that to happen they have to contain edges in at least one color
xd,i �= x corresponding to a true ld,i in the clause Cd . �
5. NP-hardness of non-monotone searching of trees

This section is devoted to proving the problem remains NP-hard when non-monotone search strategies are allowed:

Theorem 4. The problem HGS is NP-hard in the class of trees.

For the proof, we adapt the tree TSAT described in the previous section. The modified tree is denoted by T̃SAT and it is
obtained by performing the following operations on the tree TSAT. In order to preserve the familiar notation we denote each
component of T̃SAT analogous to its counterpart in TSAT with an additional sign ∼ above its designation.

We add 4n vertices to the path P in the following fashion. Replace the edges {va+1, va+2} and {va+1, va} with paths of
color R of length 2n each, denoted by P̃ R and P̃ L respectively. Enumerate the vertices of P̃ in T̃SAT as ṽ i in such a way that
ṽ1 = v1, ṽã+1 = va+1+2n , ṽb̃ = vb+1+4n , ṽl̃ = vl+4n . Note that this enumeration preserves the informal division of vertices
into sets on the left and right of ṽa+1, and R̃ = {ã + 2, . . . , ̃b − 1} ∪ {−(b̃ − 1), . . . , −(ã + 2)} is defined accordingly.

We use 2n additional colors O = {O1,1, . . . , On,1, O1,2, . . . , On,2}. For each o ∈ O create a tree Ho following the construc-
tion defined in the previous section and attach one to a unique vertex of the path P̃ L . We do the same for the path P̃ R so
that 4n subtrees are created in total. Let H̃o(R̃) denote a subtree containing an edge of color o ∈ O attached to the vertex
ṽ i, i ∈ R̃ .

Next we modify the construction of each subtree Lx, x ∈ {Ti, Fi | i ∈ {1, . . . , n}} rooted in va+1 in the following way.
Remove 2 leaves of color R and attach 3 children by the edges of color Oi,1 to each leaf. Then attach 3 children by the edges
of color Oi,2 to each of the new leaves. Finally attach 2 children by the edges of color R to each of the lastly added leaves.
Denote the modified Lx as L̃x . Note that s(L̃x) = 5 and L̃x requires searchers of colors x, R, Vi, Oi,1, Oi,2 to be simultaneously
present in some move in L̃x in order to search it. In T̃SAT, eleven copies of L̃x are rooted in ṽa+1 in place of five copies
of Lx rooted in va+1 in the original TSAT. Whenever an arbitrary copy can be chosen the notation of L̃x is used, when the
argument requires copies to be distinct they are denoted by L̃x,i, i ∈ {1, . . . , 11}.

Define a star O p, p ∈ {1, . . . , n} with 3 leaves incident to edges of colors: Op,1, Op,1 and Op,2. We modify each subtree
S̃ p in T̃SAT corresponding to S p constructed according to the definition in the previous section. Recall that each S p and S̃ p

(respectively S−p and S̃−p) contains an edge of color Tp (Fp respectively). Define a plugin(v, u) operation for vertices u

D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21 15
and v of a tree as replacement of maximal subtree such that u and v are its leaves with a copy of O p in such a way that
u is identified with a leaf of color Op,1 and v is identified with a leaf of color Op,2. For each T̃ ∈ { S̃ p, ̃S−p

∣∣ p ∈ {1, . . . , n}}
denote the endpoint which belongs to Ã0 of the edge of color Tp or Fp in T̃ as u1, and the other endpoint of this edge as
u2. Denote the endpoint which belongs to Ã j, j ∈ R̃ , of edge of color Vp as u3, and the other endpoint of this edge as u4.
Perform plugin(u1, u1), plugin(u2, u3) and plugin(u4, u4).

Informally speaking, the described modification prevents using recontamination to switch the searchers used as a basis
for Boolean assignment without undoing all the progress made while cleaning subtrees corresponding to the clauses.

The following lemma follows directly from the lower bound β(T̃SAT) and the proof is analogous to Lemma 4.1

Lemma 5.1 (Color assignment). A c̃-strategy using k = 5n + 2m + 2 searchers has to color them in the following fashion: one searcher
for each color in {Tp, Fp, Vp, Op,1, Op,2

∣∣ p ∈ {1, . . . , n}} and two searchers for each color in {R} ∪ {C1, . . . , Cm}. �
Lemma 5.2. Let x1, . . . , xn and a Boolean formula C = C1 ∧ C2 . . . ∧ Cm be an input to the 3-SAT. If the answer to 3-SAT is YES, then
there exists a search strategy using 5n + 2m + 2 searchers for T̃SAT.

Proof. We propose a modification to the monotone strategy described in Lemma 4.2. Note that the modified strategy is still
monotone (we aim to show that recontamination does not help to search T̃SAT). In the instruction 2 we clean Ã−(ã+2n+1+p)

instead of A−(a+1+p) and stars O p instead of singular edges of color R replaced by these stars during construction of T̃SAT.
No searcher of color either Op,1 or Op,2 has already been placed on T̃SAT so it is always possible. We introduce an additional
instruction 2′ executed after the instruction number 2.

2′. For each H̃o(R̃) place a searcher of color o on the vertex of color o and belongs to an Ãi in H̃o(R̃). Then, clean each Ai ,
where ṽ i ∈ P̃ R , and then the edge of color o. The searcher of color o stays in H̃o(R̃).

In instruction 4 a searcher of color o is removed from H̃o(R̃) when the entire H̃o(R̃) becomes clean during cleaning of Ã0
in order to ensure that L̃x can be searched. �
5.1. Preliminaries on non-monotone strategies for T̃SAT

Let G ′ be a subgraph of G . We define a successful attempt S-Attempt(G ′, i) = [t, t′] as a maximal interval of numbers of
moves such that for each j ∈ [t, t′], Cont(G ′, j) �= G ′ , Cont(G ′, j) �= ∅ and Clean(G ′, t′) = G ′ , and i is the ordeal number of
this attempt among other successful attempts on G ′ . Analogously define an unsuccessful attempt U -Attempt(G ′, i) = [t, t′] as
a maximal interval of numbers of moves such that for each j ∈ [t, t′], Cont(G ′, j) �= G ′ , Clean(G ′, j) �= G ′ and i is the ordeal
number of this attempt among other unsuccessful attempts on G ′ .

By definition, at least one edge of G ′ is clean during an attempt on G ′ . We remove the prefix U or S whenever the
success of the attempt is not important at the point of speaking.

Note that any search strategy which cleans a graph G contains the S-Attempt(G ′, 1) for any subgraph G ′ , thus in order
to show that cleaning a graph is impossible it suffices to prove that there exists a subgraph for which there can be no
successful attempt. By strengthening the previous statement we obtain the following:

Observation 5.1. If G ′ is a subgraph of G, then for each S-Attempt(G, i) there exists S-Attempt(G ′, j) such that S-Attempt(G ′, j) ⊆
S-Attempt(G, i).

We skip the proof of the following lemma as it follows from the folklore of the way to clean a caterpillar graph.

Lemma 5.3. If in any move of Attempt(P̃ , i) = [t, t′] both edges {ṽ1, ̃v2} and {ṽl̃, ̃vl̃−1} are contaminated, then the attempt is unsuc-
cessful. �

As a consequence we can be sure that a S-Attempt(P̃ , i) starts cleaning at either ṽ1 or ṽl̃ and ends at ṽl̃ or ṽ1 respec-

tively. If it starts at ṽl and if the edge {ṽ j+1, ̃v j} is clean, then the next clean edge of P̃ can be only {ṽ j, ̃v j−1} or the next
contaminated set of edges of P̃ has to include all edges {ṽ j+1, ̃v j}, . . . , {ṽ j+1+x, ̃v j+x} for some j + x < l, j − 1 > 0 and no
other edges of P̃ . We say that in such attempt a strategy cleans P̃ from ṽl̃ to ṽ1. Thanks to the result concerning reversal of
strategies established in [37] a symmetrical case does not need to be considered. Thus, we establish an assumption about
non-monotone strategies analogous to (*):

(**) S cleans P̃ in S-Attempt(P̃ , 1) from ṽl̃ to ṽ1.

Denote the number of a move when two searchers of color R arrive on the vertex ṽ i of the path P̃ in S-Attempt(P̃ , 1)

as R-pr(ṽ i, j) where j is the ordinal number of the move R-pr(ṽ i, j) among other moves R-pr(ṽ i, j) of index i. Specif-

16 D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21
ically R-pr(ṽ i, j + 1) is the number of the first such move after the move R-pr(ṽ i, j). Informally speaking, the j in the
expression R-pr(ṽ i, j) indicates how many times the vertex ṽ i was reached in the first successful attempt to clean P̃ . Let
P̃ i, i ∈ {1, . . . , ̃l}, denote T̃SAT[{ṽl̃, . . . , ̃vĩ}]. Let i(j) = k + j denote the ordeal number of the S-Attempt(G, i(j)) such that
i(0) is the ordeal number of the first S-Attempt(G, k) such that S-Attempt(G, k) ⊆ S-Attempt(P̃ , 1). Whenever we speak of
S-Attempt(G, i(0)), we are concerned with the first attempt to clean G within the first attempt which successfully cleaned P̃ .

5.2. Some technical lemmas

In the next lemma we show that before the vertex ṽã is reached in the first successful attempt to clean P̃ , for each of
the listed sets of colors there exists a move which requires searchers of those color to be present in T̃ ã+1. Analogously to
Lemma 4.5, these sets correspond to sets of colors of subtrees attached to the vertices of P̃ ã .

Lemma 5.4. Let

K = {{R,Ci}
∣∣ i ∈ {1, . . . ,m}} ∪ {{R,Vn,On,1,On,2, x} ∣∣ x ∈ {T1, . . . ,Tn,F1, . . . ,Fn}}.

For each K ∈ K, in S-Attempt(P̃ ã, i(0)), there exists a move tK ≤ R-pr(ṽã, 1) which requires all searchers of colors from the set K to
be in T̃ ã+1 .

Proof. The proof is divided into three parts. First we argue that T̃ ã+1 could not have been left clean before the move
R-pr(ṽã+2, j). Then we argue that T̃ ã+1 has to be clean before move R-pr(ṽã, 1). Finally we analyze the construction of
T̃ ã+1 to show that cleaning the subtrees of T̃ ã+1 requires certain sets of searchers. These sets of searchers are listed as a
family X and Y .

Let us consider moves performed only in the attempt S-Attempt(P̃ , 1) which by (**) cleans P̃ from ṽl̃ to ṽ1. Choose
the minimal j such that R-pr(ṽã+2, j) ∈ S-Attempt(P̃ ã, i(0)). Hence, the edge {ṽã, ̃vã+1} is not clean at move R-pr(ṽã+2, j)
move. The subtree T̃ ã+1 cannot be completely clean in the move R-pr(ṽã+2, j), because it contains the vertex ṽã+1, which
is unoccupied (by the definition of R-pr(ṽã+2, 1)) and incident to the contaminated edge {ṽã+1, ̃vã} (by (**)).

On the other hand each copy of L̃x has to be either completely clean or guarded in the move R-pr(ṽã, 1). Suppose
otherwise for a contradiction, then the contamination spreads unobstructed through ṽã+1, which cannot be occupied by a
searcher during move R-pr(ṽã, 1), to ṽl̃ and, by the Lemma 5.3, the attempt S-Attempt(P̃ , 1) fails contrary to its definition.

Because the two searchers of color R are not in a non-leaf vertex of L̃x in neither of the moves number R-pr(ṽã, 1) and
R-pr(ṽã+2, j) at most four copies of L̃x can be guarded at each of these moves. In total at most eight out of eleven copies
of L̃x can be cleaned only partially between these two moves. Which means that in the attempt S-Attempt(P̃ ã, i(0)) there
exists a S-Attempt(L̃x,1 ∪ L̃x,2 ∪ L̃x,3, k).

By construction, for each of set:

X ∈ X = {{R,V1,O1,1,O1,2, x} ∣∣ x ∈ {T1, . . . ,Tn} ∪ {F1, . . . ,Fn}}
there exists a subtree L̃x requiring searchers of these colors. Note that s(L̃x) = 5 and s(L̃x,1 ∪ L̃x,2 ∪ L̃x,3) = 6, thus all
searchers of colors contained in X will be present on some vertices of L̃x,1 ∪ L̃x,2 ∪ L̃x,3 simultaneously, in at least one move,
whose number is contained in S-Attempt(L̃x,1 ∪ L̃x,2 ∪ L̃x,3, k). Denote the number of the first such move in this attempt as
t X . Because we consider only moves whose numbers belong to S-Attempt(P̃ , 1), one searcher of color R is present on P̃ . In
the move t X this searcher occupies ṽã , therefore tK ≤ R-pr(ṽã, 1).

The same argument can be repeated for any L̃′
y and the respective set from Y ∈ Y = {{R, Ci}

∣∣ i ∈ {1, . . . , m}} to prove
existence of analogously defined tY . K =X ∪Y finishes the proof. �

We skip the proof of the following lemma because it is analogous to the one of Lemma 5.4.

Lemma 5.5. Let

K′′ = {{R,Ci}
∣∣ i ∈ {1, . . . ,m}}.

For each K ′′ ∈ K′′ , in S-Attempt(P̃ l̃−2, i(0)), there exists a move tK ′′ which requires all searchers of colors from the set K ′′ to be in
one of the subtrees L̃′′

Cd , d ∈ {1, . . . , m}. �
Let T̃ be the set of all subtrees S̃ p, ̃S−p, H̃Op,1 (R̃), H̃Op,2(R̃), p ∈ {1, . . . , n}. Recall that these subtrees are attached to the

vertices ṽ j for j ∈ R̃ .

Lemma 5.6. In the move R-pr(ṽã, 1) all subtrees in T̃ are clean.

D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21 17
Proof. Each move tK introduced in Lemma 5.4, where K ∈K, happens before the vertex va is reached in the first successful
attempt to clean P̃ . Each subtree in T̃ contains only vertices of colors found in some K ∈K. Every subtree in T̃ is connected
to vertices which were cleaned before va . Because in the move tK all searchers of colors present in some subtree of T̃ are
in Ta+1 if this subtree of T̃ contains a contaminated edge, then the attempt to clean P̃ fails — since we analyze a successful
attempt, a contradiction occurs. Finally we show that a recontamination of this subtree of T̃ cannot happen prior to the
move R-pr(ṽã, 1).

By Lemma 5.4, R-pr(ṽa, 1) ≥ tK for each K ∈ K. By construction, for each subtree G̃ ∈ T̃ there exists K ∈ K such that
the set of colors in vertices of G̃ , denoted by Q (G̃), is a subset of K . Note that any subtree in T̃ is connected to the vertex
ṽã+1 only by a subpath of P̃ , which may contain a subset of the following vertices {ṽã+1, . . . , ̃vb̃}, and all these vertices are
of color R.

Suppose for a contradiction that G̃ contains a contaminated edge in the move tK such that Q (G̃) ⊆ K . Because all
searchers in colors Q (G̃) are in T̃ ã+1 (one of color R is explicitly on the vertex ṽã+1) and G̃ ∩ T̃ ã+1 = ∅, G̃ contains no
searchers in the move tK . If it were to contain a contaminated edge at this point, then the contamination would have spread
unobstructed along the path P̃ from a vertex by which G̃ is attached (which may be one of the following {ṽã+2, . . . , ̃vb̃}) to
the edge {ṽl̃, ̃vl̃−1}. By Lemma 5.3, the attempt S-Attempt(P̃ , 1) fails, which contradicts its definition.

If G̃ contained no contaminated edge nor searchers and was adjacent to the Clean(P̃ , tK)), then in the move tK it was
completely clean. By construction, recontamination may be introduced to G̃ only through the vertex of P̃ by which it is
attached. Because tK ≥ R-pr(ṽã+2, j) there is always a searcher of color R guarding it from Cont(P̃ , t), t ∈ [tK , R-pr(ṽã, 1)],
so it stays clean. �
Lemma 5.7. There is at least one clean edge in each Ãr, r ∈ R̃ , in each move of S-Attempt(P̃ , 1).

Proof. Assume for the sake of a contradiction, that an area Ãr is fully contaminated in the move R-pr(ṽl̃, 1). s(Ãr) = 2 so it
cannot be cleaned in S-Attempt(P̃ , 1), because at least one searcher of color R is in P̃ . This contradicts Lemma 5.6, because
the move R-pr(ṽã, 1), in which all of the subtrees in T̃ are clean, belongs to S-Attempt(P̃ , 1). �

Let P̃+
b̃

denote T̃SAT[{ṽl̃, . . . , ̃vb̃, v}] where v is a leaf incident ṽb̃ which does not belong to P̃ . Consider the attempt
S-Attempt(P̃+

b̃
, i(0)). Note that R-pr(ṽl̃, 1) ∈ S-Attempt(P̃+

b̃
, i(0)), R-pr(ṽb̃, 1) ∈ S-Attempt(P̃+

b̃
, i(0)). Informally speaking, we

define the first successful attempt to clean the subtree containing clause components, which are by construction connected
to the vertices of the path P̃ b̃ .

Lemma 5.8. There is at least one searcher in each G̃ ∈ T̃ guarding each Clean(Ãr, t) where r ∈ R̃ , t ∈ S-Attempt(P̃+
b̃

, i(0)).

Proof. Because the move t belongs to S-Attempt(P̃ , 1), by Lemma 5.7 there is at least one clean edge in Ãr which
has to be separated from Cont(P̃ , t). By the definition of t , at least one searcher of color R is on ṽc, c > b̃ and edges
{{ṽb̃, ̃vb̃+1}, . . . , {ṽl̃, ̃vl̃−1}} are contaminated. Therefore there is at least one contaminated edge incident to each G , and a
searcher guarding Clean(Ãr, R-pr(ṽb̃, k)) can only be placed in the subtree G̃ ∈ T̃ containing Ãr . �

Note that in T̃SAT the areas Ãr, r ∈ R̃ , are subgraphs of H̃op (R̃), S̃ p and S̃−p (while only S p and S−p were included in
TSAT), hence the two separate lemmas below. The lemmas state that in the moves in which two searchers of color R are
on the path P within the attempt to clean the clause components, only searchers of colors different than R can be used to
guard clean edges of the subtrees H̃op (R̃), S̃ p and S̃−p .

Lemma 5.9. For any i and j, such that R-pr(ṽ i, j) ∈ S-Attempt(P̃+
b̃

, i(0)), in a move R-pr(ṽ i, j) there is a searcher of color op ∈
{Op,1, Op,2}, p ∈ {1, . . . , n}, in H̃op (R̃).

Proof. By the definition of R-pr(ṽ i, j), there can be no searcher of color R on any vertex of H̃op (R̃). By Lemma 5.8, each of
them contains a searcher, and by colors of vertices in H̃op (R̃), it is of color op . �

Note that Lemmas 5.9 and 5.10 speak of the same moves, therefore the pool of available searchers is shared between
them.

Lemma 5.10. For any i and j, such that R-pr(ṽ i, j) ∈ S-Attempt(P̃+
b̃

, i(0)), in a move R-pr(ṽ i, j) there is a searcher of color Tp

(respectively Fp) or Vp in S̃ p (S̃−p respectively).

18 D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21
Proof. By the definition of R-pr(ṽ i, j), there can be no searcher of color R on any vertex of S̃ p . By Lemma 5.8, each of them
contains a searcher, and by colors of vertices in S̃ p and Lemma 5.9, it is of color Tp or Vp . Proof for S̃−p is analogical. �
5.3. Adaptation to non-monotonicity — there is no going back

Because of a possibility of recontamination, the previous lemmas are insufficient to obtain a result analogous to that
given by Lemma 4.8. In this section we find a configuration of searchers that cannot be used in P̃+

b̃
in a successful attempt

to clean P̃+
b̃

, cf. Lemma 5.13.

Lemma 5.11. At least one of searchers of color from the following set: Q = {Op,1, Op,2, xp}, xp ∈ {Tp, Fp}, has to remain in each
S̃ p ∪ S̃−p in each move t ∈ [R-pr(ṽl̃, 1), R-pr(ṽb̃, 1)] ⊆ S-Attempt(P̃+

b̃
, i(0)).

Proof. The proof revolves around analyzing colors of vertices in S̃ p and S̃−p which can be used by guarding searchers in
Lemma 5.8. A switch is a change in the guarding searchers of colors different than Op,1 or Op,2 in S̃ p . In order to make such
a switch, we either have to clean O p or recontaminate it. We exclude the possibility to clean any star O p in the moves t
listed in the lemma (see Observation 5.2). Thus, we have to consider recontamination of O p . Then, we use Lemma 5.10 to
establish that such a switch can occur once in S̃ p (or S̃−p analogically). Finally we look at guarding searchers in both S̃ p

and S̃−p in the moves R-pr(ṽl̃, 1) and R-pr(ṽb̃, 1) and show that a switch can occur in either S̃ p or S̃−p , but not both,
between these moves.

Pick a vertex, denoted by up,t , such that up,t ∈ V (S̃ p) (u−p,t ∈ V (S̃−p) respectively) and it is incident to a contaminated
and a clean edge in the move t ∈ S-Attempt(P̃+

b̃
, i(0)). Let us focus only on up,t as the approach is analogous for u−p,t . By

Lemma 5.8, this vertex exists.
Denote the set of colors other than Op,1, Op,2 in the set of colors of up,t as cp,t , i.e., cp,t = c(up,t) \ {Op,1, Op,2}. Recall

that S̃ p and S̃−p contain copies of the star O p . Note that if cp,t = ∅ then up,t is a central vertex of such a copy of O p .
Otherwise |cp,t | = 1. Let f +(t) denote the number of the first move such that f +(t) ≥ t and cp, f +(t) �= ∅. Let f −(t) denote
the number of the first move such that f −(t) ≤ t and cp, f −(t) �= ∅.

Observation 5.2. By Lemma 5.8, no S-Attempt(O p, i) ⊆ [R-pr(ṽl̃, 1), R-pr(ṽb̃, 1)] exists.

By construction, any maximal subtree T̃ , such that T̃ is a subgraph of S̃ p where up, f −(t) and up, f +(t′), t < t′ ,
are leaves and cp, f −(t) �= cp, f +(t′) , contains a copy of O p , to which we refer further as O ′

p . If cp,h = ∅, then h ∈
Attempt(O p, i) and f −(h) corresponds to the beginning of this attempt (f +(h) corresponds to its end, respectively).
Note that both cp,R-pr(ṽl̃,1) �= ∅ and cp,R-pr(ṽb̃,k) �= ∅. By Observation 5.2, a pair up, f −(t) and up, f +(t′) , such that t, t′ ∈
[R-pr(ṽl̃, 1), R-pr(ṽb̃, k)], which satisfies cp, f −(t) �= cp, f +(t′) , exists only if O ′

p ⊆ T̃ has already been clean in the move f −(t).
Similar argument can be repeated for a pair up,t and u−p,t′ (i.e. vertices in S̃−p and S̃−p) with the conclusion that a pair
which satisfies the above constraints does not exist — there are no clean copies of O p between them. Informally, we can
switch a searcher of color in cp,t �= ∅ to a searcher of color in cp,t′ �= cp,t �= ∅ only by causing recontamination, and we
cannot use the first searcher again. Thus, there is a finite number of switches in S-Attempt(P̃+

b̃
, i(0)).

Note that by Lemma 5.10, cp,R-pr(ṽl,1) (c−p,R-pr(ṽl,1) respectively) contains either Tp (respectively Fp) or Vp . If cp,t′ = {R}
we contradict Lemma 5.10 in the next move R-pr(ṽ i, j) after t′ . Therefore, a set cp,t or cp,t′ can contain only a one out
of these two colors: Tp , Vp , or be empty. By the previous paragraph and the number of different colors, there exists
at most one interval of numbers of moves J = [f −(j), f +(j′)] such that cp, f −(j) = Tp and cp, f +(j′) = Vp or vice versa.
Informally, we can switch the color of required searcher once. The same argument holds for S̃−p and colors Fp , Vp Denote
the corresponding interval as L.

Because there is only one Vp searcher at least one of the following is true: cp,R-pr(ṽl,1) = {Tp} or c−p,R-pr(ṽl,1) = {Fp }, thus
at most one edge of color Vp in S̃−p ∪ S̃ p is clean. For the same reason at most one the following is true: cp,R-pr(ṽb,k) = {Vp}
or c−p,R-pr(ṽb,k) = {Vp}. Thus, in a single strategy at most one of the two intervals J and L exists. If J (L respectively) does
not exist, then cp,t ∈ {cp,R-pr(ṽl,1), ∅} (c−p,t ∈ {c−p,R-pr(ṽl,1), ∅} respectively) for each move t ∈ S-Attempt(P̃+

b̃
, i(0)). By defini-

tion of up,t , only searchers of colors Op,1, Op,2 and those in cp,t can stay in S̃ p in each move of [R-pr(ṽl̃, 1), R-pr(ṽb̃, 1)]. �
Lemma 5.12. If the searcher of color Op,z, z ∈ {1, 2} is not in H̃Op,z (R̃) in a move t ∈ S-Attempt(P̃+

b̃
, i(0)), then a searcher of color R

is in H̃Op,z (R̃).

Proof. Because t ∈ S-Attempt(P̃ , 1) and by Lemma 5.7 at least one searcher has to remain in H̃Op,z (R̃). It can be of color R
or H̃Op,z (R̃). �

D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21 19
Lemma 5.13. There exists a set of searchers of colors {R, Op,1, Op,2, xp
∣∣ p ∈ {1, . . . , n}}, xp ∈ {Tp, Fp} such that all but one have to

remain outside of P̃+
b̃

in each move t ∈ [R-pr(ṽl̃, 1), R-pr(ṽb̃, 1)] ⊆ S-Attempt(P̃+
b̃

, i(0)).

Proof. By Lemma 5.11, for each p ∈ {1, . . . , n} at least one of searchers of color from the following set: Q =
{Op,1, Op,2, xp}, xp ∈ {Tp, Fp}, has to remain in S̃ p ∪ S̃−p in each move t ∈ [R-pr(ṽl̃, 1), R-pr(ṽb̃, 1)]. Let s denote such
a searcher of color other than xp . If s exists then by Lemma 5.12 a searcher of color R is in H̃Op,z (R̃). In a move
t ∈ [R-pr(ṽl̃, 1), R-pr(ṽb̃, 1)] at least one searcher of color R is on the path P̃ b̃ so s is unique. Then, (S̃ p ∪ S̃−p) ∩ P̃+

b̃
= ∅

and H̃Op,z (R̃) ∩ P̃+
b̃

= ∅ finish the proof. �
To informally summarize, we show that there exists a set of searchers of colors {R, Op,1, Op,2, xp

∣∣ p ∈ {1, . . . , n}}, xp ∈
{Tp, Fp} of which at most one at a time can take part in cleaning of P̃+

b̃
.

5.4. Conclusion

Lemma 5.14. Let x1, . . . , xn and Boolean formula C = C1 ∧ C2 . . . ∧ Cm be an input to the 3-SAT problem. If there exists a search
strategy using 2 + 5n + 2m searchers for T̃SAT , then the answer to 3-SAT problem is YES.

Proof. The proof revolves around the configuration of searchers in the move R-pr(ṽb̃, i(0)). We define a Boolean assignment
as follows: xp is true if and only if a searcher of color Tp does not guard the area Aã+1+p in the move R-pr(ṽb̃, i(0)),
otherwise xp is false. Let X ⊂ {Ti, Fi

∣∣ i ∈ {1, . . . , n} denote the colors of those searchers. By Lemma 5.13, a valid assignment
will occur during execution of c̃-search strategy using 2 + 5n + 2m searchers. We omit the detailed proof in favor of an
analogy to the proof of Lemma 4.9.

Let T̃ denote the maximal subtree containing ṽl̃ such that ṽb̃ is this subtree’s leaf. Note that T̃ is isomorphic to its
equivalent in TSAT, and monotone strategies are a subset of strategies available in this version of the problem. We focus on
proving that the configuration of searchers in the move R-pr(ṽb̃, 1) has properties analogous to those of the configuration
in the move R-pr(vb) of a strategy for TSAT. Regardless of the moves performed by searchers in a c̃-strategy if a color x /∈ X ,
then an edge of color x in E(T̃) which was contaminated before the move R-pr(ṽl̃, 1) remains contaminated in the moves
of numbers from the interval [R-pr(ṽl̃, 1), R-pr(ṽb̃, 1)]. Thus, configurations which do not correspond to a valid assignment
cannot use the searchers of appropriate colors required to guard them and continue cleaning the tree.

All that remains to be addressed is the possibility of these edges being clean before the move R-pr(ṽl̃, 1) (recall that in
the proof of Lemma 4.9 we used the notion of monotonicity to resolve this issue, here the argument has to be continued).
If this was the case they would have to be guarded by at least one searcher in the moves of numbers from the inter-
val [R-pr(ṽl̃, 1), R-pr(ṽh̃, 1)]. By Lemma 5.5, there exists a move whose number is in this interval such that all searchers
of color R and Cd are not in L̃d,1, L̃d,2, L̃d,3. Thus, by the colors of vertices of L̃d,i only the searcher of color x can pre-
vent recontamination of an edge of color x and it cannot be used, by the definition of X . Furthermore, these edges stay
contaminated in the move R-pr(ṽb̃, i(0)).

We use only the positions of searchers in a move of a specific number, so we are interested in a result, not the process,
of a partial cleaning of TSAT and T̃SAT. Therefore, most arguments from Lemma 4.9 can be applied to T̃SAT. Recall the
conclusion of the proof of Lemma 4.9. In order for a c̃-strategy for TSAT to exist at least one subtree Ld,1, Ld,2, Ld,3 for each
d ∈ {1, . . . , m} is cleaned before the clean part of A0 reaches vb , or all three have to be guarded, and for that to happen
they have to contain edges in at least one color corresponding to ld,i in clause Cd . The same is true for a c̃-strategy for T̃SAT
and its respective counterparts of TSAT. �
6. Polynomially tractable instances

If G is a tree then Lemma 2.2 gives us a lower bound of β(G) on the number of searchers. In this section we will look
for an upper bound assuming that there is exactly one connected component per color. With this assumption we show a
constructive, polynomial-time algorithm both for HGS and HCGS.

Let (E1, . . . , Ek) be the partition of edges of T so that Ei induces the area of color i in T . Observe that this partition
induces a tree structure. More formally, consider a graph in which the set of vertices is P E = {E1, E2, . . . Ek} and {Ei, E j} is
an edge if and only if an edge in Ei and an edge in E j share a common junction in T . Then, let T̃ be the BFS spanning tree
with the root E1 in this graph. We write V i to denote all vertices of the area with edge set Ei , i ∈ {1, . . . , z}.

Our strategy for cleaning T is recursive, starting with the root. The following procedure requires that when it is called,
the area that corresponds to the parent of Ei in T̃ has been cleaned, and if i �= 1 (i.e., Ei is not the root of T̃), then
assuming that E j is the parent of Ei in T̃ , a searcher of color j is present on the junction in V i ∩ V j . With this assumption,
the procedure recursively cleans the subtree of T̃ rooted in Ei .

20 D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21
procedure Clean(labeled tree T , Ei) � Clean the subtree of T that corresponds to the subtree of T̃ rooted in Ei

1. For each E j such that E j is a child of Ei in T̃ place a searcher of color j on the junction v ∈ V j ∩ V i .
2. Clean the area of color i using s(T [V i]) searchers. Remove all searchers of color i from vertices in V i .
3. For each child E j of Ei in T̃ :

(a) place a searcher of color i on the junction v ∈ V j ∩ V i ,
(b) remove the searcher of color j from the vertex v ,
(c) call Clean recursively with input T and E j ,
(d) remove the searcher of color i from the vertex v .

end procedure

Lemma 6.1. For a given tree G = (V (G), E(G), c), procedure Clean(G, E1) cleans G using β(G) searchers.

Proof. First, observe that the number of searchers used during the execution of procedure Clean is exactly as specified.
Indeed, to clean each of the T [V i] we use s(T [V i]) searchers of color i and at most one searcher of other colors.

Note that moves (M2) do not cause recontamination. Indeed, the move defined in step 3b of procedure Clean removes
a searcher from the node on which another searcher is present, while the move 3d is performed on node v when both sub-
tree and the parent subtree of v are cleaned. This gives the correctness of search strategy produced by procedure Clean. �

We also immediately obtain:

Lemma 6.2. If all the strategies used in step 2 of procedure Clean to clean a subtree T [V i] are monotone, then the resulting c̃-strategy
for G is also monotone. �

It is known that there exists an optimal monotone search strategy for any graph [28] and it can be computed in linear
time for a tree [31]. An optimal connected search strategy can be also computed in linear time for a tree [2].

Using Lemmas 2.2 and 6.1 we conclude with the following theorem:

Theorem 5. Let G = (V (G), E(G), c) be a tree such that the subgraph G j composed by the edges in E j is connected for each j ∈
{1, 2, . . . , z}. Then, there exists a polynomial-time algorithm for solving problems HGS and HCGS.

7. Conclusions and open problems

Recalling our main motivation standing behind introducing this graph searching model, we note that its properties allow
for much easier construction of graphs in which recontaminations need to occur in optimal strategies. Our main open
question, following the same unresolved one for connected searching, is whether problems HGS and HCGS belong to NP?

Our more practical motivation for studying the problems is derived from modeling physical environments to whose parts
different robots have different access. More complex scenarios than the one considered in this work are those in which
either an edge can have multiple colors (allowing it to be traversed by all searchers of those colors), and/or a searcher can
have multiple colors, which in turns extends its range of accessible parts of the graph. As a way of modeling mobile entities
of different types cooperating to solve various computational tasks (of which searching is just one example), heterogeneous
mobile agent computing is receiving a growing interest, including fields like distributed computing. Hence, one may ask for
different ways of modeling differences between searchers, which may fit potential practical applications.

CRediT authorship contribution statement

Dariusz Dereniowski: Formal analysis, Funding acquisition, Investigation, Methodology, Writing - review & editing.
Łukasz Kuszner: Conceptualization, Methodology, Supervision, Validation. Robert Ostrowski: Formal analysis, Methodology,
Visualization, Writing - original draft, Writing - review & editing.

Declaration of competing interest

There is no conflict of interest.

References

[1] O. Amini, D. Coudert, N. Nisse, Non-deterministic graph searching in trees, Theor. Comput. Sci. 580 (2015) 101–121.
[2] L. Barrière, P. Flocchini, F.V. Fomin, P. Fraigniaud, N. Nisse, N. Santoro, D.M. Thilikos, Connected graph searching, Inf. Comput. 219 (2012) 1–16.
[3] L. Barrière, P. Flocchini, P. Fraigniaud, N. Santoro, Capture of an intruder by mobile agents, in: SPAA’02: Proc. of the Fourteenth Annual ACM Symposium

on Parallelism in Algorithms and Architectures, ACM, New York, NY, USA, 2002, pp. 200–209.
[4] A. Bärtschi, J. Chalopin, S. Das, Y. Disser, D. Graf, J. Hackfeld, P. Penna, Energy-efficient delivery by heterogeneous mobile agents, in: 34th Symposium

on Theoretical Aspects of Computer Science, STACS 2017, Hannover, Germany, March 8–11, 2017, 2017, 10.

http://refhub.elsevier.com/S0022-0000(20)30067-2/bibA8D19227CAD53B78DA1F1B45B6BFA4F1s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib1E5857077DD475EC142073E1CC406299s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib13E6ABC56FA6EBB4A796ED1EF30B5B7Bs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib13E6ABC56FA6EBB4A796ED1EF30B5B7Bs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib1F4840A64D782F892483B365B7F068A9s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib1F4840A64D782F892483B365B7F068A9s1

D. Dereniowski et al. / Journal of Computer and System Sciences 115 (2021) 1–21 21
[5] D. Bienstock, P. Seymour, Monotonicity in graph searching, J. Algorithms 12 (2) (1991) 239–245.
[6] L. Blin, J. Burman, N. Nisse, Exclusive graph searching, Algorithmica 77 (3) (2017) 942–969.
[7] N.E. Clarke, E.L. Connon, Cops, robber, and alarms, Ars Comb. 81 (2006) 283–296.
[8] N.E. Clarke, R.J. Nowakowski, Cops, robber, and photo radar, Ars Comb. 56 (2000) 97–103.
[9] N.E. Clarke, R.J. Nowakowski, Cops, robber and traps, Util. Math. 60 (2001) 91–98.

[10] J. Czyzowicz, L. Gasieniec, A. Kosowski, E. Kranakis, Boundary patrolling by mobile agents with distinct maximal speeds, in: Algorithms - ESA 2011 -
Proceedings of the 19th Annual European Symposium, Saarbrücken, Germany, September 5–9, 2011, 2011, pp. 701–712.

[11] Jurek Czyzowicz, Evangelos Kranakis, Dominik Pajak, Najmeh Taleb, Patrolling by Robots Equipped with Visibility, Springer International Publishing,
Cham, 2014, pp. 224–234.

[12] D. Dereniowski, Maximum vertex occupation time and inert fugitive: recontamination does help, Inf. Process. Lett. 109 (9) (2009) 422–426.
[13] D. Dereniowski, Connected searching of weighted trees, Theor. Comput. Sci. 412 (2011) 5700–5713.
[14] D. Dereniowski, Approximate search strategies for weighted trees, Theor. Comput. Sci. 463 (2012) 96–113.
[15] D. Dereniowski, From pathwidth to connected pathwidth, SIAM J. Discrete Math. 26 (4) (2012) 1709–1732.
[16] D. Dereniowski, D. Dyer, R.M. Tifenbach, B. Yang, The complexity of zero-visibility cops and robber, Theor. Comput. Sci. 607 (2015) 135–148.
[17] D. Dereniowski, R. Klasing, A. Kosowski, Ł. Kuszner, Rendezvous of heterogeneous mobile agents in edge-weighted networks, Theor. Comput. Sci. 608

(2015) 219–230.
[18] D. Dyer, B. Yang, Ö. Yasar, On the fast searching problem, in: Algorithmic Aspects in Information and Management, Proceedings of the 4th International

Conference, AAIM 2008, Shanghai, China, June 23–25, 2008, 2008, pp. 143–154.
[19] A. Farrugia, L. Gasieniec, Ł. Kuszner, E. Pacheco, Deterministic rendezvous with different maps, J. Comput. Syst. Sci. 106 (2019) 49–59.
[20] O. Feinerman, A. Korman, S. Kutten, Y. Rodeh, Fast rendezvous on a cycle by agents with different speeds, in: Distributed Computing and Networking

- Proceedings of the 15th International Conference, ICDCN 2014, Coimbatore, India, January 4–7, 2014, 2014, pp. 1–13.
[21] F.V. Fomin, P. Heggernes, J.A. Telle, Graph searching, elimination trees, and a generalization of bandwidth, Algorithmica 41 (2) (2004) 73–87.
[22] F.V. Fomin, D.M. Thilikos, On the monotonicity of games generated by symmetric submodular functions, Discrete Appl. Math. 131 (2) (2003) 323–335.
[23] P. Fraigniaud, N. Nisse, Monotony properties of connected visible graph searching, Inf. Comput. 206 (12) (2008) 1383–1393.
[24] S. Gaspers, M.-E. Messinger, R.J. Nowakowski, P. Pralat, Parallel cleaning of a network with brushes, Discrete Appl. Math. 158 (5) (2010) 467–478.
[25] G.A. Hollinger, A. Kehagias, S. Singh, GSST: anytime guaranteed search, Auton. Robots 29 (1) (2010) 99–118.
[26] D. Ilcinkas, N. Nisse, D. Soguet, The cost of monotonicity in distributed graph searching, Distrib. Comput. 22 (2) (2009) 117–127.
[27] A. Kawamura, Y. Kobayashi, Fence patrolling by mobile agents with distinct speeds, Distrib. Comput. 28 (2) (2015) 147–154.
[28] A.S. LaPaugh, Recontamination does not help to search a graph, J. ACM 40 (2) (1993) 224–245.
[29] G.A. Di Luna, P. Flocchini, N. Santoro, G. Viglietta, M. Yamashita, Self-stabilizing meeting in a polygon by anonymous oblivious robots, CoRR arXiv:

1705 .00324, 2017.
[30] E. Markou, N. Nisse, S. Pérennes, Exclusive graph searching vs. pathwidth, Inf. Comput. 252 (2017) 243–260.
[31] N. Megiddo, S.L. Hakimi, M.R. Garey, D.S. Johnson, C.H. Papadimitriou, The complexity of searching a graph, J. ACM 35 (1) (1988) 18–44.
[32] R. Mihai, I. Todinca, Pathwidth is NP-hard for weighted trees, in: FAW ’09: Proc. of the 3rd Inter. Workshop on Frontiers in Algorithmics, Springer-

Verlag, Berlin, Heidelberg, 2009, pp. 181–195.
[33] T.D. Parsons, Pursuit-evasion in a graph, in: Theory and Applications of Graphs, in: Lecture Notes in Mathematics, vol. 642, Springer-Verlag, 1978,

pp. 426–441.
[34] N.N. Petrov, A problem of pursuit in the absence of information on the pursued, Differ. Uravn. 18 (1982) 1345–1352.
[35] Z. Qian, J. Li, X. Li, M. Zhang, H. Wang, Modeling heterogeneous traffic flow: a pragmatic approach, Transp. Res., Part B, Methodol. 99 (2017) 183–204.
[36] S. Sundaram, K. Krishnamoorthy, D.W. Casbeer, Pursuit on a graph under partial information from sensors, CoRR arXiv:1609 .03664, 2016.
[37] C. Worman, B. Yang, Searching trees with sources and targets, in: FAW ’08: Proc. of the 2nd Annual International Workshop on Frontiers in Algorithmics,

Springer-Verlag, Berlin, Heidelberg, 2008, pp. 174–185.
[38] B. Yang, D. Dyer, B. Alspach, Sweeping graphs with large clique number, Discrete Math. 309 (18) (2009) 5770–5780.

http://refhub.elsevier.com/S0022-0000(20)30067-2/bib6EA6043359441A954EC29E3B81BA05EBs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib12695ADAEDFF6A726201DF35423609CAs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib7FD5BC38D884D22152ED39D40E5128CAs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib090C79F7CF1A803888CDE323C28858FCs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib10C9F1292E905C7F2735A6DB9166441Fs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib76CA215EA2D4103957815F58C7D8C313s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib76CA215EA2D4103957815F58C7D8C313s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib96E6267B17824B401F387571BD07839As1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib96E6267B17824B401F387571BD07839As1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib1F472C12635E29AC20C2A4DB560E0282s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib55718E52E4D4663C9331404E5B9F469Bs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bibFC3B5E8E861C32E19D2481241EFB1AC7s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bibDCC0956AF75BC49AAF09A5723F2ECF26s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib094B357B179AB4A20144F8382AC6AE1As1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib03AAA285E189B1DD06C679538AFC82F2s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib03AAA285E189B1DD06C679538AFC82F2s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib2473A2CAA9AC06E90C4DE4FE9B19F8ADs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib2473A2CAA9AC06E90C4DE4FE9B19F8ADs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib3ECD3D4C9658B4C46C27B576392DCBA4s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bibEADC62A04BC24CDC55D155C2A6BCCD3Bs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bibEADC62A04BC24CDC55D155C2A6BCCD3Bs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib5E9B2AB9565C669F2F53AAFC36D12B11s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib646024748D8C2006A714EA0A215064DBs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib60736EF182B3811B89F8F1A36F215076s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bibB8A48F7BCCB64F331922E298280436CDs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bibBA85FA800E99D6D6E420C5668413FFC7s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bibD8A4A1CB2CA8776F8BF8AC247DB698D4s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib79607A444EA4CA832795BB2C41DC640Bs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bibEC64404818BBCE62DF2C06B186AB130Es1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bibF01B4DA2164F05C505A720B67A5A7082s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bibF01B4DA2164F05C505A720B67A5A7082s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib75769142EA35C44252BCA844F2180C1Fs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bibC198E5A09198621CD4243E0D1876B32Ds1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib43FED46DC19563E9EED1E39107865C52s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib43FED46DC19563E9EED1E39107865C52s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib8C5DA711A626B9C55EE3AAEFF8D094B2s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib8C5DA711A626B9C55EE3AAEFF8D094B2s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bib6CCA57506A28138D3E6B7DB4479F9BDAs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bibAB0E195CFB40654BB3D0B50260E99D6Fs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bibBD8B004755BD0A5E18153B4E392C3C8Cs1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bibC98520E3AD393C05FDF6AC6206DA2261s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bibC98520E3AD393C05FDF6AC6206DA2261s1
http://refhub.elsevier.com/S0022-0000(20)30067-2/bibF9F17A402EE8C7FD9DF79ABB4BEF008Cs1

	Searching by heterogeneous agents
	1 Introduction
	1.1 Related work
	1.2 Our work --- a short outline

	2 Preliminaries
	2.1 Problem formulation
	2.2 Additional notation and remarks

	3 Lack of monotonicity
	4 NP-hardness for trees
	5 NP-hardness of non-monotone searching of trees
	5.1 Preliminaries on non-monotone strategies for T̃SAT
	5.2 Some technical lemmas
	5.3 Adaptation to non-monotonicity --- there is no going back
	5.4 Conclusion

	6 Polynomially tractable instances
	7 Conclusions and open problems
	CRediT authorship contribution statement
	Declaration of competing interest
	References

