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Abstract

Biochemical molecules interact through modification and binding reactions, giving raise to a combinatorial
number of possible biochemical species. The time-dependent evolution of concentrations of the species is
commonly described by a system of coupled ordinary differential equations (ODEs). However, the analy-
sis of such high-dimensional, non-linear system of equations is often computationally expensive and even
prohibitive in practice. The major challenge towards reducing such models is providing the guarantees as
to how the solution of the reduced model relates to that of the original model, while avoiding to solve the
original model.

In this paper, we have designed and tested an approximation method for ODE models of biochemical reaction
systems, in which the guarantees are our major requirement. Borrowing from tropical analysis techniques,
we look at the dominance relations among terms of each species’ ODE. These dominance relations can be
exploited to simplify the original model, by neglecting the dominated terms. As the dominant subsystems
can change during the system’s dynamics, depending on which species dominate the others, several possible
modes exist. Thus, simpler models consisting of only the dominant subsystems can be assembled into
hybrid, piecewise smooth models, which approximate the behavior of the initial system. By combining
the detection of dominated terms with symbolic bounds propagation, we show how to approximate the
original model by an assembly of simpler models, consisting in ordinary differential equations that provide
time-dependent lower and upper bounds for the concentrations of the initial model’s species.

The utility of our method is twofold. On the one hand, it provides a reduction heuristics that performs
without any prior knowledge of the initial system’s behavior (i.e., no simulation of the initial system is
needed in order to reduce it). On the other hand, our method provides sound interval bounds for each
species, and hence can serve to evaluate the faithfulness of tropicalization reduction heuristics for ODE
models of biochemical reduction systems. The method is tested on several case studies.
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1 Introduction

As biology becomes a data intensive science, due to advancements in high through-
put molecular biology, the importance of in silico dynamical models of complex
biological systems that are able to reproduce intricate behaviors observed in experi-
mental settings increases. As such, modeling becomes a part of biological reasoning,
but turns out to be a particularly challenging task. In particular, in models of bio-
chemical networks, the number of possible chemical species is often subject to com-
binatorial explosion, due to the large number of species that may arise as a result of
protein bindings and post-translational modifications [17]. As a consequence, mech-
anistic models of signaling pathways easily become very combinatorial. A common
modeling approach describes the time-dependent evolution of concentrations of each
of the modeled species through a system of coupled ordinary differential equations
(ODEs). The combinatorial explosion of species and rich interaction scheme renders
solving such a system of ODEs often prohibitory in practice, let alone the fact that
is it already an approximation of its stochastic counter-part [20], as well as that
the equations themselves do not transparently reflect the underlying mechanisms.
Addressing the latter, formalisms allowing to write the mechanistic hypothesis in
form of discrete transition steps have been proposed: Boolean networks[30], logical
networks[32], Petri Nets|[8], cellular automata[16], rule-based languages[10], to name
the most common. Languages such as Kappa[10,11] and BNGL|3| provide compact
ways of describing models prone to combinatorial explosion, of simulating them [9],
and even transforming them into ODEs [3]. However, the curse of dimensionality
once again rises when trying to compute the system behavior.

A strategy to cope with such complexity is model reduction, in which certain
properties of biochemical models are exploited in order to obtain simpler versions
of the original complex model; these simpler models should preserve the impor-
tant behavioral aspects of the initial system. An example of such a property is
the multiscaleness of biochemical networks, with respect to both time-scales and
species’ abundance. In the case of the former, it is known that biochemical pro-
cesses governing network dynamics span over many well separated timescales: while
protein complex formation occurs on the seconds scale, post-translational protein
modification takes minutes, and changing gene expression can take hours, or even
days. As for the latter, multiscaleness also applies to the abundance of various
species in biochemical networks: the DNA molecule has one to a few copies, while
mRNA copy numbers can vary from a few to tens of thousands. On the one hand,
these widely different time- and concentration scales represent challenges for the
estimation of rate constants, for the measurement of low-concentration species, and
even for the numerical integration. On the other hand, they represent a feature
that can be exploited for model reduction purposes, allowing to approximate the
complete mechanistic description with simpler rate expressions, retaining the essen-
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tial features of the full problem on the time scale or in the concentration range of
interest. The dynamics of multiscale, large biochemical systems can be reduced to
those of simpler models, called dominant subsystems [26], which contain less pa-
rameters and are easier to analyze. Dominant subsystems are chosen by comparing
the time-scales of the large system. For example, the classical quasi steady-state
(QSS) [5] and quasi-equilibrium (QE) approximations [23,18]| are conditions that
lead to dominance, and represent popular methods for the computation of “first ap-
proximations” to the slow invariant manifold. Classical QSS is based on the small
concentrations of highly reactive intermediate species (i.e., atoms, ions, enzymes
and substrate-enzyme complexes)[4], while in the QE approximation the reduction
of the full mechanism is done based on the existence of fast and slow reactions.

The multiscaleness property of biochemical network is by definition closely linked
to the mathematical notion of dominance, captured in the framework of tropical
analysis|[1,21]. Recently, a class of semi-formal methods for reducing and hybridizing
models of biochemical networks has been developed, based on ideas from tropical
analysis [26,27,28,29]. These methods exploit the multiscaleness of biochemical
networks, in order to deduce dominance relations among parameters and/or reaction
rates, which can then be used to obtain a system of truncated ODEs (by eliminating
the dominated terms). One of the advantages of using dominance relations in multi-
scale networks is that it helps cope with parameter uncertainty: parameter values
are replaced with their orders of magnitude, which are easier to determine. However,
providing guarantees as to how the solution of the reduced model relates to the
original one remains a challenge. Such is also the case in [2], where we proposed a
reduction framework for rule-based models, based on time-scale separation. While
this time-scale separation technique is justified by asymptotic convergence results,
for any concrete parameter values, there is no information on the accuracy of the
trajectories obtained by executing the reduced model.

In this paper, we design an approximation method for ODE models of biochem-
ical networks, in which the guarantees are our major requirement. Our method
combines abstraction and numerical approximation, and aims at providing better
understanding/evaluation of tropical reduction methods. We abstract the solution
of the original system of ODEs by a box, that over-approximates the state of the
original system and provides lower and upper bounds for the value of each variable
of the system in its current state. The simpler equations (which we call tropical-
ized) defining the hyperfaces of the box are obtained by combining the dominance
concept borrowed from tropical analysis with symbolic bounds propagation. Mass
invariants of the initial system of ODEs are used to refine the computed bounds,
thus improving the accuracy of the method. The resulting (simplified) system pro-
vides a posteriori time-dependent lower and upper bounds for the concentrations
of the initial model’s species, and thus bounds on numerical errors stemming from
tropicalization. This means that no information on the original system’s trajectory
is needed - the most important advantage of our approach. By contrast, the main
difficulty of applying the classical QSS and QE reductions to biochemical models
is that QE reactions and QSS species need to be specified a priori, which implies
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that some knowledge about the initial system’s behavior is necessary. This, in turn,
means that significantly high-dimensional, non-linear systems cannot benefit from
these reductions, as their analysis can be prohibitive in practice. An approach sim-
ilar with respect to providing a posteriori time-dependent lower and upper bounds
has been proposed in [7], where the differential semantics of rule-based models with
non-contracting dynamics and unbounded sets of variables are treated. Rather than
using dominance relations between ODE terms, a finite set of patterns is used in
order to bound the number of occurrences of each pattern. Further related works,
similar in the sense that they provide automatizible reduction methods with strong
reduction guarantees are described in [13,14]. However, both of these works are de-
signed specifically for rule-based models, where they exploit the site-graph encoding
of species’ structure, rather than the dominance regions.

Depending on the chosen granularity of mass-invariant-derived bounds, the
method presented in this paper can either be used to reduce models of biochemical
networks, or to quantify the approximation error of tropicalization reduction meth-
ods that do not involve guarantees. The guarantees of our method are obtained
by formalizing the soundness relation between the original system of equations and
the abstract system of ordinary differential equations operating on the coordinates
of the hyper-faces of the box. The solution of a sound abstraction of an original
system of differential equations, starting from a box that contains the initial state
of the original system, defines a sound abstraction of the solution(s) of the original
system. We apply our method to several case studies.

Outline The rest of this article is organized as follows. In Sect.2 we define the
setting and concepts used in our approach, as well as introduce motivating examples.
We then formally present and justify the method for deriving the system of reduced
ODEs over the lower and upper bounds of species’ concentrations in Sect. 3. Also
in Sect. 3, we present the two possible uses of our approach. We then discuss and
conclude in Sect. 4.

2 Definitions and Motivating Example(s)

2.1 General Setting and Definitions

We define a dynamic reaction network over a set of species S = {x1,...,2z5} as a
reaction system of the form:

kf ks
i g Y B, (1)
i i

where 1 < j < r is the reaction number, and for each reaction r;, k:;-r/ "~ are the non-
negative reaction rate constants of the forward, respectively backward reaction.

In this paper, we focus on the ordinary differential equations (ODE) semantics of
models of biochemical networks. The underlying assumptions are that the various
species of the chemical network are highly abundant, that stochastic fluctuations
are negligible, and that the reaction system is well-mixed. In these conditions, the
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state of the dynamic system (1) can be represented as a multiset of the species’
concentrations x € R", and its dynamics is described by a system of ODEs:

T

ax _ Z(ﬁ] — aj)(Rj(X) — R (x)). (2)

dt ,
7j=1

For each reaction r;, Rj/ " (x) denotes the reaction (forward and backward) rate,
and is a non-linear function of the concentrations. For example, the mass-action

law reads:

o0 = T
7

) (3
Rj_(x): ;Hx’f”, )

which in turn means that X is a multivariate polynomial of the species’ concentra-
tions. In other words, the ODE of the i-th species, x;, under mass action kinetics
reads as a sum of monomials, which can be split into production and consumption
terms, according to the sign that precedes their occurence in the equation:

dx;

=P - P (), @

where Pf/ ~ (x) are Laurent polynomials with positive coefficients:

F)i+(x> = Z (5ﬂ — Ozﬂ)R;r(X) + Z (aji - B]l)R; (X)

ﬂji—aji>0 Bji_aji<0 (5)
Pr(x) = Z (aji = Bji) RS (%) + Z (Bji — aji) R (x)
Bji—o;;<0 Bji—a; >0
For convenience purposes, we will denote Pi+/ T(x) = ZM:J/ ~(x), where

J
M:r/ "~ (x) represent the production, respectively the consumption, monomials.
The reduction heuristics that use ideas from tropical analysis exploit the concept
of dominance, which we borrow for our method. Let Mj(x) = ¢;x* and Ms(x) =
c2X*? be two (positive) monomials. We define e-dominance as the following partial
order relation on the set of multivariate monomials defined on subsets of R} :

Definition 2.1 (e-dominance) For an € € [0, 1], we say that M; dominates M,
at a time point ¢, denoted by M; =, My, if € - M;(x(t)) > Ma(x(t)).

In multiscale biochemical systems, the various monomials that compose the
polynomials Pi+/ " have different magnitude orders, such that at any given time
there is only one or a few dominating monomials.
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Definition 2.2 (Dominant monomial of a polynomial) For a given € €

[0,1], the dominant monomial of a polynomial P;(x) = ) M; ;(x) is defined as
i=1
Dom(P;) = {M;; |V1 <k <n,j#k,M;=c M}

By using the max-plus algebra idea that the sum of positive, well separated
terms, can be replaced by the maximum term, each of the two polynomials of (4)
can be replaced by their dominant monomials. The result is a reduced model,
consisting of a piecewise smooth function. As the dominant monomials of the Pf/ B
can change from one concentration domain to another, the reduced model is a
piecewise-smooth hybrid model.

Definition 2.3 (Two-term tropicalization of the smooth ODE system) We
call two-term tropicalization of the smooth ODE system (4) the following piecewise-
smooth system:

dz 7
dt

= Dom(P;*(x)) — Dom(P; (x)) (6)

We note that a one-term tropicalization of the smooth ODE system, Dom(dfti )
is also possible, but choosing only one dominant momomial instead of the
production-consumption pair of dominant monomials leads to a less precise model
reduction (as more information is discarded in the one-term tropicalization). Thus,

in this paper, we choose to deal with the two-term method.

2.2  Motivating example: Michaelis-Menten

In Sect.1, we mentioned that the classical QSS[5] and QE[18,23] approximations
represent popular methods for the simplification of biochemical networks.

As such, our motivating example is the Michaelis-Menten mechanism. This
enzymatic model illustrates how these two simple methods that use the idea of
dominance can be useful for model reduction of nonlinear models with multiple
timescales. The Michaelis-Menten mechanism consists of an enzyme that reversibly
binds a substrate to form a complex, which in turn releases a product, while pre-
serving the enzyme:

E+s::lE:sE>E+P (7)
-1

The ODE system describing the evolution of the species’ concentration writes

as:

48 — |\ [E: S] - k[E][S]

A0 = k4 [B: S)+ ko[E : 8] - k1 [E][S]
d[gt:S] =k [E][S] —k_1[E : S] — ka[E : 5]
% = ]{IQ[E : S]

(8)

The Michaelis-Menten equation relates the rate of product formation to the
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substrate concentration:

d[P] [E]r(S]
v dt 2KM + [S] ) ( )
where [E|r = [E] + [E : S] is the total enzyme concentration, and Ky = kﬂl;iim

is the Michaelis-Menten constant. Eq.(9)can be interpreted as the reaction rate
of a reduced reactive system, equivalent to system (7), in which the intermediary
complex [E : S] has been eliminated:

g Rae ot P (10)

The approximation of (8) by (9) is generally considered to be sufficiently good if
the QSS assumption holds, that is if the total initial enzyme concentration is much
lower than the total initial concentration of substrate: [S]o > [E]o+[F : S]o. In this
case, the complex [E : S| is a low concentration fast species, whose concentration is
dominated by that of the substrate; the value of [E : S| almost instantly relaxes to
a value determined by [S]. Thus, one can set d[ggs] = 0, and exploit this relation to
pool the two reactions of the initial system (7) into an unique irreversible reaction
(10). The QSS condition can also be stated as ko > k_; [26].

The original MM analysis used the complementary QE approximation, which
considers the complex formation reaction to be fast and reversible: k_1 > ko.
Thus, the term k_;[E : S| dominates the term kz[E : S] in Eq.(8), meaning the
latter can be discarded from the ODE system, allowing for pooling of species, and
resulting once again in a single step approximation that reads:

[E]
k2 Kd+?s]

S P, (11)

with Ky = kk—’ll, if indeed [S] > [E]+[E : S]. We note that if the QE assumption
is indeed valid, Kj; ~ Kj.

One of the main difficulties of applying QSS and QE reductions to biochemical
models is that the QE reactions and QSS species need to be specified a priori. Thus,
simulation of the original model is sometimes * needed in order to detect dominated
species, which are either QSS species, or participate in QE reactions [26]. For high-
dimensional non-linear systems, this requirement can represent an obstacle towards
model reduction.

The issue regarding simulation of the initial system also arises when trying to
quantify the efficiency of model reduction methods: ideally, the approximation er-
rors resulting from the reduction should be computed without executing the original
system.

Thus, in this paper we propose an approximation method for biochemical net-
works, in which no prior knowledge about the original system’s behavior is required.

4 In [27], the authors propose a formal method for the identification of QSS species and QE conditions,
which follows from the calculation of the tropicalized system, and which does not require simulation of
trajectories.
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Our method combines the dominance concept with mass invariants of the original
ODE system in order to compute inequality constraints on the species’ concentra-
tions. These constraints are then combined with the original system of equations, in
order to obtain a reduced system of ODEs that provides time-dependent lower and
upper bounds on the species’ concentrations. Depending on the coarseness of detail
we choose to incorporate in the mass invariant-generated inequalities, our approach
can serve either as a reduction method, or to quantify the approximation errors of
tropicalization reduction heuristics.

To achieve this, we abstract the original system by a box, the hyper-faces of
which provide lower and upper bounds for the concentrations of the species. The
two equations of the hyper-faces of a species represent simplified versions of the
original differential equation of the species, in which only the dominant positive
and negative monomials are considered. We refer to these equations as being tropi-
calized. Then, instead of interpreting the differential equations over the state of the
original system, we will lift this interpretation conservatively over each hyper-face
of the box. To do this, we will bound, for every hyper-face, the derivative of the
corresponding coordinate in the solution of the original differential equation over
the whole hyper-face. Our method should allow for formal evaluation of tropicaliza-
tion approaches, and as such the bounds are derived using the dominance relations
between monomials of the original ODE. Mass invariants of the original system will
then be used to refine the bounds, and thus increase the accuracy of our method. By
construction, the maximal solutions of the original, respectively tropicalized (i.e.,
abstracted) equations are related by the following soundness criterion: when both
defined at time ¢, the state of the original system is within the hyper-box of the
abstract system.

Example 2.4 Let us consider the equations (2) of the Michaelis-Menten mecha-
nism, under the QSS assumption: ko > k_1, i.e. €-k_o > k_1 >0, for an € € [0, 1].
From (2.1), it follows that one can write (by extension): kg >, k_1. Then, we
can deduce the following lower and upper bounds (that we call tropicalized) on the
concentration of xs:

ka[E : S] — ki [E][S] < B <k [E:S] - ki[E][S]
ko[ E : S] — k1[E][S] < 4B < (14 ko[ : ) - ki [E][S]
d[E:S] (12)
Fi[E][S] — (14 Oko[E: 5] < UES < ) [B][S] — ko[E : ]
ko[ E : 8] < U < plE: s

For convenience purposes, we will use the notation x1, s, x3, x4 for the species’
concentrations, [S],[E],[E : S],[P]. We propose to approximate the state of the
system by a box of R*. A box of R? is a set of the form {(21, 22,23, 24) | 7; < ; <
7;,V1 < i < 4}, where (z;,7;) are pairs of numbers satisfying z; < 7;, V1 < i < 4.
Intuitively, the real number x; provides a lower bound to the value of the variable x;,
and denotes the face {(z1, 29, 23,24) € R* | 2y = zj,2; < x5 < T7,V1 < j < 4,i #
J}. We will denote this face as F, (z1, 71, 22, T2, 23, JT;T,%, T4). The other faces are
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defined in the same way, and the same reasoning applies to T;, which provides an
upper bound to the same variable. For ease of notation, we shall use Z to denote
the vector (x1, %1, x2, T2, £3, 23, T4, T4) -

Next, let us consider the following functions:

(F(Z) = koazs— kT

FE(Z) = k173 — k2o

FL(Z) = koxs — kizoT1

FE@) = (1+ kT3 — k1721 1)
Fi(@) = kmzs — (1+ o)kozs

FE@) = kziws — ko3

Fii@) = hoxs

Fi@) = k73

The abstraction of the concrete system of equations is then defined as
{%zﬁm
% =@
V1 <i<4.

If we fix the same initial conditions for both the concrete and the abstracted
system, z;(0) = 7;(0) = 2;(0),V1 < ¢ < 4, we can relate the solution of the ab-
stract system to that of the original one. For every 1 < i < 4, the real number
Fff (21,771, %2, T2, £3, T3, T4, T2) provides a lower bound to the value of the function

dfti over the face Fz,, whereas the real number Fg(ﬂ, T1, X2, Tz, L3, T3, L4, T4) Pro-

)

vides an upper bound to the value of the function 2% over the face Fz;. That is to

dt
dz; ) . . -
say, we have —= < dﬁ’, for every pair (z1,x2, x3,24) € Fy,, and ddﬁ' < “Z‘?, for every

pair (z1,z2,x3,24) € Fz. Then, using the results of [19], we can conclude that, for
every time point ¢, and V1 <14 < 4, the bounds:

zi(t) < wi(t) < Ti(t) (14)

are satisfied. Thus, the solution of the abstract system of equations provides
lower and upper bounds for the value of the variables of the original system of
equations.

Remark 2.5 In the above example, in order to obtain safe lower/upper bounds on
x;’s concentration, we make the variables range over the hyper-faces. One notices
that the variable x; is treated specifically in the derivatives of the variables x;,7; -
any of its occurences is replaced by the variable corresponding to the hyper-face we
want to bound. By contrast, the other variables, x;, are replaced according to the
sign of their occurence:

Tj, if x; occurs negatively,

. dx; . .
* in ==, x; is replaced with ] .
xj, if x; occurs positively.
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Fig. 1. Bounds on the species’ concentration with respect to simulation time, with e = 5-10~3, rate constants
k1 = 0.017,k_1 = 0.0017, k2 = 0.3, and initial concentrations [S] = 80, [E] = 0.2,[E : S] =0, [P] = 0. For
each of the 4 species, E and [7] denote the lower, respectively upper bounds on its concentration. The
depicted results were obtained without using the mass invariants of the original system to constraint the
bounds, and as such are suboptimal.

T;, if x; occurs positively,

e in df?, x; is replaced with { ] )
xj, if x; occurs negatively.

This comes from the fact that the derivative on z; is evaluated on the corre-
sponding hyper-face, which allows for greatly reducing the loss of precision. For a
formal proof of the soundness of this approach, the reader is referred to [19]. Intu-
itively, it is justified by the intermediate value theorem: given a family of functions
{fi} over the real field, if one function f; does not take the highest value at time
t, whereas it is the case at time t” > ¢, then necessarily, there exists a time ¢’ such
that ¢t < ¢ <" in which f; takes the highest value while crossing another function
of the family.

In Example 2.4, the inequality constraints on the concentrations of species were
determined based on reaction rates constants that verify the QSS condition. In
Fig.1, we show the time-evolution of the bounds on the concentration of the 4
species in the Michaelis-Menten system, for an arbitrarily chosen set of reaction rate
constants and initial concentrations that satisfy the QSS condition (i.e., ky ¢ k_1,
and [S] = [E] + [E : S] at time t = 0). Nonetheless, our model reduction is
sound no matter the value of initial concentrations and reaction rate constants.
The equations have been integrated using the solver odel5s of Matlab[22]. Strictly
speaking, numerical errors stemming from numerical integration may accumulate
throughout the simulation, but herein we choose to ignore them.

In Fig.1, we notice that the bounds diverge at a fast rate from the original
trajectory, despite the restriction of the derivative’s evaluation on the hyper-face
of the box (as explained in Note 1). A way to improve accuracy is to take into
account the original system’s mass invariants, when computing the bounds. In
general, a biochemical system can have several conservation laws/mass invariants,
which are linear functions b1 (x), ..., by, (x) of the concentrations, that are constant
in time. These equality constraints can be used to refine the bounds on the initial
system’s species’ concentrations. We can safely further restrict the evaluation of
the derivative of each coordinate to the intersection of the corresponding hyperface
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with the subspace delimited by the conservation laws containing the variable itself.
Because a variable can appear in more than one mass invariant, we choose to keep
the most optimistic bound that can be computed by intersecting the hyper-face with
the mass invariant subspace: the greatest lower bound, respectively the smallest
upper bound.

Example 2.6 In the Michaelis-Menten system, the total number of enzymes is con-
stant, and so is the overall number of substrates and product. The two conservation
$2(t) + xg(t) = €p
:Cl(t) + iL’g(t) + $4(t) = S0
S0 = :L'l(O) + .’L’3(0) + .1‘4(0)

Assuming once more that ko > k_1, by substituting x5 by eg —x2 or sg—x1 — x4
into 12, three equivalent tropicalized upper bounds on the concentration of zo are
obtained:

laws can be written as: { , with eg = 22(0) +23(0), and

ddif (1 + 6)]@21}3 - k‘1$2£ﬂ1

<
2 < (1+ e)ka(eg — x2) — kyzaz: (15)
L2 < (1+ €)ka(so — 11 — 4) — krwamy < (1 + €)ka(so — 21) — kizax

Lifting the interpretation of the differential equations over the hyper-face corre-

sponding to Tz results in three different expressions for the upper bound on 922, of

dt
possibly different accuracies:

oL = (1 + €)koT3 — kaTazy

733 _ .

G = (L4 )ka(eo — 72) — kaTazy (16)
dTs 3

g = (L4 e)ka(so — 1) — k1Taxy

The most accurate sound upper bound on % then writes as:

arz 1 aT22 aAT23
dt W dt  dt

min( )= (1+¢€)- ke min(T3, e — T2, 50 — 1) — k1Zax1  (17)
Note 1 The choice to introduce min and max operations in the expressions of the
computed bounds is accounted for by our initial motivation: because existing trop-
icalization reduction heuristics are not justified by rigourous estimates, we aim to
provide a method for quantifying errors stemming from such tropicalization reduc-
tion approaches, at the same time creating a tropicalization approach with guaran-
tees” . As such, we aim at computing error bounds that are as precise as possible,
hence the choice of using min and max operations for bound refinement, albeit with
the disadvantage of using functions that are not C', thus introducing non-smooth
vector fields. The trade-off between smoothness and precision can be tuned according
to the desired goal: less precise bounds can be obtained by choosing to use smooth
5 We nonetheless stress that our goal is not to correct the faults of existing tropicalization-inspired reduction

methods, but rather quantify them by proposing a more rigorous tropicalization approach, in which the
dominated monomials are bounded, rather than discarded from the ODEs
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Fig. 2. Left: bounds on the concentration of P, obtained by simulating the ODE system
in Example2.8, for different values of e. Rate constants and initial concentration as in Fig.1:
k1 = 0.017,k_1 = 0.0017,k2 = 0.3,[S] = 80,[E] = 0.2,[E : S] = 0,[P] = 0. Right: For different val-
ues of €, the accuracy of the resulting bounds is computed as the difference between the upper and the lower
bound.

functions. Moreover, smoothness of vector fields is generally not guaranteed during
the numerical simulation of biochemical models: as the model variables represent
biochemical species’ concentrations, a good practice is to call the numerical solvers
used to approximate the system’s behavior using with the ’Non-Negative’ option,
which amounts to introducing a max operation into the equations (i.e., max(0,x;)),
in order to prevent negative values of variables.

The same reasoning can be applied to all variables appearing in the expression of

%, in order to obtain the most accurate upper bound:

% = (14¢€)- ko -min(x3, eg — T2, S0 — 1) — k1 - max(z1,0) - max(z2, e9 — 73) (18)
Note 2 In (15), when computing the third bound, instead of substituting x3 by its
conservation law erpression, So — r1 — x4, we choose to bound its value by an ex-
pression not containing x4. We do so in order to avoid introducing supplementary
variables w.r.t. those present in the tropicalized original bound (i.e., x1, x2 and x3).
This method, in which mass invariant partial refinement is introduced after the trop-
icalized bounds have been computed, can be considered as a per se model reduction
method, as no supplementary information/complexity is introduced by incorporat-
ing the conservation laws. By contrast, the approach in which all the information
contained by the conservation laws is exploited in order to derive the most accu-
rate bounds can constitute a method of error-estimation for tropicalization based
reduction heuristics. We present the two different methods formally in Section 3.

The issue of specifying QSS species and QE reactions a priori, when performing
model reductions, is circumvented by our method. Instead, the notion of region is
used in order to eliminate monomials from the species” ODEs. Our method uses
static inspection of each ODE, in order to partition the state space into different
regions according to which production, respectively consumption terms dominate
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the others. Using this partitioning, simplified expressions bounding the species
concentrations are derived for each region of the state space, allowing symbolic
simplification and limiting numerical approximations.

Example 2.7 In the case of the Michaelis-Menten mechanism, there are three pos-
sible dominance regions for d” leading to three possible pairs of lower and upper
bounds:

(i) Region 1, if k_; dominates ks:
k1 > ko = k_1a3 — k1zomy < %2 < (14 €)k_123 — k1z0m1

(ii) Region 2, if ko dominates k_y:
€ky > k_1 = koxsz — kixowy < dm < (1 + e)kgl'g — k1zox

(iii) Region 3, if there is no domlnant rate (i.e., k_; and ko are of comparable
magnitude):
ek_1 <k
{ k 1<_k 2 (k’ 1+ kg)xg — kxoxy < d‘m < (k'fl + kg)mg — k1xom
€hy < k1

The complete system of equations obtained using mass invariants refinement of
bounds, for all the possible dominance regions, can be found in Example 2.8. The
improvement of bound accuracy via mass invariants can be observed in Fig. 2. As
expected, one can also observe in Fig.2 that results become more precise as the
value of € increases, i.e. as k_1 and ko become more separated.

Example 2.8 For convenience purposes, denote the species concentrations,
[S], [E],[E : S],[P], using z1,%2,x3,24. Then, the derivatives of the lower and
upper bounds of the original system’s species’ concentrations write as:

dx1

s =k max(z3, eq — T2) — k1 min(z1, sp — x3) min(Tz, e9 — 3)

. ddi? = k_1 min(Z3, eg — 22, S0 — Z1) — k1 min(T7, so — £3) max (2, ep — T3)

. ddif = cymax(w3,e9 — 22) — k1 min(T1,so — r3) min(zz,ep — x3), with ¢y =
k_1, if ek_1 > ko
ko, if ekg > k1
(k—1+ k2), otherwise

. dg = ¢y min(T3, €9 — T2,50 — ¢1) — k1 max(z1,0) max(Tz, e9 — T3), with ¢ =

(1 + 6)/43_1, if Ek}_l Z k‘g
(1 + 6)/€2, if eko > k_1
(k—1 + k2), otherwise

. dd% = kymax(zy,0) max(r2,eq — x3) — c— min(r3,eq — 2,50 — 1), with c. =

(1 + E)k_l, if Ek_l Z ]{2
(1 -+ 6)/452, if ekg > k_q
(k—1+ k2), otherwise

. ddi? = kymin(77, so — T3) min(Tz,e9 — T3) — ¢— max(T3,e9 — T2),with c— =
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kfl, if ekfl Z kg
k‘z, if 61432 2 k'_l
(k—1+ ko), otherwise
dx
e =2 = kymax(z3,0)
. ddi? = ko min(T3, so — T1)

The Michaelis-Menten system represents a particular, simple case study: the
choice of reaction rate constants fixes the dominance region in which the system
evolves. In general, the state of a biochemical network can traverse multiple such
regions, as the dominant monomials can change from one concentration domain to
another. Thus, we next introduce a case study in which the dominant monomials
are concentration-dependent, which in turn means that the dominance region is no
longer fixed. Our method is designed with this more general situation in mind:
having computed the most accurate bounds for each region of the state space parti-
tioning, and having no information regarding the region in which the original system
evolves at a given time ¢, our approach chooses the least accurate local bound, in
order to ensure global soundness.

2.8 Motivating example: A DNA model

We construct a simple extension of the Michaelis-Menten system, in which the
product formation reaction is catalazyed by a dimer of an enzyme M. The reaction
system and its ODE system ° read:

% = —lex% +2k_1x9
k
M+ M ];ﬁl Ms % = —k_1x9 — koxows + k_ox4 + k‘ll‘%
-1
My + DNA 2 My DNA = hoam o+ kyoy — ks,
2 P s = —f oz — ks + koTows
My.DNA B DNA+ P dts — fymy
(19)
The mass invariants write:
1+ 2x2 + 224 + 225 = M) (20)
x3+ x4 = DN Ag

Dominance regions become concentration dependent: for example, the dominant

positive monomial in % is determined by the dominance relations between both

the concentrations of x1 and x4, and between reaction rate constants k1 and k_o.
This DNA example will serve as a case study for the remainder of our paper.

6 once again, we denote the species M, My, DNA, My.DNA, P by x1, %2, %3, 4, T5
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3 Combining ODEs and mass invariants

3.1 Model reduction using conservative numerical approximations

The guarantees of our method are a consequence of a carefully designed symbolic
propagation of inequality constraints on the species’ concentrations. Thus, symbolic
transformations have to be applied on numerical expressions, of which we introduce
a syntax and semantics. We also introduce an alternative definition of a biochemical
model to that presented in Sect. 2, which is then used to define and justify our
approximation method.

Definition 3.1 (Syntax of expressions) Let S be a set of variables. We define
an S-expression inductively, as follows ” :
(i) each positive real number k € R} is an S-expression;
(ii) each variable z € S is an S-expression;
(iii) if e is an S-expression, then (—e) is an S-expression;
(iv) if e; and ey are S-expressions, then (e;-es), (e1‘ez), min(er, es), max(er, o)
are all S-expressions;
The set of S-expressions is denoted as Exprs. Given an S-expression e, we define

its support, denoted supp(e), as the set of variables it contains.

Definition 3.2 (Semantics of expressions) Let S be a set of variables and e be
an S-expression. The semantics of the expression e is the function [e]s : R® — R,
defined inductively as follows:

(i) Ve e R, [ells) = ¢

(ii) Vo € S, [z]s(p) = p(=)

(iii) Ve € Exprs, [[;e]]s(p) = —[elsp)

(iv) Vey,es € Exprs, [[614—62}]3@) = [e1ls(py + [e2lsp)

(v) Vei,ea € Exprs,[erea]s(p) = [e1]s(p) le2ls(p)

(vi) Vey,es € Exprs, [[m'in(el, e2)]s(p) = min([e1] sy [e2ls(p))
(vii) Vei,es € Exprs, [max(er, e2)]s() = maz([ei]se)le2lsp))
for every environment p € RS.

We use Defs. 3.1 and 3.2 to define the notion of system of symbolic differential
equations and symbolic equality constraints derived from conservation laws.

Definition 3.3 (Symbolic ODE system)
A system of symbolic ordinary differential equations and equality constraints
modeling a biochemical network is a tuple (S,I,F, (Ep)), where:

o S ={x1,...,xs} is a set of variables, denoting species’ concentrations,

7 the syntactic operators are written using a superscript dot, in order to distinguish them from their
associated mathematical functions
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e [:S — RT is a non-negative function, mapping each species to its initial concen-
tration,

e F:S — FExprg is a function describing the evolution of species’ concentrations,
as described in Eq.(4):

Vr; € S,F(x;) = P (x) — P (x),

with P;r/ ~ € Exprg, Laurent polynomials with positive coefficients,

e {E;}® is a family of functions from the set S into the set Exprs, denoting equality
constraints derived from conservation laws, such that Vf:S — RR" satisfying

f(:)(0) = 1(0), Vz; €S
L&) (1) = [F (@)l S{os fe ), Vi € S and t € RY

the constraint
(@) (t) = [Eo(i) ) sz @) 1))
is satisfied for every function E; of the family {E;}, Va; € S, and for every time
teRT.

Example 3.4 (A DNA example) In our running example, S = {x1, z2, z3, 24},
F is defined by the equations of (19), and the equality constraints derived from the
conservation laws of (20) write:

Ei(x1) = My — 2x9 — 224 — 225; Eo(x1) = My — 2DN Ay — 229 + 224 — 215
E1($2):%—x4—$5; EQ('CUQ):M—DNA()—I—{E?,—Q%
Ei(z3) = DN Ao — y; Eo(z3) = DN Ay — M1 4 g5 4 a5
Ei(x4) = DN Ay — x3; Eo(z4) = %—xg—xg)
E1($5)=%—x2—x4; E2($5):@—DNAO+!%3—$2

(21)

We partition the state space of each ODE into regions, each one defined by the
corresponding pair of dominant monomials, (Dom(P;t (x)), Dom(P; (x))). At any
given time ¢, several monomials can be dominant, which can lead to an exponential
number of possible regions. To circumvent this issue and obtain a linear number of
regions, we choose to replace each region that has more than one dominant term
with the unique region in which no term is dominant: if |Dom(Pf(x))| > 1, we
choose to keep PijE (x) in the reduced ODE, instead of replacing it with Dom(PijE (x)).
The following definition formalizes these concepts.

Definition 3.5 (State partitioning of a symbolic ODE) Let (S,LF,{E;)}
be a symbolic ODE system, and € € [0, 1] a scale separation constant. Then, for

p n
every variable z; € S, if PZ-Jr = leJr and P, = El M, its state space can be
= J:

J

8 the number b indexes the different ways of expressing a species x;, by using the mass invariants in which
it appears
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partitioned into (p+ 1) x (n+ 1) regions, each one determined by the corresponding
pair of dominant monomials

(M, M), if k <p,l <n,Dom(P;") = M\, Dom(P]) = M

b J(BEME), itk =p+ 10 <n, Dom(F) = M )
C (M P, ik <pl=n+1,Dom(P) = My

(PH,P7), ifk=p+1ll=n+1

Example 3.6 (A DNA example) In Eq.(19), the state space of x2 can be parti-
tioned in 9 regions, as its ODE contains 2 positive terms and 2 negative terms:

7% = (k’llf%, k,ll'g)' T;’l = (k),2$47 k_1z2); 7’3"1 = (kllt% + k_oxy, k_129)

2 2,2 3.2
ry? = (k12d, kowows); 157 = (k_ois, kawaxs); 1y = (K12} + k_oxs, kawows)

ry? = (k13 k1w + kowows); 157" = (k_gma, k1w + kawows); 157 = (k13 + k_owa, k122 + kowows)

We next use the dominance relations that define each region, in order to obtain
region-specific lower and upper bounds on the ODE being considered. The next
definition formalizes this procedure:

Definition 3.7 (Region-specific tropicalized bounds) Given a symbolic ODE
system (S,I,TF, (Ep)), and the set of regions rk’l for each species z;, the dominance

definition 2.1 can be used to define the following functions, for every region rkl

M =(1+(n=1)€)'M;, if k <p,l <n,Dom(P;") = M, Dom(P) = M,

F () Pr=(14+(n=1)'e)'M;, ifk=p+1,0<n,Dom(P )= M,
A ME-PT, if k <p,l=n+1,Dom(P") = M;"
P+ P;—, ifk=p+1,l=n+1
(1+(p=1)'e):M; =M, , if k < p,l <n,Dom(P;") = M;', Dom(P;) = M,
Fk’l(m) _ PrM, if k=p+ 1,1 <n,Dom(P;) = M,
T (I+(p=1):e): M P, if k <p,l=n+1,Dom(P;") = M,
Ptip,—, ifk=p+1,l=n+1

Functions Flf’l and IF’TC’Z provide symbolic tropicalized lower, resp. upper bounds

for F(z;) on region rfJ

Example 3.8 (A DNA example) In our running example, in region 7“5’1 =
(k—2x4,k_1x2), the dominant positive (production) monomial is k_sx4, and the
dominant negative (consumption) monomial is k_jze. Formally, this writes as
€ /{:,23:4 Z klzv% Z 0, and € - ]{:,13)2 Z k2$2x3 2 0.
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Thus, the r%’l specific tropicalized bounds write as:

)

{]Fi’l(@) =k_oxy — (1 + €)k_122

]Fi’l(:vz) = (14 e€)k_oxy — k_119

which by construction satisfy Fi’l(:ﬂg) < ddif < Fi’l(iﬂg).

The bounds of Def. 3.7 can further be refined by using the mass invariants given
by the family of functions {E;}, as follows:

Definition 3.9 (Region-specific refined tropicalized bounds) Given a sym-
bolic ODE system (S, I, F, (Ep)), the set of regions rf ! and the symbolic tropicalized

bounds F’f’l(xi), Flﬁ’l(xi) for each species x;, we define the following bounds:

L]-C’l(:lj ) — Eb(xj)v ity = Vb

vk Y Lo1I 0, otherwise
heTEy U () = Ey(5), ity =V,
i.b [[Eb(xf)]]vb\v[xjwa’l(a:j)]’ otherwise

with V = supp( ) = supp(F Yz), Vy = supp(Ey(x;)), for each function Ey,

of the family (Eb) that applies to the variable z;, and bf’l(mj) € Expry is either 0,
or a bound generated by the dominating monomial inequality constraints.

Example 3.10 (A DNA example)

When dealing with the tropicalized bounds of Ex.(3.8), one needs to refine the
bounds of the variables in their support: V = {z2,24}. We do so by using their
respective equality constraints from (21): Ej(x2), Eo(x2),Eq1(x4), and Eo(xy).

What’s more, the second dominance inequality of region r%’l in Ex.(3.8)can

1

be rewritten as x3 < ekk‘ This allows for a new upper bound on variable xj:

b2 L(rg) = ei=t W € Expv“v
Using Def.3.9, the 7"2 —speciﬁc bounds on x5 and z4 write as:

Lo1(22) = 0;  L3p(2) = 0; ng(u)zpmﬁ%; L3} (z4) =0

Upi(e2) = 0 —zy; Upy(en) = 42 — DNAo + €' Ugi(ea) = DNAg;  Upp(aa) = 2 —

Using mass invariants to compute the most optimistic bound is done inductively
over the S expressions of the candidate bounds, by applying usual formulae of inter-
val arithmeticsto propagate the min and max operators. The resulting evaluation
functions, which we call f - and fuax respectively, are detailed in Appendix A.

With all this in place, we can proceed to the definition of the reduced system.

Definition 3.11 (Reduced system) Let A = (S,I,F, (E;)) be a system of ordi-
nary equations with equality constraints. The reduction of the system A is defined
as the triple (S, 1%, F#), with:
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(i) 8% = {z; | 2; € SyU{Ti |2 € S}
(ii) I# : 8% — R* is defined by I#(z;) = I#(z;) = I(z;),Vz; € S h
(iii) F# : S#* — FExprgs, defined as:

F# (1) = frain ([, (@) ] g [FT " (@] 1) )
FH@7) = funa ([Fy @) ] g0 [FF " ()] 1) )

for every variable z; € ', where:

xj — max(z;, m?x(Lﬁi(xj)))’ if 2 € ol

. pi . L+
1 i . . . .
xj — min(z;, mbln(Uf’é(xj))), if z; € tlj’lf
rj—~aj, iz =
. p% =1z = x5, if z; # x;, for positive polarity/sign occurences of x;
xj — T;, if x; # x;, for negative polarity/sign occurences of z;
- Ltk . ki
R xj — min(x;, mbln([Ui’b (z))), ifa; ety
o p = .
1 . . .
z; + max(x;, mgX(Lf}f(xj))), if z; € tl;’lf
Tj— Ty, if x; = xj
J pg =< x;—T;, if x; # x;, for positive polarity/sign occurences of x;

zj — xj, if z; # x;, for negative polarity /sign occurences of z;

Intuitively, for each region (k, 1) of species z;, the reduction method first replaces
F(x;) by the pair of tropicalized lower and upper bounds, Ff’l(azi) and F]T“’l(a:i), that
result directly from the dominance inequalities that characterize the region. Then,
Flj’l(:ﬂi) and F’Tgl(xz) are refined, using the bounds on variables that can be deduced
from the conservation laws of the original system. For example, replacing any
occurence of a variable z; in Flj’l(:vi) with one of its expressions [E;(x;) (or with
its appropriate bound derived from Ey(x;)?) results in another safe upper bound
for F(x;). By choosing the minimum such candidate bound, one obtains the most
accurate, locally safe upper bound. The same reasoning applies to the computation
of lower bounds, but the min operation is replaced with mazx.

In order to obtain safe (i.e., correct) global bounds, the least precise local bounds
are chosen: the miminal lower, resp. the maximal upper bounds.

Finally, the interpretation of the variables is lifted over the hyper-faces. Any
occurence of x; is replaced with its analogue corresponding to the hyperface we want
to bound, while the others are replaced to their analogue given by the polarity of
their occurence, as explained in Note 2.5.

Theorem 3.12 Let A = (S,I,F, (Ey)) be a system of ordinary equations with equal-
ity constraints. Let (S¥ 1%, F#) be a reduction of the system A.

9 ]Lfy’bl (z;) for the positive occurences of z;, and Ui’bl (z;) for its negative occurences
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Fig. 3. Bounds on the concentration of P, in the DNA example, obtained by simulating the
ODE of tropicalized bounds for different values of the scale separation constant €, rate constants
k1 =ko =ks =0.1,k_1 = 0.01,k_2 = 0.00001 and initial concentrations [M]o = 1, [DNAjo = 0.05.

Let f be a function from the set S into the set RE" .. for every variable x; € S,
we have:

{f(ari)(o) = ()
Y (1) = Flay > f(xi)(8)]

and f# be a function from the set S¥ into the set RE" 5., for very abstract
variable z;# € S*, we have:

F()(0) = T# ()
D (1) = FHaF — fHF)(0)]

(3

Under these assumptions, we have that for every variable x; € S and every time
teR*:

FH(za)(1)) < fla)(t) < 7 (@0)(1),

i.e., the reduced system provides sound lower and upper bounds for the concentration
of the original system’s species.

Example 3.13 We apply our method on the DNA example constructed in Sect.2.3,
for different values of the scale separating constant e, and for arbitrarily chosen
reaction rate constants k1 = ko = k3 = 0.1, k_1 = 0.01,k_9 = 0.00001 and initial
concentrations [M]yp = 1,[DNA]p = 0.05. We show in Fig.3 the time evolutions
on the bounds on the concentration of the product [P], i.e. the variable z5. We
notice once again that the results become more precise as e¢ decreases, i.e. as the
monomials become more separated. As an example, the ODE of the lower bound
of species z2 can be found in Appendix B.
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4 FError estimates of tropicalized systems using conser-
vative numerical approximations

Our approach also serves as a heuristics for quantifying errors of tropicalization ap-
proaches for biochemical model reduction, provided a slight modification is applied
to Def.3.9. Instead of computing bounds using only variables from the support of
the tropicalized bounds, one can use the equality constraints {F}p}, to refine the
accuracy of bounds. The resulting model presents a trade-off: it introduces new
variables w.r.t. the support of the tropicalized bounds, albeit exclusively in the
form of conservation laws which are always linear functions, but gains in bound
accuracy. As such, the approximation error/accuracy of a given reduction method
can be assessed by checking if the reduced trajectory lies between the lower and
upper bounds computed by our method.

Example 4.1 It is well known that the Michaelis-Menten reduction is valid only
under the QSS and QE assumptions. In Fig.4, we simulate the reduced Michaelis-
Menten system (10), as well as our modified reduced system, as presented above,
for a set of initial conditions that no longer satisfy the QSS assumption, i.e. the
total enzyme concentration is comparable to the total substrate concentration. As
expected, the reduced Michaelis-Menten system no longer represents a good ap-
proximation of the initial enzymatic system (7); this is reflected by the fact that the
trajectory of the reduced model does not lie between the lower and upper bounds
computed by our approach.

[51,=80, [E] =40, ¢=5e-3 [51,=80, [E] =40, ¢=5e-3
0.4325
0.43245

0.4324

Concentration
Concentration

0.43235

0.43225

02481 024811 024812 024813 024814 024815 024816 024817 024818
ime

Fig. 4. Estimating the accuracy of the Michaelis-Menten approximation: bounds on the concentration of
[P], with respect to simulation time, for ¢ = 5-10~%, rate constants k1 = 0.017,k_1 = 0.0017, k2 = 0.3, and
initial concentrations that do not satisfy the QSS condition: [S] = 80, [E] = 40, [E : S] =0, [P] = 0. (left)
Whereas the original system’s trajectory lies between the lower and upper bound given by our method,
this is not the case for the classical Michaelis-Menten approximation. Thus, as expected, one can conclude
that if the QSS condition is not met, the Michaelis-Menten approximation is inaccurate. (right) Zoomed in
version, showing the enclosed original trajectory (in blue)
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4.1 Tyson’s Cell Cycle Model

The tropicalization heuristics can be difficult to justify by rigourous estimates, al-
though this is possible in some cases[26]. For example, the existence of tropical
varieties - the set of points x € R” where at least two monomials of P~/ are equal-
can lead to sliding modes, which in turn represent challenges in providing accuracy
justifications for hybrid models obtained using tropical ideas. Sliding modes are
well known phenomena in ODEs with discontinuous vector fields, in which the dy-
namics can follow discontinuity hyper-surfaces where the vector field is not defined;
what’s more, the conditions for the existence of sliding modes are usually intricate.
As noted in [27], sliding modes can have a nefarious effect on the behavior of the
tropicalized system: tropical varieties (i.e. tropical curves) decompose the state
space into sectors corresponding to the smooth modes of the hybrid tropicalized
system, which passes from one type of smooth dynamics to another intrinsically,
when the trajectory attains the tropical curve. However, if certain conditions w.r.t.
the sliding modes are fulfilled, the trajectory can continue along some tropical curve
instead of changing sector, which further deviates the reduced system’s trajectory
from the original one (see Figure 1 in [27], for an example).

In [27], such phenomena become apparent when tropicalization is applied to
the minimal cell cycle model proposed by Tyson|31], in order to obtain a reduced
hybrid model. The Tyson model describes the interplay between cyclin and cyclin
dependent kinase cdc2 during the progression of the cell cycle, and demonstrates
the existence of three possible regimes, that can be associated to different phases in
the cell life: the biochemical system can either function as an oscillator, converge to
a steady state, or behave as an excitable switch. The three possible behaviours can
be associated to early embryos rapid division, arrest of unfertilised eggs and growth
controlled division of somatic cells, respectively.

The dynamics of this non-linear model with rational reaction rates contains 6
species and 9 reactions, and is described by the following system of polynomial
differential equations:

C%:/766'214—168'@/14—1439'92
%:—k3~y2~y5+kg-y1—k:g-y2

s — oy oy ys — Ky ys — ka2 - 3 (23)
%Zkf;'y3+k4'y2'y3*k6'y4 ’

Ws — fy — ks -y ys

d(%:kﬁ‘?ﬂ—k?'%

and has the conservation law y (t)+y2(t)+ys3(t)+ya(t) = 1, where the value 1 de-
noting the total initial concentration of kinase cdc2 (i.e. y1(0)+y2(0)+y3(0)+y4(0))
was chosen by convenience. The values of the reaction rates constants are fixed as
to have the model display the oscillatory behavior: k1 = 0.015,k3 = 200,ky =
180, k), = 0.018, kg = 1, kg = 103, kg = 105.

In [26,27], a hybrid model of the Tyson cell cycle is obtained by detecting and
eliminating QSS species of the original model, pruning dominated monomials, and
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then ultimately tropicalizing the reduced-size model. Besides having the inconve-
nient of analyzing trajectories of the original model in order to detect QSS species,
the reduced model suffers from the the sliding mode-related issues mentioned above:
although both the smooth (original) and the reduced system exhibit oscillating be-
havior and have stable periodic trajectory (i.e. limit cycle), the period of the
tropicalized limit cycle is different with respect to that of the smooth cycle, due to
the tropicalized trajectory sliding along the tropical manifolds instead of changing
sectors. Having different oscillation periods means in turn that assessing the ac-
curacy of the tropicalized reduced model is not a trivial question, as the distance
between original and tropicalized trajectories is variable from cycle to cycle (as can
be seen in Figure5). What’s more, it can also provide an indication of the poor
performance of tropicalization based reduction methods when dealing with more
complex systems, such oscillating systems.

Indeed, by applying our method to the original Tyson model, we are able to
effectively provide guarantees on the reduced model, albeit not very strong ones:
this could be interpreted as an indication of the poor accuracy of the tropicalized
Tyson model. In Figure 5, we plot the bounds for the concentration of species
14 obtained using our method, in order to compare the trajectory of the original
model to the one of the hybrid one that can be found in [26]. The lack of oscillating
behavior in the computed bounds could intuitively be explained by the difference
in period of the original and reduced systems, that causes a shift at every cycle in
the tropicalized trajectory w.r.t. the original behavior. Nonetheless, the obtained
bounds accurately capture the amplitude of the tropicalized model. One also notes
that the time points where the upper bound, respectively the tropicalized system,
begin to diverge w.r.t. the original trajectory coincide.
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Fig. 5. Estimating the accuracy of the tropicalized Tyson model: bounds on the concentration of [y4], with
respect to simulation time, for e = 1073,

From a more practical point of view, we note that while simulation of the trop-
icalized Tyson model proposed in [27] was performed in 354.876706 seconds, on a
2.2 GHz Intel Core i7 processor and 16 GB 1600 MHz DDR3 memory, simulation of
the model obtained via our method was performed in only 9.775511 seconds using
the same numerical integration method (i.e. Matlab’s odel5s), thus providing a
significant improvement in computation time.
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We note that an alternative reduced model is obtained in [26], using tropical
equilibration, that circumvents the need to simulate the original system. We plan
to include tropical equilibration techniques in future work.

5 Comparison with existing methods

We mentioned previously that numerical errors stemming from numerical integra-
tion are ignored herein. Indeed, numerical integration methods, while heavily used,
only provide approzimations of the solution of the initial value problem (IVP) of
ODE systems. Even when using variable-step size methods, there are no guaran-
tees that the approximate solution computed by the chosen method is close to the
actual solution. In order to solve the drawbacks associated to traditional ODE
solvers/numerical solutions of IVP, interval numerical methods for IVP are used for
computing validated enclosures of the solution of an IVP for an ODE. For example,
the VNODE-LP|[24] C++ solver proves that a unique solution to a problem exists,
and then computes rigorous bounds that are guaranteed to contain it. Such bounds
can then be used to help prove theoretical results, check if a solution satisfied a con-
dition in a safety-critical calculation, or simply to verify the results produced by a
traditional ODE solver. Another example of such software is the CAPD library [6].
Both represent well-established software for computing enclosures of generic ODE
systems, and are integrated in various SMT solvers (e.g., iISAT[12], dReal[15]). For
a more comprehensive state of the art on such methods, the reader is refered to [25].

Interval methods for IVPs for ordinary differential equations are typically based
on Taylor series expansions, which require the computation of Taylor coefficients up
to some order k. Given a final time point, the aim is to compute interval vectors that
are guaranteed to contain the solution to a given IVP, at all intermediary points.
In order to compute such interval vectors, interval propagation methods are used
to enclose roundoff and truncation errors in the computed bounds, and thus obtain
rigorous bounds on the true solution of the ODE.

In our approach, instead of interpreting the differential equations over the state
of the system, the interpretation is lifted conservatively over each hyper-face of the
hyper-box abstracting the system state (i.e., we over-approximate the derivatives
only on the hyper-faces). When compared to our method, interval propagation
methods over-approximate the partial derivatives of the function over the whole
enclosing hyper-box, instead of doing so only on the hyper-faces. This in turn
means that our approach computes tighter bounds than those computed by interval
methods for IVPs.

We demonstrate our claim with the following example:

Example 5.1 Let us consider the following initial value problem :
%=y (2—cos(y)) — - (2~ sin(y))
% = - (2e0s(y))y - (2sin(y))
z(0) =y(0) =1

As presented in Section 3, our framework can be decomposed in two indepen-
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dents parts: the first part consists in synthesizing bounds on the derivatives of the
original system, and the second part deals with the propagation of said bounds, in
order to obtain the enclosing system.

As our goal is to better understand and evaluate tropicalization approaches for
biochemical model reduction, so far we chose to focus on bounds obtained by using
dominance relations between monomials. The second part of our method simply
represents an improved alternative to existing ODE enclosure methods, as explained
above, and as such can be used in such methods in order to get better enclosure
results.

For example, in order to compare the performance of our method to that of
VNODE-LP and CAPD, instead of using dominance relations to derive inequality
constraints on species’ concentrations, we now use the Taylor Series expansion with
k terms (k will serve as a parameter) for the functions sin and cos, in order to

; dz dy.
derive bounds on it and it

k—1

; 3 5 7 9 2n+1
sine) e 5+ G- F g = T g
n=
2 4 6 8 k—1 om
cos(z) M L=+ 4~ B+ - = T (-1
n=

Then, for a fixed order k and an ¢, instead of using dominance-related inequali-
ties with our method, one can use the following inequalities:

x x
> (=" e <sin(z) <Y (-1)" e
= (2n+1) = (2n+1)
k—1 172” k(-1 2n
n n
Z( ) o) € < cos(z) < 1) @n)! +e
n=0 n=0
where € = (—1)2’”1%003(01) for ¢; € [0,x] is the residual for the Taylor
|z[2k+1

expansion, and can be bound by € < (2/|~c+1)!’ which in turn is < (2k + 1)!7! for
xe€[-1,1] ).

Our method then proceeds as usual to the computation of ODEs for bounds on
the concentrations of x and y.

In Fig.6, we compare the accuracy of our method to that of VNODE-LP and
CAPD, for different values of the order k. The accuracy is given by the tightness of
bounds, which can be evaluated by computing the difference between the upper and
lower bounds, during a simulation. The results indicate that, when compared to ex-
isting enclosure interval methods, our approach represents a consistent improvement
of several orders of magnitude, across different values of k.
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Fig. 6. Comparison of our method - which we denote by ”T.A.G.”- with existing ODE enclosure methods
CAPD and VNODE-LP. For different values of the Taylor expansion order k, used to derive bounds on
the system in Example 5.1, our method ultimately out-performs both CAPD and VNODE-LP, in terms
of accuracy; for k = 6, our method is initially outperformed by VNODE-LP on the studied example, but
ultimately proves to be more efficient, for the time frame ¢ > 4. The exponent on the y-axis is an indicator of

the decimal precision of the methods (i.e. a value of 10~1® means that the first 15 decimals of the computed
lower and upper bounds are identical). We also note that both CAPD and VNODE-LP only allow values
of k> 4.

6 Conclusion and outlook

In this paper, we present an approximation method for biochemical networks, which
can also serve as a technique for evaluating the faithfulness of existing tropicaliza-
tion reduction methods that do not involve guarantees. Our approach relies on the
multiscaleness property of biochemical systems. Tropical geometry offers a natural
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framework for studying such networks. Tropical approaches [28,29] can guide model
reduction of ODE systems, by using time- and concentration scales separation to
identify and neglect equation terms whose values are significantly smaller than those
of other terms of the same equation. This leads to partitioning the state space into
different regions, according to which term dominates the others. A similar ap-
proach is employed in our method, but instead of neglecting the dominated terms,
we propose to conservatively bound their value using an amortizing scale separation
constant and the value of the dominant terms. These bounds can be further refined
by incorporating the conservation laws of the initial system. The resulting approxi-
mated model is composed of two-term ODEs (which we call tropicalized), which by
construction provide time-dependent lower and upper bounds for the concentration
of the initial system’s species. As such, our approach can also serve to test the
accuracy of other given reduction methods, while circumventing the execution of
the original system: the suitability of a reduction will be confirmed if the reduced
model’s trajectory lies between the bounds provided by our abstraction.

We have tested our approach on the classical Michaelis-Menten system, a simple
extension of it, and Tyson’s cell cycle model. Our method can be easily automatized,
either using static analysis, or existing symbolic math tools '’ ; as such, Definitions
3.1-3.11 are written in an operational-semantics style, as to describe the different
procedures composing the algorithm that implements our method. A tool that
automatizes our approach is currently being developed. Further work also includes
expanding the case studies to larger networks, possibly with no conservation laws.
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Appendix A Symbolic propagation of min and max

The propagation of the min and max operations over S-expression is done using the evaluation functions
frnin @0d fmax, which are defined by mutual induction over the syntax of S-expressions denoting monomials:

(i) Vei,ea,...,ex € Exprg,
* fuim(en ez, .. ep) £ min(er, ez, ..., ex)
o fmax(e1,€2,...,ex) 2 max(er, ez,. .., ep)

(ii) Vei,e2 € Exprs,
* fm'in(;elf ;62) £ ;(fm'ax(ely 52))
° frn'ax(;el7;€2) 2 ;(fm-in(el’62))

(iii) Ve1,es € Ezprs,Ve € R,

e oy a [ fpn(erser), ife>0
o fum(cier, ciea) & {C:f::;(el,ez), fe<o

it cen) & {non ) 1020
(iv) Ve,e1,es € Ezprs,

o fiuin(erte eate) 2 f . (e1,e2)te

o fmax(e1Fe,eate) 2 fiax(e1,e2)te
(v) Ve,e1,e2 € Exprg,

° fm'in(e%elye%@) = e;_fm'ax(61762)
o Tleer,etes) = e foi (1, e2)

Appendix B A DNA model: bound equations

Below, we give the equation of the lower bound on species z2 from our running DNA model example.
According to Def.3.11, the derivative of lower bound on the concentration of x2 is computed by selecting
the minimum region-dependent (i.e., local) lower bound, out of the 9 possible cases:

day .11 1,2 1,3 .21 .22 2.3 .31 ,3,2 ,3,3
g:mm(t¢ 2t e 2 )
with
DNA k_
ti’l :max(klﬂz,k,2(70 - =t ))—
€ ko
Mo —z1 My 1 k_1
1 k_1-min(ze, —————, — — DNAg — = —e¢—);
(14 k-1 - min(zg, — 2 0m S T
DNAy —
ti’Q :max(klﬂz,k,2+m)—
. My —x1 My —2DNAg — 1 + 273
(1 e)kz - min(ag, —, ]

-min(Z3, DN Ag)

k_ k_ k_
1% = max(k1212, (=2 (DN Ag — —2), Z=2(DN Ao — 73))—
4 — € eko €
Mo — k
min(z2, OTE + min(Zz — DN Ay, k—2 — DN Ag)))-
2. P

(k2 - min(z3, DN Ag) + k—1);

2,1 ek_1

ty =k_o -max(z4, DNAg — —)—
Z4. T2

M k_
(14 e)k_1 - min(za, 70 — max (x4, DNAg — ek—l))
2
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ti’Q =k_o - max(z4, DNAg — T3)—
M, M,
(14 €)k2 - min(za, 70 — 4, 70 — DNAg +73)-

min(z3, DN Ag — z4)

k_
9% =k_ - max(z4, DN Ao — 73, DNAg — —))—
- 6k‘2

M k_
min(z2, 70 — max(z4, DNAy — T3, DNAg — Tl))
z2 Z4 ks

(k-1 + k2 - min(T3, DN Ao — z4));

31— 2 2 z2
1 =max(ek_2z4,k121°) + max(ek1z1”,k_2 - (DNAg — ekflg))—

Mo —
(14 €)k_1 - min(x2, OTB — ek1 -QZIC_Q);

2
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