

Brigham Young University BYU ScholarsArchive

All Theses and Dissertations

2007-03-13

# Culvert Hydraulics: Comparison of Current Computer Models

Elizabeth Anne Thiele Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the <u>Civil and Environmental Engineering Commons</u>

#### BYU ScholarsArchive Citation

Thiele, Elizabeth Anne, "Culvert Hydraulics: Comparison of Current Computer Models" (2007). *All Theses and Dissertations*. 881. https://scholarsarchive.byu.edu/etd/881

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen\_amatangelo@byu.edu.

## CULVERT HYDRAULICS: COMPARISON OF CURRENT

## COMPUTER MODELS

by

Elizabeth A. Thiele

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Civil and Environmental Engineering

Brigham Young University

April 2007

## BRIGHAM YOUNG UNIVERSITY

## GRADUATE COMMITTEE APPROVAL

of a thesis submitted by

Elizabeth A. Thiele

This thesis has been read by each member of the following graduate committee and by majority vote has been found to be satisfactory.

Date

Rollin H. Hotchkiss, Chair

Date

E. James Nelson

Date

Alan K. Zundel

## BRIGHAM YOUNG UNIVERSITY

As chair of the candidate's graduate committee, I have read the thesis of Elizabeth A. Thiele in its final form and have found that (1) its format, citations, and bibliographical style are consistent and acceptable and fulfill university and department style requirements; (2) its illustrative materials including figures, tables, and charts are in place; and (3) the final manuscript is satisfactory to the graduate committee and is ready for submission to the university library.

Date

Rollin H. Hotchkiss Chair, Graduate Committee

Accepted for the Department

E. James Nelson Graduate Coordinator

Accepted for the College

Alan R. Parkinson Dean, Ira A. Fulton College of Engineering and Technology

### ABSTRACT

## CULVERT HYDRAULICS: COMPARISON OF CURRENT COMPUTER MODELS

Elizabeth. A. Thiele Department of Civil and Environmental Engineering Master of Science

The hydraulic analysis of culverts is complicated when using hand calculations. Fortunately, several computer programs are available to assist in analyzing culvert hydraulics, some of which include HY-8, Fish X-ing, Broken-back Culvert Analysis Program (BCAP), Hydraflow Express, Culvert Master, Culvert, and Hydrologic Engineering Center River Analysis System (HEC-RAS). While all of these programs can simulate the behavior of flow through a culvert, slightly different methodologies are utilized among the programs to complete a full hydraulic analysis, resulting in different predictions for headwater depth, flow control, and outlet velocities. The purpose of this paper is to compare (1) the available hydraulic features and (2) the numerical solutions from the seven programs to manually computed values.

Four test cases were developed to test the accuracy of program results. The headwater depths and outlet velocities were compared to those obtained through calculations based on culvert hydraulic theory outlined in the Federal Highway Administration publication, Hydraulic Design Series 5.

Based on the results, Fish X-ing was unable to analyze culverts under inlet control, while Culvert incorrectly predicted inlet control headwater depths at low flow conditions. Hydraflow Express struggled to predict correct outlet control headwater depths while BCAP had difficulty analyzing straight barrel culverts acting under outlet control. Overall, HY-8, Culvert Master, and HEC-RAS produced accurate results most consistently.

### ACKNOWLEDGMENTS

I would like to thank my advisor, Dr. Rollin H. Hotchkiss, for his patience and support in helping me understand culvert hydraulics. I would also like to thank Dr. Jim Nelson and Dr. Alan Zundel for serving on my graduate committee and providing me guidance when needed, as well as Chris Smemoe for his assistance in helping me understanding the workings of HY-8.

I also wish to thank Phil Thompson for answering the many emails requesting clarification of aspects of culvert hydraulics, especially the polynomial curves used in HY-8.

Finally, I wish to thank my husband Josh, for his love and patience during the many hours I spent working on my thesis, and for being willing to drive to campus countless times bringing me candy and support to get me through the day.

## TABLE OF CONTENTS

| 1 | Intr                | oduction and Purpose                        | 1  |  |
|---|---------------------|---------------------------------------------|----|--|
| 2 | Culv                | vert Hydraulics Background                  | 3  |  |
| 3 | 3 Computer Programs |                                             |    |  |
|   | 3.1                 | НҮ-8                                        | 5  |  |
|   | 3.2                 | Fish X-ing                                  | 6  |  |
|   | 3.3                 | Broken-back Culvert Analysis Program (BCAP) | 6  |  |
|   | 3.4                 | Hydraflow Express                           | 6  |  |
|   | 3.5                 | Culvert Master                              | 7  |  |
|   | 3.6                 | Culvert                                     | 7  |  |
|   | 3.7                 | HEC-RAS                                     | 7  |  |
| 4 | Prog                | gram Feature Comparison                     | 9  |  |
|   | 4.1                 | Inlet Control Headwater Depth               | 10 |  |
|   | 4.2                 | Outlet Control Headwater Depth              | 14 |  |
| 5 | Perf                | formance Tests 1                            | 17 |  |
|   | 5.1                 | Results and Discussion                      | 19 |  |
|   | 5.2                 | Analysis of Results                         | 25 |  |
| 6 | Sun                 | mary and Conclusions2                       | 27 |  |
| R | eferenc             | ces                                         | 29 |  |
| A | ppendi              | x A. Culvert Hydraulic Review               | 31 |  |
|   | A.1                 | Steep                                       | 31 |  |
|   | A.2                 | Mild                                        | 32 |  |

| A.3                                       | Horizontal                              | . 33 |  |  |  |  |
|-------------------------------------------|-----------------------------------------|------|--|--|--|--|
| A.4                                       | Adverse                                 |      |  |  |  |  |
| A.5                                       | Critical                                | . 34 |  |  |  |  |
| Append                                    | ix B. Hand Calculations                 | . 35 |  |  |  |  |
| B.1                                       | Normal and Critical Depth               | . 35 |  |  |  |  |
| B.2                                       | Inlet Control Headwater Depth           |      |  |  |  |  |
| B.3                                       | Outlet Control Headwater Depth          |      |  |  |  |  |
| B.4                                       | B.4 Outlet Velocity Computations        |      |  |  |  |  |
| Append                                    | ix C. Program Testing                   | . 91 |  |  |  |  |
| Append                                    | ix D. Modified Outlet Loss Coefficients | 103  |  |  |  |  |
| Append                                    | ix E. Auxiliary Culverts                | 107  |  |  |  |  |
| E.1                                       | South Dakota Research                   | 107  |  |  |  |  |
| E.2                                       | Kansas DOT Flared End Sections          |      |  |  |  |  |
| E.3                                       | CON/SPAN                                |      |  |  |  |  |
| E.4 Utah State University Buried Culverts |                                         | 127  |  |  |  |  |

## LIST OF TABLES

| Table 1-1 Culvert Analysis Programs and Authors    2                           |
|--------------------------------------------------------------------------------|
| Table 4-1 Program Feature and Capability Comparison                            |
| Table 4-2 Comparison of Inlet Control Headwater Depth Computational Methods14  |
| Table 5-1 Test Case Parameters                                                 |
| Table B-1 Case A: Manually Computed Inlet Control Depths                       |
| Table B-2 Case B: Manually Computed Inlet Control Depths    40                 |
| Table B-3 Case C: Manually Computed Inlet Control Depths    41                 |
| Table B-4 Case D: Manually Computed Inlet Control Depths                       |
| Table B-5 Case B 10 cfs: Manually Computed Outlet Control Headwater Depths     |
| Table B-6 Case B 20 cfs: Manually Computed Outlet Control Headwater Depths47   |
| Table B-7 Case B 30 cfs: Manually Computed Outlet Control Headwater Depths     |
| Table B-8 Case B 40 cfs: Manually Computed Outlet Control Headwater Depths     |
| Table B-9 Case B 50 cfs: Manually Computed Outlet Control Headwater Depths50   |
| Table B-10 Case B 60 cfs: Manually Computed Outlet Control Headwater Depths51  |
| Table B-11 Case B 70 cfs: Manually Computed Outlet Control Headwater Depths52  |
| Table B-12 Case B 80 cfs: Manually Computed Outlet Control Headwater Depths53  |
| Table B-13 Case B 90 cfs: Manually Computed Outlet Control Headwater Depths54  |
| Table B-14 Case B 100 cfs: Manually Computed Outlet Control Headwater Depths55 |
| Table B-15 Case C 75 cfs: Manually Computed Outlet Control Headwater Depths56  |
| Table B-16 Case C 90 cfs: Manually Computed Outlet Control Headwater Depths57  |
| Table B-17 Case C 105 cfs: Manually Computed Outlet Control Headwater Depths58 |

| Table B-18 Case C 120 cfs: Manually Computed Outlet Control Headwater Depths | 59 |
|------------------------------------------------------------------------------|----|
| Table B-19 Case C 135 cfs: Manually Computed Outlet Control Headwater Depths | 60 |
| Table B-20 Case C 150 cfs: Manually Computed Outlet Control Headwater Depths | 61 |
| Table B-21 Case D 20 cfs: Manually Computed Outlet Control Headwater Depths  | 62 |
| Table B-22 Case D 40 cfs: Manually Computed Outlet Control Headwater Depths  | 63 |
| Table B-23 Case D 60 cfs: Manually Computed Outlet Control Headwater Depths  | 64 |
| Table B-24 Case D 80 cfs: Manually Computed Outlet Control Headwater Depths  | 65 |
| Table B-25 Case D 100 cfs: Manually Computed Outlet Control Headwater Depths | 66 |
| Table B-26 Case D 120 cfs: Manually Computed Outlet Control Headwater Depths | 67 |
| Table B-27 Case D 140 cfs: Manually Computed Outlet Control Headwater Depths | 68 |
| Table B-28 Case D 160 cfs: Manually Computed Outlet Control Headwater Depths | 69 |
| Table B-29 Case D 180 cfs: Manually Computed Outlet Control Headwater Depths | 70 |
| Table B-30 Case D 200 cfs: Manually Computed Outlet Control Headwater Depths | 71 |
| Table B-31 Case A 30 cfs: Manually Computed Outlet Depths                    | 73 |
| Table B-32 Case A 60 cfs: Manually Computed Outlet Depths                    | 74 |
| Table B-33 Case A 90 cfs: Manually Computed Outlet Depths                    | 75 |
| Table B-34 Case A 120 cfs: Manually Computed Outlet Depths                   | 76 |
| Table B-35 Case A 150 cfs: Manually Computed Outlet Depths                   | 77 |
| Table B-36 Case A 180 cfs: Manually Computed Outlet Depths                   | 78 |
| Table B-37 Case A 210 cfs: Manually Computed Outlet Depths                   | 79 |
| Table B-38 Case A 240 cfs: Manually Computed Outlet Depths                   | 80 |
| Table B-39 Case A 270 cfs: Manually Computed Outlet Depths                   | 81 |
| Table B-40 Case A 300 cfs: Manually Computed Outlet Depths                   | 82 |
| Table B-41 Case A Outlet Velocity Computations                               | 83 |
| Table B-42 Case B Outlet Velocity Computations                               | 83 |

| Table B-43 Case C 15 cfs: Manually Computed Outlet Depths | 84  |
|-----------------------------------------------------------|-----|
| Table B-44 Case C 30 cfs: Manually Computed Outlet Depths | 85  |
| Table B-45 Case C 45 cfs: Manually Computed Outlet Depths | 86  |
| Table B-46 Case C 60 cfs: Manually Computed Outlet Depths | 87  |
| Table B-47 Case C: Outlet Velocity Computations           |     |
| Table B-48 Case D: Outlet Velocity Computations           |     |
| Table C-1 Case A Inlet Control Headwater Depths (ft)      | 91  |
| Table C-2 Case B Inlet Control Headwater Depths (ft)      |     |
| Table C-3 Case C Inlet Control Headwater Depths (ft)      |     |
| Table C-4 Case D Inlet Control Headwater Depths (ft)      |     |
| Table C-5 Case A Outlet Control Headwater Depths (ft)     |     |
| Table C-6 Case B Outlet Control Headwater Depths (ft)     | 94  |
| Table C-7 Case C Outlet Control Headwater Depths (ft)     | 94  |
| Table C-8 Case D Outlet Control Headwater Depths (ft)     | 95  |
| Table C-9 Case A Flow Control                             | 95  |
| Table C-10 Case B Flow Control                            | 96  |
| Table C-11 Case C Flow Control                            | 96  |
| Table C-12 Case D Flow Control                            | 97  |
| Table C-13 Case A Outlet Velocities (ft/s)                | 97  |
| Table C-14 Case B Outlet Velocities (ft/s)                |     |
| Table C-15 Case C Outlet Velocities (ft/s)                |     |
| Table C-16 Case D Outlet Velocities (ft/s)                |     |
| Table E-1 Bevel and Fillet Inlet Test Cases               |     |
| Table E-2 Span-to-Rise Ratio Inlet Test Case Parameters   | 109 |
| Table E-3 Skewed Headwall Inlet Test Case Parameters      | 110 |

| Table E-4 Polynomial Coefficients for Kansas Flared End Sections | 121 |
|------------------------------------------------------------------|-----|
| Table E-5 CON/SPAN Model Characteristics                         | 122 |
| Table E-6 NBS Inlet Control Equation Coefficients                | 122 |
| Table E-7 Derived Polynomial Coefficients                        | 126 |
| Table E-8 NBS Equation Coefficients                              | 128 |
| Table E-9 Polynomial Coefficients for Each Entrance Condition    | 139 |

## LIST OF FIGURES

| Figure 2-1 Brink Depth                                        | 4   |
|---------------------------------------------------------------|-----|
| Figure 4-1 Unsubmerged, Submerged and Transition Zones        | 12  |
| Figure 5-1 Test Cases                                         | 18  |
| Figure 5-2 Inlet Control Headwater Depth Error                | 20  |
| Figure 5-3 Outlet Control Headwater Depth Error               | 23  |
| Figure 5-4 Outlet Velocity Error                              | 24  |
| Figure A-1 Steep Slope Profiles (1)                           |     |
| Figure A-2 Mild Slope Profiles (1)                            |     |
| Figure A-3 Horizontal Slope Profiles (1)                      |     |
| Figure A-4 Adverse Slope Profiles (1)                         |     |
| Figure A-5 Critical Slope Profiles (1)                        |     |
| Figure B-1 Case D Linear Transition Zone                      |     |
| Figure C-1 Inlet Control Headwater Depth Error                |     |
| Figure C-2 Outlet Control Headwater Depth Error               | 101 |
| Figure C-3 Outlet Velocity Error                              |     |
| Figure E-1 Polynomial Curves for Bevel and Fillet Inlet Types | 111 |
| Figure E-2 Polynomial Curves for Span-to-Rise Inlet Types     | 112 |
| Figure E-3 Polynomial Curves for Skewed Headwall Inlet Types  | 112 |
| Figure E-4 10% Range for Bevel and Fillet (1) Inlet Types     | 114 |
| Figure E-5 10% Range for Bevel and Fillet (2) Inlet Types     | 114 |
| Figure E-6 10% Range for Span-to-Rise (1) Inlet Types         | 115 |

| Figure E-7 10% Range for Span-to-Rise (2) Inlet Types              | 115 |
|--------------------------------------------------------------------|-----|
| Figure E-8 10% Range for Skewed Headwall (1) Inlet Types           | 116 |
| Figure E-9 10% Range for Skewed Headwall (2) Inlet Types           | 116 |
| Figure E-10 Type 1-Metal Culvert                                   | 118 |
| Figure E-11 Type 1 - Concrete                                      | 119 |
| Figure E-12 Type 3 - Metal                                         | 119 |
| Figure E-13 Type 3 - Concrete                                      | 120 |
| Figure E-14 Type 4                                                 | 120 |
| Figure E-15 2:1, 0 Degree Wingwall                                 |     |
| Figure E-16 2:1, 45 Degree Wingwall                                | 124 |
| Figure E-17 2:1, 90 Degree Wingwall                                | 124 |
| Figure E-18 4:1, 0 Degree Wingwall                                 | 125 |
| Figure E-19 4:1, 45 Degree Wingwall                                | 125 |
| Figure E-20 4:1, 90 Degree Wingwall                                | 126 |
| Figure E-21 Thin Edge Projecting: 20% Buried (Ponded)              | 129 |
| Figure E-22 Thin Edge Projecting: 40% Buried (Ponded)              | 129 |
| Figure E-23 Thin Edge Projecting: 50% Buried (Ponded)              | 130 |
| Figure E-24 Thin Edge Projecting: 50% Buried Ellipse (Ponded)      | 130 |
| Figure E-25 Thin Edge Projecting: 20% Buried (Channelized)         | 131 |
| Figure E-26 Thin Edge Projecting: 40% Buried (Channelized)         | 131 |
| Figure E-27 Thin Edge Projecting: 50% Buried (Channelized)         | 132 |
| Figure E-28 Thin Edge Projecting: 50% Buried Ellipse (Channelized) | 132 |
| Figure E-29 Mitered to 1.5:1 Fill Slope: 20% Buried                | 133 |
| Figure E-30 Mitered to 1.5:1 Fill Slope: 40% Buried                | 133 |
| Figure E-31 Mitered to 1.5:1 Fill Slope: 50% Buried                | 134 |

| Figure E-32 Mitered to 1.5:1 Fill Slope: 50% Buried Ellipse        | 134 |
|--------------------------------------------------------------------|-----|
| Figure E-33 Square Edge with Vertical Headwall: 20% Buried         | 135 |
| Figure E-34 Square Edge with Vertical Headwall: 40% Buried         | 135 |
| Figure E-35 Square Edge with Vertical Headwall: 50% Buried         | 136 |
| Figure E-36 Square Edge with Vertical Headwall: 50% Buried Ellipse | 136 |
| Figure E-37 45° Bevel with Vertical Headwall: 20% Buried           | 137 |
| Figure E-38 45° Bevel with Vertical Headwall: 40% Buried           | 137 |
| Figure E-39 45° Bevel with Vertical Headwall: 50% Buried           | 138 |
| Figure E-40 45° Bevel with Vertical Headwall: 50% Buried Ellipse   | 138 |

## **1** Introduction and Purpose

Culverts are structures designed to pass flow underneath roadways with minimal disturbance to surrounding areas (1). Traditionally, design requirements included not exceeding policy headwater depths or outlet velocities. However, more recent design considers the ability of fish to pass to upstream areas. With these requirements, accurate analysis and design becomes quite important.

The analysis of culvert performance can be solved through a series of hand calculations based on simplifying assumptions. However, had calculations are tedious and prone to error, and as a result it became desirable to automate the calculations required to solve culvert performance. The first aids in culvert analysis came from a series of nomographs published in the 1965 version of HEC-5, Hydraulic Charts for the Selection of Highway Culverts. In the 1960's the Federal Highway Administration also began using FORTRAN and other programs to automate culvert hydraulic computations, establishing a milestone in culvert analysis (2).

Today, several computer programs exist to aid in solving culvert hydraulic problems. The purpose of this research is to study seven of those programs, listed in Table 1-1, and compare the features and capabilities of each. Test cases based on numerical hand calculations are used to compare headwater depths and outlet velocities produced by each program. No laboratory experiments are utilized. Based on the results of the research, limitations are identified to help inform users of the strengths and weakness of the various culvert hydraulic programs.

| Program           | Author/Agency                      | Domain     | Reference |
|-------------------|------------------------------------|------------|-----------|
| HY-8              | Federal Highway Administration     | Public     | (7)       |
| Fish X-ing        | US Forest Service                  | Public     | (9)       |
| BCAP              | Nebraska Department of Roads       | Public     | (10)      |
| Hydraflow Express | Intelisolve                        | Commercial | (11)      |
| Culvert Master    | Haestad Methods                    | Commercial | (12)      |
| Culvert           | Texas Department of Transportation | Public     | (13)      |
| HEC-RAS           | US Army Corps of Engineers         | Public     | (14)      |

**Table 1-1 Culvert Analysis Programs and Authors** 

Of the programs listed in Table 1-1, HY-8 and HEC-RAS were compared in a study by Ahmed Kassem, Ahmed A. Sattar, and M. Hanif Chaudhry (3). In this study, the two programs were compared for the purpose of developing a procedure to assist in software selection. As a result of the variety of programs available to assist in culvert hydraulic analysis, this paper will focus on seven, rather than two programs. Unlike Kassem et al., this paper will include a more focused and detailed analysis of program accuracy by focusing strictly on inlet and outlet control headwater depth and outlet velocities predictions in the test cases.

## 2 Culvert Hydraulics Background

While culverts are simple structures, their analysis is complex because hydraulic behavior can vary dramatically. Flow through a culvert is generally characterized by gradually or rapidly varying flow, and may also include the presence of a hydraulic jump (1). To determine the flow profile through a culvert barrel, gradually varied flow calculations are completed through the use of normal, critical, and tailwater depths as boundary conditions. The depth of flow through a culvert is always approaching the boundary depths at the inlet and exit of the barrel. Energy and momentum calculations are required to determine the presence and location of a hydraulic jump (1). Flow through a culvert is controlled by either the barrel inlet or outlet, and the control may change by simply increasing or decreasing the flow rate, slope, and tailwater depth. The headwater depth at the entrances is directly affected by whether the flow control is at the inlet or the outlet of the culvert. Therefore it is important in design to determine which control produces the highest headwater depths in order to prevent problems such as flow overtopping the roadway and flooding of surrounding areas.

The classification of gradually varied flow profiles in culvert barrels is defined by the type of slope on which they exist, as well as the boundary conditions. When normal depth is greater than critical depth throughout the barrel, the slope is mild with the upstream boundary depth equal to normal, while critical or tailwater depth acts as the downstream boundary. On steep slopes, critical depth is greater than normal and is used for the upstream boundary depth; normal or tailwater depth acts as the downstream boundary (4). In the hydraulic analysis of culverts, boundary conditions govern the water depths at the inlet and outlet of the culvert. This is important in forewater and backwater calculations when computing headwater depths and outlet velocities. For a more detailed explanation of water surface profiles and boundary conditions see Appendix A.

While it is standard procedure in culvert hydraulic computations to use critical depth at the outlet, for tailwater depths less than critical the true depth at the outlet is slightly below critical; also known as brink depth (5). Critical depth actually occurs just inside the culvert outlet and from there the water surface moves through brink depth as it meets the tailwater downstream of the culvert (Figure 2-1). In this paper, all computations were made using the standard culvert hydraulic procedure where the outlet depth is equal to critical. Brink depth was not considered.



**Figure 2-1 Brink Depth** 

## **3** Computer Programs

While there are several culvert hydraulic programs that exist commercially, privately, and in public domain, only seven of those programs were studied in this research: HY-8, Fish X-ing, BCAP, Hydraflow Express, Culvert Master, Culvert, and HEC-RAS (Table 1). The criteria for selecting these particular programs for research were based on functionality and availability. To obtain a useful comparison of available culvert hydraulic software it was necessary to select programs that offered a wide range of features from fish passage to broken-back culvert analysis. The programs listed in Table 1-1 were also the most readily available at the time of the study.

### 3.1 HY-8

The first version of HY-8 was developed for the Federal Highway Administration using a Quick Basic compiler (6). Philip Thompson of the FHWA later released other versions of HY-8 (7). Until recently, HY-8 was a DOS-based computer program with limited graphical capabilities. However, the program has recently been translated into the C++ programming language with a new graphical user interface compatible with the MS Windows operating system (8). The new Windows version of HY-8 includes superior graphics and plotting capabilities when compared to its older counterparts. The updated version also includes a new report generation feature. The primary function of HY-8 is to compute headwater depths at the entrance of culverts.

#### 3.2 Fish X-ing

The United States Forest Service developed Fish X-ing for the purpose of assessing and designing culvert crossings suitable for fish passage. Utilizing gradually varied flow equations, Fish X-ing analyzes culvert crossings by computing water surface profiles for a range of flows (9). The program compares the hydraulic flow conditions within a culvert to the swimming abilities of fish to determine if a particular culvert is friendly to fish passage.

#### **3.3** Broken-back Culvert Analysis Program (BCAP)

The Nebraska Department of Roads developed the Broken Back Culvert Analysis Program in 1998 (10). The primary goal behind the development of this program was to automate the analysis of culverts containing one or two break elevations. Another strength of the program is its ability to determine the presence of hydraulic jumps in culverts through the use of the momentum equation.

### 3.4 Hydraflow Express

Hydraflow Express, by Intelisolve, was developed for quick culvert analysis along with other hydraulic and hydrologic problems. The program is capable of calculating hydraulic profiles as well as rating tables for the following shapes: box, elliptical, circular, and arch. Also included in the program is the ability to analyze hydraulic jumps and roadway overtopping (11). The hydraulic theory utilized in the program is taken from HDS-5 (1).

#### 3.5 Culvert Master

Culvert Master, developed by Haestad Methods, computes headwater depths at the entrance of culverts (12). The program allows for input of watershed information to obtain rainfall and runoff values that will eventually pass through the culvert barrel.

### 3.6 Culvert

The Texas Department of Transportation developed Culvert for use in designing highway culverts. Version 1.2, released in 2002, allows for the analysis of straight culvert barrels as well as culverts with single or double break elevations (13).

#### 3.7 HEC-RAS

Developed by the US Army Corps of Engineers, HEC-RAS is a multi-purpose program with the capabilities of analyzing steady and unsteady flow conditions. However, HEC-RAS is a more complex program in that it was designed for river analysis and is more input intensive. As a result, a culvert is analyzed as a part of the stream network, where the upstream cross sections, velocities, and flow contractions are considered in the culvert hydraulic analysis—a feature unique only to HEC-RAS of the seven programs studied (14). In order to generate a complete culvert model, four stream cross sections are required (14).

## 4 Program Feature Comparison

Of the seven programs analyzed, each one has different characteristics that make it unique, ranging from the most complex program in terms of user input, HEC-RAS, to the most basic, Hydraflow Express. Table 4-1 lists and compares the hydraulic features found in each program.

|                                | HY-8 | Fish<br>X-ing | BCAP | Hydraflow<br>Express | Culvert<br>Master | Culvert | HEC-<br>RAS |
|--------------------------------|------|---------------|------|----------------------|-------------------|---------|-------------|
| Roadway<br>Overtopping         |      |               |      |                      |                   |         |             |
| Multiple Identical<br>Barrels  |      |               |      |                      |                   |         |             |
| Inlet and Outlet<br>Control    |      |               |      |                      |                   |         |             |
| Water Surface<br>Profile Plots |      |               |      |                      |                   |         |             |
| Full Flow Option               |      |               |      |                      |                   |         |             |
| Hydraulic Jumps                |      |               |      |                      |                   |         |             |
| Culvert Break<br>Points        |      |               |      |                      |                   |         |             |
| Partially Filled<br>Culverts   |      |               |      |                      |                   |         |             |
| Adverse Slope<br>Analysis      |      |               |      |                      |                   |         |             |
| Horizontal Slope<br>Analysis   |      |               |      |                      |                   |         |             |
| Fish Passage                   |      |               |      |                      |                   |         |             |

 Table 4-1 Program Feature and Capability Comparison

All programs with the exception of Fish X-ing and BCAP can analyze roadway overtopping. While roadway overtopping is a major concern in the design of culverts, the primary focus of Fish X-ing is the suitability of a culvert for fish passage (9). The primary importance of BCAP is the analysis of hydraulic jumps as well as broken back culverts (10). Culvert Master and Culvert do not provide plots of the water surface profile through the culvert barrel. HY-8 is the only program with a full flow option that assumes the culvert barrel is flowing full throughout its length.

BCAP and Culvert are the only two programs that include the capability to analyze broken back culverts, while Fish X-ing and HEC-RAS are the only programs that analyze partially filled or buried culverts, utilizing a composite Manning's n value in the computations (9, 14).

While all of the programs are capable of computing inlet and outlet control headwater depths, different methods of doing so exist among the programs. The next section analyzes the difference between these methods more closely.

#### 4.1 Inlet Control Headwater Depth

Flow through a culvert is typically controlled by one of two locations: the culvert inlet or the culvert outlet. Under inlet control, the culvert barrel is capable of passing more flow than what the inlet will allow to enter (1). The flow is supercritical under such conditions, with higher velocities and shallower depths through the culvert. Losses under inlet control do not propagate upstream and only the inlet shape and entrance type affect the computed headwater depth (1).

The headwater depth under inlet control is dependent on the whether or not the entrance is submerged. If the entrance of the culvert is not submerged, it behaves like a weir as flow enters the culvert, while a submerged culvert entrance acts as an orifice (1).

Under the sponsorship of the Federal Highway Administration, the National Bureau of Standards (NBS) developed equations defining inlet control headwater depth (1). The NBS equations were created from lab data that was collected for culvert models on a 2% slope for submerged and unsubmerged conditions (6). The data collected for inlet control was plotted with HW/D on the ordinate and  $Q/AD^{0.5}$  on the abscissa. Best fit curves were identified for both the unsubmerged and submerged data sets (5) and the equations for which are represented by Equations 4-1 and 4-2 (1). Equation 4-1 represents the unsubmerged data set while Equation 4-2 is representative of submerged or orifice flow data:

$$\frac{HW_i}{D} = \frac{H_c}{D} + K \left[\frac{Q}{AD^{05}}\right]^M - 0.5S$$
(4-1)

$$\frac{HW_i}{D} = c \left[\frac{Q}{AD^{05}}\right]^2 + Y - 0.5S$$
(4-2)

where  $HW_i$  is the headwater depth for inlet control (ft), D is the barrel rise (ft), H<sub>c</sub> is the specific head at critical depth (d<sub>c</sub> + V<sub>c</sub><sup>2</sup>/2g) (ft), Q is the discharge through the barrel (cfs), A is the full cross sectional area of culvert barrel (ft<sup>2</sup>), S is the culvert barrel slope (ft/ft), d<sub>c</sub> is critical depth (ft), V<sub>c</sub> is the critical velocity (ft/s<sup>2</sup>), and K, M, c, and Y are

constants. Figure 4-1 shows the unsubmerged and submerged curves defined by the NBS equations.



Figure 4-1 Unsubmerged, Submerged and Transition Zones

When the flow at the entrance of the culvert changes from unsubmerged to submerged flow, a transition zone develops which is not well defined. As a result, the transition zone is approximated by creating a line tangent to the submerged and unsubmerged curves. The typical range through which the transition occurs is  $3.5 < Q/AD^{0.5} < 4.0$  (1). Of the seven programs studied, only three utilized these procedures

for computing inlet control headwater depth outlined by the National Bureau of Standards: Culvert Master, HEC-RAS, and Hydraflow Express (Table 4-2).

An alternative to the NBS method was used to determine the headwater depths for HY-8 (7), BCAP (10), and Culvert (13). This method involves creating a best fit, fifth degree polynomial curve through all three zones of flow: unsubmerged, transition, and submerged (1). In the computational methods, the appropriate polynomial equation is used to determine the inlet control headwater depth. Polynomials must be derived for all culvert inlet types in order to be implemented into code (Appendix E). The fifth degree polynomial is expressed in Equation 4-4:

$$\frac{HW}{D} = a + b \left[ \frac{Q}{AD^{0.5}} \right] + c \left[ \frac{Q}{AD^{0.5}} \right]^2 + d \left[ \frac{Q}{AD^{0.5}} \right]^3 + e \left[ \frac{Q}{AD^{0.5}} \right]^4 + f \left[ \frac{Q}{AD^{0.5}} \right]^5 - 0.5S$$
(4-3)

where HW is the inlet control headwater depth (ft), Q is the flow through culvert barrel (cfs), A is the cross sectional area of the culvert (ft), D is the barrel rise (ft), S is the culvert slope (ft/ft), and a, b, c, d, e, and f are polynomial coefficients. Equation 4-4 is only applicable for 0.5 < HW/D < 3.0 (7). The difference between the polynomial and NBS curves is shown for low and high flows in Figure 4-1 as the polynomial curve diverges from those defined by the NBS Equations. As a result, HY-8, BCAP, and Culvert must account for the low and high flow conditions through the use of a low flow entrance loss coefficient and high flow factor (7).

Fish X-ing has a slightly different algorithm implemented for computing inlet control headwater depths. As shown in Table 4-2, Fish X-ing computes inlet control
headwater depth by adding the entrance loss and velocity head to the depth of water at the culvert inlet (9).

| Inlet Control Method                              | HY-8 | Fish<br>X-ing | BCAP | Hydraflow<br>Express | Culvert<br>Master | Culvert | HEC-<br>RAS |
|---------------------------------------------------|------|---------------|------|----------------------|-------------------|---------|-------------|
| Polynomial Equations                              |      |               |      |                      |                   |         |             |
| NBS Equations                                     |      |               |      |                      |                   |         |             |
| $y_{HW} = \left(1 + k_e\right)\frac{v^2}{2g} + y$ |      |               |      |                      |                   |         |             |

Table 4-2 Comparison of Inlet Control Headwater Depth Computational Methods

#### 4.2 Outlet Control Headwater Depth

Under outlet control, flow in the culvert barrel exceeds its capacity. Subcritical flow persists under outlet control, with greater water depths and lower velocities through the culvert (1).

When computing the outlet control headwater depth via backwater calculations, the entrance, exit, and friction losses through the barrel are added to the depth of water at the entrance (1). All of the programs utilize backwater calculations to determine the depth at the entrance of the culvert. However, a problem arises when using backwater methods for steeply sloped culverts coupled with tailwater depths less than normal. With this method, the resulting outlet control headwater depth obtained is greater than that reported for inlet control, which is incorrect. In this situation the culvert will always be inlet controlled with supercritical flow through the barrel. Outlet control will never occur. Of the programs studied, six assume critical depth at the entrance and use the procedure described for computing outlet control headwater depths. Although HEC-RAS uses this method, it appears the program is aware that flow through the culvert is not controlled at the outlet and still reports the control as inlet. HY-8 reports 0.0 for the outlet control headwater depth on steeply sloped culverts with the tailwater depth less than normal depth. The procedure used in all programs is incorrect. To correctly represent the outlet control headwater depth for steeply sloped, low tailwater culverts, the programs should report only inlet control depths and state that the outlet control headwater depths.

# **5** Performance Tests

Although most of the programs incorporate the hydraulic theory outlined in the Hydraulic Design System 5 (1), variations do exist in the way the theory was implemented into code. For this reason, four test cases were developed and analyzed using each of the programs.

Due to the importance of headwater depths and outlet velocities in culvert hydraulics, all cases were developed to test the accuracy of inlet and outlet control headwater depth and outlet velocity approximations. Case A was designed such that the culvert was inlet controlled for all flows. Case B was designed to be outlet controlled for all flows. Cases C and D were designed to test the transition from inlet to outlet control and outlet to inlet control as flow increases. All test cases involved a 5 foot diameter, 100 foot long, concrete pipe culvert with a square edge entrance and a headwall. The cases have only slight differences in order to focus strictly on headwater depth and outlet velocity predictions. A tailwater depth of 0.0 ft (perched outlet) was used in the first three cases so the tailwater would not impact the hydraulic analysis. Table 5-1 summarizes other pertinent input data for each case.

| Case | Q (cfs) | Slope (%) | Tailwater Depth (ft) |
|------|---------|-----------|----------------------|
| А    | 0-300   | 1.0       | 0.0                  |
| В    | 0-100   | 0.2       | 0.0                  |
| С    | 0-150   | 0.3       | 0.0                  |
| D    | 0-200   | 0.5       | 4.5                  |

**Table 5-1 Test Case Parameters** 

Figure 5-1 depicts each test case with its corresponding slope and tailwater conditions.



**Figure 5-1 Test Cases** 

For each of the test cases, the inlet and outlet control headwater depths, outlet velocity, and flow control were manually computed for comparison with the values

predicted by the programs. The NBS equations were used to compute the inlet control headwater depths for all cases (1). The outlet control headwater depths were computed using the direct step backwater method to determine the inlet depth and adjusted by adding the inlet loss and velocity head inside the barrel. This was done for all cases except when critical depth was greater than normal depth and tailwater was less than normal. In this case, the culvert will never be under outlet control, and therefore it is not appropriate to compute outlet control headwater depths. According to the standard procedure for backwater calculations, brink depth was not considered.

Outlet velocities were computed by determining the outlet depth (right at the exit of the culvert, as opposed to tailwater depth just outside the culvert barrel) and dividing the flow by the corresponding area. For mild slopes, the outlet depth was assumed to be critical when the tailwater depth was less than critical depth. For steep slopes, the outlet depth was determined from forewater calculations as the depth neared normal at the culvert outlet. If normal depth was reached inside the barrel, normal depth was assumed at the outlet. Tailwater depth was used as the outlet depth in cases where it exceeded the downstream boundary depth. All details regarding the hand calculations can be found in Appendix B.

### 5.1 **Results and Discussion**

The predicted inlet and outlet control headwater depths and outlet velocities from the seven computer programs were compared to manually computed values (See Appendix C). Solutions with noticeable error were identified by test case and corresponding barrel slope. Statistical analyses were not used or appropriate since all of results were strictly deterministic and without variability. Following the suggested accuracy for nomographs based on the NBS equations for inlet control found in HDS-5 (1), any error above or below 10% of the manually computed inlet control headwater depths were considered incorrect. Differences between calculated and program results for inlet control headwater depth are plotted in Figure 5-2 as a function of dimensionless discharge.



Figure 5-2 Inlet Control Headwater Depth Error

HEC-RAS and HY-8 produced correct inlet control headwater values most consistently and with the lowest average error. Differences using HY-8, although insignificant, are attributed to the fact that HY-8 uses the 5<sup>th</sup> degree polynomial approach rather than the NBS equations when computing the inlet control headwater depth. Fish

X-ing was unable to produce values for the inlet control headwater depths because for all cases the program predicted flow control at the outlet of the culvert and failed to report inlet control values.

In case D, it is unclear why Culvert Master performed poorly with errors ranging from 30-140% (0.91-2.33 ft). According to the user's manual, the program uses the same procedure followed in the manual calculations (12). However, while it appears to be a bug in the program for this condition, the exact cause of error is undetermined since the code used in Culvert Master was inaccessible for this study.

The errors found in Culvert are due to the fact that the fifth degree polynomial equation (Equation 4-4) is only accurate for HW/D ratios between 0.5 and 3.0 (13). For flows below approximately 40 cfs, the HW/D ratios were below 0.5. Instead of accounting for the low flow conditions by using a low flow entrance loss coefficient (7), it appears that Culvert sets the headwater depth equal to a lower limit of half the pipe diameter, 2.5 feet, until the depths were such that it was appropriate to use the fifth degree polynomial equation. The highest error of 114% (1.33 ft) occurred in case B and the lowest error of 20% (0.41 ft) occurred in case A.

Figure 5-3 shows the error for outlet control headwater depth predicted by each of the programs. For cases B and C, BCAP inaccurately predicted the flow control at the inlet for all flows. BCAP also overestimated the outlet control headwater depth results for case D with a maximum error of 21% (1.52 ft). These errors occur because BCAP was not intended to be used for straight culverts. In broken-back culvert operations, hydraulic control is invariably at the entrance or at the break in culvert slope. Outlet control has not been fully considered in the program and therefore results in error.

HEC-RAS, Culvert Master, Culvert, and Fish X-ing all produced relatively high average errors for case A. The high error in this case resulted from the misuse of the outlet control equation for steeply sloped culverts (critical depth greater than normal depth). Since outlet control does not exist in these cases with tailwater depth less than normal, outlet control headwater depths reported by any program are not valid and therefore were not considered in Figure 5-3. Culvert Master and HEC-RAS produced the most accurate results with HY-8 having minimal error as well.

Hydraflow Express consistently predicted outlet control headwater depths below the correct value with errors ranging from 18% (0.85 ft) in case B to 24% (approximately 1.0 ft) in case C. In part, this was due to the inappropriate outlet depths used in the standard step computations. In case C, for example, the hydraulic slope of the culvert changed from steep to mild, and therefore the boundary condition at the downstream end of the culvert changed from normal to critical as flow increased. However, for all flows, Hydraflow Express assumed outlet control and used critical depth at the outlet for all flows. The program also used a standard step procedure for outlet control headwater depth computations while the manual computations used the direct step method (10). Because the program code was unavailable, the exact cause of error in the resulting headwater depths is unclear.

Figure 5-4 shows the results of the computed outlet velocity for each test case. In case A, Hydraflow Express reported the highest error for outlet velocity (-34%, -3.0 ft below calculated value) while Fish X-ing produced the highest error for cases B (40%, 3.54 ft) and C (40%, 4.16 ft). Culvert Master produced the highest error in case D (19%, 1.82 ft).



Figure 5-3 Outlet Control Headwater Depth Error

In case A, Hydraflow Express appeared to use critical rather than normal depth as the outlet depth, which resulted in outlet velocities much lower than calculated. The error in Fish X-ing was attributed to the fact that for the last flow of 300 cfs, Fish X-ing predicted a mild hydraulic slope with normal depth greater than critical, producing a higher outlet velocity than expected.

Since the hydraulic slope in case B was mild and tailwater depth was less than critical at the outlet, the downstream boundary was critical depth. However, Fish X-ing predicted outlet depths lower than critical depth, producing excessive outlet velocities for this case. The same error occurred in case C for Fish X-ing when the program produced outlet depths much lower than critical depth at higher flows. The reason for these errors is a result of the way in which Fish X-ing predicts outlet depths. For hydraulically mild slopes, the program appears to use brink depth at the outlet rather than critical depth as in standard culvert hydraulic calculations. However, the method for obtaining outlet depth in this case is unclear since the program reference manual does not clearly explain the processes implemented in Fish X-ing (9).



**Figure 5-4 Outlet Velocity Error** 

In case D for the dimensionless discharge value of 0.9, HEC-RAS was unable to balance the energy equation and therefore assumed an outlet depth of critical. This assumption proved incorrect as the depth was actually normal. As a result, HEC-RAS over predicted the outlet velocity (15%, 1.45 ft). Since the code for HEC-RAS was inaccessible, it is unclear why the program produced high outlet velocity errors for higher

flows in case A. It appears that Culvert Master had the same error as HEC-RAS for case D.

BCAP had a minor error in case B (11%, 1.0 ft) as a result of predicting inlet control when the actual flow control was at the outlet. Again this error is attributed to the problems with straight barrel analysis in a program designed for broken-back culverts.

#### 5.2 Analysis of Results

Although most of the programs produce accurate results most of the time, several limitations were identified. While operating under outlet control, Hydraflow Express is unable to produce accurate headwater depths. Fish X-ing is unable to analyze culverts under inlet control. Regardless of the hydraulic slope of the culvert, all cases are assumed to operate under outlet control. BCAP is also limited in its ability to analyze straight barrel culverts operating under outlet control with high tailwater.

For low flow cases, Culvert was unable to predict accurate inlet control headwater depths. Culvert also has a problem determining the controlling headwater depths. While Culvert reports inlet and outlet control headwater depths, the controlling headwater depth is reported in a separate column. In general practice, the higher of the inlet and outlet control headwater depths. In Culvert, a combination of the inlet control and outlet control depths is used, however, and the computational algorithm is not known.

HY-8, HEC-RAS, and Culvert Master predicted the most accurate results most consistently in the four test cases.

## **6** Summary and Conclusions

The first objective of the research was to identify and compare available features in seven culvert hydraulic programs. It was found that each program was designed to handle specific capabilities, the importance of which depends on the design constraints. Users should select the appropriate program focused for their specific needs.

The second objective was to analyze the accuracy of the results produced by each program when tested with four different hydraulic cases. While most of the programs produced accurate results for most of the cases, errors did exist. Fish X-ing was unable to analyze culverts under inlet control, while Hydraflow Express was unable to predict accurate outlet control headwater depths. Culvert could not accurately analyze culverts under low flow conditions, while BCAP was unable to properly analyze straight barrel culverts under outlet control. HEC-RAS and Culvert Master and HY-8 produced the most accurate results most consistently in the test cases.

Based on this research, Fish X-ing, HEC-RAS, BCAP, and Culvert all have unique features separating them from the other programs. Fish X-ing is the only program that analyzes culverts for fish passage, while HEC-RAS is the only program that analyzes culverts as part of a stream network. BCAP and Culvert are the only programs that will analyze broken back culverts. In terms of program accuracy, Fish X-ing, BCAP, Hydraflow Express, and Culvert predicted inaccurate results most frequently. HEC-RAS and Culvert Master and HY-8 produced the most accurate results most consistently in the test cases.

## References

- (1) Normann, J. M., R. J. Houghtalen, and W. J. Johnson (1985). "Hydraulic Design of Highway Culverts." *Hydraulic Design Series No. 5*, 2nd Ed., Federal Highway Administration: Washington, D.C.
- (2) Thompson, P. L. (2006). Retrieved from personal communication February 3, 2006. Email to E. Thiele (lizard800@gmail.com).
- (3) Kassem, A., A. Sattar, and M.H. Chaudhry (2006). "Standard Protocol for Comparing Culvert Hydraulic Modeling Software: HEC-RAS and HY-8 Application." TRB, National Research Council: Washington, D.C.
- (4) French, R. H. (1985). *Open-Channel Hydraulics*. McGraw-Hill: New York.
- Thompson, P. L., and R. T. Kilgore (2006). "Hydraulic Design of Energy Dissipators for Culverts and Channels." *Hydraulic Engineering Circular No. 14*, 3rd Ed., Federal Highway Administration: Washington, D.C.
- (6) Thompson, P. L. (2006). Retrieved from personal communication January 31, 2006. Email to R. Hotchkiss (rhh@byu.edu cc: lizard800@gmail.com).
- (7) Federal Highway Administration (1996). HY-8, Version 6.1, [Computer Program]
   Documentation. Retrieved February 24, 2006 from http://www.fhwa.dot.gov/engineering/hydraulics/culverthyd/culvert\_software.cfm
- Nelson, E. J., R. H. Hotchkiss, C. Smemoe, E. A. Thiele, B. J. Rowely (2007).
   "Numerical Modeling of Culvert Hydraulics: Modernization of Existing HY-8 Software." Brigham Young University: Provo, UT.
- (9) USDA Forest Service (2006). "Fish X-ing: User Manual and Reference." Version3. USDA Forest Service: San Dimas, CA.
- (10) Hotchkiss, R. H., P. J. Flanagan, and K. Donahoo (2003). "Hydraulic Jumps in Broken-Back Culverts." TRB, National Research Council: Washington, D.C.
- (11) Intelisolve (2006). "Hydraflow Express: User's Guide." Program User's Manual, Intelisolve: Salem, SC.

- (12) Bently Systems (2005). "Culvert Master: User's Guide." Version 3.1. Bently Systems, Inc.: Watertown, CT.
- (13) Bohuslav, K., M. L. Ralls, and K. W. Pickett (2002). "Hydraulic Design Manual." Version 2002-2. Texas Department of Transportation: Austin, TX.
- (14) Brunner, G. W. (2002). "HEC-RAS: River Analysis System Hydraulic Reference Manual." Version 3.1, US Army Corps of Engineers, Hydraulic Engineering Center: Davis, CA.

# Appendix A. Culvert Hydraulic Review

When computing water surface profiles through a culvert barrel, boundary conditions are required such that the forewater and backwater computations begin at the appropriate depth. The five classifications of gradually varied flow profiles include steep, mild, horizontal, adverse, and critical. There are three levels in each classification; however, the third level was ignored here since the upstream boundary condition is 0.0 flow depth which will never occur (1).

### A.1 Steep

A slope is defined as steep when critical depth is greater than normal depth. In this situation the upstream boundary condition is critical depth. For an S1 curve, the tailwater depth is greater than both the normal and critical depth at the outlet, and therefore the tailwater depth is the downstream boundary condition. For an S2 curve, as long as the tailwater depth is below critical the downstream boundary condition will be normal depth (1).



Figure A-1 Steep Slope Profiles (1)

## A.2 Mild

For mild slopes, critical depth is always less than normal depth. Under these conditions, normal depth serves as the upstream boundary condition, as shown in Figure A-2. When the tailwater depth is greater than critical and normal depth, the flow profile is classified as M1 and the downstream boundary condition is the tailwater depth. When the tailwater depth is less than critical the flow profile is M2 and the downstream boundary condition is critical depth (1).



Figure A-2 Mild Slope Profiles (1)

#### A.3 Horizontal

Horizontal slopes are not common, although they can exist from settlement of the culvert barrel. Analysis of culverts on a 0% slope becomes difficult, for normal depth approaches infinity due to the zero slope entered in Manning's equation. The problem arises during backwater computations when approaching the upstream boundary, which in this case is infinity. Therefore, H1 curves are undefined (1).



Figure A-3 Horizontal Slope Profiles (1)

#### A.4 Adverse

Analysis of a culvert barrel on an adverse slopes face similar challenges to those on horizontal slopes. With an adverse slope, solving Manning's equation results in an undefined value for normal depth. As with horizontal slopes, the A1 profile is undefined since the upstream boundary condition of normal depth is undefined. The A2 profile is inferred, with critical depth as the downstream boundary condition (1).



Figure A-4 Adverse Slope Profiles (1)

### A.5 Critical

Critical slope profiles are rare instances when the normal depth is equal to the critical depth. A C1 profile occurs when the water depth is greater than both critical and normal depth, where the downstream boundary is the tailwater depth and the upstream boundary is equal to normal and critical depth. A C2 profile is the line equal to normal and critical depth through the length of the culvert (1).



Figure A-5 Critical Slope Profiles (1)

## References

(1) French, R. H. (1985). Open Channel Hydraulics. McGraw-Hill: New York.

## Appendix B. Hand Calculations

Four test cases were developed for the purpose of comparing the computed inlet and outlet control headwater depths and outlet velocities determined by each of the programs. Normal and critical depths were computed for all flows in each test case to determine the slope and boundary conditions defining each test case. NBS equations were used to compute inlet control headwater depths, while backwater calculations were used for computing outlet control headwater depths.

#### **B.1** Normal and Critical Depth

Normal and critical depth values are important in determining boundary conditions in culvert hydraulics and were computed using the Goal Seek tool in Microsoft Excel. Equations B-1 through B-4 were used in the normal depth computations, while Equations B-1 and B-4 through B-6 were used in the critical depth computations (1):

$$A = \frac{1}{8} (\theta - \sin(\theta)) D^2$$
(B-1)

$$R = \frac{1}{4} \left( 1 - \frac{\sin(\theta)}{\theta} \right) D \tag{B-2}$$

$$Q = \frac{k}{n} A R^{2/3} S^{1/2}$$
(B-3)

$$\theta = 2\cos^{-1} \left( \frac{\frac{D}{2} - y_n}{\frac{D}{2}} \right)$$
(B-4)

$$T = 2\sqrt{y_c(D - y_c)}$$
(B-5)

$$Q = \sqrt{g \frac{A^3}{T}}$$
(B-6)

where A is the area of flow (ft<sup>2</sup>), D is the barrel rise (ft),  $\theta$  is the angle that defines the top width of flow (radians), R is the hydraulic radius (ft), Q is the flow through the culvert (cfs), k is a units constant (1.49 for English), n is Manning's roughness coefficient (unitless), S is the slope of the culvert barrel (ft/ft), y<sub>n</sub> is the normal depth of flow (ft), y<sub>c</sub> is critical depth (ft), T is the top width of flow (ft), and g is the acceleration due to gravity (32.2 ft/s<sup>2</sup>).

The computation of normal and critical depth values was necessary to determine the type of hydraulic slope, which in turn affected the boundary conditions when computing backwater calculations. If critical depth was greater than normal depth, the slope was steep, otherwise the slope was mild.

#### **B.2** Inlet Control Headwater Depth

Following the procedures outlined in HDS-5 for computing inlet control headwater depth, the NBS equations (Equations 4-1 and 4-2) were used. Equation 4-1, for unsubmerged flow, is only applicable for values of  $Q/(AD^{0.5}) < 3.5$  whereas Equation 4-2 is only applicable for values of  $Q/(AD^{0.5}) > 4.0$  (2). The computed inlet control headwater depths for each of the four test cases are displayed in Tables B-1 through B-4. For Case D, the headwater depth value at 160 cfs occurred in the transition zone. Table B-4 contains more flow values between 140 and 180 cfs to better define the beginning and end of the transition zone ( $Q/AD^{0.5} = 3.5$  and  $Q/AD^{0.5} = 4.0$ ). A linear line was used to interpolate between the two endpoints of the transition zone. The equation defining the transition zone was used to obtain the inlet control headwater depth of 6.0 ft at 160 cfs (Figure B-1).



Figure B-1 Case D Linear Transition Zone

Tables B-1 through B-4 show the headwater depth values computed at each flow for both the submerged and unsubmerged conditions in all four test cases. The values for the coefficients used in the NBS equations were obtained from HDS-5 where K = 0.0098, M = 2.0, c = 0.0398, and Y = 0.67 for a concrete pipe culvert with a square edge and headwall (2).

| Q   | Q/AD <sup>0.5</sup>  | ye   | 8    | A,              | V.    | V, <sup>2</sup> /2g | H,             | Unsubmerged<br>HW/D | Submerged<br>HW/D | Unsubmerged<br>HW | Submerged<br>HW |
|-----|----------------------|------|------|-----------------|-------|---------------------|----------------|---------------------|-------------------|-------------------|-----------------|
| cfs | fi <sup>0.5</sup> /s | ft   | rad  | ft <sup>2</sup> | ft/s  | ft                  | ft             |                     |                   | :                 |                 |
| 30  | 0.68                 | 1.52 | 2.34 | 5.05            | 5.94  | 0.55                | 2,07           | 0.41                | 0.68              | 2.07              | 3.42            |
| 60  | 1.37                 | 2.18 | 2.88 | 8.21            | 7.30  | 0.83                | 3,01           | 0.61                | 0.74              | 3.07              | 3.70            |
| .90 | 2.05                 | 2.69 | 3:30 | 10.78           | 8.35  | 1.08                | 3.78           | 0.79                | 0.83              | 3.96              | 4.16            |
| 120 | 2.73                 | 3.13 | 3.65 | 12.93           | 9.28  | 1.34                | 4.47           | 0.96                | 0.96              | 4.81              | 4.81            |
| 150 | 3.42                 | 3.51 | 3.97 | 14.73           | 10.18 | 1.61                | 5.12           | 1.13                | 1.13              | 5.67              | 5.65            |
| 180 | 4.10                 | 3.84 | 4.28 | 16.19           | 11.12 | 1.92                | 5,76           | 1.31                | 1.33              | 6.56              | 6.67            |
| 210 | 4.78                 | 4.13 | 4.56 | 17:33           | 12.12 | 2.28                | 6.41           | 1.50                | 1.58              | 7.50              | 7.88            |
| 240 | 5.47                 | 4:36 | 4.82 | 18.16           | 13.22 | 2.71                | 7.07 1.70 1.85 |                     | 1.85              | 8.51              | 9.27            |
| 270 | 6.15                 | 4.54 | 5.05 | 18.72           | 14.42 | 3.23                | 7 77           | 1.92                | 2.17              | 9.59              | 10.85           |
| 300 | 6.83                 | 4.67 | 5.24 | 19.08           | 15.72 | 3.84                | 8.51           | 2.15                | 2.52              | 10.77             | 12.62           |

 Table B-1 Case A: Manually Computed Inlet Control Depths

| Q   | Q/AD <sup>05</sup>   | ye   | 8    | A               | V,   | V,²/2g | He   | Unsubmerged<br>HW/D | Submerged<br>HW/D | Unsuhmerged<br>HW | Submerged<br>HW |
|-----|----------------------|------|------|-----------------|------|--------|------|---------------------|-------------------|-------------------|-----------------|
| cfs | ft <sup>0.5</sup> /s | fi   | rad  | fi <sup>2</sup> | fi/s | fi     | fî   |                     | 1000              | tte:              |                 |
| 10  | 0.23                 | 0.87 | 1.72 | 2.27            | 4,40 | 0.30   | 1.17 | 0.23                | 0.67              | 1.16              | 3,36            |
| 20  | 0.46                 | 1.23 | 2.08 | 3.77            | 5.31 | 0.44   | 1.67 | 0.34                | 0.68              | 1.68              | 3.39            |
| 30  | 0.68                 | 1.52 | 2.34 | 5.05            | 5.94 | 0.55   | 2.07 | 0.42                | 0.69              | 2.09              | 3.44            |
| 40  | 0.91                 | 1.76 | 2.54 | 6.19            | 6.46 | 0.65   | 2.41 | 0,49                | 0.70              | 2.45              | 3.51            |
| 50  | 1.14                 | 1,98 | 2.72 | 7.24            | 6.90 | 0,74   | 2.72 | 0.56                | 0,72              | 2.78              | 3.60            |
| 60  | 1.37                 | 2.18 | 2.88 | 8.21            | 7.30 | 0.83   | 3.01 | 0.62                | 0.74              | 3.09              | 3.72            |
| 70  | 1.59                 | 2.36 | 3.03 | 9.12            | 7 67 | 0.91   | 3.28 | 0.68                | 0.77              | 3.39              | 3.85            |
| 80  | 1.82                 | 2.53 | 3.17 | 9.98            | 8.02 | 1.00   | 3.53 | 0.74                | 0.80              | 3.69              | 4.01            |
| 90  | 2.05                 | 2.69 | 3.30 | 10.78           | 8.35 | 1.08   | 3.78 | 0.80                | 0.84              | 3.98              | 4.18            |
| 100 | 2.28                 | 2.85 | 3.42 | 11.54           | 8.66 | 1.17   | 4.01 | 0.85                | 0.88              | 4.26              | 4.38            |

 Table B-2 Case B: Manually Computed Inlet Control Depths

| Q   | Q/AD <sup>0.5</sup>  | yç   | 8    | A,              | V,    | V, <sup>2</sup> /2g | H    | Unsubmerged<br>HW/D | Submerged<br>HW/D | Unsubmerged<br>HW | Submerged<br>HW |
|-----|----------------------|------|------|-----------------|-------|---------------------|------|---------------------|-------------------|-------------------|-----------------|
| cfs | fi <sup>0.5</sup> /s | ft   | rad  | ft <sup>2</sup> | fl/s  | ft                  | ft   |                     |                   |                   | : ====          |
| 15  | 0.34                 | 1.06 | 1.92 | 3.06            | 4.90  | 0,37                | 1.44 | 0.29                | 0.67              | 1.44              | 3.37            |
| 30  | 0.68                 | 1.52 | 2.34 | 5.05            | 5.94  | 0.55                | 2.07 | 0.42                | 0.69              | 2.08              | 3.44            |
| 45  | 1.02                 | 1.88 | 2.64 | 6.73            | 6.69  | 0.69                | 2.57 | 0.52                | 0.71              | 2.61              | 3.55            |
| 60  | 1.37                 | 2,18 | 2,88 | 8.21            | 7.30  | 0.83                | 3.01 | 0.62                | 0.74              | 3.09              | 3.71            |
| 75  | 1.71                 | 2.45 | 3,10 | 9.66            | 7.85  | 0.96                | 3.40 | D.71                | 0.78              | 3.54              | 3,92            |
| 90  | 2.05                 | 2.69 | 3,30 | 10.78           | 8.35  | 1.08                | 3.78 | 0.79                | 0.84              | 3.97              | 4.18            |
| 105 | 2.39                 | 2.92 | 3.48 | 11.91           | 8.82  | 1,21                | 4.13 | 0,88                | 0.90              | 4.40              | 4.48            |
| 120 | 2.73                 | 3.13 | 3.65 | 12.93           | 9.28  | 1.34                | 4.47 | 0.97                | 0.97              | 4.83              | 4.83            |
| 135 | 3.07                 | 3.33 | 3.82 | 13.87           | 9:73  | 1.47                | 4.80 | 1.05                | 1.04              | 5.25              | 5.22            |
| 160 | 3.42                 | 3.51 | 3.97 | 14.73           | 10.18 | 1.61                | 5.12 | 1.14                | 1.13              | 5.69              | 6.67            |

Table B-3 Case C: Manually Computed Inlet Control Depths

| Q   | Q/AD <sup>0.5</sup> | ye   | 8    | A               | V,    | $V_c^2/2g$ | H,   | Unsubmerged<br>HW/D | Submerged<br>HW/D | Unsuhmerged<br>HW | Submerged<br>HW |
|-----|---------------------|------|------|-----------------|-------|------------|------|---------------------|-------------------|-------------------|-----------------|
| cfs | fi <sup>05</sup> /s | fî   | rad  | fi <sup>2</sup> | ft/s  | ft         | fi   |                     |                   |                   |                 |
| 20  | 0.46                | 1 23 | 2.08 | 3.77            | 5.31  | 0.44       | 1.67 | 0.33                | 0.68              | 1.67              | 3,38            |
| 40  | 0.91                | 1.76 | 2.54 | 6,19            | 6.46  | 0.65       | 2,41 | 0.49                | 0.70              | 2.44              | 3.50            |
| 60  | 1.37                | 2.18 | 2.88 | 8.21            | 7.30  | 0.83       | 3.01 | 0.62                | 0.74              | 3.09              | 3.71            |
| 80  | 1.82                | 2.53 | 3.17 | 9.98            | 8.02  | 1.00       | 3.53 | 0.74                | 0.80              | 3.68              | 4.00            |
| 100 | 2.28                | 2.85 | 3.42 | 11.54           | 8.66  | 1.17       | 4.01 | 0.85                | 0.67              | 4.25              | 4.37            |
| 120 | 2.73                | 3,13 | 3.65 | 12,93           | 9.28  | 1.34       | 4.47 | 0.96                | 0,96              | 4.82              | 4.82            |
| 140 | 3,19                | 3,39 | 3.87 | 14.17           | 9.88  | 1.52       | 4.91 | 1.08                | 1.07              | 5.39              | 5.36            |
| 145 | 3:30                | 3.45 | 3.92 | 14.45           | 10.03 | 1.56       | 5.01 | 1.11                | 1.10              | 5.54              | 5.51            |
| 150 | 3.42                | 3,51 | 3.97 | 14.73           | 10.18 | 1.61       | 5.12 | 1.14                | 1.13              | 5.68              | 5,66            |
| 153 | 3.48                | 3.55 | 4.00 | 14.89           | 10.28 | 1.64       | 5.19 | 1.15                | 1.15              | 5.77              | 5.75            |
| 160 | 3:64                | 3.63 | 4.08 | 15.25           | 10.49 | 1.71       | 5.34 | 1.19                | 1.20              | 5.97              | 5.98            |
| 170 | 3.87                | 3.74 | 4.18 | 15.74           | 10.80 | 1.81       | 5.55 | 1,25                | 1.26              | 6.27              | 6.32            |
| 176 | 4.01                | 3.80 | 4.24 | 16.01           | 10.99 | 1.69       | 5.68 | 1.29 1.31           |                   | 6,45              | 6.54            |
| 177 | 4.03                | 3.81 | 4.25 | 16.06           | 11.02 | 1.89       | 5.70 | 1.30                | 1.31              | 6.48              | 6.57            |
| 178 | 4,05                | 3,82 | 4.26 | 16,10           | 11.05 | 1.90       | 5.72 | 1.30                | 1.30 1.32         |                   | 6.61            |
| 179 | 4.08                | 3.83 | 4.27 | 16.15           | 11.09 | 1 91       | 5.74 | 1,31                | 1,33              | 6.54              | 6.65            |
| 180 | 4.10                | 3,84 | 4.28 | 16,19           | 11.12 | 1.92       | 5.76 | 1.31                | 1.34              | 6.57              | 6.68            |
| 200 | 4.56                | 4.04 | 4.47 | 16.98           | 11_78 | 2.15       | 6.19 | 1.44                | 1.49              | 7,19              | 7.47            |

## Table B-4 Case D: Manually Computed Inlet Control Depths

#### **B.3** Outlet Control Headwater Depth

Outlet control headwater depths were determined using the direct step backwater method. The direct step method involves assuming a delta y value (depth of water) and computing the corresponding delta x value (distance up the culvert corresponding to the assumed water depth). The headwater depth was computed by adding the entrance loss and velocity head inside the culvert to the depth in the entrance of the culvert determined from backwater calculations. Equations B-7 through B-15 (1) were used to complete the direct step backwater computations for determining the outlet control headwater depths:

$$P = 0.5\theta D \tag{B-7}$$

$$A = \frac{1}{8} \left( \frac{\theta - \sin(\theta)}{\sin(\theta/2)} \right) D$$
 (B-8)

where P is the wetted perimeter (ft), D is the culvert diameter (ft), and  $\theta$  is the angle that defines the top of the width of flow (rad), and A is the area of flow (ft<sup>2</sup>);

$$u = \frac{Q}{A} \tag{B-9}$$

where u is the velocity of flow in the culvert barrel (ft/s), Q is the flow through the barrel (cfs);

$$F^2 = \left(\frac{u}{\sqrt{gD}}\right)^2 \tag{B-10}$$

where F is the Froude number and g is the acceleration due to gravity (32.2  $ft/s^2$ );

$$S_f = \frac{n^2 u^2}{k^2 R^{4/3}}$$
(B-11)

where n is the Manning's roughness coefficient, k is a units constant, R is the hydraulic radius (ft), and  $S_f$  is the friction slope through the barrel;

$$\Delta E = \Delta y \left( 1 - F^2 \right) \tag{B-12}$$

$$\Delta x = \frac{\Delta E}{S_o - S_f} \tag{B-13}$$

where  $\Delta E$  is the change in energy through the length of the barrel (ft),  $\Delta y$  is the change in depth of flow (ft),  $\Delta x$  is the change in distance along the length of the barrel (ft), and S<sub>o</sub> is the slope of the barrel;

$$HW = y + k_e \frac{u^2}{2g} + \frac{u^2}{2g}$$
(B-14)

where HW is the headwater depth just upstream of the entrance of the culvert (ft), y is the depth of flow at the entrance of the barrel (ft), and  $k_e$  is the entrance loss coefficient.

Case A was not analyzed using backwater calculations since the case was on a steep slope (critical depth greater than normal) with no tailwater and could therefore never operate under outlet control. Tables B-5 through B-14 show the backwater calculations for case B starting at critical depth downstream and continuing up the culvert until the entrance was reached (sum of delta x values = -100 ft). Once the entrance of the culvert was reached, the velocity head inside the culvert and the entrance loss were added to the corresponding water depth to obtain the headwater depth. In case C, the slope of the culvert changes from steep to mild and therefore the backwater computations were only completed for the mild cases where normal depth is less than critical (Tables B-15 through B-20). Again, the downstream starting depth was critical. Tables B-21 through B-30 show the outlet control headwater depths for case D. The computations began at the tailwater depth downstream since it was greater than critical and normal depth at all flows.

| Δу     | у      | θ      | Α      | P      | Ť      | R       | u      | u <sup>2</sup> /2g | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_{m}$ | F <sup>2</sup> m | $S_{o}$ - $n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE        | ΔX     | ΣΔΧ     | HW      |
|--------|--------|--------|--------|--------|--------|---------|--------|--------------------|---------|------------------------------|----------------|----------------------------------|------------------|------------------------------------------|-----------|--------|---------|---------|
| -      | 0.8878 | 1.7398 | 2.3564 | 4.3495 | 3.8213 | 0 54177 | 4.2437 | 0.27964            | 0.61665 | 0.0026448                    | 0.9070         |                                  |                  |                                          |           |        |         |         |
| 0.01   | 0.8978 | 1.7503 | 2.3947 | 4 3756 | 3.8381 | 0.54729 | 4 1758 | 0.27077            | 0.62394 | 0.0025265                    | 0.8679         | 0.002586                         | 0.8874           | -5.8562E-04                              | 1.126E-03 | -1.92  | -1.92   | 1.30391 |
| 0.01   | 0.9078 | 1,7607 | 2.4332 | 4.4016 | 3.8547 | 0.55280 | 4 1098 | 0.26227            | 0.63123 | 0.0024148                    | 0.8310         | D.002471                         | 0.8495           | -4.7063E-04                              | 1.605E-03 | -3,20  | -5.12   | 1.30117 |
| 0.01   | 0.9178 | 1.7710 | 2.4718 | 4.4275 | 3.8712 | 0.55829 | 4.0456 | 0.25414            | 0.63852 | 0.0023093                    | 0.7960         | 0,002362                         | 0.8135           | -3.6202E-04                              | 1.865E-03 | -5.15  | -10.27  | 1.29897 |
| 0.01   | 0.9278 | 1.7813 | 2,5106 | 4,4533 | 3.8874 | 0,56377 | 3.9831 | 0.24635            | 0.64583 | 0.0022095                    | 0.7629         | 0.002259                         | 0,7795           | -2.5936E-04                              | 2.205E-03 | -8:50  | -18.78  | 1.29728 |
| 0.01   | 0.9378 | 1.7916 | 2.5496 | 4.4790 | 3.9035 | 0.56923 | 3.9222 | 0.23888            | 0.65315 | 0.0021151                    | 0.7315         | 0.002162                         | 0.7472           | -1.6228E-04                              | 2.528E-03 | -15.58 | -34.35  | 1.29607 |
| 0.001  | 0.9388 | 1.7926 | 2,5535 | 4,4815 | 3.9051 | 0.56978 | 3,9162 | 0.23815            | 0.65388 | 0.0021059                    | 0.7284         | 0.002111                         | 0.7299           | -1.1051E-04                              | 2.701E-04 | -2.44  | -36.80  | 1.29598 |
| 0.001  | 0.9398 | 1,7936 | 2.5574 | 4,4841 | 3.9067 | 0.57033 | 3.9102 | 0.23742            | 0.65461 | 0.0020968                    | 0.7254         | 0.002101                         | 0.7269           | -1.0138E-04                              | 2.731E-04 | -2.69  | -39.49  | 1.29589 |
| 0.001  | 0.9408 | 1.7947 | 2.5613 | 4.4867 | 3.9083 | 0 57087 | 3.9043 | 0.23670            | 0.65535 | 0.0020878                    | 0.7224         | 0.002092                         | 0.7239           | -9.2298E-05                              | 2.761E-04 | -2.99  | -42.48  | 1.29580 |
| 0.001  | 0.9418 | 1.7957 | 2.5652 | 4 4892 | 3.9099 | 0.57142 | 3.8983 | 0.23698            | 0.65608 | 0.0020788                    | 0.7194         | 0.002083                         | 0.7209           | -8.3267E-05                              | 2,791E-04 | -3,35  | -45.84  | 1.29572 |
| 0.001  | 0.9428 | 1,7967 | 2.5691 | 4.4918 | 3,9115 | 0.57196 | 3.8924 | 0.23526            | 0.65681 | 0.0020698                    | 0.7164         | D.002074                         | 0,7179           | -7.4284E-05                              | 2.821E-04 | -3,80  | -49.63  | 1.29564 |
| 0.001  | 0.9438 | 1.7977 | 2.5730 | 4,4943 | 3,9131 | 0.57251 | 3.8865 | 0.23454            | 0.65754 | 0.0020609.                   | 0.7134         | 0.002065                         | 0,7149           | -6.5350E-05                              | 2.851E-04 | -4,36  | -54.00  | 1.29557 |
| 0.001  | 0.9448 | 1.7988 | 2.5770 | 4,4969 | 3 9147 | 0,57305 | 3.8806 | 0.23383            | 0.65828 | 0.0020520                    | 0.7104         | 0.002056                         | 0,7119           | -5.6465E-05                              | 2.881E-04 | -5:10  | -59,10  | 1.29550 |
| 0.001  | 0.9458 | 1.7998 | 2:5809 | 4.4994 | 3.9163 | 0.57360 | 3.8747 | 0.23312            | 0.65901 | 0.0020432                    | 0.7075         | 0.002048                         | 0.7090           | -4.7629E-05                              | 2.910E-04 | -6.11  | -65.21  | 1.29544 |
| 0.001  | 0.9469 | 1.0008 | 2.5848 | 4,5020 | 3.9179 | 0.57414 | 3.8688 | 0.23242            | 0.65974 | 0.0020345                    | 0.7046         | 0.002039                         | 0,7060           | -3.8840E-05                              | 2.940E-04 | -7.57  | -72.78  | 1.29538 |
| 0.001  | 0.9478 | 1.8018 | 2.5887 | 4,5045 | 3.9195 | 0.57469 | 3.8629 | 0.23171            | 0.66047 | 0.0020257                    | 0.7017         | 0.002030                         | 0.7031           | -3.0099E-05                              | 2,969E-04 | -9.86  | -82.64  | 1.29532 |
| 0.001  | 0.9488 | 1.8028 | 2.5926 | 4.5071 | 3.9210 | 0 57523 | 3.8571 | 0.23101            | 0.66121 | 0.0020171                    | 0.6988         | 0.002021                         | 0.7002           | -2.1405E-05                              | 2.998E-04 | -14.01 | -96.65  | 1.29527 |
| 0.0001 | 0.9489 | 1.8029 | 2.5930 | 4 5074 | 3.9212 | 0.57529 | 3.8565 | 0.23094            | 0.66128 | 0.0020162                    | 0.6985         | 0.002017                         | 0.6986           | -1.6637E-05                              | 3.014E-05 | -1.81  | -98.46  | 1.29527 |
| 0.0001 | 0.9490 | 1.8030 | 2.5934 | 4.5076 | 3 9214 | 0.57534 | 3,8559 | 0.23087            | 0.66135 | 0.0020153                    | 0.6982         | 0.002016                         | 0.6983           | -1.5773E-05                              | 3.017E-05 | -191   | -100.37 | 1.29526 |
| 0.0001 | 0.9491 | 1.8031 | 2.5938 | 4,5079 | 3.9215 | 0.57539 | 3.8553 | 0.23080            | 0.66143 | 0.0020145                    | 0.6979         | 0.002015                         | 0.6980           | -1.4909E-05                              | 3.020E-05 | -2.03  | -102.40 | 1.29526 |
| 0.0001 | 0.9492 | 1.8032 | 2.5942 | 4,5081 | 3 9217 | 0.57545 | 3.8548 | 0.23073            | 0.66150 | 0.0020136                    | 0.6976         | 0.002014                         | 0.6977           | -1.4046E-05                              | 3:023E-05 | -2.15  | -104.55 | 1.29526 |

 Table B-5 Case B 10 cfs: Manually Computed Outlet Control Headwater Depths

| Δy     | ÿ      | <u> </u> | Α      | P      | ा      | R       | u      | u²/2g   | D       | n²u²/(φ²R⁴⁄3) | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o} n^{2} u^{2} / (\phi^{2} R^{4/3})$ | ΔE        | ΔX     | ΣΔΧ     | HW      |
|--------|--------|----------|--------|--------|--------|---------|--------|---------|---------|---------------|----------------|--------------------------------|------------------|------------------------------------------|-----------|--------|---------|---------|
|        | 1,2555 | 2,0995   | 3.8624 | 5.2486 | 4.3364 | 0,73589 | 5.1781 | 0.41635 | 0,89068 | 0.0026177     | 0.9349         |                                |                  |                                          |           |        |         |         |
| 0.01   | 1.2655 | 2.1087   | 3.9068 | 5.2717 | 4.3479 | 0.74091 | 5 1206 | 0.40715 | 0.89833 | 0.0025367     | 0.9065         | 0.0025772                      | 0.9207           | -5,77E-04                                | 7.932E-04 | -1.37  | -1.37   | 1.87620 |
| 0.01   | 1.2755 | 2,1179   | 3.9493 | 5.2946 | 4.3591 | 0,74592 | 5.0641 | 0.39822 | 0.90599 | 0.0024589     | 0.8791         | 0.0024978                      | 0.8928           | -4.98E-04                                | 1.072E-03 | -2.15  | -3.53   | 1.87281 |
| 0.01   | 1.2855 | 2.1270   | 3,9930 | 5.3175 | 4.3703 | 0.75091 | 5.0088 | 0.38956 | 0.91366 | 0.0023842     | 0.8528         | 0.0024216                      | 0.8659           | -4.22E-04                                | 1.341E-03 | -3.18  | -6,71   | 1.86982 |
| 0.01   | 1.2955 | 2.1362   | 4.0367 | 5,3404 | 4,3814 | 0,75589 | 4.9545 | 0.38116 | 0.92134 | 0.0023123     | 0.8274         | 0.0023482                      | 0.8401           | -3.48E-04                                | 1.599E-03 | -4.59  | -11.30  | 1.86722 |
| 0.01   | 1.3055 | 2 1453   | 4.0806 | 5.3632 | 4,3923 | 0,76086 | 4.9012 | 0.37301 | 0.92904 | 0.0022432     | 0.8030         | 0.0022777                      | 0.8152           | -2.78E-04                                | 1.846E-03 | -6,65  | -17,95  | 1.86499 |
| 0.01   | 1.3155 | 2 1544   | 4 1246 | 5,3859 | 4.4031 | 0,76581 | 4.8490 | 0.36510 | 0 93674 | 0.0021767     | 0.7795         | 0.0022099                      | 0.7913           | -2.10E-04                                | 2.087E-03 | -9.94  | -27.90  | 1.86313 |
| 0.01   | 1.3255 | 2.1634   | 4 1687 | 5.4086 | 4.4138 | 0.77075 | 4.7977 | 0.35742 | D 94446 | 0.0021127     | 0,7569         | 0.0021447                      | 0.7682           | -1.45E-04                                | 2:318E-03 | -16.02 | -43.92  | 1.86160 |
| D.01   | 1.3355 | 2,1725   | 4.2129 | 5,4312 | 4.4244 | 0.77567 | 4.7474 | 0.34996 | 0.95218 | 0.0020511     | 0,7351         | 0.0020819                      | 0.7460           | -8,19E-05                                | 2.540E-03 | -31,02 | -74.94  | 1.86042 |
| 0.001  | 1.3365 | 2.1734   | 4.2173 | 5.4335 | 4.4255 | 0,77617 | 4,7424 | 0.34923 | 0.95296 | 0.0020451     | 0.7329         | 0.0020481                      | 0.7340           | -4.81E-05                                | 2.660E-04 | -5.53  | -80.47  | 1.86031 |
| 0,001  | 1.3375 | 2,1743   | 4.2217 | 5.4358 | 4.4265 | 0,77666 | 4.7374 | 0.34849 | 0.95373 | 0.0020391     | 0.7308         | 0.0020421                      | 0 7319           | -4.21E-05                                | 2.681E-04 | -6.37  | -86,84  | 1.86022 |
| 0.001  | 1.3385 | 2.1752   | 4.2261 | 5.4380 | 4.4276 | 0.77715 | 4.7324 | 0.34776 | 0.95451 | 0.0020331     | 0.7287         | 0.0020361                      | 0.7297           | -3.61E-05                                | 2.703E-04 | -7.49  | -94.34  | 1.86012 |
| 0.0001 | 1.3386 | 2.1753   | 4 2266 | 5,4382 | 4,4277 | 0,77720 | 4.7319 | 0.34769 | 0.95458 | 0.0020325     | 0.7285         | 0.0020328                      | 0.7286           | -3.28E-05                                | 2.714E-05 | -0.83  | -95.16  | 1.86011 |
| 0.0001 | 1.3387 | 2 1754   | 4 2270 | 5.4385 | 4,4278 | 0.77725 | 4,7314 | 0.34762 | 0.95466 | 0.0020319     | 0,7283         | 0.0020322                      | 0.7284           | -3.22E-05                                | 2,716E-05 | -0.84  | -96.01  | 1.86010 |
| 0.0001 | 1.3388 | 2 1755   | 4.2275 | 5,4387 | 4.4279 | 0,77730 | 4,7310 | 0.34755 | 0 95474 | 0.0020313     | 0,7280         | 0.0020316                      | 0.7281           | -3.16E-05                                | 2,719E-05 | -0,86  | -96.87  | 1.86009 |
| 0.0001 | 1.3389 | 2.1756   | 4 2279 | 5.4389 | 4 4280 | 0.77735 | 4.7305 | 0.34747 | 0.95482 | 0.0020307     | 0,7278         | 0.0020310                      | 0.7279           | -3.10E-05                                | 2:721E-05 | -0.88  | -97 75  | 1.86009 |
| 0.0001 | 1.3390 | 2,1757   | 4,2284 | 5,4391 | 4.4281 | 0,77740 | 4,7300 | 0.34740 | 0.95489 | 0.0020301     | 0,7276         | 0.0020304                      | 0.7277           | -3.04E-05                                | 2.723E-05 | -0.90  | -98.64  | 1.86008 |
| 0.0001 | 1.3391 | 2 1767   | 4.2288 | 5.4394 | 4.4282 | 0.77744 | 4,7295 | 0.34733 | 0.95497 | 0.0020295     | 0.7274         | 0.0020298                      | 0.7275           | -2.98E-05                                | 2.725E-05 | -0.91  | -99.56  | 1.86007 |
| 0.0001 | 1.3392 | 2,1758   | 4.2292 | 5:4396 | 4.4283 | 0,77749 | 4.7290 | 0.34725 | 0.95505 | 0.0020289     | 0.7272         | 0.0020292                      | 0.7273           | -2.92E-05                                | 2.727E-05 | -0.93  | -100.49 | 1.86006 |
| 0.0001 | 1.3393 | 2.1759   | 4.2297 | 5.4398 | 4.4284 | 0.77754 | 4.7285 | 0.34718 | 0.95512 | 0.0020283     | 0.7270         | 0.0020286                      | 0.7271           | -2.86E-05                                | 2.729E-05 | -0.95  | -101.45 | 1.86005 |
| 0.0001 | 1.3394 | 2.1760   | 4.2301 | 5.4400 | 4.4285 | 0.77759 | 4.7280 | 0.34711 | 0.95520 | 0.0020277     | 0.7268         | 0.0020280                      | 0.7269           | -2.60E-05                                | 2.731E-05 | -0.98  | -102.42 | 1.86004 |

 Table B-6 Case B 20 cfs: Manually Computed Outlet Control Headwater Depths

| Δy    | ÿ.      | 0       | Α       | р       | ा       | R       | u       | u <sup>2</sup> /2g | D       | n²u²/(φ²R <sup>4/3</sup> ) | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{\phi} - n^2 u^2 / (\phi^2 R^{4/3})$ | ΔE        | ΔX      | ΣΔΧ      | HW     |
|-------|---------|---------|---------|---------|---------|---------|---------|--------------------|---------|----------------------------|----------------|--------------------------------|------------------|-----------------------------------------|-----------|---------|----------|--------|
|       | 1.53764 | 2,35130 | 5 12730 | 5.87824 | 4.61470 | 0.87225 | 5,85104 | 0.53159            | 1 11108 | 0.002664                   | 0.95690        |                                |                  |                                         |           |         |          |        |
| 0,01  | 1.54764 | 2,35996 | 5 17349 | 5.89989 | 4 62299 | 0.87688 | 5.79880 | 0.52214            | 1.11908 | 0.002599                   | 0,93317        | 0.002632                       | 0.94503          | -6.315E-04                              | 5,497E-04 | -0.870  | -0.870   | 2.3309 |
| 0.01  | 1.55764 | 2,36860 | 5.21976 | 5 92150 | 4 63118 | 0.88149 | 5:74739 | 0,51293            | 1.12709 | 0.002535                   | 0.91018        | 0.002567                       | 0.92167          | -5.668E-04                              | 7.833E-04 | -1.382  | -2,252   | 2.3270 |
| 0.01  | 1.56764 | 2.37723 | 5.26611 | 5.94308 | 4.63927 | 0.88609 | 5.69681 | 0.50394            | 1.13512 | 0.002473                   | 0.88790        | 0.002504                       | 0.89904          | -5.042E-04                              | 1.010E-03 | -2.003  | -4.255   | 2.3235 |
| 0.01  | 1.57764 | 2.38585 | 5.31254 | 5.96461 | 4.64726 | 0.89068 | 5.64701 | 0.49517            | 1.14316 | 0.002414                   | 0.86632        | 0.002443                       | 0.87711          | -4.435E-04                              | 1.229E-03 | -2.771  | -7,026   | 2.3204 |
| 0.01  | 1.58764 | 2,39445 | 5.35905 | 5.98611 | 4.65515 | 0.89525 | 5.59800 | 0,48661            | 1.15121 | 0.002356                   | 0.84539        | 0.002385                       | 0.85585          | -3.847E-04                              | 1.441E-03 | -3,747  | -10.773  | 2 3176 |
| 0.01  | 1.59764 | 2.40303 | 5.40564 | 6.00758 | 4.66294 | 0,89980 | 5.54975 | 0.47826            | 1.15928 | 0.002300                   | 0,82509        | 0.002328                       | 0.83524          | -3.277E-04                              | 1.648E-03 | -5.027  | -15.800  | 2.3150 |
| 0.01  | 1.60764 | 2.41160 | 5.45231 | 6.02901 | 4.67063 | 0.90435 | 5.50225 | 0.47011            | 1 16736 | 0.002245                   | 0.80541        | 0.002273                       | 0.81525          | -2.725E-04                              | 1.847E-03 | -6,778  | -22.579  | 2.3128 |
| D,01  | 1.61764 | 2.42016 | 5,49906 | 6.05040 | 4.67822 | 0.90888 | 5.45548 | 0,46215            | 1 17546 | 0.002193                   | 0,78633        | 0.002219                       | 0.79587          | -2.191E-04                              | 2.041E-03 | -9.319  | -31.897  | 2,3109 |
| 0,01  | 1.62764 | 2,42870 | 5.54588 | 6.07176 | 4.68572 | 0,91339 | 5.40942 | 0.45438            | 1.18357 | 0.002142                   | 0,76781        | 0.002167                       | 0.77707          | -1.672E-04                              | 2.229E-03 | -13.334 | -45.231  | 2.3092 |
| 0.01  | 1.63764 | 2.43723 | 5.59277 | 6.09308 | 4.69312 | 0.91789 | 5:36407 | 0,44679            | 1,19170 | 0.002092                   | 0,74984        | 0.002117                       | 0 75882          | -1.169E-04                              | 2.412E-03 | -20.631 | -65.862  | 2.3078 |
| 0.001 | 1.63864 | 2.43809 | 5:59746 | 6.09521 | 4.69385 | 0.91834 | 5.35957 | 0.44604            | 1.19251 | 0.002087                   | 0.74807        | 0.002090                       | 0.74895          | -8.971E-05                              | 2.510E-04 | -2.798  | -68.660  | 2.3077 |
| 0.001 | 1.63964 | 2.43894 | 5.60216 | 6.09734 | 4.69458 | 0.91879 | 5,35508 | 0.44529            | 1.19332 | 0.002082                   | 0,74631        | 0.002085                       | 0.74719          | -8.485E-05                              | 2.528E-04 | -2.980  | -71.640  | 2.3076 |
| 0.001 | 1.64064 | 2.43979 | 5.60685 | 6.09947 | 4 69532 | 0.91924 | 5.35059 | 0.44455            | 1.19414 | 0.002078                   | 0.74455        | 0.002080                       | 0.74543          | -8.000E-05                              | 2.546E-04 | -3,182  | -74.822  | 2 3075 |
| 0.001 | 1.64164 | 2.44064 | 5.61165 | 6,10160 | 4.69605 | 0.91968 | 5,34612 | 0.44380            | 1.19495 | 0.002073                   | 0.74280        | 0.002075                       | 0.74367          | -7.517E-05                              | 2.563E-04 | -3,410  | -78.232  | 2 3073 |
| 0.001 | 1.64264 | 2.44149 | 5.61625 | 6.10373 | 4.69678 | 0.92013 | 5.34165 | D.44306            | 1 19577 | 0.002068                   | 0.74105        | 0.002070                       | 0.74192          | -7.035E-05                              | 2 581E-04 | -3,668  | -81.900  | 2.3072 |
| 0.001 | 1.64364 | 2.44234 | 5.62094 | 6.10586 | 4.69751 | 0.92058 | 5.33718 | 0.44232            | 1 19658 | 0.002063                   | 0,73931        | 0.002066                       | 0.74018          | -6.555E-05                              | 2.598E-04 | -3.964  | -85.864  | 2,3071 |
| 0.001 | 1.64464 | 2,44320 | 5,62564 | 6.10799 | 4 69824 | 0,92103 | 5.33273 | 0.44158            | 1.19739 | 0.002058                   | 0,73757        | 0.002061                       | 0.73844          | -6.076E-05                              | 2.616E-04 | -4,305  | -90,169  | 2.3070 |
| 0,001 | 1.64564 | 2.44405 | 5,63034 | 6.11012 | 4.69896 | 0.92148 | 5:32828 | 0,44085            | 1.19821 | 0.002054                   | 0,73584        | 0.002056                       | 0.73671          | -5 599E-05                              | 2.633E-04 | -4.703  | -94.872  | 2.3069 |
| 0.001 | 1.64664 | 2.44490 | 5.63504 | 6.11225 | 4.69969 | 0.92193 | 5.32383 | D.44011            | 1.19902 | 0.002049                   | 0.73412        | 0.002051                       | D.73498          | -5.123E-05                              | 2.650E-04 | -5.173  | -100.045 | 2.3068 |
| 0.001 | 1.64764 | 2.44575 | 5.63974 | 6.11437 | 4.70042 | 0.92237 | 5,31940 | 0.43938            | 1.19984 | 0.002044                   | 0,73240        | 0.002046                       | 0.73326          | -4.648E-05                              | 2.667E-04 | -5.739  | -105,783 | 2.3067 |

 Table B-7 Case B 30 cfs: Manually Computed Outlet Control Headwater Depths

| Δy    | У       |         | Α       | Р       | T_      | R       | u       | u²/2g   | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | n <sup>2</sup> u <sup>2</sup> /(q <sup>2</sup> R <sup>4/3</sup> )m | F <sup>2</sup> m | $S_{o}$ - $n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE         | ΔX        | ΣΔΧ        | HW     |
|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------------------------------|----------------|--------------------------------------------------------------------|------------------|------------------------------------------|------------|-----------|------------|--------|
|       | 1.77551 | 2.55357 | 6.24640 | 6.38392 | 4.78544 | 0.97846 | 6.40369 | 0.63676 | 1.30529 | 0.00273817                   | 0.97566        |                                                                    |                  |                                          |            |           |            |        |
| 0.01  | 1.78551 | 2.56192 | 6.29428 | 6.40480 | 4,79145 | 0.98274 | 6.35497 | 0.62711 | 1,31365 | 0.002681                     | 0.95476        | 2.7096E-03                                                         | 0.96521          | -7.0959E-04                              | 3.4793E-04 | -0.49032  | -0.49032   | 2.7262 |
| 0.01  | 1.79551 | 2.57026 | 6.34223 | 6.42566 | 4,79737 | 0.98702 | 6.30693 | 0.61766 | 1.32202 | 0.00262539                   | 0.93442        | 2.6532E-03                                                         | 0.94459          | -6.5320E-04                              | 5.5411E-04 | -0.84831  | -1.33863   | 2.7220 |
| 0.01  | 1:80551 | 2,57860 | 6.39023 | 6.44649 | 4:80320 | 0.99127 | 6.25956 | 0.60842 | 1.33041 | 0.0025713                    | 0.91463        | 2.5983E-03                                                         | 0 92453          | -5.9835E-04                              | 7.5474E-04 | -1.26138  | -2.60001   | 2.7181 |
| 0.01  | 1.81551 | 2.58692 | 6.43829 | 6.46730 | 4.80894 | 0.99551 | 6.21283 | 0.59937 | 1.33882 | 0.00251867                   | 0.89537        | 2.5450E-03                                                         | 0.90500          | -5.4499E-04                              | 9:5000E-04 | -1.74316  | -4.34317   | 2.7146 |
| 0.01  | 1.62551 | 2.59523 | 6.48641 | 6.48808 | 4.81459 | 0.99974 | 6,16674 | 0.59051 | 1.34724 | 0.00246746                   | 0.87662        | 2.4931E-03                                                         | 0.88599          | -4.9307E-04                              | 1.1401E-03 | -2.31218  | -6.65535   | 2.7113 |
| 0.01  | 1.83551 | 2.60353 | 6.53458 | 6.50884 | 4.82015 | 1.00396 | 6.12128 | 0.58183 | 1.35568 | 0.00241762                   | 0.85836        | 2.4425E-03                                                         | 0.86749          | -4.4254E-04                              | 1.3251E-03 | -2,99426  | -9.64960   | 2.7083 |
| 0.01  | 1.84551 | 2.61183 | 6.58281 | 6.52957 | 4,82562 | 1,00815 | 6.07643 | 0.57334 | 1,36414 | 0.00236911                   | 0.84059        | 2.3934E-03                                                         | 0.84948          | -3.9337E-04                              | 1.5052E-03 | -3.82657  | -13,47617  | 2.7055 |
| 0.01  | 1 86551 | 2.62011 | 6.63109 | 6.55028 | 4.83100 | 1.01234 | 6.03219 | 0.56502 | 1.37261 | 0.00232188                   | 0.82328        | 2.3455E-03                                                         | 0.83193          | -3.4549E-04                              | 1.6807E-03 | -4.86456  | -18.34073  | 2.7030 |
| 0.01  | 1.86551 | 2.62839 | 6.67943 | 6.57097 | 4.83629 | 1.01651 | 5.98854 | 0.55687 | 1,38111 | 0.00227589                   | 0.80641        | 2,2989E-03                                                         | 0.81485          | -2,9889E-04                              | 1.8515E-03 | -6.19484  | -24.53557  | 2.7008 |
| 0.01  | 1.87551 | 2,63665 | 6,72782 | 6.59164 | 4.84149 | 1.02066 | 5.94546 | 0.54889 | 1.38962 | 0.00223111                   | 0.78999        | 2.2535E-03                                                         | 0,79820          | -2.5350E-04                              | 2.0180E-03 | -7.96055  | -32.49612  | 2,6988 |
| 0,01  | 1.88551 | 2.64491 | 6.77626 | 6.61228 | 4.84661 | 1.02480 | 5.90296 | 0.54107 | 1.39814 | 0.00218748                   | 0.77398        | 2.2093E-03                                                         | 0.78199          | -2.0930E-04                              | 2,1801E-03 | -10.41657 | -42.91269  | 2.6971 |
| 0.01  | 1.89551 | 2.65316 | 6.82475 | 6.63290 | 4.85164 | 1.02892 | 5.86102 | 0.53341 | 1.40669 | 0.00214499                   | 0.75839        | 2.1662E-03                                                         | 0.76619          | -1.6624E-04                              | 2.3381E-03 | -14.06496 | -56.97765  | 2.6956 |
| 0.01  | 1.90551 | 2.66140 | 6.87329 | 6.65350 | 4.85658 | 1.03303 | 5,81963 | 0.52590 | 1.41525 | 0.00210359                   | 0.74319        | 2.1243E-03                                                         | 0.75079          | -1.2429E-04                              | 2.4921E-03 | -20.05049 | -77.02814  | 2.6944 |
| 0.001 | 1.90651 | 2.66223 | 6.87815 | 6.65556 | 4.85707 | 1.03344 | 5.81552 | 0.52516 | 1.41611 | 0.00209951                   | 0.74169        | 2.1016E-03                                                         | 0.74244          | -1.0155E-04                              | 2.5756E-04 | -2,53626  | -79.56440  | 2.6943 |
| 0.001 | 1.90751 | 2.66305 | 6.88301 | 6.65762 | 4,85755 | 1.03385 | 5.81141 | 0.52442 | 1.41697 | 0.00209544                   | 0.74020        | 2.0975E-03                                                         | 0.74094          | -9.7475E-05                              | 2.5906E-04 | -2.65767  | -82 22208  | 2.6941 |
| 0.001 | 1.90851 | 2.66387 | 6.88786 | 6.65968 | 4.85804 | 1.03426 | 5.80732 | 0.52368 | 1.41783 | 0.00209138                   | 0.73871        | 2.0934E-03                                                         | 0.73945          | -9.3409E-05                              | 2.6055E-04 | -2,78933  | -85.01141  | 2.6940 |
| 0,001 | 1.90951 | 2.66470 | 6.89272 | 6.66174 | 4.85853 | 1.03467 | 5.80322 | 0.52294 | 1,41869 | 0.00208733                   | 0.73722        | 2.0894E-03                                                         | 0.73796          | -8.9354E-05                              | 2.5204E-04 | -2.93257  | -87 94398  | 2.6939 |
| 0,001 | 1.91051 | 2.66552 | 6.89758 | 6.66380 | 4.85901 | 1.03508 | 5.79913 | 0.52220 | 1.41954 | 0.00208329                   | 0.73574        | 2.0853E-03                                                         | 0,73648          | -8.5310E-05                              | 2.6352E-04 | -3.08901  | -91.03299  | 2.6938 |
| 0.001 | 1.91151 | 2.66634 | 6.90244 | 6.66586 | 4.85950 | 1.03549 | 5.79505 | 0.52147 | 1.42040 | 0.00207926                   | 0.73426        | 2.0813E-03                                                         | 0.73500          | -8.1276E-05                              | 2.6500E-04 | -3.26056  | -94,29356  | 2.6937 |
| 0.001 | 1.91251 | 2.66717 | 6.90730 | 6.66791 | 4.85998 | 1.03590 | 5.79098 | 0.52074 | 1.42126 | 0.00207524                   | 0.73278        | 2.0773E-03                                                         | 0.73352          | -7.7252E-05                              | 2.6648E-04 | -3.44952  | -97.74307  | 2.6936 |
| 0.001 | 1.91351 | 2.66799 | 6.91216 | 6.66997 | 4.86047 | 1.03631 | 5.78690 | 0.52000 | 1.42212 | 0.00207123                   | 0.73131        | 2.0732E-03                                                         | 0.73204          | -7.3239E-05                              | 2.6796E-04 | -3.65867  | -101:40174 | 2.6935 |
| 0.001 | 1.91451 | 2.66881 | 6.91702 | 6.67203 | 4.86095 | 1.03672 | 5.78284 | 0.51927 | 1.42298 | 0.00206724                   | 0.72984        | 2.0692E-03                                                         | 0.73057          | -6.9236E-05                              | 2.6943E-04 | -3.89143  | -105,29317 | 2.6934 |
| 0.001 | 1.91551 | 2.66963 | 6.92188 | 6.67408 | 4,86143 | 1.03713 | 5.77878 | 0.51854 | 1.42384 | 0.00206325                   | 0.72838        | 2.0652E-03                                                         | 0.72911          | -6.5243E-05                              | 2.7089E-04 | -4.15205  | -109.44522 | 2.6933 |
| 0.001 | 1.91651 | 2.67046 | 6.92674 | 6.67614 | 4.86191 | 1.03754 | 5.77472 | 0.51782 | 1.42470 | 0.00205927                   | 0.72692        | 2.0613E-03                                                         | 0.72765          | -6.1261E-05                              | 2.7235E-04 | -4.44584  | -113.89105 | 2.6932 |

Table B-8 Case B 40 cfs: Manually Computed Outlet Control Headwater Depths
| Δy    | y       | 0       | Α       | P       | ा       | R       | <u>u</u> | u <sup>2</sup> /2g | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{\sigma} \text{-} n^2 u^2 / (\phi^2 R^{4/3})$ | ΔE         | ΔX       | ΣΔΧ      | HW       |
|-------|---------|---------|---------|---------|---------|---------|----------|--------------------|---------|------------------------------|----------------|--------------------------------|------------------|--------------------------------------------------|------------|----------|----------|----------|
|       | 1 98508 | 2.72669 | 7.26121 | 6,81672 | 4 89279 | 1 06521 | 6.88590  | 0.73627            | 1.48406 | 2.8271E-03                   | 0,99223        |                                |                  |                                                  |            |          |          |          |
| 0.1   | 2.08508 | 2.80812 | 7 75245 | 7.02029 | 4 93066 | 1.10429 | 6.44957  | 0.64592            | 1 57230 | 2.3638E-03                   | 0.82162        | 2.5954E-03                     | 0.90693          | -5.9541E-04                                      | 9.3072E-03 | -15.6315 | -15.6315 | 3.053956 |
| 0.01  | 2.09508 | 2.81623 | 7.80178 | 7.04056 | 4.93398 | 1.10812 | 6.40880  | 0.63777            | 1.58123 | 2.3232E-03                   | 0.80668        | 2.3435E-03                     | 0.81415          | -3.4351E-04                                      | 1.8585E-03 | -5.41032 | -21,0419 | 3.051744 |
| 0.01  | 2.10508 | 2.82433 | 7.85113 | 7.06082 | 4.93722 | 1.11193 | 6.36851  | 0.62978            | 1:59019 | 2.2836E-03                   | 0.79208        | 2.3034E-03                     | 0.79938          | -3.0345E-04                                      | 2.0062E-03 | -6.61134 | -27.6532 | 3.049754 |
| 0.01  | 2.11508 | 2.83243 | 7.90052 | 7.08107 | 4.94038 | 1.11572 | 6,32870  | 0.62193            | 1.59917 | 2.2450E-03                   | 0.77782        | 2.2643E-03                     | 0.78495          | -2.6431E-04                                      | 2.1505E-03 | -8,13638 | -35.7896 | 3.04798  |
| 0.01  | 2 12508 | 2,84052 | 7,94994 | 7.10131 | 4.94345 | 1.11950 | 6.28936  | 0.61422            | 1.60817 | 2.2072E-03                   | 0.76388        | 2.2261E-03                     | 0.77085          | -2.2607E-04                                      | 2.2915E-03 | -10,1366 | -45,9261 | 3.046418 |
| 0.01  | 2 13508 | 2.84861 | 7.99939 | 7.12153 | 4.94645 | 1.12327 | 6.25048  | 0.60665            | 1.61720 | 2.1702E-03                   | 0.75025        | 2,1887E-03                     | 0.75706          | -1.8870E-04                                      | 2.4294E-03 | -12.8745 | -58.8006 | 3.045062 |
| 0.01  | 2 14508 | 2.85670 | 8.04887 | 7 14174 | 4 94936 | 1.12702 | 6.21205  | 0.59922            | 1.62625 | 2.1341E-03                   | 0.73693        | 2.1522E-03                     | 0.74359          | -1.5217E-04                                      | 2.5641E-03 | -16.8496 | -75.6502 | 3.043909 |
| 0.001 | 2.14608 | 2.85750 | 8,05382 | 7 14376 | 4.94964 | 1.12739 | 6.20824  | 0.59848            | 1.62715 | 2.1306E-03                   | 0,73562        | 2 1323E-03                     | 0.73628          | -1.3234E-04                                      | 2.6372E-04 | -1.99278 | -77.643  | 3.043804 |
| 0.001 | 2.14708 | 2.85831 | 8.05877 | 7.14578 | 4,94993 | 1.12777 | 6.20442  | 0.59775            | 1.62806 | 2.1270E-03                   | 0.73431        | 2.1288E-03                     | 0.73496          | -1.2878E-04                                      | 2.6504E-04 | -2.05809 | -79.7011 | 3.043702 |
| 0.001 | 2:14808 | 2.85912 | 8:06372 | 7 14780 | 4.95021 | 1.12814 | 6.20061  | 0.59701            | 1,62896 | 2.1235E-03                   | 0.73300        | 2.1252E-03                     | 0 73365          | -1.2523E-04                                      | 2.6635E-04 | -2.12695 | -81.828  | 3.043601 |
| 0.001 | 2.14908 | 2.86993 | 8.06867 | 7.14982 | 4.95050 | 1.12851 | 6.19681  | 0.59628            | 1.62987 | 2.1199E-03                   | 0.73169        | 2.1217E-03                     | 0.73234          | -1.2168E-04                                      | 2.6766E-04 | -2.19967 | -84.0277 | 3.043503 |
| 0.001 | 2.15008 | 2.86074 | 8.07362 | 7.15184 | 4.95078 | 1.12889 | 6,19301  | 0:59555            | 1.63078 | 2.1164E-03                   | 0.73039        | 2.1181E-03                     | 0.73104          | -1.1814E-04                                      | 2.6896E-04 | -2.27656 | -86.3042 | 3.043406 |
| 0.001 | 2 15108 | 2,86154 | 8.07857 | 7.15386 | 4.95106 | 1,12926 | 6.18921  | 0.59482            | 1.63168 | 2.1129E-03                   | 0.72909        | 2.1146E-03                     | 0.72974          | -1.1461E-04                                      | 2.7026E-04 | -2 35802 | -88,6623 | 3.043312 |
| 0.001 | 2 15208 | 2.86235 | 8.08352 | 7.15588 | 4.95134 | 1.12963 | 6.18542  | 0 59409            | 1.63259 | 2.1093E-03                   | 0.72779        | 2.1111E-03                     | 0.72844          | -1.1109E-04                                      | 2.7156E-04 | -2 44444 | -91.1067 | 3.043219 |
| 0.001 | 2:15308 | 2,86316 | 8.08847 | 7 15790 | 4 95163 | 1.13001 | 6 18164  | 0.59336            | 1.63350 | 2.1058E-03                   | 0.72649        | 2.1076E-03                     | 0.72714          | -1.0758E-04                                      | 2.7286E-04 | -2,53631 | -93,643  | 3.043128 |
| 0.001 | 2.15408 | 2.86397 | 8,09342 | 7 15992 | 4.95191 | 1 13038 | 6 17786  | 0.59264            | 1.63441 | 2.1023E-03                   | 0,72520        | 2.1041E-03                     | 0.72585          | -1.0408E-04                                      | 2.7415E-04 | -2.63415 | -96.2772 | 3,04304  |
| 0.001 | 2.15508 | 2,86478 | 8.09838 | 7.16194 | 4 95218 | 1.13075 | 6 17408  | 0.69191            | 1.63531 | 2.0968E-03                   | 0.72391        | 2 1006E-03                     | 0.72456          | -1.0058E-04                                      | 2.7544E-04 | -2.73857 | -99.0157 | 3.042953 |
| 0.001 | 2:15608 | 2,86558 | 8:10333 | 7 16396 | 4.95246 | 1.13112 | 6,17030  | 0.59119            | 1.63622 | 2.0953E-03                   | 0.72263        | 2.0971E-03                     | 0 72327          | -9.7089E-05                                      | 2:7673E-04 | -2:85024 | -101.866 | 3.042868 |
| 0.001 | 2.15708 | 2.86639 | 8.10828 | 7.16598 | 4.95274 | 1.13150 | 6.16654  | 0.59047            | 1.63713 | 2.0919E-03                   | 0.72135        | 2.0936E-03                     | 0.72199          | -9.3608E-05                                      | 2.7801E-04 | -2.96996 | -104.836 | 3.042785 |
| 0.001 | 2.15808 | 2.86720 | 8.11323 | 7.16800 | 4.95302 | 1.13187 | 6.16277  | 0.58975            | 1.63804 | 2.0684E-03                   | 0.72007        | 2.0901E-03                     | 0.72071          | -9.0135E-05                                      | 2.7929E-04 | -3.09863 | -107.935 | 3.042704 |

## Table B-9 Case B 50 cfs: Manually Computed Outlet Control Headwater Depths

| Δy    | У       | θ       | Α       | Р       | <b>- T</b> 2 | R       | u       | u²/2g   | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{\phi} \cdot n^2 u^2 / (\phi^2 R^{4/8})$ | ΔE         | ΔX       | ΣΔΧ       | HW      |
|-------|---------|---------|---------|---------|--------------|---------|---------|---------|---------|------------------------------|----------------|--------------------------------|------------------|---------------------------------------------|------------|----------|-----------|---------|
|       | 2 17455 | 2.88049 | 8.19483 | 7 20123 | 4.95745      | 1,13798 | 7.32169 | 0.83241 | 1 65303 | 2.9266E-03                   | 1.00713        |                                |                  |                                             |            |          |           |         |
| 0.1   | 2.27455 | 2.96099 | 8.69175 | 7.40247 | 4,97963      | 1.17417 | 6,90310 | 0 73995 | 1.74546 | 2.4952E-03                   | 0.84786        | 2.7109E-03                     | 0.92749          | -7.1091E-04                                 | 7.2508E-03 | -10.1992 | -10.1992  | 3.38447 |
| 0.01  | 2.28455 | 2.96902 | 8.74156 | 7.42254 | 4,98140      | 1.17770 | 6.86377 | 0.73154 | 1.75484 | 2.4570E-03                   | 0.83374        | 2.4761E-03                     | 0.84080          | -4.7608E-04                                 | 1.5920E-03 | -3.3440  | -13.5432  | 3.38186 |
| 0.01  | 2.29455 | 2.97705 | 8.79138 | 7.44262 | 4.98309      | 1.18122 | 6.82487 | 0.72327 | 1.76424 | 2.4196E-03                   | 0.81993        | 2.4383E-03                     | 0.82683          | -4.3827E-04                                 | 1.7317E-03 | -3.9512  | -17.4944  | 3.37946 |
| 0.01  | 2 30455 | 2.98507 | 8.84122 | 7.46268 | 4,98470      | 1.18472 | 6,78640 | 0.71514 | 1.77367 | 2.3829E-03                   | 0.80640        | 2.4012E-03                     | 0.81316          | -4.0125E-04                                 | 1.8684E-03 | -4.6564  | -22.1509  | 3.37726 |
| 0.01  | 2.31455 | 2,99310 | 8.89107 | 7 48274 | 4,98622      | 1.18821 | 6.74834 | 0.70714 | 1.78313 | 2.3471E-03                   | 0.79315        | 2,3650E-03                     | 0.79977          | -3.6500E-04                                 | 2.0023E-03 | -5.4856  | -27 6365  | 3.37527 |
| 0.01  | 2.32455 | 3.00112 | 8.94094 | 7.50279 | 4.98767      | 1,19168 | 6,71070 | 0.69928 | 1.79261 | 2.3120E-03                   | 0.78018        | 2.3295E-03                     | 0.78667          | -3.2951E-04                                 | 2.1333E-03 | -6.4743  | -34.1107  | 3.37347 |
| 0.01  | 2.33455 | 3.00913 | 8.99083 | 7 52284 | 4.98904      | 1.19514 | 6.67347 | 0.69154 | 1.80212 | 2.2776E-03                   | 0.76748        | 2.2948E-03                     | 0.77383          | -2.9475E-04                                 | 2.2617E-03 | -7.6732  | -41.7840  | 3.37186 |
| 0.01  | 2.34455 | 3.01715 | 9.04072 | 7 54288 | 4.99032      | 1,19858 | 6.63664 | D.68393 | 1.81165 | 2.2439E-03                   | 0.75503        | 2.2607E-03                     | 0.76125          | -2.6072E-04                                 | 2.3875E-03 | -9.1573  | -50.9413  | 3.37044 |
| 0.01  | 2.35455 | 3.02517 | 9.09063 | 7.56291 | 4,99163      | 1.20200 | 6.60020 | 0.67644 | 1.82121 | 2.2109E-03                   | 0.74284        | 2.2274E-03                     | 0.74894          | -2.2737E-04                                 | 2.5106E-03 | -11.0417 | -61 9830  | 3.36921 |
| 0.01  | 2.36455 | 3.03318 | 9:14055 | 7.58295 | 4,99266      | 1.20541 | 6.56415 | 0.66907 | 1.83080 | 2.1786E-03                   | 0.73090        | 2.1947E-03                     | 0.73687          | -1.9472E-04                                 | 2.6313E-03 | -13,5133 | -75.4963  | 3.36815 |
| 0.01  | 2.37455 | 3.04119 | 9.19048 | 7.60297 | 4.99370      | 1.20880 | 6.52849 | 0.66182 | 1.84042 | 2.1469E-03                   | 0.71921        | 2.1627E-03                     | 0.72506          | -1.6272E-04                                 | 2.7494E-03 | -16.8967 | -92.3931  | 3.36728 |
| 0.001 | 2.37555 | 3.04199 | 9.19548 | 7.60498 | 4,99380      | 1.20914 | 6.52495 | 0.66110 | 1.84138 | 2.1438E-03                   | 0.71805        | 2.1453E-03                     | 0.71863          | -1.4532E-04                                 | 2.8137E-04 | -1.9362  | -94,3293  | 3.36720 |
| 0.001 | 2.37655 | 3.04279 | 9.20047 | 7 60698 | 4,99390      | 1,20948 | 6.52140 | 0.66038 | 1.84234 | 2.1406E-03                   | 0.71690        | 2.1422E-03                     | 0.71747          | -1.4219E-04                                 | 2.8253E-D4 | -1,9869  | -96.3162  | 3.36712 |
| 0.001 | 2.37765 | 3.04359 | 9.20547 | 7.60898 | 4.99400      | 1.20982 | 6.51787 | 0.65967 | 1.84331 | 2.1375E-03                   | 0.71574        | 2.1391E-03                     | 0.71632          | -1.3907E-04                                 | 2.8368E-04 | -2.0398  | -98.3560  | 3.36705 |
| 0.001 | 2.37865 | 3.04439 | 9.21046 | 7 61098 | 4.99410      | 1.21015 | 6.51433 | 0.65895 | 1.84427 | 2.1344E-03                   | 0.71459        | 2.1360E-03                     | 0,71517          | -1.3696E-04                                 | 2.8483E-04 | -2 0950  | -100.4510 | 3.36698 |
| 0.001 | 2.37955 | 3.04519 | 9.21545 | 7 61299 | 4.99419      | 1,21049 | 6.51080 | D.65824 | 1.84523 | 2.1313E-03                   | 0.71345        | 2.1328E-03                     | 0.71402          | -1.3285E-04                                 | 2.8598E-04 | -2.1527  | -102.6037 | 3.36691 |
| 0.001 | 2.38055 | 3.04600 | 9.22045 | 7.61499 | 4,99429      | 1.21083 | 6.50728 | 0.65753 | 1.84620 | 2.1282E-03                   | 0.71230        | 2.1297E-03                     | 0.71287          | -1.2974E-04                                 | 2.8713E-04 | -2.2130  | -104.8167 | 3.36684 |
| 0.001 | 2.38155 | 3.04680 | 9.22544 | 7.61699 | 4,99438      | 1.21117 | 6.50375 | 0 65681 | 1.84716 | 2.1251E-03                   | 0.71116        | 2.1266E-03                     | 0.71173          | -1.2665E-04                                 | 2.8827E-04 | -2.2761  | -107.0929 | 3.36677 |
| 0.001 | 2.38255 | 3.04760 | 9.23044 | 7.61899 | 4.99448      | 1.21150 | 6.50023 | 0.65610 | 1.84813 | 2.1220E-03                   | 0.71002        | 2.1236E-03                     | 0.71059          | -1.2356E-04                                 | 2.8941E-04 | -2.3423  | -109.4352 | 3.36670 |
| 0.001 | 2 38355 | 3 04840 | 9 23543 | 7 62099 | 4 99457      | 1 21184 | 6 49672 | 0.65539 | 1 84909 | 2 1189E-03                   | 0 70888        | 2 1205E-03                     | 0 70945          | -1 2047E-04                                 | 2 9055E-04 | -2 4117  | -111 8469 | 3 36664 |

 Table B-10 Case B 60 cfs: Manually Computed Outlet Control Headwater Depths

| Δy    | y       | θ       | A        | P       | Ť.      | R       |         | u²/2g   | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o}$ -n <sup>2</sup> u <sup>2</sup> /( $\phi^2 R^{4/3}$ ) | ΔE         | ΔX        | ΣΔΧ        | HW      |
|-------|---------|---------|----------|---------|---------|---------|---------|---------|---------|------------------------------|----------------|--------------------------------|------------------|--------------------------------------------------------------|------------|-----------|------------|---------|
|       | 2.34878 | 3.02054 | 9.06184  | 7.55136 | 4.99084 | 1.20003 | 7.72470 | 0.92657 | 1.81569 | 3.0350E-03                   | 1.02062        | 1                              |                  |                                                              | -          | <u> </u>  |            |         |
| 0.1   | 2.44878 | 3.10061 | 9.56140  | 7.75154 | 4 99895 | 1,23348 | 7.32110 | 0.83228 | 1,91268 | 2.6280E-03                   | 0.87027        | 2,8315E-03                     | 0.94545          | -8.3154E-04                                                  | 5.4554E-03 | -6.56062  | -6.56062   | 3.69719 |
| 0.1   | 2.54878 | 3,18062 | 10.06137 | 7.95165 | 4.99905 | 1.26533 | 6.95730 | 0.75162 | 2.01266 | 2.2940E-03                   | 0,74689.       | 2.4610E-03                     | 0.80858          | -4.6103E-04                                                  | 1.9142E-02 | -41 51986 | -48.08048  | 3.67621 |
| 0.01  | 2:55878 | 3.18862 | 10,11136 | 7.97155 | 4.99862 | 1.26843 | 6.92291 | 0,74420 | 2.02283 | 2.2640E-03                   | 0,73580        | 2.2790E-03                     | 0.74135          | -2.7902E-04                                                  | 2.5865E-03 | -9:27008  | -57.35056  | 3,67509 |
| 0.01  | 2.56878 | 3.19662 | 10.16134 | 7.99156 | 4.99811 | 1.27151 | 6.88886 | 0.73690 | 2.03304 | 2.2346E-03                   | 0.72492        | 2.2493E-03                     | 0.73036          | -2.4929E-04                                                  | 2.6964E-03 | -10.81635 | -68.16691  | 3.67413 |
| 0.01  | 2.57878 | 3.20463 | 10.21132 | 8.01157 | 4.99752 | 1.27457 | 6.85514 | 0.72970 | 2.04328 | 2.2057E-03                   | 0,71425        | 2.2201E-03                     | 0.71959          | -2.2011E-04                                                  | 2.8041E-03 | -12.73999 | -80,90690  | 3.67334 |
| 0.001 | 2.57978 | 3,20543 | 10.21632 | 8.01357 | 4.99745 | 1.27488 | 6,85179 | 0.72899 | 2.04430 | 2.2028E-03                   | 0.71319        | 2 2042E-03                     | 0.71372          | -2.0422E-04                                                  | 2.8628E-04 | -1.40181  | -82.30871  | 3.67327 |
| 0.001 | 2.58078 | 3.20623 | 10.22131 | 8.01557 | 4.99739 | 1.27518 | 6.84844 | 0,72828 | 2.04533 | 2.1999E-03                   | 0.71214        | 2 2014E-03                     | 0.71266          | -2.0136E-04                                                  | 2.8734E-04 | -1.42696  | -83,73567  | 3.67320 |
| 0.001 | 2.58178 | 3,20703 | 10.22631 | 8.01757 | 4 99732 | 1.27549 | 6,84509 | 0,72757 | 2.04636 | 2.1971E-03                   | 0.71108        | 2.1985E-03                     | 0.71161          | -1.9851E-04                                                  | 2.8839E-04 | -1.45277  | -85,18844  | 3.67313 |
| 0.001 | 2.58278 | 3.20783 | 10.23131 | 8.01957 | 4.99726 | 1,27579 | 6.84175 | 0.72686 | 2.04738 | 2 1942E-03                   | 0,71003        | 2,1957E-03                     | 0.71056          | -1,9566E-04                                                  | 2:8944E-04 | -1.47929  | -86.66773  | 3,67306 |
| 0.001 | 2.58378 | 3.20863 | 10.23630 | 8,02158 | 4,99719 | 1.27610 | 6.83841 | 0.72615 | 2.04841 | 2 1914E-03                   | 0,70898        | 2.1928E-03                     | 0,70951          | -1.9282E-04                                                  | 2.9049E-04 | -1 50654  | -88.17427  | 3.67300 |
| 0.001 | 2.58478 | 3.20943 | 10.24130 | 8.02358 | 4.99712 | 1.27640 | 6.83507 | 0.72544 | 2.04944 | 2.1886E-03                   | 0.70794        | 2.1900E-03                     | 0.70846          | -1.8998E-04                                                  | 2.9154E-04 | -1.53456  | -89.70883  | 3,67294 |
| 0.001 | 2.58578 | 3.21023 | 10.24630 | 8.02558 | 4.99706 | 1.27671 | 6.83174 | 0.72473 | 2.05047 | 2.1857E-03                   | 0.70689        | 2.1872E-03                     | 0.70741          | -1.8715E-04                                                  | 2.9259E-04 | -1.56337  | -91.27220  | 3.67288 |
| 0.001 | 2.58678 | 3.21103 | 10.25130 | 8.02758 | 4.99699 | 1.27701 | 6.82841 | 0.72402 | 2.05150 | 2.1829E-03                   | 0,70585        | 2.1843E-03                     | 0.70637          | -1.8432E-04                                                  | 2.9363E-04 | -1,59300  | -92.86520  | 3.67282 |
| 0,001 | 2,58778 | 3,21183 | 10.25629 | 8.02958 | 4.99692 | 1.27731 | 6,82508 | 0,72332 | 2.05252 | 2.1801E-03                   | 0,70481        | 2 1815E-03                     | 0.70533          | -1.8150E-04                                                  | 2,9467E-04 | -1.62351  | -94,48870  | 3.67276 |
| 0.001 | 2.58878 | 3,21263 | 10.26129 | 8.03158 | 4.99685 | 1.27762 | 6.82175 | 0,72261 | 2.06355 | 2.1773E-03                   | 0,70377        | 2 1787E-03                     | 0.70429          | -1.7869E-04                                                  | 2.9571E-04 | -1.65491  | -96,14362  | 3.67270 |
| 0.001 | 2.58978 | 3,21343 | 10.26629 | 8.03358 | 4 99677 | 1.27792 | 6.81843 | 0.72191 | 2.05458 | 2.1745E-03                   | 0.70273        | 2.1759E-03                     | 0.70325          | -1.7588E-04                                                  | 2.9675E-04 | -1.68726  | -97.83088  | 3.67265 |
| 0.001 | 2.59078 | 3.21423 | 10.27128 | 8.03558 | 4.99570 | 1.27822 | 6.81512 | 0.72121 | 2.05561 | 2.1717E-03                   | 0.70170        | 2.1731E-03                     | 0.70221          | -1.7307E-04                                                  | 2,9779E-04 | -1.72060  | -99.55148  | 3.67259 |
| 0.001 | 2.59178 | 3.21503 | 10.27628 | 8.03769 | 4,99663 | 1.27853 | 6.81180 | 0.72051 | 2.05664 | 2.1689E-03                   | 0,70066        | 2.1703E-03                     | 0,70118          | -1.7027E-04                                                  | 2.9882E-04 | -1 75497  | -101.30645 | 3.67254 |
| 0.001 | 2:59278 | 3.21583 | 10.28128 | 8.03959 | 4.99656 | 1.27883 | 6.80849 | 0.71981 | 2.05767 | 2.1661E-03                   | 0.69963        | 2.1675E-03                     | 0.70015          | -1.6747E-04                                                  | 2.9985E-04 | -1.79043  | -103.09688 | 3,67249 |
| 0.001 | 2.59378 | 3.21664 | 10.28627 | 8.04159 | 4.99648 | 1.27913 | 6.80519 | 0.71911 | 2.05870 | 2.1633E-03                   | 0.69860        | 2.1647E-03                     | 0.69912          | -1.6468E-04                                                  | 3.0088E-04 | -1.82702  | -104.92390 | 3.67244 |

## Table B-11 Case B 70 cfs: Manually Computed Outlet Control Headwater Depths

| ∆у    | y       | . 0     | А        | Р       | T       | R       | u       | u²/2g   | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_{\rm ro}$ | F <sup>2</sup> m | $S_{o}\text{-}n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE        | ΔX       | ΣΔΧ       | HW       |
|-------|---------|---------|----------|---------|---------|---------|---------|---------|---------|------------------------------|----------------|---------------------------------------|------------------|---------------------------------------------|-----------|----------|-----------|----------|
|       | 2,51095 | 3.16035 | 9.87224  | 7.87589 | 4.99995 | 1.25348 | 8,10353 | 1.01968 | 1.97447 | 3,1515E-03                   | 1.03286        |                                       |                  |                                             |           |          |           |          |
| 0.1   | 2.61095 | 3.23038 | 10.37206 | 8.07596 | 4.99507 | 1.28431 | 7,71303 | 0.92377 | 2.07646 | 2.7640E-03                   | 0.88976        | 2.9578E-03                            | 0.96131          | -9.5777E-04                                 | 3.869E-03 | -4.0396  | -4.0396   | 3.99661  |
| 0.1   | 2.71095 | 3.31056 | 10.87099 | 8.27639 | 4.98217 | 1.31349 | 7.35904 | 0.84092 | 2,18198 | 2.4419E-03                   | 0.77079        | 2.6030E-03                            | 0.83027          | -6.0297E-04                                 | 1.697E-02 | -28.1484 | -32,1880  | 3.97234  |
| 0.01  | 2.72095 | 3.31859 | 10.92080 | 8.29646 | 4.98043 | 1.31632 | 7.32547 | 0.83327 | 2.19274 | 2.4128E-03                   | 0.76002        | 2.4273E-03                            | 0.76541          | -4.2733E-04                                 | 2.346E-03 | -5.4898  | -37.6778  | 3.97086  |
| 0.01  | 2.73095 | 3.32662 | 10.97060 | 8.31655 | 4.97862 | 1.31913 | 7.29222 | 0.82572 | 2.20354 | 2.3841E-03                   | 0.74945        | 2.3984E-03                            | 0.75474          | -3.9843E-04                                 | 2.453E-03 | -6.1557  | -43,8335  | 3.96954  |
| 0.01  | 2 74095 | 3.33465 | 11.02037 | 8,33664 | 4.97672 | 1.32192 | 7.25928 | 0.81828 | 2.21438 | 2,3560E-03                   | 0,73906        | 2.3700E-03                            | 0.74425          | -3.7004E-04                                 | 2.557E-03 | -6,9113  | -50.7447  | 3.96837  |
| 0.01  | 2.75095 | 3,34269 | 11.07013 | 8,36673 | 4.97475 | 1.32470 | 7.22665 | 0,81094 | 2.22527 | 2.3283E-03                   | 0.72885        | 2.3421E-03                            | 0.73395          | -3.4215E-04                                 | 2,660E-03 | -7.7758  | -58,5206  | 3.96736  |
| 0.01  | 2.76095 | 3.35074 | 11.11987 | 8.37684 | 4.97269 | 1.32745 | 7.19433 | 0,80370 | 2.23619 | 2.3011E-03                   | 0.71881        | 2.3147E-03                            | 0.72383          | -3.1474E-04                                 | 2.762E-03 | -8.7746  | -67 2952  | 3.96651  |
| 0.01  | 2,77095 | 3.35878 | 11.16958 | 8.39695 | 4.97055 | 1.33019 | 7,16231 | 0.79656 | 2.24715 | 2.2744E-03                   | D 70895        | 2.2878E-03                            | 0.71388          | -2.8780E-04                                 | 2.861E-03 | -9.9416  | -77 2368  | 3.96580  |
| 0.01  | 2.78095 | 3.36683 | 11.21928 | 8.41708 | 4,96833 | 1.33292 | 7.13058 | 0,78952 | 2.25816 | 2.2482E-03                   | 0,69926        | 2.2613E-03                            | 0.70411          | -2.6132E-04                                 | 2.959E-03 | -11 3228 | -88.5596  | 3.96524  |
| 0.001 | 2.78195 | 3.36764 | 11.22425 | 8.41909 | 4.96810 | 1.33319 | 7.12743 | 0,78882 | 2.25926 | 2.2456E-03                   | 0.69830        | 2.2469E-03                            | 0.69878          | -2.4690E-04                                 | 3.012E-04 | -1.2200  | -89.7796  | 3.96519  |
| 0.001 | 2.78295 | 3.36644 | 11.22921 | 8.42110 | 4.96787 | 1.33346 | 7.12427 | 0.78813 | 2.26037 | 2.2430E-03                   | 0.69734        | 2.2443E-03                            | 0.69782          | -2.4430E-04                                 | 3.022E-04 | -1.2369  | -91.0165  | 3.96514  |
| 0.001 | 2.78395 | 3,36925 | 11.23418 | 8.42312 | 4.96764 | 1.33373 | 7.12112 | 0,78743 | 2.26147 | 2.2404E-03                   | 0.69639        | 2.2417E-03                            | 0.69686          | -2.4171E-04                                 | 3.031E-04 | -1.2541  | -92.2706  | 3.96510  |
| 0.001 | 2 78495 | 3.37005 | 11.23915 | 8,42513 | 4.96741 | 1.33400 | 7.11798 | 0,78673 | 2.26258 | 2.2378E-03                   | 0.69543        | 2.2391E-03                            | 0.69591          | -2.3912E-04                                 | 3.041E-04 | -1.2717  | -93.5423  | 3.96505  |
| 0.001 | 2.78595 | 3,37086 | 11.24412 | 8.42714 | 4.96718 | 1.33427 | 7.11483 | 0,78604 | 2.26368 | 2.2352E-03                   | 0.69448        | 2.2365E-03                            | 0.69495          | -2.3654E-04                                 | 3,050E-04 | -1.2896  | -94,8319  | 3.96501  |
| 0.001 | 2.78695 | 3.37166 | 11.24908 | 8,42915 | 4.96695 | 1.33454 | 7.11169 | 0.78534 | 2.26479 | 2.2327E-03                   | 0.69353        | 2.2340E-03                            | 0.69400          | -2.3396E-04                                 | 3.060E-04 | -1.3079  | -96.1398  | 3.96497  |
| 0,001 | 2,78795 | 3.37247 | 11,25405 | 8.43117 | 4.96672 | 1.33482 | 7,10855 | 0,78465 | 2.26589 | 2.2301E-03                   | D 69258        | 2.2314E-03                            | 0.69305          | -2.3138E-04                                 | 3.069E-04 | -1.3266  | -97 4664  | 3.96493  |
| 0,001 | 2.78895 | 3:37327 | 11.25902 | 8.43318 | 4,96649 | 1.33509 | 7.10542 | 0,78396 | 2.26700 | 2.2275E-03                   | 0,69163        | 2.2288E-03                            | 0.69210          | -2.2881E-04                                 | 3.079E-04 | -1.3456  | -98.8120  | 3.96489. |
| 0.001 | 2.78995 | 3:37408 | 11.26398 | 8 43519 | 4.96626 | 1.33536 | 7.10228 | 0.78327 | 2.26810 | 2.2250E-03                   | 0.69068        | 2.2262E-03                            | 0.69115          | -2.2625E-04                                 | 3.088E-04 | -1.3651  | -100 1771 | 3.96485  |
| 0.001 | 2.79095 | 3.37488 | 11.26895 | 8.43721 | 4.96602 | 1.33563 | 7.09915 | 0.78258 | 2.26921 | 2.2224E-03                   | 0.68974        | 2.2237E-03                            | 0.69021          | -2.2369E-04                                 | 3.098E-04 | -1.3849  | -101.5620 | 3.96482  |
| 0.001 | 2.79195 | 3,37569 | 11.27392 | 8.43922 | 4.96579 | 1.33590 | 7.09603 | 0.78189 | 2.27032 | 2.2199E-03                   | 0.68879        | 2 2211E-03                            | 0.68926          | -2.2113E-04                                 | 3.107E-04 | -1.4052  | -102,9673 | 3.96478  |

Table B-12 Case B 80 cfs: Manually Computed Outlet Control Headwater Depths

| Δy    | у       | 0       | A        | P       | T       | R       | u       | u²/2g   | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | <b>F</b> <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_{rc}$ | $F_{m}^{2}$ | $S_{o}$ -n <sup>2</sup> u <sup>2</sup> /( $\phi^2 R^{4/3}$ ) | ΔE         | ΔX       | ΣΔΧ       | HW      |
|-------|---------|---------|----------|---------|---------|---------|---------|---------|---------|------------------------------|-----------------------|-----------------------------------|-------------|--------------------------------------------------------------|------------|----------|-----------|---------|
|       | 2.66327 | 3.27230 | 10.63323 | 8 18075 | 4.98933 | 1.29979 | 8.46403 | 1.11242 | 2.13120 | 3.276E-03                    | 1.04394               |                                   |             |                                                              |            |          |           |         |
| 0.1   | 2,76327 | 3.35260 | 11,13138 | 8.38149 | 4.97220 | 1.32809 | 8.08525 | 1.01508 | 2,23872 | 2.905E-03                    | 0.90684               | 3.090E-03                         | 0.97539     | -1.090E-03                                                   | 2.461E-03  | -2.2575  | -2.2575   | 4.28589 |
| 0.1   | 2.86327 | 3.43324 | 11.62740 | 8.58310 | 4.94693 | 1.35469 | 7.74034 | 0.93032 | 2.35043 | 2.593E-03                    | 0.79162               | 2.749E-03                         | 0.84923     | -7.485E-04                                                   | 1.508E-02  | -20.1422 | -22.3997  | 4.25875 |
| 0.01  | 2.87327 | 3.44133 | 11.67686 | 8:60332 | 4 94395 | 1.35725 | 7.70755 | 0.92246 | 2.36185 | 2.564E-03                    | 0.78113               | 2.578E-03                         | 0.76638     | -5.783E-04                                                   | 2.136E-03. | -3.6937  | -26.0934  | 4.25696 |
| 0.01  | 2.88327 | 3.44942 | 11.72628 | 8.62355 | 4.94089 | 1.35980 | 7.67507 | 0.91470 | 2.37331 | 2.536E-03                    | 0.77082               | 2.550E-03                         | 0.77598     | -5:502E-04                                                   | 2.240E-03  | -4.0717  | -30.1651  | 4.25532 |
| 0.01  | 2.89327 | 3.45752 | 11.77567 | 8.64380 | 4.93775 | 1,36233 | 7.64287 | 0.90704 | 2.38483 | 2.509E-03                    | 0.76068               | 2.523E-03                         | 0.76575     | -5.225E-04                                                   | 2.343E-03  | -4.4832  | -34.6484  | 4.25383 |
| 0.01  | 2.90327 | 3.46562 | 11.82504 | 8.66406 | 4.93452 | 1.36484 | 7 61097 | 0.89949 | 2.39639 | 2 482E-03                    | 0.75070               | 2 495E-03                         | 0.75569     | -4.953E-04                                                   | 2.443E-03  | -4.9328  | -39.5812  | 4.25250 |
| 0.01  | 2.91327 | 3.47373 | 11.87436 | 8.68433 | 4.93121 | 1.36733 | 7.57935 | 0.89203 | 2.40800 | 2.455E-03                    | 0,74089               | 2.468E-03                         | 0.74579     | -4.685E-04                                                   | 2.542E-03  | -5.4261  | -45.0073  | 4.25131 |
| 0.01  | 2.92327 | 3.48185 | 11.92366 | 8.70461 | 4.92782 | 1.36981 | 7 54802 | 0.88467 | 2.41966 | 2.429E-03                    | 0,73123               | 2.442E-03                         | 0.73606     | -4.421E-04                                                   | 2.639E-03  | -5.9695  | -50.9768  | 4.25027 |
| 0.01  | 2.93327 | 3.48997 | 11.97292 | 8.72491 | 4.92434 | 1.37227 | 7 51696 | 0.87740 | 2.43138 | 2,403E-03                    | 0.72173               | 2,416E-03                         | 0,72648     | -4.162E-04                                                   | 2,735E-03  | -6.5713  | -57.5481  | 4.24937 |
| 0.01  | 2.94327 | 3,49809 | 12.02215 | 8.74523 | 4.92078 | 1 37471 | 7.48618 | 0.87023 | 2,44314 | 2.378E-03                    | 0.71239               | 2.391E-03                         | 0.71706     | -3.907E-04                                                   | 2.829E-03  | -7.2411  | -64,7892  | 4.24862 |
| 0.01  | 2.95327 | 3.50622 | 12.07134 | 8.76556 | 4 91713 | 1.37713 | 7.45568 | 0.86315 | 2.45495 | 2.353E-03                    | 0.70319               | 2.366E-03                         | 0.70779     | -3.657E-04                                                   | 2.922E-03. | -7.9912  | -72.7804  | 4.24800 |
| 0.01  | 2.96327 | 3.51436 | 12.12049 | 8.78590 | 4.91340 | 1.37954 | 7.42544 | 0.85617 | 2.46682 | 2.329E-03                    | 0.69415               | 2.341E-03                         | 0.69867     | -3.410E-04                                                   | 3.013E-03  | -8.8370  | -81.6174  | 4.24752 |
| 0.01  | 2,97327 | 3.52251 | 12.16960 | 8 80626 | 4.90959 | 1,38193 | 7.39548 | 0.84927 | 2,47874 | 2.305E-03                    | 0.68524               | 2.317E-03                         | 0.68970     | -3.167E-04                                                   | 3,103E-03  | -9.7977  | -91.4151  | 4.24717 |
| 0.001 | 2.97427 | 3.52332 | 12.17451 | 8.80830 | 4.90920 | 1.38216 | 7 39249 | 0.84859 | 2.47994 | 2 302E-03                    | 0.68436               | 2 303E-03                         | 0.68480     | -3.035E-04                                                   | 3.152E-04  | -1.0386  | -92 4537  | 4.24715 |
| 0.001 | 2.97527 | 3.52413 | 12.17942 | 8.81034 | 4.90882 | 1.38240 | 7.38951 | 0.84790 | 2.48113 | 2 300E-03                    | 0.68348               | 2 301E-03                         | 0.68392     | -3.011E-04                                                   | 3,161E-04  | -1.0498  | -93,5035  | 4.24712 |
| 0,001 | 2.97627 | 3.52495 | 12.18433 | 8.81237 | 4.90843 | 1.38264 | 7 38654 | 0.84722 | 2.48233 | 2.298E-03                    | 0.68260               | 2.299E-03                         | 0.68304     | -2.987E-04                                                   | 3.170E-04  | -1.0611  | -94 5646  | 4.24710 |
| 0.001 | 2,97727 | 3.52576 | 12.18924 | 8.81441 | 4.90804 | 1 38288 | 7 38356 | 0.84654 | 2.48352 | 2.295E-03                    | 0.68172               | 2.296E-03                         | 0.68216     | -2.963E-04                                                   | 3,178E-04  | -1.0726  | -95.6372  | 4.24707 |
| 0.001 | 2.97827 | 3.52658 | 12,19415 | 8.81645 | 4,90765 | 1 38311 | 7.38059 | 0.84586 | 2,48472 | 2.293E-03                    | 0.68085               | 2.294E-03                         | 0.68128     | -2.940E-04                                                   | 3.187E-04  | -1.0842  | -96.7214  | 4.24705 |
| 0,001 | 2.97927 | 3.52739 | 12.19905 | 8.81849 | 4 90726 | 1.38335 | 7.37762 | 0.84518 | 2.48592 | 2.290E-03                    | 0.67997               | 2.292E-03                         | 0.68041     | -2 916E-04                                                   | 3.196E-04  | -1.0960  | -97.8174  | 4.24703 |
| 0.001 | 2.98027 | 3.52821 | 12.20396 | 8.82053 | 4.90687 | 1.38359 | 7.37465 | 0.84450 | 2.48712 | 2.288E-03                    | 0.67910               | 2.289E-03                         | 0.67953     | -2:892E-04                                                   | 3.205E-04  | -1.1080  | -98.9254  | 4.24701 |
| 0.001 | 2.98127 | 3.52903 | 12.20887 | 8,82258 | 4.90648 | 1.38382 | 7.37169 | 0.84382 | 2.48832 | 2.286E-03                    | 0.67822               | 2.287E-03                         | 0.67866     | -2.869E-04                                                   | 3,213E-04  | -1.1202  | -100.0456 | 4.24699 |
| 0.001 | 2.98227 | 3.52984 | 12.21377 | 8.82460 | 4.90609 | 1.38406 | 7 36873 | 0.84314 | 2.48952 | 2 283E-03                    | 0.67735               | 2 285E-03                         | 0.67779     | -2.845E-04                                                   | 3.222E-04  | -1.1325  | -101.1781 | 4.24698 |
| 0.001 | 2.98327 | 3.53066 | 12.21868 | 8.82664 | 4.90569 | 1.38430 | 7.36577 | 0.84246 | 2.49072 | 2.281E-03                    | 0.67648               | 2.282E-03                         | 0.67692     | -2.822E-04                                                   | 3.231E-04  | -1 1451  | -102.3231 | 4.24696 |

# Table B-13 Case B 90 cfs: Manually Computed Outlet Control Headwater Depths

| Δу    | ÿ       |         | Α        | Р       | T       | R       | <u> </u> | u²/2g   | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | n²u²/(φ²R⁴/3)m | F <sup>2</sup> m | $S_o n^2 u^2 / (\phi^2 R^{4/3})$ | ΔE        | ΔX       | ΣΔΧ       | HW       |
|-------|---------|---------|----------|---------|---------|---------|----------|---------|---------|------------------------------|----------------|----------------|------------------|----------------------------------|-----------|----------|-----------|----------|
|       | 2.80733 | 3,38808 | 11.35025 | 8.47020 | 4.96208 | 1.34002 | 8.81038  | 1.20532 | 2.28740 | 3,408E-03                    | 1.05388        |                |                  |                                  |           |          |           |          |
| 0,1   | 2.90733 | 3.46892 | 11.84508 | 8.67229 | 4 93319 | 1.36585 | 8.44232  | 1.10672 | 2.40110 | 3.051E-03                    | 0.92184        | 3.229E-03      | 0.98786          | -1.229E-03                       | 1.214E-03 | -0.9874  | -0.9874   | 4.567411 |
| 0.1   | 3.00733 | 3.55030 | 12.33661 | 8.87574 | 4.89596 | 1.38992 | 8.10595  | 1.02029 | 2.51975 | 2:748E-03                    | 0.80983        | 2.899E-03      | 0.86584          | -8.990E-04                       | 1.342E-02 | -14.9230 | -15.9104  | 4.537761 |
| 0.1   | 3.10733 | 3.63237 | 12.82399 | 9.08092 | 4.85022 | 1,41219 | 7.79768  | 0.94421 | 2.64400 | 2.489E-03                    | 0.71423        | 2.618E-03      | 0.76203          | -6.184E-04                       | 2.380E-02 | -38,4791 | -54.3895  | 4,523643 |
| 0.01  | 3.11733 | 3.64062 | 12.87247 | 9.10155 | 4.84516 | 1.41432 | 7.76852  | 0.93711 | 2.65677 | 2.466E-03                    | 0.70545        | 2.478E-03      | 0.70984          | -4.775E-04                       | 2.902E-03 | -6.0765  | -60,4660  | 4.522995 |
| 0.01  | 3.12733 | 3.64888 | 12.92089 | 9.12220 | 4.84002 | 1.41642 | 7.73940  | 0.93010 | 2.66959 | 2.442E-03                    | 0.69681        | 2.454E-03      | 0.70113          | -4.540E-04                       | 2.989E-03 | -6.5825  | -67.0485  | 4.522478 |
| 0.01  | 3.13733 | 3.65715 | 12.96927 | 9.14287 | 4.83479 | 1.41851 | 7.71054  | 0.92317 | 2.68249 | 2.419E-03                    | 0.68830        | 2.431E-03      | 0.69255          | -4 309E-04                       | 3.074E-03 | -7.1348  | -74.1833  | 4.522090 |
| 0.01  | 3.14733 | 3.66543 | 13,01759 | 9 16356 | 4.82948 | 1.42058 | 7.68191  | 0.91633 | 2.69544 | 2.397E-03                    | 0.67991        | 2.408E-03      | 0.68410          | -4.081E-04                       | 3,159E-03 | -7 7398  | -81.9230  | 4.521829 |
| 0.01  | 3:15733 | 3.67371 | 13,06586 | 9.18428 | 4.82407 | 1.42263 | 7,65354  | 0.90957 | 2.70847 | 2.375E-03                    | 0.67165        | 2.386E-03      | 0.67578          | -3.857E-04                       | 3.242E-03 | -8.4054  | -90.3285  | 4,521692 |
| 0.001 | 3.15833 | 3:67454 | 13.07068 | 9 18635 | 4.82353 | 1.42284 | 7.65071  | 0.90890 | 2.70978 | 2.372E-03                    | 0.67083        | 2.373E-03      | 0.67124          | -3.735E-04                       | 3.288E-04 | -0.8802  | -91.2087  | 4.521686 |
| 8.001 | 3.15933 | 3.67537 | 13.07550 | 9.18843 | 4.82298 | 1.42304 | 7.64789  | 0.90823 | 2,71108 | 2.370E-03                    | 0.67001        | 2.371E-03      | 0.67042          | -3.713E-04                       | 3.296E-04 | -0.8876  | -92.0963  | 4.521680 |
| 0.001 | 3,16033 | 3.67620 | 13.08033 | 9.19050 | 4.82243 | 1,42324 | 7.64507  | 0.90756 | 2.71239 | 2.368E-03                    | 0.66920        | 2.369E-03      | 0.66961          | -3.691E-04                       | 3.304E-04 | -0.8952  | -92.9915  | 4:521675 |
| 0.001 | 3.16133 | 3.67703 | 13.08515 | 9 19258 | 4.82188 | 1.42345 | 7.64225  | 0.90689 | 2.71370 | 2.366E-03                    | 0.66838        | 2.367E-03      | 0.66879          | -3.669E-04                       | 3.312E-04 | -0.9027  | -93,8942  | 4,521872 |
| 0.001 | 3,16233 | 3.67786 | 13.08997 | 9.19466 | 4.82134 | 1.42365 | 7.63944  | 0.90623 | 2.71501 | 2.364E-03                    | 0.66757        | 2.365E-03      | 0.66798          | -3.647E-04                       | 3.320E-04 | -0.9104  | -94.8046  | 4.521670 |
| 0.001 | 3.16333 | 3.67869 | 13.09479 | 9.19672 | 4.82079 | 1.42385 | 7.63662  | 0.90556 | 2.71632 | 2.361E-03                    | 0.66675        | 2.363E-03      | 0.66716          | -3.625E-04                       | 3.328E-04 | -0.9182  | -95.7228  | 4.521670 |
| 0,001 | 3,16433 | 3.67952 | 13,09961 | 9 19880 | 4.82023 | 1.42406 | 7.63381  | 0.90489 | 2.71763 | 2.359E-03                    | 0.66594        | 2.360E-03      | 0.66635          | -3.603E-04                       | 3.337E-04 | -0.9260  | -96.6488  | 4.521670 |
| 0,001 | 3:16533 | 3.68035 | 13,10443 | 9.20087 | 4.81968 | 1.42426 | 7,63101  | 0.90423 | 2.71894 | 2.357E-03                    | 0.66513        | 2 358E-03      | 0.66554          | -3.581E-04                       | 3.345E-04 | -0.9339  | -97 5827  | 4,521672 |
| 0.001 | 3.16633 | 3:68118 | 13.10925 | 9.20295 | 4.81913 | 1.42446 | 7.62820  | 0.90356 | 2.72025 | 2.355E-03                    | 0.66432        | 2.356E-03      | 0.66473          | -3.560E-04                       | 3.353E-04 | -0.9419  | -98,5246  | 4.521675 |
| 8.001 | 3.16733 | 3.68201 | 13.11407 | 9.20502 | 4.81858 | 1.42466 | 7.62540  | 0.90290 | 2.72157 | 2.353E-03                    | 0.66351        | 2.354E-03      | 0.66392          | -3.638E-04                       | 3.361E-04 | -0.9500  | -99.47.45 | 4.521679 |
| 0.001 | 3.16833 | 3.68264 | 13 11889 | 9.20710 | 4.81802 | 1:42487 | 7.62260  | 0.90224 | 2.72288 | 2.351E-03                    | 0.66271        | 2.352E-03      | 0.66311          | -3.516E-04                       | 3.369E-04 | -0.9581  | -100.4327 | 4.521684 |
| 0.001 | 3.16933 | 3.68367 | 13,12371 | 9.20917 | 4.81747 | 1.42507 | 7,61980  | 0.90157 | 2.72419 | 2.348E-03                    | 0.66190        | 2.349E-03      | 0.66230          | -3.494E-04                       | 3.377E-04 | -0.9664  | -101.3991 | 4,521691 |

 Table B-14 Case B 100 cfs: Manually Computed Outlet Control Headwater Depths

| Δу     | y       | 0       | A       | Р      | T        | R        | <u>u</u> | u²/2g   | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_o - n^2 u^2 / (\phi^2 R^{4/3})$ | ΔE        | ΔX       | ΣΔΧ      | HW      |
|--------|---------|---------|---------|--------|----------|----------|----------|---------|---------|------------------------------|----------------|--------------------------------|------------------|------------------------------------|-----------|----------|----------|---------|
|        | 2.44816 | 3.10012 | 9.55831 | 7.7503 | 4.998925 | 1.233283 | 7.84658  | 0.95604 | 1.91207 | 3.0195E-03                   | 1.00000        |                                |                  |                                    |           |          |          | -       |
| 0.001  | 2.44916 | 3,10092 | 9.56331 | 7.7523 | 4.998966 | 1.233609 | 7.84247  | 0.95504 | 1,91306 | 3.0153E-03                   | 0.99844        | 3.0174E-03                     | 0 99922          | -1.738E-05                         | 7.796E-07 | -0.04486 | -0.04486 | 3.88172 |
| 0,001  | 2.45016 | 3.10172 | 9.56831 | 7.7543 | 4,999006 | 1 233936 | 7.83838  | 0.95404 | 1.91404 | 3.0111E-03                   | 0.99688        | 3.0132E-03                     | 0,99766          | -1.316E-05                         | 2.337E-06 | -0.17756 | -0.22242 | 3.88122 |
| 0.001  | 2.45116 | 3,10252 | 9.57331 | 7,7563 | 4,999046 | 1.234262 | 7.83428  | 0.95304 | 1.91503 | 3.0069E-03                   | 0.99533        | 3.0090E-03                     | 0.99611          | -8.954E-06                         | 3.892E-06 | -0.43461 | -0.65704 | 3.88073 |
| 8.001  | 2.45216 | 3.10332 | 9.57831 | 7.7583 | 4.999085 | 1.234588 | 7.83019  | 0.95205 | 1.91601 | 3.0027E-03                   | 0.99378        | 3.0048E-03                     | 0.99456          | -4.755E-06                         | 5.443E-06 | -1.14482 | -1.80186 | 3.88024 |
| 0.0001 | 2.45226 | 3,10340 | 9.57881 | 7.7585 | 4.999088 | 1.234621 | 7.62979  | 0.95195 | 1.91611 | 3.0022E-03                   | 0.99363        | 3.0024E-03                     | 0.99370          | -2.447E-06                         | 6.296E-07 | -0.25725 | -2.05911 | 3.88019 |
| 0.0001 | 2.45236 | 3,10348 | 9.57931 | 7.7587 | 4.999092 | 1 234653 | 7 82938  | 0.95185 | 1.91621 | 3.0018E-03                   | 0.99347        | 3.0020E-03                     | 0.99355          | -2.028E-06                         | 6.450E-07 | -0.31804 | -2.37715 | 3,88014 |
| 0.0001 | 2.45246 | 3,10356 | 9.57981 | 7 7589 | 4,999096 | 1.234686 | 7.82897  | 0.95175 | 1.91631 | 3.0014E-03                   | 0,99332        | 3.0016E-03                     | 0,99339          | -1.609E-06                         | 6.605E-07 | -0.41047 | -2,78762 | 3,88009 |
| 0.0001 | 2.45256 | 3.10364 | 9.58031 | 7.7591 | 4 999100 | 1 234718 | 7.82856  | 0.95165 | 1.91641 | 3.0010E-03                   | D.99316        | 3.0012E-03                     | 0.99324          | -1.190E-06                         | 6.760E-07 | -0.56793 | -3.35555 | 3,88004 |
| 0.0001 | 2.45266 | 3,10372 | 9.58081 | 7.7593 | 4.999104 | 1.234751 | 7.82815  | 0.95165 | 1.91650 | 3.0006E-03                   | 0.99301        | 3.0008E-03                     | D.99309          | -7.716E-07                         | 6.915E-07 | -0.89631 | -4.25186 | 3.87999 |
| 0.0001 | 2.45276 | 3,10980 | 9 58131 | 7,7595 | 4 999107 | 1 234784 | 7 82774  | 0.95145 | 1.91660 | 3.0001E-03                   | 0.99285        | 3.0004E-03                     | 0.99293          | -3.527E-07                         | 7.069E-07 | -2.00428 | -6.25614 | 3,87994 |
| 0.0001 | 2.45286 | 3,10388 | 9.58181 | 7.7597 | 4.999111 | 1.234816 | 7.82734  | 0.95135 | 1.91670 | 2.9997E-03                   | 0.99270        | 2 9999E-03                     | 0.99278          | 6 595E-08                          | 7.224E-07 | 10.95431 | 4.69817  | 3.87989 |

 Table B-15 Case C 75 cfs: Manually Computed Outlet Control Headwater Depths

| Δу    | у       | 0       | А        | P P     | Ť.      | R       | u       | u²/2g   | Ð       | n <sup>2</sup> u <sup>2</sup> /(φ <sup>2</sup> R <sup>43</sup> ) | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o}\text{-}n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE        | ΔX      | ΣΔΧ     | HW      |
|-------|---------|---------|----------|---------|---------|---------|---------|---------|---------|------------------------------------------------------------------|----------------|--------------------------------|------------------|---------------------------------------------|-----------|---------|---------|---------|
|       | 2.69342 | 3.29649 | 10.78363 | 8.24122 | 4.98501 | 1.30850 | 8.34598 | 1.08161 | 2,16321 | 3.1568E-03                                                       | 1.00000        |                                |                  |                                             |           |         |         |         |
| 0.01  | 2.70342 | 3.30451 | 10.83347 | 8.26128 | 4,98342 | 1.31136 | 8.30759 | 1.07168 | 2.17390 | 3.1187E-03                                                       | 0,98595        | 3.1378E-03                     | 0.99297          | -1.3777E-04                                 | 7.026E-05 | -0.510  | -0.510  | 4,3109. |
| 0.01  | 2.71342 | 3.31254 | 10.88330 | 8.28135 | 4.98175 | 1.31419 | 8.26955 | 1.06189 | 2,18464 | 3.0814E-03                                                       | 0.97214        | 3,1000E-03                     | 0.97904          | -1.0005E-04                                 | 2.096E-04 | -2.095  | -2.605  | 4.3063  |
| 0.01  | 2.72342 | 3.32057 | 10.93311 | 8.30143 | 4.97999 | 1.31702 | 8.23188 | 1.05223 | 2.19541 | 3.0446E-03                                                       | 0.95858        | 3.0630E-03                     | 0.96536          | -6.2986E-05                                 | 3.464E-04 | -5.500  | -8.104  | 4.3018  |
| 0.001 | 2.72442 | 3.32137 | 10.93809 | 8.30343 | 4.97981 | 1.31730 | 8.22813 | 1.05128 | 2.19649 | 3.0410E-03                                                       | 0.95723        | 3.0428E-03                     | 0.95791          | -4.2802E-05                                 | 4.209E-05 | -0.983  | -9.088  | 4:3013  |
| 0.001 | 2.72542 | 3,32218 | 10.94307 | 8.30544 | 4,97963 | 1.31758 | 8.22439 | 1.05032 | 2 19757 | 3.0374E-03                                                       | 0.95589        | 3.0392E-03                     | 0.95656          | -3.9168E-05                                 | 4.344E-05 | -1.109  | -10.197 | 4.3009  |
| 0.001 | 2.72642 | 3,32298 | 10.94805 | 8,30745 | 4.97945 | 1.31786 | 8.22064 | 1.04936 | 2.19865 | 3.0337E-03                                                       | 0.95455        | 3.0355E-03                     | 0.95522          | -3.5540E-05                                 | 4.478E-05 | -1.260  | -11.457 | 4.3005  |
| 0.001 | 2.72742 | 3,32378 | 10.95303 | 8.30946 | 4.97927 | 1.31814 | 8.21691 | 1.04841 | 2.19973 | 3.0301E-03                                                       | 0.95322        | 3.0319E-03                     | 0.95389          | -3.1918E-05                                 | 4.611E-05 | -1.445  | -12.902 | 4.3000  |
| 0,001 | 2.72842 | 3.32459 | 10.95801 | 8.31147 | 4.97909 | 1.31842 | 8.21317 | 1.04746 | 2.20081 | 3.0265E-03                                                       | D.95188        | 3.0283E-03                     | 0.95255          | -2.8303E-05                                 | 4.745E-05 | -1.676  | -14.578 | 4.2996  |
| 0,001 | 2.72942 | 3.32539 | 10.96298 | 8.31348 | 4,97890 | 1.31870 | 8.20944 | 1.04651 | 2.20189 | 3.0229E-03                                                       | 0,95055        | 3.0247E-03                     | 0.95122          | -2.4694E-05                                 | 4.878E-05 | -1.975  | -16.553 | 4,2992  |
| 0.001 | 2.73042 | 3.32619 | 10.96796 | 8.31548 | 4.97872 | 1.31898 | 8.20572 | 1.04556 | 2.20297 | 3.0193E-03                                                       | 0.94922        | 3.0211E-03                     | 0.94989          | -2.1092E-05                                 | 5.011E-05 | -2.376  | -18.929 | 4.2988  |
| 8,001 | 2.73142 | 3.32700 | 10.97294 | 8.31749 | 4.97853 | 1.31926 | 8:20199 | 1.04461 | 2.20405 | 3.0157E-03                                                       | 0.94790        | 3.0175E-03                     | 0.94856          | -1.7496E-05                                 | 5.144E-05 | -2.940  | -21.869 | 4.2983  |
| 0.001 | 2.73242 | 3.32780 | 10.97792 | 8.31950 | 4.97834 | 1.31954 | 8.19827 | 1.04366 | 2.20513 | 3.0121E-03                                                       | 0.94657        | 3.0139E-03                     | 0.94723          | -1.3906E-05                                 | 5.277E-05 | -3.794  | -25,664 | 4:2979  |
| 0.001 | 2.73342 | 3,32860 | 10.98290 | 8,32151 | 4,97816 | 1.31982 | 8.19456 | 1.04271 | 2 20622 | 3.0085E-03                                                       | 0.94525        | 3.0103E-03                     | 0.94591          | -1.0322E-05                                 | 5.409E-05 | -5.240  | -30.904 | 4.2975  |
| 0.001 | 2.73442 | 3,32941 | 10.98788 | 8.32352 | 4.97797 | 1.32010 | 8,19085 | 1.04177 | 2.20730 | 3,0050E-03                                                       | 0.94393        | 3.0067E-03                     | 0.94459          | -6.7451E-06                                 | 5.541E-05 | -8.215  | -39,119 | 4.2971  |
| 0,001 | 2.73542 | 3.33021 | 10.99285 | 8.32653 | 4.97778 | 1.32038 | 0.18714 | 1.04083 | 2.20838 | 3.0014E-03                                                       | 0.94261        | 3.0032E-03                     | 0.94327          | -3,1742E-06                                 | 5.673E-05 | -17.872 | -56,990 | 4.2967  |
| 0.001 | 2.73642 | 3.33101 | 10.99783 | 8.32754 | 4.97759 | 1.32066 | 8.18343 | 1.03988 | 2.20947 | 2.9978E-03                                                       | D.94130        | 2.9996E-03                     | 0.94196          | 3.9050E-07                                  | 5.804E-05 | 148.643 | 91.652  | 4.2963  |

Table B-16 Case C 90 cfs: Manually Computed Outlet Control Headwater Depths

| Table B-17 Case ( | C 105 cfs: | Manually | Computed | Outlet | Control | Headwater | Depths |
|-------------------|------------|----------|----------|--------|---------|-----------|--------|
|-------------------|------------|----------|----------|--------|---------|-----------|--------|

| Δу     | у      | Ð       | Α       | Р      |         | R       | u      | u²/Zg   | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o} n^2 u^2 / (\phi^2 R^{4/3})$ | ΔE         | ΔX       | ΣΔΧ       | HW      |
|--------|--------|---------|---------|--------|---------|---------|--------|---------|---------|------------------------------|----------------|--------------------------------|------------------|------------------------------------|------------|----------|-----------|---------|
|        | 2,9197 | 3.47892 | 11.9059 | 8.6973 | 4.92905 | 1.36892 | 8.8192 | 1.20773 | 2.41545 | 3.3190E-03                   | 1,00000        |                                |                  |                                    |            |          |           |         |
| 0.01   | 2.9297 | 3.48704 | 11.9552 | 8.7176 | 4,92560 | 1.37138 | 8,7828 | 1.19779 | 2.42715 | 3.2838E-03                   | 0.98700        | 3.3014E-03                     | 0.99350          | -3.014E-04                         | 6 5018E-05 | -0.2157  | -0.2157   | 4,72635 |
| 0.01   | 2.9397 | 3.49516 | 12.0044 | 8.7379 | 4 92207 | 1.37383 | 8.7468 | 1.18799 | 2.43889 | 3.2492E-03                   | 0,97420        | 3.2665E-03                     | 0,98060          | -2.665E-04                         | 1.9401E-04 | -0 7280  | -0.9437   | 4 72164 |
| 0.01   | 2.9497 | 3.50329 | 12.0536 | 8.7582 | 4.91846 | 1.37626 | 8.7111 | 1.17831 | 2.45069 | 3.2151E-03                   | 0.96161        | 3.2322E-03                     | 0.96791          | -2.322E-04                         | 3.2092E-04 | -1.3823  | -2.3260   | 4.71712 |
| 0.01   | 2.9597 | 3.51143 | 12.1028 | 8.7786 | 4.91476 | 1.37867 | 8.6757 | 1.16875 | 2.46254 | 3.1816E-03                   | 0.94923        | 3.1984E-03                     | 0.95542          | -1.984E-04                         | 4.4580E-04 | -2.2471  | -4.5730   | 4,71279 |
| 0.01   | 2,9697 | 3.51957 | 12 1519 | 8.7989 | 4.91097 | 1.38107 | 8.6406 | 1.15932 | 2.47444 | 3.1487E-03                   | 0,93704        | 3.1652E-03                     | 0,94313          | -1.652E-04                         | 5.6867E-04 | -3,4433  | -8.0163   | 4.70865 |
| 0.01   | 2.9797 | 3.52772 | 12,2010 | 8.8193 | 4.90711 | 1.38344 | 8.6059 | 1,15001 | 2.48639 | 3,1162E-03                   | 0,92505        | 3,1325E-03                     | 0,93104          | -1.325E-04                         | 6.8958E-04 | -5.2063  | -13.2226  | 4,70468 |
| 0.01   | 2.9897 | 3.53587 | 12.2500 | 8.8397 | 4.90315 | 1.38580 | 8.5714 | 1.14082 | 2.49840 | 3.0843E-03                   | 0.91324        | 3.1003E-03                     | 0.91914          | -1.003E-04                         | 8.0857E-04 | -8.0637  | -21.2863  | 4.70089 |
| 0.01   | 2,9997 | 3.54403 | 12.2991 | 8.8601 | 4.89912 | 1.38814 | 8.5372 | 1 13175 | 2.51046 | 3.0529E-03                   | 0.90162        | 3.0686E-03                     | 0.90743          | -6.861E-05                         | 9.2567E-04 | -13.4921 | -34.7784  | 4.69728 |
| 0.01   | 3.0097 | 3.55220 | 12.3480 | 8.8805 | 4.89500 | 1,39046 | 8 5034 | 1.12279 | 2.52258 | 3.0220E-03                   | 0.89019        | 3.0374E-03                     | 0.89591          | -3.745E-05                         | 1.0409E-03 | -27,7960 | -62.5744  | 4.69384 |
| 0.001  | 3,0107 | 3.55302 | 12.3529 | 8.8825 | 4.89458 | 1.39070 | 8.5000 | 1.12190 | 2.52380 | 3.0189E-03                   | 0.88906        | 3.0205E-03                     | 0.88962          | -2.046E-05                         | 1.1038E-04 | -5.3942  | -67.9686  | 4.69351 |
| 0.001  | 3.0117 | 3.55384 | 12.3578 | 8.8846 | 4.89416 | 1.39093 | 8.4966 | 1.12101 | 2.52501 | 3.0159E-03                   | 0.88792        | 3.0174E-03                     | 0.88849          | -1.740E-05                         | 1.1151E-04 | -6.4084  | -74.3770  | 4.69318 |
| 0.001  | 3.0127 | 3.55465 | 12.3627 | 8.8866 | 4.89374 | 1.39116 | 8,4933 | 1.12012 | 2.52623 | 3.0128E-03                   | 0.88679        | 3.0143E-03                     | 0.88736          | -1.434E-06                         | 1.1264E-04 | -7.8527  | -82.2297  | 4.69285 |
| 0.001  | 3.0137 | 3.55547 | 12.3676 | 8.8887 | 4.89332 | 1.39139 | 8 4899 | 1.11924 | 2.52744 | 3.0098E-03                   | 0.88567        | 3.0113E-03                     | 0.88623          | -1.129E-05                         | 1.1377E-04 | -10 0748 | -92,3045  | 4.69252 |
| 0.0001 | 3.0138 | 3.55565 | 12.3681 | 8.8889 | 4.89328 | 1.39141 | 8.4896 | 1,11915 | 2.52757 | 3.0095E-03                   | 0,88555        | 3.0096E-03                     | 0,88561          | -9.616E-06                         | 1.1439E-05 | -1.1896  | -93.4942  | 4.69248 |
| 0.0001 | 3.0139 | 3.55563 | 12.3686 | 8.8891 | 4,69324 | 1.39143 | 8.4893 | 1.11906 | 2.52769 | 3.0092E-03                   | 0.88544        | 3.0093E-03                     | 0.88550          | -9.311E-06                         | 1.1450E-05 | -1.2298  | -94 7239  | 4.69245 |
| 0.0001 | 3.0140 | 3.55572 | 12.3691 | 8,8893 | 4.89320 | 1.39146 | 8.4889 | 1.11897 | 2.52781 | 3.0089E-03                   | 0.88533        | 3.0090E-03                     | 0.88538          | -9.006E-06                         | 1.1462E-05 | -1.2726  | -95.9966  | 4.69242 |
| 0.0001 | 3.0141 | 3.55580 | 12.3696 | 8.8895 | 4.89315 | 1.39148 | 8,4886 | 1.11888 | 2.52793 | 3.0085E-03                   | 0.88522        | 3.0087E-03                     | 0.88527          | -8,702E-06                         | 1.1473E-05 | -1.3184  | -97.3150  | 4.69239 |
| 0.0001 | 3.0142 | 3.55588 | 12.3700 | 8.8897 | 4.89311 | 1.39150 | 8.4882 | 1.11879 | 2.52805 | 3.0082E-03                   | 0.88510        | 3.0084E-03                     | 0.88516          | -8.397E-06                         | 1.1484E-05 | -1.3676  | -98.6826  | 4.69235 |
| 0.0001 | 3.0143 | 3.55596 | 12.3705 | 8.8899 | 4.89307 | 1.39153 | 8.4879 | 1.11871 | 2.52817 | 3.0079E-03                   | 0.88499        | 3.0081E-03                     | 0.88505          | -8.093E-06                         | 1.1495E-05 | -1.4204  | -100.1030 | 4.69232 |
| 0.0001 | 3.0144 | 3.55604 | 12.3710 | 8.8901 | 4.69303 | 1.39155 | 8.4876 | 1.11862 | 2.52830 | 3.0076E-03                   | 0.88488        | 3.0078E-03                     | 0.88493          | -7.788E-06                         | 1.1507E-05 | -1.4774  | -101.5804 | 4.69229 |

| Δy     | ÿ       | 0       | Α        | Р       | T        | R        | a       | u <sup>2</sup> /2g | D       | n <sup>2</sup> u <sup>2</sup> /(q <sup>2</sup> R <sup>4/3</sup> ) | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o}-n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE        | ΔX      | ΣΔΧ      | HW       |
|--------|---------|---------|----------|---------|----------|----------|---------|--------------------|---------|-------------------------------------------------------------------|----------------|--------------------------------|------------------|--------------------------------------|-----------|---------|----------|----------|
|        | 3.13009 | 3.65116 | 12.93426 | 9.12791 | 4.83859  | 1.41700  | 9.27768 | 1.33657            | 2.67315 | 3.5079E-03                                                        | 1.00000        |                                |                  |                                      |           |         |          |          |
| 0.1    | 3.23009 | 3,73431 | 13.41537 | 9.33576 | 4.78203  | 1.43699  | 8.94496 | 1.24243            | 2.80537 | 3.2004E-03                                                        | 0.88575        | 3.3541E-03                     | 0.94288          | -3.5415E-04                          | 5.712E-03 | -16.130 | -16,130  | 5,09374  |
| 0.01   | 3.24009 | 3.74268 | 13,46316 | 9,35669 | 4,77588  | 1.43888  | 8.91321 | 1 23362            | 2.81899 | 3.1722E-03                                                        | 0.87522        | 3.1863E-03                     | 0.88049          | -1.8631E-04                          | 1.195E-03 | -8,415  | -22,545  | 5.09053  |
| 0.01   | 3.25009 | 3.75106 | 13.51089 | 9.37764 | 4.76964  | 1.44076  | 8.88173 | 1.22492            | 2.83269 | 3.1444E-03                                                        | 0.86485        | 3.1583E-03                     | 0:87004          | -1.5827E-04                          | 1.300E-03 | -8.212  | -30,756  | 5 08748  |
| 0.01   | 3.26009 | 3.75945 | 13.55855 | 9.39862 | 4.76330  | 1.44261  | 8.85050 | 1.21633            | 2.84646 | 3.1169E-03                                                        | 0.85462        | 3.1306E-03                     | 0.85974          | -1.3064E-04                          | 1.403E-03 | -10.737 | -41.493  | 5.08458  |
| 0.01   | 3.27009 | 3.76785 | 13.60615 | 9.41963 | 4,75687  | 1.44445  | 8.81954 | 1.20783            | 2.86032 | 3.0899E-03                                                        | 0.84454        | 3.1034E-03                     | 0.84958          | -1.0342E-04                          | 1,504E-03 | -14.544 | -56.037  | 5.08184  |
| 0.01   | 3.28009 | 3,77627 | 13.65369 | 9.44067 | 4.75035  | 1.44626  | 8.78883 | 1 19943            | 2.87425 | 3.0633E-03                                                        | 0.83461        | 3.0766E-03                     | 0.83958          | -7.6605E-05                          | 1.604E-03 | -20,942 | -76.979  | 5.07925  |
| 0.001  | 3.28109 | 3.77711 | 13.65844 | 9.44277 | 4,74969  | 1.44644  | 8,78578 | 1.19860            | 2.87565 | 3.0607E-03                                                        | 0.83362        | 3.0620E-03                     | 0.83411          | -6.1977E-05                          | 1.659E-04 | -2.677  | -79.656  | 5.07899  |
| 0.001  | 3.28209 | 3,77795 | 13.66319 | 9.44488 | 4.74903  | 1.44662  | 8.78272 | 1 19777            | 2.87705 | 3.0580E-03                                                        | 0.83264        | 3.0593E-03                     | 0.83313          | -5.9339E-05                          | 1.669E-04 | -2.812  | -82.468  | 5.07874  |
| 0.001  | 3.28309 | 3,77879 | 13.66794 | 9.44698 | 4.74837  | 1.44680  | 8.77967 | 1 19694            | 2.87845 | 3.0654E-03                                                        | 0.83165        | 3,0567E-03                     | 0,83215          | -5.6705E-05                          | 1.679E-04 | -2.960  | -85.428  | 5.07850  |
| 0.001  | 3.28409 | 3.77964 | 13.67269 | 9.44909 | 4.74771  | 1.44698  | 8,77662 | 1.19610            | 2.87985 | 3.0528E-03                                                        | 0.83067        | 3.0541E-03                     | 0.83116          | -5.4075E-05                          | 1.688E-04 | -3.122  | -88,550  | 5.07825  |
| 0.001  | 3.28509 | 3,78048 | 13.67743 | 9.45119 | 4.74705  | 1.44716  | 8.77358 | 1 19527            | 2.88125 | 3.0501E-03                                                        | 0.82969        | 3.0514E-03                     | 0.83018          | -5.1449E-05                          | 1.698E-04 | -3,301  | -91.851  | 5.07800  |
| 0.001  | 3.28609 | 3.78132 | 13.68218 | 9.45330 | 4.74639  | 1.44734  | 8.77053 | 1.19444            | 2.88265 | 3.0475E-03                                                        | 0.82871        | 3.0488E-03                     | 0.82920          | -4.8827E-05                          | 1.708E-04 | -3.498  | -95.349  | 5.07776  |
| 0.0001 | 3.28619 | 3.78140 | 13.68265 | 9.45351 | 4,74632  | 1.44736  | 8.77023 | 1,19436            | 2.88279 | 3.0473E-03                                                        | 0.82862        | 3.0474E-03                     | 0.82866          | -4.7386E-05                          | 1,713E-05 | -0.362  | -95.711  | 5.0777.4 |
| 0.0001 | 3.28629 | 3,78149 | 13.68313 | 9.45372 | 4,74626  | 1 44738  | 8.76992 | 1 19428            | 2.88293 | 3.0470E-03                                                        | 0.82852        | 3.0471E-03                     | 0.82857          | -4.7124E-05                          | 1.714E-05 | -0.364  | -96.074  | 5.07771  |
| 0.0001 | 3.28639 | 3,78157 | 13.68360 | 9.45393 | 4,74619  | 1.44740  | 8,76962 | 1.19420            | 2.68307 | 3.0467E-03                                                        | 0.82842        | 3.0469E-03                     | 0.82847          | -4.6862E-05                          | 1.715E-05 | -0.366  | -96.440  | 5.07769  |
| 0.0001 | 3.28649 | 3,78166 | 13.68408 | 9.45414 | 4.74613  | 1.44742  | 8,76932 | 1 19411            | 2.88321 | 3.0465E-03                                                        | 0.82832        | 3.0466E-03                     | D.82837          | -4.6600E-05                          | 1.716E-05 | -0.368  | -96.809  | 5.07766  |
| 0.0001 | 3.28659 | 3.78174 | 13.68455 | 9.45435 | 4,74606  | 1.44743  | 8.76901 | 1 19403            | 2.88335 | 3.0462E-03                                                        | 0.82822        | 3,0463E-03                     | 0.82827          | -4.6339E-05                          | 1.717E-05 | -0.371  | -97 179  | 5.07764  |
| 0,0001 | 3.28669 | 3.78183 | 13.68503 | 9.45457 | 4,7,4599 | 1.447.45 | 8,76871 | 1.19395            | 2.88349 | 3.0459E-03                                                        | 0.82813        | 3.0461E-03                     | D.82818          | -4.6077E-05                          | 1 718E-05 | -0,373  | -97.552  | 5.07761  |
| 0 0001 | 3.28679 | 3.78191 | 13.68550 | 9.45478 | 4.74593  | 1.44747  | 8.76840 | 1 19386            | 2.88363 | 3.0457E-03                                                        | 0.82803        | 3.0458E-03                     | 0.82808          | -4.5816E-05                          | 1.719E-05 | -0.375  | -97.927  | 5.07759  |
| 8,0001 | 3.28689 | 3.78199 | 13.68598 | 9.45499 | 4.74588  | 1.44749  | 8.76810 | 1.19378            | 2.88377 | 3.0454E-03                                                        | 0.82793        | 3.0456E-03                     | 0.82798          | -4.5554E-05                          | 1.720E-05 | -0.378  | -98.305  | 5.07757  |
| 0.0001 | 3.28699 | 3.78208 | 13.68645 | 9.45520 | 4,74579  | 1.44751  | 8.76779 | 1,19370            | 2.88391 | 3.0452E-03                                                        | 0.82783        | 3.0453E-03                     | 0.62768          | -4.5292E-05                          | 1,721E-05 | -0.380  | -98.685  | 5.07754  |
| 0.0001 | 3.28709 | 3,78216 | 13.68693 | 9.45541 | 4.74573  | 1 44752  | 8.76749 | 1 19362            | 2.88405 | 3.0449E-03                                                        | 0.62774        | 3,0450E-03                     | 0.82778          | -4.5031E-05                          | 1.722E-05 | -0.382  | -99.068  | 5.07752  |
| 0.0001 | 3.28719 | 3.78225 | 13.68740 | 9.45562 | 4.74566  | 1.44754  | 8.76719 | 1.19353            | 2,68419 | 3.0446E-03                                                        | 0.82764        | 3.0448E-03                     | 0.82769          | -4.4770E-05                          | 1.723E-05 | -0.385  | -99.452  | 5.07749  |
| 0.0001 | 3.28729 | 3.78233 | 13.68788 | 9.45583 | 4.74560  | 1.44756  | 8 76688 | 1 19345            | 2.88433 | 3 0444E-03                                                        | 0.82754        | 3.0445E-03                     | 0.82759          | -4.4508E-05                          | 1.724E-05 | -0.387  | -99,840  | 5.07747  |
| 0.0001 | 3.28739 | 3.78242 | 13.68835 | 9.45604 | 4,74553  | 1.44758  | 8 76658 | 1 19337            | 2.88447 | 3.0441E-03                                                        | 0.82744        | 3,0442E-03                     | 0.82749          | -4.4247E-05                          | 1.725E-05 | -0.390  | -100.230 | 5.07745  |

Table B-18 Case C 120 cfs: Manually Computed Outlet Control Headwater Depths

| Δy    | У        | 0        | A        | Р        | T        | R        | <u> </u> | u²/2g       | D           | $n^2 u^2 / (\phi^2 R^{4/3})$ | <b>F</b> <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o}$ -n <sup>2</sup> u <sup>2</sup> /( $\phi^{2}R^{4/3}$ ) | ΔE       | ΔX       | ΣΔΧ      | HW       |
|-------|----------|----------|----------|----------|----------|----------|----------|-------------|-------------|------------------------------|-----------------------|--------------------------------|------------------|---------------------------------------------------------------|----------|----------|----------|----------|
|       | 3.326695 | 3.815637 | 13.87433 | 9.539091 | 4.718718 | 1.454471 | 9.730196 | 1.470135377 | 2.940276243 | 0.00372643                   | 0.9999981             |                                |                  |                                                               |          |          |          |          |
| 0,1   | 3.426695 | 3,901071 | 14.34254 | 9.752676 | 4.643807 | 1.470626 | 9.412557 | 1.375717916 | 3.088530994 | 0.00343612                   | 0.8908558             | 0.003581277                    | 0.94542698       | -0,000581277                                                  | 0.005457 | -9.38848 | -9.38848 | 5.490272 |
| 0.1   | 3.526695 | 3.987988 | 14.80276 | 9.96997  | 4.558902 | 1.484735 | 9.119919 | 1.29150498  | 3.247001757 | 0.00318498                   | 0 7955062             | 0.003310552                    | 0.843181003      | -0.000310552                                                  | 0.015682 | -50 4969 | -59.8854 | 5:463953 |
| 0.01  | 3.536695 | 3.996771 | 14.84831 | 9.991926 | 4.549841 | 1.48603  | 9.091946 | 1.283594335 | 3.263478233 | 0.00316179                   | 0.7866419             | 0.003173386                    | 0.791074032      | -0.000173386                                                  | 0.002089 | -12.0498 | -71.9352 | 6.462087 |
| 0.001 | 3.537695 | 3.99765  | 14,85286 | 9.994125 | 4.548929 | 1.486159 | 9.089161 | 1.282808134 | 3.265132576 | 0.00315949                   | 0.7857617             | 0.003160642                    | 0.786201815      | -0.000160642                                                  | 0.000214 | +1.3309  | -73.2661 | 5.461907 |
| 0.001 | 3.538695 | 3,998529 | 14.8574  | 9.996323 | 4.548016 | 1.486287 | 9.086378 | 1.282022812 | 3.266788146 | 0.00315719                   | 0.7848827             | 0.003158343                    | 0.785322241      | -0.000158343                                                  | 0.000215 | -1.35578 | -74.6219 | 5.461729 |
| 0.001 | 3,539695 | 3,999409 | 14.86195 | 9.998622 | 4.547102 | 1.486415 | 9.083598 | 1.281238368 | 3.268444943 | 0.0031549                    | 0.7840049             | 0.003156048                    | 0.784443801      | -0.000156048                                                  | 0,000216 | -1.38135 | -76.0032 | 5,461553 |
| 0.001 | 3.540695 | 4.000289 | 14.8665  | 10.00072 | 4.546187 | 1.486543 | 9.08082  | 1.280454801 | 3.270102971 | 0.00315261                   | 0.7831281             | 0.003153755                    | 0.783566494      | -0.000153755                                                  | 0.000216 | -1.40765 | -77_4108 | 5.461377 |
| 0.001 | 3.541695 | 4.001169 | 14,87104 | 10.00292 | 4.545271 | 1 48667  | 9.078044 | 1.279672111 | 3.271762231 | 0.00315032                   | 0.7822525             | 0.003151466                    | 0.782690317      | -0.000151466                                                  | 0.000217 | -1.43471 | -78.8456 | 5.461203 |
| 0.001 | 3.542695 | 4.002049 | 14.87559 | 10.00512 | 4.544353 | 1 486797 | 9.075271 | 1.278890296 | 3 273422725 | 0.00314804                   | 0 7813780             | 0.003149181                    | 0.78181527       | -0.000149181                                                  | 0.000218 | -1.46256 | -80.3081 | 5.461031 |
| 0.001 | 3.543695 | 4.002929 | 14.88013 | 10 00732 | 4.543435 | 1.486925 | 9.072499 | 1.278109355 | 3.275084456 | 0.00314576                   | 0.7805047             | 0.003146898                    | 0.780941348      | -0.000146898                                                  | 0.000219 | -1.49123 | -81 7993 | 5:460859 |
| 0.001 | 3.544695 | 4.003809 | 14.88468 | 10.00952 | 4.542516 | 1.487051 | 9.06973  | 1.277329286 | 3.276747426 | 0.00314348                   | 0.7796324             | 0.003144619                    | 0.780068552      | -0.000144619                                                  | 0.00022  | -1.52077 | -83.3201 | 5.460689 |
| 0.001 | 3.545695 | 4.00469  | 14,88922 | 10.01173 | 4.541595 | 1.487178 | 9.066963 | 1.27655009  | 3.278411636 | 0.00314121                   | 0.7787613             | 0.003142343                    | 0.779196878      | -0.000142343                                                  | 0.000221 | -1.55121 | -84.8713 | 5.46052  |
| 0.001 | 3.546695 | 4.005571 | 14.89376 | 10.01393 | 4.540674 | 1.487305 | 9.064199 | 1.275771763 | 3.28007709  | 0.00313893                   | 0.7778913             | 0.00314007                     | 0.778326325      | -0.00014007                                                   | 0.000222 | -1 58259 | -86.4539 | 5,460353 |
| 0.001 | 3.547695 | 4.006452 | 14.8983  | 10.01613 | 4.539751 | 1.487431 | 9.061437 | 1.274994306 | 3.281743789 | 0.00313667                   | 0.7770225             | 0.003137801                    | 0.777456892      | -0.000137801                                                  | 0,000223 | -1.61496 | -88.0689 | 5,460187 |
| 0.001 | 3.548695 | 4.007333 | 14.90284 | 10.01833 | 4.538827 | 1.487557 | 9.058677 | 1.274217718 | 3.283411735 | 0.0031344                    | 0.7761547             | 0.003135534                    | 0.776588575      | -0.000135534                                                  | 0.000223 | -1.64837 | -89.7172 | 5.460022 |
| 0.001 | 3.549695 | 4.008215 | 14,90738 | 10.02054 | 4.537903 | 1.487683 | 9.055919 | 1.273441997 | 3.28508093  | 0.00313214                   | 0.7752881             | 0.003133272                    | 0.775721374      | -0.000133272                                                  | 0.000224 | -1.68287 | -91,4001 | 5.459858 |
| 0.001 | 3.550695 | 4.009096 | 14.91191 | 10.02274 | 4.536977 | 1.487808 | 9.053163 | 1.272667142 | 3.286751378 | 0.00312988                   | 0 7744225             | 0.003131012                    | 0.774855286      | -0.000131012                                                  | 0.000225 | -1.71851 | -93.1186 | 5.459696 |
| 0.001 | 3.551695 | 4.009978 | 14.91645 | 10 02494 | 4,53605  | 1.487934 | 9.05041  | 1.271893151 | 3.288423079 | 0.00312763                   | 0.7735581             | 0.003128755                    | 0.773990309      | -0.000128755                                                  | 0.000226 | -1.76534 | -94.874  | 5:459535 |
| 0.001 | 3.552695 | 4.01086  | 14.92099 | 10.02715 | 4.535122 | 1.488059 | 9.047659 | 1.271120025 | 3.290096037 | 0.00312538                   | 0.7726948             | 0.003126502                    | 0.773126442      | -0.000126502                                                  | 0.000227 | -1.79344 | -96.6674 | 5.459375 |
| 0.001 | 3.553695 | 4.011742 | 14.92552 | 10.02935 | 4.534193 | 1.488184 | 9.04491  | 1.270347761 | 3.291770252 | 0.00312313                   | 0.7718326             | 0.003124252                    | 0.772263682      | -0.000124252                                                  | 0.000228 | -1.83286 | -98.5003 | 5.459217 |
| 0.001 | 3.654695 | 4 012624 | 14,93006 | 10.03156 | 4.533263 | 1 488308 | 9.042163 | 1.269676359 | 3.293445729 | 0.00312088                   | 0.7709715             | 0.003122005                    | 0.771402028      | -0,000122005                                                  | 0.000229 | -1.87368 | -100.374 | 5,45906  |

Table B-19 Case C 135 cfs: Manually Computed Outlet Control Headwater Depths

| Δу    | y       | 0       | Α       | <b>.</b> | Ŧ       | R       | u        | u <sup>2</sup> /2g | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o}\text{-}n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE        | ΔX       | ΣΔΧ      | HW      |
|-------|---------|---------|---------|----------|---------|---------|----------|--------------------|---------|------------------------------|----------------|--------------------------------|------------------|---------------------------------------------|-----------|----------|----------|---------|
|       | 3.51062 | 3.97390 | 14,7294 | 9.9348   | 4.57325 | 1.48261 | 10.18374 | 1.61038            | 3.22076 | 3.9790E-03                   | 1.00000        |                                |                  |                                             |           |          |          |         |
| 0.1   | 3.61062 | 4.06226 | 15.1821 | 10.1557  | 4.47952 | 1,49494 | 9,88007  | 1 51577            | 3.38922 | 3,7041E-03                   | 0.89447        | 3.8415E-03                     | 0.94723          | -8.4151E-04                                 | 5.277E-03 | -6,2705  | -6.270   | 5.88428 |
| 0.1   | 3.71062 | 4 15260 | 15.6249 | 10.3815  | 4.37466 | 1 50507 | 9.60007  | 1.43108            | 3.57168 | 3.4657E-03                   | 0.80135        | 3.5849E-03                     | 0.84791          | -5.8490E-04                                 | 1.521E-02 | -26 0035 | -32,274  | 5.85723 |
| 0.01  | 3,72062 | 4.16175 | 15.6686 | 10.4044  | 4.36353 | 1.50596 | 9.57330  | 1.42311            | 3.59081 | 3.4437E-03                   | 0.79264        | 3.4547E-03                     | 0.79699          | -4.5473E-04                                 | 2.030E-03 | -4.4643  | -36.738  | 5.85528 |
| 0.01  | 3.73062 | 4.17093 | 15.7122 | 10.4273  | 4,35228 | 1.50682 | 9.54675  | 1,41522            | 3.61010 | 3.4220E-03                   | 0,78403        | 3.4329E-03                     | 0.78834          | -4.3288E-04                                 | 2.117E-03 | -4.6897  | -41.628  | 5.85345 |
| 0.01  | 3.74062 | 4.18013 | 15.7556 | 10.4503  | 4.34091 | 1.50767 | 9.52041  | 1,40743            | 3,62957 | 3.4006E-03                   | 0.77553        | 3.4113E-03                     | 0.77978          | -4.1133E-04                                 | 2.202E-03 | -5,3537  | -46.982  | 5.85176 |
| 0.01  | 3,75062 | 4.18936 | 15,7990 | 10.4734  | 4.32941 | 1.50849 | 9.49429  | 1.39971            | 3,64922 | 3.3796E-03                   | 0.76713        | 3.3901E-03                     | 0,77133          | -3,9010E-04                                 | 2 287E-03 | -5.8618  | -62.843  | 5.85019 |
| 0.01  | 3.76062 | 4.19861 | 15.8422 | 10.4965  | 4.31780 | 1.50928 | 9.46837  | 1 39208            | 3.66905 | 3:3588E-03                   | 0.75882        | 3,3692E-03                     | 0.76298          | -3.6917E-04                                 | 2.370E-03 | -6.4205  | -59.264  | 5.84874 |
| 0.01  | 3.77062 | 4.20789 | 15.8853 | 10.5197  | 4.30606 | 1.51005 | 9.44267  | 1.38454            | 3.68907 | 3.3383E-03                   | 0.75062        | 3.3485E-03                     | 0.75472          | -3.4853E-04                                 | 2,453E-03 | -7.0375  | -66,302  | 5.84742 |
| 0.01  | 3.78062 | 4.21719 | 15.9283 | 10.5430  | 4.29419 | 1.51080 | 9,41718  | 1 37707            | 3,70928 | 3.3181E-03                   | 0,74250        | 3.3282E-03                     | 0.74656          | -3,2819E-04                                 | 2.534E-03 | -7.7224  | -74.024  | 5.84622 |
| 0.01  | 3.79062 | 4.22652 | 15,9712 | 10.5663  | 4.28220 | 1.51152 | 9:39190  | 1.36968            | 3.72968 | 3.2982E-03                   | 0.73448        | 3.3081E-03                     | 0.73849          | -3.0815E-04                                 | 2,615E-03 | -8.4866  | -82:510  | 5.84515 |
| 0.01  | 3.80062 | 4.23587 | 16.0140 | 10.5897  | 4.27008 | 1.51222 | 9.36682  | 1.36238            | 3.75028 | 3.2786E-03                   | 0.72655        | 3.2884E-03                     | 0.73051          | -2.8839E-04                                 | 2.695E-03 | -9.3446  | -91.855  | 5.84419 |
| 0.001 | 3,80162 | 4.23681 | 16.0182 | 10.5920  | 4.26886 | 1.51229 | 9.36432  | 1,36165            | 3.75235 | 3.2766E-03                   | 0,72576        | 3.2776E-03                     | 0.72615          | -2.7761E-04                                 | 2.738E-04 | -0.9864  | -92.642  | 5.84410 |
| 0.001 | 3.80262 | 4 23775 | 16.0225 | 10.5944  | 4.26764 | 1.51236 | 9.36183  | 1.36093            | 3 75442 | 3.2747E-03                   | 0.72497        | 3.2757E-03                     | 0.72537          | -2.7566E-04                                 | 2 746E-04 | -0.9963  | -93.838  | 5.84401 |
| 0.001 | 3.80362 | 4.23869 | 16.0268 | 10.5967  | 4.26642 | 1.51243 | 9.35933  | 1,36020            | 3,75650 | 3.2728E-03                   | 0.72419        | 3.2737E-03                     | 0.72458          | -2.7372E-04                                 | 2.754E-04 | -1,0062  | -94.844  | 5.84392 |
| 0.001 | 3.80462 | 4.23962 | 16.0310 | 10.5991  | 4.26519 | 1.51250 | 9.35684  | 1.35948            | 3.75857 | 3.2708E-03                   | 0.72340        | 3.2718E-03                     | 0.72379          | -2.7178E-04                                 | 2.762E-04 | -1.0163  | -95.860  | 5.84384 |
| 0.001 | 3,80562 | 4,24056 | 16.0353 | 10.6014  | 4.26397 | 1.51257 | 9.35435  | 1.35876            | 3,76065 | 3.2689E-03                   | 0,72262        | 3.2698E-03                     | 0.72301          | -2.6985E-04                                 | 2,770E-04 | -1.0265  | -96.887  | 5.84375 |
| 0,001 | 3.80662 | 4 24150 | 16.0396 | 10.6037  | 4.26274 | 1.51263 | 9,35187  | 1 35803            | 3,76273 | 3.2669E-03                   | 0,72183        | 3.2679E-03                     | 0.72223          | -2.6791E-04                                 | 2.778E-04 | -1.0368  | -97.924  | 5.84367 |
| 0.001 | 3.80762 | 4.24244 | 16.0438 | 10.6051  | 4.26152 | 1.51270 | 9.34938  | 1.35731            | 3.76482 | 3.2650E-03                   | 0,72105        | 3.2660E-03                     | 0.72144          | -2.6598E-04                                 | 2.786E-04 | -1.0473  | -98.971  | 5.84359 |
| 0.001 | 3.80862 | 4.24338 | 16.0481 | 10.6084  | 4.26029 | 1.51277 | 9.34690  | 1.35659            | 3.76690 | 3.2631E-03                   | 0.72027        | 3.2641E-03                     | 0.72066          | -2.6405E-04                                 | 2.793E-04 | -1.0579  | =100.029 | 5.84351 |
| 0.001 | 3.80962 | 4.24432 | 16.0524 | 10.6108  | 4,25906 | 1.51283 | 9.34442  | 1.35587            | 3.76899 | 3.2612E-03                   | 0.71949        | 3.2621E-03                     | 0.71988          | -2:6213E-04                                 | 2.801E-04 | -1.0686  | -101.097 | 5.84343 |

 Table B-20 Case C 150 cfs: Manually Computed Outlet Control Headwater Depths

|  | Table B-21 Case D 20 cfs: ] | Manually Computed | Outlet Control Headwat | er Depths |
|--|-----------------------------|-------------------|------------------------|-----------|
|--|-----------------------------|-------------------|------------------------|-----------|

| Δy     | у       | 0       | Α        | P        | Ť       | R       | 300     | u²/2g   | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | E <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o}-n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE          | ΔX       | ΣΔΧ      | HW     |
|--------|---------|---------|----------|----------|---------|---------|---------|---------|---------|------------------------------|----------------|--------------------------------|------------------|--------------------------------------|-------------|----------|----------|--------|
|        | 4.50000 | 4.99618 | 18.61307 | 12.49046 | 3.00000 | 1.49018 | 1.07451 | 0.01793 | 6.20436 | 4.3997E-05                   | 5.7792E-03     |                                |                  |                                      |             |          |          |        |
| -0.1   | 4.40000 | 4.86822 | 18.30032 | 12.17055 | 3.24962 | 1 50366 | 1.09288 | 0.01855 | 5.63153 | 4.4971E-05                   | 6.5866E-03     | 4.4484E-05                     | 6.1829E-03       | 4.9555E-03                           | -9.9382E-02 | -20.0548 | -20.055  | 4.4278 |
| -0,1   | 4.30000 | 4.74920 | 17.96412 | 11.87299 | 3.46987 | 1.51302 | 1.11333 | 0.01925 | 5 17717 | 4.6285E-05                   | 7.4353E-03     | 4.5628E-05                     | 7.0109E-03       | 4.9544E-03                           | -9.9299E-D2 | -20.0427 | -40.097  | 4.3289 |
| -0,1   | 4.20000 | 4.63712 | 17.60714 | 11 59279 | 3.66606 | 1 51880 | 1.13590 | 0.02004 | 4.80274 | 4.7937E-05                   | 8.3433E-03     | 4.7111E-05                     | 7.8893E-03       | 4.9529E-03                           | -9.9211E-02 | -20,0310 | -60.128  | 4.2301 |
| -0.1   | 4.10000 | 4.53059 | 17.23159 | 11.32647 | 3.84187 | 1.52136 | 1.16066 | 0.02092 | 4.48520 | 4.9937E-05                   | 9.3276E-03     | 4.8937E-05                     | 8.8355E-03       | 4.9511E-03                           | -9.9116E-02 | -20.0192 | -80 148  | 4 1314 |
| -0.01  | 4.09000 | 4.52020 | 17.19309 | 11.30050 | 3.85845 | 1.52144 | 1.16326 | 0.02101 | 4:45596 | 5.0157E-05                   | 9.4309E-03     | 5.0047E-05                     | 9.3793E-03       | 4.9500E-03                           | -9.9062E-03 | -2.0013  | -82.149  | 4.1215 |
| -0.01  | 4.08000 | 4.50986 | 17.15442 | 11,27464 | 3.87484 | 1.52151 | 1.16588 | 0.02111 | 4.42713 | 5.0381E-05                   | 9.5352E-03     | 5.0269E-05                     | 9.4831E-03       | 4.9497E-03                           | -9.9052E-03 | -2.0012  | -84.150  | 4.1117 |
| -0.01  | 4.07000 | 4,49955 | 17 11559 | 11.24888 | 3.89107 | 1.52154 | 1.16853 | 0.02120 | 4.39869 | 5.0608E-05                   | 9.6404E-03     | 5.0495E-05                     | 9.5878E-03       | 4.9495E-03                           | -9.9041E-03 | -2.0010  | -86,151  | 4.1018 |
| -0.01  | 4.06000 | 4.48929 | 17.07660 | 11.22324 | 3,90712 | 1.52154 | 1,17119 | 0.02130 | 4.37063 | 5.0840E-05                   | 9.7467E-03     | 5.0724E-05                     | 9.6936E-03       | 4.9493E-03                           | -9.9031E-03 | -2,0009  | -88,152  | 4.0919 |
| -0.01  | 4.05000 | 4.47908 | 17.03745 | 11.19770 | 3.92301 | 1.52151 | 1.17388 | 0.02140 | 4.34295 | 5 1075E-05                   | 9.8639E-03     | 5.0967E-05                     | 9,8003E-03       | 4.9490E-03                           | -9.9020E-03 | -2.0008  | -90.153  | 4.0821 |
| -0.01  | 4.04000 | 4.46890 | 16 99814 | 11.17226 | 3.93873 | 1.52146 | 1.17660 | 0.02150 | 4.31564 | 5.1314E-05                   | 9.9622E-03     | 5.1194E-05                     | 9.9081E-03       | 4.9488E-03                           | -9.9009E-03 | -2.0007  | -92.153  | 4.0722 |
| -0.01  | 4.03000 | 4.45877 | 16.96868 | 11.14692 | 3.95429 | 1 52138 | 1.17934 | 0.02160 | 4.28868 | 5.1656E-05                   | 1.0072E-02     | 5.1435E-05                     | 1.0017E-02       | 4,9486E-03                           | -9.8998E-03 | -2.0005  | -94,154  | 4.0624 |
| -0.01  | 4.02000 | 4.44867 | 16.91906 | 11.12168 | 3.96969 | 1.52127 | 1 18210 | 0.02170 | 4.26207 | 5.1803E-05                   | 1.0182E-02     | 5 1680E-05                     | 1.0127E-02       | 4.9483E-03                           | -9.8987E-03 | -2.0004  | -96 154  | 4.0525 |
| -0.01  | 4.01000 | 4.43861 | 16.87928 | 11.09653 | 3.98492 | 1.52113 | 1.18488 | 0.02180 | 4.23579 | 5.2054E-05                   | 1.0293E-02     | 5.1929E-05                     | 1.0238E-02       | 4.9481E-03                           | -9.8976E-03 | -2.0003  | -98.155  | 4.0427 |
| -0.001 | 4.00900 | 4,43761 | 16.87530 | 11,09403 | 3.98644 | 1.52112 | 1,18516 | 0.02161 | 4.23318 | 5.2079E-05                   | 1.0305E-02     | 5.2067E-05                     | 1.0299E-02       | 4.9479E-03                           | -9.8970E-04 | -0.2000  | -98.365  | 4.0417 |
| -0.001 | 4.00800 | 4.43661 | 16.87131 | 11.09152 | 3.98795 | 1.52110 | 1.18544 | 0.02182 | 4.23057 | 5.2104E-05                   | 1.0316E-02     | 5.2092E-05                     | 1.0310E-02       | 4.9479E-03                           | -9.8969E-04 | -0.2000  | -98,555  | 4.0407 |
| -0.001 | 4.00700 | 4,43560 | 16.86732 | 11.08901 | 3,98946 | 1,52108 | 1,18572 | 0.02183 | 4.22797 | 5.2130E-05                   | 1.0327E-02     | 5.2117E-05                     | 1.0322E-02       | 4.9479E-03                           | -9.8968E-04 | -0.2000  | -98 755  | 4,0397 |
| -0.001 | 4.00600 | 4.43460 | 16.86333 | 11.08650 | 3.99097 | 1 52107 | 1.18601 | 0.02184 | 4 22537 | 5.2155E-05                   | 1.0338E-02     | 5.2143E-05                     | 1.0333E-02       | 4.9479E-03                           | -9.8967E-04 | -0.2000  | -98.965  | 4.0388 |
| -0.001 | 4.00500 | 4.43360 | 16.85934 | 11.08400 | 3.99248 | 1.52105 | 1.18629 | 0.02185 | 4.22277 | 5.2181E-05                   | 1.0350E-02     | 5.2168E-05                     | 1.0344E-02       | 4.9478E-03                           | -9.8966E-04 | -0,2000  | -99.165  | 4.0378 |
| -0.001 | 4.00400 | 4.43260 | 16.85535 | 11.08149 | 3.99399 | 1 52104 | 1.18657 | 0.02186 | 4.22018 | 5.2206E-05                   | 1.0361E-02     | 5.2193E-05                     | 1.0355E-02       | 4,9478E-03                           | -9.8964E-04 | -0.2000  | -99 365  | 4.0368 |
| -0.001 | 4.00300 | 4.43160 | 16.85135 | 11.07899 | 3.99549 | 1.52102 | 1.18685 | 0.02187 | 4.21759 | 5.2232E-05                   | 1.0372E-02     | 5.2219E-05                     | 1.0367E-02       | 4.9478E-03                           | -9.8963E-04 | -0.2000  | -99.555  | 4.0358 |
| -0.001 | 4.00200 | 4.43060 | 16.84736 | 11.07649 | 3.99700 | 1.52100 | 1.18713 | 0.02188 | 4.21500 | 5.2257E-05                   | 1.0383E-02     | 5.2245E-05                     | 1.0378E-02       | 4.9478E-03                           | -9.8962E-04 | -0.2000  | -99.755  | 4.0348 |
| -0.001 | 4.00100 | 4,42960 | 16.64336 | 11.07399 | 3.99860 | 1.52098 | 1,18741 | 0.02189 | 4.21242 | 5.2283E-05                   | 1.0395E-02     | 5.2270E-05                     | 1.0389E-02       | 4.9477E-03                           | -9.8961E-04 | -0.2000  | -99.955  | 4.0338 |
| -0.001 | 4.00000 | 4,42859 | 16,83936 | 11.07149 | 4.00000 | 1.52097 | 1.18769 | 0.02190 | 4.20984 | 5.2309E-05                   | 1.0406E-02     | 5.2296E-05                     | 1.0400E-02       | 4 9477E-03                           | -9.8960E-04 | -0.2000  | -100.155 | 4.0329 |

| Δy     | y     | Ð       | Α        | P        | , Ť'.,  | R       | <b></b>  | u²/2g   | D       | n²u²/(φ²R <sup>4/3</sup> ) | E <sup>2</sup> | n²u²/(q²R <sup>4/3</sup> )m | F <sup>2</sup> m                        | $S_{o}$ -n <sup>2</sup> u <sup>2</sup> /( $\phi^{2}R^{4/3}$ ) | ΔE          | ΔX        | ΣΔΧ      | HW     |
|--------|-------|---------|----------|----------|---------|---------|----------|---------|---------|----------------------------|----------------|-----------------------------|-----------------------------------------|---------------------------------------------------------------|-------------|-----------|----------|--------|
|        | 4.500 | 4.99618 | 18.61307 | 12.49046 | 3.00000 | 1.49018 | 2.14903  | 0.07171 | 6.20436 | 1.7599E-04                 | 2.3117E-02     |                             | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                                                               |             |           |          |        |
| -0.1   | 4.400 | 4.86822 | 18.30032 | 12.17055 | 3.24962 | 1.50366 | 2.18575  | 0.07419 | 5.63153 | 1.7988E-04                 | 2.6346E-02     | 1.7794E-04                  | 2.4732E-02                              | 4.8221E-03                                                    | -9.7527E-02 | -20.2251  | -20.2251 | 4.5113 |
| -0.1   | 4.300 | 4.74920 | 17.96412 | 11.87299 | 3.46987 | 1.51302 | 2.22666  | 0.07699 | 5.17717 | 1.8514E-04                 | 2 9741E-02     | 1.8251E-04                  | 2.8044E-02                              | 4.8176E-03                                                    | -9.7196E-02 | -20.1756  | -40.4007 | 4.4155 |
| -0.1   | 4.200 | 4.63712 | 17.60714 | 11.59279 | 3.66606 | 1 51880 | 2.27180  | 0.08014 | 4.80274 | 1.9175E-04                 | 3.3373E-02     | 1.8844E-04                  | 3.1557E-02                              | 4.8116E-03                                                    | -9.6844E-02 | -20.1274  | -60.5282 | 4,3202 |
| -0,1   | 4,100 | 4.53059 | 17.23159 | 11.32647 | 3.84187 | 1.52136 | 2.32132  | 0.08367 | 4 48520 | 1.9975E-04                 | 3.7311E-02     | 1.9575E-04                  | 3.5342E-02                              | 4.8043E-03                                                    | -9.6466E-02 | -20.0793  | -80,6074 | 4.2255 |
| -0.01  | 4.090 | 4.52020 | 17.19309 | 11.30050 | 3.85845 | 1.52144 | 2.32652  | 0.08405 | 4.45596 | 2.0063E-04                 | 3.7724E-02     | 2.0019E-04                  | 3.7517E-02                              | 4.7998E-03                                                    | -9.6248E-03 | -2.00525  | -82.6127 | 4.2161 |
| -0.01  | 4.080 | 4.50986 | 17.15442 | 11.27464 | 3.87484 | 1.52151 | 2.33176  | 0.06443 | 4.42713 | 2.0152E-04                 | 3.8141E-02     | 2.0108E-04                  | 3.7932E-02                              | 4.7989E-03                                                    | -9.6207E-03 | -2.00476  | -84.6174 | 4,2066 |
| -0.01  | 4.070 | 4.49955 | 17_11559 | 11.24888 | 3.89107 | 1.52154 | 2.33705  | 0.08481 | 4.39869 | 2.0243E-04                 | 3.8562E-02     | 2.0198E-04                  | 3.8351E-02                              | 4.7980E-03                                                    | -9.6165E-03 | -2.00426  | -86.6217 | 4.1972 |
| -0.01  | 4.060 | 4.48929 | 17.07660 | 11.22324 | 3.90712 | 1.52154 | 2.34239  | 0.08520 | 4.37063 | 2.0336E-04                 | 3.8987E-02     | 2 0290E-04                  | 3.8774E-02                              | 4.7971E-03                                                    | -9.6123E-03 | -2.00376  | -88.6254 | 4.1878 |
| -0.01  | 4.050 | 4.47908 | 17.03745 | 11.19770 | 3.92301 | 1.52151 | 2.34777  | 0.08559 | 4.34295 | 2.0430E-04                 | 3.9416E-02     | 2.0383E-04                  | 3.9201E-02                              | 4.7962E-03                                                    | -9.6080E-03 | -2.00326  | -90.6287 | 4.1784 |
| -0.01  | 4.040 | 4.46890 | 16.99814 | 11:17226 | 3.93873 | 1.52146 | 2.35320  | 0.08599 | 4.31564 | 2.0525E-04                 | 3.9849E-02     | 2.0478E-04                  | 3.9632E-02                              | 4.7952E-03                                                    | -9.6037E-03 | -2.00276  | -92.6315 | 4,1690 |
| -0.01  | 4.030 | 4.45877 | 16.96868 | 11.14692 | 3.95429 | 1 52138 | 2.35867  | 0.08639 | 4.28868 | 2.0623E-04                 | 4.0286E-02     | 2.0574E-04                  | 4.0068E-02                              | 4.7943E-03                                                    | -9.5993E-03 | -2.00225  | -94,6337 | 4,1596 |
| -0.01  | 4.020 | 4 44867 | 16.91906 | 11 12168 | 3.96969 | 1.52127 | 2.36420  | 0.08679 | 4.26207 | 2.0721E-04                 | 4.0728E-02     | 2.0672E-04                  | 4.0507E-02                              | 4.7933E-03                                                    | -9:5949E-03 | -2.00175  | -96,6355 | 4.1502 |
| -0.01  | 4.010 | 4.43861 | 16.87928 | 11.09653 | 3.98492 | 1.52113 | 2.36977  | 0.08720 | 4.23579 | 2.0822E-04                 | 4:1174E-02     | 2.0771E-04                  | 4.0951E-02                              | 4.7923E-03                                                    | -9.5905E-03 | -2.00124  | -98.6367 | 4.1408 |
| -0.001 | 4.009 | 4.43761 | 16.87530 | 11.09403 | 3.98644 | 1.52112 | 2.37033  | 0.08724 | 4.23318 | 2.0832E-04                 | 4.1219E-02     | 2.0827E-04                  | 4.1196E-02                              | 4.7917E-03                                                    | -9.5880E-04 | -0.20010  | -98.8368 | 4.1399 |
| -0.001 | 4.008 | 4.43661 | 16.87131 | 11,09152 | 3.98795 | 1.52110 | 2.37089  | 0.08728 | 4 23057 | 2.0842E-04                 | 4.1264E-02     | 2.0837E-04                  | 4.1241E-02                              | 4.7916E-03                                                    | -9.5876E-04 | -0.20009  | -99.0369 | 4,1389 |
| -0.001 | 4.007 | 4.43560 | 16,86732 | 11.08901 | 3.98946 | 1,52108 | 2.37145  | 0.08733 | 4.22797 | 2.0852E-04                 | 4.1309E-02     | 2.0847E-04                  | 4.1286E-02                              | 4.7915E-03                                                    | -9.5871E-04 | -0.20009  | -99.237  | 4.1380 |
| -0.001 | 4.006 | 4.43460 | 16.86333 | 11.08650 | 3.99097 | 1 52107 | 2.37201  | 0.08737 | 4 22537 | 2.0862E-04                 | 4.1354E-02     | 2.0857E-04                  | 4.1331E-02                              | 4.7914E-03                                                    | -9.5867E-04 | -0.20008  | -99.4371 | 4.1371 |
| -0.001 | 4.005 | 4.43360 | 16.85934 | 11,08400 | 3.99248 | 1.52105 | 2.37257  | 0.08741 | 4.22277 | 2.0872E-04                 | 4.1399E-02     | 2.0867E-04                  | 4.1376E-02                              | 4,7913E-03                                                    | -9.5862E-04 | -0.20007  | -99.6371 | 4,1361 |
| -0.001 | 4.004 | 4.43260 | 18.85535 | 11.08149 | 3.99399 | 1 52104 | 2.37313  | 0.08745 | 4.22018 | 2.0882E-04                 | 4.1444E-02     | 2.0877E-04                  | 4.1421E-02                              | 4.7912E-03                                                    | -9.5858E-04 | -0.20007  | -99,8372 | 4.1352 |
| -0.001 | 4.003 | 4 43160 | 16.85135 | 11.07899 | 3.99549 | 1,52102 | 2 37 370 | 0.08749 | 4.21759 | 2.0693E-04                 | 4.1469E-02     | 2.0888E-04                  | 4 1466E-02                              | 4,7911E-03                                                    | -9-5853E-04 | -0.200060 | -100 037 | 4.1342 |

 Table B-22 Case D 40 cfs: Manually Computed Outlet Control Headwater Depths

| Δy     | ý     | 0       | A        | P        | T       | R       | ( <b>u</b> | u <sup>2</sup> /2g | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_{rr}$ | F <sup>2</sup> m | $S_{o}-n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE         | ΔX        | ΣΔΧ      | HW     |
|--------|-------|---------|----------|----------|---------|---------|------------|--------------------|---------|------------------------------|----------------|-----------------------------------|------------------|--------------------------------------|------------|-----------|----------|--------|
|        | 4.500 | 4.99618 | 18.61307 | 12.49046 | 3.00000 | 1.49018 | 3.22354    | 0.16135            | 6.20436 | 3.9598E-04                   | 5.201E-02      |                                   |                  |                                      |            |           |          |        |
| -0,1   | 4.400 | 4,86822 | 18.30032 | 12.17055 | 3,24962 | 1.50366 | 3,27863    | 0.16692            | 5.63153 | 4.0474E-04                   | 5.928E-02      | 4.004E-04                         | 5.565E-02        | 4.5996E-03                           | -9.444E-02 | -20.53103 | -20 531  | 4,6504 |
| -0,1   | 4,300 | 4.74920 | 17.96412 | 11.87299 | 3.46987 | 1.51302 | 3,33999    | 0.17322            | 5.17717 | 4.1657E-04                   | 6.692E-02      | 4.107E-04                         | 6.310E-02        | 4.5893E-03                           | -9.369E-02 | -20.41471 | -40 946  | 4.5598 |
| -0,1   | 4.200 | 4.63712 | 17.60714 | 11,59279 | 3.66606 | 1.51880 | 3.40771    | 0.18032            | 4:80274 | 4.3143E-04                   | 7.509E-02      | 4.240E-04                         | 7 100E-02        | 4.5760E-03                           | -9.290E-02 | -20,30150 | -61.247  | 4.4705 |
| -0.1   | 4.100 | 4.53059 | 17.23159 | 11.32647 | 3.84187 | 1.52138 | 3.48198    | 0.18826            | 4.48520 | 4.4944E-04                   | 8.395E-02      | 4.404E-04                         | 7.952E-02        | 4.5596E-03                           | -9.205E-02 | -20.18791 | -81.435  | 4.3824 |
| -0.01  | 4.090 | 4:52020 | 17.19309 | 11.30050 | 3.85845 | 1.52144 | 3.48977    | 0.18911            | 4,45596 | 4.5142E-04                   | 8.488E-02      | 4.504E-04                         | 8 441E-02        | 4.5496E-03                           | -9.156E-03 | -2.01247  | -83,448  | 4:3737 |
| -0.01  | 4,080 | 4,50986 | 17 15442 | 11.27464 | 3.87484 | 1.52151 | 3,49764    | 0.18996            | 4.42713 | 4.5343E-04                   | 8-582E-02      | 4.524E-04                         | 8.535E-02        | 4.5476E-03                           | -9.147E-03 | -2.01130  | -85,459  | 4,3649 |
| -0.01  | 4.070 | 4.49955 | 17,11559 | 11.24888 | 3.89107 | 1.52154 | 3,50558    | 0.19082            | 4.39869 | 4.5548E-04                   | 8.676E-02      | 4.545E-04                         | 8.629E-02        | 4.5455E-03                           | -9.137E-03 | -2.01012  | -87 469  | 4.3562 |
| -0.01  | 4.060 | 4,48929 | 17 07660 | 11.22324 | 3.90712 | 1.52154 | 3.51358    | 0.19170            | 4,37063 | 4.5756E-04                   | 8 772E-02      | 4.565E-04                         | 8.724E-02        | 4.5435E-03                           | -9.128E-03 | -2.00894  | -89.478  | 4.3475 |
| -0.01  | 4,050 | 4.47908 | 17.03745 | 11.19770 | 3.92301 | 1.52151 | 3.52165    | 0.19258            | 4.34295 | 4.5967E-04                   | 8.869E-02      | 4.586E-04                         | 8.820E-02        | 4.5414E-03                           | -9.118E-03 | -2.00775  | -91.486  | 4.3389 |
| -0.01  | 4.040 | 4.46890 | 16,99814 | 11.17226 | 3,93873 | 1.52146 | 3,52980    | 0.19347            | 4.31564 | 4.6182E-04                   | 8.966E-02      | 4.607E-04                         | 8.917E-02        | 4.5393E-03                           | -9,108E-03 | -2.00656  | -93.492  | 4.3302 |
| -0.01  | 4.030 | 4.45877 | 16.95868 | 11.14692 | 3.95429 | 1:52138 | 3.53801    | 0.19437            | 4.28868 | 4.6401E-04                   | 9.054E-02      | 4.629E-04                         | 9 015E-02        | 4.5371E-03                           | -9.098E-03 | -2:00536  | -95,498  | 4.3216 |
| -0.01  | 4.020 | 4.44867 | 16.91906 | 11.12168 | 3.96969 | 1.52127 | 3.54630    | 0.19528            | 4.26207 | 4.6623E-04                   | 9.164E-02      | 4.651E-04                         | 9.114E-02        | 4.6349E-03                           | -9.089E-03 | -2.00415  | -97:502  | 4.3129 |
| -0.01  | 4.010 | 4,43861 | 16.87928 | 11.09653 | 3.98492 | 1.52113 | 3.55465    | 0.19620            | 4.23579 | 4.6848E-04                   | 9.264E-02      | 4.674E-04                         | 9.214E-02        | 4.5326E-03                           | -9.079E-03 | -2.00294  | -99.505  | 4,3043 |
| -0.001 | 4.009 | 4.43761 | 16.87530 | 11.09403 | 3.98644 | 1,52112 | 3,56549    | 0.19630            | 4.23318 | 4.6871E-04                   | 9.274E-02      | 4.686E-04                         | 9.269E-02        | 4.5314E-03                           | -9.073E-04 | -0.20023  | -99 705  | 4,3034 |
| -0.001 | 4.008 | 4.43661 | 16.87131 | 11.09152 | 3.98795 | 1.52110 | 3,55633    | 0,19639            | 4.23057 | 4.6894E-04                   | 9.284E-02      | 4.688E-04                         | 9.279E-02        | 4.5312E-03                           | -9.072E-04 | -0.20021  | -99.905  | 4.3026 |
| -0.004 | 4.007 | 4.43580 | 16.86732 | 11.08901 | 3.98946 | 1.52108 | 3.55717    | 0.19648            | 4.22797 | 4.6917E-04                   | 9/294E-02      | 4.691E-04                         | 9.289E-02        | 4.5309E-03                           | -9.071E-04 | -0.20020  | -100.105 | 4.3017 |
| -0,001 | 4,006 | 4.43460 | 16,86333 | 11.08650 | 3.99097 | 1.52107 | 3.55802    | 0.19658            | 4.22537 | 4.6940E-04                   | 9.305E-02      | 4.693E-04                         | 9.299E-02        | 4.5307E-03                           | -9.070E-04 | -0.20019  | -100.306 | 4.3009 |

 Table B-23 Case D 60 cfs: Manually Computed Outlet Control Headwater Depths

| Δу     | y     | Ð       | A        | Р        | ा       | R       | u           | u <sup>2</sup> /2g | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_{ro}$ | $F_m^2$ | $S_{\phi} n^2 u^2 / (\phi^2 R^{4/3})$ | ΔE         | ΔX        | ΣΔΧ      | HW     |
|--------|-------|---------|----------|----------|---------|---------|-------------|--------------------|---------|------------------------------|----------------|-----------------------------------|---------|---------------------------------------|------------|-----------|----------|--------|
|        | 4.500 | 4.99618 | 18.61307 | 12.49046 | 3,00000 | 1.49018 | 4,29805     | 0.28685            | 6.20436 | 7.0396E-04                   | 0.09247        |                                   |         |                                       |            |           |          |        |
| -0.1   | 4.400 | 4,86822 | 18,30032 | 12.17055 | 3.24962 | 1.50366 | 4.37151     | 0.29674            | 5.63153 | 7.1954E-04                   | 0.10539        | 7.1175E-04                        | 0.09893 | 4.2883E-03                            | -9,011E-02 | -21.01261 | -21.013  | 4.8451 |
| -0.1   | 4.300 | 4,74920 | 17 96412 | 11.87299 | 3.46987 | 1,51302 | 4.45332     | 0.30795            | 5.17717 | 7.4057E-04                   | 0.11896        | 7.3005E-04                        | 0.11218 | 4.2699E-03                            | -8.878E-02 | -20.79241 | -41.805  | 4,7619 |
| -0.1   | 4.200 | 4.63712 | 17.60714 | 11.59279 | 3.66606 | 1.51880 | 4.54361     | 0.32057            | 4.80274 | 7.6699E-04                   | 0.13349        | 7.5378E-04                        | 0.12623 | 4.2462E-03                            | -8.738E-02 | -20.57762 | -62,383  | 4.6808 |
| -0.1   | 4,100 | 4,53069 | 17.23159 | 11.32647 | 3.84187 | 1.52136 | 4.64264     | 0.33469            | 4.48520 | 7,9900E-04                   | 0.14924        | 7.8299E-04                        | 0.14137 | 4.2170E-03                            | -8.586E-02 | -20.36120 | -82,744  | 4.6020 |
| -0.01  | 4.090 | 4.52020 | 17 19309 | 11.30050 | 3.85845 | 1.52144 | 4.65303     | 0.33619            | 4 45596 | 8.0252E-04                   | 0,15089        | 8.0076E-04                        | 0.15007 | 4 1992E-03                            | -8.499E-03 | -2 02401  | -84,768  | 4,5943 |
| -0.01  | 4.080 | 4.50986 | 17 15442 | 11.27464 | 3.87484 | 1.52161 | 4,66352     | 0.33771            | 4.42713 | 8.0610E-04                   | 0.15256        | 8.0431E-04                        | 0.15173 | 4.1957E-03                            | -8.483E-03 | -2.02177  | -86,790  | 4,5866 |
| -0.01  | 4.070 | 4 49955 | 17 11559 | 11.24888 | 3.89107 | 1 52164 | 4.67410     | 0.33924            | 4.39869 | 8.0973E-04                   | 0.15425        | 8.0791E-04                        | 0.15341 | 4 1921E-03                            | -8.466E-03 | -2.01951  | -88.809  | 4.5789 |
| -0.01  | 4.060 | 4.48929 | 17.07660 | 11.22324 | 3,90712 | 1.52154 | 4.68477     | 0.34079            | 4.37063 | 8.1343E-04                   | 0.15595        | 8.1158E-04                        | 0.15510 | 4 1884E-03                            | -8.449E-03 | -2,01724  | -90.826  | 4.5712 |
| -0.01  | 4.050 | 4,47908 | 17.03745 | 11.19770 | 3.92301 | 1.52151 | 4.69554     | 0.34236            | 4.34295 | 8.1720E-04                   | 0.15766        | 8.1532E-04                        | 0,15680 | 4.1847E-03                            | -8.432E-03 | -2.01495  | -92.841  | 4.5635 |
| -0.01  | 4.040 | 4,46890 | 16.99814 | 11.17226 | 3.93873 | 1.52146 | 4 70640     | 0.34395            | 4.31564 | 8.2102E-04                   | 0.15940        | 8.1911E-04                        | 0.15853 | 4,1809E-03                            | -8.415E-03 | -2,01266  | -94.854  | 4:5559 |
| -0.01  | 4.030 | 4.45877 | 16.95868 | 11.14692 | 3.95429 | 1.52138 | 4.71735     | 0.34555            | 4.28868 | 8.2490E-04                   | 0.16114        | 8.2296E-04                        | 0.16027 | 4.1770E-03                            | -8.397E-03 | -2.01035  | -96.864  | 4.5483 |
| -0.01  | 4.020 | 4.44867 | 16.91906 | 11.12168 | 3.96969 | 1.52127 | 4,72840     | 0.34717            | 4.26207 | 8.2885E-04                   | 0.16291        | 8.2688E-04                        | 0.16203 | 4,1731E-03                            | -8.380E-03 | -2.00802  | -98.872  | 4.5408 |
| -0.001 | 4.019 | 4.44766 | 16,91509 | 11.11916 | 3,97122 | 1.52126 | 4.72951     | 0.34733            | 4.25942 | 8.2925E-04                   | 0,16309        | 8.2905E-04                        | 0.16300 | 4 1709E-03                            | -8.370E-04 | -0.20067  | -99.073  | 4,5400 |
| -0.001 | 4.018 | 4.44666 | 16.91111 | 11,11664 | 3,97275 | 1.52124 | 4,73062     | 0.34750            | 4.25678 | 8.2965E-04                   | 0.16327        | 8.2945E-04                        | 0.16318 | 4 1706E-03                            | -8.368E-04 | -0.20065  | -99.274  | 4.5392 |
| -0.001 | 4.017 | 4 44565 | 16.90714 | 11.11412 | 3.97427 | 1 52123 | 4.73173     | 0.34766            | 4.25415 | 8.3005E-04                   | 0.16344        | 8.2985E-04                        | 0.16336 | 4.1702E-03                            | -8.366E-04 | -0,20063  | -99.474  | 4.5385 |
| -0.001 | 4.016 | 4.44464 | 16,90317 | 11.11161 | 3,97580 | 1.52122 | 4,73284     | 0.34782            | 4.25151 | 8.3045E-04                   | 0.16362        | 8.3025E-04                        | 0.16353 | 4 1698E-03                            | -8.365E-04 | -0.20060  | -99.675  | 4.5377 |
| -0.001 | 4.015 | 4.44364 | 16 89919 | 11.10909 | 3.97732 | 1.52120 | 4,73395     | 0.34799            | 4.24889 | 8.3085E-04                   | 0.16380        | 8.3065E-04                        | 0.16371 | 4.1694E-03                            | -8.363E-04 | -0.20058  | -99.875  | 4.5370 |
| -0.001 | 4.014 | 4.44263 | 16.89521 | 11.10658 | 3.97885 | 1:52119 | 4 7 3 5 0 7 | 0.34815            | 4 24626 | 8.3125E-04                   | 0.16398        | 8.3105E-04                        | 0.16389 | 4 1690E-03                            | 8.361E-04  | -0.20056  | -100.076 | 4:5362 |
| -0.001 | 4.013 | 4.44163 | 16.89123 | 11.10407 | 3.98037 | 1.52118 | 4.73619     | 0.34831            | 4.24364 | 8.3165E-04                   | 0.16416        | 8.3145E-04                        | 0.16407 | 4.1685E-03                            | -8.359E-04 | -0.20053  | -100.277 | 4.5355 |
| -0.001 | 4.012 | 4,44062 | 16.88725 | 11.10156 | 3.98189 | 1.52116 | 4,73730     | 0.34848            | 4.24102 | 8.3205E-04                   | 0.16434        | 8.3185E-04                        | 0.16425 | 4,1681E-03                            | -8.358E-04 | -0.20051  | -100.477 | 4,5347 |

 Table B-24 Case D 80 cfs: Manually Computed Outlet Control Headwater Depths

|  | Table B-25 Case D 1 | 00 cfs: Manuall | v Computed Outlet | <b>Control Headwater Depths</b> |
|--|---------------------|-----------------|-------------------|---------------------------------|
|--|---------------------|-----------------|-------------------|---------------------------------|

| Δy     | у      | 0       | А        | Р        | Ţ       | R       | u –     | u²/2g   | D        | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | n²u²/(φ²R⁴⁄³)m | F <sup>2</sup> m | $S_{o}$ - $n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE          | ΔX         | ΣΔΧ       | HW      |
|--------|--------|---------|----------|----------|---------|---------|---------|---------|----------|------------------------------|----------------|----------------|------------------|------------------------------------------|-------------|------------|-----------|---------|
|        | 4,5000 | 4.99618 | 18.61307 | 12:49046 | 3.00000 | 1.49018 | 5.37257 | 0.44821 | 6.20436  | 1.0999E-03                   | 0 14448        |                |                  |                                          |             |            |           |         |
| -0,1   | 4,4000 | 4.86822 | 18.30032 | 12,17055 | 3.24962 | 1.50366 | 5.46439 | 0,46366 | 5.63153  | 1.1243E-03                   | 0.16466        | 1.1121E-03     | 0.15457          | 3:8879E-03                               | -8.4543E-02 | -21.745131 | -21.7451  | 5.09549 |
| -0.1   | 4.3000 | 4.74920 | 17.96412 | 11.87299 | 3.46987 | 1.51302 | 5.56665 | 0.48117 | 5.17717  | 1.1571E-03                   | 0.18588        | 1.1407E-03     | 0.17527          | 3.8593E-03                               | -8.2473E-02 | -21.369880 | -43.1150  | 5.02176 |
| -0.1   | 4.2000 | 4.63712 | 17.60714 | 11.59279 | 3.66606 | 1.51880 | 5.67951 | 0.50088 | 4.8027.4 | 1.1984E-03                   | 0.20858        | 1.1778E-03     | 0.19723          | 3.8222E-03                               | -8.0277E-02 | -21.002649 | -64.1177  | 4.95132 |
| -0.1   | 4.1000 | 4.53059 | 17.23159 | 11.32647 | 3.84187 | 1.52136 | 5 80329 | 0.52295 | 4.48520  | 1.2484E-03                   | 0.23319        | 1.2234E-03     | 0.22089          | 3.7766E-03                               | -7.7911E-02 | -20,630185 | -84.7478  | 4.88443 |
| -0.01  | 4.0900 | 4.52020 | 17,19309 | 11.30050 | 3.85845 | 1.52144 | 5.B1629 | 0.52530 | 4.45596  | 1,2539E-03                   | 0.23577        | 1.2512E-03     | 0.23448          | 3.7488E-03                               | -7.6552E-03 | -2.042025  | -86,7899  | 4.87795 |
| -0.01  | 4 0800 | 4.50986 | 17.15442 | 11.27464 | 3.87484 | 1.52151 | 5.82940 | 0.52767 | 4 42713  | 1.2595E-03                   | 0.23838        | 1.2567E-03     | 0.23708          | 3.7433E-03                               | -7 6292E-03 | -2.038119  | -88.8280  | 4.87150 |
| -0.01  | 4.0700 | 4.49955 | 17,11559 | 11.24888 | 3.89107 | 1.52154 | 5.84263 | 0.53007 | 4.39869  | 1.2652E-03                   | 0,24101        | 1.2624E-03     | 0.23970          | 3.7376E-03                               | -7.6030E-03 | -2.034187  | -90.8622  | 4.86510 |
| -0.01  | 4.0600 | 4.48929 | 17.07660 | 11 22324 | 3.90712 | 1.52154 | 5.85597 | 0.53249 | 4,37063  | 1.2710E-03                   | 0.24367        | 1.2681E-03     | 0.24234          | 3,7319E-03                               | -7 5766E-03 | -2.030229  | -92.8924  | 4.85873 |
| -0.01  | 4.0500 | 4.47908 | 17:03745 | 11,19770 | 3.92301 | 1.52151 | 5:86942 | 0,53494 | 4.34295  | 1.2769E-03                   | 0.24635        | 1.2739E-03     | 0.24501          | 3.7261E-03                               | -7 5499E-03 | -2.026243  | -94,9186  | 4:85241 |
| -0.01  | 4.0400 | 4.46890 | 16.99814 | 11.17226 | 3.93873 | 1.52146 | 5.88300 | 0.53742 | 4.31564  | 1.2828E-03                   | 0.24906        | 1.2799E-03     | 0.24770          | 3.7201E-03                               | -7.5230E-03 | -2.022228  | -96,9409  | 4.84613 |
| -0.01  | 4.0300 | 4.45877 | 16.95868 | 11.14692 | 3.95429 | 1.52138 | 5.89669 | 0.53992 | 4.28868  | 1.2889E-03                   | 0.25179        | 1.2859E-03     | 0.25042          | 3,7141E-03                               | -7.4958E-03 | -2.018182  | -98.9591  | 4.83988 |
| -0.001 | 4.0290 | 4.45776 | 16.95472 | 11.14439 | 3,95584 | 1.52137 | 5.89806 | 0.54017 | 4.28600  | 1.2895E-03                   | 0.25206        | 1.2892E-03     | 0.25193          | 3.7108E-03                               | -7 4807E-04 | -0.201595  | -99.1607  | 4.83926 |
| -0.001 | 4.0280 | 4.45674 | 16.95077 | 11.14186 | 3.95738 | 1.52136 | 5.89944 | 0.54043 | 4.28333  | 1.2901E-03                   | 0.25234        | 1.2898E-03     | 0.25220          | 3,7102E-03                               | -7.4780E-04 | -0.201554  | -99.3622  | 4.83864 |
| -0.001 | 4.0270 | 4.45573 | 16.94681 | 11.13933 | 3.95892 | 1.52135 | 5.90082 | 0.64068 | 4.28066  | 1.2908E-03                   | 0.25261        | 1.2904E-03     | 0.25248          | 3.7096E-03                               | -7.4752E-04 | -0.201513  | -99,5637  | 4.83802 |
| -0.001 | 4.0260 | 4.45472 | 16.94285 | 11.13681 | 3.96047 | 1.52134 | 5.90220 | 0.54093 | 4.27799  | 1.2914E-03                   | 0.25289        | 1.2911E-03     | 0.25275          | 3.7089E-03                               | -7.4725E-04 | -0.201472  | -99.7652  | 4.83740 |
| -0.001 | 4.0250 | 4.45371 | 16.99889 | 11.13428 | 3.96201 | 1 52133 | 5,90358 | 0.54118 | 4.27533  | 1 2920E-03                   | 0.25317        | 1,2917E-03     | 0.25303          | 3,7083E-03                               | -7 4697E-04 | -0.201431  | -99,9666  | 4.83678 |
| -0.001 | 4.0240 | 4.45270 | 16.93492 | 11.13176 | 3.96355 | 1 52132 | 5.90496 | 0,54144 | 4,27267  | 1.2926E-03                   | 0.25344        | 1.2923E-03     | 0.25330          | 3.7077E-03                               | -7.4670E-04 | -0.201390  | -100,1680 | 4.83615 |

| Δу     | у     | - 10    | A        | Р        | T.      | R       | u       | u <sup>2</sup> /2g | D        | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o}\text{-}n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE         | ΔX        | ΣΔΧ      | HW     |
|--------|-------|---------|----------|----------|---------|---------|---------|--------------------|----------|------------------------------|----------------|--------------------------------|------------------|---------------------------------------------|------------|-----------|----------|--------|
|        | 4.500 | 4.99618 | 18.61307 | 12.49046 | 3.00000 | 1 49018 | 6.44708 | 0.64542            | 6,20436  | 1.5839E-03                   | 0.20805        |                                |                  |                                             |            |           |          |        |
| -0.1   | 4,400 | 4.86822 | 18.30032 | 12.17055 | 3.24962 | 1.50366 | 6.55726 | 0.66767            | 5.63153  | 1.6190E-03                   | 0.23712        | 1.6014E-03                     | 0.22258          | 3.3986E-03                                  | -7,774E-02 | -22.87481 | -22.875  | 5.4015 |
| -0.1   | 4.300 | 4.74920 | 17.96412 | 11.87299 | 3.46987 | 1.51302 | 6.67998 | 0.69289            | 5 17717  | 1.6663E-03                   | 0.26767        | 1.6426E-03                     | 0.25239          | 3.3574E-03                                  | -7.476E-02 | -22.26752 | -45.142  | 5.3393 |
| -0.1   | 4.200 | 4.63712 | 17.60714 | 11.59279 | 3.66606 | 1.51880 | 6.81541 | 0.72127            | 4.80274  | 1.7257E-03                   | 0.30036        | 1.6960E-03                     | 0.28401          | 3.3040E-03                                  | -7.160E-02 | -21.67027 | -66.813  | 6.2819 |
| -0.1   | 4,100 | 4,53059 | 17.23159 | 11.32647 | 3.84187 | 1.52136 | 6.96395 | 0,75305            | 4,48520  | 1.7977E-03                   | 0.33579        | 1.7617E-03                     | 0.31808          | 3.2383E-03                                  | -6.819E-02 | -21.05832 | -87.871  | 5.2296 |
| -0.01  | 4.090 | 4.52020 | 17.19309 | 11,30050 | 3,85845 | 1.52144 | 6:97955 | 0.75643            | 4.45596  | 1.8057E-03                   | 0.33951        | 1.8017E-03                     | 0.33765          | 3.1983E-03                                  | -6,623E-03 | -2.07093  | -89.942  | 5,2246 |
| -0.01  | 4.080 | 4.50986 | 17_15442 | 11.27464 | 3.87484 | 1.52151 | 6.99528 | 0,75984            | 4.42713  | 1.8137E-03                   | 0.34327        | 1.8097E-03                     | 0,34139          | 3.1903E-03                                  | -6.586E-03 | -2.06440  | -92.006  | 5.2198 |
| -0.01  | 4 070 | 4.49955 | 17 11559 | 11.24888 | 3.89107 | 1.52154 | 7.01116 | 0.76330            | 4.39869  | 1 8219E-03                   | 0.34706        | 1.8178E-03                     | 0.34516          | 3.1822E-03                                  | -6.548E-03 | -2.05782  | -94.064  | 5.2149 |
| -0.01  | 4.060 | 4.48929 | 17.07660 | 11,22324 | 3.90712 | 1.52154 | 7.02716 | 0.76679            | 4.37063  | 1.8302E-03                   | 0.35088        | 1.8261E-03                     | 0.34897          | 3.1739E-03                                  | -6.510E-03 | -2.05118  | -96.115  | 5.2102 |
| -0.01  | 4,050 | 4.47908 | 17.03745 | 11.19770 | 3.92301 | 1.52151 | 7.04331 | 0,77031            | 4.34295  | 1.8387E-03                   | 0.35474        | 1.8345E-03                     | 0.35281          | 3.1655E-03                                  | -6.472E-03 | -2.04448  | -98,160  | 6,2055 |
| -0,001 | 4.049 | 4.47805 | 17.03353 | 11.19515 | 3.92459 | 1.52151 | 7.04493 | 0.77067            | 4.34021  | 1.8395E-03                   | 0.35513        | 1.8391E-03                     | 0.35494          | 3.1609E-03                                  | -6.451E-04 | -0.20408  | -98.364  | 5.2050 |
| -0.001 | 4.048 | 4.47704 | 17.02960 | 11.19260 | 3.92617 | 1.52151 | 7.04655 | 0.77102            | 4.337.46 | 1.8404E-03                   | 0.35552        | 1.8400E-03                     | 0.35532          | 3.1600E-03                                  | -6.447E-04 | -0.20401  | -98.568  | 6.2045 |
| -0.001 | 4.047 | 4.47602 | 17.02567 | 11,19005 | 3.92774 | 1.52150 | 7.04818 | 0,77138            | 4.33472  | 1.8413E-03                   | 0.35591        | 1.6408E-03                     | 0.35571          | 3.1592E-03                                  | -6.443E-04 | -0.20394  | -98.772  | 5.2041 |
| -0.001 | 4.046 | 4,47500 | 17.02175 | 11.18751 | 3,92932 | 1.52150 | 7.04981 | 0.77174            | 4.33199  | 1.8421E-03                   | 0.35630        | 1.8417E-03                     | 0,35610          | 3.1583E-03                                  | -6,439E-04 | -0.20387  | -98,976  | 5,2036 |
| -0.001 | 4.045 | 4.47399 | 17.01782 | 11,18496 | 3,93089 | 1.52149 | 7.05143 | 0,77209            | 4,32925  | 1.8430E-03                   | 0.35669        | 1.8425E-03                     | 0,35649          | 3.1575E-03                                  | -6.435E-04 | -0.20381  | -99,179  | 5.2031 |
| -0.001 | 4 044 | 4.47297 | 17 01388 | 11.18242 | 3.93246 | 1.52149 | 7.05306 | 0.77245            | 4.32652  | 1 8438E-03                   | 0.35708        | 1.8434E-03                     | 0.35688          | 3.1566E-03                                  | -6.431E-04 | -0.20374  | -99.383  | 5.2027 |
| -0,001 | 4.043 | 4.47195 | 17.00995 | 11.17988 | 3.93403 | 1.52148 | 7.05469 | 0,77281            | 4.32380  | 1.8447E-03                   | 0.35747        | 1.8443E-03                     | 0.35727          | 3.1557E-03                                  | -6.427E-04 | -0.20367  | -99.587  | 5.2022 |
| -0.001 | 4.042 | 4.47093 | 17.00602 | 11.17734 | 3,93560 | 1 52147 | 7.05633 | 0,77316            | 4.32107  | 1.8456E-03                   | 0.35786        | 1.8451E-03                     | 0.35766          | 3.1549E-03                                  | -6.423E-04 | -0.20360  | -99,790  | 5.2017 |
| -0.001 | 4.041 | 4.46992 | 17.00208 | 11.17479 | 3:93717 | 1 52147 | 7.05796 | 0.77352            | 4,31835  | 1.8464E-03                   | 0.35825        | 1.8460E-03                     | 0.35805          | 3.1540E-03                                  | -6.419E-04 | -0.20353  | -99 994  | 5,2013 |
| -0.001 | 4.040 | 4.46890 | 16.99814 | 11.17226 | 3.93873 | 1.52146 | 7.05960 | 0.77388            | 4.31564  | 1.8473E-03                   | 0.35864        | 1.8469E-03                     | 0.35844          | 3.1531E-03                                  | -6.416E-04 | -0.20347  | -100.197 | 5.2008 |
| -0.001 | 4.039 | 4,46789 | 16.99420 | 11.16972 | 3.94029 | 1.52145 | 7.06123 | 0.77424            | 4.31293  | 1.8482E-03                   | 0.35903        | 1.6477E-03                     | 0.35884          | 3.1523E-03                                  | -6.412E-04 | -0.20340  | -100.401 | 5.2004 |

Table B-26 Case D 120 cfs: Manually Computed Outlet Control Headwater Depths

| Δy     | У     | 0      | Α       | P        | т.     | R      | u u    | u²/2g  | D      | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o} n^2 u^2 / (\phi^2 R^{4/3})$ | ΔE         | ΔX       | ΣΔΧ       | HW     |
|--------|-------|--------|---------|----------|--------|--------|--------|--------|--------|------------------------------|----------------|--------------------------------|------------------|------------------------------------|------------|----------|-----------|--------|
|        | 4.500 | 4.9962 | 18.6131 | 12.4905  | 3.0000 | 1.4902 | 7.5216 | 0.8785 | 6.2044 | 2.1559E-03                   | 0,28318        |                                |                  |                                    |            |          |           |        |
| -0.1   | 4,400 | 4.8682 | 18.3003 | 12,1705  | 3,2496 | 1.5037 | 7,6501 | D.9088 | 5.6315 | 2.2036E-03                   | 0.32274        | 2.1797E-03                     | 0.30296          | 2.8203E-03                         | -6.970E-02 | -24,7153 | -24.7153  | 6.7632 |
| -0.1   | 4.300 | 4,7492 | 17.9641 | 11.8730  | 3.4699 | 1:5130 | 7.7933 | 0.9431 | 5 1772 | 2:2680E-03                   | 0.36433        | 2.2358E-03                     | D.34354          | 2.7642E-03                         | -6.565E-02 | -23.7486 | -48.4639  | 5.7147 |
| -0.1   | 4.200 | 4.6371 | 17.6071 | 11:5928  | 3.6661 | 1.5188 | 7.9513 | 0.9817 | 4.8027 | 2.3489E-03                   | 0.40882        | 2.3084E-03                     | 0.38658          | 2.6916E-03                         | -6.134E-02 | -22.7907 | -71.2547  | 5.6726 |
| -0.01  | 4:190 | 4.6262 | 17.5704 | 11.5656  | 3.6845 | 1.5192 | 7.9679 | 0.9858 | 4.7687 | 2.3579E-03                   | 0,41346        | 2.3534E-03                     | 0.41114          | 2.6466E-03                         | -5.889E-03 | -2 2250  | -73:4796  | 5.6688 |
| -0.01  | 4.180 | 4.6154 | 17:5336 | 11:5385  | 3,7028 | 1.5196 | 7,9847 | 0.9900 | 4.7352 | 2,3671E-03                   | 0 41814        | 2.3625E-03                     | 0.41580          | 2,6375E-03                         | -5.842E-03 | -2.2150  | -75,6946  | 5.6650 |
| -0,01  | 4.170 | 4,6046 | 17.4963 | 11 51 16 | 3,7208 | 1,5199 | 8,0017 | 0 9942 | 4.7023 | 2/3765E-03                   | 0.42286        | 2.3718E-03                     | 0.42050          | 2,6282E-03                         | -5.795E-03 | -2.2049  | -77,8996  | 6,6613 |
| -0.01  | 4.160 | 4.5939 | 17.4590 | 11.4848  | 3.7387 | 1.5202 | 8.0188 | 0.9985 | 4.6699 | 2:3860E-03                   | 0 42762        | 2.3813E-03                     | 0.42524          | 2.6187E-03                         | -5.748E-03 | -2 1948  | -80.0944  | 5.6577 |
| -0.01  | 4.150 | 4.5832 | 17.4216 | 11.4581  | 3.7563 | 1.6205 | 8.0360 | 1.0028 | 4,6379 | 2.3957E-03                   | 0.43242        | 2,3909E-03                     | 0.43002          | 2,6091E-03                         | -5,700E-03 | -2 1846  | -82.2789  | 5.6541 |
| -0.01  | 4,140 | 4.5726 | 17.3839 | 11.4315  | 3,7738 | 1.5207 | 8.0534 | 1.0071 | 4.6065 | 2.4056E-03                   | 0.43726        | 2.4007E-03                     | 0.43484          | 2.5993E-03                         | -5.652E-03 | -2.1743  | -84.4532  | 5.6507 |
| -0.01  | 4.130 | 4.5620 | 17.3461 | 11 4051  | 3,7911 | 1.5209 | 8.0710 | 1.0115 | 4 5755 | 2:4157E-03                   | 0.44214        | 2.4106E-03                     | D.43970          | 2.5894E-03                         | -5.603E-03 | -2 1639  | -86:6171  | 5:6473 |
| -0.01  | 4.120 | 4.5515 | 17.3081 | 11.3788  | 3.8082 | 1.5211 | 8.0887 | 1.0159 | 4.5450 | 2.4259E-03                   | 0.44707        | 2.4208E-03                     | 0.44460          | 2.5792E-03                         | -5.554E-03 | -2.1534  | -88.7704  | 5.8439 |
| -0.01  | 4:110 | 4.5410 | 17.2699 | 11.3526  | 3.8251 | 1.5212 | 8.1066 | 1.0204 | 4.5149 | 2.4363E-03                   | 0,45204        | 2.4311E-03                     | 0.44955          | 2,5689E-03                         | -5.504E-03 | -2.1428  | -90.9132  | 5.6407 |
| -0.01  | 4.100 | 4,5306 | 17 2316 | 11.3265  | 3,8419 | 1,5214 | 8,1246 | 1.0250 | 4.4852 | 2.4469E-03                   | 0.45705        | 2.4416E-03                     | 0.45455          | 2 5584E-03                         | -5.455E-03 | -2.1320  | -93,0452  | 5.6375 |
| -0,01  | 4.090 | 4,5202 | 17,1931 | 11.3005  | 3.8584 | 1.5214 | 8.1428 | 1,0296 | 4.4560 | 2.4577E-03                   | 0.46212        | 2.4523E-03                     | 0.45958          | 2.5477E-03                         | -5,404E-03 | -2.1212  | -95.1664  | 5.6344 |
| -0.01  | 4.080 | 4.5099 | 17 1544 | 11.2746  | 3.8748 | 1.5215 | 8.1612 | 1.0342 | 4.4271 | 2.4687E-03                   | 0.46722        | 2.4632E-03                     | 0.46467          | 2.6368E-03                         | -5.353E-03 | -2.1102  | -97.2767  | 5.6313 |
| -0.01  | 4.070 | 4.4996 | 17.1156 | 11.2489  | 3,8911 | 1.6215 | 8,1797 | 1.0389 | 4.3987 | 2.4798E-03                   | 0.47238        | 2.4742E-03                     | 0.46980          | 2,5258E-03                         | -5.302E-03 | -2.0992  | -99.3758  | 5.6284 |
| -0,001 | 4,069 | 4.4985 | 17 1117 | 11.2463  | 3.8927 | 1.5215 | 8,1815 | 1.0394 | 4.3959 | 2.4809E-03                   | 0.47290        | 2.4804E-03                     | 0.47264          | 2.5196E-03                         | -5.274E-04 | -0.2093  | -99.5851  | 5.6281 |
| -0.001 | 4.068 | 4.4975 | 17.1078 | 11.2437  | 3.8943 | 1:5215 | 8:1834 | 1.0399 | 4.3930 | 2:4821E-03                   | 0.47342        | 2.4815E-03                     | D.47316          | 2.5185E-03                         | -5:268E-D4 | -0.2092  | -99.7943  | 5:6278 |
| -0.001 | 4.067 | 4.4965 | 17.1039 | 11.2412  | 3.8959 | 1.5215 | 8.1853 | 1.0403 | 4.3902 | 2:4832E-03                   | 0.47394        | 2.4826E-03                     | 0.47368          | 2:5174E-03                         | -5.263E-04 | -0.2091  | -100.0034 | 5.6275 |
| -0.001 | 4.066 | 4,4954 | 17,1000 | 11.2386  | 3.8975 | 1.5215 | 8.1871 | 1.0408 | 4.3874 | 2.4843E-03                   | 0.47446        | 2.4838E-03                     | 0.47420          | 2.5162E-03                         | -5.258E-04 | -0.2090  | -100.2124 | 5.6272 |

Table B-27 Case D 140 cfs: Manually Computed Outlet Control Headwater Depths

| Δy     | y .   | <b>0</b> 0 | Α       | ( <b>P</b> ? | TE .   | R      | - U    | u²/2g  | D      | n²u²/(φ²R <sup>4/3</sup> ) | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o}$ - $n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE         | ΔX        | ΣΔΧ      | HW     |
|--------|-------|------------|---------|--------------|--------|--------|--------|--------|--------|----------------------------|----------------|--------------------------------|------------------|------------------------------------------|------------|-----------|----------|--------|
|        | 4.500 | 4.9962     | 18.6131 | 12.4905      | 3.0000 | 1.4902 | 8.5961 | 1.1474 | 6,2044 | 2.8158E-03                 | 0.3699         |                                |                  |                                          |            |           |          |        |
| -0.1   | 4.400 | 4.8682     | 18.3003 | 12.1705      | 3.2495 | 1.6037 | 8,7430 | 1.1870 | 5.6315 | 2.8782E-03                 | 0.4215         | 2.8470E-03                     | 0.3957           | 2.1530E-03                               | -6.043E-02 | -28.06747 | -28.067  | 6,1804 |
| -0.1   | 4.300 | 4.7492     | 17:9641 | 11.8730      | 3.4699 | 1.5130 | 8.9066 | 1.2318 | 5.1772 | 2.9623E-03                 | 0.4759         | 2.9202E-03                     | 0.4487           | 2:0798E-03                               | -5.513E-02 | -26.50745 | -54.575  | 6.1477 |
| -0.1   | 4.200 | 4.6371     | 17.6071 | 11.5928      | 3.6661 | 1:5188 | 9.0872 | 1.2823 | 4.8027 | 3.0680E-03                 | 0.5340         | 3.0151E-03                     | 0.5049           | 1.9849E-03                               | -4.951E-02 | -24.94276 | -79.518  | 6.1234 |
| -0.01  | 4,190 | 4.6262     | 17.5704 | 11.5656      | 3.6845 | 1.5192 | 9.1062 | 1.2876 | 4,7687 | 3.0797E-03                 | 0.5400         | 3.0739E-03                     | 0.5370           | 1.9261E-03                               | -4.630E-03 | -2.40377  | -81.921  | 6.1214 |
| -0,01  | 4 180 | 4.6154     | 17:5335 | 11:5385      | 3.7028 | 1.5196 | 9.1254 | 1.2931 | 4.7362 | 3.0918E-03                 | 0.5461         | 3.0858E-03                     | 0.5431           | 1.9142E-03                               | -4.569E-03 | -2.38690  | -84.308  | 6,1196 |
| -0.01  | 4 170 | 4.6046     | 17.4963 | 11.5116      | 3,7208 | 1.5199 | 9.1448 | 1.2986 | 4,7023 | 3.1040E-03                 | 0.5523         | 3.0979E-03                     | 0 5492           | 1.9021E-03                               | -4.508E-03 | -2.36984  | -86.678  | 6,1178 |
| -0.01  | 4 160 | 4,5939     | 17.4590 | 11.4848      | 3.7387 | 1.5202 | 9.1643 | 1.3041 | 4,6699 | 3.1164E-03                 | 0.5585         | 3.1102E-03                     | 0.5554           | 1.8898E-03                               | -4.446E-03 | -2.35257  | -89.031  | 6.1162 |
| -0.01  | 4 150 | 4.5832     | 17,4216 | 11.4581      | 3,7563 | 1.6205 | 9.1840 | 1.3097 | 4.6379 | 3.1291E-03                 | 0.5648         | 3.1228E-03                     | 0.5617           | 1.8772E-03                               | -4.383E-03 | -2.33507  | -91,366  | 6.1146 |
| -0.01  | 4 140 | 4 5726     | 17.3839 | 11.4315      | 3,7738 | 1.5207 | 9,2039 | 1.3154 | 4,6065 | 3.1420E-03                 | 0.5711         | 3.1356E-03                     | 0.5680           | 1.8644E-03                               | -4,320E-03 | -2.31733  | -93.683  | 6,1131 |
| -0,01  | 4 130 | 4.5620     | 17.3461 | 11.4051      | 3,7911 | 1.5209 | 9.2240 | 1.3211 | 4.5755 | 3 1552E-03                 | 0.5775         | 3 1486E-03                     | 0.5743           | 1.8514E-03                               | -4.257E-03 | -2.29933  | -95.982  | 6.1117 |
| -0.01  | 4.120 | 4.5515     | 17.3081 | 11.3788      | 3.8082 | 1:5211 | 9.2442 | 1.3270 | 4.5450 | 3.1685E-03                 | 0.5839         | 3.1619E-03                     | 0.5807           | 1.8381E-03                               | -4.193E-D3 | -2.28106  | -98.264  | 6.1104 |
| -0.001 | 4,119 | 4.5505     | 17.3043 | 11.3761      | 3.8099 | 1.5211 | 9.2463 | 1.3275 | 4.5419 | 3.1699E-03                 | 0.5846         | 3.1692E-03                     | 0.5842           | 1.8308E-03                               | -4:158E-04 | -0.22709  | -98.491  | 6.1103 |
| -0.001 | 4 118 | 4 5494     | 17.3005 | 11.3735      | 3.8116 | 1.5211 | 9.2483 | 1.3281 | 4,5389 | 3.1712E-03                 | 0.5852         | 3.1706E-03                     | 0.5849           | 1.8294E-03                               | -4.161E-04 | -0.22690  | -98 718  | 6,1102 |
| -0.001 | 4 117 | 4.5484     | 17.2967 | 11.3709      | 3,8133 | 1.5211 | 9.2503 | 1,3287 | 4,5359 | 3.1726E-03                 | 0.5859         | 3.1719E-03                     | 0.5855           | 1.8281E-03                               | -4.145E-04 | -0.22672  | -98 944  | 6,1101 |
| -0.001 | 4.116 | 4 5473     | 17.2928 | 11.3683      | 3:8150 | 1.5212 | 9.2524 | 1.3293 | 4.5329 | 3.1740E-03                 | 0.5865         | 3.1733E-03                     | 0.5862           | 1.8267E-03                               | -4.138E-04 | -0.22653  | -99 171  | 6.1099 |
| -0,001 | 4 115 | 4.5463     | 17,2890 | 11.3656      | 3.8167 | 1.6212 | 9.2544 | 1.3299 | 4.5299 | 3.1753E-03                 | 0.5872         | 3.1746E-03                     | 0.5868           | 1.8254E-03                               | -4.132E-04 | -0.22634  | -99.397  | 6.1098 |
| -0,001 | 4.114 | 4 5452     | 17.2852 | 11,3630      | 3.8184 | 1.5212 | 9.2565 | 1.3305 | 4.5268 | 3.1767E-03                 | 0.5878         | 3.1760E-03                     | 0.5875           | 1.8240E-03                               | -4.125E-04 | -0.22616  | -99,623  | 6,1097 |
| -0.001 | 4,113 | 4.5442     | 17.2814 | 11.3604      | 3.8201 | 1.5212 | 9.2585 | 1.3311 | 4:5238 | 3 1780E-03                 | 0.5885         | 3.1774E-03                     | 0,5881           | 1.8226E-03                               | -4.119E-D4 | -0.22597  | -99.849  | 6.1096 |
| -0.001 | 4.112 | 4.5431     | 17.2776 | 11.3578      | 3.8218 | 1.5212 | 9.2606 | 1.3316 | 4.5208 | 3.1794E-03                 | 0.6891         | 3.1787E-03                     | 0.5888           | 1.8213E-03                               | -4.112E-D4 | -0.22578  | -100.075 | 6.1095 |
| -0.001 | 4.111 | 4.5421     | 17.2738 | 11.3552      | 3.8234 | 1.5212 | 9.2626 | 1.3322 | 4.5179 | 3.1608E-03                 | 0.5898         | 3.1601E-03                     | 0.5894           | 1.8199E-03                               | -4:106E-04 | -0.22559  | -100.301 | 6.1094 |

Table B-28 Case D 160 cfs: Manually Computed Outlet Control Headwater Depths

| Δy     | y     | 8       | A        | Р        | <b>1</b> 0 | R       | u        | u²/Zg   | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | n²u²/(φ²R <sup>4/3</sup> ), | F <sup>2</sup> m | $S_{o}\text{-}n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE         | ΔX       | ΣΔΧ       | HW      |
|--------|-------|---------|----------|----------|------------|---------|----------|---------|---------|------------------------------|----------------|-----------------------------|------------------|---------------------------------------------|------------|----------|-----------|---------|
|        | 4.500 | 4.99618 | 18.61307 | 12.49046 | 3.00000    | 1.49018 | 9.67062  | 1.45219 | 6.20436 | 3.5638E-03                   | 0.46812        |                             |                  |                                             |            |          |           |         |
| -0.1   | 4,400 | 4,86822 | 18,30032 | 12,17055 | 3.24962    | 1.60366 | 9,83589  | 1.50225 | 5.63153 | 3.6427E-03                   | 0.53351        | 3,6032E-03                  | 0.50082          | 1.3968E-03                                  | -4.992E-02 | -35,7385 | -35.7385  | 6.65337 |
| -0.1   | 4,300 | 4.74920 | 17.96412 | 11.87299 | 3.46987    | 1.51302 | 10.01997 | 1.55900 | 5 17717 | 3.7491E-03                   | 0.60226        | 3.6959E-03                  | 0.56789          | 1.3041E-03                                  | -4:321E-02 | -33:1347 | -68.8732  | 6.63850 |
| -0.01  | 4.290 | 4.73770 | 17.92932 | 11.84426 | 3.49050    | 1.51376 | 10.03942 | 1.56506 | 5.13660 | 3.7613E-03                   | 0.60938        | 3.7552E-03                  | 0.60582          | 1.2448E-03                                  | -3.942E-03 | -3.1666  | -72.0398  | 6.63759 |
| -0.01  | 4,290 | 4.72628 | 17.89432 | 11.81569 | 3.51090    | 1 51445 | 10.05906 | 1.57119 | 5.09679 | 3.7737E-03                   | 0.61654        | 3.7675E-03                  | 0.61296          | 1.2325E-03                                  | -3.870E-03 | -3 1402  | -75.1900  | 6.63679 |
| -0.01  | 4.270 | 4.71492 | 17.85911 | 11.78729 | 3.63106    | 1.51512 | 10.07889 | 1 57739 | 5.05771 | 3.7864E-03                   | 0.62376        | 3.7800E-03                  | 0.62015          | 1.2200E-03                                  | -3.799E-03 | -3,1136  | -78.2935  | 6,63609 |
| -0.01  | 4.260 | 4.70362 | 17.82370 | 11,75905 | 3.55100    | 1.51574 | 10.09892 | 1.58367 | 5.01935 | 3.7993E-03                   | 0.63102        | 3.7928E-03                  | 0.62739          | 1.2072E-03                                  | -3.726E-03 | -3.0866  | -81,3802  | 6 63650 |
| -0.01  | 4.250 | 4.69239 | 17 78809 | 11.73097 | 3 57071    | 1.51634 | 10.11913 | 1 59001 | 4.98166 | 3.8126E-03                   | 0.63835        | 3 8059E-03                  | 0 63469          | 1.1941E-03                                  | -3.653E-03 | -3.0594  | -84 4396  | 6,63602 |
| -0.01  | 4.240 | 4.68122 | 17 75228 | 11,70304 | 3.59021    | 1.51689 | 10,13954 | 1.59643 | 4 94464 | 3.8261E-03                   | 0.64572        | 3.8193E-03                  | 0.64203          | 1.1807E-03                                  | -3.580E-03 | -3.0318  | -87 4714  | 6.63465 |
| -0,01  | 4,230 | 4,67010 | 17.71628 | 11.67526 | 3.60949    | 1.51742 | 10.16014 | 1.60293 | 4,90825 | 3.8399E-03                   | 0.65316        | 3.8330E-03                  | 0.64944          | 1.1670E-03                                  | -3.506E-03 | -3:0038  | -90.4753  | 6.63439 |
| -0.01  | 4,220 | 4.65905 | 17,68009 | 11.64763 | 3.62855    | 1.51791 | 10.18094 | 1.60950 | 4.87249 | 3.8539E-03                   | 0.66065        | 3.8469E-03                  | 0.65690          | 1.1531E-03                                  | -3.431E-03 | -2:9754  | -93.4507  | 6.63424 |
| -0.01  | 4.210 | 4.64806 | 17.64371 | 11.52014 | 3.64741    | 1.51837 | 10.20193 | 1.61614 | 4.83733 | 3.8683E-03                   | 0.66820        | 3.8611E-03                  | 0.66442          | 1.1389E-03                                  | -3.356E-03 | -2.9465  | -96.3972  | 6.63421 |
| -0.01  | 4,200 | 4.63712 | 17.60714 | 11.59279 | 3.66606    | 1 51680 | 10.22312 | 1.62286 | 4.80274 | 3.8829E-03                   | 0.67581        | 3.8756E-03                  | 0.67200          | 1.1244E-03                                  | -3.280E-03 | -2.9171  | -99.3143  | 6.63429 |
| -0.001 | 4.199 | 4.63603 | 17.60348 | 11.59007 | 3.66791    | 1.51884 | 10.22525 | 1.62354 | 4.79932 | 3.8844E-03                   | 0.67657        | 3.8836E-03                  | 0.67619          | 1_1164E-03                                  | -3.238E-04 | -0.2901  | -99.6043  | 6.63431 |
| -0.001 | 4.198 | 4.63494 | 17,59981 | 11.58734 | 3.66977    | 1 51888 | 10.22738 | 1.62421 | 4 79589 | 3.8859E-03                   | 0.67734        | 3.8851E-03                  | 0.67695          | 1.1149E-03                                  | -3.230E-04 | -0.2898  | -99.8941  | 6.63432 |
| -8.001 | 4 197 | 4.63385 | 17.59614 | 11.58462 | 3.67162    | 1.51892 | 10.22952 | 1.62489 | 4.79248 | 3.8873E-03                   | 0.67810        | 3.6866E-U3                  | 0.67772          | 1.1134E-03                                  | -3.223E-U4 | -0 2895  | -100 1636 | 6,63434 |
| -0.001 | 4.196 | 4.63276 | 17.59247 | 11.58189 | 3.67346    | 1.51896 | 10,23165 | 1.62557 | 4,78907 | 3.8888E-03                   | 0.67887        | 3.8881E-03                  | 0.67848          | 1.1119E-03                                  | -3.215E-04 | -0.2892  | -100.4727 | 6.63436 |
| -0.001 | 4,195 | 4,63167 | 17.58879 | 11.57917 | 3.67531    | 1.51900 | 10.23379 | 1.62625 | 4.78566 | 3.8903E-03                   | 0.67963        | 3.8896E-03                  | 0.67925          | 1.1104E-03                                  | -3.207E-04 | -0.2889  | -100,7616 | 6.63437 |

## Table B-29 Case D 180 cfs: Manually Computed Outlet Control Headwater Depths

| Δу     | ÿ     | 0      | Α       | Р       | T       | R      | a a     | u <sup>2</sup> /2g | D      | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | n <sup>2</sup> u <sup>2</sup> /(q <sup>2</sup> R <sup>4/3</sup> ) <sub>70</sub> | F <sup>2</sup> m | $S_o - n^2 u^2 / (\phi^2 R^{4/3})$ | ΔE         | ΔX        | ΣΔΧ       | HW      |
|--------|-------|--------|---------|---------|---------|--------|---------|--------------------|--------|------------------------------|----------------|---------------------------------------------------------------------------------|------------------|------------------------------------|------------|-----------|-----------|---------|
|        | 4.500 | 4.9962 | 18 6131 | 12,4905 | 3.0000  | 1.4902 | 10.7451 | 1.7928             | 6.2044 | 4.3997E-03                   | 0.57792        |                                                                                 |                  |                                    |            |           | 0         |         |
| -0.1   | 4.400 | 4.8682 | 18.3003 | 12,1705 | 3,2496  | 1.5037 | 10.9288 | 1.8546             | 5.6315 | 4.4971E-03                   | 0.66866        | 4.4484E-03                                                                      | 0.61829          | 5.5157E-04                         | -3.817E-02 | -69.20442 | -69.2044  | 7.18194 |
| -0.01  | 4,390 | 4.8560 | 18.2677 | 12,1399 | 3.2729  | 1 5048 | 10.9483 | 1.8613             | 5.5816 | 4 5087E-03                   | 0.66693        | 4.5029E-03                                                                      | 0.66279          | 4.9707E-04                         | -3.372E-03 | -6.78395  | -75.9884  | 7.18188 |
| -0.01  | 4.380 | 4.8438 | 18.2349 | 12,1094 | 3.2958  | 1.5058 | 10.9580 | 1.8680             | 5.5327 | 4.5207E-03                   | 0.67524        | 4.5147E-03                                                                      | 0.67109          | 4.8527E-04                         | -3.289E-03 | -6.77798  | -82:7663  | 7,18195 |
| -0.01  | 4.370 | 4.8317 | 18.2018 | 12.0792 | 3.3185  | 1.5069 | 10.9879 | 1.8748             | 5.4850 | 4.5330E-03                   | 0.68360        | 4.5269E-D3                                                                      | 0.67942          | 4.7314E-04                         | -3.206E-03 | -6.77560  | -89.5419  | 7.18214 |
| -0.001 | 4:369 | 4,8305 | 18.1985 | 12.0762 | 3.3207  | 1.5070 | 10.9899 | 1.8754             | 5.4802 | 4.5343E-03                   | 0.68444        | 4.5336E-03                                                                      | 0.68402          | 4.6636E-04                         | -3.160E-04 | -0.67754  | -90,2195  | 7.18217 |
| -0.001 | 4.368 | 4.8293 | 18.1951 | 12 0732 | 3,3230  | 1.5071 | 10,9919 | 1.8761             | 5.4755 | 4.5355E-03                   | 0.68528        | 4.5349E-03                                                                      | 0.68486          | 4.6511E-04                         | -3.151E-04 | -0.67756  | -90.8971  | 7.18219 |
| -0.001 | 4.367 | 4.8281 | 18,1918 | 12,0702 | 3,3252  | 1,5072 | 10.9939 | 1.8768             | 5.4708 | 4.5368E-03                   | 0,68612        | 4.5361E-03                                                                      | 0.68570          | 4.6386E-04                         | -3.143E-04 | -0.67758  | -91.5746  | 7.18222 |
| -0.001 | 4.366 | 4.8269 | 18 1885 | 12.0672 | 3.3275  | 1.5073 | 10.9960 | 1.8775             | 5.4661 | 4.5380E-03                   | 0,68696        | 4:5374E-03                                                                      | 0.68654          | 4.6260E-04                         | -3.135E-04 | -0.67761  | -92.2522  | 7.18225 |
| -0.001 | 4.365 | 4.8257 | 18,1852 | 12.0642 | 3.3297  | 1.5074 | 10.9980 | 1.8782             | 5.4615 | 4.5393E-03                   | 0.68780        | 4.5387E-03                                                                      | 0.68738          | 4.6134E-04                         | -3 126E-04 | -0.67764  | -92 9299  | 7,18228 |
| -0.001 | 4.364 | 4.8245 | 18,1818 | 12.0612 | 3.3320  | 1 5075 | 11.0000 | 1.8789             | 5.4568 | 4 5406E-03                   | 0.68864        | 4.5399E-03                                                                      | 0.68822          | 4.6008E-04                         | -3.118E-04 | -0.67767  | -93.6076  | 7.18232 |
| -0.001 | 4.363 | 4.8233 | 18.1785 | 12,0582 | 3.3342  | 1:5076 | 11.0020 | 1.8796             | 5.4521 | 4.5418E-03                   | 0.68948        | 4:5412E-03                                                                      | 0.68906          | 4.5881E-04                         | -3.109E-04 | -0.67771  | -94,2853  | 7,18235 |
| -0.001 | 4.362 | 4.8221 | 18.1752 | 12.0552 | 3.3364  | 1.5077 | 11.0040 | 1.8803             | 5.4475 | 4.5431E-03                   | 0.69032        | 4.5425E-03                                                                      | 0.68990          | 4.5754E-04                         | -3.101E-04 | -0.67776  | -94.9630  | 7.18238 |
| -0.001 | 4:361 | 4.8209 | 18.1718 | 12.0522 | 3.3387  | 1.5078 | 11.0060 | 1.8809             | 5.4428 | 4.5444E-03                   | 0.69116        | 4.5437E-03                                                                      | 0.69074          | 4.5626E-04                         | -3.093E-04 | -0.67780  | -95.6408  | 7.18242 |
| -0.001 | 4.360 | 4.8197 | 18.1685 | 12,0492 | 3,3409. | 1.5079 | 11.0081 | 1.8816             | 5.4382 | 4.5457E-03                   | 0.69201        | 4.5450E-03                                                                      | 0.69159          | 4.5499E-04                         | -3.084E-04 | -0,67785  | -96.3187  | 7.18246 |
| -0.001 | 4.359 | 4.8185 | 18,1652 | 12,0462 | 3,3431  | 1,5080 | 11,0101 | 1.6823             | 5.4336 | 4.5469E-03                   | 0,69285        | 4.5463E-03                                                                      | 0.69243          | 4.5371E-04                         | -3.076E-04 | -0.67791  | -96,9966  | 7,18250 |
| -0.001 | 4.358 | 4.8173 | 18 1618 | 12.0432 | 3.3463  | 1.5081 | 11.0121 | 1.6830             | 5.4290 | 4 5482E-03                   | 0,69369        | 4:5476E-03                                                                      | 0.69327          | 4.5242E-04                         | -3.067E-04 | -0.67797  | -97.6746  | 7.18254 |
| -0.001 | 4.357 | 4.8161 | 18,1585 | 12.0402 | 3.3476  | 1.5082 | 11.0141 | 1.8837             | 5.4244 | 4.5495E-03                   | 0.69454        | 4.5489E-03                                                                      | 0.69412          | 4.5113E-04                         | -3.059E-04 | -0.67803  | -98.3526  | 7,18258 |
| -0.001 | 4.356 | 4.8149 | 18,1551 | 12,0372 | 3.3498  | 1 5082 | 11.0162 | 1.8844             | 5.4198 | 4 5508E-03                   | 0.69538        | 4.5502E-03                                                                      | 0.69496          | 4.4984E-04                         | -3.050E-04 | -0.67810  | -99,0307  | 7.18262 |
| -0.001 | 4.355 | 4.8137 | 18.1518 | 12.0342 | 3,3520  | 1 5083 | 11.0182 | 1.6851             | 5.4152 | 4.6521E-03                   | 0.69623        | 4.5514E-03                                                                      | 0.69581          | 4.4855E-04                         | -3.042E-04 | -0.67817  | -99.7069  | 7 18266 |
| -0.001 | 4.354 | 4.8125 | 18.1484 | 12.0312 | 3.3542  | 1.5084 | 11.0203 | 1.8858             | 5.4106 | 4.5534E-03                   | 0.69707        | 4.5527E-03                                                                      | 0.69665          | 4:4725E-04                         | -3.033E-04 | -0.67825  | -100.3871 | 7.18271 |

Table B-30 Case D 200 cfs: Manually Computed Outlet Control Headwater Depths

#### **B.4** Outlet Velocity Computations

To compute the appropriate outlet velocities, critical and normal depth values were first compared to determine the hydraulic slope of the culvert. For hydraulically steep culverts, the downstream boundary condition was normal depth as long as the tailwater depth was less than normal. Tables B-31 through B-40 show the forewater computations used to determine the appropriate outlet depths for case A. Table B-41 shows the results of the outlet velocity computations for case A. Equation B-4 was used to compute the angle defining the top width of flow in the culvert, from which the area of flow was computed (Equation B-1). The velocity at the outlet was then computed by dividing the flow through the culvert by the area of flow.

| Table B-31 Case | A 30 cfs: | Manually | Computed | Outlet D | <b>epths</b> |
|-----------------|-----------|----------|----------|----------|--------------|
|-----------------|-----------|----------|----------|----------|--------------|

| Δy      | y       | 0       | Α       | P       | Ť       | R       | u       | u <sup>2</sup> /2g | Đ       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | n²u²/(φ²R⁴³)m | F <sup>2</sup> m | $S_{o}$ - $n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE        | ΔX      | ΣΔΧ     |
|---------|---------|---------|---------|---------|---------|---------|---------|--------------------|---------|------------------------------|----------------|---------------|------------------|------------------------------------------|-----------|---------|---------|
|         | 1.52025 | 2.33620 | 5.04718 | 5.84050 | 4.60004 | 0.86417 | 5.94392 | 0.64861            | 1.09720 | 2 7840E-03                   | 1.0000         |               |                  |                                          |           |         |         |
| -0.1    | 1.42025 | 2.24839 | 4.59160 | 5.62099 | 4.50961 | 0.81687 | 6.53366 | 0.66287            | 1.01818 | 3.6261E-03                   | 1.3021         | 3.2050E-03    | 1.1510           | 6.7950E-03                               | 1.510E-02 | 2 2227  | 2.223   |
| -0(1)   | 1.32025 | 2.15870 | 4 14562 | 5.39675 | 4.40826 | 0.76817 | 7.23666 | 0.81316            | 0.94042 | 4.8281E-03                   | 1.7294         | 4.2271E-03    | 1.5157           | 5.7729E-03                               | 5.157E-02 | 8.9333  | 11.156  |
| -0.1    | 1.22025 | 2.06680 | 3.71034 | 5 16700 | 4.29522 | 0.71808 | 8.08551 | 1 01515            | 0.86383 | 6.5943E-03                   | 2,3503         | 5.7112E-03    | 2.0398           | 4.2888E-03                               | 1.040E-01 | 24.2459 | 35.402  |
| -0.01   | 1.21025 | 2.05748 | 3:66745 | 5.14369 | 4.28324 | 0.71300 | 8:18007 | 1.03903            | 0,86623 | 6:8137E-03                   | 2.4270         | 6.7040E-03    | 2:3887           | 3.2960E-03                               | 1.389E-02 | 4.2132  | 39.615  |
| -0.01   | 1.20025 | 2.04812 | 3.62468 | 5.12031 | 4.27113 | 0.70790 | 8:27660 | 1.06370            | 0.84865 | 7.0425E-03                   | 2.5068         | 6.9281E-03    | 2.4669           | 3.0719E-03                               | 1.467E-02 | 4.7753  | 44.390  |
| -0.01   | 1.19025 | 2.03874 | 3.58203 | 5.09686 | 4.25890 | 0.70279 | 0.37514 | 1.08918            | 0.84107 | 7.2813E-03                   | 2.5900         | 7.1619E-03    | 2.5484           | 2.8381E-03                               | 1.548E-02 | 5.4557  | 49.846  |
| -0.01   | 1.18025 | 2.02934 | 3,53950 | 5.07335 | 4.24653 | 0.69767 | 8.47577 | 1,11551            | 0.83350 | 7.5304E-03                   | 2.6767         | 7.4058E-03    | 2 6333           | 2.5942E-03                               | 1,633E-02 | 6.2961  | 56,142  |
| -0.01   | 1 17025 | 2.01991 | 3.49710 | 5.04976 | 4.23403 | 0.69253 | 8.67854 | 1.14272            | 0.82595 | 7.7905E-03                   | 2,7671         | 7.6605E-03    | 2,7219           | 2.3396E-03                               | 1.722E-02 | 7.3599  | 63.502  |
| +0.01   | 1.16025 | 2.01044 | 3.45482 | 5.02611 | 4.22141 | 0.68737 | 8.68352 | 1.17086            | 0.81841 | 8.0623E-03                   | 2.8613         | 7 9264E-03    | 2 8142           | 2.0736E-03                               | 1.814E-02 | 8.7490  | 72,251  |
| -0,01   | 1.15025 | 2.00095 | 3.41267 | 5.00239 | 4.20864 | 0.68221 | 8.79077 | 1 19996            | 0.81087 | 8.3462E-03                   | 2.9597         | 8.2042E-03    | 29105            | 1.7958E-03                               | 1.911E-02 | 10,6389 | 82.890  |
| -0.01   | 1.14025 | 1.99144 | 3.37065 | 4.97859 | 4.19575 | 0.67703 | 8.90037 | 1 23007            | 0.80335 | 8.6430E-03                   | 3.0624         | 8.4946E-03    | 3.0110           | 1.5054E-03                               | 2.011E-02 | 13,3585 | 96.248  |
| -0,001  | 1.13925 | 1.99048 | 3:36645 | 4 97621 | 4.19445 | 0.67651 | 8:91146 | 1.23314            | 0,80260 | 8.6734E-03                   | 3.0729         | 8.6582E-03    | 3.0676           | 1.3418E-03                               | 2.068E-03 | 1.5409  | 97.769  |
| -0.0001 | 1.13915 | 1.99039 | 3.36603 | 4.97597 | 4:19432 | 0.67646 | 8:91257 | 1.23344            | 0.80252 | 8.6764E-03                   | 3.0739         | 8.6749E-03    | 3.0734           | 1.3251E-03                               | 2.073E-04 | 0.1565  | 97.946  |
| -0.0001 | 1.13905 | 1.99029 | 3.36561 | 4.97573 | 4.19419 | 0.67641 | 8.91368 | 1,23375            | 0.80245 | 8.6795E-03                   | 3.0750         | 8.6780E-03    | 3.0745           | 1.3220E-03                               | 2.074E-04 | 0.1569  | 98,103  |
| -0.0001 | 1.13895 | 1,99020 | 3,36519 | 4.97549 | 4.19406 | 0.67635 | 8.91479 | 1,23406            | 0.80237 | 8.6825E-03                   | 3.0760         | 8.6810E-03    | 3.0755           | 1.3190E-03                               | 2.076E-04 | 0.1574  | .98.260 |
| -0.0001 | 1 13885 | 1,99010 | 3.36478 | 4.97525 | 4.19393 | 0.67630 | 8.91590 | 1.23437            | 0.80230 | 8.6856E-03                   | 3.0771         | 8.6841E-03    | 3.0766           | 1.3159E-03                               | 2.077E-04 | 0.1578  | 98.418  |
| -0.0001 | 1.13875 | 1.99001 | 3.36436 | 4.97501 | 4.19380 | 0.67625 | 8.91701 | 1 23468            | 0.80222 | 8.6886E-03                   | 3.0781         | 8.6871E-03    | 3.0776           | 1.3129E-03                               | 2.078E-04 | 0.1582  | 98.576  |
| -0,0001 | 1.13865 | 1.98991 | 3.36394 | 4.97477 | 4.19367 | 0.67620 | 8,91812 | 1 23498            | 0.80215 | 8.6917E-03                   | 3.0792         | 8.6902E-03    | 3.0787           | 1.3098E-03                               | 2.079E-04 | 0.1587  | 98,735  |
| -0.0001 | 1.13855 | 1.98981 | 3,36352 | 4.97454 | 4.19354 | 0.67615 | 8.91923 | 1 23529            | 0.80207 | 8.6947E-03                   | 3.0803         | 8.6932E-03    | 3.0797           | 1.3068E-03                               | 2.080E-04 | 0.1691  | 98.894  |
| -0.0001 | 1.13845 | 1.98972 | 3.36310 | 4 97430 | 4.19341 | 0.67610 | 8:92035 | 1.23560            | 0,80200 | 8.6978E-03                   | 3.0813         | 8.6963E-03    | 3.0808           | 1.3037E-03                               | 2.081E-04 | 0,1595  | 99,054  |
| -0.0001 | 1.13835 | 1.98962 | 3.36268 | 4.97406 | 4:19328 | 0.67604 | 8:92146 | 1.23591            | 0.80192 | 8.7009E-03                   | 3.0824         | 8.6993E-03    | 3.0818           | 1.3007E-03                               | 2.082E-04 | 0.1601  | 99.214  |
| -0.0001 | 1.13825 | 1.98953 | 3.36226 | 4.97382 | 4.19315 | 0.67599 | 8.92257 | 1,23622            | 0.80185 | 8.7039E-03                   | 3.0834         | 8.7024E-03    | 3.0829           | 1.2976E-03                               | 2.083E-04 | 0.1605  | 99.374  |
| -0.0001 | 1.13815 | 1.98943 | 3.36184 | 4.97358 | 4.19302 | 0.67594 | 8.92368 | 1.23652            | 0.80177 | 8.7070E-03                   | 3.0845         | 8.7055E-03    | 3.0840           | 1.2945E-03                               | 2.084E-04 | 0.1610  | .99.535 |
| -0.0001 | 1 13805 | 1.98934 | 3.36142 | 4.97334 | 4.19289 | 0.67589 | 8.92480 | 1.23683            | 0.80169 | 8.7101E-03                   | 3.0855         | 8.7065E-03    | 3.0850           | 1.2915E-03                               | 2.085E-04 | 0.1614  | 99.697  |
| -0.0001 | 1.13795 | 1.98924 | 3.36100 | 4.97311 | 4.19276 | 0.67584 | 8.92591 | 1.23714            | 0.80162 | 8.7131E-03                   | 3.0866         | 8.7116E-03    | 3.0861           | 1.2884E-03                               | 2.086E-04 | 0.1619  | 99.859  |
| -0.0001 | 1.13785 | 1.98915 | 3 36058 | 4.97287 | 4.19263 | 0.67578 | 8.92702 | 1 23745            | 0.80154 | 8.7162E-03                   | 3.0877         | 8.7147E-03    | 3.0871           | 1.2853E-03                               | 2.087E-04 | 0.1624  | 100.021 |

|                                             |             | -  |
|---------------------------------------------|-------------|----|
| Table B-32 Case A 60 cfs: Manually Computed | Outlet Dept | hs |

| ∆у      | y y     | 0       | А       | P       | ा       | R       | ů.       | u <sup>2</sup> /2g | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | n²u²/(φ²R4/3)m | F <sup>2</sup> m | $S_{o}$ - $u^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE        | ΔX      | ΣΔΧ      |
|---------|---------|---------|---------|---------|---------|---------|----------|--------------------|---------|------------------------------|----------------|----------------|------------------|------------------------------------------|-----------|---------|----------|
|         | 2,17858 | 2.88374 | 8.21482 | 7.20936 | 4.95850 | 1.13947 | 7.30387  | 0.82836            | 1,65671 | 2.9073E-03                   | 1.00001        |                |                  |                                          |           |         |          |
| -0,1    | 2.07858 | 2.80284 | 7.72040 | 7.00710 | 4 92845 | 1.10180 | 7,77161  | 0.93786            | 1,56650 | 3.4425E-03                   | 1.19739        | 3,1749E-03     | 1.09870          | 6.8251E-03                               | 9.870E-03 | 1.4461  | 1,4461   |
| -0.1    | 1.97858 | 2:72137 | 7.22941 | 6.80343 | 4.89004 | 1.06261 | 8.29943  | 1.06957            | 1.47839 | 4.1202E-03                   | 1.44694        | 3.7814E-03     | 1.32217          | 6.2186E-03                               | 3.222E-02 | 5.1807  | 6.6268   |
| -0.1    | 1.87868 | 2.63919 | 6.74268 | 6.59798 | 4.84307 | 1.02193 | 8.89854  | 1.22956            | 1.39223 | 4 9896E-03                   | 1.76832        | 4.5549E-03     | 1.60663          | 5.4451E-03                               | 6.066E-02 | 11.1409 | 17.7677  |
| -0.1    | 1,77858 | 2.55613 | 6.26109 | 6,39033 | 4.78730 | 0.97978 | 9.58300  | 1.42599            | 1.30785 | 6.1210E-03                   | 2,18066        | 5.5553E-03     | 1,97349          | 4.4447E-03                               | 9.735E-02 | 21.9023 | 39.6700  |
| -0,1    | 1.67858 | 2.47202 | 5.78553 | 6,18005 | 4.72240 | 0.93616 | 10.37071 | 1.67006            | 1.22512 | 7.6174E-03                   | 2.72635        | 6,8692E-03     | 2.45350          | 3.1308E-03                               | 1.454E-01 | 46.4259 | 86.0959  |
| -0,01   | 1.66858 | 2.46354 | 5.73834 | 6,15886 | 4.71540 | 0.93172 | 10.45599 | 1.69764            | 1.21694 | 7.7924E-03                   | 2,79002        | 7.7049E-03     | 2.75818          | 2.2951E-03                               | 1.758E-02 | 7 6606  | 93.7565  |
| -0.001  | 1.66758 | 2.46269 | 5.73362 | 6.15674 | 4.71469 | 0.93128 | 10.46459 | 1.70043            | 1.21612 | 7.8102E-03                   | 2.79649        | 7.8013E-03     | 2 79325          | 2.1987E-03                               | 1.793E-03 | 0.8156  | 94.5721  |
| -0.001  | 1.66658 | 2.46185 | 5.72891 | 6,15462 | 4 71398 | 0.93083 | 10.47320 | 1,70323            | 1.21530 | 7.8281E-03                   | 2.80298        | 7.8191E-03     | 2.79973          | 2 1809E-03                               | 1.800E-03 | 0.8252  | 95.3973  |
| -0.001  | 1.66558 | 2.46100 | 5.72419 | 6.15249 | 4 71328 | 0.93039 | 10.48183 | 1.70604            | 1.21448 | 7.8460E-03                   | 2.80948        | 7.8370E-03     | 2.80623          | 2.1630E-03                               | 1.806E-03 | 0.8351  | 96.2324  |
| -0,001  | 1.66458 | 2:46015 | 5.71948 | 6 15037 | 4,71257 | 0.92994 | 10.49046 | 1,70885            | 1.21367 | 7.8639E-03                   | 2.81601        | 7.8549E-03     | 2.81275          | 2 1451E-03                               | 1.813E-03 | 0.8451  | 97.0775  |
| -0.001  | 1.66358 | 2.45930 | 5.71477 | 6.14825 | 4.71186 | 0.92950 | 10.49911 | 1.71167            | 1.21285 | 7.8819E-03                   | 2.82256        | 7.8729E-03     | 2.81929          | 2.1271E-03                               | 1.819E-03 | 0.8553  | 97.9328  |
| -0.001  | 1,66258 | 2.45845 | 5.71006 | 6.14613 | 4.71115 | 0.92905 | 10.50778 | 1.71449            | 1.21203 | 7.9000E-03                   | 2.82912        | 7.8910E-03     | 2.82584          | 2.1090E-03                               | 1.826E-03 | 0.8657  | 98,7985  |
| -0,001  | 1.66158 | 2.45760 | 5.70535 | 6,14400 | 4 71044 | 0.92860 | 10.51645 | 1.71733            | 1.21121 | 7 9181E-03                   | 2.83571        | 7.9090E-03     | 2,83242          | 2,0910E-03                               | 1.832E-03 | 0.8764  | .99.6749 |
| -0.0001 | 1.66148 | 2.45752 | 5.70488 | 6 14379 | 4.71037 | 0.92856 | 10.51732 | 1.71761            | 1.21113 | 7.9199E-03                   | 2.83637        | 7.9190E-03     | 2 83604          | 2.0810E-03                               | 1.836E-04 | 0.0882  | 99.7631  |
| -0.0001 | 1.66138 | 2 45743 | 5.70440 | 6.14358 | 4.71029 | 0.92851 | 10.51819 | 1.71789            | 1.21105 | 7.9217E-03                   | 2.83703        | 7.9208E-03     | 2,83670          | 2.0792E-03                               | 1.837E-04 | 0.0883  | 99.8514  |
| -0.0001 | 1.66128 | 2.45735 | 5.70393 | 6 14337 | 4,71022 | 0.92847 | 10.51906 | 1,71818            | 1.21097 | 7 9235E-03                   | 2.83769        | 7.9226E-03     | 2.83736          | 2.0774E-03                               | 1.837E-04 | 0.0884  | 99 9399  |
| -0.0001 | 1,66118 | 2.45726 | 5.70346 | 6,14316 | 4.71015 | 0.92843 | 10.51993 | 1,71846            | 1,21089 | 7.9254E-03                   | 2,83835        | 7 9245E-03     | 2,83802          | 2.0755E-03                               | 1.838E-04 | 0.0886  | 100 0284 |
| -0.0001 | 1.66108 | 2:45718 | 5.70299 | 6 14294 | 4,71008 | 0.92838 | 10.52079 | 1.71874            | 1.21081 | 7.9272E-03                   | 2.83901        | 7.9263E-03     | 2.83868          | 2.0737E-03                               | 1.839E-04 | 0.0887  | 100,1171 |
| -0.0001 | 1.66098 | 2.45709 | 5.70252 | 6.14273 | 4.71001 | 0.92834 | 10.52166 | 1.71903            | 1.21072 | 7.9290E-03                   | 2.83967        | 7.9281E-03     | 2.83934          | 2.0719E-03                               | 1.839E-04 | 0.0888  | 100.2059 |
| -0.0001 | 1.66068 | 2.45701 | 5.70205 | 6,14252 | 4.70994 | 0.92829 | 10.52253 | 1.71931            | 1.21064 | 7.9308E-03                   | 2.84033        | 7.9299E-03     | 2.84000          | 2.0701E-03                               | 1.840E-04 | 0.0869  | 100.2947 |

| Δy     | y        |          | A        | P        | T         | R        | Q        | u%2g        | D           | n²u²/(φ²Rª²³) | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o}-n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE       | ΔX       | ΣΔΧ      |
|--------|----------|----------|----------|----------|-----------|----------|----------|-------------|-------------|---------------|----------------|--------------------------------|------------------|--------------------------------------|----------|----------|----------|
|        | 2.693419 | 3,296482 | 10,78361 | 8.241206 | 4.985013  | 1,308498 | 8.346003 | 1.081611187 | 2 163204997 | 0.00315682    | 1.0000080      |                                |                  |                                      |          |          |          |
| -0,1   | 2,593419 | 3.216345 | 10.28446 | 8.040863 | 4.996508  | 1.279025 | 8.751065 | 1,18914814  | 2.05833004  | 0.00357772    | 1 1554494      | 0.003367269                    | 1.077728734      | 0.006632731                          | 0.007773 | 1.171896 | 1.171896 |
| -0,1   | 2.493419 | 3,136328 | 9.784571 | 7.840819 | 4.999983  | 1.247902 | 9.198155 | 1.313758558 | 1.956921016 | 0.00408461    | 1.3426792      | 0.003831167                    | 1.24906431       | 0.006168833                          | 0.024906 | 4.037462 | 5.209359 |
| -0.1   | 2.393419 | 3.056302 | 9.284733 | 7.640755 | 4 995454  | 1.215159 | 9.693332 | 1.459016991 | 1.858636352 | 0.00469994    | 1.5699865      | 0.004392275                    | 1.456332843      | 0.005607725                          | 0.045633 | 8.137575 | 13.34693 |
| -0.1   | 2.293419 | 2.976139 | 8.785748 | 7.440348 | 4.9829    | 1.180825 | 10.24386 | 1.629452427 | 1.763179479 | 0.00545344    | 1.8483115      | 0.00507.6686                   | 1.709148985      | 0.004923314                          | 0.070915 | 14:40389 | 27.75083 |
| -0,1   | 2.193419 | 2.895709 | 8.288422 | 7.239272 | 4.962261  | 1.144925 | 10.85852 | 1.830861284 | 1.670291506 | 0.00638502    | 2.1922656      | 0.005919226                    | 2.020288522      | 0.004080774                          | 0.102029 | 25.00233 | 52,75315 |
| -0.01  | 2 183419 | 2.887646 | 8:238812 | 7.219115 | 4.959749. | 1.14125  | 10,92391 | 1.852976779 | 1.661135006 | 0.0064899     | 2.2309767      | 0.00643746                     | 2 211621156      | 0.00356254                           | 0.012116 | 3.401004 | 56 15416 |
| -0.01  | 2 173419 | 2.879579 | 8.189227 | 7 198947 | 4.957154  | 1 137559 | 10.99005 | 1.875483722 | 1.65200169  | 0.00659716    | 2.2705591      | 0.006543533                    | 2.250767911      | 0.003456467                          | 0.012508 | 3.618632 | 59.77279 |
| -0.01  | 2.163419 | 2.871508 | 8.139669 | 7.178769 | 4.954478  | 1 133853 | 11.05696 | 1.898390944 | 1.64289135  | 0.00670686    | 2.3110365      | 0.00665201                     | 2.290797795      | 0.00334799                           | 0.012908 | 3.865441 | 63.62823 |
| -0.01  | 2,153419 | 2.863432 | 8.090138 | 7 15858  | 4 951719  | 1 130132 | 11 12466 | 1.921707518 | 1,63380378  | 0.00681906    | 2.3524337      | 0.006762958                    | 2,331735093      | 0.003237042                          | 0.013317 | 4.114049 | 67 74228 |
| -0.01  | 2.143419 | 2.855352 | 8.040635 | 7.138379 | 4.948879  | 1.126395 | 11.19315 | 1.945442768 | 1.624738776 | 0.00693383    | 2.3947761      | 0.006876444                    | 2.373604873      | 0.003123556                          | 0.013736 | 4.397568 | 72,13985 |
| -0.01  | 2.133419 | 2.847266 | 7.991161 | 7.118166 | 4.945955  | 1 122643 | 11.26244 | 1.969606278 | 1.615696137 | 0.00705125    | 2.4380900      | 0.006992542                    | 2.416433022      | 0.003007458                          | 0 014164 | 4.709735 | 76.84958 |
| -0.01  | 2.123419 | 2.839177 | 7.941716 | 7.097942 | 4.942949  | 1.118876 | 11.33256 | 1.994207897 | 1.606675665 | 0.0071714     | 2.4824026      | 0.007111324                    | 2.460246271      | 0.002888676                          | 0.014602 | 5.055071 | 81.90465 |
| -0.01  | 2.113419 | 2.831082 | 7.892302 | 7.077704 | 4,93986   | 1.115093 | 11.40352 | 2.019257751 | 1.597677164 | 0.00729434    | 2.5277419      | 0.007232867                    | 2.505072231      | 0.002767133                          | 0.015051 | 5.439103 | 87,34376 |
| -0.01  | 2 103419 | 2.822982 | 7.842919 | 7.057454 | 4.936689  | 1 111296 | 11 47532 | 2.044766254 | 1 588700439 | 0.00742016    | 2.5741370      | 0.007357249                    | 2 550939424      | 0.002642751                          | 0.015509 | 5.868665 | 93 21241 |
| -0.01  | 2 093419 | 2.814877 | 7.793569 | 7.037191 | 4.933434  | 1.107483 | 11 54798 | 2 070744109 | 1.579745301 | 0.00754894    | 2.6216177      | 0.007484553                    | 2.597877319      | 0.002515447                          | 0.015979 | 6.352259 | 99.56467 |
| -0.001 | 2 092419 | 2.814066 | 7.788635 | 7.035164 | 4.933104  | 1 107101 | 11.6663  | 2.07336813  | 1.578850967 | 0.00756199    | 2.6264267      | 0.007555467                    | 2.624022169      | 0.002444533                          | 0.001624 | 0.664349 | 100.229  |
| -0.001 | 2,091419 | 2.813255 | 7,783702 | 7.033137 | 4.932773  | 1 106718 | 11.56262 | 2.075996966 | 1.577956847 | 0.00757506    | 2.6312468      | 0.007568527                    | 2,628836736      | 0.002431473                          | 0.001629 | 0.669897 | 100.8989 |
| -0.001 | 2.090419 | 2.812444 | 7.77877  | 7.03111  | 4.932441  | 1.106336 | 11 56995 | 2.078630628 | 1.57706294  | 0.00758817    | 2.6360782      | 0.007581618                    | 2.633662515      | 0.002418382                          | 0.001634 | 0.675519 | 101.5744 |
| -0.001 | 2.089419 | 2.811633 | 7.773837 | 7.029082 | 4.932108  | 1 105953 | 11.57729 | 2.081269126 | 1.576169247 | 0.00760131    | 2.6409209      | 0.007594739                    | 2.638499539      | 0.002405261                          | 0.001638 | 0.681215 | 102.2556 |
| -0.001 | 2.088419 | 2.810822 | 7 768905 | 7.027055 | 4 931775  | 1 105571 | 11 58464 | 2 883912473 | 1 575275767 | 0 00761447    | 2 6457748      | 0.007607891                    | 2.643347839      | 0.002392109                          | 0.001643 | 0.686987 | 102 9426 |

# Table B-33 Case A 90 cfs: Manually Computed Outlet Depths

| Δy      | ÿ      | 0      | A       | Р      |        | R      | u       | u <sup>2</sup> /2g | D      | $n^2 u^2 / (\phi^2 R^{4/3})$ | F2     | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o} n^2 u^2 / (\phi^2 R^{4/3})$ | ΔE        | ΔX      | ΣΔΧ      |
|---------|--------|--------|---------|--------|--------|--------|---------|--------------------|--------|------------------------------|--------|--------------------------------|------------------|------------------------------------|-----------|---------|----------|
|         | 3,1301 | 3.6512 | 12.9343 | 9.1279 | 4.8386 | 1.4170 | 9.2777  | 1.3366             | 2.6731 | 3.5079E-03                   | 1.0000 |                                |                  |                                    |           |         |          |
| -0,1    | 3.0301 | 3.5689 | 12.4479 | 8.9223 | 4,8863 | 1.3952 | 9.6401  | 1.4430             | 2.5475 | 3.8666E-03                   | 1 1329 | 3.6872E-03                     | 1.0665           | 6.3128E-03                         | 6.645E-03 | 1.0527  | 1.0527   |
| -0.1    | 2.9301 | 3.4874 | 11.9573 | 8.7185 | 4.9255 | 1.3715 | 10.0357 | 1.5639             | 2.4277 | 4.2871E-03                   | 1.2884 | 4.0768E-03                     | 1.2107           | 5.9232E-03                         | 2.107E-02 | 3.5565  | 4.6092   |
| -0.1    | 2.8301 | 3 4064 | 11.4631 | 8.5161 | 4.9562 | 1.3461 | 10.4683 | 1,7016             | 2:3129 | 4.7826E-03                   | 1.4715 | 4.5348E-03                     | 1.3799           | 5.4652E-03                         | 3,799E-02 | 6.9519  | 11.5612  |
| -0.1    | 2,7301 | 3.3259 | 10,9663 | 8,3148 | 4.9788 | 1.3189 | 10.9426 | 1.8593             | 2.2026 | 5.3697E-03                   | 1.6883 | 5.0762E-03                     | 1.5799           | 4.9238E-03                         | 5.799E-02 | 11.7769 | 23,3380  |
| -0.1    | 2.6301 | 3.2457 | 10.4676 | 8,1143 | 4.9932 | 1.2900 | 11.4639 | 2 0 4 0 7          | 2:0964 | 6.0700E-03                   | 1.9469 | 5.7199E-03                     | 1.8176           | 4.2801E-03                         | 8.176E-02 | 19.1020 | 42.4400  |
| -0.1    | 2.5301 | 3 1657 | 9.9679  | 7.9142 | 4 9996 | 1.2595 | 12.0386 | 2.2504             | 1.9937 | 6.9110E-03                   | 2.2575 | 6.4905E-03                     | 2.1022           | 3.5095E-03                         | 1.102E-01 | 31.4062 | 73.8461  |
| -0.01   | 2.5201 | 3 1577 | 9.9179  | 7 8942 | 4,9998 | 1,2564 | 12,0993 | 2,2732             | 1.9837 | 7.0042E-03                   | 2,2919 | 6.9576E-03                     | 2,2747           | 3.0424E-03                         | 1.275E-02 | 4,1898  | 78.0359  |
| -0.01   | 2,5101 | 3,1497 | 9.8679  | 7.8742 | 5.0000 | 1 2532 | 12,1606 | 2,2963             | 1.9736 | 7.0991E-03                   | 2.3270 | 7.0516E-03                     | 2,3094           | 2.9484E-03                         | 1.309E-02 | 4.4413  | 82.4772  |
| -0.01   | 2.5001 | 3 1417 | 9.8179  | 7.8542 | 5.0000 | 1.2500 | 12.2225 | 2.3197             | 1,9636 | 7.1959E-03                   | 2,3627 | 7 1475E-03                     | 2.3449           | 2.8525E-03                         | 1.345E-02 | 4.7147  | 87 1919  |
| -0.01   | 2.4901 | 3.1337 | 9.7679  | 7.8342 | 5.0000 | 1:2468 | 12.2851 | 2.3435             | 1.9536 | 7.2946E-03                   | 2.3992 | 7.2452E-03                     | 2.3810           | 2.7548E-03                         | 1.381E-02 | 5.0130  | 92.2048  |
| -0.01   | 2,4801 | 3.1257 | 9.7179  | 7 8142 | 4.9998 | 1.2436 | 12:3483 | 2.3677             | 1.9437 | 7.3952E-03                   | 2.4364 | 7.3449E-03                     | 2,4178           | 2.6551E-03                         | 1.418E-02 | 5.3397  | 97.5446  |
| -0.001  | 2 4791 | 3 1249 | 9.7129  | 7.8122 | 4.9998 | 1.2433 | 12 3546 | 2 3701             | 1.9427 | 7.4053E-03                   | 2,4401 | 7 4003E-03                     | 2,4382           | 2.5997E-03                         | 1.438E-03 | 0.6532  | 98.0978  |
| -0.001  | 2.4781 | 3.1241 | 9.7079  | 7,8102 | 4.9998 | 1.2430 | 12 3610 | 2 3726             | 1,9417 | 7.4155E-03                   | 2.4439 | 7.4104E-03                     | 2.4420           | 2.5896E-03                         | 1.442E-03 | 0.5568  | 98,6546  |
| -0.001  | 2.4771 | 3 1233 | 9.7029  | 7.8082 | 4 9998 | 1.2427 | 12:3674 | 2.3750             | 1.9407 | 7.4257E-03                   | 2.4476 | 7.4206E-03                     | 2.4458           | 2.5794E-03                         | 1.446E-03 | 0.6605  | 99 2151  |
| -0.001  | 2.4761 | 3 1225 | 9.6979  | 7.8062 | 4,9998 | 1,2423 | 12,3738 | 2,3775             | 1.9397 | 7:4360E-03                   | 2.4514 | 7.4309E-03                     | 2,4495           | 2.5691E-03                         | 1.450E-03 | 0.5642  | 99.7793  |
| -0.0001 | 2.4760 | 3,1224 | 9.6974  | 7.8060 | 4,9998 | 1 2423 | 12.3744 | 2.3777             | 1.9396 | 7.4370E-03                   | 2.4518 | 7.4365E-03                     | 2.4516           | 2.5635E-03                         | 1.452E-04 | 0.0566  | 99 8360  |
| -0.0001 | 2.4759 | 3 1223 | 9,6969  | 7.8058 | 4.9998 | 1.2423 | 12.3750 | 2.3780             | 1.9395 | 7.4380E-03                   | 2.4522 | 7.4375E-03                     | 2.4520           | 2.5625E-03                         | 1.452E-04 | 0.0567  | 99.8926  |
| -0.0001 | 2.4758 | 3.1222 | 9.6964  | 7.8056 | 4.9998 | 1:2422 | 12.3757 | 2.3782             | 1.9394 | 7.4390E-03                   | 2:4526 | 7.4385E-03                     | 2.4524           | 2:5615E-03                         | 1.452E-04 | 0.0567  | 99.9493  |
| -0.0001 | 2 4757 | 3.1221 | 9.6959  | 7.8054 | 4.9998 | 1.2422 | 12.3763 | 2 3785             | 1.9393 | 7.4401E-03                   | 2.4529 | 7 4395E-03                     | 2.4527           | 2.5605E-03                         | 1.453E-04 | 0.0567  | 100.0061 |
| -0.0001 | 2 4756 | 3 1221 | 9.6954  | 7.8052 | 4 9998 | 1.2422 | 12.3769 | 2.3787             | 1,9392 | 7.4411E-03                   | 2 4533 | 7 4406E-03                     | 2.4531           | 2.5594E-03                         | 1.453E-04 | 0.0568  | 100.0628 |

# Table B-34 Case A 120 cfs: Manually Computed Outlet Depths

| ∆у     | ÿ      | 0      | Α       | P      | ः मः   | R      | u       | u²/2g  | D      | n²u²/(φ²R <sup>43</sup> ) | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_{ro}$ | F <sup>2</sup> m | $S_{o}\text{-}n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE        | ΔX      | ΣΔΧ      |
|--------|--------|--------|---------|--------|--------|--------|---------|--------|--------|---------------------------|----------------|-----------------------------------|------------------|---------------------------------------------|-----------|---------|----------|
|        | 3.5106 | 3.9739 | 14.7294 | 9.9348 | 4.5732 | 1.4826 | 10,1837 | 1 6104 | 3.2208 | 3.9790E-03                | 1,00000        |                                   |                  |                                             |           |         |          |
| -0.1   | 3,4106 | 3.8872 | 14.2678 | 9,7181 | 4.6565 | 1 4682 | 10,5132 | 1.7163 | 3.0641 | 4.2963E-03                | 1.12026        | 4.1376E-03                        | 1.06013          | 5.8624E-03                                  | 6.013E-03 | 1.0257  | 1.0257   |
| -0.1   | 3,3106 | 3.8020 | 13,7984 | 9.5051 | 4.7299 | 1.4517 | 10.8708 | 1.8350 | 2.9173 | 4.6632E-D3                | 1.25803        | 4.4797E-03                        | 1.18914          | 5 5203E-03                                  | 1.891E-02 | 3.4263  | 4.4520   |
| -0.1   | 3.2106 | 3:7180 | 13.3221 | 9:2951 | 4.7938 | 1.4332 | 11.2595 | 1.9686 | 2.7791 | 6.0886E-03                | 1.41671        | 4.8759E-03                        | 1.33737          | 5.1241E-03                                  | 3.374E-02 | 6.5840  | 11.0360  |
| -0.1   | 3,1106 | 3.6351 | 12.8399 | 9.0877 | 4,8486 | 1,4129 | 11.6823 | 2.1192 | 2.6482 | 5.5834E-03                | 1.60048        | 5.3360E-03                        | 1,50860          | 4.6640E-03                                  | 5.086E-02 | 10.9048 | 21,9408  |
| -0.1   | 3,0106 | 3.5530 | 12,3527 | 8,8825 | 4.8946 | 1.3907 | 12.1431 | 2 2897 | 2.5237 | 6,1614E-03                | 1.81450        | 5.8724E-03                        | 1.70749          | 4.1276E-03                                  | 7.075E-02 | 17.1405 | 39.0813  |
| -0,1   | 2.9106 | 3.4716 | 11.8613 | 8,6790 | 4.9321 | 1.3667 | 12.6462 | 2 4833 | 2,4049 | 6.8395E-03                | 2.06519        | 6.5004E-03                        | 1.93985          | 3.4996E-03                                  | 9.398E-02 | 26,8559 | 65.9372  |
| -0.01  | 2.9006 | 3.4636 | 11.8120 | 8.6587 | 4.9354 | 1 3642 | 12.6990 | 2 5041 | 2.3933 | 6.9136E-03                | 2.09258        | 6.8765E-03                        | 2.07889          | 3.1235E-03                                  | 1.079E-02 | 3.4541  | 69.3912  |
| -0.01  | 2.8906 | 3.4554 | 11,7626 | 8.6384 | 4,9386 | 1.3617 | 12.7523 | 2 5252 | 2,3818 | 6.9889E-03                | 2.12041        | 6,9512E-03                        | 2,10649          | 3.0488E-03                                  | 1.106E-02 | 3.6293  | 73.0206  |
| -0.01  | 2.8806 | 3.4473 | 11,7132 | 8.6182 | 4.9417 | 1.3591 | 12.8061 | 2.5465 | 2.3703 | 7,0655E-03                | 2.14871        | 7.0272E-03                        | 2.13456          | 2.9728E-03                                  | 1.135E-02 | 3.8165  | 76.8370  |
| -0.01  | 2.8706 | 3.4392 | 11.6638 | 8:5980 | 4.9448 | 1.3566 | 12,8603 | 2:5681 | 2,3588 | 7.1434E-03                | 2.17749        | 7.1044E-03                        | 2.16310          | 2.8956E-03                                  | 1.163E-02 | 4.0168  | 80.8539  |
| -0.01  | 2.8606 | 3.4311 | 11.6143 | 8.5777 | 4.9477 | 1.3540 | 12.9151 | 2.5901 | 2.3474 | 7.2226E-03                | 2.20674        | 7.1830E-03                        | 2.19211          | 2.8170E-03                                  | 1.192E-02 | 4.2318  | 85.0857  |
| -0.01  | 2.8506 | 3,4230 | 11.5648 | 8.5575 | 4,9506 | 1,3514 | 12.9704 | 2.6123 | 2.3360 | 7.3031E-03                | 2.23649        | 7.2629E-03                        | 2:22162          | 2:7371E-03                                  | 1.222E-02 | 4.4631  | 89:5489  |
| -0.01  | 2,8406 | 3.4149 | 11,5153 | 8,5373 | 4.9534 | 1.3488 | 13.0262 | 2 6348 | 2:3247 | 7.3851E-03                | 2.26675        | 7.3441E-03                        | 2.25162          | 2.6559E-03                                  | 1.252E-02 | 4.7126  | 94.2615  |
| -0.01  | 2.8306 | 3.4069 | 11.4657 | 8.5172 | 4.9561 | 1.3462 | 13.0825 | 2.6576 | 2,3135 | 7.4684E-03                | 2.29752        | 7_4267E-03                        | 2.28213          | 2:5733E-03                                  | 1.282E-02 | 4.9825  | 99.2439  |
| -0.001 | 2.8296 | 3.4061 | 11.4608 | 8.5151 | 4.9564 | 1 3459 | 13.0881 | 2.6599 | 2.3123 | 7.4768E-03                | 2.30062        | 7.4726E-03                        | 2.29907          | 2.5274E-03                                  | 1.299E-03 | 0.5140  | 99.7579  |
| -0.001 | 2.8286 | 3.4053 | 11.4558 | 8,5131 | 4,9566 | 1.3457 | 13,0938 | 2.6622 | 2,3112 | 7.4852E-03                | 2.30373        | 7.4810E-03                        | 2,30218          | 2.5190E-03                                  | 1,302E-03 | 0.5169  | 100 2748 |
| -0.001 | 2.8276 | 3.4044 | 11.4509 | 8.5111 | 4.9569 | 1 3454 | 13.0994 | 2.6645 | 2,3101 | 7,4936E-03                | 2.30685        | 7,4894E-03                        | 2.30529          | 2.5106E-03                                  | 1.305E-03 | 0.5199  | 100.7948 |
| -0,001 | 2.8266 | 3.4036 | 11.4459 | 8:5091 | 4.9571 | 1.3451 | 13.1051 | 2:6668 | 2,3090 | 7.5021E-03                | 2.30997        | 7.4979E-03                        | 2.30841          | 2.5021E-03                                  | 1.308E-03 | 0.5229  | 101.3177 |
| -0.001 | 2.8256 | 3.4028 | 11.4410 | 8.5071 | 4.9574 | 1.3449 | 13.1108 | 2.6691 | 2.3079 | 7.5105E-03                | 2.31310        | 7.5063E-03                        | 2.31154          | 2.4937E-03                                  | 1.312E-03 | 0.5259  | 101.8436 |
| -0.001 | 2.8246 | 3.4020 | 11.4360 | 8.5051 | 4.9577 | 1.3446 | 13.1165 | 2.6715 | 2,3067 | 7.5190E-03                | 2.31623        | 7.5148E-03                        | 2.31467          | 2.4852E-03                                  | 1.315E-03 | 0.5290  | 102.3726 |

 Table B-35 Case A 150 cfs: Manually Computed Outlet Depths

| Δy     | ÿ      | 0      | A       | P       | T      | R      | u       | u²/2g  | D      | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o}$ - $n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE        | ΔX      | ΣΔΧ      |
|--------|--------|--------|---------|---------|--------|--------|---------|--------|--------|------------------------------|----------------|--------------------------------|------------------|------------------------------------------|-----------|---------|----------|
|        | 3.8423 | 4.2752 | 16.1909 | 10.6879 | 4.2182 | 1.5149 | 11.1174 | 1.9192 | 3.8384 | 4.6078E-03                   | 1.00001        |                                |                  |                                          |           |         |          |
| -0.1   | 3.7423 | 4.1817 | 15.7629 | 10.4542 | 4.3390 | 1.5078 | 11.4192 | 2,0248 | 3.6328 | 4.8918E-03                   | 1 11473        | 4.7498E-03                     | 1.05737          | 5.2502E-03                               | 5.737E-03 | 1.0927  | 1.0927   |
| -0.1   | 3,6423 | 4.0906 | 15.3235 | 10.2266 | 4.4475 | 1.4984 | 11.7467 | 2.1426 | 3,4454 | 5.2198E-03                   | 1.24376        | 5.0558E-03                     | 1.17925          | 4.9442E-03                               | 1.792E-02 | 3.6254  | 4.7181   |
| -0.1   | 3.5423 | 4,0017 | 14.8738 | 10.0042 | 4.5447 | 1.4867 | 12,1018 | 2.2741 | 3.2728 | 5.5981E-03                   | 1.38974        | 5.4090E-03                     | 1.31675          | 4.5910E-03                               | 3.168E-02 | 6.8994  | 11.6175  |
| -0.1   | 3.4423 | 3.9145 | 14.4149 | 9.7863  | 4.6312 | 1.4730 | 12.4871 | 2.4212 | 3.1125 | 6.0347E-03                   | 1.55580        | 5.8164E-03                     | 1.47277          | 4.1836E-03                               | 4.728E-02 | 11.3006 | 22.9181  |
| -0.1   | 3.3423 | 3.8289 | 13.9479 | 9.5722  | 4.7077 | 1.4571 | 12.9052 | 2.5861 | 2:9628 | 6.5392E-03                   | 1.74571        | 6.2870E-03                     | 1.65076          | 3,7130E-03                               | 6.508E-02 | 17.5262 | 40.4443  |
| -0.1   | 3.2423 | 3.7445 | 13.4737 | 9.3613  | 4.7745 | 1.4393 | 13.3594 | 2.7713 | 2 8220 | 7.1236E-03                   | 1.96409        | 6.8314E-03                     | 1.85490          | 3.1686E-03                               | 8.549E-02 | 26.9803 | 67,4246  |
| -0.01  | 3.2323 | 3.7361 | 13.4259 | 9.3404  | 4.7807 | 1.4374 | 13.4069 | 2.7911 | 2.8084 | 7.1869E-03                   | 1.98770        | 7.1552E-03                     | 1.97589          | 2.8448E-03                               | 9.759E-03 | 3.4305  | 70.8551  |
| -0.01  | 3.2223 | 3.7278 | 13.3781 | 9.3195  | 4.7868 | 1.4355 | 13.4549 | 2.8111 | 2.7948 | 7.2513E-03                   | 2.01165        | 7.2191E-03                     | 1.99968          | 2.7809E-03                               | 9.997E-03 | 3.5948  | 74.4499  |
| -0.01  | 3.2123 | 3.7194 | 13.3302 | 9.2986  | 4,7928 | 1.4336 | 13.5032 | 2,8313 | 2,7813 | 7.3166E-03                   | 2.03596        | 7,2839E-03                     | 2.02381          | 2.7161E-03                               | 1.024E-02 | 3.7694  | 78.2193  |
| -0,01  | 3.2023 | 3.7111 | 13,2822 | 9.2777  | 4.7987 | 1.4316 | 13.5520 | 2.8518 | 2.7679 | 7,3829E-03                   | 2.06063        | 7.3497E-03                     | 2:04829          | 2.6503E-03                               | 1.048E-02 | 3.9554  | 82 1747  |
| -0.01  | 3.1923 | 3:7028 | 13.2342 | 9.2569  | 4.8045 | 1.4297 | 13.6011 | 2.8725 | 2.7546 | 7.4502E-03                   | 2.08566        | 7.4165E-03                     | 2.07314          | 2.5835E-03                               | 1.073E-02 | 4,1538  | 86.3285  |
| -0.01  | 3.1823 | 3.6944 | 13.1861 | 9.2361  | 4.8102 | 1.4277 | 13.6507 | 2.8935 | 2.7413 | 7.5185E-03                   | 2.11106        | 7.4843E-03                     | 2.09836          | 2.5157E-03                               | 1.098E-02 | 4.3661  | 90.6946  |
| -0.01  | 3.1723 | 3.6861 | 13.1380 | 9.2153  | 4.8158 | 1.4257 | 13,7007 | 2:9148 | 2.7281 | 7.5879E-03                   | 2.13685        | 7.5532E-03                     | 2.12396          | 2.4468E-03                               | 1.124E-02 | 4,5936  | 95.2882  |
| -0.001 | 3 1713 | 3.6853 | 13,1332 | 9.2132  | 4.8164 | 1.4255 | 13.7058 | 2.9169 | 2,7268 | 7.5949E-03                   | 2.13945        | 7.5914E-03                     | 2.13815          | 2.4086E-03                               | 1.138E-03 | 0.4725  | .95.7607 |
| -0.001 | 3.1703 | 3,6845 | 13 1283 | 9.2112  | 4.8169 | 1.4253 | 13.7108 | 2.9190 | 2.7255 | 7.6019E-03                   | 2.14205        | 7.5984E-03                     | 2.14075          | 2.4016E-03                               | 1.141E-03 | 0.4750  | 96.2357  |
| -0.001 | 3.1693 | 3.6836 | 13.1235 | 9.2091  | 4.8175 | 1.4251 | 13.7158 | 2.9212 | 2.7241 | 7.6089E-03                   | 2.14466        | 7 6054E-03                     | 2 14335          | 2.3946E-03                               | 1.143E-03 | 0.4775  | 96.7132  |
| -0.001 | 3.1683 | 3.6828 | 13 1187 | 9.2070  | 4.8180 | 1 4249 | 13.7209 | 2,9233 | 2.7228 | 7.6159E-03                   | 2.14727        | 7.6124E-03                     | 2.14596          | 2.3876E-03                               | 1.146E-03 | 0.4800  | 97 1931  |
| -0.001 | 3,1673 | 3.6820 | 13.1139 | 9,2049  | 4.8186 | 1.4247 | 13.7259 | 2.9255 | 2.7215 | 7,6230E-03                   | 2.14988        | 7.6195E-03                     | 2.14858          | 2.3805E-03                               | 1.149E-03 | 0.4825  | 97.6756  |
| -0.001 | 3.1663 | 3.6811 | 13.1091 | 9.2029  | 4.8192 | 1.4245 | 13:7309 | 2.9276 | 2.7202 | 7.6300E-03                   | 2.15250        | 7.6265E-03                     | 2.15119          | 2.3735E-03                               | 1.151E-03 | 0.4850  | 98 1606  |
| -0.001 | 3.1653 | 3.6803 | 13.1043 | 9.2008  | 4.8197 | 1.4243 | 13.7360 | 2.9298 | 2.7189 | 7.6371E-03                   | 2.15513        | 7.6336E-03                     | 2:15381          | 2.3664E-03                               | 1.154E-03 | 0.4876  | 98.6482  |
| -0.001 | 3.1643 | 3.6795 | 13.0994 | 9.1987  | 4.8203 | 1.4240 | 13.7411 | 2.9319 | 2.7176 | 7.6442E-03                   | 2.15775        | 7.6406E-03                     | 2.15644          | 2.3594E-03                               | 1.156E-03 | 0.4901  | 99,1384  |
| -0.001 | 3.1633 | 3.6787 | 13.0946 | 9.1966  | 4.8208 | 1.4238 | 13,7461 | 2.9341 | 2.7163 | 7.6612E-03                   | 2.16038        | 7.6477E-03                     | 2 15907          | 2.3523E-03                               | 1.159E-03 | 0.4927  | .99.6311 |
| -0.001 | 3,1623 | 3.6778 | 13.0898 | 9.1946  | 4.8214 | 1.4236 | 13 7512 | 2 9363 | 2 7150 | 7.6583E-03                   | 2 16302        | 7.6648E-03                     | 2 16170          | 2.3452E-03                               | 1.162E-03 | 0.4954  | 100 1264 |
| -0.001 | 3.1613 | 3.6770 | 13.0850 | 9.1925  | 4,8219 | 1.4234 | 13.7562 | 2.9384 | 2,7137 | 7.6654E-03                   | 2.16566        | 7.6619E-03                     | 2 16434          | 2.3381E-03                               | 1.164E-03 | 0.4980  | 100.6244 |

# Table B-36 Case A 180 cfs: Manually Computed Outlet Depths

| ∆у     | у      | 8      | Α       | P       | T      | B      | i       | u²/2g  | D      | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o}$ - $n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE        | ΔX      | ΣΔΧ      |
|--------|--------|--------|---------|---------|--------|--------|---------|--------|--------|------------------------------|----------------|--------------------------------|------------------|------------------------------------------|-----------|---------|----------|
|        | 4,1253 | 4.6571 | 17,3283 | 11.3927 | 3.7991 | 1.5210 | 12.1189 | 2.2806 | 4.5611 | 5.4460E-03                   | 1.0000         |                                |                  |                                          |           |         |          |
| -0.1   | 4.0253 | 4.4540 | 16.9401 | 11.1351 | 3.9615 | 1:5213 | 12:3966 | 2.3863 | 4.2762 | 5.6968E-03                   | 1.1161         | 5.5714E-03                     | 1.0580           | 4,4286E-03                               | 5.804E-03 | 1.3106  | 1.310585 |
| -0.1   | 3.9253 | 4.3549 | 16.5365 | 10.8873 | 4.1078 | 1.5189 | 12.6992 | 2.5042 | 4.0257 | 5.9911E-03                   | 1.2441         | 5.8439E-03                     | 1.1801           | 4.1561E-03                               | 1.801E-02 | 4,3333  | 5.643882 |
| -0.1   | 3.8253 | 4.2591 | 16.1190 | 10.6477 | 4.2396 | 1.5138 | 13.0281 | 2.6356 | 3.8020 | 6.3334E-03                   | 1.3864         | 6.1623E-03                     | 1.3153           | 3.8377E-03                               | 3.153E-02 | 8.2146  | 13.8585  |
| -0,1   | 3.7253 | 4 1661 | 15,6890 | 10.4151 | 4.3583 | 1.5064 | 13,3851 | 2.7820 | 3.5998 | 6.7297E-03                   | 1.5456         | 6.5316E-03                     | 1.4660           | 3.4684E-03                               | 4.660E-02 | 13,4359 | 27 29443 |
| -0,1   | 3.6253 | 4.0754 | 15.2478 | 10,1885 | 4.4648 | 1.4966 | 13:7725 | 2.9454 | 3.4151 | 7.1871E-03                   | 1.7249         | 6.9584E-03                     | 1.6353           | 3.0416E-03                               | 6,353E-02 | 20.8859 | 48.18032 |
| -0.1   | 3.5253 | 3.9868 | 14.7965 | 9.9669  | 4.5601 | 1.4846 | 14.1926 | 3.1278 | 3.2447 | 7.7147E-03                   | 1.9279         | 7.4509E-03                     | 1.8264           | 2.5491E-03                               | 8.264E-02 | 32.4196 | 80 59991 |
| +0.01  | 3.5153 | 3.9780 | 14.7508 | 9.9450  | 4.5691 | 1.4832 | 14.2365 | 3 1472 | 3.2284 | 7.7717E-03                   | 1.9497         | 7,7432E-03                     | 1.9388           | 2.2568E-03                               | 9.388E-03 | 4,1599  | 84.75979 |
| -0.01  | 3.5053 | 3.9693 | 14,7051 | 9.9232  | 4.5779 | 1.4819 | 14.2808 | 3.1668 | 3.2122 | 7.8296E-03                   | 1.9717         | 7,8006E-03                     | 1.9607           | 2 1994E-03                               | 9:607E-03 | 4.3682  | 89.12794 |
| -0.01  | 3:4953 | 3.9605 | 14.6593 | 9.9013  | 4.5867 | 1.4805 | 14.3254 | 3.1866 | 3,1961 | 7.8883E-03                   | 1.9941         | 7.8589E-03                     | 1.9829           | 2,1411E-03                               | 9.829E-03 | 4.5907  | 93.71866 |
| -0.01  | 3.4863 | 3.9518 | 14.6133 | 9.8796  | 4.5953 | 1.4791 | 14.3704 | 3.2067 | 3.1891 | 7.9478E-03                   | 2.0167         | 7.9180E-03                     | 2.0054           | 2.0820E-03                               | 1.005E-02 | 4.8291  | 98.54775 |
| -0.001 | 3.4843 | 3.9510 | 14,6087 | 9.8774  | 4.5961 | 1.4790 | 14.3749 | 3.2087 | 3,1785 | 7.9538E-03                   | 2.0190         | 7.9500E-03                     | 2.0179           | 2.0492E-03                               | 1.018E-03 | 0,4967  | 99.04446 |
| -0.001 | 3.4833 | 3.9501 | 14.6042 | 9.8752  | 4.5970 | 1.4789 | 14.3795 | 3.2107 | 3 1769 | 7.9598E-03                   | 2.0213         | 7 9568E-03                     | 2.0201           | 2:0432E-03                               | 1.020E-03 | 0,4993  | 99,54375 |
| -0.001 | 3,4823 | 3.9492 | 14.6996 | 9.8730  | 4 5979 | 1.4787 | 14 3940 | 3.2127 | 3 1753 | 7.9658E-03                   | 2.0236         | 7 9628E-03                     | 2 0224           | 2.0372E-03                               | 1.022E-03 | 0.5019  | 100.0456 |
| -0.001 | 3.4813 | 3.9483 | 14.5950 | 9,8709  | 4.5987 | 1.4786 | 14,3885 | 3.2148 | 3 1737 | 7.9719E-03                   | 2.0259         | 7.9688E-03                     | 2.0247           | 2.0912E-03                               | 1.025E-03 | 0.5045  | 100.5501 |

Table B-37 Case A 210 cfs: Manually Computed Outlet Depths

| Δу      | ÿ      | 0      | А       | Р       | T      | R      |         | u <sup>2</sup> /2g | Ð      | n²u²/(φ²R4/3) | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o}\text{-}n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE        | ΔX       | ΣΔΧ      |
|---------|--------|--------|---------|---------|--------|--------|---------|--------------------|--------|---------------|----------------|--------------------------------|------------------|---------------------------------------------|-----------|----------|----------|
|         | 4,3571 | 4.8162 | 18,1588 | 12.0405 | 3.3473 | 1.5081 | 13.2167 | 2,7124             | 5.4249 | 6.5511E-03    | 1.0000         |                                |                  |                                             |           |          |          |
| -0.1    | 4.2571 | 4.7004 | 17:8134 | 11.7509 | 3.5567 | 1.5159 | 13.4730 | 2:8187             | 5.0084 | 6.7611E-03    | 1 1256         | 6.6561E-03                     | 1.0628           | 3,3439E-03                                  | 6.279E-03 | 1.87762  | 1.8776   |
| -0.1    | 4.1571 | 4.5908 | 17.4482 | 11.4770 | 3.7438 | 1.5203 | 13.7550 | 2.9379             | 4.6606 | 7.0202E-03    | 1.2607         | 6.8906E-03                     | 1.1932           | 3.1094E-03                                  | 1.932E-02 | 6.21195  | 8.0896   |
| -0.1    | 4.0571 | 4.4863 | 17.0653 | 11.2158 | 3.9117 | 1.5215 | 14.0636 | 3.0712             | 4,3626 | 7.3306E-03    | 1,4080         | 7.1754E-03                     | 1.3344           | 2.8246E-03                                  | 3.344E-02 | 11.83709 | 19.9267  |
| -0,1    | 3.9571 | 4.3860 | 16,6664 | 10.9651 | 4.0629 | 1.5200 | 14 4002 | 3.2200             | 4,1021 | 7.6964E-03    | 1.5699         | 7.5135E-03                     | 1.4889           | 2.4865E-03                                  | 4.889E-02 | 19.66386 | 39 5905  |
| -0.1    | 3.8571 | 4.2892 | 16.2532 | 10,7231 | 4,1992 | 1.5157 | 14,7663 | 3,3858             | 3.8706 | 8.1228E-03    | 1 7 4 9 5      | 7.9096E-03                     | 1.6597           | 2.0904E-03                                  | 6.597E-02 | 31,55863 | 71_1492  |
| -0.01   | 3.8471 | 4,2797 | 16.2112 | 10.6993 | 4.2120 | 1.5152 | 14.6046 | 3.4034             | 3.8488 | 8.1691E-03    | 1 7685         | 8.1459E-03                     | 1.7590           | 1.8541E-03                                  | 7.590E-03 | 4.09381  | 75.2430  |
| -0.01   | 3.8371 | 4,2702 | 16,1690 | 10.6756 | 4,2248 | 1.5146 | 14.8432 | 3.4211             | 3.8272 | 8,2160E-03    | 1 7878         | 8,1925E-03                     | 1,7782           | 1,8075E-03                                  | 7.782E-03 | 4.30530  | 79.5483  |
| -0.01   | 3.8271 | 4.2608 | 16.1267 | 10.6520 | 4.2373 | 1.5140 | 14.8822 | 3,4391             | 3,8058 | 8.2636E-03    | 1,8073         | 8.2398E-03                     | 1,7975           | 1.7602E-03                                  | 7,975E-03 | 4.53098  | 84.0792  |
| -0.01   | 3.8171 | 4.2514 | 16.0842 | 10.6284 | 4.2498 | 1.5133 | 14 9214 | 3.4573             | 3,7847 | 8.3119E-03    | 1.8270         | 8.2878E-03                     | 1.8171           | 1.7122E-03                                  | 8.171E-03 | 4.77232  | 88.8516  |
| -0.01   | 3.6071 | 4.2420 | 16.D417 | 10.6049 | 4.2621 | 1.5127 | 14.9610 | 3.4757             | 3.7638 | 8.3609E-03    | 1.8469         | 8.3364E-03                     | 1.8369           | 1.6636E-03                                  | 8.369E-03 | 6.03104  | 93 8826  |
| -0.01   | 3.7971 | 4.2326 | 15.9990 | 10.5815 | 4.2743 | 1.5120 | 15.0009 | 3.4942             | 3.7430 | 8.4107E-03    | 1.8671         | 8.3858E-03                     | 1.8570           | 1.6142E-03                                  | 8.570E-03 | 5.30910  | 99.1917  |
| -0.001  | 3.7961 | 4.2317 | 15.9947 | 10.5791 | 4.2756 | 1.5119 | 15.0050 | 3.4961             | 3,7410 | 8.4157E-03    | 1.8691         | 8.4132E-03                     | 1.8681           | 1.5868E-03                                  | 8.681E-04 | 0.54706  | 99.7388  |
| -0.0001 | 3.7960 | 4.2316 | 15.9943 | 10.5789 | 4.2757 | 1.5119 | 15.0054 | 3.4963             | 3.7408 | 8.4162E-03    | 1,8693         | 8.4160E-03                     | 1.8692           | 1.5840E-03                                  | 8.692E-05 | 0.05487  | 99.7936  |
| -0.0001 | 3.7959 | 4.2315 | 15.9939 | 10.5787 | 4.2758 | 1.5119 | 15 0058 | 3.4965             | 3.7406 | 8.4167E-03    | 1.8695         | 8.4165E-03                     | 1.8694           | 1.5835E-03                                  | 8.694E-05 | 0.05490  | 99.8485  |
| -0.0001 | 3.7958 | 4,2314 | 15.9934 | 10.5784 | 4,2759 | 1.5119 | 15.0062 | 3.4967             | 3.7403 | 8.4172E-03    | 1.8697         | 8.4170E-03                     | 1.8696           | 1.5830E-03                                  | 8.696E-05 | 0.05493  | 99.9035  |
| -0.0001 | 3,7957 | 4.2313 | 15,9930 | 10.5782 | 4.2760 | 1.5119 | 15.0066 | 3.4968             | 3.7401 | 8.4177E-03    | 1,8699         | 8.4175E-03                     | 1.8698           | 1.6825E-03                                  | 8.698E-05 | 0.05496  | 99,9584  |
| -0.0001 | 3.7956 | 4.2312 | 15.9926 | 10.5780 | 4.2762 | 1:5119 | 15.0070 | 3.4970             | 3,7399 | 8.4182E-03    | 1.8701         | 8.4180E-03                     | 1.8700           | 1.6820E-03                                  | 0.700E-05 | 0.05499  | 100.0134 |
| -0.0001 | 3.7955 | 4.2311 | 15.9922 | 10.5777 | 4.2763 | 1.5119 | 15.0074 | 3.4972             | 3.7397 | 8.4187E-03    | 1.8703         | 8.4185E-03                     | 1.8702           | 1.5815E-03                                  | 8.702E-05 | 0.05502  | 100.0684 |

## Table B-38 Case A 240 cfs: Manually Computed Outlet Depths

| Δy      | ÿ      | 0      | A       | Р       | ा      | R      | u       | u²/2g  | D      | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{\phi} n^2 u^2 / (\phi^2 R^{4/3})$ | ΔE        | ΔX       | ΣΔΧ      |
|---------|--------|--------|---------|---------|--------|--------|---------|--------|--------|------------------------------|----------------|--------------------------------|------------------|---------------------------------------|-----------|----------|----------|
|         | 4.5370 | 5.0464 | 18.7222 | 12.6159 | 2.8987 | 1.4840 | 14.4214 | 3.2294 | 6.4589 | 7.9692E-03                   | 1,00000        |                                |                  |                                       |           |          |          |
| -0.1    | 4.4370 | 4.9144 | 18.4190 | 12.2860 | 3.1610 | 1.4992 | 14,6588 | 3.3367 | 5.8269 | 8.1230E-03                   | 1_14526        | 8.0461E-03                     | 1.07263          | 1.9539E-03                            | 7.263E-03 | 3.71712  | 3,7171   |
| -0.1    | 4.3370 | 4.7923 | 18,0911 | 11.9809 | 3,3914 | 1.5100 | 14,9245 | 3.4587 | 5.3344 | 8.3397E-03                   | 1.29675        | 8.2314E-03                     | 1.22100          | 1.7686E-03                            | 2.210E-02 | 12.49563 | 16.2128  |
| -0.1    | 4.2370 | 4.6779 | 17.7415 | 11.6947 | 3.5960 | 1.5171 | 15.2185 | 3.5963 | 4.9337 | 8.6179E-03                   | 1.45787        | 8.4788E-03                     | 1.37731          | 1:5212E-03                            | 3.773E-02 | 24.80337 | 41.0161  |
| -0.1    | 4.1370 | 4.5694 | 17.3726 | 11.4236 | 3.7790 | 1.5208 | 15.5417 | 3.7507 | 4.5971 | 8.9585E-03                   | 1.63175        | 8.7882E-03                     | 1.54481          | 1.2118E-03                            | 5.448E-02 | 44.95862 | 85.9747  |
| -0.01   | 4.1270 | 4.5589 | 17.3347 | 11.3972 | 3,7962 | 1.5210 | 15.5757 | 3.7671 | 4.5663 | 8,9962E-03                   | 1.64996        | 8,9773E-03                     | 1.64085          | 1.0227E-03                            | 6.409E-03 | 6.26655  | .92.2413 |
| -0.001  | 4 1260 | 4.5578 | 17.3309 | 11.3946 | 3.7979 | 1.5210 | 15.5791 | 3.7688 | 4.5632 | 9.0000E-03                   | 1.65179        | 8.9981E-03                     | 1.65087          | 1.0019E-03                            | 6.509E-04 | 0.64961  | 92,8909  |
| -0.001  | 4 1250 | 4.5568 | 17.3271 | 11.3919 | 3.7997 | 1.5210 | 15.5825 | 3.7704 | 4.5602 | 9.0038E-03                   | 1.65362        | 9.0019E-03                     | 1.65270          | 9.9814E-04                            | 6.527E-04 | 0.65392  | 93.5448  |
| -0.001  | 4 1240 | 4.5557 | 17.3233 | 11,3893 | 3.8014 | 1,5210 | 15.5859 | 3.7721 | 4.5571 | 9.0076E-03                   | 1 65545        | 9.0057E-03                     | 1.65453          | 9.9434E-04                            | 6.545E-04 | 0,65826  | 94.2031  |
| -0.001  | 4 1230 | 4.5547 | 17.3195 | 11.3867 | 3.8031 | 1.5210 | 15.5893 | 3.7737 | 4.5541 | 9.0114E-03                   | 1.65729        | 9.0095E-03                     | 1.65637          | 9.9052E-04                            | 6.564E-04 | 0.66265  | 94.8657  |
| -0.001  | 4.1220 | 4.5536 | 17.3157 | 11.3840 | 3,8048 | 1.5211 | 15.5928 | 3.7754 | 4.5510 | 9.0152E-03                   | 1.65912        | 9.0133E-03                     | 1.65820          | 9.8670E-04                            | 6.582E-04 | 0.66708  | 95.5328  |
| -0.001  | 4.1210 | 4.5526 | 17.3119 | 11.3814 | 3.8065 | 1.5211 | 15.5962 | 3.7770 | 4.5480 | 9.0190E-03                   | 1.66096        | 9.0171E-03                     | 1.66004          | 9.8287E-04                            | 6.600E-04 | 0.67164  | 96.2043  |
| -0.001  | 4.1200 | 4.5515 | 17.3061 | 11.3788 | 3.8082 | 1.5211 | 15.5996 | 3.7787 | 4.5450 | 9.0229E-03                   | 1.66280        | 9.0210E-03                     | 1.66188          | 9.7904E-04                            | 6.619E-04 | 0.67606  | 96.8804  |
| -0.001  | 4.1190 | 4.5505 | 17.3043 | 11.3762 | 3,8099 | 1.5211 | 15.6030 | 3.7804 | 4.5419 | 9.0267E-03                   | 1.66464        | 9.0248E-03                     | 1.66372          | 9.7520E-04                            | 6.637E-04 | 0.68060  | .97.5610 |
| -0.001  | 4 1180 | 4.5494 | 17.3005 | 11.3735 | 3.8116 | 1.5211 | 15.6065 | 3.7820 | 4.5389 | 9.0306E-03                   | 1.66648        | 9.0287E-03                     | 1,66556          | 9.7135E-04                            | 6.656E-04 | 0.68519  | 98.2462  |
| -0.001  | 4.1170 | 4.5484 | 17.2967 | 11.3709 | 3.8133 | 1.5211 | 15.6099 | 3.7837 | 4.5359 | 9.0344E-03                   | 1.66833        | 9.0325E-03                     | 1.66741          | 9.6750E-04                            | 6.674E-04 | 0.68983  | 98.9360  |
| -0.001  | 4 1160 | 4.5473 | 17.2929 | 11.3683 | 3,8150 | 1.5212 | 15.6134 | 3.7854 | 4.5329 | 9.0383E-03                   | 1 67018        | 9.0364E-03                     | 1.66925          | 9.6363E-04                            | 6.693E-04 | 0.69451  | 99.6305  |
| -0.0001 | 4 1159 | 4.5472 | 17.2925 | 11.3680 | 3.8151 | 1.5212 | 15.6137 | 3.7855 | 4.5326 | 9,0387E-03                   | 1.67036        | 9.0385E-03                     | 1.67027          | 9.6151E-04                            | 6.703E-05 | 0.06971  | 99.7002  |
| -0.0001 | 4.1158 | 4.5471 | 17.2921 | 11.3678 | 3.8153 | 1.5212 | 15.6141 | 3.7857 | 4.5323 | 9.0391E-03                   | 1.67055        | 9.0389E-03                     | 1.67045          | 9.6112E-04                            | 6.705E-05 | 0.06976  | 99,7700  |
| -0.0001 | 4.1157 | 4.5470 | 17.2917 | 11.3675 | 3.8155 | 1.5212 | 15.6144 | 3.7859 | 4.5320 | 9.0395E-03                   | 1.67073        | 9.0393E-03                     | 1.67064          | 9.6073E-04                            | 6.706E-05 | 0.06980  | 99.8398  |
| -0.0001 | 4.1156 | 4.5469 | 17.2914 | 11.3672 | 3.8157 | 1.5212 | 15.6147 | 3.7860 | 4.5317 | 9.0398E-03                   | 1.67091        | 9.0397E-03                     | 1.67082          | 9.6036E-04                            | 6,708E-05 | 0.06985  | 99,9097  |
| -0.0001 | 4.1155 | 4.5468 | 17.2910 | 11.3670 | 3,8158 | 1.5212 | 15.6151 | 3.7862 | 4.5314 | 9.0402E-03                   | 1.67110        | 9.0400E-03                     | 1.67101          | 9.5996E-04                            | 6.710E-05 | 0.06990  | .99.9796 |
| -0.0001 | 4 1154 | 4.5467 | 17 2906 | 11 3667 | 3,9160 | 1 5212 | 15 6154 | 3.7864 | 4.5311 | 9.0406E-03                   | 1.67128        | 9.0404E-03                     | 1 67119          | 9.5957E-04                            | 6.712E-05 | 0.06995  | 100.0495 |
| -0.0001 | 4 1153 | 4.5466 | 17.2902 | 11,3665 | 3,8162 | 1.5212 | 15.6158 | 3.7865 | 4.5308 | 9.0410E-03                   | 1.67147        | 9.0408E-03                     | 1.67138          | 9.5919E-04                            | 6.714E-05 | 0.06999  | 100.1195 |

Table B-39 Case A 270 cfs: Manually Computed Outlet Depths

| Table B-40 Case A 300 cfs: Manually Computed Outlet Depth |
|-----------------------------------------------------------|
|-----------------------------------------------------------|

| Δy      | У      | 0      | A       | Р       | <b>7</b> ≊ . | R      |         | u²/Zg  | D      | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{o}\text{-}n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE        | ΔX      | ΣΔΧ      |
|---------|--------|--------|---------|---------|--------------|--------|---------|--------|--------|------------------------------|----------------|--------------------------------|------------------|---------------------------------------------|-----------|---------|----------|
|         | 4.6694 | 5.2429 | 19,0796 | 13 1073 | 2.4850       | 1.4556 | 15.7236 | 3.8390 | 7 6780 | 9.7205E-03                   | 1.00000        |                                |                  |                                             |           |         |          |
| -0.1    | 4,5694 | 5.0918 | 18.8146 | 12.7295 | 2.8054       | 1.4780 | 15.9451 | 3.9479 | 6.7065 | 9.7948E-03                   | 1.17734        | 9.7577E-03                     | 1.08867          | 2.4234E-04                                  | 8.867E-03 | 36.5893 | 36.6893  |
| -0.01   | 4,5594 | 5.0776 | 18.7864 | 12.6940 | 2,8347       | 1.4799 | 15.9690 | 3.9598 | 6.6272 | 9.8074E-03                   | 1.19500        | 9.8011E-03                     | 1.18617          | 1.9892E-04                                  | 1.862E-03 | 9.3590  | 45.9482  |
| -0.01   | 4.5494 | 5.0636 | 18.7579 | 12.6589 | 2.8636       | 1.4818 | 15.9933 | 3.9718 | 6.5505 | 9.8208E-03                   | 1.21267        | 9.8141E-03                     | 1.20383          | 1.8594E-04                                  | 2.038E-03 | 10.9625 | 56.9107  |
| -0.01   | 4.5394 | 5.0497 | 18.7291 | 12.6242 | 2.8920       | 1.4836 | 16.0178 | 3.9840 | 6.4762 | 9.8351E-03                   | 1.23035        | 9.8279E-03                     | 1.22151          | 1.7209E-04                                  | 2.215E-03 | 12.8720 | 69.7828  |
| -0.01   | 4.5294 | 5.0359 | 18.7001 | 12.5897 | 2.9200       | 1.4853 | 16.0427 | 3.9964 | 6.4042 | 9.8502E-03                   | 1.24807        | 9.8426E-03                     | 1_23921          | 1.5738E-04                                  | 2.392E-03 | 15 1991 | 84.9818  |
| -0.001  | 4.5284 | 5.0345 | 18.6971 | 12.5863 | 2.9228       | 1.4855 | 16.0452 | 3.9977 | 6.3971 | 9.8517E-03                   | 1.24984        | 9.8510E-03                     | 1,24895          | 1.4904E-04                                  | 2.490E-04 | 1.6703  | 86.6522  |
| -0.001  | 4.5274 | 5.0332 | 18.6942 | 12.5829 | 2.9255       | 1.4867 | 16.0477 | 3.9989 | 6.3900 | 9.8533E-03                   | 1.25161        | 9.8525E-03                     | 1.25073          | 1.4748E-04                                  | 2.507E-04 | 1.7001  | 88.3523  |
| -0.001  | 4.5264 | 5.0318 | 18.6913 | 12.5795 | 2.9283       | 1.4859 | 16.0503 | 4.0002 | 6.3830 | 9.8549E-03                   | 1.25339        | 9.8541E-03                     | 1.25250          | 1.4591E-04                                  | 2.525E-04 | 1.7305  | 90.0828  |
| -0.001  | 4,5254 | 5.0304 | 18.6884 | 12:5761 | 2.9311       | 1.4860 | 16.0528 | 4.0014 | 6.3759 | 9.8565E-03                   | 1.25516        | 9.8557E-03                     | 1.25427          | 1.4433E-04                                  | 2.543E-04 | 1.7618  | 91.8445  |
| -0.001  | 4.5244 | 5.0291 | 18.6854 | 12:5727 | 2.9338       | 1.4862 | 16.0553 | 4.0027 | 6:3689 | 9.8581E-03                   | 1.25694        | 9.8573E-03                     | 1.25605          | 1.4274E-04                                  | 2.560E-04 | 1.7938  | 93.6383  |
| -0.001  | 4.5234 | 5.0277 | 18.6825 | 12.5693 | 2.9366       | 1.4864 | 16:0578 | 4.0039 | 6:3620 | 9.8597E-03                   | 1.25871        | 9.8589E-03                     | 1.25782          | 1:4115E-04                                  | 2.578E-04 | 1.8266  | 95.4650  |
| -0.001  | 4.5224 | 5.0263 | 18.6796 | 12,5658 | 2.9394       | 1.4865 | 16.0603 | 4.0052 | 6.3550 | 9.8613E-03                   | 1.26049        | 9.8605E-03                     | 1.25960          | 1:3954E-04                                  | 2.596E-04 | 1,8604  | 97.3253  |
| -0.001  | 4.5214 | 5.0250 | 18.6766 | 12.5624 | 2.9421       | 1.4867 | 16.0629 | 4.0065 | 6.3481 | 9.8629E-03                   | 1.26226        | 9.8621E-03                     | 1.26137          | 1.3793E-04                                  | 2.614E-D4 | 1.8950  | 99 2203  |
| -0.0001 | 4.5213 | 5.0248 | 18,6763 | 12.5621 | 2.9424       | 1.4867 | 16.0631 | 4.0066 | 6.3474 | 9.8630E-03                   | 1.26244        | 9.8630E-03                     | 1,26235          | 1.3704E-04                                  | 2.623E-05 | 0.1914  | 99.4117  |
| -0.0001 | 4.5212 | 5.0247 | 18.6760 | 12.5618 | 2.9427       | 1.4867 | 16.0634 | 4.0067 | 6.3467 | 9.8632E-03                   | 1.26262        | 9.8631E-03                     | 1.26253          | 1.3688E-04                                  | 2.625E-05 | 0 1918  | 99.6035  |
| -0.0001 | 4.5211 | 5.0246 | 18.6757 | 12.5614 | 2.9429       | 1.4868 | 16.0636 | 4.0068 | 6.3460 | 9.8634E-03                   | 1.26279        | 9.8633E-03                     | 1.26271          | 1.3672E-04                                  | 2.627E-05 | 0.1922  | 99,7957  |
| -0.0001 | 4.5210 | 5.0244 | 18.6754 | 12.5611 | 2.9432       | 1.4868 | 16.0639 | 4,0070 | 6.3463 | 9.8635E-03                   | 1.26297        | 9 8634E-03                     | 1.26288          | 1.3655E-04                                  | 2.629E-05 | 0.1925  | 99.9882  |
| -0.0001 | 4.5209 | 5:0243 | 18.6751 | 12.5607 | 2.9435       | 1.4868 | 16:0641 | 4.0071 | 6:3446 | 9.8637E-03                   | 1.26315        | 9.8636E-03                     | 1.26306          | 1.3639E-04                                  | 2.631E-05 | 0.1929  | 100.1811 |
| -0.0001 | 4.5208 | 5.0242 | 18.6749 | 12.5604 | 2.9437       | 1.4868 | 16.0644 | 4.0072 | 6:3439 | 9.8639E-03                   | 1.26333        | 9.8638E-03                     | 1.26324          | 1.3623E-04                                  | 2.632E-05 | 0.1932  | 100.3743 |
| -0.0001 | 4.5207 | 5.0240 | 18.6746 | 12.5601 | 2.9440       | 1.4868 | 16.0646 | 4.0073 | 6.3432 | 9.8640E-03                   | 1.26350        | 9.8639E-03                     | 1.26342          | 1.3607E-04                                  | 2.634E-05 | 0.1936  | 100.5679 |

| Q   | yn   | Уc   | Tailwater | Slope | Boundary | Youtlet | Angle | Area            | V <sub>outlet</sub> |
|-----|------|------|-----------|-------|----------|---------|-------|-----------------|---------------------|
| cfs | ft   | ft   | ft        |       |          | ft      | rad   | ft <sup>2</sup> | ft/s                |
| 30  | 1.10 | 1.52 | 0.00      | Steep | Normal   | 1.14    | 1.99  | 3.36            | 8.93                |
| 60  | 1.56 | 2.18 | 0.00      | Steep | Normal   | 1.66    | 2.46  | 5.71            | 10.52               |
| 90  | 1.94 | 2.69 | 0.00      | Steep | Normal   | 2.09    | 2.81  | 7.79            | 11.56               |
| 120 | 2.27 | 3.13 | 0.00      | Steep | Normal   | 2.48    | 3.12  | 9.69            | 12.38               |
| 150 | 2.59 | 3.51 | 0.00      | Steep | Normal   | 2.83    | 3.40  | 11.45           | 13.10               |
| 180 | 2.90 | 3.84 | 0.00      | Steep | Normal   | 3.16    | 3.68  | 13.09           | 13.76               |
| 210 | 3.21 | 4.13 | 0.00      | Steep | Normal   | 3.48    | 3.95  | 14.59           | 14.39               |
| 240 | 3.54 | 4.36 | 0.00      | Steep | Normal   | 3.80    | 4.23  | 15.99           | 15.01               |
| 270 | 3.91 | 4.54 | 0.00      | Steep | Normal   | 4.11    | 4.54  | 17.28           | 15.62               |
| 300 | 4.45 | 4.67 | 0.00      | Steep | Normal   | 4.52    | 5.02  | 18.68           | 16.06               |

Table B-41 Case A Outlet Velocity Computations

In case B, the hydraulic slope was determined to be mild, and with a tailwater depth of 0.0 feet, the depth at the outlet was assumed to be critical. Table B-42 shows the results of the outlet velocity computations for case B.

| Q   | yn   | Уc   | Tailwater | Slope | Boundary | youtlet | Angle | Area            | Voutlet |
|-----|------|------|-----------|-------|----------|---------|-------|-----------------|---------|
| cfs | ft   | ft   | ft        |       |          | ft      | rad   | ft <sup>2</sup> | ft/s    |
| 10  | 0.95 | 0.87 | 0.00      | Mild  | Critical | 0.87    | 1.72  | 2.27            | 4.40    |
| 20  | 1.34 | 1.23 | 0.00      | Mild  | Critical | 1.23    | 2.08  | 3.77            | 5.31    |
| 30  | 1.66 | 1.52 | 0.00      | Mild  | Critical | 1.52    | 2.34  | 5.05            | 5.94    |
| 40  | 1.93 | 1.76 | 0.00      | Mild  | Critical | 1.76    | 2.54  | 6.19            | 6.46    |
| 50  | 2.18 | 1.98 | 0.00      | Mild  | Critical | 1.98    | 2.72  | 7.24            | 6.90    |
| 60  | 2.42 | 2.18 | 0.00      | Mild  | Critical | 2.18    | 2.88  | 8.21            | 7.30    |
| 70  | 2.66 | 2.36 | 0.00      | Mild  | Critical | 2.36    | 3.03  | 9.12            | 7.67    |
| 80  | 2.89 | 2.53 | 0.00      | Mild  | Critical | 2.53    | 3.17  | 9.98            | 8.02    |
| 90  | 3.12 | 2.69 | 0.00      | Mild  | Critical | 2.69    | 3.30  | 10.78           | 8.35    |
| 100 | 3.35 | 2.85 | 0.00      | Mild  | Critical | 2.85    | 3.42  | 11.54           | 8.66    |

Table B-42 Case B Outlet Velocity Computations

Forewater calculations (Tables B-43 through B-46) were required for case C when normal depth was less than critical (steep slope). Table B-47 shows the results of the outlet velocity computations for case C.

| Table B-43 ( | Case C 15 | cfs: Manually | Computed | Outlet Depths |  |
|--------------|-----------|---------------|----------|---------------|--|
|              |           |               |          |               |  |

| Δy      | ý      | 0      | A      | P      | Ĩ      | R      | /U1    | u²/2g  | D      | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | F <sup>2</sup> m | $S_{\phi} - n^2 u^2 / (\phi^2 R^{4/3})$ | ΔE        | ΔX       | ΣΔΧ     | HW     |
|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|------------------------------|----------------|--------------------------------|------------------|-----------------------------------------|-----------|----------|---------|--------|
|         | 1.0649 | 1.9188 | 3.0685 | 4.7969 | 4.0942 | 0.6376 | 4.9044 | 0.3735 | 0.7470 | 2.8430E-03                   | 0.9999         |                                |                  |                                         |           |          |         |        |
| -0.001  | 1.0639 | 1.9178 | 3.0544 | 4.7945 | 4.0928 | 0.6371 | 4.9110 | 0.3745 | 0,7463 | 2.8537E-03                   | 1.0036         | 2.8484E-03                     | 1,0018           | 1.5164E-04                              | 1.790E-06 | 0.0118   | 0.0118  | 1.6257 |
| -0.001  | 1.0629 | 1.9168 | 3.0503 | 4.7921 | 4.0914 | 0.6365 | 4.9176 | 0.3755 | 0.7455 | 2.8646E-03                   | 1.0073         | 2.8592E-03                     | 1.0055           | 1.4084E-04                              | 5.480E-06 | 0.0389   | 0.0507  | 1.6262 |
| -0.001  | 1.0619 | 1.9158 | 3.0462 | 4.7896 | 4.0900 | 0.6360 | 4.9242 | 0.3765 | 0.7448 | 2:8755E-03                   | 1.0110         | 2.8700E-03                     | 1.0092           | 1.2998E-04                              | 9.188E-06 | 0.0707   | 0.1214  | 1.6267 |
| -0.001  | 1.0609 | 1.9149 | 3.0421 | 4.7872 | 4.0886 | 0.6355 | 4.9308 | 0.3775 | 0.7441 | 2.8864E-03                   | 1.0148         | 2.8809E-03                     | 1.0129           | 1.1906E-04                              | 1.291E-05 | 0.1084   | 0.2299  | 1.6272 |
| -0.001  | 1.0599 | 1.9139 | 3.0380 | 4.7847 | 4.0872 | 0.6349 | 4.9374 | 0.3785 | 0.7433 | 2.8974E-03                   | 1.0185         | 2.8919E-03                     | 1.0167           | 1.0810E-04                              | 1.665E-05 | 0.1541   | 0.3839  | 1.6278 |
| -0.001  | 1.0589 | 1.9129 | 3,0339 | 4.7823 | 4.0858 | 0.6344 | 4.9441 | 0.3796 | 0.7426 | 2.9084E-03                   | 1.0223         | 2.9029E-03                     | 1.0204           | 9 7082E-05                              | 2.041E-05 | 0.2103   | 0.5942  | 1.6283 |
| -0.001  | 1.0579 | 1.9119 | 3 0299 | 4.7798 | 4.0844 | 0.6339 | 4.9507 | 0.3806 | 0.7418 | 2.9195E-03                   | 1.0261         | 2.9140E-03                     | 1.0242           | 8.6011E-05                              | 2.419E-05 | 0.2813   | 0.8755  | 1.6288 |
| -0.001  | 1.0569 | 1.9110 | 3.0258 | 4.7774 | 4.0829 | 0.6334 | 4.9574 | 0.3816 | 0.7411 | 2.9307E-03                   | 1.0299         | 2.9251E-03                     | 1.0280           | 7.4886E-05                              | 2.799E-05 | 0.3737   | 1.2492  | 1.6294 |
| -0.001  | 1.0559 | 1.9100 | 3.0217 | 4,7749 | 4.0815 | 0.6328 | 4.9641 | 0.3826 | 0,7403 | 2.9419E-03                   | 1 0337         | 2,9363E-03                     | 1.0318           | 6.3707E-05                              | 3 180E-05 | D.4991   | 1 7483  | 1.6299 |
| -0.001  | 1.0549 | 1.9090 | 3.0176 | 4.7725 | 4.0801 | 0.6323 | 4.9708 | 0.3837 | 0.7396 | 2.9532E-03                   | 1.0375         | 2.9475E-03                     | 1.0356           | 5.2474E-05                              | 3.563E-05 | 0.6790   | 2.4273  | 1.6305 |
| -0.001  | 1.0539 | 1.9080 | 3.0135 | 4.7700 | 4.0787 | 0.6318 | 4.9775 | 0.3847 | 0.7388 | 2.9645E-03                   | 1.0414         | 2.9588E-03                     | 1.0395           | 4.1186E-05                              | 3.948E-05 | 0.9585   | 3.3858  | 1.6310 |
| -0.001  | 1.0529 | 1.9070 | 3.0095 | 4.7676 | 4.0773 | 0.6312 | 4.9843 | 0.3868 | 0.7381 | 2.9758E-03                   | 1.0453         | 2.9702E-03                     | 1.0433           | 2.9843E-05                              | 4.334E-05 | 1.4524   | 4.8382  | 1.6316 |
| -0.001  | 1.0519 | 1.9060 | 3.0054 | 4.7651 | 4.0759 | 0.6307 | 4.9911 | 0.3868 | 0.7374 | 2.9873E-03                   | 1.0492         | 2.9816E-03                     | 1.0472           | 1.8445E-05                              | 4.723E-05 | 2,5605   | 7.3987  | 1.6322 |
| -0.001  | 1.0509 | 1.9051 | 3,0013 | 4.7627 | 4,0744 | 0.6302 | 4.9978 | 0.3879 | 0,7366 | 2.9987E-03                   | 1.0531         | 2.9930E-03                     | 1.0511           | 6.9916E-06                              | 5 113E-05 | 7,3133   | 14,7120 | 1.6327 |
| -0.0001 | 1.0508 | 1.9050 | 3,0009 | 4.7624 | 4.0743 | 0.6301 | 4 9995 | 0.3860 | 0,7365 | 2.9999E-03                   | 1.0535         | 2.9993E-03                     | 1.0533           | 6.7526E-07                              | 5.328E-06 | 7 8900   | 22,6028 | 1.6328 |
| -0.0001 | 1.0507 | 1.9049 | 3.0005 | 4.7622 | 4.0741 | 0.6301 | 4.9992 | 0.3881 | 0.7365 | 3.0011E-03                   | 1.0539         | 3.0005E-03                     | 1.0537           | -4.7625E-07                             | 5.368E-06 | -11.2706 | 11.3322 | 1,6329 |

| ∆у     | у      | θ      | Α      | P      | ा      | R      | u      | u <sup>2</sup> /2g | D      | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_m$ | $\mathbf{F}^2_{m}$ | $S_{\phi} n^2 u^2 / (\phi^2 R^{4/3})$ | ΔE        | ۸X      | ΣΔΧ    | HW    |
|--------|--------|--------|--------|--------|--------|--------|--------|--------------------|--------|------------------------------|----------------|--------------------------------|--------------------|---------------------------------------|-----------|---------|--------|-------|
|        | 1.5202 | 2.3362 | 5.0472 | 5.8405 | 4.6000 | D.8642 | 5.9439 | 0.5486             | 1.0972 | 2.784E-03                    | 1.000          |                                |                    |                                       |           |         |        |       |
| -0,01  | 1.5102 | 2.3275 | 5.0012 | 5.8187 | 4.5915 | 0.8595 | 5.9985 | 0.5587             | 1.0892 | 2.856E-03                    | 1.026          | 2.820E-03                      | 1.013              | 1.800E-04                             | 1.296E-04 | 0,720   | 0.720  | 2,348 |
| -0,01  | 1.5002 | 2.3188 | 4 9553 | 5.7969 | 4.5828 | 0.8548 | 6.0541 | 0.5691             | 1.0813 | 2.930E-03                    | 1.053          | 2.893E-03                      | 1.039              | 1.069E-04                             | 3.929E-04 | 3,677   | 4.397  | 2.354 |
| -0.001 | 1.4992 | 2.3179 | 4.9508 | 5.7948 | 4.5819 | 0.8544 | 6.0697 | 0.5702             | 1.0805 | 2.938E-03                    | 1.055          | 2.934E-03                      | 1.054              | 6.588E-05                             | 5.404E-05 | 0.820   | 5.218  | 2.355 |
| -0.001 | 1.4982 | 2.3170 | 4.9462 | 5.7926 | 4.5810 | 0.8539 | 6.0653 | 0.5712             | 1.0797 | 2.946E-03                    | 1.058          | 2.942E-03                      | 1.057              | 5.829E-05                             | 5.677E-05 | 0.974   | 6.192  | 2.355 |
| -0.001 | 1 4972 | 2,3162 | 4.9416 | 5.7904 | 4.5802 | 0.8534 | 6.0709 | 0.5723             | 1.0789 | 2.953E-03                    | 1.061          | 2.949E-03                      | 1.060              | 5.087E-05                             | 5.951E-05 | 1.174   | 7.366  | 2 356 |
| -0.001 | 1.4962 | 2.3153 | 4.9370 | 5,7882 | 4.5793 | 0.8529 | 6.0765 | 0.5734             | 1.0781 | 2.961E-03                    | 1.064          | 2.957E-03                      | 1.062              | 4.304E-05                             | 6.225E-05 | 1.447   | 8.812  | 2 356 |
| -0.001 | 1.4952 | 2.3144 | 4 9324 | 5.7860 | 4.5784 | 0.8525 | 6.0822 | 0.5744             | 1.0773 | 2.968E-03                    | 1.066          | 2.965E-03                      | 1.065              | 3.537E-05                             | 6.501E-05 | 1.838   | 10.650 | 2:357 |
| -0.001 | 1.4942 | 2,3135 | 4,9279 | 5,7838 | 4.5775 | 0.8520 | 6.0878 | 0.5755             | 1.0765 | 2.976E-03                    | 1.069          | 2.972E-03                      | 1.068              | 2.768E-05                             | 6.777E-05 | 2.448   | 13.099 | 2,357 |
| -0.001 | 1.4932 | 2.3127 | 4,9233 | 5.7817 | 4.5767 | 0.8515 | 6.0935 | 0.5766             | 1.0757 | 2.984E-03                    | 1.072          | 2.980E-03                      | 1.071              | 1.996E-05                             | 7.055E-05 | 3,534   | 16,633 | 2,358 |
| -0.001 | 1.4922 | 2,3118 | 4.9187 | 5.7795 | 4,5758 | 0.8511 | 6.0992 | 0.5776             | 1.0749 | 2.992E-03                    | 1.075          | 2 988E-03                      | 1.073              | 1.222E-05                             | 7.333E-05 | 6.000   | 22.633 | 2.359 |
| -0.001 | 1.4912 | 2.3109 | 4.9141 | 57773  | 4.5749 | 0.6506 | 6.1048 | 0.5787             | 1.0742 | 2.999E-03                    | 1.078          | 2.996E-03                      | 1.076              | 4.453E-06                             | 7.612E-05 | 17.097  | 39.730 | 2.369 |
| -0.001 | 1.4902 | 2.3100 | 4.9096 | 5.7751 | 4.5740 | 0.8501 | 6 1105 | 0.5798             | 1.0734 | 3.007E-03                    | 1.080          | 3.003E-03                      | 1.079              | -3.342E-06                            | 7.893E-05 | -23.614 | 16.116 | 2.360 |
| -0.001 | 1 4892 | 2.3092 | 4 9050 | 5,7729 | 4.5731 | 0.8497 | 6,1162 | 0.5809             | 1.0726 | 3.015E-03                    | 1.083          | 3.011E-03                      | 1.082              | -1,116E-05                            | 8.174E-05 | -7.322  | 8,794  | 2.361 |

Table B-44 Case C 30 cfs: Manually Computed Outlet Depths
| Δу     | у       | 8       | Α       | P       | Т       | R       | <u> </u> | u <sup>2</sup> /2g | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_{tra}$ | F <sup>2</sup> m | $S_{\phi} \cdot n^2 u^2 / (\phi^2 R^{4/3})$ | ΔE        | ΔX      | ΣΔΧ    | HW     |
|--------|---------|---------|---------|---------|---------|---------|----------|--------------------|---------|------------------------------|----------------|------------------------------------|------------------|---------------------------------------------|-----------|---------|--------|--------|
|        | 1.87542 | 2.63658 | 6.72740 | 6.59146 | 4.84145 | 1.02062 | 6.68906  | 0.69478            | 1 38954 | 2.8242E-03                   | 1.0000         |                                    |                  |                                             |           |         | ′      |        |
| -0.01  | 1.86542 | 2.62832 | 6.67901 | 6.57079 | 4,83624 | 1.01647 | 6.73753  | 0.70488            | 1 38103 | 2.8809E-03                   | 1.0208         | 2.8526E-03                         | 1.0104           | 1.4742E-04                                  | 1.040E-04 | 0.706   | 0.706  | 2.9227 |
| -0,01  | 1.85542 | 2.62004 | 6.63067 | 6.55010 | 4,83095 | 1.01230 | 6.78664  | 0.71519            | 1.37254 | 2.9391E-03                   | 1.0421         | 2.9100E-03                         | 1.0315           | 8.9968E-05                                  | 3.147E-04 | 3.498   | 4.204  | 2.9282 |
| -0.001 | 1.85442 | 2.61921 | 6.62584 | 6.54803 | 4.83042 | 1.01188 | 6.79159  | 0.71624            | 1.37169 | 2.9450E-03                   | 1.0443         | 2.9421E-03                         | 1.0432           | 5.7906E-05                                  | 4.323E-05 | 0.747   | 4.951  | 2.9288 |
| -0.001 | 1.85342 | 2.61839 | 6.62101 | 6.54596 | 4.82988 | 1_01147 | 6.79654  | 0,71729            | 1,37084 | 2.9510E-03                   | 1.0465         | 2.9480E-03                         | 1.0454           | 5.1990E-05                                  | 4.540E-05 | 0.873   | 5.824  | 2.9293 |
| -0.001 | 1.85242 | 2.61756 | 6,61618 | 6.54389 | 4.82935 | 1.01105 | 6.80150  | 0.71833            | 1.37000 | 2.9569E-03                   | 1.0487         | 2,9539E-03                         | 1.0476           | 4.6059E-05                                  | 4.757E-05 | 1.033   | 6.857  | 2.9299 |
| -0.001 | 1.85142 | 2.61673 | 6.61135 | 6.54182 | 4.82881 | 1,01063 | 6.80647  | 0,71938            | 1.36915 | 2.9629E-03                   | 1.0508         | 2.9599E-03                         | 1.0498           | 4.0112E-05                                  | 4.975E-05 | 1.240   | 8.097  | 2.9305 |
| -0.001 | 1.85042 | 2.61590 | 6,60653 | 6.53975 | 4.82827 | 1.01021 | 6.81145  | 0.72043            | 1.36830 | 2.9688E-03                   | 1.0530         | 2.9669E-03                         | 1.0519           | 3.4149E-05                                  | 5.194E-05 | 1.521   | 9.618  | 2.9311 |
| -0.001 | 1.84942 | 2.61507 | 6.60170 | 6.53768 | 4.82773 | 1.00979 | 6.81643  | 0,72149            | 1.36745 | 2.9748E-03                   | 1.0552         | 2.9718E-03                         | 1.0541           | 2.8171E-05                                  | 5.413E-05 | 1.921   | 11.539 | 2.9317 |
| -0.001 | 1.84842 | 2.61424 | 6.59687 | 6.53561 | 4,82719 | 1.00937 | 6.82142  | 0,72254            | 1 36661 | 2.9808E-03                   | 1.0574         | 2.9778E-03                         | 1.0563           | 2.2176E-05                                  | 5.633E-05 | 2.540   | 14.079 | 2.9322 |
| -0.001 | 1.84742 | 2 61341 | 6.59204 | 6.53354 | 4,82665 | 1.00895 | 6.82641  | 0.72360            | 1.36576 | 2.9868E-03                   | 1.0596         | 2.9838E-03                         | 1.0585           | 1.6165E-05                                  | 5.853E-05 | 3.621   | 17.700 | 2.9328 |
| -0.001 | 1.84642 | 2.61259 | 6.58722 | 6.53146 | 4.82611 | 1.00854 | 6.83141  | 0.72466            | 1.36491 | 2.9929E-03                   | 1.0618         | 2.9899E-03                         | 1.0607           | 1.0138E-05                                  | 6.074E-05 | 5.991   | 23.691 | 2.9334 |
| -0.001 | 1.84542 | 2.61176 | 6.58239 | 6.52939 | 4.82557 | 1.00012 | 6.83642  | 0,72572            | 1.36406 | 2.9989E-03                   | 1.0641         | 2.9959E-03                         | 1.0630           | 4.0949E-06                                  | 6.295E-05 | 15.374  | 39.065 | 2.9340 |
| -0.001 | 1.84442 | 2.61093 | 6.57757 | 6.52732 | 4 82503 | 1.00770 | 6,84144  | 0.72679            | 1.36322 | 3.0050E-03                   | 1.0663         | 3 0020E-03                         | 1.0652           | -1.9645E-06                                 | 6.517E-05 | -33,176 | 5 889  | 2.9348 |

 Table B-45 Case C 45 cfs: Manually Computed Outlet Depths

| Δу      | У       | 8        | Α       | Р       | ा       | R       | u       | u²/Zg   | D       | $n^2 u^2 / (\phi^2 R^{4/3})$ | F <sup>2</sup> | $n^2 u^2 / (\phi^2 R^{4/3})_{rn}$ | F <sup>2</sup> m | $S_{\phi}\text{-}n^{2}u^{2}/(\phi^{2}R^{4/3})$ | ΔE        | ΔX      | ΣΔΧ     | HW      |
|---------|---------|----------|---------|---------|---------|---------|---------|---------|---------|------------------------------|----------------|-----------------------------------|------------------|------------------------------------------------|-----------|---------|---------|---------|
|         | 2 17858 | 2.88375  | 8.21484 | 7 20937 | 4.95850 | 1.13947 | 7.30386 | 0.82836 | 1.65672 | 2.9073E-03                   | 1,0000         |                                   |                  |                                                |           |         |         |         |
| -0.01   | 2.16858 | 2.87568  | 8.16527 | 7,18919 | 4 95587 | 1.13577 | 7.34820 | 0.83845 | 1.64759 | 2.9555E-03                   | 1.0178         | 2.9314E-03                        | 1.0089           | 6.859E-05                                      | 8.892E-05 | 1 296   | 1.296   | 3.42626 |
| -0.001  | 2.16758 | 2.87487  | 8:16031 | 7 18718 | 4.95560 | 1 13540 | 7.35266 | 0.83947 | 1.64668 | 2.9604E-03                   | 1.0196         | 2.9579E-03                        | 1.0187           | 4.206E-05                                      | 1.868E-05 | 0.444   | 1.741   | 3.42678 |
| -0.001  | 2.16658 | 2.87.406 | 8.15536 | 7.18516 | 4.95533 | 1.13503 | 7.35713 | 0.84049 | 1.64577 | 2.9653E-03                   | 1.0214         | 2.9628E-03                        | 1.0205           | 3.717E-05                                      | 2.049E-05 | 0.551   | 2.292   | 3.42731 |
| +0.001  | 2,16558 | 2.87326  | 8.15040 | 7.18314 | 4.95506 | 1.13466 | 7.36160 | 0.84151 | 1.64486 | 2.9702E-03                   | 1.0232         | 2.9677E-03                        | 1.0223           | 3.228E-05                                      | 2.229E-05 | 0.691   | 2,982   | 3,42785 |
| -0.001  | 2.16458 | 2.87245  | 8.14545 | 7 18112 | 4.95479 | 1 13429 | 7,36608 | 0.84253 | 1.64395 | 2.9751E-03                   | 1.0250         | 2 9726E-03                        | 1.0241           | 2.737E-05                                      | 2 410E-05 | 0.881   | 3.863   | 3.42838 |
| -0.001  | 2,16358 | 2.87164  | 8,14049 | 7.17910 | 4.95452 | 1.13391 | 7.37056 | 0.84356 | 1,64304 | 2.9800E-03                   | 1.0268         | 2.9775E-03                        | 1.0259           | 2.245E-05                                      | 2 592E-05 | 1.154   | 5.017   | 3.42892 |
| -0.001  | 2 16258 | 2.87083  | 8.13564 | 7 17709 | 4.95425 | 1 13354 | 7.37505 | 0.84459 | 1.64213 | 2.9849E-03                   | 1.0286         | 2.9825E-03                        | 1.0277           | 1.753E-05                                      | 2 774E-05 | 1.583   | 6.600   | 3.42946 |
| -0.001  | 2 16158 | 2.87003  | 8.13058 | 7 17507 | 4.95398 | 1 13317 | 7.37954 | 0.84562 | 1.64122 | 2.9899E-03                   | 1,0305         | 2,9874E-03                        | 1.0296           | 1,259E-05                                      | 2 956E-05 | 2,349   | 8 948   | 3.43001 |
| -0.001  | 2.16058 | 2.86922  | 8.12563 | 7.17305 | 4.95370 | 1.13280 | 7.38404 | 0.84665 | 1.64031 | 2.9948E-03                   | 1.0323         | 2.9924E-03                        | 1.0314           | 7.635E-06                                      | 3.139E-05 | 4,111   | 13.059  | 3.43056 |
| -0.0001 | 2 16048 | 2.86914  | 8:12513 | 7 17285 | 4.95368 | 1 13276 | 7.38449 | 0.84675 | 1.64022 | 2.9953E-D3                   | 1.0325         | 2,9951E-03                        | 1.0324           | 4.908E-06                                      | 3.239E-06 | 0.660   | 13.719  | 3.43061 |
| -0.0001 | 2.16038 | 2,86906  | 8.12464 | 7.17264 | 4.95365 | 1.13273 | 7.38494 | 0.84685 | 1.64013 | 2.9958E-03                   | 1.0327         | 2.9956E-03                        | 1.0326           | 4.412E-06                                      | 3.257E-06 | 0.738   | 14.457  | 3.43067 |
| -0.0001 | 2,16028 | 2.86898  | 8.12414 | 7.17244 | 4.95362 | 1.13269 | 7.38539 | 0.84696 | 1.64004 | 2.9963E-03                   | 1.0328         | 2.9961E-03                        | 1.0328           | 3.916E-06                                      | 3.276E-06 | 0.837   | 15.294  | 3.43072 |
| -0.0001 | 2.16018 | 2.86890  | 8.12365 | 7 17224 | 4,95359 | 1.13265 | 7,38584 | 0.84706 | 1.63995 | 2.9968E-03                   | 1.0330         | 2 9966E-03                        | 1.0329           | 3.419E-06                                      | 3.294E-06 | 0.963   | 16.257  | 3.43078 |
| -0.0001 | 2,16008 | 2.86882  | 8,12315 | 7.17204 | 4.95357 | 1.13261 | 7.38630 | 0.84716 | 1,63986 | 2.9973E-03                   | 1.0332         | 2.9971E-03                        | 1.0331           | 2.922E-06                                      | 3,312E-06 | 1,133   | 17.391  | 3.43083 |
| -0.0001 | 2.15998 | 2.86873  | 8.12266 | 7 17184 | 4,95354 | 1.13258 | 7.38675 | 0.84727 | 1,63977 | 2.9978E-03                   | 1.0334         | 2.9976E-03                        | 1.0333           | 2.426E-06                                      | 3.331E-06 | 1.373   | 18.764  | 3.43089 |
| -0.0001 | 2 15988 | 2.86865  | 8.12216 | 7 17164 | 4.95351 | 1 13254 | 7.38720 | 0.84737 | 1.63968 | 2.9983E-03                   | 1,0336         | 2,9981E-03                        | 1.0335           | 1.929E-06                                      | 3.349E-06 | 1.736   | 20,500  | 3.43094 |
| -0.0001 | 2.15978 | 2.86857  | 8.12167 | 7.17143 | 4.95349 | 1.13250 | 7.38765 | 0.84747 | 1,63959 | 2.9988E-03                   | 1.0338         | 2.9986E-03                        | 1.0337           | 1.432E-06                                      | 3.367E-06 | 2.352   | 22.852  | 3.43100 |
| -0.0001 | 2.15968 | 2.86849  | 8:12117 | 7 17123 | 4.95346 | 1 13247 | 7,38810 | 0.84758 | 1.63950 | 2.9993E-D3                   | 1.0339         | 2,9991E-03                        | 1.0339           | 9.346E-07                                      | 3.386E-06 | 3.623   | 26:475  | 3.43105 |
| 0.0001  | 2.15958 | 2.86841  | 8.12068 | 7.17103 | 4.95343 | 1.13243 | 7.38855 | 0.84768 | 1.63940 | 2.9998E-03                   | 1.0341         | 2.9996E-03                        | 1.0340           | 4.374E-07                                      | 3.404E-06 | 7.783   | 34.259  | 3,43111 |
| -0.0001 | 2.15948 | 2.86833  | 8.12018 | 7.17083 | 4.95340 | 1.13239 | 7.38900 | 0.84778 | 1.63931 | 3.0003E-03                   | 1.0343         | 3.0001E-03                        | 1.0342           | -5.998E-08                                     | 3.422E-06 | -57.065 | -22.797 | 3.43116 |

Table B-46 Case C 60 cfs: Manually Computed Outlet Depths

| Q   | y <sub>n</sub> | y <sub>c</sub> | Tailwater | Slope | Boundary | Youtlet | Angle | Area            | Voutlet |
|-----|----------------|----------------|-----------|-------|----------|---------|-------|-----------------|---------|
| cfs | ft             | ft             | ft        |       |          | ft      | rad   | ft <sup>2</sup> | ft/s    |
| 15  | 1.05           | 1.06           | 0.00      | Steep | Normal   | 1.05    | 1.90  | 3.00            | 5.00    |
| 30  | 1.49           | 1.52           | 0.00      | Steep | Normal   | 1.49    | 2.31  | 4.91            | 6.11    |
| 45  | 1.85           | 1.88           | 0.00      | Steep | Normal   | 1.85    | 2.61  | 6.58            | 6.84    |
| 60  | 2.16           | 2.18           | 0.00      | Steep | Normal   | 2.16    | 2.87  | 8.12            | 7.39    |
| 75  | 2.45           | 2.45           | 0.00      | Mild  | Critical | 2.45    | 3.10  | 9.56            | 7.85    |
| 90  | 2.74           | 2.69           | 0.00      | Mild  | Critical | 2.69    | 3.30  | 10.78           | 8.35    |
| 105 | 3.02           | 2.92           | 0.00      | Mild  | Critical | 2.92    | 3.48  | 11.91           | 8.82    |
| 120 | 3.30           | 3.13           | 0.00      | Mild  | Critical | 3.13    | 3.65  | 12.93           | 9.28    |
| 135 | 3.61           | 3.33           | 0.00      | Mild  | Critical | 3.33    | 3.82  | 13.87           | 9.73    |
| 150 | 3.96           | 3.51           | 0.00      | Mild  | Critical | 3.51    | 3.97  | 14.73           | 10.18   |

 Table B-47 Case C: Outlet Velocity Computations

Table B-48 shows the outlet depths and velocities computed for case D. Since the tailwater depth was greater than both normal and critical depths, the outlet depth was assumed to be the tailwater depth of 4.5 feet for all flows.

| Q   | y <sub>n</sub> | y <sub>c</sub> | Tailwater | Slope | Boundary  | Youtlet | Angle | Area            | Voutlet |
|-----|----------------|----------------|-----------|-------|-----------|---------|-------|-----------------|---------|
| cfs | ft             | ft             | ft        |       |           | ft      | rad   | ft <sup>2</sup> | ft/s    |
| 20  | 1.07           | 1.23           | 4.50      | Steep | Tailwater | 4.5     | 5.00  | 18.61           | 1.07    |
| 40  | 1.52           | 1.76           | 4.50      | Steep | Tailwater | 4.5     | 5.00  | 18.61           | 2.15    |
| 60  | 1.88           | 2.18           | 4.50      | Steep | Tailwater | 4.5     | 5.00  | 18.61           | 3.22    |
| 80  | 2.20           | 2.53           | 4.50      | Steep | Tailwater | 4.5     | 5.00  | 18.61           | 4.30    |
| 100 | 2.50           | 2.85           | 4.50      | Steep | Tailwater | 4.5     | 5.00  | 18.61           | 5.37    |
| 120 | 2.79           | 3.13           | 4.50      | Steep | Tailwater | 4.5     | 5.00  | 18.61           | 6.45    |
| 140 | 3.08           | 3.39           | 4.50      | Steep | Tailwater | 4.5     | 5.00  | 18.61           | 7.52    |
| 160 | 3.38           | 3.63           | 4.50      | Steep | Tailwater | 4.5     | 5.00  | 18.61           | 8.60    |
| 180 | 3.71           | 3.84           | 4.50      | Steep | Tailwater | 4.5     | 5.00  | 18.61           | 9.67    |
| 200 | 4.10           | 4.04           | 4.50      | Mild  | Tailwater | 4.5     | 5.00  | 18.61           | 10.75   |

 Table B-48 Case D: Outlet Velocity Computations

### References

(1) French, R. H. (1985). *Open-Channel Hydraulics*. McGraw-Hill: New York.

(2) Normann, J. M., R. J. Houghtalen, and W. J. Johnson (1985). "Hydraulic Design of Highway Culverts." *Hydraulic Design Series No. 5*, 2nd Ed., Federal Highway Administration: Washington, D.C.

# Appendix C. Program Testing

Four test cases were developed for the purpose of testing and comparing the computed inlet and outlet control headwater depths as well as the outlet velocity determined by each of the programs. Flow control was determined by comparing the predicted inlet and outlet control headwater depths and selecting the larger of the two as the control (1).

Tables C-1 through C-4 show the program outputs for inlet control headwater depth from all seven programs. The programs that did not specify inlet control headwater depths at certain flows are identified.

| Q   | Manually<br>Computed<br>Value | HY-8  | Fish X-ing   | BCAP  | Hydraflow<br>Express | Culvert<br>Master | Culvert | HEC-<br>RAS |
|-----|-------------------------------|-------|--------------|-------|----------------------|-------------------|---------|-------------|
| 30  | 2.07                          | 2.08  | Not Reported | 1.98  | Not Reported         | 2.07              | 2.48    | 2.07        |
| 60  | 3.07                          | 3.12  | Not Reported | 3.12  | Not Reported         | 3.07              | 3.12    | 3.07        |
| 90  | 3.96                          | 4.00  | Not Reported | 4.00  | Not Reported         | 3.96              | 4.00    | 3.96        |
| 120 | 4.81                          | 4.81  | Not Reported | 4.81  | Not Reported         | 4.81              | 4.81    | 4.81        |
| 150 | 5.67                          | 5.68  | Not Reported | 5.68  | 5.65                 | 5.67              | 5.68    | 5.67        |
| 180 | 6.67                          | 6.67  | Not Reported | 6.67  | 6.67                 | 6.67              | 6.67    | 6.67        |
| 210 | 7.88                          | 7.84  | Not Reported | 7.84  | 7.88                 | 7.88              | 7.84    | 7.88        |
| 240 | 9.27                          | 9.22  | Not Reported | 9.22  | 9.27                 | 9.27              | 9.21    | 9.27        |
| 270 | 10.85                         | 10.80 | Not Reported | 10.80 | 10.85                | 10.85             | 10.79   | 10.85       |
| 300 | 12.62                         | 12.58 | Not Reported | 12.58 | 12.62                | 12.62             | 12.57   | 12.62       |

Table C-1 Case A Inlet Control Headwater Depths (ft)

|     | Manually<br>Computed |      |              |      | Hydraflow    | Culvert |         | HEC- |
|-----|----------------------|------|--------------|------|--------------|---------|---------|------|
| Q   | Value                | HY-8 | Fish X-ing   | BCAP | Express      | Master  | Culvert | RAS  |
| 10  | 1.16                 | 1.17 | Not Reported | 0.96 | Not Reported | 1.16    | 2.50    | 1.16 |
| 20  | 1.68                 | 1.68 | Not Reported | 1.52 | Not Reported | 1.68    | 2.50    | 1.68 |
| 30  | 2.09                 | 2.09 | Not Reported | 2.00 | Not Reported | 2.09    | 2.50    | 2.09 |
| 40  | 2.45                 | 2.44 | Not Reported | 2.42 | Not Reported | 2.45    | 2.50    | 2.45 |
| 50  | 2.78                 | 2.80 | Not Reported | 2.80 | Not Reported | 2.78    | 2.80    | 2.78 |
| 60  | 3.09                 | 3.14 | Not Reported | 3.14 | Not Reported | 3.09    | 3.14    | 3.09 |
| 70  | 3.39                 | 3.45 | Not Reported | 3.45 | Not Reported | 3.40    | 3.45    | 3.39 |
| 80  | 3.69                 | 3.74 | Not Reported | 3.74 | Not Reported | 3.69    | 3.74    | 3.69 |
| 90  | 3.98                 | 4.02 | Not Reported | 4.02 | Not Reported | 3.98    | 4.02    | 3.98 |
| 100 | 4.26                 | 4.29 | Not Reported | 4.29 | Not Reported | 4.26    | 4.29    | 4.26 |

Table C-2 Case B Inlet Control Headwater Depths (ft)

Table C-3 Case C Inlet Control Headwater Depths (ft)

| Q   | Manually<br>Computed<br>Value | HY-8 | Fish X-ing   | BCAP | Hydraflow<br>Express | Culvert<br>Master | Culvert | HEC-<br>RAS |
|-----|-------------------------------|------|--------------|------|----------------------|-------------------|---------|-------------|
| 15  | 1.44                          | 1.45 | Not Reported | 1.26 | 1.27                 | 1.44              | 2.49    | 1.44        |
| 30  | 2.08                          | 2.09 | Not Reported | 2.00 | 1.81                 | 2.08              | 2.49    | 2.08        |
| 45  | 2.61                          | 2.61 | Not Reported | 2.61 | 2.23                 | 2.61              | 2.61    | 2.61        |
| 60  | 3.09                          | 3.13 | Not Reported | 3.13 | 2.59                 | 3.09              | 3.13    | 3.09        |
| 75  | 3.54                          | 3.59 | Not Reported | 3.59 | 2.95                 | 3.54              | 3.59    | 3.54        |
| 90  | 3.97                          | 4.02 | Not Reported | 4.02 | 3.30                 | 3.97              | 4.02    | 3.97        |
| 105 | 4.40                          | 4.43 | Not Reported | 4.43 | 3.63                 | 4.40              | 4.43    | 4.40        |
| 120 | 4.83                          | 4.83 | Not Reported | 4.83 | 3.94                 | 4.83              | 4.83    | 4.83        |
| 135 | 5.25                          | 5.25 | Not Reported | 5.25 | 4.25                 | 5.25              | 5.25    | 5.25        |
| 150 | 5.69                          | 5.69 | Not Reported | 5.69 | 5.67                 | 5.69              | 5.69    | 5.69        |

| Q   | Manually<br>Computed<br>Value | HY-8 | Fish X-ing   | ВСАР | Hydraflow<br>Express | Culvert<br>Master | Culvert | HEC-<br>RAS |
|-----|-------------------------------|------|--------------|------|----------------------|-------------------|---------|-------------|
| 20  | 1.67                          | 1.68 | Not Reported | 1.52 | Not Reported         | 4.00              | 2.49    | 1.67        |
| 40  | 2.44                          | 2.43 | Not Reported | 2.41 | Not Reported         | 4.00              | 2.49    | 2.44        |
| 60  | 3.09                          | 3.13 | Not Reported | 3.13 | Not Reported         | 4.00              | 3.13    | 3.09        |
| 80  | 3.68                          | 3.73 | Not Reported | 3.73 | Not Reported         | 4.00              | 3.73    | 3.68        |
| 100 | 4.25                          | 4.29 | Not Reported | 4.29 | Not Reported         | 4.25              | 4.29    | 4.25        |
| 120 | 4.82                          | 4.83 | Not Reported | 4.83 | Not Reported         | 4.82              | 4.83    | 4.82        |
| 140 | 5.39                          | 5.39 | Not Reported | 5.39 | 5.36                 | 5.39              | 5.39    | 5.39        |
| 160 | 6.00                          | 6.00 | Not Reported | 6.00 | 5.98                 | 6.00              | 6.00    | 5.98        |
| 180 | 6.68                          | 6.68 | Not Reported | 6.68 | 6.68                 | 6.68              | 6.68    | 6.68        |
| 200 | 7.47                          | 7.44 | Not Reported | 7.44 | 7.47                 | 7.47              | 7.44    | 7.47        |

 Table C-4 Case D Inlet Control Headwater Depths (ft)

Tables C-5 through C-8 show the program output values for outlet control headwater depth for test cases A through D, respectively.

| Q   | Manually<br>Computed<br>Value | HY-8 | Fish<br>X-ing | BCAP         | Hydraflow<br>Express | Culvert<br>Master | Culvert | HEC-<br>RAS |
|-----|-------------------------------|------|---------------|--------------|----------------------|-------------------|---------|-------------|
| 30  | N/A                           | 0.00 | 2.37          | Not Reported | 1.80                 | 2.34              | 3.14    | 2.34        |
| 60  | N/A                           | 0.00 | 3.46          | Not Reported | 2.59                 | 3.42              | 4.60    | 3.42        |
| 90  | N/A                           | 0.00 | 4.37          | Not Reported | 3.21                 | 4.32              | 5.74    | 4.32        |
| 120 | N/A                           | 0.00 | 5.20          | Not Reported | 3.76                 | 5.14              | 6.71    | 5.14        |
| 150 | N/A                           | 0.00 | 6.00          | Not Reported | Not Reported         | 5.93              | 7.56    | 5.93        |
| 180 | N/A                           | 0.00 | 6.81          | Not Reported | Not Reported         | 6.72              | 8.31    | 6.72        |
| 210 | N/A                           | 0.00 | 7.66          | Not Reported | Not Reported         | 7.55              | 9.00    | 7.55        |
| 240 | N/A                           | 0.00 | 8.56          | Not Reported | Not Reported         | 8.43              | 9.61    | 8.43        |
| 270 | N/A                           | 0.00 | 9.54          | Not Reported | Not Reported         | 9.38              | 10.15   | 9.38        |
| 300 | N/A                           | 0.00 | 10.72         | Not Reported | Not Reported         | 10.43             | 10.58   | 10.43       |

 Table C-5 Case A Outlet Control Headwater Depths (ft)

|     | Manually<br>Computed |      | Fish  |              | Hydraflow | Culvert |         | HEC- |
|-----|----------------------|------|-------|--------------|-----------|---------|---------|------|
| Q   | Value                | HY-8 | X-ing | BCAP         | Express   | Master  | Culvert | RAS  |
| 10  | 1.30                 | 1.29 | 1.31  | Not Reported | 1.09      | 1.30    | 1.30    | 1.30 |
| 20  | 1.86                 | 1.85 | 1.88  | Not Reported | 1.54      | 1.86    | 1.86    | 1.86 |
| 30  | 2.31                 | 2.30 | 2.33  | Not Reported | 1.90      | 2.31    | 2.31    | 2.31 |
| 40  | 2.69                 | 2.69 | 2.72  | Not Reported | 2.20      | 2.69    | 2.70    | 2.69 |
| 50  | 3.04                 | 3.04 | 3.07  | Not Reported | 2.49      | 3.04    | 3.05    | 3.04 |
| 60  | 3.38                 | 3.37 | 3.40  | Not Reported | 2.75      | 3.37    | 3.37    | 3.37 |
| 70  | 3.67                 | 3.67 | 3.71  | Not Reported | 2.99      | 3.67    | 3.68    | 3.67 |
| 80  | 3.96                 | 3.97 | 4.00  | Not Reported | 3.23      | 3.97    | 3.97    | 3.96 |
| 90  | 4.25                 | 4.25 | 4.29  | Not Reported | 3.45      | 4.25    | 4.25    | 4.25 |
| 100 | 4.52                 | 4.53 | 4.57  | Not Reported | 3.67      | 4.52    | 4.52    | 4.52 |

Table C-6 Case B Outlet Control Headwater Depths (ft)

Table C-7 Case C Outlet Control Headwater Depths (ft)

| Q   | Manually<br>Computed<br>Value | HY-8 | Fish<br>X-ing | BCAP         | Hydraflow<br>Express | Culvert<br>Master | Culvert | HEC-<br>RAS |
|-----|-------------------------------|------|---------------|--------------|----------------------|-------------------|---------|-------------|
| 15  | N/A                           | 0.00 | 1.64          | Not Reported | 1.27                 | 1.63              | 1.63    | 1.63        |
| 30  | N/A                           | 0.00 | 2.37          | Not Reported | 1.81                 | 2.34              | 2.36    | 2.34        |
| 45  | N/A                           | 0.00 | 2.95          | Not Reported | 2.23                 | 2.92              | 2.93    | 2.92        |
| 60  | N/A                           | 0.00 | 3.46          | Not Reported | 2.59                 | 3.42              | 3.43    | 3.42        |
| 75  | 3.88                          | 3.88 | 3.88          | Not Reported | 2.95                 | 3.88              | 3.88    | 3.88        |
| 90  | 4.30                          | 4.29 | 4.31          | Not Reported | 3.30                 | 4.30              | 4.30    | 4.29        |
| 105 | 4.69                          | 4.69 | 4.75          | Not Reported | 3.63                 | 4.69              | 4.70    | 4.69        |
| 120 | 5.08                          | 5.08 | 5.13          | Not Reported | 3.94                 | 5.08              | 5.04    | 5.08        |
| 135 | 5.46                          | 5.46 | 5.51          | Not Reported | 4.25                 | 5.46              | 5.47    | 5.46        |
| 150 | 5.84                          | 5.85 | 5.91          | Not Reported | 5.67                 | 5.84              | 5.85    | 5.84        |

| Q   | Manually<br>Computed<br>Value | HY-8 | Fish<br>X-ing | BCAP | Hydraflow<br>Express | Culvert<br>Master | Culvert | HEC-<br>RAS |
|-----|-------------------------------|------|---------------|------|----------------------|-------------------|---------|-------------|
| 20  | 4.03                          | 4.04 | 4.03          | 4.03 | 4.02                 | 4.03              | 4.12    | 4.03        |
| 40  | 4.13                          | 4.14 | 4.13          | 4.11 | 4.05                 | 4.13              | 4.21    | 4.13        |
| 60  | 4.30                          | 4.33 | 4.30          | 4.43 | 4.11                 | 4.30              | 4.37    | 4.30        |
| 80  | 4.54                          | 4.54 | 4.55          | 4.96 | 4.19                 | 4.54              | 4.60    | 4.53        |
| 100 | 4.84                          | 4.86 | 4.86          | 5.51 | 4.30                 | 4.84              | 4.88    | 4.83        |
| 120 | 5.20                          | 5.22 | 5.24          | 6.08 | 4.43                 | 5.20              | 5.23    | 5.20        |
| 140 | 5.63                          | 5.65 | 5.68          | 6.69 | Not Reported         | 5.63              | 5.65    | 5.62        |
| 160 | 6.11                          | 6.12 | 6.17          | 7.34 | Not Reported         | 6.11              | 6.12    | 6.11        |
| 180 | 6.63                          | 6.65 | 6.71          | 8.02 | Not Reported         | 6.64              | 6.64    | 6.63        |
| 200 | 7.18                          | 7.20 | 7.27          | 8.70 | Not Reported         | 7.18              | 7.19    | 7.18        |

 Table C-8 Case D Outlet Control Headwater Depths (ft)

Tables C-9 through C-12 show the program output values for predicted flow control for test cases A through D, respectively. If the program did not specifically state the predicted control, the higher of the inlet and outlet control headwater depths was used to define the control.

| Q   | Manually<br>Determined<br>Value | НҮ-8  | Fish<br>X-ing | BCAP  | Hydraflow<br>Express | Culvert<br>Master | Culvert | HEC-<br>RAS |
|-----|---------------------------------|-------|---------------|-------|----------------------|-------------------|---------|-------------|
| 30  | Inlet                           | Inlet | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Inlet       |
| 60  | Inlet                           | Inlet | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Inlet       |
| 90  | Inlet                           | Inlet | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Inlet       |
| 120 | Inlet                           | Inlet | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Inlet       |
| 150 | Inlet                           | Inlet | Outlet        | Inlet | Inlet                | Outlet            | Outlet  | Inlet       |
| 180 | Inlet                           | Inlet | Outlet        | Inlet | Inlet                | Outlet            | Outlet  | Inlet       |
| 210 | Inlet                           | Inlet | Outlet        | Inlet | Inlet                | Inlet             | Outlet  | Inlet       |
| 240 | Inlet                           | Inlet | Outlet        | Inlet | Inlet                | Inlet             | Outlet  | Inlet       |
| 270 | Inlet                           | Inlet | Outlet        | Inlet | Inlet                | Inlet             | Inlet   | Inlet       |
| 300 | Inlet                           | Inlet | Outlet        | Inlet | Inlet                | Inlet             | Inlet   | Inlet       |

 Table C-9 Case A Flow Control

| Q   | Manually<br>Determined<br>Value | HY-8   | Fish<br>X-ing | BCAP  | Hydraflow<br>Express | Culvert<br>Master | Culvert | HEC-<br>RAS |
|-----|---------------------------------|--------|---------------|-------|----------------------|-------------------|---------|-------------|
| 10  | Outlet                          | Outlet | Outlet        | Inlet | Outlet               | Outlet            | Inlet   | Outlet      |
| 20  | Outlet                          | Outlet | Outlet        | Inlet | Outlet               | Outlet            | Inlet   | Outlet      |
| 30  | Outlet                          | Outlet | Outlet        | Inlet | Outlet               | Outlet            | Inlet   | Outlet      |
| 40  | Outlet                          | Outlet | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 50  | Outlet                          | Outlet | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 60  | Outlet                          | Outlet | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 70  | Outlet                          | Outlet | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 80  | Outlet                          | Outlet | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 90  | Outlet                          | Outlet | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 100 | Outlet                          | Outlet | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Outlet      |

Table C-10 Case B Flow Control

Table C-11 Case C Flow Control

| Q   | Manually<br>Determined<br>Value | HY-8   | Fish<br>X-ing | BCAP  | Hydraflow<br>Express | Culvert<br>Master | Culvert | HEC-<br>RAS |
|-----|---------------------------------|--------|---------------|-------|----------------------|-------------------|---------|-------------|
| 15  | Inlet                           | Inlet  | Outlet        | Inlet | Outlet               | Outlet            | Inlet   | Inlet       |
| 30  | Inlet                           | Inlet  | Outlet        | Inlet | Outlet               | Outlet            | Inlet   | Inlet       |
| 45  | Inlet                           | Inlet  | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Inlet       |
| 60  | Inlet                           | Inlet  | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Inlet       |
| 75  | Outlet                          | Outlet | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 90  | Outlet                          | Outlet | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 105 | Outlet                          | Outlet | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 120 | Outlet                          | Outlet | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 135 | Outlet                          | Outlet | Outlet        | Inlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 150 | Outlet                          | Outlet | Outlet        | Inlet | Inlet                | Outlet            | Outlet  | Outlet      |

| 0   | Manually<br>Determined<br>Value | НҮ-8   | Fish<br>X-ing | BCAP   | Hydraflow<br>Express | Culvert<br>Master | Culvert | HEC-<br>RAS |
|-----|---------------------------------|--------|---------------|--------|----------------------|-------------------|---------|-------------|
| 20  | Outlet                          | Outlet | Outlet        | Outlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 40  | Outlet                          | Outlet | Outlet        | Outlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 60  | Outlet                          | Outlet | Outlet        | Outlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 80  | Outlet                          | Outlet | Outlet        | Outlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 100 | Outlet                          | Outlet | Outlet        | Outlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 120 | Outlet                          | Outlet | Outlet        | Outlet | Outlet               | Outlet            | Outlet  | Outlet      |
| 140 | Outlet                          | Outlet | Outlet        | Outlet | Inlet                | Outlet            | Outlet  | Outlet      |
| 160 | Outlet                          | Outlet | Outlet        | Outlet | Inlet                | Outlet            | Outlet  | Outlet      |
| 180 | Inlet                           | Inlet  | Outlet        | Outlet | Inlet                | Inlet             | Inlet   | Inlet       |
| 200 | Inlet                           | Inlet  | Outlet        | Outlet | Inlet                | Inlet             | Inlet   | Inlet       |

 Table C-12 Case D Flow Control

Tables C-13 through C-16 show the program output values for outlet velocity for

test cases A through D, respectively. The outlet velocity is expressed in ft/sec.

| Q   | Manually<br>Computed<br>Value | HY-8  | Fish<br>X-ing | BCAP  | Hydraflow<br>Express | Culvert<br>Master | Culvert | HEC-<br>RAS |
|-----|-------------------------------|-------|---------------|-------|----------------------|-------------------|---------|-------------|
| 30  | 8.93                          | 8.90  | 8.94          | 8.87  | 5.90                 | 8.94              | 8.68    | 8.91        |
| 60  | 10.52                         | 10.52 | 10.53         | 10.49 | 7.38                 | 10.52             | 10.20   | 10.50       |
| 90  | 11.56                         | 11.54 | 11.58         | 11.62 | 8.53                 | 11.57             | 11.19   | 11.54       |
| 120 | 12.38                         | 12.37 | 12.41         | 12.51 | 9.54                 | 12.38             | 11.98   | 12.36       |
| 150 | 13.10                         | 13.07 | 13.13         | 13.30 | 10.49                | 13.09             | 12.75   | 13.08       |
| 180 | 13.76                         | 13.74 | 13.79         | 13.99 | 11.41                | 13.75             | 13.40   | 13.74       |
| 210 | 14.39                         | 14.39 | 14.44         | 14.61 | 12.34                | 14.38             | 14.06   | 15.64       |
| 240 | 15.01                         | 15.00 | 15.08         | 15.18 | 13.19                | 15.00             | 14.76   | 17.19       |
| 270 | 15.62                         | 15.58 | 15.71         | 15.68 | 14.40                | 15.60             | 15.44   | 18.86       |
| 300 | 16.06                         | 15.81 | 22.15         | 15.85 | 15.71                | 16.02             | 15.99   | 20.61       |

Table C-13 Case A Outlet Velocities (ft/s)

|     | Manually<br>Computed |      | Fish  |      | Hydraflow | Culvert |         | HFC- |
|-----|----------------------|------|-------|------|-----------|---------|---------|------|
| Q   | Value                | HY-8 | X-ing | BCAP | Express   | Master  | Culvert | RAS  |
| 10  | 4.40                 | 4.53 | 6.19  | 3.83 | 4.28      | 4.40    | 4.40    | 4.40 |
| 20  | 5.31                 | 5.40 | 7.47  | 4.72 | 5.22      | 5.31    | 5.30    | 5.31 |
| 30  | 5.94                 | 5.96 | 8.37  | 5.30 | 5.90      | 5.94    | 5.94    | 5.94 |
| 40  | 6.46                 | 6.52 | 9.10  | 5.78 | 6.45      | 6.46    | 6.46    | 6.46 |
| 50  | 6.90                 | 6.91 | 9.72  | 6.17 | 6.94      | 6.90    | 6.90    | 6.90 |
| 60  | 7.30                 | 7.35 | 10.29 | 6.51 | 7.38      | 7.30    | 7.30    | 7.30 |
| 70  | 7.67                 | 7.71 | 10.80 | 6.84 | 7.78      | 7.67    | 7.67    | 7.67 |
| 80  | 8.02                 | 8.03 | 11.29 | 7.15 | 8.16      | 8.01    | 8.02    | 8.02 |
| 90  | 8.35                 | 8.39 | 11.76 | 7.43 | 8.53      | 8.34    | 8.34    | 8.35 |
| 100 | 8.66                 | 8.70 | 12.20 | 7.70 | 8.87      | 8.66    | 8.66    | 8.66 |

Table C-14 Case B Outlet Velocities (ft/s)

Table C-15 Case C Outlet Velocities (ft/s)

| Q   | Manually<br>Computed<br>Value | HY-8  | Fish<br>X-ing | BCAP | Hydraflow<br>Express | Culvert<br>Master | Culvert | HEC-<br>RAS |
|-----|-------------------------------|-------|---------------|------|----------------------|-------------------|---------|-------------|
| 15  | 5.00                          | 5.09  | 5.00          | 4.94 | 4.80                 | 4.99              | 4.99    | 5.01        |
| 30  | 6.11                          | 6.11  | 6.11          | 6.06 | 5.90                 | 6.09              | 6.09    | 6.07        |
| 45  | 6.84                          | 6.87  | 6.84          | 6.86 | 6.70                 | 6.82              | 6.83    | 6.83        |
| 60  | 7.39                          | 7.40  | 7.39          | 7.39 | 7.38                 | 7.37              | 7.37    | 7.36        |
| 75  | 7.85                          | 7.86  | 11.05         | 7.80 | 7.98                 | 7.84              | 7.84    | 7.85        |
| 90  | 8.35                          | 8.39  | 11.76         | 8.18 | 8.53                 | 8.34              | 8.34    | 8.35        |
| 105 | 8.82                          | 8.84  | 12.42         | 8.50 | 9.04                 | 8.82              | 8.82    | 8.82        |
| 120 | 9.28                          | 9.32  | 13.07         | 8.82 | 9.54                 | 9.28              | 9.28    | 9.28        |
| 135 | 9.73                          | 9.78  | 13.70         | 9.12 | 10.02                | 9.73              | 9.73    | 9.73        |
| 150 | 10.18                         | 10.19 | 14.34         | 9.44 | 10.49                | 10.18             | 10.18   | 10.18       |

|     | Manually<br>Computed |       | Fish  |       | Hydraflow | Culvert |         | HEC-  |
|-----|----------------------|-------|-------|-------|-----------|---------|---------|-------|
| Q   | Value                | HY-8  | X-ing | BCAP  | Express   | Master  | Culvert | RAS   |
| 20  | 1.07                 | 1.07  | 1.07  | 1.07  | 1.07      | 1.07    | 1.09    | 1.07  |
| 40  | 2.15                 | 2.15  | 2.15  | 2.15  | 2.15      | 2.15    | 2.18    | 2.15  |
| 60  | 3.22                 | 3.22  | 3.22  | 3.22  | 3.22      | 3.22    | 3.26    | 3.23  |
| 80  | 4.30                 | 4.30  | 4.30  | 4.30  | 4.30      | 4.30    | 4.35    | 4.30  |
| 100 | 5.37                 | 5.37  | 5.37  | 5.37  | 5.37      | 5.37    | 5.44    | 5.38  |
| 120 | 6.45                 | 6.45  | 6.45  | 6.45  | 6.45      | 6.45    | 6.53    | 6.46  |
| 140 | 7.52                 | 7.52  | 7.52  | 7.52  | 7.52      | 7.52    | 7.62    | 7.55  |
| 160 | 8.60                 | 8.60  | 8.60  | 8.60  | 8.60      | 8.60    | 8.71    | 8.63  |
| 180 | 9.67                 | 9.67  | 9.67  | 9.67  | 9.67      | 11.49   | 9.79    | 11.12 |
| 200 | 10.75                | 10.75 | 10.75 | 10.75 | 10.75     | 10.75   | 10.88   | 10.82 |

Table C-16 Case D Outlet Velocities (ft/s)

Figures C-1 through C-3 show the difference between the program results and the manually computed results for inlet control headwater depth, outlet control headwater depth, and outlet velocity, respectively.



Figure C-1 Inlet Control Headwater Depth Error



Figure C-2 Outlet Control Headwater Depth Error



**Figure C-3 Outlet Velocity Error** 

#### References

(1) Normann, J. M., R. J. Houghtalen, and W. J. Johnson (1985). "Hydraulic Design of Highway Culverts." *Hydraulic Design Series No. 5*, 2nd Ed., Federal Highway Administration, Washington, D.C.

## Appendix D. Modified Outlet Loss Coefficients

The current methodology for computing outlet loss coefficients is based on the theory described in the Federal Highway Administration's manual, HDS-5 (1). When computing outlet losses for outlet control flow, HDS-5, and therefore HY-8, uses the following equation:

$$H_{o} = 1.0 \left[ \frac{V^{2}}{2g} - \frac{V_{d}^{2}}{2g} \right]$$
(D-1)

where  $H_o$  is the exit loss (ft), V is the velocity in the barrel (ft/s),  $V_d$  is the downstream channel velocity (ft/s), and g is the acceleration due to gravity (32.2 ft/sec<sup>2</sup>). However, it is common practice to neglect the downstream velocity head, resulting in the following equation (6-2):

$$H_o = \frac{V^2}{2g} \tag{D-2}$$

Clearly stated in HDS-5 is the fact that the previous two equations may overestimate exit losses and a multiplier less than 1.0 may be used (1). As a result, exit

loss in HY-8 may also be overestimated. However, current research conducted at Utah State University by Blake P. Tullis and S. Collin Robinson has shown the Borda-Carnot Loss equation to better estimate exit loss (2). This equation utilizes the principles of momentum and energy, while the HDS-5 merely considerers energy conservation. The Borda-Carnot Loss is expressed by the following equation:

$$h_o = k_o \frac{\left(V_p - V_c\right)^2}{2g} \tag{D-3}$$

where  $h_o$  is the exit loss (ft),  $V_p$  is the velocity in the barrel (ft/s),  $V_c$  is the downstream channel velocity (ft/s),  $k_o$  is the exit loss coefficient (1.0), and g is the acceleration due to gravity (32.2 ft/s<sup>2</sup>)

By comparing Equations D-1 and D-3, it is clear that the numerators differ quite significantly. Equation D-2 is also rewritten as the following:

$$h_o = \frac{V_p^2}{2g} \left( 1 - \frac{A_p}{A_c} \right)^2 \tag{D-4}$$

where  $A_p$  is the cross sectional area of flow in the culvert (ft<sup>2</sup>) and  $A_c$  is the cross sectional area of flow in the downstream channel (ft<sup>2</sup>).

Through experimental process, Tullis and Robinson found that by using Equation

D-3 with 
$$k_0 = 1.0$$
 or Equation 4 with  $k_0 = \left(1 - \frac{A_p}{A_c}\right)^2$ , the computed exit loss is much more

accurate and recommended over the HDS-5 conservative equations. To increase the

accuracy of the results produced in computer models, it is recommended that through further study and experimentation the Borda-Carnot Loss method be implemented.

### References

- (1) Normann, J. M., Houghtalen, R. J. and Johnson, W. J. (1985). "Hydraulic design of highway culverts." *Hydraulic Design Series No. 5*, 2nd Ed., Federal Highway Administration, Washington, D.C.
- (2) Robinson, S. C. and B. P. Tullis (2004). "Quantifying Culvert Exit Loss". TRB, National Research Council: Washington, D.C.

## Appendix E. Auxiliary Culverts

Due to the complex nature of culvert hydraulics, improvements and new additions are continually being made in culvert type, shape, and material. Some of the most recent additions include the South Dakota Department of Transportation (DOT) research on new inlet types for concrete box culverts (1), the Kansas DOT research on various flared end sections (2, 3), new CON/SPAN culvert shapes (4), and Utah State University research on buried culverts (5). The following summarizes each of the culvert improvements and the items necessary for implementation into HY-8, BCAP, and Culvert. For all polynomial coefficients obtained, the slope correction factor in Equation 4-4 (0.5S) is incorporated into coefficient a.

#### E.1 South Dakota Research

The South Dakota Department of Transportation worked with the Federal Highway Administration (FHWA) to study the effects of 49 different inlet edge conditions on the performance of concrete box culverts (1). The four categories if inlet types studied include bevels and fillets, multiple barrels, span-to rise ratio, and skewed headwall. Table E-1 shows bevel and fillet inlets, Table E-2 shows span-to-rise inlets, and Table E-3 shows skewed headwall. The multiple barrel cases were not included for

implementation since HY-8, BCAP, and Culvert currently includes the capabilities to analyze multiple barrel culverts.

|       |                      | Wing-<br>Wall |                                                   |         | Culvert |                |              |
|-------|----------------------|---------------|---------------------------------------------------|---------|---------|----------------|--------------|
| Inlet | Model                | Flare         |                                                   | Corner  | Box     | Culvert        | Tail         |
| No.   | ID                   | Angle         | Bevel                                             | Fillets | Туре    | Slopes         | Water        |
| 1.1   | FC-S-<br>0           | 0°            | 4"-straight-top-<br>bevel, no WW<br>bevel         | 0"      | 6'x6'   | 0.03,<br>0.007 | High,<br>Low |
| 1.2   | FC-S-<br>0           | 0°            | 4"-straight-top-<br>bevel, no WW<br>bevel         | 6"      | 6'x6'   | 0.03,<br>0.007 | High,<br>Low |
| 1.3   | FC-S-<br>0           | 0°            | 4"-straight-top-<br>bevel, no WW<br>bevel         | 12"     | 6'x6'   | 0.03,<br>0.007 | High,<br>Low |
| 1.4   | PC-A                 | 0°            | 8"-radius-top-<br>bevel, 4"-radius<br>WW bevels   | 0"      | 6'x6'   | 0.03,<br>0.007 | High,<br>Low |
| 1.5   | PC-A                 | 0°            | 8"-radius-top-<br>bevel, 4"-radius<br>WW bevels   | 6"      | 6'x6'   | 0.03,<br>0.007 | High,<br>Low |
| 1.6   | PC-A                 | 0°            | 8"-radius-top-<br>bevel, 4"-radius<br>WW bevels   | 12"     | 6'x6'   | 0.03,<br>0.007 | High,<br>Low |
| 1.7   | PC-A                 | 0°            | 8"-radius-top-<br>bevel, 4"-radius<br>WW bevels   | 6"      | 6'x12'  | 0.03           | High,<br>Low |
| 1.8   | PC-A                 | 0°            | 8"-radius-top-<br>bevel, 4"-radius<br>WW bevels   | 12"     | 6'x12   | 0.03           | High,<br>Low |
| 1.9   | FC-S-<br>0<br>Hybrid | 0°            | 4"-straight-top-<br>bevel, 4"-radius<br>WW bevels | 0"      | 6'x6'   | 0.03           | High,<br>Low |
| 1.10  | PC-A<br>Hybrid       | 0°            | 8"-straight-top-<br>bevel, no WW<br>bevels        | 0"      | 6'x6'   | 0.03           | High,<br>Low |

Table E-1 Bevel and Fillet Inlet Test Cases

| Inlet | Model   | Wing-<br>Wall<br>Flare |                                                 | Culvert  | Culvert        | Comon   | Span to |
|-------|---------|------------------------|-------------------------------------------------|----------|----------------|---------|---------|
| No.   | ID      | Angle                  | Edge Conditions                                 | Box Type | Slopes         | Fillets | Rise    |
| 3.1   | FC-S-0  | 0°                     | 4"-straight-top-<br>bevel, no WW<br>bevel       | 6'x6'    | 0.03,<br>0.007 | 0"      | 1:1     |
| 3.2   | FC-S-30 | 30°                    | 4"-straight-top-<br>bevel, no WW<br>bevel       | 6'x6'    | 0.03,<br>0.007 | 0"      | 1:1     |
| 3.3   | PC-A    | 0°                     | 8"-radius-top-<br>bevel, 4"-radius<br>WW bevels | 6'x6'    | 0.03,<br>0.007 | 0"      | 1:1     |
| 3.4   | FC-S-0  | 0°                     | 4"-straight-top-<br>bevel, no WW<br>bevel       | 6'x12'   | 0.03,<br>0.007 | 0"      | 2:1     |
| 3.5   | FC-S-30 | 30°                    | 4"-straight-top-<br>bevel, no WW<br>bevel       | 6'x12'   | 0.03,<br>0.007 | 0"      | 2:1     |
| 3.6   | PC-A    | 0°                     | 8"-radius-top-<br>bevel, 4"-radius<br>WW bevels | 6'x12'   | 0.03,<br>0.007 | 0"      | 2:1     |
| 3.7   | FC-S-0  | 0°                     | 4"-straight-top-<br>bevel, no WW<br>bevel       | 6'x18'   | 0.03,<br>0.007 | 0"      | 3:1     |
| 3.8   | FC-S-30 | 30°                    | 4"-straight-top-<br>bevel, no WW<br>bevel       | 6'x18'   | 0.03,<br>0.007 | 0"      | 3:1     |
| 3.9   | PC-A    | 0°                     | 8"-radius-top-<br>bevel, 4"-radius<br>WW bevels | 6'x18'   | 0.03,<br>0.007 | 0"      | 3:1     |
| 3.10  | FC-S-0  | 0°                     | 4"-straight-top-<br>bevel, no WW<br>bevel       | 6'x24'   | 0.03,<br>0.007 | 0"      | 4:1     |
| 3.11  | FC-S-30 | 30°                    | 4"-straight-top-<br>bevel, no WW<br>bevel       | 6'x24'   | 0.03,<br>0.007 | 0"      | 4:1     |
| 3.12  | PC-A    | 0°                     | 8"-radius-top-<br>bevel, 4"-radius<br>WW bevels | 6'x24'   | 0.03,<br>0.007 | 0"      | 4:1     |

| Table E-2 Span-to-Rise Rati | o Inlet Test C | <b>Case Parameters</b> |
|-----------------------------|----------------|------------------------|
|-----------------------------|----------------|------------------------|

| Inlet<br>No. | Model<br>ID | Wing-<br>Wall<br>Flare<br>Angle | Edge<br>Conditions                        | Culvert<br>Box<br>Type | Culvert<br>Slopes | Corner<br>Fillets | No. of<br>Barrels | Span<br>to<br>Rise | Span<br>to<br>Rise |
|--------------|-------------|---------------------------------|-------------------------------------------|------------------------|-------------------|-------------------|-------------------|--------------------|--------------------|
| 4.1          | FC-T-0      | 0°                              | 4"-straight-<br>top-bevel, no<br>WW bevel | 3'x6'x6'               | 0.03,<br>0.007    | 0"                | 3                 | -                  | 0°                 |
| 4.2          | FC-T-30     | 30°                             | 4"-straight-<br>top-bevel, no<br>WW bevel | 3'x6'x6'               | 0.03,<br>0.007    | 0"                | 3                 | -                  | $0^{\mathrm{o}}$   |
| 4.3          | FC-T-30     | 30°                             | 4"-straight-<br>top-bevel, no<br>WW bevel | 3'x6'x6'               | 0.03,<br>0.007    | 0"                | 3                 | -                  | 15°                |
| 4.4          | FC-T-30     | 30°                             | 4"-straight-<br>top-bevel, no<br>WW bevel | 3'x6'x6'               | 0.03,<br>0.007    | 0"                | 3                 | -                  | 30°                |
| 4.5          | FC-T-30     | 30°                             | 4"-straight-<br>top-bevel, no<br>WW bevel | 3'x6'x6'               | 0.03,<br>0.007    | 0"                | 3                 | -                  | 45°                |
| 4.6          | FC-S-30     | 30°                             | 4"-straight-<br>top-bevel, no<br>WW bevel | 6'x18'                 | 0.03,<br>0.007    | 0"                | -                 | 3:1                | 30°                |

Table E-3 Skewed Headwall Inlet Test Case Parameters

In order to implement a new inlet edge condition into HY-8, Culvert, and BCAP, polynomial coefficients are required for the fifth degree polynomial that describes the performance curve (how the headwater depth changes with flow) for each inlet type. The upper and lower boundaries for which the polynomial curves accurately describe the behavior of the culvert under inlet control conditions are HW/D = 3.0 and HW/D = 0.5, respectively (6). However, when the work was completed by the South Dakota DOT for the new inlet types, the data was only collected up to HW/D ratios equaling 2.0. When the polynomial curves are plotted for values above HW/D = 2.0, the behavior of the curves is no longer reliable and are inconsistent with expectations. The polynomial coefficients obtained from the research were provided in the report by the South Dakota DOT. Figures E-1, E-2, and E-3 show the unreliable nature of the polynomial curves

above HW/D = 2.0 for bevels and fillets, span-to-rise ratios, and skewed headwall inlet conditions, respectively.



**Figure E-1 Polynomial Curves for Bevel and Fillet Inlet Types** 



Figure E-2 Polynomial Curves for Span-to-Rise Inlet Types



Figure E-3 Polynomial Curves for Skewed Headwall Inlet Types

To accurately implement the South Dakota research into HY-8, BCAP, or Culvert, it is recommended that new polynomial coefficients be defined such that the curves behave more appropriately for HW/D ratios between 2.0 and 3.0. This was accomplished by plotting the submerged and unsubmerged sections of each curve using the equations supplied by the National Bureau of Standards. The K, M, c, and Y coefficients used in these equations are provided in the South Dakota report (1). From there, a best-fit fifth degree polynomial curve will be applied to the unsubmerged and submerged curves. These new curves will behave more accurately for conditions above HW/D = 2.0, but since the NBS coefficients were also developed for HW/D = 2.0.

Another problem identified in implementing the South Dakota research into computer applications is the large number of inlet types available. It is unreasonable to add approximately 50 new inlet types to the available list of inlets in any of the programs. It is recommended that the total number of curves be reduced from 49 to 6. As previously stated, the multiple barrel inlets will be neglected. The curves from each of the three inlet conditions will be reduced to two representative curves for each, for a total of six curves. The curve reduction will be completed by locating the upper and lower 10% error boundaries for the curves and fitting one polynomial curve through the middle of that range that represents multiple curves. The maximum error of this new curve will be  $\pm/-10\%$  (6). Figures E-4 through E-9 show the error range for each of the inlet types.



Figure E-4 10% Range for Bevel and Fillet (1) Inlet Types



Figure E-5 10% Range for Bevel and Fillet (2) Inlet Types



Figure E-6 10% Range for Span-to-Rise (1) Inlet Types



Figure E-7 10% Range for Span-to-Rise (2) Inlet Types



Figure E-8 10% Range for Skewed Headwall (1) Inlet Types



Figure E-9 10% Range for Skewed Headwall (2) Inlet Types

#### E.2 Kansas DOT Flared End Sections

At the University of Kansas, research was completed on the behavior of Type I, III, and IV end sections for pipe culverts through the efforts of Bruce M. McEnroe, Lance M. Johnson, and Jeffrey A. Barley (2, 3). Type I end sections are prefabricated flared end sections. Type III end sections are side tapered with a 4:1 lateral flare and no miter at the end. To analyze the performance of the culverts the submerged and unsubmerged equations developed by the National Bureau of Standards were utilized (6).

In the research conducted at University of Kansas, the regression coefficients for both unsubmerged and submerged conditions were not provided in the laboratory report; however, the dimensionless diagrams were included along with different equations other than fifth degree polynomials to represent them. These equations were used to reproduce the inlet control performance curves for each of the end sections. From the generated polynomial the fifth-degree polynomial coefficients were obtained.

In order to implement the Kansas end sections into HY-8, BCAP, and Culvert, the following equations were used (2, 3):

$$\frac{HW}{D} = \begin{cases} 1.60(Q^*)^{0.60} \\ 2.23(Q^*) + 0.023 \\ 1.289 - 1.61(Q^*) + 2.90(Q^*)^2 \end{cases}$$
(E-1)

$$\frac{HW}{D} = \begin{cases} 1.53(Q^*)^{0.55} \\ 2.13(Q^*) + 0.055 \\ 1.367 - 1.50(Q^*) + 2.50(Q^*)^2 \end{cases}$$
(E-2)

$$\frac{HW}{D} = \begin{cases} 1.65(Q^*)^{0.55} \\ 2.13(Q^*) + 0.055 \end{cases}$$
(E-3)

$$\frac{HW}{D} = \begin{cases} 1.53(Q^*)^{0.55} \\ 2.13(Q^*) + 0.055 \end{cases}$$
(E-4)

Figures E-10 through E-14 show each polynomial curve and the appropriate polynomial equation. Table E-4 shows the polynomial coefficients obtained for each test case.



Figure E-10 Type 1-Metal Culvert



Figure E-11 Type 1 - Concrete



Figure E-12 Type 3 - Metal







Figure E-14 Type 4

| Type and Material | a      | b      | С       | d      | e       | f      |
|-------------------|--------|--------|---------|--------|---------|--------|
| Type 1: Metal     | 0.0221 | 4.8615 | -13.895 | 26.278 | -21.761 | 7.0587 |
| Type 1: Concrete  | 0.024  | 5.4165 | -17.085 | 32.312 | -26.451 | 8.3509 |
| Type 3: Metal     | 0.0222 | 4.8859 | -12.456 | 20.756 | -16.398 | 5.0874 |
| Type 3: Concrete  | 0.022  | 4.6479 | -11.734 | 19.563 | -15.683 | 4.9688 |
| Type 4            | 0.0168 | 5.2824 | -14.447 | 22.995 | -14.035 | 3.3683 |

Table E-4 Polynomial Coefficients for Kansas Flared End Sections

#### E.3 CON/SPAN

CON/SPAN culverts are a blend of the concrete box and metal box culvert shapes. Since CON/SPAN culverts were introduced to the industry within the last 15 years, little information is available on the performance of these culvert shapes. Originally, flow through CON/SPAN culverts was analyzed using a concrete box culvert or a metal box culvert for low flows and high flows, respectively (4). Since CON/SPAN culverts generally include a headwall and/or wingwalls and metal box culverts do not include such features, it was desired to find a better approach to analyze the performance of CON/SPAN culverts.

At the University of Dayton, Ohio, research was completed on the behavior of CON/SPAN culverts through the efforts of Timothy Beach, Dr. Donald V. Chase, and Christopher Sherk. Small scale models with span to rise ratios of 2:1 and 4:1 were tested with a combination of slopes and entrance conditions of 0, 45, or 90 degree wingwalls (4). To analyze the performance of the culverts the submerged and unsubmerged equations developed by the National Bureau of Standards were utilized (6).

In the research conducted at University of Dayton, Ohio, the regression coefficients for both unsubmerged and submerged conditions were collected for the
following culvert models described in Table E-5. The K, M, c, and Y coefficients determined from the lab tests are listed in Table E-6.

| Dimension               | 2:1 Ratio | 4:1 Ratio |
|-------------------------|-----------|-----------|
| Span (in)               | 4         | 4         |
| Rise (in)               | 2         | 1         |
| Area (in <sup>2</sup> ) | 7.34      | 3.35      |
| Length                  | 2.6       | 2.46      |

**Table E-5 CON/SPAN Model Characteristics** 

**Table E-6 NBS Inlet Control Equation Coefficients** 

| Shape/Wingwall Angle | K     | Μ     | С     | Y     |
|----------------------|-------|-------|-------|-------|
| 2:1 0 deg            | 0.475 | 0.667 | 0.043 | 0.543 |
| 2:1 45 deg           | 0.500 | 0.667 | 0.039 | 0.670 |
| 2:1 90 deg           | 0.511 | 0.667 | 0.039 | 0.729 |
| 4:1 0 deg            | 0.446 | 0.667 | 0.027 | 0.676 |
| 4:1 0 deg            | 0.455 | 0.667 | 0.035 | 0.595 |
| 4:1 0 deg            | 0.468 | 0.667 | 0.037 | 0.566 |

In order to implement the CON/SPAN culvert shapes into HY-8, BCAP, and Culvert, the K, M, c, and Y coefficients were used in conjunction with the NBS equations to develop fifth degree polynomials to represent the inlet control performance of each culvert shape. This was done by plotting the unsubmerged and submerged equations on a graph covering zones from approximately  $Q/AD^{0.5} < 3.5$  and  $4.0 < Q/AD^{0.5}$ , respectively (6). The values of HW/D and  $Q/AD^{0.5}$  for both zones of flow were plotted using only one curve. A best-fit fifth degree polynomial was then passed through the curve and the coefficients for the equation were obtained. Figures E-16 through E-20 show each

polynomial curve with its respective equation. Table E-7 shows the polynomial coefficients obtained for each test case.



Figure E-15 2:1, 0 Degree Wingwall



Figure E-16 2:1, 45 Degree Wingwall



Figure E-17 2:1, 90 Degree Wingwall



Figure E-18 4:1, 0 Degree Wingwall



Figure E-19 4:1, 45 Degree Wingwall



Figure E-20 4:1, 90 Degree Wingwall

| Shape/Wingwall Angle | a      | b      | С       | d      | e       | f       |
|----------------------|--------|--------|---------|--------|---------|---------|
| 2:1 0 deg            | 0.0356 | 0.5701 | -0.162  | 0.0322 | -0.0023 | 0.00006 |
| 2:1 45 deg           | 0.0393 | 0.5828 | -0.1518 | 0.0284 | -0.002  | 0.00005 |
| 2:1 90 deg           | 0.0459 | 0.5762 | -0.1436 | 0.0269 | -0.0019 | 0.00005 |
| 4:1 0 deg            | 0.0309 | 0.5211 | -0.1258 | 0.0207 | -0.0013 | 0.00003 |
| 4:1 45 deg           | 0.0318 | 0.5446 | -0.1467 | 0.0273 | -0.0019 | 0.00005 |
| 4:1 90 deg           | 0.0283 | 0.5739 | -0.1584 | 0.0292 | -0.002  | 0.00005 |

**Table E-7 Derived Polynomial Coefficients** 

## E.4 Utah State University Buried Culverts

Over the years fish passage through culverts has become of increasing importance in culvert hydraulics. Traditionally, culverts were simply designed to pass flood flows, with no consideration for the ability of fish to pass through the culvert and migrate upstream for spawning. However, in recent years culvert hydraulics has been changing to include design parameters that allow for fish passage. One such design includes buried or bottomless culverts. Buried culverts are currently being studied at Utah State University under the direction of assistant professor Blake P. Tullis (5).

When a culvert barrel is partially buried in a streambed, backfill is placed inside the culvert and aligned with the naturally occurring streambed at both ends. The purpose is to create an environment that is flush with the natural surroundings and allows fish to pass through the culvert undisturbed (5). In the Utah State study, inlet loss coefficients as well as inlet control coefficients for the NBS equations were obtained for circular culverts with buried depths at 20%, 40%, and 50%, and for elliptical culverts buried at depths of 50% of the culvert rise. The inlet edge conditions tested at these buried depths included thin edge projecting (ponded and channelized), mitered to 1.5:1 fill slope, square edged inlet with vertical headwall, and 45° beveled entrance and vertical headwall (5). The K, M, c, and Y coefficients determined from the lab tests are listed in Table E-8.

| Shape/Edge Condition                  | <b>Percent Buried</b> | K    | Μ    | с    | Y    |
|---------------------------------------|-----------------------|------|------|------|------|
| Thin Edge Projecting,                 | 20                    | 0.44 | 0.64 | 0.03 | 0.57 |
|                                       | 40                    | 0.47 | 0.69 | 0.05 | 0.68 |
| (Ponded)                              | 50                    | 0.5  | 0.71 | 0.06 | 0.53 |
|                                       | 50 (Ellipse)          | 0.53 | 0.67 | 0.07 | 0.46 |
|                                       | 20                    | 0.42 | 0.62 | 0.03 | 0.62 |
| Thin Edge Projecting,                 | 40                    | 0.48 | 0.66 | 0.04 | 0.51 |
| (Channelized)                         | 50                    | 0.5  | 0.68 | 0.06 | 0.47 |
|                                       | 50 (Ellipse)          | 0.5  | 0.67 | 0.06 | 0.13 |
|                                       | 20                    | 0.4  | 0.63 | 0.02 | 0.63 |
| Mitored to 1 5.1 Fill Slope           | 40                    | 0.42 | 0.69 | 0.04 | 0.64 |
| Mittered to 1.5.1 Fill Slope          | 50                    | 0.44 | 0.68 | 0.05 | 0.48 |
|                                       | 50 (Ellipse)          | 0.49 | 0.65 | 0.04 | 0.61 |
|                                       | 20                    | 0.4  | 0.63 | 0.02 | 0.67 |
| Square Edge with Vertical<br>Headwall | 40                    | 0.44 | 0.68 | 0.03 | 0.66 |
|                                       | 50                    | 0.45 | 0.7  | 0.04 | 0.63 |
|                                       | 50 (Ellipse)          | 0.45 | 0.7  | 0.03 | 0.68 |
|                                       | 20                    | 0.39 | 0.63 | 0.02 | 0.71 |
| 45° Beveled Inlet with                | 40                    | 0.42 | 0.67 | 0.02 | 0.73 |
| Vertical Headwall                     | 50                    | 0.44 | 0.69 | 0.03 | 0.66 |
|                                       | 50 (Ellipse)          | 0.48 | 0.67 | 0.05 | 0.51 |

## **Table E-8 NBS Equation Coefficients**

In order to implement the berried culvert shapes into HY-8, the K, M, c, and Y coefficients were used in conjunction with the NBS equations to develop fifth degree polynomials to represent the inlet control performance of each culvert shape. This was done using the same methods previously described by plotting the unsubmerged and submerged equations on a graph covering zones from approximately  $Q/AD^{0.5} < 3.5$  and  $4.0 < Q/AD^{0.5}$ , respectively (6). The values of HW/D and  $Q/AD^{0.5}$  for both zones of flow were plotted using only one curve. A best-fit fifth degree polynomial was then passed through the curve and the coefficients for the equation were obtained. Figures E-21 through E-40 show each polynomial curve with its respective equation. Table E-9 shows the polynomial coefficients obtained for each test case.



Figure E-21 Thin Edge Projecting: 20% Buried (Ponded)



Figure E-22 Thin Edge Projecting: 40% Buried (Ponded)



Figure E-23 Thin Edge Projecting: 50% Buried (Ponded)



Figure E-24 Thin Edge Projecting: 50% Buried Ellipse (Ponded)



Figure E-25 Thin Edge Projecting: 20% Buried (Channelized)



Figure E-26 Thin Edge Projecting: 40% Buried (Channelized)



Figure E-27 Thin Edge Projecting: 50% Buried (Channelized)



Figure E-28 Thin Edge Projecting: 50% Buried Ellipse (Channelized)



Figure E-29 Mitered to 1.5:1 Fill Slope: 20% Buried



Figure E-30 Mitered to 1.5:1 Fill Slope: 40% Buried



Figure E-31 Mitered to 1.5:1 Fill Slope: 50% Buried



Figure E-32 Mitered to 1.5:1 Fill Slope: 50% Buried Ellipse



Figure E-33 Square Edge with Vertical Headwall: 20% Buried



Figure E-34 Square Edge with Vertical Headwall: 40% Buried



Figure E-35 Square Edge with Vertical Headwall: 50% Buried



Figure E-36 Square Edge with Vertical Headwall: 50% Buried Ellipse



Figure E-37 45° Bevel with Vertical Headwall: 20% Buried



Figure E-38 45° Bevel with Vertical Headwall: 40% Buried



Figure E-39 45° Bevel with Vertical Headwall: 50% Buried



Figure E-40 45° Bevel with Vertical Headwall: 50% Buried Ellipse

After plotting a best fit curve through all three zones of flow (submerged, unsubmerged, and transition), the coefficients of the new equation were recorded in Table E-9. These coefficients are required for programs that use the fifth degree polynomial curves for computing inlet control headwater depth.

| Shape/Edge<br>Condition                  | Percent<br>Buried | a       | b      | c       | d      | e       | f         |
|------------------------------------------|-------------------|---------|--------|---------|--------|---------|-----------|
| Thin Edge<br>Projecting,<br>(Ponded)     | 20                | 0.024   | 0.5601 | -0.1652 | 0.0302 | -0.0021 | 0.00005   |
|                                          | 40                | -0.0016 | 0.7458 | -0.3418 | 0.0964 | -0.0108 | 0.0004    |
|                                          | 50                | 0.0078  | 0.7053 | -0.2598 | 0.0648 | -0.0061 | 0.0002    |
|                                          | 50 (Ellipse)      | 0.015   | 0.762  | -0.3093 | 0.0806 | -0.0078 | 0.0003    |
| Thin Edge                                | 20                | 0.015   | 0.6044 | -0.237  | 0.056  | -0.0055 | 0.0002    |
| Projecting                               | 40                | 0.0242  | 0.6051 | -0.171  | 0.0304 | -0.0019 | 0.00004   |
| (Channelized)                            | 50                | 0.006   | 0.7414 | -0.299  | 0.0752 | -0.0072 | 0.0003    |
|                                          | 50 (Ellipse)      | 0.0127  | 0.6718 | -0.2016 | 0.0343 | -0.0015 | 0.000001  |
| Mitarad to                               | 20                | 0.0339  | 0.4543 | -0.103  | 0.0136 | -0.0005 | -0.000004 |
| 1.5:1 Fill<br>Slope                      | 40                | 0.0086  | 0.6044 | -0.2424 | 0.0657 | -0.0072 | 0.0003    |
|                                          | 50                | 0.0091  | 0.6359 | -0.2523 | 0.0649 | -0.0065 | 0.0002    |
|                                          | 50 (Ellipse)      | 0.0216  | 0.654  | -0.2195 | 0.0473 | -0.0041 | 0.0001    |
| Square Edge<br>with Vertical<br>Headwall | 20                | 0.0341  | 0.4635 | -0.1088 | 0.0146 | -0.0005 | -0.000009 |
|                                          | 40                | 0.0215  | 0.5462 | -0.1485 | 0.0277 | -0.0021 | 0.00006   |
|                                          | 50                | 0.0119  | 0.6066 | -0.2005 | 0.0457 | -0.0042 | 0.0001    |
|                                          | 50 (Ellipse)      | 0.0251  | 0.5238 | -0.1141 | 0.017  | -0.0008 | 0.00001   |
| 45° Beveled                              | 20                | 0.0227  | 0.496  | -0.1487 | 0.0278 | -0.0021 | 0.00005   |
| Inlet with                               | 40                | 0.0341  | 0.4629 | -0.0941 | 0.0133 | -0.0008 | 0.00002   |
| Vertical                                 | 50                | 0.0235  | 0.5283 | -0.1304 | 0.0226 | -0.0015 | 0.00004   |
| Headwall                                 | 50 (Ellipse)      | 0.0084  | 0.6969 | -0.2678 | 0.064  | -0.006  | 0.0002    |

**Table E-9 Polynomial Coefficients for Each Entrance Condition** 

## References

- (1) Jones, S. J., Kerenyi, K., Stein, S. (2004). "Effects of Inlet Geometry on Hydraulic Performance of Box Culverts: Laboratory Report." Federal Highway Administration, South Dakota Department of Transportation: McLean, VA.
- (2) McEnroe, B. M. and J. A. Bartley (1993). "Development of Hydraulic Design Charts for Type IV End Sections for Pipe Culverts". Report No. K-TRAN: KU-93-5. University of Kansas: Lawrence, KS.

- (3) McEnroe, B. M. and L. M. Johnson (1994). "Development of Hydraulic Design Charts for Type I and Type III Metal and Concrete End Sections for Pipe Culverts". Report No. K-TRAN: KU-94-4. University of Kansas: Lawrence, KS.
- (4) Chase, D., Creamer, P.A., Beach, T.J. (1999). "Hydraulic Characteristics of CON/SPAN Bridge Systems." University of Dayton: Dayton, OH.
- (5) Tullis, B. P., D. S. Anderson and S. C. Robinson (2006). "Entrance Loss Coefficients and Inlet Control Head-Discharge Relationships for Buried-Invert Culverts." Manuscript Number: IRENG5074R1. Utah State University: Logan, UT.
- (6) Normann, J. M., R. J. Houghtalen, and W. J. Johnson (1985). "Hydraulic Design of Highway Culverts." *Hydraulic Design Series No. 5*, 2nd Ed., Federal Highway Administration: Washington, D.C.
- (7) Federal Highway Administration (1996). HY-8, Version 6.1, [Computer Program]
  Documentation. Retrieved February 24, 2006 from http://www.fhwa.dot.gov/engineering/hydraulics/culverthyd/culvert\_software.cfm