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ABSTRACT 
 
 
 

RECTIFICATION OF 2-D TO 3-D FINITE ELEMENT ANALYSIS OF  

BURIED CONCRETE ARCHES UNDER DISCRETE LOADING 

 
 

Adam D. Aagard 

Department of Civil and Environmental Engineering 

Master of Science 
 
 
 

Construction of tunnels and small- to medium-span bridges is a $12 billion per 

year industry in the United States, with a significant portion going into buried arch 

structures.  Notwithstanding such expenditure, modern arch design and construction, in 

many cases, is highly conservative.  This is because the closed-form solutions used by 

most designers today do not correctly account for soil-structure interaction.  In fact, soil-

structure interaction makes a closed form solution impossible.  With the advent of high 

power computers in recent years, some designers have turned to finite element (FE) 

modeling as the main vehicle of analysis.  Such numerical procedures provide an accurate 

approximation of physical behavior.  Practices using FE analysis for buried arch design 

almost exclusively use two-dimensional models because they are faster to set up and 

analyze than three-dimensional models and cost substantially less.  However, 2-D models 

fail to account for the stiffness of the structure and spread of discrete loads in the third- 

 



 



dimension.  Both the 1996 and 1998 AASHTO-LRFD Bridge Design Specifications 

address this problem, providing methods of load reduction.  Much of the current 

reduction, however, is based on research done on concrete bridge decks, and does not 

account for continuous elastic support or the geometry of the structure.  This results in a 

conservative analysis at low fill covers (<10’) and/or increasing spans (>20’). 

This research provides a method to rectify the discrepancy that arises in discrete 

loading of 2-D FE models of semi-flexible buried concrete arch bridge, culvert, and 

tunnel systems due to the plane-strain assumption.  Rectification is accomplished by 

providing a correlation between the deflection of a beam-on-elastic-foundation analysis 

and a distribution length by which the load in 2-D analysis is reduced.  Distribution 

lengths are derived using bending energy ratios.  The correlation considers structural 

geometry, overburden height, and base soil stiffness.  Reduction of the 2-D design load 

by the proposed distribution length results in shear forces and bending moments nearly 

equivalent to those obtained from 3-D analysis in the plane of discrete load application 

transverse to the structure.  Less conservative results are also obtained for axial forces.  

These results are intended for use on structures that are four times the span in length, or 

longer. 
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1 Introduction 

The objective of this research is to provide a method by which point loads can be 

transformed to effective line loads for two-dimensional finite element analysis of buried 

concrete arches.  Currently there are several methods available to analyze buried concrete 

arches.  These include: empirical or simplified closed-form equations and two- and three-

dimensional finite element analysis.  Engineers will often choose to use the finite element 

(FE) method over other available tools because it provides the most accurate results.  

Discrete loading is inherently a three-dimensional problem; yet, two-dimensional 

modeling is typically done, because it is cheaper, much faster, and requires less user input 

than three-dimensional modeling.  However, due to the assumptions made in developing 

its mathematical base, 2-D model space fails to capture the true behavior of a system 

under discrete loading, such as wheel loads.  For example, longitudinal stiffness and 

longitudinal load dissipation are not accounted for, leading to a more compliant structure 

and higher load concentrations than actually exist. 

Design codes, such as the AASHTO-LRFD Bridge Design Specifications, allow 

for reductions in the load’s magnitude to account for these limitations.  However, much 

of the research supporting these reductions is based on tests performed on concrete bridge 

decks, which are not affected by soil-structure interaction and do not have significant 

geometric variation.  In the cases of low fill height or larger span, using these reductions 
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in 2-D analysis still results in design forces that are substantially greater than they are in a 

real 3-D situation.  In this research, a method is developed to accurately account for the 

effects of longitudinal stiffness, geometric variation, and discrete loading in a 2-D finite 

element model.  Using this method in 2-D FE analysis of buried arches results in 

structural forces that are nearly equivalent to those produced in a 3-D FE model under 

discrete loading.  Further, this research develops a correlation with beam-on-elastic-

foundation (BOEF) analysis to predict this reduction factor, known as the distribution 

length, and prescribes a procedure of implementation.  This research is specifically 

developed for structures that are four times the span in length, or longer. 

Currently there is very little research with this specific aim, necessitating its 

further development.  Included in the literature reviewed by the Author are the following 

two studies attempting to determine distribution lengths for buried structures: 

•  Simpson Grumpertz & Heger, Inc. (2001) suggests that the distribution 

length, l, for buried concrete arches should be l = 1.15H + 3.33ft, where 

H is the depth of fill cover in ft.  This recommendation does not account 

for variations in geometry or continuous elastic support and was not the 

main purpose of the research. 

•  McGrath, et al. (2005) have done research on distribution lengths for box 

culverts, essentially concluding that the 1996 AASHTO provisions are 

correct.  This study did not include determination of distribution lengths 

for buried concrete arches, but suggested they be developed.  
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2 History of Analysis, Design, and Construction 

For more than two millennia, arches have been an important and ubiquitous 

structural form in buildings, tunnels, and bridges.  Notwithstanding their antiquity, in 

many applications their governing mechanics are can be very complex and difficult to 

quantify analytically, even with today’s advances in mathematics and structural analysis.  

A shift to rigorous mathematical design requirements at both a state and federal level, 

initiated in the Bureau of Public Roads, lead to a period in the early twentieth century 

where there was substantial resistance to the use of arches because of the lack of practical 

analytical solutions.  Only recently, with increasing computational power and finite 

element (FE) analysis, has arch construction been on the rise.   This research will focus 

on semi-flexible small- to medium-span soil-structure arch bridge, culvert, and tunnel 

systems and the internal forces caused by discrete loads (vehicle or otherwise). 

2.1 Early Arch History 

An arch behaves much like a catenary, or hanging cable.  Because the cable is 

unable to resist bending moments it takes a form that will result purely in tensile forces 

under an applied load.  An efficient arch follows the same principle; inverting this shape 

to result in pure compression.  Unreinforced masonry and concrete are very weak in 

tension, and therefore, are able to withstand only minimal bending moments under 
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loading.  A well designed arch will be shaped such that the majority of the force is carried 

by compressive forces in the arch ring. 

To minimize the tensile forces in an arch ring due to bending, it must have a 

relatively low span-to-rise ratio; on the order of 5:1, or less.  This low ratio ensures that 

the ring will act like a strut rather than a beam (i.e. resist forces through axial, rather than 

bending forces).  Three common shapes are used to achieve this ratio: semicircular, 

segmental, and elliptical (see Figure 2-1).  

 

 a)  b) c) 

Figure 2-1 – Common arch types are a) semicircular, b) segmental, and c) elliptical 

 

Arches consist of up to three main components: the ring, invert or abutments, and 

the spandrel (see Figure 2-2).  The ring, or barrel, is the arch part of the arch.  Most old 

arch rings are composed of stone or brick segments called voussoirs, while newer models 

are composed of reinforced, prestressed, or post-tensioned concrete.  The ring serves as 

the main force-resisting element of the structure.  Arches are supported either by 

abutments at both ends of the ring or an invert connecting both ends together.  Because 

the ring has a tendency to flatten under loading, the abutments or invert must support 

large horizontal forces, called thrust, as well as vertical forces.  The magnitude of these 

horizontal forces varies depending on the geometry of the ring.  Thrust is greatest in 

segmental shapes and least in semicircular.  In the case of an invert, considerable 

amounts of tension and flexure develop under loading.  The structure is raised to grade by 
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the spandrel, which can be composed entirely of stone, masonry, or concrete or it may 

consist of two or more walls in-filled with soil.  The spandrel and fill add significantly to 

the overall strength of a structure. 

 

 
Figure 2-2 – Arch terminology 

 

Some of the most famous historic structural sites in the world are, in full or in 

part, renowned because of their use of the arch.  In fact, most owe their very longevity to 

the fact that they were built using arches.  

The Romans were famous for their usage of arches in construction.  The Pont du 

Gard, in Nimes, is one of the most frequented tourist stops in France (see Figure 2-3).  

The exact date of construction is debated among archaeologists, but recent studies place it 

sometime near the middle of the first century, AD.  Built by Marcus Vipsanius Agrippa, 

it stands as a classical example of early semicircular arch construction. 

The multiple tiers of arches carry the Roman aqueduct over the Gardon River.  

The Pont du Gard is constructed without mortar.  Instead, its voussoirs are secured 

together by metal clamps.  In 1998 major flooding occurred on the river, causing 
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substantial damage to many upriver structures.  This iconic structure, however, remained 

intact and sustained only trivial damages. 

 

 
Figure 2-3 – The Pont du Gard in Nimes, France 

 

In the case of multiple equal spans, such as the Pont du Gard, the thrust generated 

by each contingent arch pair cancels out.  The remaining vertical component of the load 

is supported by piers. 

A famous example of early segmental arch construction is the Anji Bridge, in the 

Hebei Province of China (see Figure 2-4).  The Anji Bridge was built by Li Chun 

between the years of 595 – 610 AD.  The open spandrel construction reduces the overall 

weight of the bridge and also allows water to flow past more easily in times of flooding.  

The open spandrel design was an important contribution to bridge building.  Its stone 

voussoirs are connected together by iron dovetails which allow it to flex, rather than 

crack, under abutment movements.  It is the oldest and most well preserved open spandrel 

arch bridge in the world and is still in service today. 
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Figure 2-4 – The Anji Bridge in the Hebei Province of China 

 

The Sounding Arch Bridge in Maidenhead, England is one of the most laudable 

accomplishments of early elliptical arch construction (see Figure 2-5).  This bridge is 

particularly inspiring because it has the largest span-to-height ratio of any masonry 

voussoir bridge in the world – 5.3:1.  It is built of unreinforced brick, and at the time of 

its construction in 1838, I.K. Brunel, its designer, was heavily criticized and the structure 

was predicted to fail by most engineers.  Contemptuously, however, it remains in heavy 

use as a railway bridge to this day.   

 

 
Figure 2-5 – The Sounding Arch Bridge in Maidenhead, England 
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Arches not only serve an important role above ground, as bridges, they also are an 

important feature of many underground structures, such as tunnels and drainage systems.  

The most well known network of voussoir tunnels is that used in the Paris, France 

sewers. 

This grandfather of sewer systems was begun in 1370 by Hugues Aubriot and was 

expanded sporadically for the next five centuries by various others, including Napoleon 

Bonaparte.  Some of the sandstone arches in the tunnels take on the form of greatest 

efficiency for a buried structure, known as an inverted pear arch (see Figure 2-6).  The 

exterior forces are best balanced by allowing the structure to continue to curve inward at 

the base.  This allows the load to be transferred more completely through axial forces, 

significantly reducing bending moments in the structure.  The 1,300 mile long system of 

tunnels and culverts has a “clean” service history and is still used today as Paris’s 

primary sewer. 

 

 
Figure 2-6 – A sewer tunnel in Paris, France 

 8



Arches are used in some form in many aspects of early architecture.  Massive roof 

structures are supported by Roman and Gothic arches in early Christian churches, such as 

Notre Dame de Paris, begun in 1163 by Bishop Maurice de Sully and finished in 1345.  

Various architects and engineers oversaw construction during its lengthy erection period.  

At times the roof structures are even a revolved form of an arch known as a dome.  A 

dome roof is supported on four arches which are joined together and transition into the 

dome by pendentives, as shown in Figure 2-7b.  Hagia Sophia, in Istanbul, Turkey is such 

a structure.  The cathedral was dedicated in 537.  The dome’s span-to-height ratio, 

however, was too large for unreinforced masonry, and shortly after, in 558, the dome 

collapsed during an earthquake.  The replacement collapsed five years later.  Again, in 

989 and 1364, the dome was damaged by earthquake.  The dome, as it currently stands, 

was built by Mimar Sinan in the early 16th century. 

 

            a)          b)

Figure 2-7 – a) arches and pendentives in Notre Dame de Paris and b) a dome on arches with pendentives 

 

The design of early arches was based upon a tried principle: experience and 

experimentation; there was no theoretical basis for design.  These landmark structures are 

 9



testaments to their designers, and proof of the power of empiricism.  In 1675 Sir Robert 

Hooke claimed to have come up with “a true mathematical and mechanical form of all 

manner of arches for building” (Miller, et. al., 2000).  Other mathematicians, theorists, 

and scientists worked on tackling the problem of the arch for the next century, but no 

practical theoretical solution was achieved.  Differences in opinion eventually caused 

practical and theoretical science to diverge.  Engineering became a separate field of study 

from theoretical science.  Schools were initiated specifically for the study of practical 

science and engineering.  In time, each field discovered different principles to improve 

arch construction, yet animosity began to emerge between them. 

2.2 Modern Arch History 

Masonry voussoir arch construction diminished with the invention of reinforced 

concrete in the late 1800’s.  Arch structures lost their heavy Romanesque look and began 

to take on lighter, more graceful forms.  With the ability to now resist tensile forces, and 

thus bending moments, through reinforcing steel, arches became flatter and more 

economical.  Most of the early reinforced concrete bridges were very rudimentary in their 

use of steel.  Some used I-beams and others used trusses as reinforcement.  Many 

engineers began patenting their reinforced concrete bridge designs to try to get an edge 

on the market. 

Daniel Luten was one of the most successful of these early engineers.  His studies 

and experiments led to innovations that greatly reduced the amount of steel and concrete 

in arch bridge design (see Figure 2-8).  He was so certain of the reliability of his bridges 

that they even came with a five year guarantee against failure.  With greater economy, 

 10



guaranteed serviceability, and a patented design, Luten began to take over the small- to 

medium-span bridge market. 

It was at this point that others began to have qualms with the patenting of design.  

One of the greatest opponents was Thomas MacDonald, who was, at the time, head of the 

Iowa State Highway Commission.  MacDonald not only thought that Daniel Luten had an 

unfair edge on the market, but he also thought his design was unsafe, in spite of a good 

service record.  After becoming director of the Bureau of Public Roads in 1919, and after 

an unsuccessful campaign against patenting, MacDonald began to require that all bridges 

within state or federal jurisdiction be based on theoretical design procedures (Miller, et. 

al., 2000).  

 

 
Figure 2-8 – A 1926 Luten bridge in Washington County, Arkansas 

 

Since the mathematics and mechanics of arches are complex, and hadn’t been 

developed to a complete theoretical solution at that point, use of Luten and others’ 

empirically designed arch bridges soon waned as these requirements were enforced.  

Soon steel girder and prestressed or precast concrete beam bridges took over the market.  
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By the 1930’s arches were practically phased out of widespread use because of the lack 

of a theoretical design basis.  The need for small economical bridges still existed, yet 

those being approved for use were not fulfilling this need as well as Luten and others’ 

arch bridges had done. 

About this same time there were imminent discoveries that would eventually 

reverse the devastating blow dealt to the arch industry.  In 1941, two Iowa State 

professors, M. G. Spangler and Anson Marston, developed the Iowa, or 

Marston/Spangler, formula (Equation 2-1).  This is a heavily theoretically based formula 

for the prediction of horizontal deflection in a flexible buried conduit or pipe. 
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where 
∆x is the horizontal diameter change in in, 
K is a bedding constant, 
DL is a time lag factor to account for soil consolidation, 
Wc is the vertical weight per unit length due to fill and factored surface 

loads in lb/in, 
r is the undeformed radius of the pipe in in, 
E is the modulus of elasticity of the pipe in psi, 
I is the moment of inertia of the pipe wall per unit length in in4/in, and 
e is the modulus of passive soil resistance in pci. 
 

The bedding constant and time lag factor are empirically determined. Note that 

the term EI is a measure of the pipe stiffness and er4 is a measure of the soil resistance.  

In 1958 Reynold Watkins and Spangler revamped this formula and developed the 

equation: 
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where 
d is the undeformed diameter of the pipe (= 2r) in in, 
P is the vertical pressure on the pipe (= 0.5Wc/r) in psi, 
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s is the pipe stiffness (= EI/r3) in psi, and 
E’ is the modulus of soil reaction (= er) in psi. 
 

which became known as the modified Iowa formula. 

The use of these formulae allow designers to accurately compute the forces in a 

small diameter buried flexible pipe using ring compression and elastic buckling theories 

(introduced in the 1960’s), which consider three failure modes, namely buckling, 

buckling and crushing, and crushing. 

More recently a formula for the prediction of vertical deflection of a flexible pipe 

(Equation 2-3) has been developed using the same approach that Marston and Spangler 

used in deriving the original Iowa formula (Masada, 2000). 
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where 
∆y is the horizontal diameter change in in. 
 

The Iowa formulae provide good design tools for flexible pipes, like corrugated 

metal pipe (CMP), but because of the assumptions made in their development, they 

provide less accurate predictions for rigid structures such as reinforced concrete pipe 

(RCP).  Most elliptical concrete buried arches fall between these two categories, as semi-

flexible. 

Because many arch and culvert structures are buried, the Iowa formulae became 

an important stepping stone in the return of arch use.  Further, the development of these 

equations gave rise to a new engineering field known as soil-structure interaction.  The 

complexities of soil-structure interaction systems exceed those of unburied structures 

many fold and do not lend themselves to a perfectly theoretical solution. 
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There are three main elements involved in soil-structure interaction.  The first 

deals with the mobilization of soil due to structure deformations.  As a structure deforms 

away from the soil some of the confinement provided by the structure is lost.  As a result, 

the soil will have a tendency to shear along a plane inclined from horizontal at an angle 

of 
2

45 ϕ+° , where φ is the friction angle of the soil in degrees.  Small deformations of the 

structure away from the soil will result in a decrease in pressure on the structure, from the 

“at-rest pressure” to a level known as active pressure.  However, when a structure 

deforms into the soil, additional resistance to movement due to the internal friction of the 

soil is provided, counteracting the forces causing deformation.  This is known as passive 

pressure, and is generally an order of magnitude greater than its counterpart (see Figure 

2-9).  The development of these pressures is a function of deformation, and, therefore, 

varies along the structure.  In dense sands and gravels, typical of compacted fill materials, 

passive pressure may require approximately ten times more movement to fully develop.  

Generally the active pressure has minimal consequences on the structure, but, the passive 

resistance provides a large amount of strength to the overall system. 

 

PASSIVE ACTIVE PASSIVE 

PASSIVE

DEFORMED SHAPE 
INITIAL SHAPE 
EARTH PRESSURE 

Figure 2-9 – Soil mobilization caused by structural deformations 
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The second element of soil-structure interaction is known as arching.  Arching 

can be thought of as the reaction of active earth pressure.  When the supporting structure 

under a soil layer begins to deform away from the soil, the soil begins to develop a failure 

wedge.  This wedge is kept from slipping by support provided by the adjacent soil.  The 

resistance provided by the adjoining soil redistributes some of the load, through shear 

forces, around the failure wedge.  A more understandable analogy is a pin-pin beam 

continuously supported by an elastic base.  When there is no external load applied to the 

beam, the dead load is equally distributed along the beam’s length.  Upon applying a 

discrete load, the beam and elastic support deflect and a portion of the force is transferred 

to the pins through transverse shear in the beam.  At some deflection, a significant 

portion of the load will be redistributed to the pins.   The exact amount depends on 

relative stiffnesses.  When deformations are small, as they are in most soil-structure 

problems, the soil will not fail in shear; hence, a portion of the load is redistributed, or 

“arches” around the deformed soil through shear forces into the adjoining soil, as 

illustrated in Figure 2-10.  

 

DEFORMED SHAPE 
INITIAL SHAPE 
LOAD REDISTRIBUTION

Figure 2-10 – Load redistribution through soil arching 
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Finally, load is transferred by interaction through interface friction.  This friction 

is a product of normal force, surface roughness, and soil type.  Slippage occurs as a result 

of deformation incompatibilities.  In a bonded system, deformation compatibility at the 

interface is provided through shear forces.  “Unlimited” load transfer is available between 

elements.  In a frictionless system, deformation compatibility is not possible at the 

interface.  No load is transferred between components through shear.  Forces in bonded 

systems differ significantly from frictionless systems.  In frictional bonds, the amount of 

shear transfer between elements is limited by the friction at the interface.  This means that 

up to a stress equal to the friction capacity, the system will act like a bonded system.  

Once the frictional resistance has been overcome, the system will exhibit behavior of 

both a frictionless and bonded system.  Since interface forces vary along the perimeter, 

the behavior of the structure varies also.  Figure 2-11 illustrates the frictional shear forces 

acting on the structure due to soil deformation and structure settlement and deformation. 

 

 

DEFORMED SHAPE 
INITIAL SHAPE 
INTERFACE FRICTION

Figure 2-11 – Force transfer through interface friction 

 

 In the 70’s, Mike Katona, of Notre Dame University, pioneered the first finite 

element program to tackle the complex problem of soil-structure interaction.   The final 
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product was released in 1976 as CAnDe 2-D (Culvert Analysis and Design), and proved 

to be a godsend to designers of buried structures, despite its cryptic functionality.  Since 

the release of CAnDe 2-D, other two-dimensional FE programs have been released, such 

as NLSSIP and Plaxis, that deal with the same sort of problems. 

Today, Plaxis 3-D Tunnel provides one the most robust and accurate three-

dimensional finite element programs for analysis of tunnel structures.  Development of 

Plaxis began in 1987 at the Delft University of Technology in the Netherlands, as an 

initiative of the Dutch Ministry of Public Works and Water Management, to analyze river 

embankments in Holland.  It was later expanded to include most geotechnical 

applications.  In 2001, Plaxis 3-D Tunnel was released and has since provided analyses 

for various tunnel projects around the world. 

Many researchers and practitioners are currently involved in the continual 

development and betterment of the art and science of soil-structure interaction and arch 

technology.  Transportation organizations and design firms now invest millions each year 

in this field of research, with the end goal of finally capturing the understanding that 

eluded scientists, mathematicians, and designers for so long.  In ancient times arches 

were erected as monuments of triumph.  Again we find ourselves standing at this 

threshold. 

2.3 Arches Today 

The main uses of buried arches today are as drainage systems, small bridges, 

storage facilities, and tunnels.   Arch shapes, in general, take an elliptical form because 

height restrictions limit the use of semicircles and segmental shapes are inefficient. 
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With the advent of CAnDe, and the engineering help of Mike Katona, in 1983, 

Bill Lockwood began CON/SPAN, Inc.  Over the next few years, CON/SPAN developed 

a precast arch system that began the buried arch revolution.  Since its inception, 

CON/SPAN has provided arches for more than 4,000 projects, in North, Central, and 

South America, the Caribbean Islands, and Asia.  CON/SPAN holds patents on many of 

its design technologies and anxiously participates in the expansion of the industry. 

In 1988, just five years after CON/SPAN educed the arch market, Wolf 

Michelson began Hydro-Arch, in Henderson, NV.  Hydro-Arch specializes in cast-in-

place concrete arches (see Figure 2-12), primarily for use in drainage systems, tunnels, 

small bridges, and storage facilities.  The majority of their business is in the 

Nevada/Southern California region.  They have created an efficient construction process 

that rivals CON/SPAN in economy and reliability.  In spite of a proven service record, 

substantial resistance has still arisen in approval of buried arches for use in many 

projects.  Hydro-Arch has played an important role in gaining greater acceptance of its 

own and similar products, as well as in producing a more efficient design methodology. 

 

 
Figure 2-12 – A Hydro-Arch bridge in Las Vegas, Nevada 
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In 1994 another competitor entered the market when C.L. Ridgeway Construction 

Co. introduced their Con-Arch system.  Several years prior, significant time was spent 

working with the Highway Innovative Technology Evaluation Center (HITEC) to 

develop safe and high-performance structures, for which they later received a patent, 

trademarked Con-Arch.  In 2001 C.L. Ridgeway was obtained by Hunter Contracting 

Co., and currently operates in the Nevada/Arizona area. 

Unique differences and competitive designs fuel continual growth for this 

industry as its products become more widely used, proven, and researched.  The 

combined yearly revenue in concrete arch construction of these three companies alone is 

nearly $300 million, and all show increasing profitability. 
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3 Design Theory and Tools 

Research and experience have provided today’s designer with better tools and 

aids for designing buried structures.  There are currently several methods available for 

design, each of which has its own inherent strengths and weaknesses.  These include 

simplified empirical and analytical equations as well as two- and three-dimensional finite 

element analysis. 

3.1 Simplified Equations 

As previously outlined, all early arch structures were designed solely on past 

experience.  The Romans had nearly perfected the arch of their day, yet they had no 

theoretical tools to aid them in creating an economically efficient structure.  The 

development of theoretically based design equations for buried arches proved to be just 

beyond the grasp of scientists and mathematicians’ until the latter half of the twentieth 

century.  The lack of a viable analytical design procedure was enough to nearly stifle out 

this once dominant form.  However, such an occurrence wasn’t without justification.  

With the inability to determine the structural forces created by loading, it is impossible to 

determine accurate limit states for a structure.  Load and resistance factor and ultimate-

state design methods allow for a degree of statistical uncertainty due to variations in 
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loading and material properties, but uncertainty regarding the mechanics of the entire 

system is unacceptable by today’s standard. 

The use of the modified Iowa formula in conjunction with elastic buckling and 

ring compression theories are tools widely used today for design of small diameter CMP 

and RCP.  It is understood that these methods result in generally conservative analyses, 

yet use of more sophisticated tools aren’t often times justifiable.  In such structures 

conservatism doesn’t result in a large economical impact on a project, and in cases of 

non-conservative design, the consequences of failure are not disastrous.  However, these 

methods are unsuitable for large diameter pipes.  Conservatism results in large material 

waste and failure could be catastrophic.  Further, non-circular structures, such as elliptical 

arches and boxes are outside the scope of these methods.  Designers will sometimes turn 

to empirical methods such as the funicular polygon, middle-third rule, and/or plastic 

hinge method to analyze and design arches, yet it is generally wise, and often necessary 

in such cases, to use more exact modern analysis techniques. 

Most designers today turn to closed-form solutions specified by code, such as 

those published by the American Association of State Highway and Transportation 

Officials (AASHTO), for analysis and design procedures of arches, pipes, and boxes.  For 

example, the 1998 AASHTO-LRFD Sections 12.7, 12.10, and 12.11 outline analysis 

procedures for metal pipes and arches, reinforced concrete pipes, and precast and cast-in-

place concrete boxes and arches, respectively.  Software is commercially available that 

uses these procedures to aid in the analysis and design processes.  BoxCAR (Box Culvert 

Analysis and Reinforcing design), developed by the American Concrete Pipe 

Association, is such an example.  It is widely used to analyze and design concrete boxes. 
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AASHTO recognizes and addresses such influences as soil-structure interaction 

and load distribution (see 1998 AASHTO Sections 3.6.1.2.6, 4.6.2.1.3, and 12.11.2.2).  

However, in generalizing such phenomena, there is consequently a compromise of 

exactitude.  In such cases where economy and/or safety necessitate more accurate 

solutions, designers will often resort to numerical procedures of analysis. 

3.2 Finite Element (FE) Analysis 

The behavior of materials and structures can be simulated by systems of 

differential equations.  Each system has unique boundary conditions, and interactions 

between systems make their exact solution difficult in rare cases, and impossible in most.  

Solutions to some simple problems are available.  For example, Boussinesq’s solution of 

a point load on an elastic half-space is well known by geotechnical engineers.  

Timoshenko and others have published solutions to many elastic theory problems.  

However, these analytical solutions are normally based on idealization or simplifying 

assumptions, and their employment on real systems results in unrealistic solutions.  When 

an exact solution is not possible or feasible, as is the case most of the time in buried 

structure analysis, it becomes convenient to use numerical methods to approximate their 

solution.  One common way of doing this is called the finite element method. 

FE analysis provides a means by which a continuum is broken into finite pieces 

called elements. The governing differential equations are then approximated, using 

numerical approaches, as a set of linear equations for each sub-domain created in this 

discretization process.  Once the entire system has been approximated it then becomes a 

large set (on the order of 103) of independent linear equations.  This method was not 
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feasible in practice until recently, when sufficient computing power became available to 

the masses for solving such large systems of equations.  FE analysis can accurately 

capture the effects of soil-structure interaction and load spreading within its domain.  

From FE analysis, structural forces, such as shear and axial forces and bending moment 

can be obtained (see Figure 3-1), as well as soil stresses. 

 

 

a) 

b) 

c) 
Figure 3-1 – Typical arch a) bending moment and b) shear and c) axial force diagrams obtained from FE 

analysis in the loading plane 
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Two general model spaces, or domains, are used in FE analysis: two- or three-

dimensional.  The 2-D method models soil using “plane-strain” elements and the 

structure is modeled using “beam” elements.  The development of the mathematics 

behind these elements assumes that all strain occurs in a two-dimensional plane.  Such 

models are convenient to use because they require less setup time, cost less, compute 

much faster (up to 30,000 times faster than 3-D), and are somewhat more foolproof.  For 

cases where a structure is to be analyzed as having the same boundary conditions and 

geometry in the third dimension, a 2-D analysis provides accurate results.  In the case of 

longitudinal geometric variation or discrete loading, two-dimensions fail to capture the 

correct behavior of the system.  Again, AASHTO addresses this limitation and makes 

allowances for both distribution of the load through the soil and within the structure itself 

in the third dimension.  However, as will be shown in Section 4.2, these allowances do 

not fully capture the benefits of such distributions, even when used in conjunction with 

this more exact method of analysis. 

Three-dimensional FE analysis allows a user to vary geometry, loading, or both as 

a function of the third dimension.  In this way, a model can correctly account for out-of-

plane effects, as well as in-plane effects.  In 3-D analysis, the soil is modeled using 

“volume” elements and the structure using “plate” or “shell” elements.  Because of the 

increased complexity of the system and the reduction of simplifying assumptions within 

its mathematical base, three-dimensional analysis naturally requires much more 

computation time, but results in more accurate analysis where loading and/or geometry 

vary in the third dimension. 
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The designer must be familiar with the assumptions and limitations of whichever 

model space is being used, as well as have the ability to correctly model boundary 

conditions and material properties.  The inability to do such can lead to false results. 

There are many finite element programs commercially available today.  Included 

in these are I-DEAS, Plaxis, CAnDe, ABAQUS, and Nastran.  Each of these programs 

has a specific target user and varying degrees of user-friendliness, robustness, and 

capability.  In order to model soil-structure problems, advanced material models and 

analysis methods are necessary.  The conclusions of this study will be based primarily on 

results obtained from Plaxis 3-D Tunnel and verification and comparison provided by 

Plaxis V8 and I-DEAS.  These programs are capable of modeling soil-structure systems.  

Plaxis uses nonlinear analysis for both soil and plates and I-DEAS uses linear analysis to 

solve the finite element systems.  Studies have been done concluding that linear analysis 

of both soil and structure is sufficiently accurate in cases such as this, where deflections 

under service loading are relatively small (see Katona, 1979 and Emdal, 2000). 
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4 Current Analysis Methods and Limitations 

Even with today’s modern technology and a myriad of research supporting 

analysis techniques, arches with low soil cover and increasing spans are still 

conservatively designed.  Certainly, a degree of conservatism serves as a precautionary 

measure, and is preferable to most designers, but when it begins to result in excessive 

costs, it requires further consideration.  Methods specified by code can result in varying 

degrees of conservatism and “diseconomy”.  This is not the designer’s fault, but rather 

arises because of a deficiency of research in the area of buried concrete arches.  Much of 

the research governing the design of arches is based on concrete bridge decks and fails to 

produce an accurate arch analysis for three principle reasons.  First, it does not account 

well for the load dissipation through cover soil or within the structure.  Second, it does 

not account for varying geometries.  Third, it does not account for support on an elastic 

medium (beam-on-elastic-foundation behavior). 

The sum total of these oversights provides the potential for an over-designed 

structure for low fill heights and larger spans.  A 3-D finite element analysis of an 18’ 

span flat plate with no fill cover and an 18’ span arch with one foot of fill cover having 

equal section properties were analyzed with an applied discrete load in the center.  The 

plate model was constrained against x- and y-translation along the edges.  Model 

properties for the arch (equal for the plate) are outlined in Section 5.1. 
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Figure 4-1 – 18’ span arch and plate models used for comparison of moment dissipation and magnitude at 
mid-span as a function of longitude 

 

Figure 4-2 compares the percentage of maximum moment as a function of 

longitudinal distance from mid-length of the model for both the plate and arch ring at 

mid-span (see also Figure 4-1).  It can be seen that the load dissipation in both is very 

similar, suggesting that the angle of load spread within the structure is very similar as 

well (see Appendix A for additional spans).  This is to be expected since an arch is 

effectively a curved plate.   The difference arises in the magnitude of these forces. 
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Figure 4-2 – Percent of maximum moment at the crown/mid-span as a function of longitude for an 18' span 

arch ring with one foot of fill and a similar plate with no fill 
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Figure 4-3 shows the difference in moment magnitude for this same arch/plate set.  

It is clearly seen from this chart that the behavior of the two structures is very different.  

Large amounts of energy are dissipated into the soil through soil deformation and soil-

structure interaction and much of the force is carried through axial forces, rather than 

bending moments.  Results from a two-dimensional analysis of an equivalent 18’ span 

arch model done in Plaxis V8 using 1996 AASHTO specified reductions are also shown 

as a reference for current allowances.  Because the model is 2-D, the computed moment 

remains constant with longitudinal distance (see Appendix A for additional spans). 
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Figure 4-3 – Moment magnitude at the crown/mid-span as a function of longitude for an 18' span arch ring 

with one foot of fill and a similar plate with no fill 

 

The significant discrepancy between the plate and buried arch analyses suggests, 

first, that the arch carries a load more efficiently than a plate, and second, that something 

must be done to account for the soil-structure interaction and elastic support problems 
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encountered with all buried arches.  Further, the 2-D analysis shows that current 

AASHTO allowances to account for these factors can be highly conservative (this will be 

discussed more fully in Section 4.2). 

4.1 A Brief Explanation of Design Procedure Using FE Analysis 

There are several extant arch design types today, including precast, pre- and post-

tensioned precast, cast-in-place, and post-tensioned cast-in-place systems.  Each of these 

designs differs to some extent and some are proprietary.  In spite of the difference in 

details, the general design process is similar for all.  Initially, a client will specify some 

basic constraints for design.  These constraints will include items such as hydraulic 

capacity, clearance, shape, and/or span.  The engineer will then design an arch shape to 

most efficiently meet these specifications.  However, there are different approaches to 

this step.  After an arch shape is determined, the designer will create a FE model – almost 

always 2-D.  Soil parameters are based upon the soil that will be used in the project, 

whether it be engineered fill, native material, or both.  Section properties for the arch are 

assumed based on past experience and judgment.  There are several options for modeling 

the concrete section.  An uncracked section is typically unrealistic, since there is always 

cracking, so most designers typically use a partially cracked section, where the concrete 

is cracked up to the bottom of the reinforcing.  The reinforcing can then be ignored 

completely, or a transformed section can be used.  Both result in similar values.  Loads 

are determined and applied based upon current code specifications (see ’98 AASHTO 

Section 3).  The structure is then analyzed to determine shear and axial forces as well as 

bending moment.  Finally, deflections are checked to make sure they are tolerable.  
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AASHTO specifies S/800 as a maximum deflection, where S is the span of the arch.  

Deflection rarely governs. 

Once the structural forces have been determined, the section is designed using 

interaction diagrams for conventionally reinforced columns.  These diagrams allow the 

designer to select the appropriate thickness and steel percentage for a one-foot strip of 

arch.  Several computer programs are commercially available to aid in this process.  Once 

an efficient section has been chosen, the model is checked for shear, which is rarely a 

concern in arch design except under high loads with low fill covers. 

When an arch will be pre- or post-tensioned, other methods are employed to 

determine the thickness of the section and the required tendon tension and size. 

4.2 AASHTO Code Allowances 

Figure 4-4 illustrates two types of load spread allowed by AASHTO to account 

for 3-D load spread effects in a 2-D FE model.  The 1996 AASHTO-LRFD specifications 

stipulate that, for fill heights, H in ft, greater than three feet, the load dissipates 

longitudinally only through the soil, according to the equation: 

Hls 75.1=   (4-1) 

where 
ls is the soil distribution length in ft. 

 
When fill height is less than or equal to three feet, it states that the load dissipates 

longitudinally only through the structure, according to the equation: 

ft Sftlc 0.706.04 ≤+=  (4-2) 

where 
lc is the structure distribution length in ft and 
S is the span of the structure in ft. 
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The 1998 AASHTO-LRFD code allows the combination of soil and structural 

distribution for all fill heights.  However, the load spread within the soil, ls, is reduced by 

nearly 35 percent, to 

Hls 15.1=   (4-3) 

The load spread within the structure is also specified differently for positive and 

negative moments regions respectively as, 

ftSftlc 1255.017.2 ≤+=+   (4-4) 

ftSftlc 1225.04 ≤+=−  (4-5) 

where 
+
cl  is the structure distribution length for positive moment in ft and 
−
cl  is the structure distribution length for negative moment in ft. 

 
The total distribution length, l in ft, is then determined for the 1998 code as: 

 cs lll +=  (4-6) 

 

 

F F 

H Soil Spread 
Structure Spread

 S     S 

a) b) 

Figure 4-4 – Load distribution by a) soil spread and b) structure spread 

 

For both codes, the specified load is then divided by the applicable distribution 

length to account for the effects of the third dimension (see 1998 AASHTO C4.6.2.1.3).  
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The 1998 code is more accurate, yet it still results in a conservative design in most cases.  

Figure 4-5 and Figure 4-6 compare the moments obtained from a 2-D FE analysis using 

the ’96 AASHTO provisions and the moments directly below the load point of a 3-D FE 

analysis for an 18’ span arch with one foot of fill cover in the ring and invert, 

respectively. 

The conservatism of the code is readily seen in these two charts (see also 

Appendix B), as in Figure 4-2.    Even with the load reduction, the maximum positive 

moment from the 2D analysis is still much higher (67% in this case) than predicted by a 

more realistic 3-D model.  Also, the negative and invert moments for the 2-D analysis are 

much higher than predicted by the 3-D analysis (both 230% in this case).  It appears, 

from these and other results, that the conservatism of the current AASHTO provisions are 

both a function of fill cover and span. 
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Figure 4-5 – Comparison of 2-D and 3-D moment results in the plane of loading for an 18' span arch ring 

with one foot of fill 
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Figure 4-6 – Comparison of 2-D and 3-D moment results in the plane of loading for an 18' span arch invert 

with one foot of fill 

 

Current research has investigated much of the behavior of box culverts, which are 

slightly more similar to bridge decks than are arches.  Several studies have also been 

directed toward various aspects of buried arches (see Bacher & Klein, 1980; McGrath & 

Mastroianni, 2002; and McGrath, et al., 2002, for example).  Currently, however, there is 

very little research specifically aimed at providing an accurate prediction of distribution 

length for buried concrete arches.  In fact, recent studies recognize this short-coming and 

recommend further research be done to provide this additional tool to designers (see 

McGrath and Mastroianni, 2002). 
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5 Research Methods and Results 

The inaccuracies of current load distribution equations necessitate the 

development of a more reliable method of accounting for three-dimensional behavior in 

a two-dimensional FE model.  Because there are infinite geometries possible for buried 

arch structures, a study resulting in a statistically representative design equation for all 

possibilities would be a tremendous undertaking.  Instead, it would be useful to derive a 

correlation with a simple, cheap, and widely available method using a limited number of 

3-D finite element analyses from which an appropriate distribution length for any 

geometry can be obtained.  This correlation is made with a beam-on-elastic-foundation 

analysis.  Since the BOEF analysis considers such things as structure width and moment 

of inertia and soil stiffness, the need for analysis of a large quantity of varying 

geometries and soil parameters becomes less necessary.   

The desired end product of this research is to provide the designer with the 

ability to use a universally available BOEF program to determine the distribution length 

for any buried concrete arch with specific geometric, loading, and soil characteristics.  

This length is used in reducing 2-D loads to a point where the magnitudes of the 

structural forces are equivalent to those obtained from a three-dimensional analysis in 

the plane of discrete loading. 
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5.1 3-D Finite Element Analysis 

To begin, data must be obtained from 3-D finite element analyses of several 

buried concrete arch models with varying fill heights and spans.  Three spans with 

increasing fill heights were initially selected to show span/fill height relationships, then, 

using SAS OPTEX (a statistical optimization program), six other span/fill height 

combinations were chosen to best represent the rest of the domain of ftHft 101 ≤≤  

and ftSft 406 ≤≤ , where H is the fill height and S is the span.  Figure 5-1 shows all 

twenty-one span/fill height combinations used for this research. 
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Figure 5-1 – Spatial representation of arch models used in this research 

 

The geometry of each model created in Plaxis 3-D Tunnel (version 2.0, Build 1188. 

Plaxis B.V.) is shown in the following three figures.  A “hinge” was created between the arch 

and invert; this is because the arch is cast after the invert, and is connected by rebar only.  

This connection makes transfer of moment between the arch and invert minimal. 
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Figure 5-4 – 36’ span arch model used in Plaxis 

 

Table 5-1 – Outline of arch model section properties used in FE analyses 

SECTION PROPERTIES 
ARCH INVERT Property 

6”  8”  10” 12” 14” 10” 12” 14” 
A (ft2/ft) 0.50 0.67 0.83 1.00 1.17 0.83 1.00 1.17 

Reinforcing #4@10 #5@10 #5@10 #5@10 #6@10 #5@10  #5@10 #6@10 
Icr (in4/ft) 65 220 530 1030 1800 905 1035 1825 
EA (k/ft) 259560 346080 432600 519120 605640 432600 519120 605640 

EIcr (k-ft2/ft) 1610 5550 13215 25825 45100 22645 25920 45660 
~ 

Model(s) 
using this 
section 

~ 

6’ 11’  
13’ 18’ 24’ 

26’ 

34’ 
35’ 
36’ 

6’ 

11’ 
13’ 
18’ 
24’ 
26’ 

34’ 
35’ 
36’ 

 
 
 
The structural properties for the arch and invert models are summarized in Table 

5-1, where A is the cross-sectional area of a one foot strip and E is the elastic modulus of 

the concrete.  The partially cracked moment of inertia, Icr, for all sections is based upon a 

one foot strip of transformed section two inches less than its actual thickness.  The arch 

sections use one mat of reinforcing bar with 1.5” of concrete cover and the invert uses 

two mats of reinforcing with 2” of top cover and 3” of bottom cover.  The reinforcing in 

the arch is positioned so as to resist tensile forces (at the intrados at the crown and at the 

extrados at the haunches).  All reinforcement has a yield strength, fy, of 60 ksi and all 

concrete is normal weight (150 pcf) with a compressive strength, f’c, of 4000 psi and 
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Poisson’s ratio, ν, of 0.17.  Plaxis 3-D uses Reissner-Mindlin shell elements to model the 

arch and invert. 

The soil properties used in the finite element models are shown in Figure 5-5.  

The top six inches of backfill were modeled using a linear elastic soil model to prevent 

failure directly below the point of load application due to high loading pressure.  The 

backfill extends 24” below the base of the arch to account for soil disturbances caused in 

the excavation process.  The fill height above the crown of the arch is varied as one of the 

parameters of interest. 

 

 

ELASTIC BACKFILL MATERIAL 
USCS classification – Medium Silty Sand (SM) 

Material model – Linear elastic 
 w 10% 
 e 0.67 
 Dr 65% 
Eref 1000 ksf 
 ν 0.33 

 γd 100 pcf 
 γm 110 pcf 
 γs 125 pcf 

BACKFILL MATERIAL 
USCS classification – Medium Silty Sand (SM) 

Material model – Mohr-Coulomb 
Eref 1000 ksf 
cref 0.004 ksf  
 ν 0.33 
 φ 33.5° 
 ψ 2.5° 
 R 0.667 

 γd 100 pcf 
 γm 110 pcf 
 γs 125 pcf 
 w 10% 
 e 0.67 
 Dr 65% 

IN-SITU MATERIAL 
USCS classification – Dense Silty Sand (SM) 

Material model – Mohr-Coulomb 

Eref 1500 ksf 
cref 0.004 ksf  
 ν 0.33 
 φ 35.5° 
 ψ 4.5° 
 R 1.000 

 γd 103 pcf 
 γm 118 pcf 
 γs 127 pcf 
 w 15% 
 e 0.61 
 Dr 80% 

Figure 5-5 – Properties used for soil models in FE analyses 

 

 In Figure 5-5, 
γd is the dry unit weight, 
γm is the moist unit weight, 
γs is the saturated unit weight, 
w is the moisture content, 
e is the initial void ratio, 
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Dr is the density relative to the maximum possible density, 
Eref is the reference modulus of elasticity, 
cref is reference cohesion, and is present only to prevent numerical errors, 
ν is Poisson’s ratio, 
φ is the friction angle, 
ψ is the angle of dilation, and 
R is the interface friction ratio; 1.0 means no slippage and 0.0 is frictionless. 
 

The finite element models of an 11’ span arch with three feet of fill generated in 

Plaxis are shown in Figure 5-6.  The global mesh coarseness for all models was set to 

coarse, resulting in about 100 elements per plane.  A local refinement factor of 0.25 was 

applied at the load and around the structure.  This means that the mesh was reduced to 25 

percent of the global coarseness to better capture the model behavior in the vicinity of 

interest or highest loading.  A dead load analysis considering only the weight of the soil 

and structure was initially performed, then the load was applied and the model re-

analyzed.  Analyses were performed assuming small displacements. 

 

 

y 

 x  
z 

Figure 5-6 – 2-D and 3-D finite element models for an 11’ span arch with three feet of fill 

 

 The 3-D model uses tetrahedral volume elements for the soil and Reissner-

Mindlin shell elements for the structure.  The parallel planes are automatically generated 

by Plaxis to keep the element aspect ratio approximately equal to unity.  Such an aspect 

ratio results in more accurate results.  The boundary conditions used are translation 

fixities.  The front and back are restrained in the z-direction, the sides are restrained in the 
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x-direction, and the bottom is restrained in the y-direction.  The top is a free surface.  HL-

93 loading is applied as a pressure to an AASHTO specified tire contact area of 7”x 20” 

directly above the crown of the arch at mid-length using the appropriate impact and load 

factors.  Table 5-2 outlines the loading used on the FE models.  The water table was 

assumed to be below the bounds of the model.  In most cases this should be a valid 

assumption.  However, inadequate drainage or the presence of a water table will produce 

very different results.  The scope of this research does not include such instances, but the 

designer should be aware of its influence on soil strength and structure loading. 

 

Table 5-2 – Summary of HL-93 loading applied above the arch crown at mid-length 

Fill Height, H 
(ft) Impact Factor, If

Loading Area, A 
A = 0.58ft x 1.67ft (ft2) 

Pressure, P 
P = (16k x 2.17 x If)/A (ksf) 

1 1.3 0.97 46.45 
2 1.2 0.97 42.87 
3 1.1 0.97 39.30 

>3 1.0 0.97 35.73 
 
 

The models are three times wider than the span and the soil extends one span width 

below the invert.  To minimize end effects and provide reasonable accuracy, it was 

determined that a length equal to six times the span would be sufficient (see Figure 5-11).  

Because of use of the Mohr-Coulomb criterion, which is essentially elastic-perfectly 

plastic (see Figure 5-7), for the bulk of the soil models, Plaxis uses an iterative process 

that applies the load in increments to account for the effects of the plastic points in the 

soil.   
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 σ 

ε  

Perfectly Plastic 

Elastic 

Figure 5-7 – Elastic-perfectly plastic behavior of a Mohr-Coulomb soil model 

 

A small number of plastic points were created at the ends of the invert, in the 

vicinity of the haunches, and directly below the load where the stress reached the strength 

of the soil.  This is expected since these are the areas in which the soil strength is most 

highly mobilized. 

5.2 Determination of Distribution Length 

When an exterior force deforms a material, energy is stored internally throughout 

its volume.   Because deformations are directly related to material strains, this internal 

energy is called strain energy.  The amount of strain energy per unit volume is known as 

strain energy density.  There are four contributors to the total strain energy in a material: 

axial force, bending moment, shear force, and torsion.  Shear and axial forces and torsion 

cause about half of the total strain energy in a buried arch (except at very low fill heights, 

where shear comprises nearly all strain energy).  The remainder of the strain energy is a 

result of bending moment (see Figure 5-8). 
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Figure 5-8 – Effect of fill height on percent of total strain energy by type for an 18' span arch ring 

 

In order to have equal forces in similar structures, both must have equal strain 

energy densities.  Strain energy can be generated in a system by a discrete load or a 

continuous load (or thermal load, or support movement, etc.).  In the case of discrete 

loading, strain energy will be densest directly below the load and will diminish as 

distance from the load increases.  For constant continuous loading, strain energy density 

will remain constant parallel to the load.  In order for the quantity of strain energy in a 

plane under a continuous load to be equal to the quantity of strain energy in a plane at the 

discrete load point, the magnitude of the continuous load will always be some fraction of 

the discrete load (see Figure 5-9, where F is the magnitude of the discrete load and l is 

the distribution length). 
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F/l

a) 

     F/l 

b) F

Loading plane 
c) 

Figure 5-9 – Load magnitudes resulting in equivalent structural forces for a) 2-D, b) continuous, and c) 
discrete loads in the plane of loading 

 

A 2-D FE model essentially assumes that an applied load is a line or strip of 

constant magnitude.  This 2-D load must be factored down in order to produce the same 

structural forces as those produced in a 3-D system in the plane of loading.  This factor 

will vary depending on the form of strain energy (i.e. bending energy, shear energy, etc.), 

geometry, fill cover, and material properties.  To determine the reduction factor 

corresponding to a particular strain energy type, the total strain energy in a 3-D system 

must be divided by the total strain energy in the loading plane; both of the same type.  

This will, in essence, produce a required length of structure in which the same volume of 
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strain energy with a constant density profile will be produced (see Figure 5-10).  This 

density profile is equal to that in the loading plane of the 3-D structure under discrete 

loading, and is the result of a constant continuous load.  In simple terms, the magnitude 

of the discrete load is distributed over a specific length (i.e. turned into a line load), called 

the distribution length, l, to produce structural forces under a continuous load that are 

equivalent to those produced in the plane of discrete loading. 

 

Extruded 2-D Model 3-D Model
Ub, max

y 

 x  

Ub, max L 

l 
z 

S S  Positive bending energy volume 

Figure 5-10 – Illustration of equivalent positive bending energy volumes 

 

Since bending energy contributes most significantly to the total in most cases, it 

will be used to determine the distribution lengths for all forms of strain energy.  A similar 

method was mentioned by McGrath (2005) to model behavior of box culverts under 

discrete loads.  Planar bending energy is calculated using the equation 

∫=
S

b dx
EI

xM
U

2
)(

 (5-1) 

where 
Ub is the bending energy in a plane, 
M(x) is the magnitude of the bending moment as a function of x in ft-k/ft, 
E is the elastic modulus of the material in ksf, 
I is the moment of inertia of the structure in ft4/ft, and 
S is the span of the structure in ft. 
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The distribution length, l, is a ratio of bending energies.  Assuming E and I are 

constant, which is reasonable when cracking is within tolerable limits, it is convenient to 

disregard them initially, since they will cancel out in the end result.  This results in the 

planar bending energy equation being reduced to the planar moment equation 

∫=
S

P dxxMM )(  (5-2) 

where  
MP is the planar moment in ft-k. 

 
The following outlines a mathematical procedure for the previously stated method 

– the bending energy method – of determining distribution length for a discrete live load.  

1. Volumetric moment represents the total moment in the structure.  

Determine the total positive or negative volumetric moment created in the 

structure by overburden weight using the equation 

∫ ∫ ±± =
L S

overburdenoverburdenV dxdzzxMM ),(,  (5-3) 

where 
±

overburdenVM ,  is the total positive or negative overburden volumetric 
moment in ft2-k, 

±
overburdenM (x,z) is the positive or negative magnitude of the overburden 
moment as a function of position in ft-k/ft, and 

L is the length of the structure in ft. 
 

2. Determine the total positive or negative volumetric moment created in the 

structure due to live load.  Overburden loads are assumed to be constant 

and continuous within the length of influence, therefore, they need to be 

disregarded for determining distribution length of a discrete load.  This is 

accomplished by subtracting the overburden volumetric moment from the 

total volumetric moment using the formula 
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±±± −= ∫ ∫ overburdenV
L S

totalLLV MdxdzzxMM ,, ),(  (5-4) 

where 
±

LLVM ,  is the total positive or negative live load volumetric moment in 
ft2-k and 

),( zxM total
± is the positive or negative magnitude of the total moment 
caused by overburden and live loads as a function of position in ft-
k/ft. 

 
3. Planar moment represents the total moment in a plane of the structure.  

Determine the maximum planar moment due to live load, which occurs in 

the same plane as the discrete load (at mid-length).  This is done by 

subtracting the planar moment due to overburden from the total planar 

moment and is given by the expression 

L
M

dx
L

xMM overburdenV

S
totalLLP

±
±± −= ∫ ,

max, )
2

,(  (5-5) 

where 
±

max,LLPM is the positive or negative live load planar moment at mid-
length in ft-k. 

 
4. Determine the positive or negative moment distribution length as the ratio 

of total positive or negative live load volumetric moment to maximum 

planar moment. 

±

±
± =

max,

,

LLP

LLV

M
M

l  (5-6) 

where  
±l  is the positive or negative moment distribution length in ft.  

 
To determine the structure length required to minimize end effects, a series of FE 

analyses were performed for an 11’ span arch model with three feet of fill at differing 
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length-to-span ratios.  The distribution length was determined for each using the outlined 

procedure.  The results are shown in Figure 5-11 as a function of length-to-span ratio.  
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Figure 5-11 – Length-to-span ratio effects on distribution length for an 11' span arch with three feet of fill 

 

From these results, it was determined that to account for the entirety of the live 

load effects, the 3-D FE model would have to be a minimum of four times the span in 

length.  Shorter models do not allow sufficient length for the load to be naturally 

dissipated into the structure.  This is similar to the problem that arises with 2-D finite 

element models.  It can be seen that the third-dimension is an important factor in the 

behavior of the structure in response to the discrete loading, especially for the invert. 

The program Mathematica was used to determine the distribution lengths for all 

span/fill height combinations using the bending energy method.  Figure 5-12 shows a 

sample Mathematica calculation for determining the distribution length for positive 

moment for an 11’ span arch ring with one foot of fill. 
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ü 11' Arch with 1' Fill

ü Distribution Length for Positive Moment

Compute MV ,overburden
+  (ft2 -k).

MV,overburden
+ = ‚

i=1

Length@Moverburden+ D
ListIntegrate@Moverburden+ PiT,4D tPiT

139.292

Compute MV ,LL
+  (ft2 -k).

MV,LL
+ = ‚

i=1

Length@Mtotal+ D
ListIntegrate@Mtotal+ PiT,4D tPiT − MV,overburden

+

107.828

Compute MP,LL max
+  (ft-k).

MP,LLmax
+ = ListIntegrate@Mtotal+ PLength@ZDê2T,4D − MV,overburden

+ êL

13.3267

Compute the distribution length (ft).

l+
11−1 =

MV,LL+

MP,LLmax+

8.09113  

Figure 5-12 – Sample bending energy method calculations for an 11’ span arch with one foot of fill 

 

Computed distribution lengths using the bending energy method and AASHTO 

recommended methods are compared in Table 5-3, where S is the model span, H is the 

fill height, l+ is the distribution length for positive moment, l- is the distribution length for 

negative moment, and lI is the distribution length for invert moment. 
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Table 5-3 – Distribution lengths from the bending energy method and AASHTO provisions 

BENDING ENERGY METHOD ’98 AASHTO Model 
(S – H) l+ (ft) l- (ft) lI (ft) 

’96 
AASHTO  
l+, l-, lI  (ft) l+ (ft) l-, lI (ft) 

6’ – 3’ 6.99 7.75 16.04 4.36 8.92 8.95
11’ – 1’ 8.09 9.40 41.18 4.66 9.37 7.90 
11’ – 2’ 9.13 10.23 41.23 4.66 10.52 9.05 
11’ – 3’ 10.88 11.87 41.05 4.66 11.67 10.20 
11’ – 5’ 12.75 13.31 40.22 8.75 13.97 12.50 

11’ – 10’ 19.30 20.00 40.65 17.50 19.72 18.25 
13’ – 8’ 19.42 19.79 41.54 14.00 18.52 16.45 
18’ – 1’ 12.81 15.23 66.47 5.08 13.15 9.65 
18’ – 2’ 13.57 15.81 66.39 5.08 14.30 10.80 
18’ – 3’ 15.73 17.65 65.85 5.08 15.45 11.95 
18’ – 5’ 19.55 20.64 63.45 8.75 17.75 14.25 

18’ – 10’ 23.59 24.99 60.14 17.50 23.50 20.00 
24’ – 1’ 16.86 21.31 75.50 5.44 13.15 11.15 
24’ – 2’ 18.08 21.80 74.70 5.44 14.30 12.30 
24’ – 3’ 19.10 22.48 73.39 5.44 15.45 13.45 
24’ – 5’ 21.95 26.05 72.24 8.75 17.75 15.75 

24’ – 10’ 27.08 29.37 70.16 17.50 23.50 21.50 
26’ – 8’ 27.60 30.32 57.59 14.00 21.20 19.70 
34’ – 3’ 33.22 39.51 118.28 6.04 15.45 15.45 
35’ – 6’ 39.91 42.48 103.37 10.50 18.90 18.90 
36’ – 9’ 38.20 43.02 97.54 15.75 22.35 22.35 

*Underlined values represent liberality in AASHTO recommendations 

 

The conservatism of the code is readily seen from these values.  Plots defining the 

degree of conservatism of the AASHTO distribution lengths for positive moment in 

comparison with those obtained from this research (all outlined in Table 5-3) with respect 

to span and fill height, are shown in Figure 5-13 and Figure 5-14, respectively.  
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Figure 5-13 – Conservatism of AASHTO computed distribution lengths for positive moment for varying 

fill covers as a function of span 
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Figure 5-14 – Conservatism of AASHTO computed distribution lengths for positive moment for varying 

spans as a function of fill cover 
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AASHTO provisions are also very conservative for distribution lengths for invert 

moment for both span and fill heights, as shown in Figure 5-15 and Figure 5-16, respectively. 
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Figure 5-15 – Conservatism of AASHTO computed distribution lengths for invert moment for varying fill 

covers as a function of span 
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Figure 5-16 – Conservatism of AASHTO computed distribution lengths for invert moment for varying 
spans as a function of fill cover 
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The code provisions are more accurate at short spans and higher fill heights, as 

seen in these figures.  At low fill heights, the effects of the live load overpower the 

effects of the overburden, so the load spread is a more important factor.  Distribution 

lengths for negative moment are also very conservative, and show a similar pattern for 

both fill height and span (see Appendix C). 

5.3 Beam-on-Elastic-Foundation (BOEF) Analysis 

In confronting the problem of a flexible structure supported continuously on an 

elastic medium, a beam-on-elastic-, or Winkler foundation analysis is a good method of 

determining forces and deflections.  This method is derived by assuming a rectangular 

elastic beam (structure) is supported on an infinite number of springs (soil).  The springs 

are said to have a stiffness, k’, known as the subgrade modulus, or coefficient of subgrade 

reaction.  Vesic (1961) proposed that Equation 5-7, which considers parameters of the 

entire system, be used to determine the subgrade modulus for long beams: 

)1(
65.0' 2

12

4

ν−
=

S
E

IE
SE

Sk s

bb

s  (5-7) 

where 
k’ is the subgrade modulus in kcf, 
Es is the elastic modulus of the soil in ksf, 
Eb is the elastic modulus of the beam material in ksf, 
S is the width of the beam in ft, 
Ib is the moment of inertia of the beam in ft4, and 
ν is Poisson’s ratio of the soil. 

 
Since BOEF programs are universally available, a detailed explanation of the 

derivation, assumptions, and limitations will not be given here.  Correlations to 

distribution length will be based on BOEF deflection.  Such was attempted using bending 

moment, but there was no readily apparent correlation.  Because buried arches exhibit 
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behavior similar to a beam-on-elastic-foundation, it was hypothesized that there would be 

an accurate correlation between BOEF and FE analyses (Figure 5-17).   

 

 

  P 

 P

Figure 5-17 – Similarities between buried arch and beam-on-elastic-foundation models 

 

Width and moment of inertia are required for the BOEF analysis, which provide a 

good representation of geometric variations, minimizing such problems as having the 

same moment of inertia but a different geometry (i.e. narrow and deep vs. wide and 

shallow).  The location on an arch that is most likely to exhibit the same type of behavior 

as a flat plate is at the connection of the barrel to the invert.  This point is especially 

resistant to the effects of deflections in the barrel or invert of the arch. 

 

Table 5-4 – Representative arch model values used in BOEF analyses 

ARCH MODEL Parameter 
6’ 11’ 13’ 18’ 24’ 26’ 34’ 35’ 36’ 

Ib (ft4) 12 212 197 935 1511 1020 9278 5812 3723 
L (ft) 36 66 96 108 144 156 204 210 216 

k' (kcf) 710 684 727 710 753 799 727 763 799 
 

 

Table 5-4 outlines the parameters used in carrying out the BOEF analysis to 

develop possible correlations with distribution length from the 3-D FE analysis, where Ib  

is the moment of inertia of the beam (or arch), L is the length of the model, and k' is the 
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subgrade modulus of the soil.  Arch moment of inertia values were obtained from 

AutoCAD using the arch models shown in Section 5.1 with ring and invert thicknesses 

summarized in Table 5-1.  Vesic’s formula was used for determining the subgrade 

moduli.  Elastic modulus and Poisson’s ratio were representative of those used in the FE 

soil models (ν = 0.33 and Es = 1100ksf).  The HL-93 loads outlined in Table 5-2 were 

applied as point loads (equal to the pressure multiplied by the contact area from the 

AASHTO procedure) at mid-length. 

A comparison of vertical deflection of a BOEF model and an 18’ span arch with 

three feet of fill at the ring/invert connection point is shown in Figure 5-18.  It is apparent 

that BOEF analysis does not accurately predict the deflections in a buried arch.  

However, there is a close linear relationship between the deflections obtained by BOEF 

and FE analyses.  This suggests that both exhibit similar force dissipation behavior under 

a discrete load, thus enabling an accurate correlation between distribution lengths 

obtained from FE analyses and deflections obtained from BOEF analyses. 
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Figure 5-18 – Comparison of BOEF and FE analysis deflections at the ring/invert connection point for an 

18' span model with three feet of fill 

5.4 BOEF and FE Analysis Correlations 

To eliminate the problem of varying deflection magnitudes, correlations will be 

based on a modified deflection ratio, defined as: 

end

 i
iR ∆−∆

∆−∆
−=∆

max

max
, 1  (5-8) 

where 
∆R,i is the deflection ratio at a point i, some longitudinal distance from 

the load point, 
∆i is the deflection at point i, 
∆max is the deflection of largest magnitude for the entire beam, and 
∆end is the deflection at the beam end. 

 
Because BOEF analysis assumes the beam ends are unrestrained, there may be 

some amount of uplift at the ends.  However, this modified deflection ratio will result in 

values of zero at the ends and unity at the load point.  Deflection ratio values as a 

function of distance along the length of the arch from the BOEF and FE analyses for the 
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24’ span arch with five feet of fill are presented in Figure 5-19 (see Appendix D for 

similar figures).  

0.75

0.80

0.85

0.90

0.95

1.00

1.05

-18 -12 -6 0 6 12 18

Longitudinal Distance (ft)

D
ef

le
ct

io
n 

R
at

io

FE Model
BOEF Model
Critical RatioPositive moment distribution length

Note:  Chart has been 
scaled to the points of 
interest to obtain better 
accuracy.

 
Figure 5-19 – Deflection ratios for 24’ span BOEF and FE models with three feet of fill 

 

The value of the deflection ratio at a distance of one half the distribution length, 

as determined in Section 5.2, from mid-length of the arch/beam model is defined as the 

critical deflection ratio. Critical deflection ratios for all span/fill height combinations 

were ascertained from charts such as Figure 5-19 to use for correlation purposes.  The 

deflection ratios for FE analysis are shown only for comparison purposes; they are not 

used for correlation. 

Again, it can be seen that BOEF analysis is a poor predictor of buried arch 

deflection.  However, positive moment critical deflection ratio values for both FE and 

BOEF models, shown in Figure 5-20 for the 24’ span model, show there is a good linear 

correlation between these values.  Negative and invert moment critical deflection values 
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show a similar linear correlation (see Appendix D).  This correlation suggests that critical 

deflection ratios are good indicators of distribution length.  
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Figure 5-20 – Critical deflection ratios for positive moment distribution length for 24’ span BOEF and FE 
models as a function of fill height 

 

Figure 5-21 shows the critical deflection ratios for positive moment distribution 

lengths for the 11’, 18’, and 24’ span BOEF models.  Values for the distribution lengths 

for negative moment produce similar results.  Invert moment distribution length values 

also produce similar results, with positive, rather than negative slopes (see Appendix D).  

The critical deflection ratios for the BOEF models are summarized in Table 5-5. 
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Figure 5-21 – Critical deflection ratios for positive moment distribution lengths for BOEF models as a 

function of fill height 

 

Table 5-5 – Critical deflection ratios for BOEF models 

Model 
(S – H) 

+∆ crR ,  −∆ crR ,  I
crR ,∆  Model 

(S – H) 
+∆ crR ,  −∆ crR ,  I

crR ,∆  

6’ – 3’ 0.902 0.882 0.637 18’ – 10’ 0.818 0.800 0.378 
11’ – 1’ 0.954 0.940 0.406 24’ – 1’ 0.884 0.828 0.200 
11’ – 2’ 0.944 0.931 0.407 24’ – 2’ 0.868 0.823 0.202 
11’ – 3’ 0.923 0.910 0.409 24’ – 3’ 0.856 0.813 0.214 
11’ – 5’ 0.900 0.892 0.416 24’ – 5’ 0.822 0.766 0.223 

11’ – 10’ 0.800 0.788 0.412 24’ – 10’ 0.753 0.720 0.237 
13’ – 8’ 0.776 0.769 0.405 26’ – 8’ 0.659 0.611 0.206 
18’ – 1’ 0.936 0.912 0.316 34’ – 3’ 0.810 0.755 0.173 
18’ – 2’ 0.927 0.906 0.316 35’ – 6’ 0.666 0.640 0.107 
18’ – 3’ 0.906 0.888 0.322 36’ – 9’ 0.610 0.541 0.035 
18’ – 5’ 0.865 0.853 0.348     

*Bold value represents positive moment critical deflection ratio obtained from Figure 5-19 

Since the critical deflection ratios, crR ,∆ , appear to be a linear combination of 

span and fill height, a model equation of the form 

 edScbHacrR +++=∆ ))((,  (5-9) 
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will be used to predict them.    Three equations will be developed for predicting critical 

deflection ratios for positive, negative, and invert moment distribution lengths.  The 

coefficients a, b, c, d, and e were obtained using the FindFit function in Mathematica for 

all data points.  The following equations were determined to best represent the critical 

deflection ratios within the domains of ft Hft 101 ≤≤  and ftSft 406 ≤≤ : 

)002.0020.0)(396.0319.2(049.1, SHcrR ++−=∆+  (5-10) 

)001.0011.0)(0584694.4(053.1, SHcrR ++−=∆−  (5-11) 

)074.1250.89)(0001.0014.0(856.1, SHI
crR ++−+=∆  (5-12) 

where 
S is the model span,  
H is the fill height, 

+∆ crR ,  is the critical deflection ratio for positive moment distribution 
length, 

−∆ crR,  is the critical deflection ratio for negative moment distribution 
length, and 

I
crR,∆  is the critical deflection ratio for invert moment distribution 
length. 

 
Predictions for fill heights greater than ten feet will be limited to those obtained 

at , since the live load plays a less important role with large fill heights.  This 

will also help eliminate inaccuracies that could arise from being outside the domain upon 

which the equations are based.  Table 5-6 summarizes the critical deflection ratio values 

predicted by these equations. 

ftH 10=
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Table 5-6 – Critical deflection ratios obtained from prediction equations 

Model 
(S – H) 

+∆ crR ,  −∆ crR ,  I
crR ,∆  Model 

(S – H) 
+∆ crR ,  −∆ crR ,  I

crR ,∆  

6’ – 3’ 0.947 0.941 0.509 18’ – 10’ 0.753 0.732 0.338
11’ – 1’ 0.950 0.932 0.430 24’ – 1’ 0.897 0.858 0.233 
11’ – 2’ 0.935 0.919 0.432 24’ – 2’ 0.875 0.836 0.235 
11’ – 3’ 0.921 0.906 0.433 24’ – 3’ 0.852 0.815 0.236 
11’ – 5’ 0.892 0.879 0.436 24’ – 5’ 0.808 0.771 0.240 

11’ – 10’ 0.819 0.812 0.443 24’ – 10’ 0.697 0.664 0.247 
13’ – 8’ 0.832 0.819 0.410 26’ – 8’ 0.725 0.686 0.214 
18’ – 1’ 0.921 0.892 0.324 34’ – 3’ 0.800 0.745 0.085
18’ – 2’ 0.903 0.874 0.326 35’ – 6’ 0.708 0.652 0.075
18’ – 3’ 0.884 0.857 0.327 36’ – 9’ 0.613 0.555 0.065 
18’ – 5’ 0.847 0.821 0.330     

*Underlined values represent non-conservative predictions 

 

To determine the validity of these equations, a square-root-of-average-square-of-

differences procedure is used, which is a method for determining the variation of data 

from a model equation.  This procedure is as follows: 

1. Determine the coefficients a, b, c, d, and e for the model equation using all 

data points except one. 

2. Predict the value of the excluded data point using the model equation with 

coefficients determined in Step 1. 

3. Square the difference between the actual and predicted values. 

4.  Repeat Steps 1-3 for all data points in the set. 

5. Find the average of all the squared differences found in Step 3 and take the 

square root of it. 

This procedure will give a range of average variation of the data from the model 

equation.  Determination of the coefficients a, b, c, d, and e was accomplished using the 

FindFit function in Mathematica.  The values obtained from this procedure are given in 
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Table 5-7 and show that the actual values vary from the prediction model, on average, by 

±5% or less.  This indicates that the base equation is, indeed, a good representation of the 

actual data points. 

 

Table 5-7 – Average variation of data from prediction model 

Variation in  +∆ crR, Variation in  −∆ crR, Variation in  I
crR ,∆

±0.039 ±0.044 ±0.054 
 
 

In summary, the distribution length for any structure is predicted as follows: 

1. Determine the critical deflection ratio as a function of fill height and span 

for positive and invert moment distribution lengths.  (Load reduction by 

the distribution length for negative moment produces nearly the same 

results as the distribution length for positive moment.  The slight decrease 

in required area of steel would not be feasible because reinforcing is 

continuous around the barrel.  The prediction equation for determining 

critical deflection ratios for negative moment distribution length was 

determined for completeness, but is not expected to be used in practice). 

2. Generate a BOEF model that is six times the span in length, using 

appropriate soil (Es and ν) and structure parameters (Eb, S, and Ib). 

3. Apply a factored point load of appropriate magnitude at mid-length of the 

BOEF model.  Do not include self-weight in the analysis. 

4. Determine the deflections along the length of the beam. 

5. Calculate the deflection ratios along the length of the beam. 
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6. Determine the distance from mid-span of the beam at which the deflection 

ratio is equal to the appropriate critical deflection ratio.  Use linear 

interpolation as necessary. 

7. Compute the distribution length as twice the value obtained in Step 6.   

The ratio (times 100%) of actual to predicted distribution lengths determined 

using this method is shown in Figure 5-22 and Figure 5-23 as a function of fill height and 

span, respectively (see also Appendix E).  The random pattern of the data points about 

100% as a function of fill height in Figure 5-22 is an indication that the equations used 

for predicting these values are unbiased with respect to fill height.  This means that they 

are not more or less accurate at either end of the fill height domain.  However, the pattern 

of the data points about 100% in Figure 5-23 indicates that these equations provide 

somewhat better prediction for longer spans.  This is because the error increases slightly 

at shorter spans, and suggests that accurate predictions for spans greater than 40’ can be 

obtained by extrapolation.  Nevertheless, the average degree of conservatism or liberality 

of these predictions is within ± 10% or less.  As shown in Figure 5-13, Figure 5-14, and 

Appendix C, the AASHTO methods for predicting distribution length are nearly always 

conservative, sometimes up to 300%, or more. 

Table 5-8 summarizes the distribution length values predicted by this method 

using a BOEF spreadsheet and the model parameters indicated in Table 5-4. 
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Figure 5-22 – Conservatism of predicted to actual distribution lengths for positive moment as a function of 

fill height 
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Figure 5-23 – Conservatism of predicted to actual distribution lengths for positive moment as a function of 

span 
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Table 5-8 – Distribution lengths predicted by recommended method 

Model 
(S – H) l+ (ft) l- (ft) lI (ft) Model 

(S – H) l+ (ft) l- (ft) lI (ft) 

6’ – 3’ 4.92 5.24 19.73 18’ – 10’ 28.30 29.94 63.56
11’ – 1’ 8.62 10.18 40.26 24’ – 1’ 15.76 19.09 70.79 
11’ – 2’ 9.91 11.26 40.17 24’ – 2’ 17.77 20.83 70.64 
11’ – 3’ 11.12 12.30 40.10 24’ – 3’ 19.59 22.50 70.50 
11’ – 5’ 13.31 14.21 39.94 24’ – 5’ 23.02 25.66 70.01 

11’ – 10’ 18.09 18.52 39.55 24’ – 10’ 30.99 33.36 69.01 
13’ – 8’ 16.19 16.99 41.27 26’ – 8’ 23.87 26.08 56.77 
18’ – 1’ 14.08 16.91 64.97 34’ – 3’ 34.44 40.54 148.15
18’ – 2’ 15.95 18.51 64.83 35’ – 6’ 36.67 41.30 111.19
18’ – 3’ 17.63 20.02 64.66 36’ – 9’ 38.00 42.15 91.45 
18’ – 5’ 20.83 22.97 64.36     

*Underlined values represent liberality in predictions 
where, 

S is the model span,  
H is the fill height, 
l+ is the distribution length for positive moment, 
l- is the distribution length for negative moment, and 
lI is the distribution length for invert moment. 
 
 
 

The plots in Figure 5-24 provide a comparison of computed bending moments in 

a 2-D FE model arch ring for an 18’ span arch with three feet of fill using a) no load 

reduction, b) 1996 AASHTO prescribed positive moment distribution length, and c) 

proposed distribution length for positive moment, to 3-D FE analysis results. 

Figure 5-24 shows that the proposed reduction method provides the best 

reconciliation between 2-D and discrete 3-D loading.  The plots in Figure 5-24 also 

clearly show the need for reducing the load from a 2-D analysis to avoid large errors in 

predicting moment.    Results for lower fill heights show a greater difference between 

reduction methods and higher fill cover brings the reduction methods into closer 

agreement (see Figure 4-5 and Appendix B for variation in bending moment using 

AASHTO methods as a function of fill height).  Using the proposed method, structural 

forces can be reduced anywhere from 0% to 200+% from those obtained using AASHTO 
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methods, depending on span and fill height.  Figure 5-25 shows a similar comparison for 

shear forces.  The proposed method again provides the most accurate results. 
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Figure 5-24 – Bending moment comparison for an 18' span arch ring with three feet of fill using various 

reduction methods 
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Figure 5-25 – Shear force comparison for an 18' span arch ring with three feet of fill using various 

reduction methods 
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Figure 5-26 – Axial force comparison for an 18' span arch ring with three feet of fill using various 

reduction methods 

 

Figure 5-26 provides similar plots of computed axial force.  There is, however, a 

significant discrepancy between the location of maximum axial force caused by 

continuous and discrete loading within the arch ring.  The effects of discrete loading at 

low fill heights cause the axial force to be greater at the crown than at the haunches.  

This difference in location of maximum axial force – at the crown for discrete loading 

and at the haunches for continuous loading – is evidence of longitudinal load dissipation.  

Strain energy density is greatest directly below a discrete load and dissipates as distance 

from the point of application increases.  In the case of continuous loading, energy cannot 

dissipate in the longitudinal direction, and therefore, axial forces will increase as the arch 

becomes more vertical and more energy is transferred through axial strains, rather than 

bending.  For this case then, reduction per the proposed distribution length 
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underestimates the axial force in the crown in comparison to the AASHTO distribution 

length, but provides better estimates at the haunch. 

 

 

   P (k) 

Axial force decreases moment capacity 

Axial force increases moment capacity 

  M (ft-k)
  Tension decreases moment capacity 

Figure 5-27 – Effects of axial force on moment capacity 

 

The axial forces in the ring are typically similar or smaller in the 2-D model than 

in the 3-D discrete load model (see Appendix F and Figure 5-28).  In design of the arch 

ring, interaction typically falls within the region where axial forces mitigate tension 

caused by bending moments (see Figure 5-27 – shaded area).  In this case, under-

prediction results in slight design conservatism.  Further, even under large fill heights 

(>40ft), crushing is not a concern, so this under-prediction will not lead to unexpected 

crushing failure.  For these reasons, further inquiry will not be made in this research to 

attempt to rectify the axial forces in the arch ring.  As has been shown, sufficient 
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rectification has been provided for shear forces and bending moment to result in a more 

economically designed structure overall.  It should be noted, however, that a high 

concentration of force directly below the load may result in local buckling, similar to 

non-compact steel sections under high force concentrations.  The designer should be 

aware of this issue, as well as punching shear (see Figure 5-8, where most of the load is 

resisted through shear forces), when low fill cover is provided.  Determination of 

compactness criteria would help provide assurance against local buckling failure, but is 

outside the scope of this research. 

The overburden is effectively a continuous load, thus at higher fill covers, where 

live load no longer governs, this axial force discrepancy no longer exists, as shown in 

Figure 5-28.  This suggests that the magnitude of axial forces around the barrel of the 

arch is not merely a function of the load magnitude, but also the load type.  Figure 5-29 

compares axial forces in a 2-D FE model of an 18’ span arch ring with three feet of fill 

for varying load magnitudes.  Under 2-D/continuous loading, the axial forces are always 

greater at the haunches, no matter the magnitude of the load. 
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Figure 5-28 – Axial force comparison for an 18' span arch ring with ten feet of fill using proposed 

distribution length for positive moment and 3-D FE analysis 
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Figure 5-29 – Axial force as a function of 2-D/continuous load magnitude for an 18' span arch ring with 

three feet of fill 
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The plots in Figure 5-30 to Figure 5-32 provide a comparison of computed 

structural forces in a 2-D FE model invert for an 18’ span arch with three feet of fill using 

a) no load reduction, b) 1996 AASHTO prescribed distribution length for negative 

moment, and c) proposed distribution length for invert moment, to 3-D FE analysis 

results.  The results of c) are not easily visible because they lie nearly directly below the 

3-D analysis results for the bending moment and shear force cases.  
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Figure 5-30 - Bending moment comparison for an 18' span invert with three feet of fill using various 

reduction methods 

 

These plots show that the proposed reduction method provides the best 

reconciliation between 2-D and discrete 3-D loading.  Results for lower fill heights show 

a greater difference between reduction methods and higher fill cover brings the reduction 

methods into closer agreement (see Figure 4-6 and Appendix B for variation in invert 

bending moment using AASHTO methods as a function of fill height).  Using the 
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proposed method, shear forces and bending moment can be reduced in the invert 

anywhere from 0% to 275+% from those obtained using AASHTO methods, depending 

on span and fill height. 
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Figure 5-31 – Shear force comparison for an 18' span invert with three feet of fill using various reduction 

methods 

 

The determination of axial forces in the invert, using the distribution length for 

invert moment to reduce the load, results in lower forces than those obtained using 3-D 

analysis (see Figure 5-32).  However, where axial forces are tensile, as is the case for the 

invert, under-prediction leads to a non-conservative design.  For this reason, the Author 

recommends that the axial forces obtained from 2-D analysis using distribution length for 

positive moment be multiplied by a factor of 1.3 until further procedures for reconciling 

axial forces are developed.  This factor will result in axial forces that are slightly 

conservative. 
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Figure 5-32 – Axial force comparison for an 18' span invert with three feet of fill using various reduction 

methods 

5.5 Example of Obtaining Distribution Length Using BOEF Analysis 

The following example illustrates how to obtain distribution lengths for an 18’ 

span arch model with 3’ of fill using the proposed method. 

1. Determine the critical deflection ratios for S = 18ft and H = 3ft.  

Distribution length for negative moment will be computed for 

completeness. 

884.0)18002.0020.0)(3396.0319.2(049.1, =×+×+−=∆+ ftftcrR   

857.0)18001.0011.0)(30584694.4(053.1, =×+×+−=∆− ftftcrR   

327.0)18074.1250.89)(30001.0014.0(856.1, =×+×+−+=∆ ftftI
crR  

2. Create a BOEF model that is six times the span long, using the appropriate 

soil and structure parameters. 

L = 108ft  Ib = 935ft4 k’ = 710kcf 
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3. Apply an HL-93 point load with appropriate impact and load factors at 

mid-length of the beam.  Do not include self-weight in the analysis. 

kkF 192.381.117.216 =××=  
 
(1.1 is the impact factor and  are load factors) 67.13.117.2 ×=

 
 

4. Determine the deflections along the length of the beam. 

See Table 5-9 

5. Calculate the deflection ratios along the length of the beam. 

Table 5-9 shows the values obtained from a BOEF spreadsheet 

program as well as the deflection ratios at each point for half of the model 

length.  The other half of the model is symmetrical. 

 

Table 5-9 – Example BOEF deflection values and deflection ratios 

x (ft) δ x 100 ∆R,i x (ft) δ x 100 ∆R,i x (ft) δ x 100 ∆R,i

0.00 -0.0009 100.0% 18.36 -0.0005 64.6% 36.72 -0.0001 25.2% 
1.08 -0.0009 99.7% 19.44 -0.0005 61.9% 37.80 -0.0001 23.4% 
2.16 -0.0009 99.1% 20.52 -0.0005 59.2% 38.88 0.0000 21.7% 
3.24 -0.0009 98.1% 21.60 -0.0004 56.4% 39.96 0.0000 20.0% 
4.32 -0.0009 96.8% 22.68 -0.0004 53.8% 41.04 0.0000 18.4% 
5.40 -0.0009 95.1% 23.76 -0.0004 51.2% 42.12 0.0000 16.7% 
6.48 -0.0009 93.3% 24.84 -0.0003 48.8% 43.20 0.0000 15.1% 
7.56 -0.0008 91.2% 25.92 -0.0003 46.3% 44.28 0.0001 13.6% 
8.64 -0.0008 88.9% 27.00 -0.0003 43.9% 45.36 0.0001 12.0% 
9.72 -0.0008 86.5% 28.08 -0.0003 41.5% 46.44 0.0001 10.5% 
10.80 -0.0008 83.9% 29.16 -0.0002 39.3% 47.52 0.0001 9.0% 
11.88 -0.0007 81.4% 30.24 -0.0002 37.1% 48.60 0.0001 7.4% 
12.96 -0.0007 78.7% 31.32 -0.0002 34.9% 49.68 0.0002 6.0% 
14.04 -0.0007 75.9% 32.40 -0.0002 32.9% 50.76 0.0002 4.4% 
15.12 -0.0006 73.1% 33.48 -0.0001 30.9% 51.84 0.0002 3.0% 
16.20 -0.0006 70.3% 34.56 -0.0001 28.9% 52.92 0.0002 1.5% 
17.28 -0.0006 67.5% 35.64 -0.0001 27.1% 54.00 0.0002 0.0% 

*Bold values represent those between which critical deflection ratios fall 
where 

x is the distance from mid-length of the BOEF model, 
δ is the deflection of the BOEF model in in, and 
∆R,i is the deflection ratio at point i. 
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6. Determine the distance from mid-span of the beam at which the deflection 

ratio is equal to the appropriate critical deflection ratio.  Use linear 

interpolation as necessary. 

From Table 5-9, the distribution lengths have been determined to 

be between the values listed in Table 5-10. 

 

Table 5-10 – Example interpolation values for determining distribution lengths

½ l+ interpolation values (ft) ½ l- interpolation values (ft) ½ lI  interpolation values (ft) 
Above actual Below actual Above actual Below actual Above actual Below actual 

8.64 9.72 9.72 10.80 33.48 32.40 
where 

l+ is the positive moment distribution length, 
l- is the negative moment distribution length, and 
lI is the invert moment distribution length. 
 
 
 

Linearly interpolating between these computed values will give the 

prediction for half of the distribution length. 

( ) ftftftft
l

87.872.972.964.8
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865.0884.0

2
=+−⎟

⎠
⎞

⎜
⎝
⎛

−
−

=
+

 

ftftftft
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309.0327.0
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⎠
⎞

⎜
⎝
⎛
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=  

7. Compute the distribution length as twice the value obtained in Step 6. 

ftftl 73.1787.82 =×=+   

ftftl 15.2008.102 =×=−   

ftftl I 98.6449.322 =×=  
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will be used to predict them.    Three equations will be developed for predicting critical 

deflection ratios for positive, negative, and invert moment distribution lengths.  The 

coefficients a, b, c, d, and e were obtained using the FindFit function in Mathematica for 

all data points.  The following equations were determined to best represent the critical 

deflection ratios within the domains of ft Hft 101 ≤≤  and ftSft 406 ≤≤ : 

)002.0020.0)(396.0319.2(049.1, SHcrR ++−=∆+  (5-10) 

)001.0011.0)(0584694.4(053.1, SHcrR ++−=∆−  (5-11) 

)074.1250.89)(0001.0014.0(856.1, SHI
crR ++−+=∆  (5-12) 

where 
S is the model span,  
H is the fill height, 

+∆ crR ,  is the critical deflection ratio for positive moment distribution 
length, 

−∆ crR,  is the critical deflection ratio for negative moment distribution 
length, and 

I
crR,∆  is the critical deflection ratio for invert moment distribution 
length. 

 
Predictions for fill heights greater than ten feet will be limited to those obtained 

at , since the live load plays a less important role with large fill heights.  This 

will also help eliminate inaccuracies that could arise from being outside the domain upon 

which the equations are based.  Table 5-6 summarizes the critical deflection ratio values 

predicted by these equations. 

ftH 10=
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6 Conclusions and Recommendations 

Twenty-one finite element models of buried concrete arches with varying spans 

and fill covers were created and analyzed in Plaxis 3-D Tunnel to best represent spans 

between six to 40 feet and fill heights from one to ten feet.  Distribution lengths were 

determined from these FE analyses using the bending energy method.  Corresponding 

beam-on-elastic-foundation analyses were carried out using soil and structure properties 

representative of these buried arch models.  A correlation was determined between 

critical percentages of BOEF deflection and distribution lengths for positive, negative, 

and invert moments.  Where the AASHTO prescribed distribution lengths are up to 

300+% greater than calculated values, these predictions are, on average, within ±10% 

(well within the degree of accuracy of the soil and structure parameters and load 

magnitude).  The results provide an accurate method of rectification of 2-D to discrete 3-

D loading, such that the resulting bending moments and shear forces are nearly 

equivalent between 2-D and 3-D FE analyses.  In summary: 

•  Using the methods developed herein, shear forces and bending moments 

within the arch ring and invert obtained from a 2-D FE analysis can be 

rectified in such a manner that they are nearly equal to those obtained in 

more accurate 3-D analysis under discrete loading.  This is accomplished 
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by dividing the 2-D load by a load distribution length.  Distribution 

lengths are different for positive, negative, and invert bending moments. 

•  Axial forces obtained from 2-D FE analysis using the methods proposed 

by this research are generally similar to or less than axial forces obtained 

from 3-D FE analysis under discrete loading.  This results in an accurate 

to conservative design for the arch ring and an accurate to non-

conservative design for the invert.  It is recommended that the distribution 

length for positive moment be used to predict invert axial forces to 

eliminate this non-conservatism. 

•  Two-dimensional analysis fails to correctly predict axial forces in a 

buried concrete arch under discrete loading, no matter the magnitude of 

the load. 

6.1 Implementation of Results 

The proposed methods were developed specifically for structures spanning 40ft 

or less; however, accuracy of the model appears to increase with increasing span, 

therefore, using this method for greater spans (within reason) will still likely produce 

accurate results.  It is recommended that these procedures be employed in all 2-D FE 

analyses of buried arch structures exhibiting characteristics similar to those for which 

this research was designed (i.e. small- to medium-span buried concrete arches longer 

than four times the span). 

The correlations made have been shown to accurately rectify the design shear 

forces and bending moments obtained from 2-D FE analysis to those obtained using 3-D 
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analysis.  There arises, however, a discrepancy in the prediction of axial forces in both 

the arch ring and invert.  The recommended application of this research in practice is 

shown in Table 6-1.  

 

Table 6-1 – Recommended use of distribution lengths for load reduction 

ARCH RING FORCES INVERT FORCES Reduction 
Method Moment Shear Axial Moment Shear Axial 

l+ X X X    
l- (a)       
lI    X X X(b)

a. The derivation and determination of the negative moment distribution length was done for 
completeness; it is not expected to be used in practice. 

b.  Axial forces obtained from 2-D analysis using lI are to be multiplied by a factor of 1.3. 
where 

l+ is the distribution length for positive moment, 
l- is the distribution length for negative moment, and 
lI is the distribution length for invert moment. 
 

 
 
A design example of an 18’ span arch with one foot of fill using 1996 AASHTO 

methods and the method proposed in this research is provided in Appendix G for 

comparison. 

6.2 Recommendations for Future Studies 

In doing this research, additional research opportunities have been identified by 

the Author.  The following outlines recommendations for future studies in these areas:  

•  Many buried structures exhibit behavior similar to that shown by semi-

flexible concrete arches in this research.  It is recommended that 

experiments be performed following the same general approach for box 

culverts, reinforced concrete pipe, corrugated metal pipe, plastic pipe, and 
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like structures to develop similar design methods as those developed herein 

for buried arches. 

•  A discrepancy arises in axial forces in the arch ring caused by point and 

continuous loads which is not solely a result of force magnitude.  

Development of procedures for eliminating these axial force discrepancies 

and development of compactness criteria to avoid local buckling under low 

fill covers would benefit designers. 

•  This research provides methods which are highly automatable and would 

require relatively little computational effort.  Therefore, implementation of 

these and future results for similar structures into 2-D finite element code 

developed specifically for analysis of buried arches, RCP, CMP, boxes, etc., 

could provide another breakthrough in ease of application and accuracy of 

FE analysis.  
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Appendix A. Moment Dissipation and Magnitude 
Differences 

 

 

This appendix supplements Figure 4-2 and Figure 4-3. 

Figure A-1 and Figure A-2 show that the moment dissipates nearly the same in 

an 11’ and 24’ span arch ring with one foot of fill cover as it does in a plate with an 

equal span and section properties and no fill cover.  See also Figure 4-2. 

Figure A-3 and Figure A-4 show that the magnitude of the moments is much less 

in an 11’ and 24’ span arch ring with one foot of fill cover than in a plate with an equal 

span and section properties and no fill cover.  See also Figure 4-3. 
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Figure A-1 – Percent of maximum moment at the crown/mid-span as a function of longitude for an 11' 

span arch ring with one foot of fill and a similar plate with no fill 
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Figure A-2 – Percent of maximum moment at the crown/mid-span as a function of longitude for a 24' span 

arch ring with one foot of fill and a similar plate with no fill 
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Figure A-3 – Moment magnitude at the crown/mid-span as a function of longitude for an 11' span arch 

ring with one foot of fill and a similar plate with no fill 
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Figure A-4 – Moment magnitude at the crown/mid-span as a function of longitude for a 24' span arch ring 
with one foot of fill and a similar plate with no fill 
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Appendix B. Effects of Fill Height on AASHTO 
Conservatism 

 

 

This appendix supplements Figure 4-5 and Figure 4-6. 

Figure B-1 to Figure B-4 show that with increasing fill heights the current 

AASHTO provisions become increasingly more accurate for the arch ring.  See also 

Figure 4-5.  

Figure B-5 to Figure B-8 show that with increasing fill heights, the current 

AASHTO provisions also become increasingly more accurate for the invert.  See also 

Figure 4-6. 
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Figure B-1 – Comparison of 2-D and 3-D moment results in the plane of loading for an 18' span arch ring 

with two feet of fill  
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Figure B-2 – Comparison of 2-D and 3-D moment results in the plane of loading for an 18' span arch ring 
with three feet of fill 
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Figure B-3 – Comparison of 2-D and 3-D moment results in the plane of loading for an 18' span arch ring 
with five feet of fill  
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Figure B-4 – Comparison of 2-D and 3-D moment results in the plane of loading an 18' span arch ring 
with ten feet of fill  
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Figure B-5 – Comparison of 2-D and 3-D moment results in the plane of loading for an 18' span arch 
invert with two feet of fill  
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Figure B-6 – Comparison of 2-D and 3-D moment results in the plane of loading for an 18' span arch 
invert with three feet of fill  

 92



-5

0

5

10

15

20

-10 -8 -6 -4 -2 0 2 4 6 8 10

Distance from Centerline (ft)

B
en

di
ng

 M
om

en
t (

ft-
k/

ft)

3-D
2-D

FE MODEL

 

Figure B-7 – Comparison of 2-D and 3-D moment results in the plane of loading for an 18' span arch 
invert with five feet of fill  
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Figure B-8 – Comparison of 2-D and 3-D moment results in the plane of loading for an 18' span arch 
invert with ten feet of fill  
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Appendix C. Conservatism of AASHTO Provisions 

This appendix supplements Figure 5-13 through Figure 5-16. 

Figure C-1 shows the relationship between span and conservatism of current 

AASHTO distribution length provisions for negative moment.  It is clear that the code is 

much more conservative for larger spans.  See also Figure 5-13 and Figure 5-15. 

Figure C-2 shows the relationship between fill height and conservatism of current 

AASHTO distribution length provisions for negative moment.  The code is much more 

conservative for low fill heights.  See also Figure 5-14 and Figure 5-16. 
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Figure C-1 – Conservatism of AASHTO computed distribution lengths for negative moment for varying fill 

covers as a function of span 
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Figure C-2 – Conservatism of AASHTO computed distribution lengths for negative moment for varying 

spans as a function of fill cover 
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Appendix D. Critical Deflection Ratios  

The following appendix supplements Figure 5-19 to Figure 5-21. 

Figure D-1 to Figure D-4 show relationships between deflection ratio and 

distribution length for a 24’ model with varying fill heights.  See also Figure 5-19. 

Figure D-5 and Figure D-6 show the relationship between critical deflection ratios 

for 11’ and 18’ span FE and BOEF models.  See also Figure 5-20. 

Figure D-7 and Figure D-8 show that this relationship is similar for negative and 

invert critical deflection ratios for an 18’ span arch. 

Figure D-9 and Figure D-10 show the correlation between the span, fill height, 

and critical deflection ratios for negative and invert moment distribution lengths for 

BOEF models.  See also Figure 5-21.  
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Figure D-1 – Deflection ratios for 24’ span BOEF and FE models with one foot of fill 
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Figure D-2 – Deflection ratios for 24’ span BOEF and FE models with two feet of fill 
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Figure D-3 – Deflection ratios for 24’ span BOEF and FE models with five feet of fill 
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Figure D-4 – Deflection ratios for 24’ span BOEF and FE models with ten feet of fill 
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Figure D-5 – Critical deflection ratios for positive moment distribution lengths for 11’ span BOEF and FE 

models as a function of fill height 
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Figure D-6 – Critical deflection ratios for positive moment distribution lengths for 18’ span BOEF and FE 

models as a function of fill height 
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Figure D-7 – Critical deflection ratios for negative moment distribution lengths for 18’ span BOEF and FE 

models as a function of fill height 
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Figure D-8 – Critical deflection ratios for invert moment distribution lengths for 18’ span BOEF and FE 

models as a function of fill height 
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Figure D-9 – Critical deflection ratios for negative moment distribution lengths for BOEF models 
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Figure D-10 – Critical deflection ratios for invert moment distribution lengths for BOEF models 
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Appendix E. Conservatism of Prediction Equations 

The following appendix supplements Figure 5-22 and Figure 5-23. 

Figure E-1 and Figure E-2 show the conservatism of the predicted distribution 

lengths for negative and invert moments as a function of fill height.  The predictions have 

only about ten percent variation, and no bias.  See also Figure 5-22. 

Figure E-3 and Figure E-4 show the conservatism of the predicted distribution 

lengths for negative and invert moment as a function of span.  From Figure E-3 it can be 

seen that there is a slight bias toward larger spans for prediction of distribution length for 

negative moment.  Also, Figure E-4 shows that there is a slight bias toward smaller spans 

in the distribution length prediction equations for invert moment. See also Figure 5-23. 
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Figure E-1 – Conservatism of predicted to actual distribution length for negative moment as a function of 

fill height 
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Figure E-2 – Conservatism of predicted to actual distribution length for invert moment as a function of fill 

height 
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Figure E-3 – Conservatism of predicted to actual distribution length for negative moment as a function of 

span 
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Figure E-4 – Conservatism of predicted to actual distribution length for invert moment as a function of 

span 
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Appendix F. Under-Prediction of Axial Forces 

The following appendix supplements Figure 5-28. 

Figure F-1 to Figure F-4 show that the predictions for axial force using the 

proposed method are generally less than or similar to those obtained by 3-D analysis 

under a discrete load.  Such under-prediction results in slight design conservatism. 
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Figure F-1 – Axial force comparison for an 18' span arch ring with one foot of fill using proposed 

distribution length for positive moment and 3-D FE analysis 
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Figure F-2 – Axial force comparison for an 18' span arch ring with two feet of fill using proposed 
distribution length for positive moment and 3-D FE analysis 
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Figure F-3 – Axial force comparison for an 18' span arch ring with three feet of fill using proposed 
distribution length for positive moment and 3-D FE analysis 
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Figure F-4 – Axial force comparison for an 18' span arch ring with five feet of fill using proposed 
distribution length for positive moment and 3-D FE analysis 
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Appendix G. Design Examples Using Current and Proposed 
Methods 

 

 

The following is a design example from Engineering System Solutions, for an 18’ 

span arch culvert with one foot of fill cover.  The arch has been designed once using current 

protocol (‘96 AASHTO, Load Case 1) and again using the proposed design method (Load 

Case 2).  Analysis was done using the finite element program I-DEAS.  Table G-1 is a 

summary of the design requirements.  Only the distribution length for positive moment was 

used to reduce the load in Load Case 2.  Reinforcing could be further reduced in the invert by 

running the FE model a second time using the distribution length for invert  moment to 

reduce the load.  Total cost is calculated for concrete at $120.00 per cubic yard and #4 

reinforcing at $0.34 per foot.  The material savings for the proposed method are $18.00/ft (a 

10% decrease).  Labor savings would add substantially to this amount. 

 

Table G-1 – Summary of design requirements using current and proposed methods 

ARCH RING INVERT 
MEHTOD Thickness 

(in) Reinforcing Thickness 
(in) Reinforcing 

Material 
Cost per 

foot 

Current           
(Load Case 1) 8 

Transverse 
#4 at 5” oc 

Longitudinal
#4 at 12” oc 

8 

Transverse 
#4 at 8” oc 

Longitudinal
#4 at 12” oc 

Concrete 
$134.00 
Rebar 
$52.50 

Proposed       
(Load Case 2) 8 

Transverse 
#4 at 12” oc 
Longitudinal
#4 at 12” oc 

8 

Transverse 
#4 at 10” oc 
Longitudinal
#4 at 12” oc 

Concrete 
$134.00 
Rebar 
$34.50 

*The calculated costs do not include labor or splices of transverse or longitudinal reinforcing 
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