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ABSTRACT 

 

THEORETICAL DETERMINATION OF SUBCRITICAL SEQUENT 

DEPTHS FOR COMPLETE AND INCOMPLETE HYDRAULIC 

JUMPS IN CLOSED CONDUITS OF ANY SHAPE 

 

Nathan J. Lowe 

Department of Civil and Environmental Engineering 

Master of Science 

 

In order to predict hydraulic jump characteristics for channel design, the jump 

height may be determined by calculating the subcritical sequent depth from momentum 

theory.  In closed conduits, however, outlet submergence may fill the conduit entirely 

before the expected sequent depth is reached.  This is called an incomplete or pressure 

jump (as opposed to a complete or free-surface jump), because pressure flow conditions 

prevail downstream. 

Since the momentum equation involves terms for the top width, area, and centroid 

of flow, the subcritical sequent depth is a function of the conduit shape in addition to the 

upstream depth and Froude number.  This paper reviews momentum theory as applicable 

to closed-conduit hydraulic jumps and presents general solutions to the sequent depth  





 

problem for four commonly-shaped conduits: rectangular, circular, elliptical, and pipe 

arch.  It also provides a numerical solution for conduits of any shape, as defined by the 

user.  The solutions conservatively assume that the conduits are prismatic, horizontal, and 

frictionless within the jump length; that the pressure is hydrostatic and the velocity is 

uniform at each end of the jump; and that the effects of air entrainment and viscosity are 

negligible.  The implications of these assumptions are briefly discussed. 

It was found that these solutions may be applied successfully to determine the 

subcritical sequent depth for hydraulic jumps in closed conduits of any shape or size.  In 

practice, this may be used to quantify jump size, location, and energy dissipation. 
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1 Introduction 

A common phenomenon that occurs in hydraulic behavior is an abrupt rise in 

water surface elevation, caused by deeper, slower-moving water downstream.  This is 

known as a hydraulic jump, and has been the focus of interest for hydraulics engineers for 

almost two centuries, mostly because of its potential for energy dissipation (Chow 1959).  

Hydraulic jumps can also be highly erosive to the channels that contain them.  In order to 

determine the required channel protection, practicing engineers must be able to predict 

the height, length, and location of a potential jump, which may be a difficult task 

depending on the channel shape. 

The length of a hydraulic jump is typically obtained from empirical functions of 

the jump height, based solely upon experimentation (Sturm 2001), and the location 

depends on both the length and height of the jump, as well as the upstream and 

downstream water surface profiles (Chow 1959).  The jump height, however, may be 

predicted quite accurately using momentum theory alone (Hotchkiss et al. 2003).  

Typically, the discharge and upstream depth are already known, and what remains to be 

determined is the downstream “sequent depth” (Chadwick et al. 2004).  This holds true 

for hydraulic jumps in closed conduits, although in this case a jump in water surface can 

potentially fill the conduit completely, producing pressure flow conditions downstream 

and preventing the surface from reaching the expected sequent depth (Hager 1999). 
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The purpose of this study, therefore, is to develop general solutions to the sequent 

depth problem for prismatic conduits of any shape, to help determine the size and 

location of a potential hydraulic jump.  The theory and methodology behind the 

development of these solutions are first reviewed, followed by a presentation of the 

solutions themselves, which includes a series of equations for each shape (and in some 

cases a dimensionless sequent depth chart), and a general procedure for applying them.  

Four common shapes are analyzed based on geometry: rectangular, circular, elliptical, 

and pipe arch conduits.  A numerical algorithm is also developed for conduits of any 

shape, which are referred to in this paper as “user-defined” conduits. 

For this study the momentum equation is reduced to its simplest form, such that 

the effects of slope, friction, air entrainment, and other external factors are neglected for 

simplicity.  For the most part these assumptions are conservative, but their rationalization 

and implications are discussed briefly for completeness. 
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2 Hydraulic Jump Theory 

In order to understand the context and application of this study, a basic review of 

hydraulic jump theory is necessary.  This chapter therefore presents a concise overview 

of hydraulic jumps in closed conduits, and how the momentum equation may be used to 

predict the subcritical sequent depth of a conduit of any shape.  A more detailed review 

of hydraulic jump theory and assumptions may be found in Appendix A. 

 

2.1 The Hydraulic Jump 

The hydraulic jump is an example of rapidly varied flow in which supercritical 

flow abruptly becomes subcritical, typically due to high tailwater (Chow 1959; 

Rajaratnam 1967).  In this process, the water surface “jumps” through critical depth as 

kinetic energy is converted to potential energy (Franzini and Finnemore 1997; Thompson 

and Kilgore 2006).  The transition is always accompanied by an energy loss as kinetic 

energy is converted into turbulence and then into sound and heat (Haindl 1957; Sturm 

2001). 

Most jumps vary in appearance between two extremes.  The first has a fully-

developed surface roller, which is characterized by a relatively smooth and continuous 

water surface as flow continues along channel bottom downstream.  At some point, 

bubbles rise intensively to a stagnation point, where flow either proceeds downstream or 
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“rolls” back towards the toe, or beginning, of the jump.  The second extreme is a standing 

wave, in which flow is immediately deflected to the surface at the toe.  The toe moves 

downstream while the end of the jump moves upstream, creating a shorter jump 

characterized by heavy surface waves and eruptions (Hager et al. 1990). 

 

2.2 History and Applications 

The hydraulic jump has many useful applications in hydraulic design, typically as 

an energy dissipater (Chow 1959).  As mentioned above, the hydraulic jump naturally 

dissipates energy through turbulence, which can be highly erosive if proper channel 

protection is not installed (Hager 1992).  It is therefore preferable, when a hydraulic jump 

is expected, to control the size and location of the jump in order to localize energy 

dissipation and erosion (Stahl and Hager 1999). 

Because of this, hydraulic jumps have been the focus of interest among engineers 

for almost 200 years, starting with Giorgio Bidone, an Italian, in 1818 (Chow 1959), and 

then the French hydraulician Jean-Baptiste Bélanger, who developed his famous equation 

in 1838 relating the supercritical and subcritical depths to the upstream Froude number 

(Hager 1999).  Comprehensive histories of the study of hydraulic jumps may be found in 

several hydraulics texts, including Chow (1959), Rajaratnam (1967), Hager (1992), and 

Montes (1998); therefore the history is not repeated here.  It should be noted that the 

main focus of these studies has been to predict the size and location of hydraulic jumps 

under various channel conditions so that the hydraulic structures containing them may be 

designed accordingly. 
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2.3 Parameters of Interest 

Typically the flow rate and depth entering a hydraulic jump is already known, and 

the tailwater depth may be determined from water surface profile calculations (Chadwick 

et al. 2004).  Therefore the two main parameters of interest when predicting hydraulic 

jump behavior are (1) the subcritical sequent depth, and (2) the length of the jump 

(Thompson and Kilgore 2006).  Not only do these parameters describe the size of the 

jump, but if the subcritical sequent depth is compared to the tailwater profile, the location 

may be determined as well (Chow 1959).  Furthermore, once both sequent depths are 

known, flow areas (and therefore velocities by continuity) may be calculated, from which 

the energy loss may be determined by the energy equation (Thompson and Kilgore 2006).  

The jump length is typically expressed as an empirical function of the sequent depths or 

the upstream Froude number (Hotchkiss et al. 2003); therefore this study focuses entirely 

on determining the subcritical sequent depth. 

 

2.4 The Momentum Equation 

Because of energy losses, the size and location of a hydraulic jump cannot be 

predicted using the energy equation.  However, because momentum is conserved across 

hydraulic jumps under the assumptions of this study, momentum theory may be applied 

to determine the jump size and location (Hotchkiss et al. 2003).  The general momentum 

equation, which may be derived from the Reynolds Transport Theorem, states that “the 

vector sum of forces acting on the control volume is equal to the time rate of change of 

linear momentum inside the control volume plus the net momentum flux out of the 

control volume through the control surface.”  In simpler terms, the momentum equation 

states that "the change in momentum of the entering and exiting stream is balanced by the 
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resultant of the forces acting on the control volume” (Thompson and Kilgore 2006).  In 

essence this is Newton‟s second law applied to a fluid within a control volume.  

Assuming steady, one-dimensional flow, where the entering and exiting velocities are 

uniform and perpendicular to the control surface, the momentum equation may be written 

as: 

 

    
insoutss MMF


 (2-1) 

 

where Fs represents the external forces (lbs, N) acting on the water within the control 

volume, and Ms represents the momentum flux (lbs, N) through the control volume, both 

in the streamwise direction (Sturm 2001). 

The hydraulic jump is an ideal candidate for the application of momentum theory, 

because a "precise mathematical description of the internal flow pattern is not possible" 

due to its complexity (Sturm 2001), and the stability of a jump depends entirely upon the 

equilibrium between the momentum flux across the jump, and the external forces acting 

upon it (Chadwick et al. 2004).  Figure 1 on the next page depicts the forces typically 

considered when applying momentum theory to a hydraulic jump. 
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Figure 2-1 Typical forces acting on a hydraulic jump (y1, y2 = flow depth; yc = 

critical depth; M1, M2 = momentum forces; P1, P2 = pressure forces; W = weight; Ff 

= friction force; φ = bed slope angle) 

 

According to this figure, Equation 2-1 may be expanded as: 

 

12f21 MMF-WsinPP  φ  (2-2) 

 

where P1 and P2 are the pressure forces (lbs, N) at sections (1) and (2), respectively; W is 

the weight (lbs, N) of the fluid within the control volume; φ is the bed slope angle from 

the horizontal; Ff is the friction force (lbs, N) caused by the channel or conduit; and M1 

and M2 are the momentum fluxes (lbs, N) at sections (1) and (2), respectively. 

To simplify the problem several assumptions are commonly made.  First, for this 

study the channel is assumed to be straight and prismatic.  This precludes any corrections 

needed for longitudinal anomalies, such as abrupt expansions or steps.  Second, the slope 

is assumed to be horizontal.  This assumption eliminates the weight term, and is 
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justifiable for slopes up to 5% (Hager 1999).  Third, the channel is assumed to be 

relatively smooth, such that the effects of friction within the control volume may be 

considered negligible when compared to the other forces involved.  The length of the 

jump is typically short enough for this to be a valid assumption (Montes 1998).  Fourth, 

the pressure distributions at sections (1) and (2) are assumed to be hydrostatic, such that 

the pressure forces may be expressed in terms of the cross-sectional area of flow (ft
2
, m

2
), 

A, and the distance (ft, m) from the water surface to the centroid of the cross-sectional 

area, z .  This assumption may be unrealistic, but correcting for it appears to make little 

difference (Hughes and Flack 1984).  Fifth, the velocity distributions at sections (1) and 

(2) are assumed to be uniform, which allows for the use of average velocity.  This is also 

hardly accurate, but it produces acceptable results nonetheless, since the effects of 

turbulence flux appear to counteract the effects of velocity distribution (Harleman 1959).  

Sixth, air entrainment is assumed in this study to be negligible, such that section (2) may 

still be considered one-phase flow.  The effects of air entrainment increase exponentially 

with the upstream Froude number (Kalinske and Robertson 1943; Haindl and Sotornik 

1957), but in relatively flat conduits such as those considered in this study, Froude 

numbers are typically small enough (i.e. less than 5) to have little effect on the solution.  

And seventh, the effects of viscosity are assumed to be negligible, typically justified by 

the large Reynolds numbers involved (Rajaratnam 1968b). 
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Given these assumptions, Equation 2-2 may be rewritten as: 

 

     1221 VVρQAzρgAzρg   (2-3) 

 

where ρ is the water density (slugs/ft
3

, kg/m
3
); g is the acceleration (ft/s

2
, m/s

2
) due to 

gravity;  1Az  and  2Az  are the centroid-areas of flow (ft
3
, m

3
) at sections (1) and (2), 

respectively; Q is the flow rate (cfs, cms) through the channel or conduit; and V1 and V2 

are the streamwise flow velocities (ft/s, m/s) at sections (1) and (2), respectively. 

The height of a hydraulic jump is typically defined in terms of the depths (ft, m) 

of flow upstream (y1) and downstream (y2) of the jump.  These are called sequent depths, 

because they share the same specific force (Chow 1959; Straub 1978).  Because the area 

and centroid of flow are both functions of the channel shape and flow depth, it follows 

that for a given channel shape and flow rate, there exists a specific combination of y1 and 

y2 such that Equation 2-3 is satisfied. 

In the case of wide, rectangular, horizontal, frictionless channels, the momentum 

equation may be rewritten explicitly in terms of the subcritical sequent depth, as 

discovered by Bélanger in 1838 (Hager 1992).  Unfortunately, no such equation exists for 

other channel or conduit shapes; rather, these have implicit solutions that require iteration 

(French 1985; Jeppson 1970).  Although due to modern technology this is not as tedious 

as it once was, most practicing engineers still prefer a quick solution that does not require 

iteration. 
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2.5 Closed Conduit Jumps 

Most research on hydraulic jumps has dealt with open channel rather than closed 

conduit flow (Montes 1998), although researchers have been studying the latter since 

1938, beginning with Lane and Kinsvatar (1938).  Since the focus of this study is on 

hydraulic jumps in closed conduits, open-channel jumps are not discussed here. 

Hydraulic jumps in closed conduits behave similarly to open-channel jumps, as 

long as a free surface remains and sufficient air is supplied above the flow.  What makes 

closed-conduit jumps different is that they potentially can, due to downstream 

submergence, fill the conduit completely, resulting in pressure flow conditions within the 

barrel (Caric 1977; Hager 1999).  This phenomenon is known as an incomplete or 

pressure jump, as opposed to a complete or free-surface jump (Hotchkiss et al. 2003; 

Montes 1998), and because of the inherent dissimilarities between the two, each must be 

approached differently. 

One example of closed-conduit jump behavior occurs within culvert barrels.  

Under inlet control conditions, in which flow through a culvert becomes supercritical, 

high flow velocities at the outlet can potentially scour the streambed and undercut the 

culvert barrel.  Oftentimes to prevent this from happening, culvert designers will install 

energy dissipaters at the outlet or within the culvert itself, but these devices can be costly.  

A significantly less-expensive alternative is to force a hydraulic jump to occur within the 

culvert barrel by controlling the tailwater.  The culvert itself protects the channel against 

erosion, while the hydraulic jump dissipates energy, thereby reducing the need for further 

dissipaters downstream (Hotchkiss et al. 2005).  If the outlet of the culvert is not 

submerged, a complete hydraulic jump can form within the culvert barrel; otherwise the 

jump must be incomplete. 
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Figure 2 on the next page depicts typical profiles for complete and incomplete 

closed-conduit jumps.  In the case of complete jumps, the subcritical sequent depth is less 

than the rise (ft, m) of the conduit (i.e. y2 < D), whereas in the case of incomplete jumps, 

it is greater (i.e. y2 > D).  Since the flow depth in incomplete jumps cannot reach the 

expected sequent depth, the deficit is supplemented by the hydrostatic pressure head (ft, 

m) against the top of the conduit, symbolized in this figure as H (Montes 1998).  It should 

be noted that the pressure head at section (2) depends only upon the pressure head at the 

outlet, the slope of the conduit, and the hydraulic grade line, not on the jump itself; H is 

merely used to solve for y2 when the jump is at equilibrium (Haindl 1957). 

Hypothetically, a point should exist at which the conduit becomes “just full” at 

section (2), or at which the subcritical flow depth exactly meets the crown of the conduit 

(i.e. y2 = D).  This situation marks the transition between complete and incomplete jumps, 

and is therefore named here as a “transitional” jump.  In practice, this condition is rare if 

not impossible, because as y approaches D, “choking” occurs, in which the flow abruptly 

and spontaneously fills the conduit and becomes pressurized (Hager 1999).  In theory, 

however, it is important to determine the conditions under which this transition will 

occur, so that the appropriate method (i.e. complete or incomplete) may be used to 

calculate the subcritical sequent depth. 
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(a) 

 

(b) 

Figure 2-2 Forces acting on (a) complete and (b) incomplete hydraulic jumps in 

closed conduits (ρ = water density; g = acceleration of gravity; Q = flow rate; V1, V2, 

Vf = average flow velocity; 1z , 2z , fz = distance to centroid of flow; A1, A2, Af = area 

of flow; H = pressure head against top of conduit) 
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3 Methodology 

This chapter presents the method and procedure used in this study to calculate the 

subcritical sequent depth for complete and incomplete hydraulic jumps in closed 

conduits.  It first compares methods used by others, and then explains the approach 

chosen for this study, introducing the dimensionless parameters to be used.  A more 

comprehensive summary of this material is given in Appendix B. 

 

3.1 Comparison of Methods 

In order to solve the momentum equation for closed-conduit hydraulic jumps and 

generalize the solution visually, several approaches exist that vary in complexity and 

versatility.  Open channel jumps lend themselves easily to solutions similar to those 

provided by the Bélanger equation – that is, expressing the ratio between sequent depths 

as a function of the upstream Froude number (Bradley and Peterka 1957; Chow 1959; 

Rajaratnam 1965; 1967).  Others (Smith and Chen 1989; Husain et al. 1994) have 

attempted to extend this method to closed-conduit jumps for consistency, but the resultant 

sequent depth chart can be difficult to interpret.  Multiple curves corresponding to various 

values of y1/D overlap, and the transition between complete and incomplete jumps is 

marked separately on each curve. 
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Another common approach, used by Rajaratnam (1965; 1967), Thiruvengadam 

(1961), Hjelmfeldt (1967), Hsu et al. (1980), Hager (1990; 1992; 1999), and Sturm 

(2001), results in a much more readable chart, which could easily have been extended to 

incomplete jumps (although most researchers have not done so).  The downside to this 

method is that it requires the use of an otherwise meaningless dimensionless ratio in place 

of the upstream Froude number involving the flow rate and conduit dimensions. 

As an alternative, some researchers (Frank 1942; Caric 1977) have found y2/D as 

a function of yc/D and y1/D, while others (Mavis 1946) have resorted to nomographs for 

graphical solutions.  These approaches are effective, but do not use quantities commonly 

calculated when dealing with hydraulic jumps, and therefore provide little insight into the 

meaning behind the solution. 

Montes (1998) instead decided to find y2/D as a function of y1/D for given values 

of Fr1, which poses several advantages over the alternatives mentioned above.  First, like 

the first method it uses the Froude number, which is directly applicable to hydraulic jump 

size and behavior.  Second, it clearly shows the delineation between complete and 

incomplete jumps.  And third, it unmistakably demonstrates what Smith and Chen (1989) 

observed, which is that the jump height increases as y1 approaches approximately two-

thirds the conduit rise, but decreases dramatically for all Fr1 as y1 approaches full 

conditions, such that no jump occurs at all when a conduit is flowing full.  The 

methodology used in this study, therefore, is modeled after Montes‟ approach due to its 

relative simplicity and versatility. 
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3.2 Dimensionless Parameters 

When creating sequent depth charts, it is generally convenient to use 

dimensionless ratios in order to provide a solution that is applicable independent of scale 

or units.  In this study, such ratios are denoted (except for the Froude number) by the 

prime symbol, as listed below: 
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where 1Fr  is the upstream Froude number; iy  is the depth of flow (ft, m) at section (i); B 

and D are the span (width) and rise (height) of the conduit (ft, m), respectively; iT  is the 

top width of flow (ft, m) at section (i); iA  is the cross-sectional area of flow (ft
2
, m

2
) at 
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section (i); and  iAz  is the centroid-area of flow (ft
3
, m

3
) at section (i).  The functions Γ, 

Ω, and Ψ are derived in the next chapter for each of the conduit shapes in this study. 

 

3.3 Complete Jumps 

As defined earlier, a complete hydraulic jump is one in which the free surface 

continues past the end of the jump, (i.e. y2 < D; see Figure 2a).  For this situation, 

Equation 2-3 may be simply rearranged and rewritten as follows: 
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  (3-6) 

 

This equation may be used for any conduit shape to generate the complete or normal 

jump portion of a sequent depth chart similar to those found in Montes (1998).  

Unfortunately, in most cases it cannot be solved for y'2 explicitly.  In this study, the 

interval halving method (Sturm 2001) was used to iteratively find solutions. 

 

3.4 Incomplete Jumps 

Incomplete hydraulic jumps were defined previously as jumps in which the 

downstream subcritical flow becomes pressurized due to outlet submergence (i.e. y2 > D; 

see Figure 2b).  Therefore Equation 2-3 must be rewritten as follows: 
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  (3-7) 
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where H/DH'  is the dimensionless pressure head above the conduit, and the subscript 

„f‟ is used to denote full conditions.  Since only H' is a function of y'2, Equation 3-7 may 

be rewritten instead as an explicit solution: 

 

       1ff11f

2

1

2

12

f1

2 'Az'AzA'T'A'A'A'Fr
A'T'

1
1y'   (3-8) 

 

This equation may be used for any conduit shape to generate the incomplete jump portion 

of a sequent depth chart similar to those found in Montes (1998). 

 

3.5 Transitional Jumps 

Transitional hydraulic jumps were previously defined as jumps in which the 

conduit at section (2) is barely full without being pressurized (i.e. y2 = D).  Under these 

conditions, the transitional upstream Froude number, (Fr1)t, may be found explicitly by: 
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  (3-9) 

 

This equation may be used for any conduit shape to find the upstream Froude number 

associated with the transition between complete and incomplete jumps.  If the actual Fr1 

is less than (Fr1)t, then a complete jump may form, and y'2 should be calculated using 

Equation 3-6; otherwise, the jump will be incomplete, and y'2 should instead be 

calculated using Equation 3-8. 
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3.6 Conduit Shapes 

In his study, Montes (1998) provided formulas similar to Equations 3-6 and 3-8 

for closed conduits, as well as general solutions for finding the dimensionless area and 

centroid-area by integration.  This requires, however, that a conduit shape be defined by 

an analytic mathematical expression, which is not always possible.  Furthermore, Montes 

did not provide a general equation for top width, and he only provided graphical solutions 

for circular, horseshoe-, and egg-shaped conduits, without posting the specific equations 

he used to derive them. 

This study therefore adds to Montes‟ analysis the solutions for rectangular, 

elliptical, and pipe-arch culverts.  It also recreates the solutions for circular and inverted 

egg-shaped conduits for comparison, although the inverted egg shape is defined here by a 

series of coordinates rather than by its geometry, to demonstrate the application of an 

algorithm for finding the sequent depth of flow within conduits of any shape. 

This general case is referred to in this study as “user-defined”.  The main concept 

behind the user-defined conduit analysis is that the inner walls of any conduit shape may 

be defined by a series of coordinates, such that for every horizontal distance, xi, away 

from the left-most point perpendicular to the conduit axis, two vertical ordinates exist 

relative to the lowest point in the conduit representing the location of the bottom and top 

inner edges of the barrel at that point, denoted by (yb)i and (yt)i, respectively.  Defining 

the coordinates in this manner rather than listing two x values for every y value provides 

two major advantages for this analysis.  First, it significantly simplifies the calculation of 

the centroid-area, and second, it allows for the addition of multiple top widths and areas, 

which may occur when sediment deposits and splits the flow into two or more streams.  
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The conduit can therefore be analyzed by dividing it into multiple vertical sections, each 

with a thickness Δx = xi+1 – xi. 

Figures 3 through 7 below depict the cross section for each of the conduit shapes 

analyzed in this study.  Figure 7 is an example of how a set of coordinates might be 

defined for the inverted-egg-shaped conduit. 

 

 

 

 

 

Figure 3-1 Cross section for rectangular conduits (B = span; D = rise; T = top width) 
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Figure 3-2 Cross section for circular conduits (θ = internal flow angle) 

 

 

 

 

Figure 3-3 Cross section for elliptical conduits 
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Figure 3-4 Example cross section for a pipe arch culvert (Rb = bottom radius;  

Rm = middle radius; Rt = top radius; hb = bottom transition height; hm = neutral axis 

height; ht = top transition height) 

 

 

Figure 3-5 Example cross section for a user-defined conduit 
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4 Solutions 

The solutions to Equations 3-6, 3-8, and 3-9 for the subcritical sequent depth ratio 

are presented in this chapter for rectangular, circular, elliptical, pipe arch, and user-

defined conduits, as Figures 4-1 through 4-5.  Full derivations of these solutions are 

included in Appendix B for reference.  Solutions steps are as follows: (1) calculate all 

dimensionless parameters such as T', A', and  'Az  for upstream and full conditions;  

(2) calculate Fr1 to determine whether the flow is supercritical and therefore whether a 

jump is possible; (3) calculate (Fr1)t and compare it to Fr1 to determine whether the jump 

is complete or incomplete; and (4) calculate y'2, and then y2, based on the appropriate 

equation. 

Alternatively, y'2 may be found from the sequent depth charts using the values for 

y'1 and Fr1 calculated in Steps 1 and 2, respectively.  A sequent depth chart is not 

presented here for pipe arch culverts, because there are too many differences in relative 

shape among manufactured sizes to warrant a unique solution (see Appendix A.8).  

Likewise, a chart is not presented here for user-defined conduits, for obvious reasons.  

However, for this study an example set of parameters was chosen for both of these 

shapes, from which charts were derived to demonstrate the application of the solutions. 

An example problem for each conduit shape is presented in Appendix C for reference, 

and the Visual Basic code used to generate the solutions is presented in Appendix D. 
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Figure 4-1 Solution for rectangular conduits 
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Figure 4-2 Solution for circular conduits 
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Figure 4-3 Solution for elliptical conduits 
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Figure 4-5 (cont.) Solution for user-defined culverts 
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5 Discussion and Analysis 

This chapter discusses both generally and individually the solutions presented in 

the previous chapter.  It also presents the results of an error analysis performed on the 

simplification of the elliptical conduit solution.  Further discussion and analysis is 

included in Appendix B. 

 

5.1 General Observations 

As noted previously, the solutions presented in this study resemble those 

developed by Montes (1998), where y'2 is on the x-axis, y'1 is on the y-axis, and the 

relationship between the two is given for different values of Fr1.  One reason for this 

particular formatting convention is to reiterate that although y2 is treated as the unknown 

in all cases, it is not the dependant variable.  Rather, all three variables are independent of 

each other, and specific combinations of the three define the occurrence, size, and 

location of a hydraulic jump.  Like Montes‟ charts, these display solutions for upstream 

Froude numbers as high as 10; however in practice Froude numbers are typically much 

smaller for flow within relatively flat conduits. 

The left side of the charts (i.e. y'2 < 1) indicates free-surface flow conditions.  

Note that for all conduit shapes, critical flow (i.e. Fr1 = 1) produces a straight line 

corresponding to y'1 = y'2.  To the top-left of this line, flow is subcritical and jumps 



32 

cannot exist, and to the bottom-right of this line, any jump will be a complete jump.  The 

right side of the charts (i.e. y'2 > 1) indicates pressure flow conditions, and any jump in 

this region will be an incomplete jump.  Note that for all conduit shapes and all values of 

Fr1, y'2 increases as y'1 approaches approximately 2/3, but decreases dramatically as y'1 

approaches 1, converging to a single point at y'1 = y'2 = 1.  This indicates that no jump 

occurs at all when a conduit is flowing full, as observed by Smith and Chen (1989). 

 

5.2 Rectangular Conduits 

By comparison between sequent depth charts, it is evident that rectangular 

conduits produce higher values of y'2 than other conduit shapes, given similar values of 

y'1 and Fr1.  This means that among all possible conduit shapes passing flow at identical 

depths and Froude numbers, the rectangular conduit will require the highest tailwater to 

induce a hydraulic jump.  Producing a sustained high tailwater can be challenging, so 

nonrectangular conduits may be preferable to rectangular ones whenever an alternative is 

possible. 

 

5.3 Circular Conduits 

The only noteworthy observation of the solution for circular conduits is that it 

matches the analysis given by Montes, with the exception that it is given in terms of the 

conduit diameter instead of the radius for continuity; they differ exactly by a factor of 

two.  The circular analysis unitizes the commonly-used intermediate variable θ, which is 

defined as the internal angle of flow (radians). 
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5.4 Elliptical Conduits 

The solution for elliptical conduits results in a sequent depth chart that is identical 

to the one developed for circular conduits, even though the two are derived completely 

differently.  This is to be expected, since the elliptical functions for T', A‟, and  'Az  are 

an alternative method used for circular conduits (Hjelmfeldt 1967; Hager 1999), where 

the span and rise are both equal to the diameter.  Since both sets of functions are 

dimensionless, it does not matter whether the span and rise or the diameter is used, so 

circular conduits can simply be considered a unique type of elliptical conduit. 

It should be noted here that elliptical culverts are not truly mathematically 

elliptical; rather, they are typically defined by a span, rise, and two radii (ASTM C507 

2007).  Elliptical culverts may be treated in a similar fashion to pipe arches (see 

Appendix A.7), but this would require a unique, complex solution for each culvert shape.  

By assuming elliptical culverts to be mathematically elliptical, only one solution is 

required and the computation for that solution is reduced considerably.  The solution for 

elliptical conduits presented in the previous chapter is based upon this simplification. 

However, like any assumption this simplified solution introduces error, which 

may be undesirable to potential users depending on the accuracy required.  To quantify 

this error, an analysis was therefore performed, in which 1,000 solutions were generated 

for each of 102 unique culvert sizes (79 metal and 23 concrete), and for each integer 

Froude number between 1 and 10, using the complex logic typically reserved for pipe 

arches.  The relative error between each of these solutions and the corresponding 

simplified solutions was then calculated.  Finally, the number of solutions that fell within 

specified error ranges, each with a bin size of 0.1%, was cumulatively tabulated for all 
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culvert sizes.  The results of this analysis, in the form of box and whisker plots, are 

displayed by culvert material and Froude number in Figures 13 and 14 below.  As the 

figures indicate, if an elliptical culvert is assumed to be mathematically elliptical, the 

error in y'2 generally increases with the upstream Froude number, as might be expected.  

It is also evident from these plots that the simplifying assumption generally overestimates 

y'2 for the metal elliptical culvert shapes, but underestimates it for the concrete ones.  For 

Froude numbers less than 5, the error is expected to fall between 0.0 and 4.4% in the case 

of metal elliptical culverts, and between -3.3 and 1.4% in the case of concrete ones. 

 

 

 

Figure 5-1 Error distribution of ellipse assumption for metal elliptical culverts 
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Figure 5-2 Error distribution of ellipse assumption for concrete elliptical culverts 

 

 

5.5 Pipe Arch Culverts 

The solution for pipe arch culverts is obviously far more involved than any of the 

previous shapes, due to its geometric complexity.  Because so many unique shapes of 

pipe arches are currently in use, it would be impossible to accurately generalize them 

with one sequent depth chart.  At the same time it is impractical to generate a unique 

solution for each one.  As previously mentioned, an example chart was generated to 

demonstrate the possibility of generating such a chart, but it would be far simpler to use 

the formulas provided to obtain a single solution than to derive a complete chart from 

many.  Another alternative would be to treat the pipe arch as a user-defined conduit, but 
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this would require the additional effort of defining the set of coordinates, without 

significantly simplifying the computation required.  In short, pipe arches are complicated 

to analyze. 

 

5.6 User-Defined Conduits 

The solution for user-defined conduits in some ways is just as complex as that for 

pipe arch culverts.  Note that B and D must be derived from the coordinates, and that the 

values for T'i, A‟i, and   i'Az  depend on the location of y' relative to the intermediate 

variables h'A, h'B, h'C, and h'D.  However, the advantage of this solution is that it may be 

applied to any conduit shape, as long as the coordinates are defined properly.  As 

previously noted, an example set of coordinates were used to test this solution, defining 

an inverted egg shape.  The chart generated from this set of coordinates matched the one 

developed by Montes exactly, demonstrating the validity of a numerical approximation. 

Obviously, the more coordinates used, the closer this approximation will be to the 

actual shape and the more accurate the solution will be.  However, more iterations will 

also be required to find the solution.  A user must therefore decide how many coordinates 

are necessary to define a particular shape in order to predict the subcritical sequent depth 

with sufficient accuracy in a given situation. 
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6 Summary and Application 

The purpose of this study was to develop general solutions for finding the 

subcritical sequent depth of complete and incomplete hydraulic jumps within prismatic 

conduits of any shape.  A review of the theory and methodology behind these solutions 

was presented, and solutions were derived for rectangular, circular, elliptical, pipe arch, 

and user-defined conduits, based on the methodology of Montes (1998).  A procedure for 

applying these solutions was given, and the significance and implications of the solutions 

were also discussed.  The results are valid for small slopes, and conservatively neglect the 

effects of friction and air entrainment, as these factors lie beyond the scope of this study. 

The solutions presented herein are intended to be used primarily by culvert 

designers.  By forcing a jump to occur within the culvert barrel, an engineer may 

considerably reduce the cost of downstream energy dissipation.  In order to choose an 

efficient and cost-effective design, however, it is necessary to determine the size and 

location of a potential hydraulic jump for a given flow rate, regardless of whether or not 

the outlet is submerged.  These solutions may therefore be used to determine the 

theoretical subcritical sequent depth of supercritical flow through culverts, from which 

the length and location of the jump may be subsequently calculated. 
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Appendix A. Literature Review 

A.1 The Hydraulic Jump 

A.1.1 Description 

The hydraulic jump is an example of rapidly varied flow in which supercritical 

flow abruptly becomes subcritical, typically due to high tailwater (Chow 1959; 

Rajaratnam 1967).  In this process, the water surface passes upwards through critical 

depth as kinetic energy is converted to potential energy (Franzini and Finnemore 1997; 

Thompson and Kilgore 2006).  The transition is always accompanied by an energy loss, 

however, as kinetic energy is converted into turbulence and then into sound and heat 

(Haindl 1957; Sturm 2001). 

Most jumps vary in appearance between two extremes.  The first is a fully-

developed surface roller, which is characterized by a relatively smooth and continuous 

water surface, as flow continues along channel bottom and diverges downstream.  At this 

point, bubbles rise intensively to a stagnation point, where flow either proceeds 

downstream or “rolls” back towards the toe, or beginning, of the jump.  The second 

extreme is a standing wave, in which flow is immediately deflected to the surface at the 

toe.  The toe moves downstream while the end of the jump moves upstream, creating a 

shorter jump, characterized by heavy surface waves and eruptions (Hager et al. 1990). 

 



46 

A.1.2 History and Applications 

The hydraulic jump has many useful applications in hydraulic design.  Among 

these are: (1) to dissipate energy in water flowing over dams, weirs, and other hydraulic 

structures and thus prevent scouring downstream from the structures; (2) to recover head 

or raise the water level on the downstream side of a measuring flume and thus maintain 

high water level in the channel for irrigation or other water-distribution purposes; (3) to 

increase weight on an apron and thus reduce uplift pressure under a masonry structure by 

raising the water depth on the apron; (4) to increase the discharge of a sluice by holding 

back tailwater, since the effective head will be reduced if tailwater is allowed to drown 

the jump; (5) to indicate special flow conditions, such as the existence of supercritical 

flow or the presence of a control section so that a gauging station may be located; (6) to 

mix chemicals used for water purification, and so forth; (7) to aerate water for city water 

supplies; and (8) to remove air pockets from water-supply lines and thus prevent air 

locking (Chow 1959). 

The turbulence in a hydraulic jump can be highly erosive if proper channel 

protection is not installed (Hager 1992).  In the case of steep culverts, high velocities can 

induce a hydraulic jump at the outlet, which can scour and erode the natural channel and 

undercut the culvert (Hotchkiss et al. 2005).  It is therefore preferable, when a hydraulic 

jump is expected, to control the size and location of the jump in order to localize energy 

dissipation and erosion (Stahl and Hager 1999). 

Because of these applications and concerns, hydraulic jumps have been the focus 

of interest among engineers for almost 200 years, starting with Giorgio Bidone, an 

Italian, in 1818 (Chow 1959), and then the French hydraulician Jean-Baptiste Bélanger, 

who developed his famous equation in 1838 relating the supercritical and subcritical 
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depths to the upstream Froude number (Hager 1999).  Comprehensive histories of the 

study of hydraulic jumps may be found in several hydraulics texts, including Chow 

(1959), Rajaratnam (1967), Hager (1992), and Montes (1998).  For this reason the history 

is not repeated here, but it should be noted that the main focus of these studies has been 

to predict the size and location of hydraulic jumps under various channel conditions, so 

that the hydraulic structures containing them may be designed accordingly. 

 

A.1.3 Parameters of Interest 

Typically the flow rate entering a hydraulic jump is already known, as well as the 

upstream and tailwater depths, which may be determined from water surface profile 

calculations (Chadwick et al. 2004).  Therefore the two main parameters of interest when 

predicting hydraulic jump behavior are (1) the subcritical sequent depth, and (2) the 

length of the jump (Thompson and Kilgore 2006).  Not only do these parameters describe 

the size of the jump, but if the subcritical sequent depth is compared to the tailwater 

profile, the location may be found as well (Chow 1959).  Furthermore, once both sequent 

depths are known, flow areas (and therefore velocities by continuity) may be calculated, 

from which the energy loss may be determined by Bernoulli‟s equation (Thompson and 

Kilgore 2006). 

 

A.2 Jump Height 

A.2.1 Sequent Depths 

The height of a hydraulic jump is defined by the depths of flow upstream and 

downstream of the jump.  These depths are called “sequent” or “conjugate” depths, not to 

be confused with "alternate” depths, which have the same specific energy (French 1985; 
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Franzini and Finnemore 1997; Chow 1959).  As noted previously, the upstream sequent 

depth is supercritical, while the downstream sequent depth is subcritical.  This may seem 

counterintuitive, since the upstream depth is smaller than the downstream depth, but the 

terms “supercritical” and “subcritical” refer to the Froude number of the flow, which in 

essence is the ratio of flow velocity to the surface wave celerity, as given by the 

following equation (Hager 1992; 1999): 

 

 dA/dyAg

V

TAg

V

gd

V

c

V
Fr   (A-1) 

 

where V is the flow velocity (ft/s, m/s), c is the wave celerity (ft/s, m/s), g is the 

acceleration due to gravity (ft/s
2
), d is the hydraulic depth (ft, m), A is the flow area (ft

2
, 

m
2
), T is the top width of flow (ft, m), and y is the maximum depth of flow (ft, m). 

If the Froude number is less than 1, then the flow is said to be “subcritical”; the 

velocity is less than the celerity, and waves can propagate upstream.  If the ratio equals 1, 

then the flow is said to be “critical”; the velocity and celerity are equal, and waves can no 

longer move upstream.  If the ratio is greater than 1, then the flow is said to be 

“supercritical”; the velocity is greater than the celerity, and all waves move downstream 

(Hager 1999).  With hydraulic jumps, the upstream Froude number largely determines the 

size and shape of the jump.  As the Froude number increases, or as the upstream flow 

becomes more supercritical, the jump height and energy loss across the jump also 

increase (Chadwick et al. 2004).  Thus the Froude number becomes important to consider 

when analyzing a hydraulic jump. 
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A.2.2 The Momentum Equation 

Because of energy losses, the size and location of a hydraulic jump cannot be 

predicted using the energy equation.  However, because momentum is conserved across 

hydraulic jumps, momentum theory may instead be applied in determining the size and 

location (Hotchkiss et al. 2003).  The general momentum equation, which may be derived 

from the Reynolds Transport Theorem, states that “the vector sum of forces acting on the 

control volume is equal to the time rate of change of linear momentum inside the control 

volume plus the net momentum flux out of the control volume through the control 

surface.”  (Thompson and Kilgore 2006)  Mathematically, this may be written as:  

 

  
cscv

dAnVρVVρdV
dt

d
F


 (A-2) 

 

In essence, this is Newton‟s second law applied to a fluid within a control volume.  If the 

flow is assumed to be steady (i.e. 0VρdV
dt

d

cv



), and if the flow velocity entering and 

exiting the control volume is assumed to be perpendicular to the control surface 

(i.e. n  V


), and if the streamwise direction of flow is considered exclusively, then taking 

into account continuity (i.e. Q = VA), the momentum equation may be rewritten as: 

 

    
insoutss βρQVβρQVF  (A-3) 

 

where Fs represents the external forces (lbs, N) acting on the body of fluid with a control 

volume in the streamwise direction, β is the Boussinesq velocity distribution coefficient 
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to account for nonuniform velocity distribution, ρ is the density (slugs/ft
3
, kg/m

3
) of the 

fluid, Q is the flow rate (cfs, cms), and Vs is the flow velocity (ft/s, m/s) in the 

streamwise direction (Sturm 2001).  In simpler terms, the momentum equation states that 

"the change in momentum of the entering and exiting stream is balanced by the resultant 

of the forces acting on the control volume” (Thompson and Kilgore 2006). 

In the absence of other forces, the left side of Equation A-3 includes only 

hydrostatic pressure forces acting on the control surface on the upstream and downstream 

sides of the control volume.  This allows the momentum equation to be rewritten in terms 

of “specific force”, which is the sum of the pressure force and the momentum flux at one 

of the control surfaces.  If the subscripts „1‟ and „2‟ are used to denote the upstream and 

downstream sides, respectively, then: 
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where A is the cross-sectional area (ft
2
, m

2
), and z is the distance (ft, m) from the water 

surface to the centroid of the cross-sectional area (Sturm 2001); both are functions of the 

channel shape and flow depth.  This means that when the assumptions stated above apply, 

the specific force remains constant across a control volume (Hager 1999).  If the specific 

force is plotted against depth for a given flow rate, a plot similar to the specific energy 

diagram may be obtained, showing that specific force, like specific energy, reaches a 

minimum at critical depth (Sturm 2001). 

The hydraulic jump is an ideal candidate for the application of momentum theory, 

because a "precise mathematical description of the internal flow pattern is not possible" 
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due to its complexity (Sturm 2001).  The stability of a jump depends entirely upon the 

equilibrium between the momentum flux across the jump, and the external forces acting 

upon it, that is, if y1, y2, and Q conform to the relationship given in Equation A-4 

(Chadwick et al. 2004).  If the tailwater increases, the hydrostatic pressure downstream 

will increase, causing a net force in the upstream direction, which will push the jump 

upstream.  Conversely, if the tailwater decreases, the jump will move downstream.  

Likewise, if the upstream velocity increases, the momentum flux upstream will increase, 

causing a net force in the downstream direction, which will increase the size of the jump 

and push it downstream.  Conversely, if the upstream velocity decreases, the jump will 

decrease in size and move upstream.  Therefore, in the absence of channel friction, the 

size and location of the hydraulic jump is highly sensitive to fluctuations in depth and 

velocity (Montes 1998). 

 

A.2.3 General Solution 

Solving the momentum equation to find the subcritical sequent depth can be 

tedious, especially for non-rectangular channels.  Therefore several studies have 

attempted to generalize the hydraulic jump problem and present it visually, so as to 

provide a quick solution to practicing engineers without supplementary work.  One 

option is to simply use the specific force diagram.  If the specific force curve is plotted 

for a given flow rate, then “for any depth y1 other than yc, there exists another depth y2 

such that the specific force is numerically the same” (Straub 1978).  This method would 

require, however, that a unique specific force diagram be created for each possible flow 

rate, and for each possible channel, which would be impractical. 
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Perhaps a better approach is to generalize the chart by using dimensionless ratios 

in place of depths and flow rates.  Several variations on this idea have been attempted, the 

most common of which being to plot the ratio between the upstream and downstream 

sequent depths on the y-axis, versus the upstream Froude number on the x-axis.  It would 

be convenient indeed if all channel conditions (i.e. closed vs. open channels, shape, slope, 

etc.) could be described effectively by this same format, so that a user could make 

comparisons between them.  It turns out, however, that some methods appear to be 

effective for some situations, but become cumbersome and confusing for others. 

 

A.3 Jump Length 

A.3.1 Definition 

The process of determining the jump length turns out to be much different than 

that of finding the depth, partially because of a lack of a sound definition.  Most agree 

that the jump begins at the “toe”, where the water surface first begins to rise.  But 

definitions of the end of the jump vary widely, partially because of the surface waves and 

residual turbulence that occur at this point (Carollo et al. 2007; Mehrotra 1976).  

Rajaratnam (1967) defined the end of a jump as the section beyond which the water 

surface is essentially level.  From a practical standpoint, the end of the jump represents 

the point at which no further bed protection is necessary, or in other words, when surface 

turbulence is extinguished, large bubbles are removed, gradually varied flow resumes, 

and bottom erosion decreases due to lower shear stress (Bradley and Peterka 1957; Hager 

1999; Carollo et al. 2007).  

However, because these definitions are difficult to measure (Rajaratnam 1967), 

some instead prefer to use the length of the roller, which is defined as the distance from 
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the toe to the point at which the high-velocity jet leaves the channel floor, or to a point 

immediately downstream of the surface roller, where flow stagnates and separates 

between forward and backward flow (Chow 1959; Hager 1999; Montes 1998).  This 

point is obviously not fixed either, which requires that measurements be averaged over 

time (Hager 1992), but measurements of the roller length are typically more reliable than 

jump length measurements (Bradley and Peterka 1957).  Unfortunately, though, the roller 

length underestimates the length required by a hydraulic jump to reach its subcritical 

sequent depth and to dissipate its energy, especially at lower Froude numbers.  Roller 

length is therefore not the best indicator of jump length (Rajaratnam 1967; Hager et al. 

1990). 

 

A.3.2 General Solution 

Unlike the jump height, the length of a hydraulic jump cannot be determined 

theoretically, not even from momentum analysis.  It can only be obtained experimentally 

(Sturm 2001), and results vary depending on flow and channel conditions.  Hotchkiss et 

al. (2003) provided a comprehensive list of references for finding jump length under 

various conditions, including also the limits of application for each study.  It is apparent 

from these references that depending on the channel conditions, the jump length may be 

expressed in terms of Fr1, y1, or y2.  In most cases, the jump length is between four and 

six times the subcritical sequent depth, y2 (Franzini and Finnemore 1997). 
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A.4 Hydraulic Jumps in Open Channels 

A.4.1 Description 

The hydraulic jump is most often considered as an open-channel phenomenon, 

and may be found using the momentum equation analysis in almost any open channel 

hydraulics text.  Among others, French (1985), Harleman (1959), Montes (1998), Negm 

(2000), Bradley and Peterka (1957), and Silvester (1964) present decent general analyses 

of jump height and length.  They also take into account such variables as the channel 

shape, slope, friction, fluid viscosity, and correction terms for velocity, turbulence-flux, 

and pressure distribution.  However, such solutions still require some experimental input 

and/or verification to be practical.  Conservative assumptions are often made, therefore, 

to simplify the problem by reducing the number of independent variables, so that the 

hydraulic jump may be analyzed more easily. 

 

A.4.2 Common Assumptions 

The most common assumptions made for open-channel jumps are listed below, in 

general order of importance.  Not every study mentions all of them explicitly, but they 

are at least implied in every study.  Many studies focus on the effects of a particular 

assumption or assumptions on the accuracy of a solution.  In almost all cases, however, 

the assumptions have been found to be conservative, meaning that they overestimate the 

jump height and/or length.  Therefore, in the absence of sufficient information it is 

advisable to use these assumptions when they can be justified. 
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A.4.2.1 Straight, Prismatic Channel 

One assumption that is commonly made is of a straight, prismatic channel.  The 

main advantage of this is that no pressure corrections for longitudinal channel shape are 

needed in the momentum equation.  Obviously this could not apply to jumps in abrupt 

expansions, contractions, or bends, or over steps, sills, or baffle blocks; the straight, 

prismatic channel represents the simplest plan and profile possible for a hydraulic jump, 

and is therefore used where applicable. 

If this assumption does not apply, then various studies may be consulted to 

account for anomalies in the channel profile.  For positive steps, use Hager (1992), 

Husain et al. (1994), and Montes (1998).  For negative steps, use Moore and Morgan 

(1957), Rajaratnam (1967), Ohtsu and Yasuda (1991b), Hager (1992), Husain et al. 

(1994), and Montes (1998).  For sills, use Rajaratnam (1964), Rajaratnam (1967), Hager 

(1992), Montes (1998), and Hotchkiss et al. (2005).  And for abrupt expansions, use 

Rajaratnam (1967), Rajaratnam (1968a), Smith (1989), Hager (1992), Bremen and Hager 

(1993), and Ohtsu et al. (1999) 

 

A.4.2.2 Horizontal Slope 

Another common assumption is that the channel slope is horizontal.  The main 

advantage of this assumption is that it eliminates the need to consider the weight of the 

fluid within the hydraulic jump itself, which is difficult to estimate accurately anyway 

(Chow 1959).  One reason for this is that the jump spans a relatively short distance 

anyway (Caric 1977), but also, since the streamwise component of the weight is a 

function of the sine of the slope angle, the weight of the jump is negligible for small 

angles compared to the hydrostatic pressure at each end.  Thompson and Kilgore (2006) 
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state that a channel may be assumed to be horizontal for slopes up to 18% (or a 10-degree 

angle from the horizontal) without introducing serious error, while Hager (1999) reduces 

this number to only 5%.  It would obviously not be justifiable for steep channels or 

spillways, but for most situations, when a channel is relatively flat, this assumption is a 

valid one (Aryropoulos 1962; Smith and Chen 1989).   

If the slope is to be considered, the following studies provide analyses of jumps 

on sloped channels, complete with figures, momentum equations, and methods for 

finding the weight term, the sequent depths and the jump location: Kinsvatar (1944), 

Rajaratnam (1967), French (1985), Ohtsu and Yasuda (Ohtsu and Yasuda 1991a), Hager 

(1992), Husain et al. (1994), Montes (1998), Beirami and Chamani (2006), and 

Thompson and Kilgore (2006). 

 

A.4.2.3 Frictionless Channel 

It is also common to assume that the channel is frictionless, or at least that the 

boundary resistance is relatively small compared to the other forces at play (Gill 1980).  

The area over which the shear force acts within the control volume is typically not large 

enough to make much of a difference (Montes 1998; Thompson and Kilgore 2006).  This 

is indeed a significant assumption, as it is extremely difficult to accurately measure the 

shear stress along the boundary, especially because velocities are so unpredictable within 

the jump itself. 

However, for straight, prismatic, horizontal channels, the integrated bed shear 

stress is perhaps the most important additional term to be considered, since it has by far 

the largest effect on jump behavior of any of the variables listed hereafter (Harleman 

1959).  Neglecting bed shear tends to over-predict the height and length of hydraulic 
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jumps, especially for shallow flows, narrow channels, high flow velocities, and large 

relative roughness values (Hager 1999; Hager and Bremen 1989; Montes 1998; 

Rajaratnam 1968b).  Therefore, if friction is not neglected, and the so-called “rough 

jump” (Hager 1992) is to be considered, then the following studies may be consulted: 

Harleman (1959), Rajaratnam (1967), Rajaratnam (1968b), Gill (1980), Hughes and 

Flack (1984), Hager and Bremen (1989), Smith and Chen (1989), Hager (1992), Montes 

(1998), Hager (1999), Negm (2000), Ead and Rajaratnam (2002), and Carollo et al. 

(2007).  It should be noted, however, that although many studies have been conducted on 

this problem, current information regarding boundary roughness remains incomplete 

(Carollo et al. 2007). 

 

A.4.2.4 Hydrostatic Pressure Distribution 

Another common assumption is that the pressure before and after the jump is 

hydrostatic, which requires that the flow is parallel to the channel before and after the 

jump.  This makes estimating the pressure distribution easier, which facilitates the use of 

the momentum equation (Montes 1998).  This may not be a realistic assumption “because 

of the intense mixing, flow curvatures, and air entrainment within the jump” which 

increases with Fr1 (Rajaratnam 1967), but the few studies that have been performed on 

this topic have found that the correction factors for streamwise pressure distribution do 

not make a significant difference (Hughes and Flack 1984). 

 

A.4.2.5 Uniform Velocity Distribution 

It is also common to assume that the velocity distributions at the upstream and 

downstream ends of the jump are uniform throughout the cross-section.  This is never a 
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realistic assumption in hydraulics, especially in cases of highly turbulent flow, such as is 

the case with hydraulic jumps (Stevens 1933; Rajaratnam 1967), but the few studies 

conducted on this have shown that the effects of velocity distribution and turbulence flux 

tend to cancel each other (Harleman 1959).  The velocity distribution factors into the 

momentum equation as the Boussinesq velocity distribution coefficient, β (also called the 

momentum-flux correction factor) which is typically some value slightly greater than 1 

(Hager 1999; Harleman 1959).  When this assumption is in place, however, β is assumed 

to equal 1, which bypasses the effort required to determine its true value (Montes 1998). 

 

A.4.2.6 Other Assumptions 

Some of the less-commonly mentioned assumptions made deal with the effects of 

air entrainment, turbulence and viscosity.  Air entrainment is treated with closed conduits 

in Appendix A.5, and the other two factors contribute so little in comparison to the other 

forces at play that they are almost always disregarded.  Turbulence, as noted previously, 

is counteracted by the effects of velocity distribution (Harleman 1959), and the Reynolds 

number is typically high enough in hydraulic jumps to disregard the effects of fluid 

viscosity (Rajaratnam 1968b). 

 

A.4.3 Example: The Classical Hydraulic Jump 

The simplest example of a jump on a smooth, horizontal, prismatic channel as 

described above is aptly named the “classical hydraulic jump.”  Rajaratnam (1967) 

defined it as "a jump formed in a smooth, wide, and horizontal rectangular channel… [in 

which the] water surface starts rising abruptly at the beginning, or toe of the jump, which 

oscillates about a mean position, and it continues to rise up to a section beyond which it is 
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essentially level... [which] denotes the end of the jump."  This final assumption, that the 

channel is wide and rectangular, proves to be highly unique and significant as shown 

hereafter. 

 

A.4.3.1 Jump Height 

The solution to the momentum equation – and therefore the jump height – for 

classical hydraulic jumps was first solved by Bélanger in 1838, and has been widely used 

ever since (Hager 1992; 1999).  Most hydraulics texts, such as Hager (1999), Young et al. 

(2004), or Chadwick et al. (2004), include a full derivation of this equation, so it is not 

repeated here, but what is significant about this solution is that it explicitly expresses the 

ratio between the two sequent depths solely as a function of the upstream Froude number: 
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This solution is easily plotted on a y2/y1 vs. Fr1 chart as a near-straight line (Chow 1959; 

Silvester 1964; Thompson and Kilgore 2006), with which experimentation agrees quite 

well (Chow 1959; Bradley and Peterka 1957; Montes 1998).  Unfortunately, no equation 

analogous to this one can be derived for any channel shape other than rectangular (French 

1985); other shapes have implicit solutions that require iteration (Jeppson 1970).  Thus, 

the classical hydraulic jump is the simplest example of a hydraulic jump available. 
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A.4.3.2 Jump Length 

Of all studies made on determining the length of hydraulic jumps, the most by far 

have been conducted on classical jumps.  Several empirical relationships have been 

developed, as listed and compared by Silvester (1964), but perhaps the most accurate and 

therefore the most commonly used equation today was developed by Bradley and Peterka 

(1957), as shown below: 

 








 


22

1Fr
220tanh

y

L
1

2

j
 (A-6) 

 

or simply Lj/y2 = 6 for 4 < Fr1 < 12 (Hager 1992).  Hager and Bremen (1990) 

determined, however, that for Fr1 > 8, the jump length is also a function of the upstream 

Reynolds number and channel aspect ratio. 

 

A.5 Hydraulic Jumps in Closed Conduits 

A.5.1 Description 

Compared to open channels, hydraulic jumps in closed conduits have received 

relatively little attention (Montes 1998), although they appear to have been first studied 

as early as 1938 by Lane and Kinsvatar.  Closed conduits behave similarly to open 

channels, as long as a free surface remains and sufficient air is supplied above the flow.  

What makes hydraulic jumps in closed conduits different, however, is that due to 

downstream submergence, a jump can potentially fill the conduit completely, resulting in 

pressure flow conditions downstream (Caric 1977; Hager 1999).  This is called an 

“incomplete” or pressure jump, as opposed to a “complete” or free-surface jump 
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(Hotchkiss et al. 2003; Montes 1998), and because of the interesting problems it poses for 

design, it has received relatively much more attention than complete jumps in closed 

conduits (Stahl and Hager 1999). 

In the case of incomplete jumps, the subcritical sequent depth is greater than the 

height of the conduit, but since the flow cannot reach this depth, the deficit is made up by 

hydrostatic pressure against the top of the conduit (Montes 1998).  Decent diagrams 

depicting this situation may be found in Smith and Chen (1989), Rajaratnam (1965), Hsu 

et al. (1980), and Haindl (1957).  The energy loss in incomplete jumps has been found to 

be smaller than that for corresponding open channels with identical upstream Froude 

numbers, due to the fact that the flow is confined by the conduit and therefore has less 

room for energy dissipation (Haindl 1957; Hsu et al. 1980). 

The point at which the conduit becomes “just full”, or when the subcritical flow 

depth exactly meets the crown of the conduit, marks the transition between complete and 

incomplete jumps.  In practice, however, when a conduit is flowing near full, the flow 

abruptly and unpredictably fills or “chokes” the conduit and becomes pressurized 

(Normann et al. 1985; Stahl and Hager 1999; Hager 1999).  Careful experimentation has 

failed to produce the full-flow condition corresponding to free pipe-full flow without 

pressure surcharge (Hager 1999).  Therefore in reality the “just-full” condition does not 

exist. 

 

A.5.2 Air Entrainment 

The fact that hydraulic jumps entrain air introduces the problem of two-phase 

flow into the momentum equation.  Not only does this reduce the volume (and therefore 

weight) of the water within the jump itself, but it reduces the downstream flow area as 
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well.  Although this effects both open-channel and closed-conduit flow (Rajaratnam 

1967), it is mostly a problem for incomplete jumps in closed conduits, because in the 

absence of an upstream air supply, a vacuum can form upstream of the jump as air is 

sucked into the roller, which moves the jump upstream to rebalance the pressure (Lane 

and Kinsvatar 1938; Haindl and Sotornik 1957).  Meanwhile, if the flow velocity isn‟t 

sufficient to sweep entrained air downstream, an air bubble forms at the top of the 

conduit just below the jump, which can periodically burst back through the jump to 

equalize the pressure and supply more air.  This is termed “blowback” and is responsible 

for pressure surges, vibrations, and even cavitation within pipelines (Lane and Kinsvatar 

1938; Haindl and Sotornik 1957; Hsu et al. 1980; Matsushita 1989; Smith 1989; Hager 

1999). 

Sometimes the air bubble can extend completely to the end of the conduit, which 

causes the water level to return to normal depth under higher pressure, parallel to the 

conduit (Kalinske and Robertson 1943; Ayoub, S. A. I. 1959; Montes 1998).  This 

increases the flow velocity to supercritical, making it possible in steeper slopes for 

multiple jumps to form in series, each pumping the same amount of air, and increasing 

the pressure in the conduit incrementally (Kalinske and Robertson 1943). 

The amount of air entrained into a hydraulic jump is expressed as the air 

entrainment ratio, βa, given by the following equation (Kalinske and Robertson 1943): 
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This was based on circular conduits, but Haindl and Sotornik (1957) found that this 

relationship applied also to rectangular conduits, regardless of slope and sequent depth 

ratio, suggesting that it is generally applicable in any situation (Rajaratnam 1965).  

Therefore if air entrainment is to be considered, as recommended by Rajaratnam, then the 

momentum equation should include this air entrainment term. 

 

A.5.3 General Solution 

A.5.3.1 Jump Height 

Just as with open-channel hydraulic jumps, the height of the jump can be obtained 

by finding the sequent depths from the momentum equation (Lane and Kinsvatar 1938).  

Examples of this may be found in Montes (1998), Kalinske and Robertson (1943), Hager 

(1999), and Smith and Chen (1989).  The pressure head on the conduit at the subcritical 

end of the jump is treated differently by different authors, but it should be noted that it 

depends only upon the pressure head at the outlet, the slope of the conduit, and the 

pressure head line, not on the jump itself (Haindl 1957).  By analyzing the momentum 

equation for incomplete jumps, it was observed by Smith and Chen (1989) that the jump 

height increases as y1 approaches two-thirds the conduit rise, but decreases dramatically 

for all flow rates as y1 approaches full conditions, such that no jump occurs at all when a 

conduit is flowing full.   

 

A.5.3.2 Jump Length 

Studies of the length of incomplete hydraulic jumps in closed conduits are few 

and far between, but it should be noted that it is defined differently than for open 

channels; Hager (1999) defines incomplete jump length as the "distance between the toe 



64 

of the jump and the point where the profile meets the conduit soffit".  Given this 

definition, the jump length becomes shorter as the upstream depth-to-rise ratio increases 

(Smith and Chen 1989).  This does not, however, define the distance needed for the 

pressure head to reach the subcritical sequent depth, nor does it define the full distance 

needed for energy dissipation, although some authors assume that it does.  Further 

research is needed, therefore, to adequately predict the length of incomplete jumps in 

closed conduits.  

 

A.6 Hydraulic Jump Classification 

Throughout the history of hydraulic jump research, observations of jump behavior 

in response to flow conditions and channel shape have led to various systems of 

classification that differentiate between those conditions and provide a universal language 

among hydraulicians to communicate such behavior more easily.  This section is an 

attempt to consolidate each of these classification systems into a single list for easy 

reference.  It is not assumed to be comprehensive, although from this extensive literature 

review it may be considered sufficient.  It includes classifications for classical hydraulic 

jumps, sloped channel jumps, positive and negative step jumps, sill jumps, and expanded 

channel jumps, each summarized in a table below.  References for the classifications as 

well as any studies pertaining to the classifications are cited within each table, and listed 

at the end of the appendix. 
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Table A-1 Classical Hydraulic Jump Classification 

Fr1 Profile Comments 

1 to 1.7 

 

Undular Jump 

Slight difference between y1 

and y2, separated by a long 

transition of standing 

waves 

<5% energy dissipation 

1.7 to 2.5 

 

A – “Weak Jump” or 

“Prejump Stage” 

Smooth surface, fairly 

uniform velocities 

throughout, with a series 

of small surface rollers 

5 to 15% energy dissipation 

2.5 to 4.5 

 

B – “Oscillating Jump” or 

“Transition Stage” 

Entering jet oscillates from 

bottom to surface with no 

regular period, causing 

undesirable and erosive 

surface waves that can 

travel far downstream 

15 to 45% energy dissipation 

4.5 to 9.0 

 

C – “Steady” or “Well-

Balanced” Jump 

Stable jump, in which the jet 

consistently leaves the 

bottom near end of the 

surface roller, and the 

downstream water surface 

is relatively smooth 

45 to 70% energy dissipation 
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Table A-1 (cont.) Classical Hydraulic Jump Classification 

Fr1 Profile Comments 

> 9 

 

D – “Strong” or “Rough” 

Jump 

Sensitive and unpredictable 

jump, in which "slugs of 

water rolling down the 

front face of the jump 

intermittently fall into the 

high-velocity jet 

generating additional 

waves downstream, and a 

rough surface can prevail" 

70 to 85% energy dissipation 

References: Bradley and Peterka (1957); Chow  (1959); Hager (1992); Franzini and 

Finnemore (1997); Montes (1998); Ohtsu et al. (2001); Sturm (2001); Thompson and 

Kilgore (2006) 

 

 

Table A-2 Sloped Channel Jump Classification 

Type Profile Comments 

A 

 

Forms entirely on horizontal 

section 

Common form for horizontal 

channels 

Tends to move downstream 

B 

 

Begins on steep positive slope 

and ends on horizontal section 

C 

 

Begins on steep positive slope 

and ends at the transition 

between steep and horizontal 

sections 
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Table A-2 (cont.) Sloped Channel Jump Classification 

Type Profile Comments 

D 

 

Located entirely on steep positive 

slope 

Most common form used for 

jumps in sloping channels 

E 

 

Located entirely on mild positive 

slope 

Uncommon, since supercritical 

flows do not naturally form on 

mild slopes 

F 

 

Forms on adverse (negative) 

slopes 

Uncommon 

Unstable and almost impossible to 

control 

Tends to move downstream 

References: Kinsvatar (1944); Rajaratnam (1967); French (1985); Hager (1992); Montes 

(1998); Beirami and Chamani (2006); Thompson and Kilgore (2006) 
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Table A-3 Positive Step Jump Classification 

Type Profile Comments 

A 

 

Begins upstream of the step, 

and ends at the step 

Highest tailwater before jumps 

moves upstream 

B 

 

Begins upstream of the step and 

ends downstream 

Lower tailwater than A-jumps, 

but higher than W-jumps 

W 

 

Forms a standing wave that 

passes over the step 

May or may not be aerated 

Entirely supercritical flow, and 

poor energy dissipation 

Lower tailwater than B-jumps 

References: Hager (1992); Husain et al.(1994); Montes (1998)  

 

 

Table A-4 Negative Step Jump Classification 

Type Profile Comments 

A 

 

Begins upstream of the step, 

and ends at the step 

Highest tailwater before jump 

moves upstream 

W 

 

Forms a standing wave that 

begins at the step 

Lower tailwater than A-jumps, 

but higher than B-jumps 

B 
 

Begins at the step and ends 

downstream 

Lower tailwater than W-jumps 

 Min 

B  

Begins downstream of step 

Lowest tailwater before jump 

moves downstream 

References: Moore and Morgan (1957); Rajaratnam (1967); Ohtsu and Yasuda (1991b); 

Hager (1992); Husain et al. (1994); Montes (1998) 
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Table A-5 Submerged Sill Jump Classification 

Type Profile Comments 

A 

or 

I  

Begins upstream of the sill, 

and ends at the sill 

Highest tailwater before jump 

moves upstream 

B 

or 

I/III  

Lower tailwater than A-

jumps, but higher than C-

jumps 

Shorter and less stable than A-

jumps 

Surface boil appears at sill 

Min 

B 

or 

II* 
 

Lowest tailwater before main 

flow begins striking 

channel bottom 

Plunging after the sill, 

followed by a second 

surface roller 

C 

or 

IV  

Lower tailwater than B-jumps, 

but higher than W-jumps 

Heavy plunging and striking 

of main flow on channel 

bottom, causing erosion in 

unprotected channels 

W 

or 

VI  

Forms a standing wave that 

passes over the sill 

Lower tailwater than C-jumps 

Entirely supercritical flow, 

and poor energy dissipation 

References: Rajaratnam (1964); Rajaratnam (1967); Hager (1992); Montes (1998); 

Hotchkiss et al. (2005) 
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Table A-6 Weir Jump Classification 

Case Profile Comments 

A 

 

 
 

Swept-out jump 

Lower tailwater than B-jumps 

Similar to classical jumps 

B 

 

 
 

Optimum jump 

Higher tailwater than A-

jumps, but lower than C-

jumps 

Jump toe is ideally located 

immediately downstream of 

the point of nappe impact, 

to minimize channel 

protection 

C 

 

 
 

Plunging nappe 

Higher tailwater than B-

jumps, but lower than D-

jumps 

Jump is pushed against the 

weir and the nappe plunges, 

submerging the jump and 

creating an aerated 

“hydraulic” 

D 

 

 
 

Surface nappe 

Higher tailwater than C-jumps 

Weir is immersed completely, 

the nappe stays at the 

surface, and no jump occurs 

References: Leutheusser and Birk (1991) 
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Table A-7 Abruptly Expanded Channel Jump Classification 

Type Plan View Comments 

R 

 

“Repelled” Jump 

Supercritical flow is swept out into 

expanded channel, where toe forms 

at point „P‟ 

Limiting condition, where jump 

cannot move further upstream 

without collapsing into an S-Jump 

S 

 

“Spatial” Jump 

Oscillatory asymmetric extension of 

supercritical flow into expanded 

channel, where long fronts between 

forward and backward flow replace 

the toe 

Undesirable because of 

unpredictability, length, and 

efficiency, since it is closer to a jet 

than a jump 

May shift to an R-Jump periodically 

T 

 

“Transitional” Jump 

A well-developed toe forms 

perpendicular to the flow upstream 

of the expansion, while the jump 

extends past the expansion 

May be symmetric or asymmetric, 

depending on the jump position 

relative to the expansion 

References: Rajaratnam (1967); Rajaratnam (1968a); Smith (1989); Hager (1992); 

Bremen and Hager (1993); Ohtsu et al. (1999) 
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A.7 Elliptical Culvert Geometry 

A.7.1 Introduction 

Elliptical culverts are a common alternative to circular culverts due to the fact that 

they allow more height or width clearance for the same flow area.  They may be installed 

horizontally or vertically (ASTM C507 2007), and they may be constructed of either 

corrugated metal or concrete (FHWA 2007).  This appendix defines the geometry of 

elliptical culverts for use in this study on hydraulic jumps.  Although the analysis of 

elliptical conduits in Appendix B assumes a mathematical ellipse for simplification, the 

parameters presented here allow an elliptical culvert to be treated as a pipe arch culvert 

(see Appendix A.8), since the two shapes share common parameters, thereby eliminating 

the error due to simplification. 

 

A.7.2 Definitions 

The geometry of an elliptical culvert is defined in ASTM C507 (2007) by a span, 

rise, and two radii.  For purposes of continuity within this study, however, the same eight 

parameters used for pipe arch culverts are applied to elliptical culverts.  Figure A-1 on the 

next page depicts the geometry of an elliptical culvert according to these parameters.  
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Figure A-1 Parameters to be used in this study for elliptical culverts 

 

 

A.7.3 Calculating Missing Parameters 

Obviously not all of the parameters in Figure A-1 are necessary for defining the 

shape of an elliptical culvert, especially since only B, D, Rb, and Rm are typically given.  

In fact, it may be shown that only B, D, and Rb are actually needed; all other parameters 

may be derived from these.  Due to measurement and rounding errors, mathematical 

discontinuities can occur when using too many independent variables to define the shape.  

It is therefore recommended that if a pipe arch analysis is to be used instead of the 

simplified elliptical analysis in Appendix B, then all other parameters except for these 

three should be derived, using the equations listed on the next page.  ASTM C507 (2007) 

specifies that the span and rise must be within 2% of given values, but no other restriction 

is given that would preclude using the derived values rather than the given ones. 
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A.7.4 Historic and Current Sizes 

The following tables list the dimensions of elliptical culverts currently or 

historically manufactured.  Note that Rm, Rt, hb, hm, and ht (all values in grey) are derived 

from the other parameters to avoid discontinuities.  Note also that all standard sizes listed 

are horizontal elliptical (i.e. B > D). 
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Table A-8 Steel or Aluminum Elliptical Culvert Sizes (CONTECH 2007)  

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

232.000 153.000 150.000 53.555 150.000 35.686 76.500 117.314 

241.000 156.000 157.000 53.257 157.000 37.445 78.000 118.555 

242.000 143.000 164.000 43.009 164.000 38.619 71.500 104.381 

250.000 146.000 171.000 43.609 171.000 39.453 73.000 106.547 

252.000 182.000 157.000 71.242 157.000 36.172 91.000 145.828 

263.000 157.000 178.000 48.296 178.000 41.451 78.500 115.549 

270.000 188.000 171.000 70.653 171.000 39.786 94.000 148.214 

276.000 169.000 185.000 54.051 185.000 43.018 84.500 125.982 

279.000 191.000 178.000 70.357 178.000 41.577 95.500 149.423 

292.000 203.000 185.000 76.112 185.000 43.134 101.500 159.866 

294.000 176.000 198.000 53.873 198.000 46.884 88.000 129.116 

302.000 179.000 205.000 54.479 205.000 47.696 89.500 131.304 

305.000 201.000 198.000 70.786 198.000 46.248 100.500 154.752 

313.000 218.000 198.000 81.816 198.000 46.326 109.000 171.674 

315.000 190.000 212.000 59.163 212.000 49.710 95.000 140.290 

324.000 194.000 219.000 59.939 219.000 51.027 97.000 142.973 

326.000 229.000 205.000 86.497 205.000 48.443 114.500 180.557 

335.000 233.000 212.000 87.275 212.000 49.675 116.500 183.325 

337.000 205.000 226.000 64.622 226.000 53.046 102.500 151.954 

346.000 209.000 233.000 65.398 233.000 54.360 104.500 154.640 

353.000 239.000 226.000 86.682 226.000 53.237 119.500 185.763 

361.000 242.000 233.000 87.283 233.000 53.913 121.000 188.087 

363.000 215.000 247.000 65.698 247.000 56.949 107.500 158.051 

374.000 254.000 240.000 93.038 240.000 55.463 127.000 198.537 

376.000 227.000 253.000 70.806 253.000 59.286 113.500 167.714 

385.000 230.000 260.000 70.509 260.000 61.046 115.000 168.954 

387.000 266.000 247.000 98.792 247.000 57.010 133.000 208.990 

396.000 269.000 253.000 97.843 253.000 59.773 134.500 209.227 

398.000 241.000 267.000 75.189 267.000 63.072 120.500 177.928 

409.000 280.000 260.000 102.520 260.000 61.879 140.000 218.121 

415.000 248.000 281.000 76.570 281.000 65.195 124.000 182.805 

419.000 256.000 281.000 81.551 281.000 65.441 128.000 190.559 

421.000 292.000 267.000 109.184 267.000 62.287 146.000 229.713 

432.000 268.000 288.000 87.306 288.000 67.007 134.000 200.993 

446.000 266.000 302.000 81.734 302.000 70.289 133.000 195.711 

110.000 80.000 68.000 31.346 68.000 16.055 40.000 63.945 

119.000 84.000 75.000 32.121 75.000 17.279 42.000 66.721 
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Table A-8 (cont.) Steel or Aluminum Elliptical Culvert Sizes (CONTECH 2007)  

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

127.000 87.000 81.000 32.071 81.000 18.920 43.500 68.080 

131.000 95.000 81.000 37.048 81.000 19.262 47.500 75.738 

136.000 90.000 88.000 31.775 88.000 20.699 45.000 69.301 

140.000 99.000 88.000 37.826 88.000 20.474 49.500 78.526 

144.000 107.000 88.000 42.805 88.000 20.825 53.500 86.175 

145.000 93.000 95.000 31.478 95.000 22.466 46.500 70.534 

149.000 102.000 95.000 37.530 95.000 22.266 51.000 79.734 

153.000 110.000 95.000 42.507 95.000 22.610 55.000 87.390 

154.000 97.000 102.000 32.255 102.000 23.758 48.500 73.242 

158.000 105.000 102.000 37.234 102.000 24.043 52.500 80.957 

162.000 114.000 102.000 43.286 102.000 23.825 57.000 90.175 

163.000 100.000 109.000 31.959 109.000 25.525 50.000 74.475 

167.000 108.000 109.000 36.936 109.000 25.810 54.000 82.190 

171.000 117.000 109.000 42.989 109.000 25.612 58.500 91.388 

175.000 125.000 109.000 47.965 109.000 25.957 62.500 99.043 

179.000 134.000 109.000 54.019 109.000 25.735 67.000 108.265 

88.000 66.000 54.000 26.950 54.000 12.078 33.000 53.922 

97.000 69.000 61.000 26.660 61.000 13.927 34.500 55.073 

106.000 72.000 68.000 26.367 68.000 15.734 36.000 56.266 

110.000 81.000 68.000 32.413 68.000 15.452 40.500 65.548 

115.000 76.000 75.000 27.136 75.000 17.024 38.000 58.976 

119.000 84.000 75.000 32.121 75.000 17.279 42.000 66.721 

124.000 79.000 82.000 26.844 82.000 18.816 39.500 60.184 

128.000 87.000 82.000 31.826 82.000 19.078 43.500 67.922 

132.000 96.000 82.000 37.875 82.000 18.816 48.000 77.184 

133.000 82.000 88.000 25.878 88.000 21.421 41.000 60.579 

136.000 90.000 88.000 31.775 88.000 20.699 45.000 69.301 

140.000 99.000 88.000 37.826 88.000 20.474 49.500 78.526 

144.000 107.000 88.000 42.805 88.000 20.825 53.500 86.175 

141.000 85.000 95.000 26.500 95.000 22.190 42.500 62.810 

145.000 94.000 95.000 32.550 95.000 21.982 47.000 72.018 

149.000 102.000 95.000 37.530 95.000 22.266 51.000 79.734 

153.000 110.000 95.000 42.507 95.000 22.610 55.000 87.390 

150.000 88.000 102.000 26.204 102.000 23.949 44.000 64.051 

154.000 97.000 102.000 32.255 102.000 23.758 48.500 73.242 

158.000 105.000 102.000 37.234 102.000 24.043 52.500 80.957 

162.000 114.000 102.000 43.286 102.000 23.825 57.000 90.175 
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Table A-8 (cont.) Steel or Aluminum Elliptical Culvert Sizes (CONTECH 2007)  

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

163.000 100.000 109.000 31.959 109.000 25.525 50.000 74.475 

167.000 108.000 109.000 36.936 109.000 25.810 54.000 82.190 

171.000 117.000 109.000 42.989 109.000 25.612 58.500 91.388 

175.000 125.000 109.000 47.965 109.000 25.957 62.500 99.043 

179.000 134.000 109.000 54.019 109.000 25.735 67.000 108.265 

 

 

Table A-9 Concrete Elliptical Culvert Sizes (ASTM C507 2007) 

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

22.750 14.250 20.000 6.078 20.000 1.504 7.125 12.746 

30.250 19.250 26.250 8.265 26.250 1.984 9.625 17.266 

34.000 21.500 29.250 9.156 29.250 2.321 10.750 19.179 

37.750 24.000 32.750 10.297 32.750 2.484 12.000 21.516 

42.000 26.750 36.250 11.469 36.250 2.788 13.375 23.962 

45.500 28.750 39.250 12.250 39.250 3.090 14.375 25.660 

49.500 31.500 42.750 13.500 42.750 3.288 15.750 28.212 

53.250 34.000 46.000 14.609 46.000 3.503 17.000 30.497 

60.000 38.250 51.500 16.375 51.500 4.033 19.125 34.217 

68.000 43.500 58.500 18.688 58.500 4.500 21.750 39.000 

75.500 48.250 65.000 20.719 65.000 5.000 24.125 43.250 

83.000 53.000 71.500 22.750 71.500 5.500 26.500 47.500 

90.500 57.750 78.000 24.781 78.000 6.000 28.875 51.750 

98.000 62.750 84.500 27.000 84.500 6.430 31.375 56.320 

105.500 67.500 90.750 29.000 90.750 6.981 33.750 60.519 

113.000 72.500 97.250 31.219 97.250 7.410 36.250 65.090 

120.500 77.250 103.750 33.250 103.750 7.910 38.625 69.340 

128.000 82.000 110.000 35.250 110.000 8.462 41.000 73.538 

135.500 87.000 116.250 37.438 116.250 8.942 43.500 78.058 

143.000 91.750 122.750 39.469 122.750 9.442 45.875 82.308 

150.750 96.340 129.250 41.301 129.250 10.094 48.170 86.246 

165.500 106.500 142.000 45.906 142.000 10.852 53.250 95.648 

180.750 116.000 154.750 49.859 154.750 12.011 58.000 103.989 
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A.8 Pipe Arch Culvert Geometry 

A.8.1 Introduction 

Pipe arch culverts (also called "arch" (ASTM C506 2007) or "horseshoe" (Hager 

1999) culverts) are often used in place of circular culverts because they allow more 

height clearance than their circular counterparts due to their compact shape (Hager 1999).  

They are manufactured either by concrete or by corrugated steel or aluminum, and in the 

case of corrugated metal, they may either be reshaped from a single tube or pieced 

together using structural plates (CONTECH 2007).  This appendix defines the geometry 

of pipe arch culverts for use in this study on hydraulic jumps. 

 

A.8.2 Definitions 

The geometry of an elliptical culvert is defined in ASTM C506 (2007) by a span, 

rise, three lengths, and two radii, although different parameters are used by different 

manufacturers.  For this study, the following eight parameters are used to define the pipe 

arch shape: span (B), rise (D), bottom radius (Rb), middle radius (Rm), top radius (Rt), 

bottom transition height (hb), neutral axis height (hm), and top transition height (ht).  

Figure A-2 on the next page depicts the geometry of a pipe arch culvert according to 

these parameters.  
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Figure A-2 Parameters to be used in this study for pipe arch culverts 

 

 

A.8.3 Calculating Missing Parameters 

Obviously not all of the parameters in Figure A-2 are necessary for defining the 

shape of a pipe arch culvert, especially since only B, D, Rb, Rm, Rt, and hm are typically 

given.  In fact, it may be shown that only B, D, Rb, and Rm are actually needed; all other 

parameters may be derived from these.  Due to measurement and rounding errors, 

mathematical discontinuities can occur when using too many independent variables to 

define the shape.  It is therefore recommended for the analysis presented in this study that 

all other parameters except for these four should be derived using the equations listed on 

the next page.  ASTM C506 (2007) specifies that the span and rise must be within 2% of 

given values, but no other restriction is given that would preclude using the derived 

values rather than the given ones. 
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A.8.4 Historic and Current Sizes 

The following tables list the dimensions of pipe arch culverts currently or 

historically manufactured.  Note that Rt, hb, hm, and ht (all values in grey) are derived 

from the other parameters to avoid discontinuities. 
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Table A-10  Steel or Aluminum Pipe Arch Culvert Sizes – Variable 

Corner Radii - 2-2/3 x 1/2 in Corrugation (AISI 1999) 

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

17.000 13.000 25.625 3.500 8.517 0.663 4.072 5.181 

21.000 15.000 33.125 4.125 10.509 0.810 4.834 5.056 

24.000 18.000 34.625 4.875 12.005 1.008 5.741 6.424 

28.000 20.000 42.250 5.500 14.015 1.146 6.497 6.827 

35.000 24.000 55.125 6.875 17.634 1.353 8.059 9.142 

42.000 29.000 66.125 8.250 21.126 1.625 9.672 10.824 

49.000 33.000 77.250 9.625 24.820 1.892 11.281 13.246 

57.000 38.000 88.250 11.000 28.940 2.294 13.008 15.429 

64.000 43.000 99.250 12.375 32.410 2.566 14.621 17.110 

71.000 47.000 110.250 13.750 36.158 2.837 16.233 19.541 

77.000 52.000 121.250 15.125 38.968 2.978 17.731 20.712 

83.000 57.000 132.250 16.500 41.827 3.121 19.232 21.877 

 

 

Table A-11 Steel or Aluminum Pipe Arch Culvert Sizes - 18 in or greater 

Corner Radii - 3 x 1 in Corrugation (FHWA 2007) 

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

60.000 46.000 51.125 18.750 31.753 3.186 20.767 30.170 

66.000 51.000 56.250 20.750 34.661 3.455 22.931 32.762 

73.000 55.000 63.750 22.875 39.759 3.646 25.213 38.723 

81.000 59.000 82.625 20.875 41.607 4.284 24.077 30.806 

87.000 63.000 92.250 22.625 44.876 4.244 25.828 33.662 

95.000 67.000 100.250 24.375 49.959 4.770 27.985 38.411 

103.000 71.000 111.625 26.125 55.184 5.029 29.977 42.709 

112.000 75.000 120.250 27.750 61.750 5.745 32.169 47.611 

117.000 79.000 131.750 29.500 64.012 5.410 33.699 49.692 

128.000 83.000 139.750 31.250 73.704 6.518 36.311 56.196 

137.000 87.000 149.500 33.000 81.490 7.110 38.541 61.019 

142.000 91.000 162.375 34.750 83.320 6.688 40.006 63.135 
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Table A-12 Steel or Aluminum Pipe Arch Culvert Sizes – Variable 

Corner Radii - 3 x 1 or 5 x 1 in Corrugation (AISI 1999) 

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

53.000 41.000 73.438 10.188 26.628 2.484 12.327 17.685 

58.500 48.500 51.125 18.750 29.334 2.764 20.500 22.864 

65.000 54.000 56.250 20.750 32.575 3.170 22.751 25.077 

72.500 58.250 63.750 22.875 36.726 3.509 25.125 31.073 

79.000 62.500 82.625 20.875 39.516 3.848 23.751 24.609 

86.500 67.250 92.250 22.625 43.331 4.140 25.750 27.751 

93.500 71.750 100.250 24.375 46.943 4.458 27.749 30.926 

101.500 76.000 111.625 26.125 51.253 4.730 29.748 34.947 

108.500 80.500 120.250 27.750 54.934 5.040 31.627 37.815 

116.500 84.750 131.750 29.500 59.424 5.315 33.625 41.806 

123.500 89.250 139.750 31.250 63.225 5.635 35.625 45.008 

131.000 93.750 149.500 33.000 67.400 5.935 37.625 48.442 

138.500 98.000 162.375 34.750 71.684 6.045 39.502 51.907 

146.000 102.000 172.000 36.000 75.958 6.488 41.130 54.723 

153.000 107.000 180.000 38.000 79.699 6.742 43.319 57.916 

159.000 113.000 184.000 40.000 82.131 7.058 45.523 59.437 

165.000 118.500 190.000 41.000 84.440 7.518 46.896 59.011 

 

 

Table A-13 Steel or Aluminum Pipe Arch Culvert Sizes (Historic) - 

Variable Corner Radii - 2-2/3 x 1/2 in Corrugation (FHWA 2007) 

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

18.100 11.000 19.120 3.500 10.157 1.248 4.519 6.452 

21.700 13.300 37.060 4.000 11.411 0.804 4.717 6.244 

25.300 15.500 33.500 4.000 13.133 1.472 5.297 6.580 

28.900 17.800 55.000 4.500 14.743 1.078 5.490 6.559 

36.100 22.200 73.250 5.000 18.253 1.352 6.259 7.132 

43.300 26.600 91.560 5.500 21.804 1.627 7.029 7.782 

50.600 31.700 97.250 6.000 25.379 2.200 8.064 8.604 

57.800 35.500 115.690 7.000 29.079 2.373 9.229 10.120 

65.000 40.000 129.310 8.000 32.709 2.665 10.500 11.539 

72.200 44.400 142.940 9.000 36.355 2.956 11.770 12.996 

79.400 48.700 145.550 10.000 40.063 3.537 13.294 14.843 

85.000 54.000 154.500 11.000 42.658 3.768 14.500 15.597 
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Table A-14 Steel or Aluminum Pipe Arch Culvert Sizes (Historic) - 

18 in or less Corner Radii - 3 x 1 in Corrugation (FHWA 2007) 

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

43.000 27.000 54.750 7.750 22.482 2.395 9.806 12.588 

50.000 31.000 67.000 9.000 26.282 2.600 11.251 14.653 

58.000 36.000 82.000 10.500 30.402 2.792 12.935 16.805 

65.000 40.000 91.250 12.000 34.447 3.106 14.697 19.586 

72.000 44.000 98.500 13.250 38.415 3.572 16.342 22.005 

73.000 55.000 76.250 18.000 36.698 3.948 21.016 23.628 

81.000 59.000 92.750 18.000 40.725 4.301 21.467 23.995 

87.000 63.000 100.500 18.000 43.640 4.921 22.040 23.921 

95.000 67.000 116.000 18.000 47.675 5.380 22.545 24.499 

103.000 71.000 132.250 18.000 51.707 5.813 23.022 25.013 

112.000 75.000 151.750 18.000 56.304 6.253 23.512 25.775 

117.000 79.000 160.500 18.000 58.654 6.619 23.876 25.439 

128.000 83.000 185.000 18.000 64.368 7.157 24.460 26.723 

137.000 87.000 201.000 18.000 68.997 7.805 25.106 27.613 

142.000 91.000 210.000 18.000 71.314 8.159 25.460 27.409 

 

 

Table A-15 Steel Structural Plate Pipe Arch Culvert Sizes - 

18 in corner radius (AISI 1999) 

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

73.000 55.000 76.320 18.000 36.697 3.942 21.012 23.620 

76.000 57.000 98.640 18.000 38.062 3.082 20.520 21.939 

81.000 59.000 83.520 18.000 40.819 5.079 21.984 24.985 

84.000 61.000 104.160 18.000 42.135 4.123 21.410 23.308 

87.000 63.000 136.200 18.000 43.534 3.207 20.783 21.712 

92.000 65.000 109.800 18.000 46.231 5.232 22.374 24.673 

95.000 67.000 137.880 18.000 47.588 4.240 21.686 23.070 

98.000 69.000 182.880 18.000 49.015 3.261 20.940 21.495 

103.000 71.000 141.000 18.000 51.663 5.330 22.650 24.422 

106.000 73.000 178.680 18.000 53.052 4.290 21.858 22.839 

112.000 75.000 144.600 18.000 56.353 6.668 23.838 26.274 

114.000 77.000 177.480 18.000 57.112 5.389 22.842 24.202 

117.000 79.000 227.760 18.000 58.527 4.286 21.947 22.602 

123.000 81.000 178.320 18.000 61.761 6.690 24.014 25.979 

128.000 83.000 153.240 18.000 64.641 9.137 26.064 29.037 

131.000 85.000 180.360 18.000 65.875 7.891 25.104 27.351 

137.000 87.000 157.920 18.000 69.459 10.644 27.431 30.891 

139.000 89.000 183.240 18.000 70.006 9.127 26.230 28.735 
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Table A-15 (cont.) Steel Structural Plate Pipe Arch Culvert Sizes - 

18 in corner radius (AISI 1999) 

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

142.000 91.000 216.360 18.000 71.284 7.866 25.212 27.068 

148.000 93.000 186.480 18.000 74.776 10.602 27.579 30.545 

150.000 95.000 216.840 18.000 75.397 9.100 26.345 28.459 

152.000 97.000 257.400 18.000 76.158 7.668 25.132 26.460 

154.000 100.000 314.760 18.000 77.007 6.283 23.924 24.208 

161.000 101.000 254.760 18.000 80.807 9.037 26.398 28.177 

167.000 103.000 220.680 18.000 84.283 11.841 28.876 31.634 

169.000 105.000 254.160 18.000 84.919 10.285 27.556 29.567 

171.000 107.000 297.600 18.000 85.681 8.803 26.270 27.587 

178.000 109.000 254.280 18.000 89.641 11.752 28.920 31.322 

184.000 111.000 226.800 18.000 93.282 14.721 31.553 34.861 

186.000 113.000 255.720 18.000 93.793 13.061 30.141 32.738 

188.000 115.000 291.480 18.000 94.443 11.481 28.772 30.707 

190.000 118.000 338.160 18.000 95.133 9.926 27.397 28.455 

197.000 119.000 290.880 18.000 99.156 12.945 30.144 32.429 

199.000 121.000 332.760 18.000 99.852 11.348 28.734 30.403 

 

Table A-16 Steel Structural Plate Pipe Arch Culvert Sizes - 

31 in corner radius (AISI 1999) 

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

159.000 112.000 192.600 31.000 79.916 8.879 38.450 42.484 

162.000 114.000 219.960 31.000 81.248 7.840 37.735 40.809 

168.000 116.000 197.880 31.000 84.643 10.245 39.640 44.427 

170.000 118.000 222.600 31.000 85.345 9.024 38.767 42.253 

173.000 120.000 256.560 31.000 86.693 7.888 37.935 40.510 

179.000 122.000 227.760 31.000 90.035 10.300 39.898 44.063 

184.000 124.000 208.560 31.000 92.939 12.694 41.807 47.185 

187.000 126.000 232.080 31.000 94.162 11.495 40.960 45.437 

190.000 128.000 260.640 31.000 95.443 10.327 40.099 43.726 

195.000 130.000 236.040 31.000 98.307 12.759 42.083 46.869 

198.000 132.000 263.160 31.000 99.560 11.542 41.182 45.134 

204.000 134.000 240.960 31.000 103.084 14.195 43.369 48.724 

206.000 136.000 266.760 31.000 103.684 12.744 42.263 46.506 

209.000 138.000 297.960 31.000 104.965 11.516 41.317 44.789 

215.000 140.000 270.600 31.000 108.431 14.163 43.541 48.334 

217.000 142.000 299.760 31.000 109.080 12.733 42.416 46.187 

223.000 144.000 274.560 31.000 112.587 15.430 44.688 49.732 

225.000 146.000 302.280 31.000 113.204 13.964 43.532 47.581 

231.000 148.000 278.640 31.000 116.755 16.723 45.863 51.147 
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Table A-16 (cont.) Steel Structural Plate Pipe Arch Culvert Sizes - 

31 in corner radius (AISI 1999) 

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

234.000 150.000 305.160 31.000 117.945 15.402 44.838 49.395 

236.000 152.000 336.480 31.000 118.602 13.934 43.651 47.279 

239.000 154.000 374.280 31.000 119.908 12.652 42.604 45.572 

245.000 156.000 338.160 31.000 123.318 15.352 44.945 49.063 

247.000 158.000 373.560 31.000 124.011 13.877 43.725 46.970 

 

 

 

Table A-17 Steel Structural Plate Pipe Arch Culvert Sizes – 47 in corner radius 

(FHWA 2007) 

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

240.000 167.000 223.600 47.000 122.180 19.997 62.794 74.031 

246.000 171.000 255.700 47.000 124.418 17.557 61.330 70.283 

257.000 174.000 236.700 47.000 131.714 22.958 65.400 78.223 

263.000 179.000 268.100 47.000 133.444 20.352 63.784 73.695 

269.000 183.000 307.100 47.000 135.763 17.899 62.160 70.061 

280.000 187.000 280.200 47.000 142.541 23.246 66.347 77.114 

290.000 191.000 262.100 47.000 149.131 28.783 70.622 83.853 

296.000 194.000 292.200 47.000 151.313 25.940 68.768 80.519 

302.000 199.000 328.600 47.000 153.101 23.231 66.908 76.215 

307.000 203.000 373.300 47.000 154.796 20.443 64.869 72.136 

319.000 207.000 339.400 47.000 162.176 26.126 69.508 79.581 

330.000 210.000 315.800 47.000 169.834 32.056 74.285 87.340 

336.000 214.000 350.200 47.000 171.618 29.095 72.191 83.433 

341.000 219.000 392.300 47.000 172.729 25.950 69.841 78.652 

352.000 222.000 361.100 47.000 180.110 31.859 74.712 86.302 

364.000 226.000 339.100 47.000 188.575 38.389 80.068 94.225 
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Table A-18 Aluminum Structural Plate Pipe Arch Culvert Sizes (CONTECH 2007) 

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

79.000 68.000 69.900 31.750 41.709 1.458 32.545 52.485 

83.000 69.000 102.900 31.750 44.008 0.971 32.421 51.664 

87.000 71.000 188.300 31.750 45.059 0.531 32.192 47.103 

93.000 72.000 83.800 31.750 52.020 3.435 33.884 55.662 

97.000 73.000 108.100 31.750 53.931 2.633 33.610 54.424 

101.000 75.000 150.100 31.750 54.321 1.896 33.245 50.921 

106.000 76.000 93.000 31.750 62.063 5.776 35.554 58.196 

111.000 77.000 112.600 31.750 65.110 4.968 35.317 57.613 

115.000 78.000 141.600 31.750 66.451 3.945 34.811 56.094 

119.000 80.000 188.700 31.750 66.212 2.973 34.223 53.049 

123.000 81.000 278.800 31.750 67.784 2.029 33.548 51.462 

129.000 82.000 139.600 31.750 78.453 6.592 36.843 59.478 

133.000 84.000 172.000 31.750 77.253 5.363 36.123 56.621 

137.000 85.000 222.000 31.750 78.398 4.181 35.333 54.889 

141.000 86.000 309.500 31.750 79.591 3.027 34.466 53.087 

147.000 87.000 165.200 31.750 92.024 8.293 38.449 61.349 

151.000 89.000 200.000 31.750 90.156 6.880 37.538 58.572 

155.000 90.000 251.700 31.750 90.846 5.505 36.561 56.658 

157.000 98.000 143.600 31.750 88.923 13.145 41.989 60.266 

157.000 100.000 300.800 31.750 81.674 4.576 35.843 46.983 

167.000 101.000 132.000 31.750 101.246 18.947 46.140 67.331 

168.000 103.000 215.700 31.750 90.471 8.884 39.327 53.816 

167.000 113.000 159.300 31.750 85.768 13.700 42.720 51.823 

171.000 115.000 176.300 31.750 87.434 12.642 42.115 50.411 

176.000 116.000 166.200 31.750 91.219 15.245 44.082 54.387 

179.000 118.000 183.000 31.750 92.013 13.865 43.209 52.283 

184.000 120.000 173.000 31.750 95.457 16.528 45.244 55.562 

187.000 122.000 189.600 31.750 96.228 15.110 44.329 53.467 

193.000 124.000 179.700 31.750 100.532 18.123 46.671 57.382 

196.000 126.000 196.100 31.750 101.224 16.638 45.694 55.254 

201.000 128.000 186.500 31.750 104.783 19.415 47.860 58.574 

204.000 130.000 202.500 31.750 105.465 17.932 46.871 56.491 

207.000 132.000 221.700 31.750 106.257 16.425 45.822 54.379 

213.000 134.000 208.900 31.750 110.506 19.508 48.293 58.291 

216.000 136.000 227.300 31.750 111.242 17.992 47.229 56.204 

221.000 138.000 215.300 31.750 114.765 20.822 49.502 59.548 

224.000 140.000 233.700 31.750 115.468 19.244 48.379 57.424 

230.000 141.000 221.500 31.750 120.358 22.456 50.988 61.861 

233.000 143.000 239.700 31.750 120.919 20.810 49.804 59.675 

238.000 145.000 227.700 31.750 124.646 23.818 52.247 63.147 

241.000 147.000 245.300 31.750 125.201 22.187 51.066 61.009 
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Table A-18 (cont.) Aluminum Structural Plate Pipe Arch Culvert Sizes 

(CONTECH 2007) 

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

241.000 150.000 310.800 31.750 122.446 16.138 46.239 52.780 

250.000 151.000 251.200 31.750 130.283 23.807 52.548 62.804 

253.000 153.000 270.900 31.750 130.905 22.169 51.320 60.679 

258.000 155.000 257.300 31.750 134.560 25.146 53.793 64.093 

241.000 167.000 225.400 47.000 122.837 20.019 62.844 74.422 

247.000 171.000 257.600 47.000 125.040 17.596 61.386 70.676 

257.000 175.000 238.600 47.000 131.283 22.662 65.198 77.177 

263.000 179.000 270.000 47.000 133.403 20.134 63.630 73.438 

 

Table A-19 Aluminum Structural Plate Pipe Arch Culvert Sizes (Historic) 

(FHWA 2007) 

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

71.000 65.000 104.400 31.800 37.695 0.136 31.894 56.652 

74.000 68.000 68.700 31.800 37.169 0.686 32.168 40.090 

78.000 69.000 121.500 31.800 39.427 0.392 32.089 42.582 

82.000 71.000 91.300 31.800 41.473 1.098 32.516 42.341 

87.000 72.000 82.100 31.800 45.060 2.252 33.180 48.143 

91.000 74.000 78.000 31.800 47.238 3.508 33.878 48.536 

95.000 76.000 96.700 31.800 48.805 2.872 33.728 45.944 

98.000 77.000 303.400 31.800 49.734 0.609 32.345 41.352 

103.000 79.000 177.200 31.800 52.632 1.634 33.141 43.479 

106.000 81.000 291.600 31.800 53.659 0.972 32.666 40.413 

111.000 82.000 189.500 31.800 57.014 2.152 33.591 44.444 

116.000 84.000 152.800 31.800 60.144 3.625 34.671 46.804 

121.000 85.000 134.300 31.800 64.256 5.372 35.900 50.750 

125.000 87.000 164.600 31.800 65.498 4.459 35.397 48.510 

128.000 89.000 210.800 31.800 66.101 3.439 34.720 45.679 

132.000 91.000 289.000 31.800 67.643 2.566 34.084 43.601 

138.000 92.000 155.900 31.800 73.637 7.169 37.507 52.058 

140.000 94.000 292.200 31.800 72.043 3.161 34.617 44.621 

145.000 95.000 229.500 31.800 75.872 4.916 36.035 48.234 

149.000 97.000 296.200 31.800 77.225 3.888 35.271 46.118 

154.000 99.000 238.300 31.800 80.607 5.779 36.808 48.806 

157.000 100.000 300.800 31.800 81.702 4.568 35.885 47.092 

163.000 102.000 246.800 31.800 86.000 6.685 37.623 50.310 

168.000 103.000 215.100 31.800 90.535 8.907 39.390 53.967 

167.000 113.000 159.300 31.800 85.784 13.684 42.752 51.904 
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Table A-19 (cont.) Aluminum Structural Plate Pipe Arch Culvert Sizes (Historic) 

(FHWA 2007) 

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

171.000 115.000 176.200 31.800 87.451 12.637 42.156 50.504 

176.000 116.000 166.200 31.800 91.239 15.228 44.114 54.468 

179.000 118.000 183.000 31.800 92.030 13.849 43.243 52.362 

184.000 120.000 173.000 31.800 95.477 16.511 45.276 55.640 

187.000 122.000 189.600 31.800 96.245 15.094 44.362 53.544 

193.000 124.000 179.700 31.800 100.552 18.107 46.703 57.459 

196.000 126.000 196.100 31.800 101.241 16.623 45.727 55.329 

201.000 128.000 186.300 31.800 104.815 19.431 47.914 58.685 

204.000 130.000 202.500 31.800 105.483 17.916 46.903 56.564 

207.000 132.000 221.300 31.800 106.283 16.452 45.888 54.500 

213.000 134.000 208.900 31.800 110.525 19.492 48.325 58.363 

216.000 136.000 227.300 31.800 111.258 17.977 47.262 56.274 

221.000 138.000 215.200 31.800 114.789 20.821 49.544 59.634 

224.000 140.000 233.300 31.800 115.499 19.275 48.448 57.546 

230.000 141.000 221.500 31.800 120.379 22.440 51.019 61.932 

233.000 143.000 239.300 31.800 120.954 20.844 49.874 59.800 

238.000 145.000 227.700 31.800 124.667 23.802 52.278 63.216 

241.000 147.000 245.300 31.800 125.219 22.172 51.098 61.077 

241.000 150.000 310.800 31.800 122.456 16.125 46.275 52.846 

250.000 151.000 251.200 31.800 130.302 23.791 52.579 62.872 

253.000 153.000 270.900 31.800 130.922 22.154 51.353 60.745 

258.000 155.000 257.200 31.800 134.585 25.144 53.835 64.175 

 

 



89 

 

 

 

 

 

 

Table A-20 Concrete Pipe Arch Culvert Sizes (ASTM C506 2007) 

B (in) D (in) Rb (in) Rm (in) Rt (in) hb (in) hm (in) ht (in) 

18.000 11.000 22.875 4.031 10.603 0.810 4.698 7.337 

22.000 13.500 27.500 5.250 13.738 0.934 6.006 9.868 

26.000 15.500 35.500 5.250 14.771 1.185 6.260 9.309 

28.500 18.000 40.688 4.594 14.561 1.483 5.909 7.048 

36.250 22.500 51.000 6.031 18.750 1.879 7.688 9.555 

43.750 26.625 62.000 6.375 22.503 2.456 8.578 10.340 

51.125 31.313 73.000 7.563 26.251 2.816 10.087 12.120 

58.500 36.000 84.000 8.750 30.000 3.177 11.596 13.901 

65.000 40.000 92.500 9.813 33.375 3.550 12.986 15.635 

73.000 45.000 105.000 11.219 37.504 3.887 14.691 17.761 

88.000 54.000 126.000 12.563 45.004 4.935 17.006 20.108 

102.000 62.000 162.500 13.969 51.999 5.131 18.659 21.839 

115.000 72.000 183.000 19.281 58.997 5.056 23.805 29.049 

122.000 77.250 218.000 20.063 61.997 4.713 24.342 28.691 

138.000 87.125 269.000 22.375 69.997 4.851 26.822 31.377 

154.000 96.875 301.375 24.000 77.974 5.553 29.111 33.651 

168.750 106.500 329.000 26.875 85.492 6.013 32.397 37.619 
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A.9 Summary of Referenced Studies 

The following table lists in chronological order the studies that have been 

conducted on hydraulic jumps.  Note that it does not provide a summary or abstract of 

each reference, but rather it summarizes only the information pertinent to this study, 

sorted by topic. 

 

 

Table A-21 Summary of Referenced Studies 

Author Topic Notes 

Stevens (1933) Circular 

Conduits 

Derivation of sequent depth formulas for circular 

conduits using similar logic as elliptical culverts 

Lane and 

Kinsvatar 

(1938) 

Circular 

Conduits 

Variable flow in a blocked 6-in transparent pipe 

Theory and experimentation matched well, although the 

momentum lessened somewhat, possibly due to 

boundary friction, non-uniform velocity distribution 

below the jump, and lower densities due to entrained 

air bubbles downstream 

When pipe fills, air supply is cut off, but air continues 

to become entrained in water within jump, and 

bubbles travel downstream, causing a vacuum 

upstream, which moves the jump upstream to 

rebalance pressure, thus submerging the jump and 

possibly causing vibrations and cavitation 

Closed 

Conduits 

Momentum equation still applies to closed conduits, for 

the most part, and therefore may be applied to any 

type of open channel or closed conduit 

Frank (1942)  Circular 

Conduits 

y2/D on x axis, vs. y1/D and yc/D, for complete and 

incomplete jumps  

Kalinske and 

Robertson 

(1943) 

Circular 

Conduits 

Original source for air entrainment equation 

Equation for weight of aerated water in jump is 

validated 

Tested at slopes of 0, 5, 10, 20, 30% 

Weight term for steep slopes was found to be up to 75% 

of F1+M1 

Tested in 6" diameter transparent Lucite 
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Table A-21 (cont.) Summary of Referenced Studies 

 

Author Topic Notes 

Kalinske and 

Robertson 

(1943) (cont.) 

Air 

Entrainment 

Original source for air entrainment equation  

Expanded on work by Lane and Kinsvatar (1938) by 

considering sloped closed conduits and finding 

expression for air-pumping capacity 

Tested on hydraulic jump in sloping circular pipe, and 

flow high enough that entrained air was carried out of 

pipe line 

Air pocket geometry depends on Fr1, pocket under 

constant pressure 

Flow below jump becomes open channel flow, such that 

hydraulic grade line ran almost parallel to invert of 

pipe 

Rate of air entrainment depends on relative intensity of 

turbulence, which depends on Fr1.  Slope had little 

effect. 

Developed air-pumping capacity of closed conduit 

jumps with slopes up to 30% as function of Fr1 

If slope of conduit is less than the hydraulic gradient, 

then bubbles forced through the jump will pass easily 

downstream; otherwise they build a pocket just 

downstream of the jump which extends to the outlet; 

bubble such that water flows at normal depth for 

slope and flow; air in bubble is under higher 

pressure, since the jump is incomplete 

Equation for air pumping capacity, used to find 

downstream density 

The pressure in the bubble remains constant, such that 

the pressure line is parallel to the water surface, as 

shown by figure 

At steeper slopes, several identical jumps form in series, 

each jump forming an air pocket with higher pressure 

Closed 

Conduits 

Full momentum equation taking slope and air 

entrainment into account 

Kinsvatar 

(1944) 

Slope Original jump classification based on location relative 

to the sloping channel, A through D 

First solution for sequent depth in rectangular channels 

Original classification of sloped channel jumps, using a 

1:6 slope 

Mavis (1946) Circular 

Conduits 

Nomagraph for circular conduits 

Serre (1950) Closed 

Conduits 

Use of H to denote pressure head above crown of 

conduit 
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Table A-21 (cont.) Summary of Referenced Studies 

 

Author Topic Notes 

Haindl (1957) Rectangular 

Conduits 

Focus of study 

Air pumping capacity from Stahl and Hager (1999) 

found to apply also to box conduits 

Friction neglected, α1 = 1 

Closed rectangular (box) cross section 

Lr/y1 vs. Fr1 is similar to open channel flow, whereas 

results of Lr/(D+H) and Lr/(D+H-y1) vs. Fr1 were 

"greatly dispersed" 

Equation for energy loss in rectangular conduits 

Used length of roller instead 

Slope Approximate weight of jump based on assumptions of 

linear limitation and linear change in gamma  

Air 

Entrainment 

ρ = 1/(1+βa), where βa is the air entrainment ratio 

"Energy loss in the hydraulic jump in a conduit is 

always… smaller or at the most equal to the energy 

loss in the hydraulic jump with free surface at 

identical Froude number in front of the jump" 

"The air sucked into the region of the roller in the upper 

part of the jump is driven into the lower zone of the 

jump in the form of air bubbles" 

"Near the ceiling the bubbles form air pockets moving 

along the ceiling, which cause pressure surges in the 

pipe in the course of flow” 

Closed 

Conduits 

Good diagram for closed conduit flow, including 

location within conduit  

"Energy loss in the hydraulic jump in a conduit is 

always… smaller or at the most equal to the energy 

loss in the hydraulic jump with free surface at 

identical Froude number in front of the jump" 

Use of H to denote pressure head above ceiling of 

conduit 

H only depends on pressure head at pipe outlet, and the 

slopes of the pipe and pressure head line, not on the 

jump itself 
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Table A-21 (cont.) Summary of Referenced Studies 

 

Author Topic Notes 

Haindl and 

Sotornik 

(1957) 

Air 

Entrainment 

Air pumping capacity from Kalinske and Robertson 

(1943) found to apply also to box conduits 

Air entrainment isn't dependant on slope or depth ratio  

Similar study to Kalinske and Robertson (1943) for 

rectangular conduits, by supposedly more accurate 

means (gamma radiation), produced similar results, 

resulting in the same equation produced in Kalinske 

and Robertson (1943). 

The "usual law of similarity is not valid for problems of 

aerated water" 

These results "point to a wider range of application"  

Ayoub (1959) Circular 

Conduits 

Equation for weight of aerated water in jump is 

validated  

Slope For any slope the length Lj increases as the discharge 

increases, and that for any discharge it decreases as 

the slope increases 

Air 

Entrainment 

In a sloping conduit the piezometric head on the invert 

increases up to a certain section, beyond which it will 

remain constant… the hydraulic grade line will be 

parallel to the invert, when all entrained air bubbles 

join together to form a long air pocket. 

Chow (1959) Belanger 

Equation 

A hydraulic jump will form in the channel if Fr1, y1, and 

y2 satisfy the Belanger equation 

Verified with many experimental data 

Harleman 

(1959) 

Friction “Bed shear is by far the most important corrective 

term."  

Velocity 

Distribution 

“It can be shown that the momentum-flux corrections 

and the turbulence-flux corrections tend to cancel 

each other."  

Thiruvengadam 

(1961) 

Circular 

Conduits 

Z
2
 vs. y1/y2 equation and chart 

Other 

Conduits 

Similar solutions can also be obtained for other 

geometrical shapes by this method if z and A can be 

expressed as mathematical functions 

Advani (1962) Circular 

Conduits 

"A new method based on the use of specific energy and 

force equations expressed in terms of suitable non-

dimensional parameters"  

Aryropoulos 

(1962) 

Slope Formulas for weight term 

Shape The length and general development of a hydraulic 

jump is affected by conduit shape 
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Table A-21 (cont.) Summary of Referenced Studies 

 

Author Topic Notes 

Silvester (1964) Circular 

Conduits 

y2/y1 vs. y1/D and Fr1 for closed circular conduits  

Narrow band of solutions for y2<D, curves diverge for 

y2>D depending on y1/D 

In nonrectangular channels, where jet enters the jump 

over a smaller width than the downstream surface, 

more recirculation occurs which probably is the 

reason for higher energy dissipation 

Formula for Lj in circular channels 

Rajaratnam 

(1965) 

Rectangular 

Conduits 

Momentum equations for box conduits, accounting for 

air entrainment, for complete and incomplete jumps 

in horizontal frictionless conduits  

y2/y1 vs. Fr1 and D/y1 for closed rectangular conduits - 

difficult to read 

Study assumes horizontal conduit 

Direct solution of sequent depth ratio for complete and 

incomplete jumps, taking into account air 

entrainment 

Circular 

Conduits 

Air entrainment was only tested for y1/D up to 0.6, so 

no analysis was extrapolated for values outside this 

range 

y2/y1 vs. Z
2
 and y1/D for complete jumps only, Z

2
 can 

be easily calculated from Q and D, dotted lines 

shown for y1/D over 0.8, "since the nature of flow in 

that region is not well understood" 

y2/y1 vs. Fr1 and y1/D for closed conduits - difficult to 

read, and transition is marked as a cross line on each 

line separately; all lines overlap up to Fr1 = 3 and 

then diverge; this format is used for easy comparison 

with other charts of other shapes, and Fr1 is 

applicable since Fr1 = 1 marks critical flow; variation 

is reversed and curves start crossing each other for 

y1/D > 0.5; for y1/D = 0.7 or 0.8, y2/y1 decreases fast 

with Fr1 

Chart in Thiruvengadam (1961) should not be used for 

incomplete jumps 

Study assumes horizontal conduit 

Direct solution of sequent depth ratio for complete and 

incomplete jumps 

Momentum equations for circular conduits, accounting 

for air entrainment, for complete and incomplete 

jumps in horizontal frictionless conduits 
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Table A-21 (cont.) Summary of Referenced Studies 

 

Author Topic Notes 

Rajaratnam 

(1965) (cont.) 

Closed 

Conduits 

Figure depicting incomplete jump 

Air 

Entrainment 

Air entrainment equation developed by Kalinske and 

Robertson (1943) may be reasonably applied to all 

shapes 

The effect of air entrainment is appreciable  

Use of air entrainment correction is recommended 

Hjelmfeldt 

(1967) 

Elliptical 

Conduits 

Use of Z
2
-like format, taking into account complete and 

incomplete jumps, which gives the same solution as 

for circular conduits as found by Thiruvengadam 

(1961) 

h2/D vs. Q
2
/gy1

5
*(D/B)

 2
 and y1/D  - also applicable for 

circular conduits 

 

Rajaratnam 

(1967) 

Circular 

Conduits 

Equation for complete jumps plotted in a convenient 

form, y2/y1 vs. Z
2
 and y1/D  

Less-convenient form y2/y1 vs. Fr1 and y1/D up to 0.6, 

with "cross-cuts" to indicate transition between 

complete and incomplete jumps 

Simple equation for weight of fluid in sloping circular 

conduit, taking into account air entrainment 

Equation given for complete jumps and incomplete 

jumps 

Closed 

Conduits 

"In the case of jumps formed in nonrectangular 

channels the flow expands in the horizontal direction 

in addition to the vertical direction, and the front of 

the jump is in the form of two oblique wings, which 

may either meet at the center of the channel or be 

bridged by a partial normal front." 

Non-rectangular channels are more efficient than 

rectangular channels 

"Jumps in horizontal conduits appear to have first 

studied by Lane and Kinsvatar in 1938” 

Friction Shear stress for unit channel width given as function of 

Fr1 only  

Expression for shear stress (τ0 = Ff/As) as a function of 

the skin friction coefficient (c'f, which is a function of 

location along the jump only), density of the fluid, 

and mean velocity 

"It was found that the boundary shear stress decreases 

continuously with the distance from the toe of the 

jump and becomes essentially constant towards the 

end of the jump" 
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Table A-21 (cont.) Summary of Referenced Studies 

 

Author Topic Notes 

Rajaratnam 

(1967) (cont.) 

Friction 

(cont.) 

Fr1 vs. y2/y1 for corrected Belanger equation for friction 

In-depth investigation 

"The difference in y2/y1 predicted by [the Belanger 

equation and the corrected momentum equation] 

increases with Fr1 and reaches about 4% for Fr1 of 

10." 

Corrected equation for bed shear stress, and 

experimentation agrees 

Velocity 

Distribution 

Supercritical velocities found not to be uniform, but to 

resemble a wall jet velocity distribution, which 

"increases from zero at the boundary to a maximal 

velocity of um and then decreases as y increases 

further to zero." 

Pressure 

Distribution 

"It is often assumed that the pressure distribution in the 

entire jump is hydrostatic.  At the same time it is 

difficult to accept this assumption, because of the 

intense mixing, flow curvatures, and air entrainment 

inherent in the jump. …there are appreciable 

departures from the generally assumed hydrostatic 

pressure distribution.  …the departure... increases 

with increasing Fr1... In all cases, however, there 

appears to be a narrow region (~2.5% of depth), close 

to the bed, where the pressure distribution is 

essentially hydrostatic." 

Air 

Entrainment 

Turbulence and air entrainment in classical jumps 

Rajaratnam 

(1968b) 

Friction As relative roughness increases, tailwater depth 

decreases asymptotically, such that yt/y2 = 0.783 for 

ke/y1 = 0.50  

Relative roughness on bed to supercritical depth ranged 

from 0.02 to 0.43 

First symmetric study on "rough jumps." 

y2/y1 vs. Fr1 and ke/y1 (testing range Fr1 3 to 10) 

(No correction to the velocity observations was made 

for the effects of entrained air, turbulence, and pitot-

displacement) 

"For ke/y1 greater than about 0.05, the length of the 

roller for the rough jump is reduced to roughly one 

half when compared with that of the smooth bed 

jump" (testing range Fr1 3 to 10) 
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Table A-21 (cont.) Summary of Referenced Studies 

 

Author Topic Notes 

Rajaratnam 

(1968b) 

(cont.) 

Friction 

(cont.) 

"The length of the surface roller as well as the length of 

the jump are roughly about half of the corresponding 

smooth bed jump for the relative roughness greater 

than about 0.10 (testing range Fr1 3 to 10) 

"In a certain range Fr1, the energy dissipation in the 

rough jump is appreciably larger than that of the 

corresponding classical jump, when the relative 

roughness is not too small, which one might expect" 

"For large values of the relative roughness, the 

reduction in the tailwater depth required is 

appreciable and the length of the jump gets reduced 

considerably" 

"Because the rough bed jump needs a smaller tailwater 

depth and is much shorter when compared with the 

corresponding smooth bed jump, it could 

advantageously be used for energy dissipation 

purposes” 

Rectangular 

Channels 

Nomagraphs for rectangular channels 

Circular 

Conduits 

y2/D on x axis, versus y1/D and yc/D for complete and 

incomplete jumps, with good figures, and pretty easy 

to read, complete and incomplete jumps are clearly 

separated, and equations used are identified in 

caption  

Equation for specific force for complete (iterative) and 

incomplete (explicit) jumps 

Closed 

Conduits 

"The change of flow from a low stage to a high stage, 

resulting in a hydraulic jump, may occur in a close 

conduit under part-full flow or pressure-flow 

conditions downstream of the jump." 

Rajaratnam 

(1968b) 

Circular 

Conduits 

Equations are complex, so explicit solutions are 

"probably impossible to calculate'  

Iteration is required 

Approximation of Froude number and y2 using y1 and 

approximation of yc for yc < 0.85D 

"Virtually impossible to maintain critical flow near the 

top of a circular conduit" (yc/D > 0.85) 

Use of undular, steady, strong, and so forth for circular 

channels 

For open channel flow: Fr1 up to 1.7 – undular; above 

1.7 – steady to strong 

   



98 

Table A-21 (cont.) Summary of Referenced Studies 

 

Author Topic Notes 

Gill (1980) Friction Rectangular, horizontal channel considered 

Bed shear is by far the most important corrective term 

for the momentum equation 

The Belanger equation was found to only slightly over-

predict the sequent depth ratio by neglecting friction 

Hsu et al. 

(1980) 

Circular 

Conduits 

y1/y2 vs. Z
2
 and y1/D, multiple charts corresponding to 

different slopes (0, 5, 10, 30, 60%) for complete and 

incomplete jumps  

"Conduit capacity and flow velocity reach their 

maximum when the depth is about 90-95% of the 

conduit diameter.  In practice, these maximum 

conditions seldom occur because any flow 

disturbance… tends to seal the conduit 

Fr is relatively insensitive to y for y/D = 0.1 to 0.7; Max 

Fr occurs at about y/D = 0.4 

Length = f(Fr1, y1, slope, for complete and incomplete 

jumps 

Slope Weight term considered for circular pipes, taking into 

account y1, Fr1, full area, gamma, and air 

entrainment ratio 

Air 

Entrainment 

"In general, except for high water discharges, a jump 

pumps air into the flow at a higher rate than the flow 

beyond the jump can handle and periodic blowback 

occurs.  The air blowback will cause the jump to 

temporarily move downstream." 

Closed 

Conduits 

Good definition sketch of incomplete jump, accounting 

for slope 

"The energy loss of a hydraulic jump in a closed 

conduit is smaller than the similar condition in open 

channel with identical Fr1, because the flow is 

confined by the conduit and cannot expand to the full 

sequent depth." 

Hughes and 

Flack (1984) 

Friction “Observations showed that boundary roughness reduces 

both the sequent depth and the length of a hydraulic 

jump, and that the observed reductions were related 

to both Froude number and the degree of roughness. 

The observed hydraulic jump characteristics are 

consistent with theory, and a proposed approximation 

for a theoretical hydraulic jump equation compares 

favorably with the observed characteristics.”  

Rectangular flume used to test this 

Pressure 

Distribution 

Correction factors for streamwise pressure distribution 

found not to make a significant difference  
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Table A-21 (cont.) Summary of Referenced Studies 

 

Author Topic Notes 

French (1985) Circular 

Conduits 

Empirical equations for finding sequent depth in 

circular conduits  

Normann et al. 

(1985) 

Closed 

Conduits 

"Just-full flow" = full pipe without pressure, like open 

channel flow 

Hager and 

Bremen 

(1989) 

Friction Time-averaged 2D velocity Distributions along classical 

jumps, with jump shape equations  

Study limited to 2<Fr1<12 

Additional term in momentum equation for friction 

derived for classical jumps 

Function of Fr1, aspect ratio, and Re1 

Explicit approximation for sequent depth ratio based on 

these 

Observations normally found to deviate from equations 

by only 2% 

Series of charts for rectangular hydraulic jump for 

sequent depth ratio as function of Fr1, Re1, and aspect 

ratio 

Belanger equation always overestimates actual observed 

SD ratio, especially with small y1, because of 

frictional forces 

Matsushita 

(1989) 

Air 

Entrainment 

Tentative classification: (1) single jump - normal 

incomplete jump; (2) transition jump - jump pushed 

upstream by accumulation of bubble downstream; 

eventually the bubble blows out through the jump 

and the jump returns to a single jump, to restart the 

process; (3) multi-jump - many stable jumps occur in 

series, separated by air pockets; all types are affected 

by tailwater, hydraulic properties of discharge, pipe 

diameter and slope, and the existence of exhaust 

vents or pipes; diagrams of each type 

Smith and Chen 

(1989) 

Rectangular 

Conduits 

Equation from Kalinske and Robertson (1943) modified 

slightly for square and rectangular conduits  

β1, β2, βa, βj (to account for air recirculation), K, slope 

used 

"Theoretical curves of Hj/D versus Fr1 could not be 

determined analytically for a sloping conduit" 

Hj/D vs. Fr1 and y1/D, separate chart for S = 0, 0.10, 

0.20, 0.30, 0.4, composite chart - very confusing, 

transition from complete to incomplete jumps 

denoted by a dotted line 

Empirical equations given, interpolation needed 

Jump height must be determined experimentally 
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Table A-21 (cont.) Summary of Referenced Studies 

 

Author Topic Notes 

Smith and Chen 

(1989) (cont.) 

Rectangular 

Conduits 

(cont.) 

For a constant y1/D, an explicit expression can be 

written relating jump height to Fr1 

Experiments agreed with theory, but jump height was in 

reality slightly smaller than predicted, and the 

difference became more pronounced as Fr1 increased, 

due to the omission of post-jump air-water ratio and 

friction terms 

Equation for transition given explicitly, and equations 

for complete and incomplete jumps provided 

Closed 

Conduits 

Good diagram of incomplete jump 

Jump height increases for y1/D up to about 2/3, then 

decreases 

As y1/D approaches 1, the jump height approaches 0, so 

no jump occurs at all when the pipe flows full 

Jump height is function of Fr1, y1/D, slope, βa, βj, Lj/D, 

K, and friction - too many to solve analytically, even 

if friction is ignored, and velocity coefficients are 

assume to be 1; must be determined experimentally 

"For the special case of a horizontal closed conduit, and 

with some simplifying assumptions, a theoretical 

solution can be obtained" 

Jump length becomes shorter in closed conduits as y1/D 

becomes larger 

Friction Omission of friction overestimates jump height; 

departure increases with Fr1  

Slope Hj/D vs. Fr1 and y1/D, separate chart for S = 0, 0.10, 

0.20, 0.30, 0.4, composite chart - very confusing, 

transition from complete to incomplete jumps 

denoted by a dotted line  

Empirical equations given, interpolation needed 

Air 

Entrainment 

Omission of air entrainment overestimates jump height 

Blowback explained 

Hager (1990) Circular 

Conduits 

h2/D vs. Z
2
 and y1/D for complete jumps only  

Ohtsu and 

Yasuda 

(1991a) 

Slope If slope is larger than 23 degrees, no clearly identifiable 

surface roller forms, but a high-velocity jet continues 

along the channel bed far downstream  

Practical equations for Lj on sloped channels for B, D 

jumps 
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Table A-21 (cont.) Summary of Referenced Studies 

 

Author Topic Notes 

Hager (1992) Circular 

Conduits 

Circular chart: Z vs. y2/D, with simplified equation (for 

complete jumps only)  

Circular channel jumps may or may not have a surface 

roller 

“Few experimental studies are available [for circular 

channels]…  The conventional momentum approach 

is again in agreement with observations". 

Lj = 5 to 7 times y2 

"The conventional momentum approach is again in 

agreement with observations, as for… non-

rectangular channels." 

Friction κ = ke/y1, ke = equivalent roughness height, y2/y1= Fr1 + 

0.41(Fr1-1)exp(-6κ), y2 and jump length reduced 

considerably compared to classical jump  

Bremen and 

Hager (1993) 

Belanger 

Equation 

Linear approximation for Belanger equation 

Husain et al. 

(1994) 

Slope K is defined as correction coefficient for shape, function 

of Fr1 and slope  

Fr1 corrected for slope terms 

y2/y1 vs. Fr1 for multiple slopes (applicable for 

rectangular channels, 4<Fr1<12, 1<S<10) 

Explicit linear solution for Lj/d1, Lj/d2, or Lj/(d2-d1) as 

function of slope and Fr1 

Explicit linear solution for sequent depth ratio as 

function of slope and Fr1 

Gunal and 

Narayanan 

(1996) 

Slope Tested for S = 0 to 10%  

Rectangular channel 

"The estimate of the roller length by visual observations 

can be as much as 1.6 times that obtained from the 

mean velocity profiles.  For a particular Froude 

number it is likely to be affected by such factors as 

the Reynolds number, the upstream velocity profiles, 

and the depth to width ratio of the channel." 

Montes (1998) Circular 

Conduits 

Use of Fr1 instead of Z
2
 vs. y2/y1 - all lines converge to 

a point at Fr1 = 1.  (This cannot be used for 

incomplete jumps) 

Charts for complete and incomplete jumps in circular 

conduits using y'1 vs. y'2 with Fr1 on lines  

Other 

Conduits 

Use iterative method to find y2 or solve for Fr1 directly 

and create chart 

Friction Narrower channels tend to produce shorter jumps 

(because of friction) 
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Table A-21 (cont.) Summary of Referenced Studies 

 

Author Topic Notes 

Montes (1998) 

(cont.) 

Air 

Entrainment 

Because incomplete jumps limit the supply of air 

entrainment, unless sufficient air is supplied by vents, 

etc., the jump will create a vacuum which will pull 

the jump upstream.  Also, the air is released 

downstream at the crown of the culvert, creating a 

bubble that restricts flow and thus increases 

velocities 

Closed 

Conduits 

Experimental verification for jumps in closed conduits 

is relatively weak compared with open channels 

"If the conjugate depth y2 is greater than the height of 

the section, the conduit runs full, and an incomplete 

jump develops.  However, the deficit in the depth, 

which cannot itself exceed the maximum height of 

the conduit, is made up by the hydrostatic pressure 

against the crown." 

Momentum equation for incomplete jumps 

Momentum equation rearranged to produce general 

equation based on Fr1 instead of Z
2
 

Experimental verification for jumps in closed conduits 

is relatively weak compared with open channels 

Hager (1999) Rectangular 

Conduits 

Lr/y1 = 5.75(Fr1-2) for Fr1<10  

Ventilation length La = 10Q/b (metric) 

Lj/h1 = f(Fr1, S0) 

Circular 

Conduits 

For Fr1 <= 1.5, jump is undular; 1.5<Fr1<2 undulations 

begin to break; Fr1>2 direct hydraulic jump; For 

y1/D<1/3 lateral wings and surface jet form with two 

asymmetric separation zones and bottom 

recirculation, because of a large increase in surface 

width from downstream to upstream; for y1/D>1/3 a 

classical-looking jump forms, with a straight front, 

surface roller, and bottom forward flow; Figure  

Energy dissipation is significantly smaller, and jump 

stability is lower than for equivalent rectangular 

jumps 

y2/D vs. Z and y1/D for complete jumps, dotted line to 

indicate Fr1 = 1, good diagram of jump within chart, 

only up to y1/D = 0.8, easy to read 

y2/D vs. Z (qD) and y1/D for S0 = 0, 10, 20, and 30% 

(separate charts) for complete and incomplete jumps, 

transition marked by a dotted line, explanation and 

commentary provided 

zA and A given in terms of theta 
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Table A-21 (cont.) Summary of Referenced Studies 

 

Author Topic Notes 

Hager (1999) 

(cont.) 

Circular 

Conduits 

(cont.) 

Dimensionless specific force equation given as Z
2
 = 

f(zA', A') 

Approximate solutions that can be solved explicitly 

Full momentum equation for closed conduit flow in 

circular conduits including weight term as function of 

Lj and S0, and air entrainment term 

Approximate expression for choking discharge 

Elliptical 

Conduits 

zA and A given in terms of B, D, y1 

Reduces to circular equation for B=D 

Same as circular, except for definition of Z 

No experimental study up-to-date on elliptical or pipe 

arches 

Pipe arch 

Conduits 

Approximated by ellipse for B:D = 2:1.5, which is same 

as circular, except for definition of Z 

No experimental study up-to-date on elliptical or pipe 

arches 

Closed 

Conduits 

Causes of transition to pressurized flow: "downstream 

submergence, large discharge, or conduit damage,... 

insufficient ventilation of the flow, wave formation 

due to flow disturbances... especially in supercritical 

flows, or the formation of... hydraulic jumps caused 

by downstream submergence" 

Lj for closed conduits defined as the "distance between 

the toe of the jump and the point where the profile 

meets the conduit soffit" 

"The hydraulic jump can, for example, occur… for a 

supercritical flow in a closed channel impinging 

suddenly on a pool of standing water downstream.” 

Transition may be termed "surcharge" or "choking", and 

is abrupt 

"Careful experiments have failed to produce the so-

called full flow condition, corresponding to free pipe 

full flow without surcharge" 

Full momentum equation for closed conduit flow in 

circular conduits including weight term as function of 

Lj and S0, and air entrainment term 

Slope As of 1999, no studies of effects of bottom slope on 

hydraulic jumps in circular conduits 

Friction "Values of y2 calculated after taking into account the 

influence of friction are always slightly smaller than 

the corresponding values obtained experimentally.  

The sequent flow depths obtained [analytically] may 

be considered as the upper bound, therefore." 
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Table A-21 (cont.) Summary of Referenced Studies 

 

Author Topic Notes 

Hager (1999) 

(cont.) 

Air 

Entrainment 

In all cases "air bubbles are either transported along 

with the flow or the bubbles return upstream due to 

buoyancy" 

Possible disadvantages: "pulsating slug flow, reduction 

of discharge due to two-phase flow, and uncontrolled 

air outblow" 

Stahl and Hager 

(1999) 

Circular 

Conduits 

Simplified hydraulic computation compared with 

experimentation to determine sequent depth ratio in 

circular conduits, based on Fr1  

Choking criteria for circular conduits based on Fr1 

(compare to transition equation?) 

Two types of jumps found in circular conduits, 

depending on upstream depth ratio: y'1 <1/3 -> lateral 

recirculation, y‟1 > 1/3 -> direct (classical) jump 

Height and Lj Tested for 1.5 < Fr1 < 6.5, 0.2 < y‟1 < 0.7 

Closed 

Conduits 

Complete jumps in closed conduits have received little 

attention relative to incomplete jumps (sources cited)  

Term "choking" used to describe transition between 

complete and incomplete jumps 

Negm (2000) Friction Roughness taken into account  

Slope Slope taken into account  

Sturm (2001) Circular 

Conduits 

Circular momentum function  

Chart with Z
2
 vs y2/y1 

Rectangular 

Channels 

Rectangular momentum function 

Ead and 

Rajaratnam 

(2002) 

Friction Sequent depth ratio for corrugated or rough beds in 

rectangular channels 

"It was found that the tailwater depth required to form a 

jump was appreciably smaller than that for the 

corresponding jumps on smooth beds. Further, the 

length of the jumps was about half of those on 

smooth beds. The integrated bed shear stress on the 

corrugated bed was about 10 times that on smooth 

beds." 

Hotchkiss et al. 

(2003) 

Circular 

Conduits 

References for computing sequent depth  

References for computing Lj 

Experimentation on circular culverts seem to limit y'1 to 

0.7 or 0.85 

Closed 

Conduits 

Complete vs. incomplete defined 
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Table A-21 (cont.) Summary of Referenced Studies 

 

Author Topic Notes 

Beirami and 

Chamani 

(2006) 

Slope Sequent depth ratio equation for sloped rectangular 

channels given 

Applicable for 4.5 < Fr1 < 12  

“Observations showed that in those cases where the 

gravity force component in the jump was opposite to 

the flow direction, the water surface of the surface 

roller became undular and unstable. The hydraulic 

jump on an entirely adverse slope was almost 

impossible to control. The analysis of experimental 

data showed that the negative slope of the basin 

reduces the sequent depth ratio, while a positive 

slope increases the sequent depth ratio.” 

(Friction ignored in study, which explains slight 

deviation between theory and experimentation; 

difference becomes more notable with higher values 

of friction and Fr1) 

Bushra and 

Noor (2006) 

Circular 

Conduits 

Use of dimensionless parameters (like mine - y/D, 

A/D
2
, hcA/D

3
, Q

2
/gD

5
), conversion from Z

2
 to Fr1

2
  

Approximate solutions for dimensionless area and 

area*centroid with max error 20% for y1/D = 0.2 to 

0.9 

Lj/h2 is independent of Fr1 for large Fr1 

Thompson and 

Kilgore 

(2006) 

Circular 

Conduits 

Fr1 vs y2/y1  

For incomplete jumps in circular pipes, use Lj = 7(y2-y1) 

Carollo et al. 

(2007) 

Friction Tests performed in a rectangular flume to find new 

solution to sequent depth and Lj taking roughness 

into account  

Use of beta to alter Belanger equation 

Sequent depth ratio and Lj decrease as roughness 

increases, and the reduction increases with Fr1 

Error of 5% in estimate of sequent depth ratio 
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Appendix B. Sequent Depth Derivations 

B.1 General Solution 

B.1.1 Momentum Equation 

Momentum theory states that the sum of the external forces acting upon a system 

equals the change in momentum across that system (Thompson and Kilgore 2006).  This 

principle can successfully be applied to complete or incomplete hydraulic jumps such as 

those shown in Figure B-1 on the next page.  According to this figure, and using an axis 

parallel to the channel or conduit bed, a one-dimensional form of the momentum equation 

may be written: 

 

12f21 MMF-WsinPP  φ  (B-1) 

 

where P1 and P2 are the pressure forces (lbs, N) at sections (1) and (2), respectively; W is 

the weight (lbs, N) of the fluid within the control volume; φ is the bed slope angle 

(degrees) from the horizontal; Ff is the force of friction (lbs, N) caused by the channel or 

conduit; and M1 and M2 are the momentum fluxes (lbs, N) at sections (1) and (2), 

respectively. 
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(a) 

 

(b) 

Figure B-1 Forces acting on (a) complete and (b) incomplete hydraulic jumps in 

closed conduits 
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On the left side of the equation, assuming hydrostatic pressure distribution, the 

pressure force at section (1) is given by: 

 

φcosAzgρP 1111   (B-2) 

 

where ρ1 = ρw is the density of water (slugs/ft
3

, kg/m
3
) at section (1); g is the acceleration 

(ft/s
2
, m/s

2
) due to gravity; 1z  is the distance (ft, m) from the water surface to the centroid 

of the cross-sectional area at section (1), perpendicular to the channel; and A1 is the 

cross-sectional area (ft
2
, m

2
) at section (1). 

Again assuming hydrostatic pressure distribution, the pressure force at section (2) 

is given by: 

 

φcosAzgρP 2222   (B-3) 

 

where ρ2 is the average density of the water (slugs/ft
3

, kg/m
3
) at section (2); 2z  is the 

distance (ft, m) from the water surface to the centroid of the cross-sectional area at 

section (2), perpendicular to the channel; and A2 is the cross-sectional area (ft
2
, m

2
) at 

section (2).  Due to air entrainment within the jump, the density of the water leaving the 

control volume is on average less than that entering it, such that ρ2 is given approximately 

by: 

 

a

w

2
β1

ρ
ρ


  (B-4) 
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where βa is the ratio of air to water after the jump.  Kalinske and Robertson (1943) and 

Haindl and Sotornik (1957) found this to be a function of the upstream Froude number 

only, regardless of channel shape or slope (see Appendix A.4). 

It is appropriate at this point to note that the area A and centroid z  are functions 

of both the shape of the conduit and the depth of flow through the conduit.  These 

functions are quite simple for some shapes (i.e. rectangular), but in the case of more 

complex shapes which must be treated in parts (i.e. pipe arches), the area and centroid 

must be computed by (Hibbeler 2001): 

 

 iAA  (B-5) 

 





i

ii

A

Az
z  (B-6) 

 

In the case of the centroid, taking the weighted average can be cumbersome, so instead 

the product of the centroid and area is used, given by: 

 

 iiAzAz  (B-7) 

 

Since the centroid is never computed alone in this study, 1z  is hereafter combined with 

A1 and written instead as  1Az , as is 2z  with A2. 

Returning to the momentum equation, the weight of the fluid within the control 

volume may be expressed in a variety of different ways. Conceptually, if the distance (ft, 
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m) parallel to the channel or conduit axis is measured from section (1) downstream, 

denoted by x, then the weight may be approximated mathematically as the integral of the 

incremental weight of the water summed over the entire control volume, given by: 

 

 
jL

0
ρgAdxρgdVdWW  (B-8) 

 

The frictional force may also be expressed in a variety of ways, but conceptually 

it is the cumulative shear stress (psf, Pa), τ0, over the wetted surface between sections (1) 

and (2).  If the distance (ft, m) around the wetted perimeter (Pw) from one side to a point 

along the wetted perimeter at any point (x) along the jump is measured, denoted by λ, 

then the frictional force may be approximated mathematically as the integral of the shear 

stress over the cumulative wetted area, given by: 

 

dxdλτdAτF
j wL

0

P

0
00f   





  (B-9) 

 

On the right side of the momentum equation, the momentums at sections (1) and 

(2) are given by: 

 

1111 QVρβM   (B-10) 

 

2222 QVρβM   (B-11) 
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where β1 and β2 are the Boussinesq velocity distribution coefficients at sections (1) and 

(2), respectively, V1 and V2 are the velocities (ft/s, m/s) at sections (1) and (2), 

respectively, and Q is the flow rate (cfs, cms) through the channel or conduit.  By 

continuity, V1 = Q/A1 and V2 = Q/A2. 

Combining these equations, the momentum equation in its full form may be 

written as: 

 

    φφφ sinρgAdxcosAzg
β1

ρ
cosAzgρ

jL

0
2

a

w
1w 
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    (B-12) 

 

Dividing through by ρw, and assuming a horizontal bed slope (i.e. φ = 0°), no air 

entrainment (i.e. βa = 0), no friction (i.e. τ0 = 0), and uniform velocity distributions at 

sections (1) and (2) (i.e. β1 = β2 =1), the momentum equation may be reduced to its 

simplest form: 

 

   
1

2

2

2

21
A

Q

A

Q
AzgAzg   (B-13) 

 

This simplified form of the momentum equation is the one used for the remainder of this 

study. 
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B.1.2 Dimensionless Parameters 

When creating sequent depth charts, it is often convenient to use ratios such as the 

Froude number to generalize the solution and eliminate the need for units.  In this study, 

such ratios are expressed as dimensionless parameters, denoted by the „prime‟ superscript 

(except for the Froude number), as defined below: 

 

1

3

1
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1

3
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 i2

i
i y' shape,

BD

Az
'Az   (B-18) 

 

where 1Fr  is the upstream Froude number; iy  is the depth of flow (ft, m) at section (i); D 

is the rise (or maximum height) of the conduit (ft, m); iT  is the top width of flow (ft, m) 

at section (i); B is the span (or maximum width) of the conduit (ft, m); iA  is the cross-

sectional area of flow (ft
2
, m

2
) at section (i); and  iAz  is the product of the cross-
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sectional area of flow at section (i), and the distance from the water surface to the 

centroid of that area (ft
3
, m

3
).  The functions Γ, Ω, and Ψ are derived hereafter for each of 

the five conduit shapes in this study. 

 

B.1.3 Complete Jumps 

Complete hydraulic jumps are defined here as closed conduit jumps in which the 

downstream subcritical flow remains open channel or gravity flow, i.e. y2 < D (see Figure 

B-1a).  If T1 is defined as the top width of flow (ft, m) at section (1), then by rearranging 

Equation B-13 and multiplying both sides of by T1/A1
3
, the following relationship may be 

found (Montes 1998): 
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The left side of this equation is equivalent to the square of the upstream Froude number 

(Fr1), and the top width T, area A, and centroid-area Az are functions of both the shape of 

the conduit and the depth of flow through the conduit at sections (1) and (2). 

By dividing the numerator and denominator of the right side of Equation B-19 by 

B
3
D

3
, the equation may be rewritten in its dimensionless form: 
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where 1Fr , 1T' , 1,2A' , and  1,2'Az  are defined by Equations B-14 through B-18.  This 

equation may be used for any conduit shape to generate the complete or normal jump 

portion of a sequent depth chart similar to those found in Montes (1998).  Unfortunately, 

in most cases it cannot be solved for y'2 explicitly.  In this study, the interval halving 

method (Sturm 2001) was used to iteratively find the solutions. 

 

B.1.4 Incomplete Jumps 

Incomplete hydraulic jumps are defined here as closed conduit jumps in which the 

downstream subcritical flow becomes pressurized, i.e. y2 ≥ D (see Figure B-1b).  In this 

the sequent depth y2 does not exist except in theory, because the water surface meets the 

top of the conduit within the control volume before such a depth can be reached.  The 

depth y2 may instead be considered as the pressure head (ft, m) at section (2), measured 

from the conduit bottom, or the sum of the rise of the conduit, D, and the pressure head 

(ft, m), H, above the conduit (Montes 1998).  In its dimensionless form, y'2 is therefore 

expressed as: 

 

H'1y'2   (B-21) 

 

where H/DH'  is the dimensionless pressure head above the conduit. 

The flow area A2 cannot exceed the cross sectional area of the conduit itself, so 

for pressure flow the subscript „2‟ is replaced by „f‟ to denote full conditions (i.e. y'f = 1).  

The centroid 2z  may also be considered as the sum of the centroid at full conditions, fz , 
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and the pressure head above the top of the conduit, H.  With this notation, Equation B-19 

may be rewritten in a dimensionless form for incomplete jumps: 
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In this case only H' is a function of y'2, such that it may be solved for explicitly: 
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Combining Equations B-21 and B-23 results in the following explicit solution for y'2: 
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where 1Fr , 1T' , f1,A' , and   f1,'Az  are defined by Equations B-14 through B-18.  This 

equation may be used for any conduit shape to generate the incomplete jump portion of a 

sequent depth chart similar to those found in Montes (1998). 

 

B.1.5 Transitional Jumps 

Transitional hydraulic jumps are defined here as closed conduit jumps in which 

the conduit at section (2) is barely full without being pressurized, i.e. y2 = D.  In practice, 

this condition is rare if not impossible, because as y approaches D, “choking” occurs, in 
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which the flow abruptly and spontaneously fills the conduit and becomes pressurized 

(Hager 1999).  In theory, however, it is important to determine at what value of the 

upstream Froude number to expect the transition between a complete and incomplete 

jump, so that the appropriate equation may be used to calculate the sequent depth.  The 

transitional upstream Froude number, (Fr1)t, may be found either by substituting the 

subscript „f‟ for „2‟ in Equation B-20, or by setting y'2 = 1 within Equation B-24; both 

methods produce the same result: 
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where 1T' , f1,A' , and   f1,'Az  are defined by Equations B-15 through B-18.  This equation 

may be used for any conduit shape to find the upstream Froude number associated with 

the transition between complete and incomplete jumps.  If the actual Fr1 is less than 

(Fr1)t, then a complete jump may form and y'2 should be calculated using Equation B-20; 

otherwise, the jump will be incomplete and y'2 should instead be calculated using 

Equation B-24. 
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B.2 Rectangular Conduits 

B.2.1 Definitions 

Figure B-2 below depicts the parameters used for rectangular conduits. 

 

 

Figure B-2 Cross section for rectangular conduits 

 

The top width (Γ), area (Ω), and centroid-area (Ψ) functions for rectangular conduits are 

given by the following equations (Sturm 2001): 
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B.2.2 Solution 

B.2.2.1 Complete Jumps 

Inserting Equations B-26a through B-26c into Equation B-20 using Equations  

B-15 through B-18 yields the following equation for complete jumps: 
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This may be further reduced to a dimensionless form of the well-known Belanger 

equation, as follows: 
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B.2.2.2 Incomplete Jumps 

Inserting Equations B-26a through B-26c into Equation B-24 using Equations  

B-15 through B-18 yields the following equation: 
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By combining like terms and rearranging, and noting that y'f by definition equals 1, the 

following equation is obtained for incomplete jumps:  
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B.2.2.3 Transitional Jumps 

Inserting Equations B-26a through B-26c into Equation B-25 using Equations  

B-15 through B-18 yields the following equation for the transition between complete and 

incomplete jumps: 
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which reduces to:  
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B.2.3 Sequent Depth Chart 

A visual representation of Equations B-30, B-32, and B-34 is shown Figure B-3 

on the next page.  This is modeled after the format used by Montes (1998), and provides 

a simple and effective shortcut for finding the sequent depth for any upstream depth and 

Froude number in rectangular conduits. 

Several observations should be made at this point about graphically determining 

the sequent depth using this type of chart.  Note that although the sequent depth is often 

treated as the dependant variable as in this derivation, y'2 in Figure B-3 is placed on the 

abscissa to suggest that hydraulic jumps are induced by downstream conditions, not 

upstream, although supercritical flow is also a prerequisite for the formation of a 

hydraulic jump.  Note also that for all Fr1, as y'1 increases and approaches about 0.67, y'2 

reaches a maximum, and as y'1 approaches 1, y'2 also approaches 1, consistent with the 

observations of Smith and Chen (1989).  This suggests that for conduits flowing less than 

2/3 full, the downstream depth increases with the upstream depth and Froude number; for 

conduits flowing more than 2/3 full, the downstream depth still increases with the 

upstream Froude number, but decreases with the upstream depth; for conduits flowing 

full, no jump will occur for any upstream Froude number.  As the following sections 

demonstrate, these observations apply to all closed conduit shapes. 
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2
 

 

Figure B-3 Sequent depth ratio chart for rectangular conduits 
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B.3 Circular Conduits 

B.3.1 Definitions 

Figure B-4 below depicts the parameters used for circular conduits.   

 

 

Figure B-4 Cross section for circular conduits 

 

In order to simplify the equations, the internal flow angle θ is typically used as an 

intermediate variable.  The top width (Γ), area (Ω), and centroid-area (Ψ) functions for 

circular conduits are given by the following equations (Sturm 2001): 
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B.3.2 Solution 

The sequent depth equation for complete jumps in circular conduits may be 

derived from Equation B-20.  In this case y'2 cannot be obtained explicitly in terms of y'1 

and Fr1
2
, so the sequent depth must be obtained iteratively.  Likewise, the sequent depth 

equation for incomplete jumps may be derived from Equation B-24, and the transitional 

upstream Froude number may be derived from Equation B-25.  In each of these cases, 

Equations B-35a through B-35d are used to evaluate Equations B-16 through B-18. 

 

B.3.3 Sequent Depth Chart 

A visual representation of this solution is shown in Figure B-5 on the next page.  

This is modeled after the format used by Montes (Montes 1998), and provides a simple 

and effective shortcut for finding the sequent depth for any upstream depth and Froude 

number in circular conduits. 
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Figure B-5 Sequent depth ratio chart for circular conduits 
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B.4 Elliptical Culverts 

B.4.1 Definitions 

Elliptical culverts are often manufactured such that they are defined by a span, 

rise, bottom radius, and middle radius (see Appendix A.7).  For simplicity in this study, 

however, they are assumed to be mathematically elliptical, defined only in terms of the 

span (B) and rise (D) of the culvert barrel.  The error associated with this assumption is 

addressed later on in this section.  Figure B-6 below depicts the simplified parameters 

used for elliptical conduits. 

 

 

Figure B-6 Cross section for elliptical culverts 

 

The top width (Γ), area (Ω), and centroid-area (Ψ) functions for elliptical culverts are 

given by the following equations (Hjelmfeldt 1967): 
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B.4.2 Solution 

The sequent depth equation for complete jumps in elliptical culverts may be 

derived from Equation B-20.  In this case y'2 cannot be obtained explicitly in terms of y'1 

and Fr1
2
, so the sequent depth must be obtained iteratively.  Likewise, the sequent depth 

equation for incomplete jumps may be derived from Equation B-24, and the transitional 

upstream Froude number may be derived from Equation B-25.  In each of these cases, 

Equations B-36a through B-36c are used to evaluate Equations B-16 through B-18.   

 

B.4.3 Sequent Depth Chart 

A visual representation of this solution is shown in Figure B-7 on the next page.  

This is modeled after the format used by Montes (1998), and provides a simple and 

effective shortcut for finding the sequent depth for any upstream depth and Froude 

number in elliptical conduits.  Note that this chart is identical to the one presented for 

circular conduits, which is expected since a circle is simply a special case of an ellipse in 

which B = D, causing the dimensionless parameters of the two shapes to be equivalent 

(Hjelmfeldt 1967). 
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Figure B-7 Sequent depth ratio chart for elliptical conduits 
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B.4.4 Error Analysis 

By assuming elliptical culverts to be mathematically elliptical, the sequent depth 

problem is greatly simplified, but a certain amount of error is introduced in the process 

since an ellipse does not precisely define the shape of an elliptical culvert as previously 

explained.  In an attempt to quantify this error, a similar chart to Figure B-7 was 

generated for each elliptical culvert in Appendix A.7, using the same eight parameters as 

for pipe arch culverts (see Section A.5).  Then the relative difference in values obtained 

for y'2 between the elliptical and pipe arch analyses was calculated for each combination 

of y'1 from 0 to 1 and Fr1 from 1 to 10, and the number of solutions that fell within 

specific error margins, each with a bin size of 0.1%, was tabulated cumulatively for all 

culvert shapes.  Finally, the first, second, third, and fourth quartile ranges were 

determined from the distribution data, and then the error distribution was plotted against 

Fr1 in the form of box and whisker plots to observe the trends in the data.  It was 

observed that y'2 was typically overestimated for metal elliptical culverts, but 

underestimated for concrete ones   

Figure B-8 on the next page shows the results of this analysis.  It is evident from 

this graph that the margin of error from the elliptical equations increases with Fr1, such 

that at Fr1=5, the error in y'2 will fall between 0.0 and 4.4% for metal culverts, and 

between -3.3 and 1.4% for concrete culverts.  This error may be higher than desired, in 

which case a user may prefer to apply the same logic for pipe arch culverts to an elliptical 

culvert, despite the added complexity.  This would eliminate the error caused by 

simplification and provide a more accurate estimate of y'2. 
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(a) 

 
(b) 

Figure B-8 Error distribution of ellipse assumption for (a) metal and (b) concrete 

elliptical culverts 
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B.5 Pipe Arch Culverts 

B.5.1 Definitions 

B.5.1.1 Shape Definitions 

Pipe arch culverts (also called "arch" (ASTM C506) culverts) are often used in 

place of circular culverts because they allow more height clearance than their circular 

counterparts due to their compact shape (Hager 1999).  They are defined by up to eight 

shape parameters (see Appendix A.8), which makes finding the area and centroid of flow 

far more complex than it is for the other shapes previously discussed.  These parameters 

include the span (B), rise (D), bottom radius (Rb), middle radius (Rm), top radius (Rb), 

bottom transition height (hb), neutral axis height (hm), and top transition height (ht) (see 

Figure B-9 on the next page). 

Pipe arch culverts are available by manufacturers in over 200 shapes and sizes 

(see Appendix A.8), making it impractical to produce a sequent depth chart for each one 

individually (Normann et al. 1985).  In previous hydraulic analyses, for simplification the 

pipe arch shape has been generalized either by assuming a single span-to-rise ratio for all 

culverts or by using a superimposed ellipse of 2:1 eccentricity (Hager 1999).  Both of 

these assumptions introduce an unknown amount of error (Normann et al. 1985) that is 

eliminated by the more precise approach presented here.  Again, it would still be 

impractical to generate a sequent depth chart for each unique shape individually, so an 

example set of parameters, listed in Table B-1 on the next page, is used to demonstrate 

how the methods presented in this section may be applied.  As shown in this table, each 

of the parameters (except for D) may instead be expressed as a fraction of the culvert rise, 

denoted in this study by the „prime‟ symbol, thereby facilitating the continued use of 

dimensionless parameters. 



133 

 

 

Figure B-9 Cross section for pipe arch culverts 

 

 

Table B-1 Example Pipe Arch Parameters 

Shape Parameter Symbol Value (in) Dimensionless Ratio Symbol Value 

Span* B 157.0 B/D B' 1.570 

Rise* D 100.0 - - - 

Bottom Radius* Rb 300.8 Rb/D R'b 3.008 

Middle Radius* Rm 31.75 Rm/D R'm 0.318 

Top Radius** Rt 81.67 Rt/D R't 0.817 

Bottom Transition** hb 4.576 hb/D h'b 0.046 

Neutral Axis Height** hm 35.84 hm/D h'm 0.358 

Top Transition** ht 46.98 ht/D h't 0.470 

* Source: (CONTECH 2007) 

** Derived from other parameters for continuity (see Appendix A.8) 
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B.5.1.2 Dimensions 

Because of the complex geometry of pipe arch culverts, the top width (Γ), area 

(Ω), and centroid-area (Ψ) functions must be derived in a piecewise fashion (delimited by 

the location of y relative to hb, hm, and ht), using the functions defined for rectangular and 

circular conduits.  Figure B-10 below shows that pipe arch culverts may be divided into 

four sections, hereafter referred to as the „Bottom Section‟, „Middle Section 1,‟ „Middle 

Section 2,‟ and „Top Section‟.  The labels „b‟, „m1‟, „m2‟, and „t‟ refer to the subscripts 

used to differentiate the functions and parameters for each section, respectively. 

 

 

 

 

Figure B-10 Bottom, middle and top pipe arch sections 

 



135 

The top width, area, and centroid-area functions for pipe arch culverts may therefore be 

defined as follows: 
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B.5.1.3 Bottom Section (0 < y' ≤ h'b) 

The bottom section of a pipe arch culvert could be treated as a simple circular 

conduit, with the exception that the diameter of the bottom arc does not equal the rise of 

the culvert.   Because of this difference, both parameters must be considered.  Figure  

B-11 on the next page gives a visual representation of the parameters to be used for this 

section.  Note that the subscript „b‟ signifies that these parameters and the equations that 

follow are unique to the bottom section of the culvert only.  The functions Γb, Ωb, and Ψb 

are all dependant upon y'b ≡ yb/D = y/D, and as with circular culverts, the internal flow 

angle θb may be used as an intermediate variable.  The top width (Γb), area (Ωb), and 

centroid-area (Ψb) functions for the bottom section may then be derived in terms of θb, as 

shown in the equations following Figure B-11. 
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Figure B-11 Parameters used for the bottom section of a pipe arch 
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B.5.1.4 Middle Section 1 (h'b < y' ≤ h't) 

The first middle section of a pipe arch culvert may be treated as a rectangular 

conduit.  Figure B-12 below gives a visual representation of the parameters to be used for 

this section. 

 

Figure B-12 Parameters used for the first middle section of a pipe arch culvert 

 

Again, the subscript „m1‟ signifies that these parameters and the equations that follow are 

unique to the first middle section of the culvert only.  The top width (Γm1), area (Ωm1), 

and centroid-area (Ψm1) functions for the first middle section are all dependant upon y'm1 

≡ ym1/D = (y – hm + Rm)/D, as shown below: 
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B.5.1.5 Middle Section 2 (h'b < y' ≤ h't) 

The second middle section of a pipe arch culvert may be treated as two halves of a 

circular conduit.  Figure B-13 on the next page gives a visual representation of the 

parameters to be used for this section.  The functions Γm2, Ωm2, and Ψm2 are all dependant 

upon y'm2 ≡ ym2/D = (y – hm + Rm)/D, and as with the bottom section, the internal flow 

angle θm may be used as an intermediate variable.  The top width (Γm2), area (Ωm2), and 

centroid-area (Ψm2) functions for the second middle section may then be derived in terms 

of θm, as shown in the equations following Figure B-13. 
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Figure B-13 Parameters used for the second middle section of a pipe arch culvert 
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B.5.1.6 Top Section (h't < y' ≤ 1) 

Like the bottom and second middle sections, the top section of a pipe arch culvert 

may be treated as a circular conduit.  Figure B-14 below gives a visual representation of 

the parameters to be used for this section. 

 

 

Figure B-14 Parameters used for the top section of a pipe arch culvert 

 

The functions Γt, Ωt, and Ψt are all dependant upon y't ≡ yt/D = (y + 2Rt – D)/D, and as 

with the bottom section, the internal flow angle θt may be used as an intermediate 

variable.  The top width (Γt), area (Ωt), and centroid-area (Ψt) functions for the top 

section may then be derived in terms of θt, as follows: 
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B.5.2 Solution 

The sequent depth equation for complete jumps in pipe arch culverts may be 

derived from Equation B-20.  In this case y'2 cannot be obtained explicitly in terms of y'1 

and Fr1
2
, so the sequent depth must be obtained iteratively.  Likewise, the sequent depth 

equation for incomplete jumps may be derived from Equation B-24, and the transitional 
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Froude number may be derived from Equation B-25.  In each of these cases, Equations 

B-37a through B-41d are used to evaluate Equations B-16 through B-18. 

 

B.5.3 Sequent Depth Chart 

A visual representation of this solution is shown in Figure B-15 on the next page.  

This is modeled after the format used by Montes (1998), and provides a simple and 

effective shortcut for finding the sequent depth for any upstream depth and Froude 

number in pipe arch conduits.  Note that this chart only applies to the pipe arch culvert as 

defined in Table B-1.  It is merely an illustration that such a chart may be created for any 

pipe arch shape. 



1
4
4
 

 

Figure B-15 Sequent depth ratio chart for the pipe arch culvert associated with the parameters listed Table B-1 
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B.6 User-Defined Conduits 

B.6.1 Definitions 

B.6.1.1 Coordinates 

In general, for any conduit shape (including the four defined above), the top 

width, area, and centroid-area may be defined numerically rather than geometrically.  

This is accomplished by defining a sufficient number of coordinates along the inner walls 

of the barrel to accurately represent the conduit shape.  These coordinates should be 

defined such that for every horizontal distance, xi, away from the left-most point, 

perpendicular to the conduit axis, two vertical ordinates exist relative to the lowest point 

in the conduit representing the location of the bottom and top inner edges of the barrel at 

that point, denoted by (yb)i and (yt)i, respectively.  Figure B-16 below depicts an example 

of how these coordinates might be defined for an “inverted egg-shaped” culvert. The 

coordinates for this figure are listed in Table B-2 on the next page. 

 

 

Figure B-16 Example cross section for user-defined coordinates in Table B-2 
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Table B-2 Example User-Defined Coordinates 

i x (m) yt (m) yb (m) 

1 0.00 0.51 0.51 

2 0.03 0.81 0.33 

3 0.09 1.00 0.22 

4 0.16 1.17 0.14 

5 0.25 1.32 0.07 

6 0.32 1.41 0.03 

7 0.38 1.47 0.02 

8 0.45 1.49 0.00 

9 0.51 1.50 0.00 

10 0.57 1.49 0.00 

11 0.63 1.47 0.02 

12 0.69 1.41 0.03 

13 0.77 1.32 0.07 

14 0.86 1.17 0.14 

15 0.93 1.00 0.22 

16 0.99 0.81 0.33 

17 1.02 0.51 0.51 

 

 

B.6.1.2 Dimensions 

Defining the coordinates in this manner rather than listing two x values for every 

y value provides two major advantages for this analysis.  First, it significantly simplifies 

the calculation of the centroid-area, and second, it allows for the addition of multiple top 

widths and areas, which may occur when sediment deposits or embedment split the flow 
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into two or more streams.  The conduit is therefore divided into multiple vertical sections, 

each with a thickness Δx = xi+1 – xi, as shown in Figure B-17 below. 

 

 

Figure B-17 Example cross section for a user-defined conduit 

 

From this figure it is evident that the top width (Γ), area (Ω), and centroid-area 

(Ψ) functions for user-defined conduits may be expressed by the following equations: 
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where the subscript „i' denotes an incremental value, and „n‟ is the total number of x-

coordinates used. 

The span (B) and rise (D) of the conduit may be found by taking the difference 

between the horizontal and vertical upper and lower limits of the coordinates used.  If the 

subscripts „max‟ and „min‟ are used to denote maximum and minimum values, 

respectively, then: 

 

  nimaxi xxB   (B-43) 

 

  
maxityD   (B-44) 

 

B.6.1.3 Dimensionless Coordinates 

In order to find the incremental top width, area, and centroid-area, the location of 

the flow depth with respect to the top and bottom coordinates of the conduit becomes 

important.  This relationship must be evaluated for each of the four y-coordinates 

defining the shape of the incremental vertical section being analyzed: (yb)i, (yt)i, (yb)i+1, 

and (yt)i+1.  It is worth mentioning that none of these coordinates are dependant upon 

another.  That is, (yb)i may be less than, equal to, or greater than (yb)i+1, and (yt)i may be 

less than, equal to, or greater than (yt)i+1.  The only restriction is that (yb)i must be less 

than or equal to (yt)i.  Because of this variability, when finding the relative location of y it 

is useful first to order the four conduit coordinates from smallest to greatest, using the 

terms hA, hB, hC, and hD, as shown in Figure B-18 on the next page.   
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Figure B-18 Definition of terms used for incremental vertical sections 

 

The four incremental dimensionless relative vertical coordinates are therefore defined as 

follows, again using the terms „min‟ and „max‟ to denote the minimum and maximum 

value, respectively: 

 

 
 

    
1ibib

iA

iA y,ymin
D

1

D

h
h'


  (B-45a) 

 

 
 

    
1ibib

iB

iB y,ymax
D

1

D

h
h'


  (B-45b) 

 

 
 

    
1itit

iC

iC y,ymin
D

1

D

h
h'


  (B-45c) 

 



150 

 
 

    
1itit

iD

iD y,ymax
D

1

D

h
h'


  (B-45d) 

 

For convenience and consistency, the incremental horizontal coordinates may also be 

expressed in a dimensionless form, by dividing them by the conduit span: 

 

B

x
x' i

i   (B-46) 

 

B.6.1.4 Basic Shape Characteristics 

Before continuing with the analysis of the user-defined conduit, it is necessary to 

study the characteristics of some of the basic shapes that are used hereafter to find the 

incremental top width, area, and centroid area for each vertical section.  These basic 

shapes are shown in Figure B-19 below. 

 

 

Figure B-19 Parameters for (a) triangular, (b) rectangular, and (c) trapezoidal cross 

sections 
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The top width, area, and centroid-area for the triangle may be found as follows: 
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Likewise, the top width, area, and centroid-area for the rectangle may be found by: 
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By combining the triangle and rectangle together, the top width, area, and centroid-area 

for the trapezoid may be found: 
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B.6.1.5 Incremental Shape Characteristics 

Again, depending on the relative position of y with respect to the conduit 

coordinates, the shape of the incremental vertical section will be different, and therefore 

the top width, area, and centroid-area must be calculated differently.  Figure B-20 on the 

next page shows that for each incremental section considered, one of five cases may 

occur and must be considered: 
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Figure B-20 Cases to consider for the analysis of each incremental vertical section of 

a user-defined conduit 

 

In each of these cases, the incremental shape characteristics may be derived from 

the basic formulas for triangular and trapezoidal cross sections, given by Equations  

B-47a through B-47d and B-49a through B-49c, respectively.  These derivations are 

shown by case as follows. 

 

B.6.1.6 Case 1 (0 < y ≤ hA) 

In Case 1, the flow depth falls below hA, which means that the section being 

analyzed does not contribute at all to the overall top width, area, or centroid-area of the 

conduit (see Figure B-20).  Therefore, 
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0A' i    (B-50b) 

 

  0'Az i   (B-50c) 

 

B.6.1.7 Case 2 (hA < y ≤ hB) 

In Case 2, the flow depth falls between hA and hB, creating a triangular cross-

section of flow (see Figure B-20), which may be analyzed according to Equations B-47a 

through B-47d as follows: 
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B.6.1.8 Case 3 (hB < y ≤ hC) 

In Case 3, the flow depth falls between hB and hC, creating a trapezoidal cross-

section of flow (see Figure B-20), and may be analyzed according to Equations B-49a 

through B-49c as follows: 
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B.6.1.9 Case 4 (hC < y ≤ hD) 

In Case 4, the flow depth falls between hC and hD, creating a complex shape 

which may be treated as a triangular section subtracted from a trapezoidal section (see 

Figure B-20), and may be analyzed according to Equations B-47a through B-47d and  

B-49a through B-49c as follows: 
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B.6.1.10   Case 5 (hD < y) 

In Case 5, the flow depth falls above hD, creating a complex shape which may be 

treated as a trapezoidal section subtracted from another trapezoidal section (see Figure  

B-20), and may be analyzed according to Equations B-49a through B-49c as follows: 
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B.6.1.11   Summary 

In summary, the top width (Γ), area (Ω), and centroid-area (Ψ) functions for user-

defined conduits may be expressed by Equations B-42a through B-42c, where depending 

on the flow depth relative to the conduit walls, Equations B-50a through B-54c are used 

to evaluate Ti, Ai, and  iAz  at each incremental vertical section. 

 

B.6.2 Solution 

The sequent depth equation for complete jumps in user-defined conduits may be 

derived from Equation B-20.  In this case y'2 cannot be obtained explicitly in terms of y'1 

and Fr1
2
, so the sequent depth must be obtained iteratively.  Likewise, the sequent depth 

equation for incomplete jumps may be derived from Equation B-24, and the transitional 

Froude number may be derived from Equation B-25.  In each of these cases, Equations 

B-42a through B-42c and B-50a through B-54c are used to evaluate Equations B-16 

through B-18.   
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B.6.3 Sequent Depth Chart 

A visual representation of this solution is shown in Figure B-21 on the next page.  

This is modeled after the format used by Montes (1998), and provides a simple and 

effective shortcut for finding the sequent depth for any upstream depth and Froude 

number in a user-defined conduit.  Note that this chart only applies to the user-defined 

culvert corresponding to the coordinates listed in Table B-2.  It is merely an illustration 

that such a chart may be created for any set of coordinates as defined in this section. 



1
5
9

 

 

Figure B-21 Sequent depth ratio chart for the user-defined culvert associated with the coordinates listed Table B-2 
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Appendix C. Example Problems 

C.1 Example 1: Box Culvert 

Determine the subcritical sequent depth of a hydraulic jump in a box culvert with 

a 6-ft span and a 4-ft rise, passing a flow of 300 cfs at an upstream depth of 2 ft. 

 

GIVEN: B = 6 ft, D = 4 ft, Q = 300 cfs, y1 = 2 ft 

FIND:  y2 

SOLUTION: (From Figure 8) 

Step 1: Calculate dimensionless parameters 

 
 ft 4

ft 2

D

y
y' 1

1  = 0.5 

 

Step 2: Calculate upstream Froude number 

 
    322

3

3

1

2
1

ft 2ft 6ft 32.2

sft 300

ygB

Q
Fr

s
  = 3.12 

Since Fr1 > 1, the flow is supercritical and a hydraulic jump can occur. 
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Step 3: Calculate transitional upstream Froude number 
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1
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 = 1.73 

 Since Fr1 > (Fr1)t, the jump will be incomplete. 

 

Step 4: Calculate downstream depth 
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2

12 y'Fry'
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        3222

0.53.120.5
2

1
3.12

2
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 = 1.84 

y2 = y'2*D = (1.84)(4 ft) = 7.35 ft 

 

Alternatively, y'2 may be found graphically using the values for y'1 and Fr1 calculated in 

Steps 1 and 2, respectively, as shown below in Figure C-1 on the next page. 

 

C.2 Example 2: Circular Culvert 

Determine the subcritical sequent depth of a hydraulic jump in a circular culvert 

with a 1.0-m diameter, passing a flow of 0.7 cms at an upstream depth of 0.3 m. 

 

GIVEN: D = 1.0 m, Q = 0.7 cms, y1 = 0.3 m 

FIND:  y2 

SOLUTION: (From Figure 9) 

Step 1: Calculate dimensionless parameters 

 
 m 1.0

m 0.3

D

y
y' 1

1  = 0.3 

    0.3212cos2y'12cosθ 1

1

1

1  
 = 2.32 radians 



1
6
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Figure C-1 Graphical solution to Example 1 
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Step 2: Calculate upstream Froude number 
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Q
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Since Fr1 > 1, the flow is supercritical and a hydraulic jump can occur. 

 

Step 3: Calculate transitional upstream Froude number 
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 = 3.39 

 Since Fr1 < (Fr1)t, the jump will be complete. 
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Step 4: Calculate downstream depth 
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Solving these equations iteratively yields y'2 = 0.721 

y2 = y'2*D = (0.72)(1 m) = 0.721 m 

 

Alternatively, y'2 may be found graphically using the values for y'1 and Fr1 calculated in 

Steps 1 and 2, respectively, as shown below in Figure C-2 on the next page. 

 

C.3 Example 3: Elliptical Culvert 

Determine the subcritical sequent depth of a hydraulic jump in an elliptical culvert 

with an 11-ft span, an 8-ft rise, 82-in top radius, and 38-in side radius (CONTECH 2007), 

passing a flow of 500 cfs at an upstream depth of 4 ft. 

 

GIVEN: B = 11 ft, D = 8 ft, Q = 500 cfs, y1 = 4 ft 

FIND:  y2 

SOLUTION: (From Figure 10) 

Step 1: Calculate dimensionless parameters 
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Figure C-2 Graphical solution to Example 2 
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Step 2: Calculate upstream Froude number 
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Since Fr1 > 1, the flow is supercritical and a hydraulic jump can occur. 

 

Step 3: Calculate transitional upstream Froude number 
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 Since Fr1 < (Fr1)t, the jump will be complete. 

 

Step 4: Calculate downstream depth 
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Solving these equations iteratively yields y'2 = 0.726 

y2 = y'2*D = (0.726)(8 ft) = 5.81 ft 

 

Alternatively, y'2 may be found graphically using the values for y'1 and Fr1 calculated in 

Steps 1 and 2, respectively, as shown below in Figure C-3 on the next page. 

 

C.4 Example 4: Pipe Arch Culvert 

Determine the subcritical sequent depth of a hydraulic jump in a pipe arch culvert 

with a 13-ft 1-in span, an 8-ft 4-in rise, 31.75-in “haunch” radius, 81.7-in “crown” radius, 

and 300.8-in “Invert” radius (CONTECH 2007), passing a flow of 4000 cfs at an 

upstream depth of 6.0 ft. 

 

GIVEN: B = 157 in, D = 100 in, Rb = 300.8 in, Rm = 31.75 in, Rt = 81.7 in, Q = 4000 cfs, 

y1 = 6.0 ft 

FIND:  y2 

SOLUTION: (From Figure 11) 

First, calculate the remaining shape parameters, as follows: 

   2

m

2

mbbm R2BRRRh   

      22
in 75.132in 157in 75.13in 300.8in 300.8  = 35.8 in 



1
6
9

 

 

Figure C-3 Graphical solution to Example 3 
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 mm

2

mm
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hD4B4RB
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      in 35.8in 100in 31.758

in 35.8in 1004in 157in 31.754in 157
2




 = 81.7 in 

  




























in 75.13in 300.8

in 75.13in 5.83
in 300.8

RR

Rh
Rh

mb

mm
bb = 4.58 in 

 
   

  


















mt

2

m

2

mt

tt
RR

R2BRR
1RDh  

   
    

  


















in 75.31in 7.18

in 75.312in 157in 75.31in 7.18
1in 81.7in 100

22

 

= 47.0 in 

 

Step 1: Calculate dimensionless parameters 

Dividing each shape parameter (except for D) by D, the dimensionless shape 

parameters are then calculated as follows: 

 
 

57.1
in 100

in 157

D

B
B'   

 
 

008.3
in 100

in 300.8

D

R
R' b

b   

 
 

3175.0
in 100

in 31.75

D

R
R' m

m   

 
 

817.0
in 100

in 81.7

D

R
R' t

t   

 
 

0458.0
in 100

in 4.58

D

h
h' b

b   
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358.0
in 100

in 35.8

D

h
h' m

m   

 
 

470.0
in 100

in 47.0

D

h
h' t

t   

 

Next, determine the upstream depth ratio: 

 
 in 100

in 72

D

y
y' 1

1  = 0.72 

 

Since h't < y'1 ≤ 1, T'1, A‟1, and   1'Az  are calculated as follows: 


















 

3.008

0.0458
12cos

R'

h'
12cosθ 1

b

b1h'

b

b  

= 0.349 radians 

 







 

mmb

m

1h'

m R'h'h'
R'

1
12cosθ

b  

 
 








  3175.0358.00458.0

0.3175

1
12cos 1 = 0.349 radians  

 







 

mmt

m

1h'

m R'h'h'
R'

1
12cosθ
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  3175.0358.0470.0

0.3175

1
12cos 1 = 3.86 radians 











  1

R'

h'-1
2cosθ

t

t1h'

t
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  1

0.817

470.0-1
2cos 1 = 3.86 radians  











  1

R'

y'-1
2cosθ

t

11y'

t

1

  







  1

0.817

72.0-1
2cos 1 = 4.58 radians 
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 /2θsin
B'

R'
2T'

11 y'

t
ty'

t1 







   4.58/2sin

3.008

0.817
2 








  = 0.784 

 

  bbb h'

b

h'

b

2

bh'

b θsinθ
2B'

R
  

 
 

  0.349sin349.0
1.572

3.008
2

  = 0.0203 

  mmbm

h'

m1 R'h'h'2R'B'
B'

1b
  

 
 

   0.3175358.00458.00.317521.57
1.57

1
  = 0.00288 

  bbb h'

m

h'

m

2

mh'

m2 θsinθ
2B'

R'
  

 
 

  0.349sin349.0
1.572

0.3175
2

  = 0.000227 

  mmtm

h'

m1 R'h'h'2R'B'
B'

1t
  

 
 

   0.3175358.0470.00.317521.57
1.57

1
  = 0.255 

  ttt h'

m

h'

m

2

mh'

m2 θsinθ
2B'

R'
  

 
 

  3.86sin86.3
1.572

0.3175
2

  = 0.145 

  ttt h'

t

h'

t

2

th'

t θsinθ
2B'

R'
  

 
 

  3.86sin86.3
1.572

0.817
2

  = 0.959 

  111 y'

t

y'

t

2

ty'

t θsinθ
2B'

R'


 
 

  4.58sin58.4
1.572

0.817
2

  = 1.18 

1

t

t

b

t

b

b y'

h't

h'

h'm2

h'

h'm1

h'

b1A'   

 = (0.0203) + (0.255 – 0.00288) + (0.145 – 0.000227) + (1.18 – 0.959) 

 = 0.641 
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1.573
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        /2θcos/2θ3/2θsin/2θ3sin
3B'

R' 11111 y'

t
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t
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t

3y'

t

3

ty'
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        4.58/2cos4.58/234.58/2sin4.58/23sin
1.573
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3
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      tt

b

bb h'

m1t1

h'

h'm1

h'
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h'

b1 h'y'h'y''Az   

      btt

b

b h'

m2b1

h'

m2t1

h'

h'm2

h'

m1b1 h'y'h'y'h'y'   

  t1

t

h'

tt1

y'

h't h'y'   

= (0.000373) + (0.72 – 0.0458)(0.0203) + (0.0548 – 6.95 x 10
-6

) 

+ (0.72 – 0.470)(0.255) – (0.72 – 0.0458)(0.00288) 

+ (0.0273 – 4.38 x 10
-7

) + (0.72 – 0.470)(0.145) 

– (0.72 – 0.0458)(0.000227) + (0.734 – 0.465) 

– (0.72 – 0.470)(0.959) = 0.223 

 

Since y'f = 1, A'f and   f'Az  are calculated as follows: 
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1
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= 2π radians 
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h'
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bfA'   

 = (0.0203) + (0.255 – 0.00288) + (0.145 – 0.000227) + (1.335 – 0.959) 

 = 0.793 
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h'

h'm1

h'

bbf

h'
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      btt
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b h'

m2bf

h'

m2tf

h'

h'm2

h'

m1bf h'y'h'y'h'y'   

  tf

t

h'

ttf

y'

h't h'y'   

= (0.000373) + (1 – 0.0458)(0.0203) + (0.0548 – 6.95 x 10
-6

) 

+ (1 – 0.470)(0.255) – (1 – 0.0458)(0.00288) 

+ (0.0273 – 4.38 x 10
-7

) + (1 – 0.470)(0.145) 

– (1 – 0.0458)(0.000227) + (1.09 – 0.465) 

– (1 – 0.470)(0.959) = 0.428 

 

Step 2: Calculate upstream Froude number 

1

3

1

32
1

T'A'DBg

Q
Fr    

 
          0.7840.641in 12ft 1in 100in 157ft 32.2

sft 4000

35322

3

s
 = 3.87 

Since Fr1 > 1, the flow is supercritical and a hydraulic jump can occur. 
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Step 3: Calculate transitional upstream Froude number 

 
    
 1f

2

1

1ff1

t1
A'A'A'

'Az'AzA'T'
Fr






       
   641.0793.00.641

223.0428.00.7930.784
2




 = 1.43 

Since Fr1 > (Fr1)t, the jump will be incomplete. 

 

Step 4: Calculate downstream depth 

       1ff11f

2

1

2

12

f1

2 'Az'AzA'T'A'A'A'Fr
A'T'

1
1y'   

  
     
       













0.2230.4280.7930.784

0.6410.7930.6413.87

0.7930.784

1
1

22

2
= 2.637 

y2 = y'2*D = (2.637)(100 in)(1 ft/12 in) = 22.0 ft 

 

Alternatively, y'2 may be found from Figure B-15, which was developed for this culvert 

shape, using the values for y'1 and Fr1 calculated in Steps 1 and 2, respectively, as shown 

below in Figure C-4 on the next page. 

 

C.5 Example 5: User-Defined Culvert 

Determine the subcritical sequent depth of a hydraulic jump in a culvert defined 

by the coordinates in Table B-2, passing a flow of 3.5 cms at an upstream depth of 0.9 m. 

 

GIVEN: Q = 3.5 cms, y1 = 0.9 m 

FIND:  y2 

 



1
7
7

 

 

Figure C-4 Graphical solution to Example 4 
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SOLUTION: (from Figure 12) 

Step 1: Calculate dimensionless parameters 

nixB  = 1.02 m 

  
maxityD  = 1.50 m 

 

For i = 1, find dimensionless coordinates of cross section as follows: 

 
 m 1.02

m 0.00

B

x
x' 1i

1i  
 = 0 

        
 m 1.50

m 0.33 m, 0.51min
y,ymin

D

1
h'

2ib1ib1iA 


= 0.220 

        
 m 1.50

m 0.33 m, 0.51max
y,ymax

D

1
h'

2ib1ib1iB 


= 0.340 

        
 m 1.50

m .810 m, 0.51min
y,ymin

D

1
h'

2it1it1iC 


= 0.340 

        
 m 1.50

m .810 m, 0.51max
y,ymax

D

1
h'

2it1it1iD 


= 0.540 

 

The dimensionless horizontal coordinates for i = 1 to 17 and dimensionless 

relative vertical coordinates for i = 1 to 16 are listed in Table C-1 on the next page. 
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Table C-1 Dimensionless Coordinates for Example 5 

i 
Coordinates Dimensionless Coordinates 

x (m) yt (m) yb (m) x' h'A h'B h'C h'D 

1 0.00 0.51 0.51 0.000 0.220 0.340 0.340 0.540 

2 0.03 0.81 0.33 0.029 0.147 0.220 0.540 0.667 

3 0.09 1.00 0.22 0.088 0.093 0.147 0.667 0.780 

4 0.16 1.17 0.14 0.157 0.047 0.093 0.780 0.880 

5 0.25 1.32 0.07 0.245 0.020 0.047 0.880 0.940 

6 0.32 1.41 0.03 0.314 0.013 0.020 0.940 0.980 

7 0.38 1.47 0.02 0.373 0.000 0.013 0.980 0.993 

8 0.45 1.49 0.00 0.441 0.000 0.000 0.993 1.000 

9 0.51 1.50 0.00 0.500 0.000 0.000 0.993 1.000 

10 0.57 1.49 0.00 0.559 0.000 0.013 0.980 0.993 

11 0.63 1.47 0.02 0.618 0.013 0.020 0.940 0.980 

12 0.69 1.41 0.03 0.676 0.020 0.047 0.880 0.940 

13 0.77 1.32 0.07 0.755 0.047 0.093 0.780 0.880 

14 0.86 1.17 0.14 0.843 0.093 0.147 0.667 0.780 

15 0.93 1.00 0.22 0.912 0.147 0.220 0.540 0.667 

16 0.99 0.81 0.33 0.971 0.220 0.340 0.340 0.540 

17 1.02 0.51 0.51 1.000 - - - - 

 

 

The upstream depth ratio is calculated as follows: 

 
 m 1.50

m 0.9

D

y
y' 1

1  = 0.6 
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For i = 1, since y'1 > (h'D)i=1, the incremental dimensionless top widths, areas, and 

centroid-areas at section 1 are calculated as follows: 

(T'1)i=1 = 0 

            
1iA1iB1iC1iD1i2i1i1 h'h'h'h'x'x'

2

1
A'


  

   .2200-340.0340.0540.0000.0029.0
2

1
 = 0.005 
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1iB1iB1iA

2

1iA

1iA1iB1iC1iD1

1i2i1i1

h'h'h'h'

h'h'h'h'

h'h'h'h'y'3

x'x'
6

1
'Az  

 

  

       
       
























22

22

540.0540.0340.0340.0

340.0340.0220.0220.0

220.0340.0340.0540.00.63

000.0029.0
6

1
 = 0.001 

 

The incremental dimensionless upstream top widths, areas, and centroid-areas for 

i = 1 to 16 are listed in Table C-2 on the next page.  By summation, T‟1, A‟1, and   1'Az  

are found to be 0.885, 0.514, and 0.140, respectively. 

 

For i = 1, since 1 > (h'D)i=1, the incremental dimensionless top widths, areas, and 

centroid-areas at full conditions are calculated as follows: 

            
iAiBiCiDi1i1if h'h'h'h'x'x'

2

1
A'  

 

  .2200-340.0340.0540.0000.0029.0
2

1
 = 0.005 
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 Table C-2 Upstream Condition Calculations for Example 5 

i 
Dimensionless Relative Coordinates Upstream Conditions 

x' h'A h'B h'C h'D Case T'1 A'1 (zA')1 

1 0.000 0.220 0.340 0.340 0.540 5 0.000 0.005 0.001 

2 0.029 0.147 0.220 0.540 0.667 4 0.031 0.024 0.005 

3 0.088 0.093 0.147 0.667 0.780 3 0.069 0.033 0.008 

4 0.157 0.047 0.093 0.780 0.880 3 0.088 0.047 0.012 

5 0.245 0.020 0.047 0.880 0.940 3 0.069 0.039 0.011 

6 0.314 0.013 0.020 0.940 0.980 3 0.059 0.034 0.010 

7 0.373 0.000 0.013 0.980 0.993 3 0.069 0.041 0.012 

8 0.441 0.000 0.000 0.993 1.000 3 0.059 0.035 0.011 

9 0.500 0.000 0.000 0.993 1.000 3 0.059 0.035 0.011 

10 0.559 0.000 0.013 0.980 0.993 3 0.059 0.035 0.010 

11 0.618 0.013 0.020 0.940 0.980 3 0.059 0.034 0.010 

12 0.676 0.020 0.047 0.880 0.940 3 0.078 0.044 0.013 

13 0.755 0.047 0.093 0.780 0.880 3 0.088 0.047 0.012 

14 0.843 0.093 0.147 0.667 0.780 3 0.069 0.033 0.008 

15 0.912 0.147 0.220 0.540 0.667 4 0.031 0.024 0.005 

16 0.971 0.220 0.340 0.340 0.540 5 0.000 0.005 0.001 

17 1.000 - - - - - - - - 

 TOTAL - 0.885 0.514 0.140 
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1iD1iD1iC
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2

1iB1iB1iA

2

1iA

1iA1iB1iC1iDf
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h'h'h'h'
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h'h'h'h'y'3
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6

1
'Az  

 

  

       
       
























22

22

540.0540.0340.0340.0

340.0340.0220.0220.0

220.0340.0340.0540.013

000.0029.0
6

1
 = 0.003 
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The incremental dimensionless upstream centroid-areas and incremental areas and 

centroid-areas at full conditions for i = 1 to 16 are listed in Table C-3 below.  By 

summation, A‟f and   f'Az  are found to be 0.758 and 0.404, respectively. 

 

 

Table C-3 Full Condition Calculations for Example 5 

i 
Dimensionless Relative Coordinates Full Conditions 

x' h'A h'B h'C h'D Case A'f (zA')f 

1 0.000 0.220 0.340 0.340 0.540 5 0.005 0.003 

2 0.029 0.147 0.220 0.540 0.667 4 0.025 0.015 

3 0.088 0.093 0.147 0.667 0.780 3 0.041 0.024 

4 0.157 0.047 0.093 0.780 0.880 3 0.067 0.037 

5 0.245 0.020 0.047 0.880 0.940 3 0.060 0.032 

6 0.314 0.013 0.020 0.940 0.980 3 0.055 0.028 

7 0.373 0.000 0.013 0.980 0.993 3 0.067 0.034 

8 0.441 0.000 0.000 0.993 1.000 3 0.059 0.029 

9 0.500 0.000 0.000 0.993 1.000 3 0.059 0.029 

10 0.559 0.000 0.013 0.980 0.993 3 0.058 0.029 

11 0.618 0.013 0.020 0.940 0.980 3 0.055 0.028 

12 0.676 0.020 0.047 0.880 0.940 3 0.069 0.036 

13 0.755 0.047 0.093 0.780 0.880 3 0.067 0.037 

14 0.843 0.093 0.147 0.667 0.780 3 0.041 0.024 

15 0.912 0.147 0.220 0.540 0.667 4 0.025 0.015 

16 0.971 0.220 0.340 0.340 0.540 5 0.005 0.003 

17 1.000 - - - - - - - 

 TOTAL - 0.758 0.404 
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Step 2: Calculate upstream Froude number 

1

3

1

32
1

T'A'DBg

Q
Fr   

 
        0.8850.514m 1.50m 1.02m 9.81

sm 3.5

3322

3

s
 = 1.52 

Since Fr1 > 1, the flow is supercritical and a hydraulic jump can occur. 

 

Step 3: Calculate transitional upstream Froude number 

 

 
    
 1f

2

1

1ff1

t1
A'A'A'

'Az'AzA'T'
Fr






       
   514.0758.00.514

140.0404.00.7580.885
2




 = 1.66 

 Since Fr1 < (Fr1)t, the jump will be complete. 

 

Step 4: Calculate downstream depth 
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for ((h'D)i < y'2 
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Solving these equations iteratively yields y'2 = 0.928 

y2 = y'2*D = (0.928)(1.50 m) = 1.39 m 

 

Alternatively, y'2 may be found from Figure B-21, which was developed for this user-

defined shape, using the values for y'1 and Fr1 calculated in Steps 1 and 2, respectively, as 

shown below in Figure C-5 on the next page. 

 



1
8
6
 

 

Figure C-5 Graphical solution to Example 5 
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Appendix D. Computer Implementation 

The solutions presented in this study may be solved by hand calculations, but as 

these tend to be tedious and prone to error, automation is preferable.  This appendix 

therefore presents the logic and Visual Basic code that may be used within Microsoft 

Excel to compute the solutions for each shape. 

 

D.1 General Logic 

The general logic for computing the subcritical sequent depth is displayed in 

Figures D-1 through D-4 below.  This logic follows the solution steps given in Chapter 4, 

and may be adapted to any of the conduit shapes of this study, with the exception of 

rectangular conduits which are treated somewhat differently due to their simple, explicit 

solutions.  As shown in Figure D-2, the interval halving method is used for complete 

jumps to iteratively compute the subcritical sequent depth. 
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Figure D-1 General logic for sequent depth calculation 
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Figure D-2 General logic for complete jumps 
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Figure D-2 (cont.) General logic for complete jumps 
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Figure D-3 General logic for incomplete jumps 

 

 

 

 

Figure D-4 General logic for no jump 
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D.2 Rectangular Conduits 

'Returns y2 value for given rectangular dimensions, Q, and y1 
Public Function Rectangular_y2(B As Double, D As Double, Q As Double, _ 

y1 As Double, units As String) 
 
    '**Absolute Variables** 

    Dim g As Double 'Acceleration due to gravity 
     
    Dim y1_prime As Double 'Upstream depth ratio 

    Dim T1_prime As Double 'Upstream dimensionless top width 
    Dim A1_prime As Double 'Upstream dimensionless area 
     

    Dim Fr1 As Double 'Upstream Froude number 
    Dim Fr1_t As Double 'Transitional upstream Froude number 
     

    Dim y2_prime As Double 'Downstream depth ratio 
     

    'Determine correct value of g 

    If units = "BG" Then 'English units 
        g = 32.21 
    ElseIf units = "SI" Then 'International units 

        g = 9.81 
    End If 
     

    'Step 1: Calculate dimensionless parameters 
    y1_prime = y1 / D 
    T1_prime = Rectangular_T_prime(y1_prime) 

    A1_prime = Rectangular_A_prime(y1_prime) 
     
    'Step 2: Calculate upstream Froude number 

    Fr1 = Q / Sqr(g * B ^ 2 * D ^ 3 * A1_prime ^ 3 / T1_prime) 
     
    If Fr1 <= 1 Then 'No Jump 

     

        Rectangular_y2 = y1 
         

    Else 'Jump may occur 
     
        'Step 3: Calculate transitional upstream Froude number 

        Fr1_t = Sqr((1 + y1_prime) / (2 * y1_prime ^ 2)) 
             
        'Step 4: Calculate downstream depth 

        If Fr1 < Fr1_t Then 'Complete jump 
         
            y2_prime = 0.5 * y1_prime * (Sqr(1 + 8 * Fr1 ^ 2) - 1) 

             
        Else 'Incomplete jump 
         

            y2_prime = 0.5 + (Fr1 ^ 2 + 0.5) * y1_prime ^ 2 _ 
                     - Fr1 ^ 2 * y1_prime ^ 3 
                 

        End If 

     
        Rectangular_y2 = y2_prime * D 

     
    End If 
 

End Function 
 
'Returns T' = T/B value for given y' value 

Public Function Rectangular_T_prime(y_prime As Double) As Double 
 
    Rectangular_T_prime = 1 
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End Function 

 
'Returns A' = A/BD value for given y' value 
Public Function Rectangular_A_prime(y_prime As Double) As Double 

     
    Rectangular_A_prime = y_prime 
     

End Function 
 
'Returns (zA)' = zA/BD^2 value for given y' value 

Public Function Rectangular_zA_prime(y_prime As Double) As Double 
 
    Rectangular_zA_prime = 1 / 2 * y_prime ^ 2 

         
End Function 

 

 

D.3 Circular Conduits 

'Returns y2 value for given circular dimensions, Q, and y1 

Public Function Circular_y2(D As Double, Q As Double, y1 As Double, _ 
units As String) 
     

    '**Absolute Variables** 
    Dim g As Double 'Acceleration due to gravity 
     

    Dim y1_prime As Double 'Upstream depth ratio 
    Dim T1_prime As Double 'Upstream dimensionless top width 
    Dim A1_prime As Double 'Upstream dimensionless area 

    Dim zA1_prime As Double 'Upstream dimensionless centroid-area 
     
    Dim Af_prime As Double 'Full conditions dimensionless area 

    Dim zAf_prime As Double 'Full conditions dimensionless 
                            'centroid-area 
     

    Dim y2_prime As Double 'Downstream depth ratio 
    Dim A2_prime As Double 'Downstream dimensionless area 
    Dim zA2_prime As Double 'Downstream dimensionless centroid-area 

     
    Dim Fr1 As Double 'Upstream Froude number 
    Dim Fr1_t As Double 'Transitional upstream Froude number 

     
    '**Iterative variables** (interval halving method) 
    Dim y2_prime1 As Double 'Lower estimate 

    Dim f1 As Double 'Function at lower estimate 
     
    Dim y2_prime2 As Double 'Upper estimate 

    Dim f2 As Double 'Function at upper estimate 
     
    Dim y2_prime3 As Double 'Intermediate estimate 

    Dim f3 As Double 'Function at intermediate estimate 
     
    Dim Error As Double 'Allowable error in y'2 

    Error = 0.00001 
     
    'Determine correct value of g 

    If units = "BG" Then 'English units 
        g = 32.21 
    ElseIf units = "SI" Then 'International units 

        g = 9.81 
    End If 
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    'Step 1: Calculate dimensionless parameters 

    y1_prime = y1 / D 
    T1_prime = Circular_T_prime(y1_prime) 
    A1_prime = Circular_A_prime(y1_prime) 

    zA1_prime = Circular_zA_prime(y1_prime) 
     
    Af_prime = Circular_A_prime(1) 

    zAf_prime = Circular_zA_prime(1) 
     
    'Step 2: Calculate upstream Froude number 

    Fr1 = Q / Sqr(g * D ^ 5 * A1_prime ^ 3 / T1_prime) 
     
    If Fr1 <= 1 Then 'No Jump 

     
        Circular_y2 = y1 
             

    Else 'Jump may occur 
     

        'Step 3: Calculate transitional upstream Froude number 

        Fr1_t = Sqr((T1_prime * Af_prime / A1_prime ^ 2) _ 
              * (zAf_prime - zA1_prime) / (Af_prime - A1_prime)) 
             

        'Step 4: Calculate downstream depth 
        If Fr1 < Fr1_t Then 'Complete jump 
             

            y2_prime1 = y1_prime 'Lower Limit 
            f1 = 1 - Fr1 ^ 2 
             

            y2_prime2 = 1 'Upper Limit 
            f2 = Fr1_t ^ 2 - Fr1 ^ 2 
             

            Do 
             
                y2_prime3 = (y2_prime1 + y2_prime2) / 2 

                A2_prime = Circular_A_prime(y2_prime3) 

                zA2_prime = Circular_zA_prime(y2_prime3) 
                f3 = (T1_prime * A2_prime / A1_prime ^ 2) _ 

                   * (zA1_prime - zA2_prime) / (A1_prime - A2_prime) _ 
                   - Fr1 ^ 2 
                 

                If f1 * f3 > 0 Then 'y2_prime3 is new upper estimate 
                    y2_prime1 = y2_prime3 
                    f1 = f3 

                Else 'y2_prime3 is new lower estimate 
                    y2_prime2 = y2_prime3 
                    f2 = f3 

                End If 
                 
            Loop Until y2_prime2 - y2_prime1 < Error 

             
            y2_prime = y2_prime3 
     

        Else 'Incomplete jump 
     
            y2_prime = (Fr1 ^ 2 * A1_prime ^ 2 _ 

                     * (Af_prime - A1_prime) _ 
                     - T1_prime * Af_prime _ 
                     * (zAf_prime - zA1_prime)) _ 

                     / (T1_prime * Af_prime ^ 2) + 1 
     
        End If 

     
        Circular_y2 = y2_prime * D 
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    End If 

 
End Function 
 

'Returns T' = T/B value for given y' value 
Public Function Circular_T_prime(y_prime As Double) As Double 
     

    Dim theta As Double 'Internal flow angle 
    theta = 2 * Application.Acos(1 - 2 * y_prime) 
     

    Circular_T_prime = Sin(theta / 2) 
     
End Function 

 
'Returns A' = A/BD value for given y' value 
Public Function Circular_A_prime(y_prime As Double) As Double 

     
    Dim theta As Double 'Internal flow angle 

    theta = 2 * Application.Acos(1 - 2 * y_prime) 

     
    Circular_A_prime = 1 / 8 * (theta - Sin(theta)) 
     

End Function 
 
'Returns (zA)' = zA/BD^2 value for given y' value 

Public Function Circular_zA_prime(y_prime As Double) As Double 
 
    Dim theta As Double 'Internal flow angle 

    theta = 2 * Application.Acos(1 - 2 * y_prime) 
     
    Circular_zA_prime = (3 * Sin(theta / 2) - Sin(theta / 2) ^ 3 _ 

                      - 3 * (theta / 2) * Cos(theta / 2)) / 24 
     
End Function 

 

 

D.4 Elliptical Conduits (Simple) 

'Returns y2 value for given Elliptical dimensions, Q, and y1 
Public Function Elliptical_y2_simple(B As Double, D As Double, _ 
Q As Double, y1 As Double, units As String) 

     
    '**Absolute Variables** 
    Dim g As Double 'Acceleration due to gravity 

     
    Dim y1_prime As Double 'Upstream depth ratio 
    Dim T1_prime As Double 'Upstream dimensionless top width 

    Dim A1_prime As Double 'Upstream dimensionless area 
    Dim zA1_prime As Double 'Upstream dimensionless centroid-area 
     

    Dim yf_prime As Double 'Full conditions depth ratio 
    Dim Af_prime As Double 'Full conditions dimensionless area 
    Dim zAf_prime As Double 'Full conditions dimensionless 

                            'centroid-area 
     
    Dim y2_prime As Double 'Downstream depth ratio 

    Dim A2_prime As Double 'Downstream dimensionless area 
    Dim zA2_prime As Double 'Downstream dimensionless centroid-area 
     

    Dim Fr1 As Double 'Upstream Froude number 
    Dim Fr1_t As Double 'Transitional upstream Froude number 
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    '**Iterative variables** (interval halving method) 

    Dim y2_prime1 As Double 'Lower estimate 
    Dim f1 As Double 'Function at lower estimate 
     

    Dim y2_prime2 As Double 'Upper estimate 
    Dim f2 As Double 'Function at upper estimate 
     

    Dim y2_prime3 As Double 'Intermediate estimate 
    Dim f3 As Double 'Function at intermediate estimate 
     

    Dim Error As Double 'Allowable error in y'2 
    Error = 0.00001 
     

    'Determine correct value of g 
    If units = "BG" Then 'English units 
        g = 32.21 

    ElseIf units = "SI" Then 'International units 
        g = 9.81 

    End If 

     
    'Step 1: Calculate dimensionless parameters 
    y1_prime = y1 / D 

    T1_prime = Elliptical_T_prime_simple(y1_prime) 
    A1_prime = Elliptical_A_prime_simple(y1_prime) 
    zA1_prime = Elliptical_zA_prime_simple(y1_prime) 

     
    Af_prime = Elliptical_A_prime_simple(1) 
    zAf_prime = Elliptical_zA_prime_simple(1) 

     
    'Step 2: Calculate upstream Froude number 
    Fr1 = Q / Sqr(g * B ^ 2 * D ^ 3 * A1_prime ^ 3 / T1_prime) 

     
    If Fr1 <= 1 Then 'No Jump 
     

        Elliptical_y2_simple = y1 

             
    Else 'Jump may occur 

     
        'Step 3: Calculate transitional upstream Froude number 
        Fr1_t = Sqr((T1_prime * Af_prime / A1_prime ^ 2) _ 

              * (zAf_prime - zA1_prime) / (Af_prime - A1_prime)) 
             
        'Step 4: Calculate downstream depth 

        If Fr1 < Fr1_t Then 'Complete jump 
             
            y2_prime1 = y1_prime 'Lower Limit 

            f1 = 1 - Fr1 ^ 2 
             
            y2_prime2 = 1 'Upper Limit 

            f2 = Fr1_t ^ 2 - Fr1 ^ 2 
             
            Do 

             
                y2_prime3 = (y2_prime1 + y2_prime2) / 2 
                A2_prime = Elliptical_A_prime_simple(y2_prime3) 

                zA2_prime = Elliptical_zA_prime_simple(y2_prime3) 
                f3 = (T1_prime * A2_prime / A1_prime ^ 2) _ 
                   * (zA1_prime - zA2_prime) / (A1_prime - A2_prime) _ 

                   - Fr1 ^ 2 
                 
                If f1 * f3 > 0 Then 'y2_prime3 is new upper estimate 

                    y2_prime1 = y2_prime3 
                    f1 = f3 
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                Else 'y2_prime3 is new lower estimate 

                    y2_prime2 = y2_prime3 

                    f2 = f3 
                End If 
                 

            Loop Until y2_prime2 - y2_prime1 < Error 
             
            y2_prime = y2_prime3 

     
        Else 'Incomplete jump 
     

            y2_prime = (Fr1 ^ 2 * A1_prime ^ 2 _ 
                     * (Af_prime - A1_prime) _ 
                     - T1_prime * Af_prime _ 

                     * (zAf_prime - zA1_prime)) _ 
                     / (T1_prime * Af_prime ^ 2) + 1 
     

        End If 
     

        Elliptical_y2_simple = y2_prime * D 

     
    End If 
 

End Function 
 
'Returns T' = T/B value for given y' value 

Public Function Elliptical_T_prime_simple(y_prime As Double) As Double 
      
    Elliptical_T_prime_simple = 2 * Sqr(y_prime - y_prime ^ 2) 

     
End Function 
 

'Returns A' = A/BD value for given y' value 
Public Function Elliptical_A_prime_simple(y_prime As Double) As Double 
     

    Dim T_prime As Double 'Dimensionless top width (T/B) 

    T_prime = Elliptical_T_prime_simple(y_prime) 
     

    Elliptical_A_prime_simple = (Application.Acos(1 - 2 * y_prime) _ 
                              - T_prime * (1 - 2 * y_prime)) / 4 
     

End Function 
 
'Returns (zA)' = zA/BD^2 value for given y' value 

Public Function Elliptical_zA_prime_simple(y_prime As Double) As Double 
 
    Dim T_prime As Double 

    Dim A_prime As Double 
    T_prime = Elliptical_T_prime_simple(y_prime) 
    A_prime = Elliptical_A_prime_simple(y_prime) 

     
    Elliptical_zA_prime_simple = 1 / 12 * (T_prime ^ 3 _ 
                               - 6 * (1 - 2 * y_prime) * A_prime) 

     
End Function 
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D.5 Elliptical Conduits (Complex) 

'Returns y2 value for given Elliptical dimensions, Q, and y1 
Public Function Elliptical_y2_complex(B As Double, D As Double, _ 

Rb As Double, Rm As Double, Q As Double, y1 As Double, units As String) 
     
    '**Absolute Variables** 

    Dim g As Double 'Acceleration due to gravity 
     
    Dim Rt As Double 

    Dim hb As Double 'Bottom transition height 
    Dim hm As Double 'Neutral axis height 
    Dim ht As Double 'Top transition height 

     
    Dim B_prime As Double 'Dimensionless span 
    Dim Rb_prime As Double 'Dimensionless bottom radius 

    Dim Rm_prime As Double 'Dimensionless middle radius 
    Dim Rt_prime As Double 'Dimensionless top radius 

    Dim hb_prime As Double 'Dimensionless bottom transition height 

    Dim hm_prime As Double 'Dimensionless neutral axis height 
    Dim ht_prime As Double 'Dimensionless top transition height 
     

    Dim y1_prime As Double 'Upstream depth ratio 
    Dim T1_prime As Double 'Upstream dimensionless top width 
    Dim A1_prime As Double 'Upstream dimensionless area 

    Dim zA1_prime As Double 'Upstream dimensionless centroid-area 
     
    Dim yf_prime As Double 'Full conditions depth ratio 

    Dim Af_prime As Double 'Full conditions dimensionless area 
    Dim zAf_prime As Double 'Full conditions dimensionless 
                            'centroid-area 

     
    Dim y2_prime As Double 'Downstream depth ratio 
    Dim A2_prime As Double 'Downstream dimensionless area 

    Dim zA2_prime As Double 'Downstream dimensionless centroid-area 

     
    Dim Fr1 As Double 'Upstream Froude number 

    Dim Fr1_t As Double 'Transitional upstream Froude number 
     
    '**Iterative variables** (interval halving method) 

    Dim y2_prime1 As Double 'Lower estimate 
    Dim f1 As Double 'Function at lower estimate 
     

    Dim y2_prime2 As Double 'Upper estimate 
    Dim f2 As Double 'Function at upper estimate 
     

    Dim y2_prime3 As Double 'Intermediate estimate 
    Dim f3 As Double 'Function at intermediate estimate 
     

    Dim Error As Double 'Allowable error in y'2 
    Error = 0.00001 
     

    'Determine correct value of g 

    If units = "BG" Then 'English units 
        g = 32.21 

    ElseIf units = "SI" Then 'International units 
        g = 9.81 
    End If 

     
    'Calculate remaining shape parameters 
    Rt = Rb 

    hm = D / 2 
    Rm = 1 / 2 * (Rb + B / 2 - (Rb - D / 2) ^ 2 / (Rb - B / 2)) 
    hb = Rb * (hm - Rm) / (Rb - Rm) 
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    ht = D - hb 

     

    'Step 1: Calculate dimensionless parameters 
    B_prime = B / D 
    Rb_prime = Rb / D 

    Rm_prime = Rm / D 
    Rt_prime = Rt / D 
    hb_prime = hb / D 

    hm_prime = hm / D 
    ht_prime = ht / D 
     

    y1_prime = y1 / D 
    T1_prime = Elliptical_T_prime_complex(B_prime, Rb_prime, _ 

   Rm_prime, Rt_prime, hb_prime, hm_prime, ht_prime, _ 

   y1_prime) 
    A1_prime = Elliptical_A_prime_complex(B_prime, Rb_prime, _ 

   Rm_prime, Rt_prime, hb_prime, hm_prime, ht_prime, _ 

   y1_prime) 
    zA1_prime = Elliptical_zA_prime_complex(B_prime, Rb_prime, _ 

                Rm_prime, Rt_prime, hb_prime, hm_prime, ht_prime, _ 

                y1_prime) 
     
    Af_prime = Elliptical_A_prime_complex(B_prime, Rb_prime, _ 

   Rm_prime, Rt_prime, hb_prime, hm_prime, ht_prime, 1) 
    zAf_prime = Elliptical_zA_prime_complex(B_prime, Rb_prime, _ 
                Rm_prime, Rt_prime, hb_prime, hm_prime, ht_prime, 1) 

     
    'Step 2: Calculate upstream Froude number 
    Fr1 = Q / Sqr(g * B ^ 2 * D ^ 3 * A1_prime ^ 3 / T1_prime) 

     
    If Fr1 <= 1 Then 'No Jump 
     

        Elliptical_y2_complex = y1 
         
    Else 'Jump may occur 

     

        'Step 3: Calculate transitional upstream Froude number 
        Fr1_t = Sqr((T1_prime * Af_prime / A1_prime ^ 2) _ 

              * (zAf_prime - zA1_prime) / (Af_prime - A1_prime)) 
             
        'Step 4: Calculate downstream depth 

        If Fr1 < Fr1_t Then 'Complete jump 
             
            y2_prime1 = y1_prime 'Lower Limit 

            f1 = 1 - Fr1 ^ 2 
             
            y2_prime2 = 1 'Upper Limit 

            f2 = Fr1_t ^ 2 - Fr1 ^ 2 
             
            Do 

             
                y2_prime3 = (y2_prime1 + y2_prime2) / 2 
                A2_prime = Elliptical_A_prime_complex(B_prime, _ 

                           Rb_prime, Rm_prime, Rt_prime, hb_prime, _ 
                           hm_prime, ht_prime, y2_prime3) 
                zA2_prime = Elliptical_zA_prime_complex(B_prime, _ 

                            Rb_prime, Rm_prime, Rt_prime, hb_prime, _ 
                            hm_prime, ht_prime, y2_prime3) 
                f3 = (T1_prime * A2_prime / A1_prime ^ 2) _ 

                     * (zA1_prime - zA2_prime) _ 
   / (A1_prime - A2_prime) - Fr1 ^ 2 

                 

                If f1 * f3 > 0 Then 'y2_prime3 is new upper estimate 
                    y2_prime1 = y2_prime3 
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                    f1 = f3 

                Else 'y2_prime3 is new lower estimate 

                    y2_prime2 = y2_prime3 
                    f2 = f3 
                End If 

                 
            Loop Until y2_prime2 - y2_prime1 < Error 
             

            y2_prime = y2_prime3 
     
        Else 'Incomplete jump 

     
            y2_prime = (Fr1 ^ 2 * A1_prime ^ 2 _ 
                     * (Af_prime - A1_prime) _ 

                     - T1_prime * Af_prime _ 
                     * (zAf_prime - zA1_prime)) _ 
                     / (T1_prime * Af_prime ^ 2) + 1 

     
        End If 

     

        Elliptical_y2_complex = y2_prime * D 
     
    End If 

 
End Function 
 

'Returns T' = T/B value for given pipe arch parameters and y' value 
Public Function Elliptical_T_prime_complex(B_prime As Double, _ 
Rb_prime As Double, Rm_prime As Double, Rt_prime As Double, _ 

hb_prime As Double, hm_prime As Double, ht_prime As Double, _ 
y_prime As Double) As Double 
     

    Dim Tb_prime As Double 
    Dim Tm1_prime As Double 
    Dim Tm2_prime As Double 

    Dim Tt_prime As Double 

     
    If y_prime <= hb_prime Then 

     
        Tb_prime = Elliptical_Tb_prime(B_prime, Rb_prime, y_prime) 
         

    ElseIf y_prime <= ht_prime Then 
     
        Tm1_prime = Elliptical_Tm1_prime(B_prime, Rm_prime, hm_prime, _ 

                    y_prime) 
        Tm2_prime = Elliptical_Tm2_prime(B_prime, Rm_prime, hm_prime, _ 
                    y_prime) 

                     
    ElseIf y_prime <= 1 Then 
     

        Tt_prime = Elliptical_Tt_prime(B_prime, Rt_prime, y_prime) 
         
    End If 

     
    Elliptical_T_prime_complex = Tb_prime + Tm1_prime + Tm2_prime _ 
                               + Tt_prime 

     
End Function 
 

'Returns A' = A/BD value for given pipe arch parameters and y' value 
Public Function Elliptical_A_prime_complex(B_prime As Double, _ 
Rb_prime As Double, Rm_prime As Double, Rt_prime As Double, _ 

hb_prime As Double, hm_prime As Double, ht_prime As Double, _ 
y_prime As Double) As Double 
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    Dim Ab_prime As Double 

    Dim Am1_prime As Double 
    Dim Am2_prime As Double 
    Dim At_prime As Double 

     
    If y_prime <= hb_prime Then 
     

        Ab_prime = Elliptical_Ab_prime(B_prime, Rb_prime, y_prime) 
         
    ElseIf y_prime <= ht_prime Then 

     
        Ab_prime = Elliptical_Ab_prime(B_prime, Rb_prime, hb_prime) 
        Am1_prime = Elliptical_Am1_prime(B_prime, Rm_prime, hm_prime, _ 

                    y_prime) _ 
                  - Elliptical_Am1_prime(B_prime, Rm_prime, hm_prime, _ 
                    hb_prime) 

        Am2_prime = Elliptical_Am2_prime(B_prime, Rm_prime, hm_prime, _ 
                    y_prime) _ 

                  - Elliptical_Am2_prime(B_prime, Rm_prime, hm_prime, _ 

                    hb_prime) 
                     
    ElseIf y_prime <= 1 Then 

     
        Ab_prime = Elliptical_Ab_prime(B_prime, Rb_prime, hb_prime) 
        Am1_prime = Elliptical_Am1_prime(B_prime, Rm_prime, hm_prime, _ 

                    ht_prime) _ 
                  - Elliptical_Am1_prime(B_prime, Rm_prime, hm_prime, _ 
                    hb_prime) 

        Am2_prime = Elliptical_Am2_prime(B_prime, Rm_prime, hm_prime, _ 
                    ht_prime) _ 
                  - Elliptical_Am2_prime(B_prime, Rm_prime, hm_prime, _ 

                    hb_prime) 
        At_prime = Elliptical_At_prime(B_prime, Rt_prime, y_prime) _ 
                 - Elliptical_At_prime(B_prime, Rt_prime, ht_prime) 

                  

    End If 
     

    Elliptical_A_prime_complex = Ab_prime + Am1_prime + Am2_prime _ 
                               + At_prime 
     

End Function 
 
'Returns (zA)' = zA/BD^2 value for given pipe arch parameters and y' 

Public Function Elliptical_zA_prime_complex(B_prime As Double, _ 
Rb_prime As Double, Rm_prime As Double, Rt_prime As Double, _ 
hb_prime As Double, hm_prime As Double, ht_prime As Double, _ 

y_prime As Double) As Double 
     
    Dim zAb_prime As Double 

    Dim zAm1_prime As Double 
    Dim zAm2_prime As Double 
    Dim zAt_prime As Double 

     
    If y_prime <= hb_prime Then 
     

        zAb_prime = Elliptical_zAb_prime(B_prime, Rb_prime, y_prime) 
         
    ElseIf y_prime <= ht_prime Then 

     
        zAb_prime = Elliptical_zAb_prime(B_prime, Rb_prime, hb_prime) _ 
                  + (y_prime - hb_prime) _ 

                  * Elliptical_Ab_prime(B_prime, Rb_prime, hb_prime) 
        zAm1_prime = Elliptical_zAm1_prime(B_prime, Rm_prime, _ 
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                     hm_prime, y_prime) _ 

                   - Elliptical_zAm1_prime(B_prime, Rm_prime, _ 

                     hm_prime, hb_prime) _ 
                   - (y_prime - hb_prime) _ 
                   * Elliptical_Am1_prime(B_prime, Rm_prime, _ 

                     hm_prime, hb_prime) 
        zAm2_prime = Elliptical_zAm2_prime(B_prime, Rm_prime, _ 
                     hm_prime, y_prime) _ 

                   - Elliptical_zAm2_prime(B_prime, Rm_prime, _ 
                     hm_prime, hb_prime) _ 
                   - (y_prime - hb_prime) _ 

                   * Elliptical_Am2_prime(B_prime, Rm_prime, _ 
                     hm_prime, hb_prime) 
                      

    ElseIf y_prime <= 1 Then 
     
        zAb_prime = Elliptical_zAb_prime(B_prime, Rb_prime, hb_prime) _ 

                  + (y_prime - hb_prime) _ 
                  * Elliptical_Ab_prime(B_prime, Rb_prime, hb_prime) 

        zAm1_prime = Elliptical_zAm1_prime(B_prime, Rm_prime, _ 

                     hm_prime, ht_prime) _ 
                   - Elliptical_zAm1_prime(B_prime, Rm_prime, _ 
                     hm_prime, hb_prime) _ 

                   + (y_prime - ht_prime) _ 
                   * Elliptical_Am1_prime(B_prime, Rm_prime, _ 
                     hm_prime, ht_prime) _ 

                   - (y_prime - hb_prime) _ 
                   * Elliptical_Am1_prime(B_prime, Rm_prime, _ 
                     hm_prime, hb_prime) 

        zAm2_prime = Elliptical_zAm2_prime(B_prime, Rm_prime, _ 
                     hm_prime, ht_prime) _ 
                   - Elliptical_zAm2_prime(B_prime, Rm_prime, _ 

                     hm_prime, hb_prime) _ 
                   + (y_prime - ht_prime) _ 
                   * Elliptical_Am2_prime(B_prime, Rm_prime, _ 

                     hm_prime, ht_prime) _ 

                   - (y_prime - hb_prime) _ 
                   * Elliptical_Am2_prime(B_prime, Rm_prime, _ 

                     hm_prime, hb_prime) 
        zAt_prime = Elliptical_zAt_prime(B_prime, Rt_prime, y_prime) _ 
                  - Elliptical_zAt_prime(B_prime, Rt_prime, ht_prime) _ 

                  - (y_prime - ht_prime) _ 
                  * Elliptical_At_prime(B_prime, Rt_prime, ht_prime) 
                   

    End If 
     
    Elliptical_zA_prime_complex = zAb_prime + zAm1_prime _ 

                                + zAm2_prime + zAt_prime 
     
End Function 

 
'Bottom section functions 
Function Elliptical_Tb_prime(B_prime As Double, Rb_prime As Double, _ 

y_prime As Double) As Double 
 
    Dim theta_b As Double 

    theta_b = 2 * Application.Acos(1 - y_prime / Rb_prime) 
     
    Elliptical_Tb_prime = 2 * Rb_prime / B_prime * Sin(theta_b / 2) 

 
End Function 
 

Function Elliptical_Ab_prime(B_prime As Double, Rb_prime As Double, _ 
y_prime As Double) As Double 
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    Dim theta_b As Double 

    theta_b = 2 * Application.Acos(1 - y_prime / Rb_prime) 
     
    Elliptical_Ab_prime = Rb_prime ^ 2 / (2 * B_prime) _ 

                        * (theta_b - Sin(theta_b)) 
 
End Function 

 
Function Elliptical_zAb_prime(B_prime As Double, Rb_prime As Double, _ 
y_prime As Double) As Double 

 
    Dim theta_b As Double 
    theta_b = 2 * Application.Acos(1 - y_prime / Rb_prime) 

     
    Elliptical_zAb_prime = Rb_prime ^ 3 / (3 * B_prime) _ 
                       * (3 * Sin(theta_b / 2) - Sin(theta_b / 2) ^ 3 _ 

                       - 3 * (theta_b / 2) * Cos(theta_b / 2)) 
 

End Function 

 
'Middle section 1 functions 
Function Elliptical_Tm1_prime(B_prime As Double, Rm_prime As Double, _ 

hm_prime As Double, y_prime As Double) As Double 
     
    Elliptical_Tm1_prime = 1 / B_prime * (B_prime - 2 * Rm_prime) 

 
End Function 
 

Function Elliptical_Am1_prime(B_prime As Double, Rm_prime As Double, _ 
hm_prime As Double, y_prime As Double) As Double 
     

    Elliptical_Am1_prime = 1 / B_prime * (B_prime - 2 * Rm_prime) _ 
                         * (y_prime - hm_prime + Rm_prime) 
 

End Function 

 
Function Elliptical_zAm1_prime(B_prime As Double, Rm_prime As Double, _ 

hm_prime As Double, y_prime As Double) As Double 
     
    Elliptical_zAm1_prime = 1 / (2 * B_prime) * (B_prime - 2 * Rm_prime) 

_ 
                          * (y_prime - hm_prime + Rm_prime) ^ 2 
 

End Function 
 
'Middle section 2 functions 

Function Elliptical_Tm2_prime(B_prime As Double, Rm_prime As Double, _ 
hm_prime As Double, y_prime As Double) As Double 
     

    Dim theta_m As Double 
    theta_m = 2 * Application.Acos(1 - 1 / Rm_prime _ 
            * (y_prime - hm_prime + Rm_prime)) 

     
    Elliptical_Tm2_prime = 2 * Rm_prime / B_prime * Sin(theta_m / 2) 
 

End Function 
 
Function Elliptical_Am2_prime(B_prime As Double, Rm_prime As Double, _ 

hm_prime As Double, y_prime As Double) As Double 
     
    Dim theta_m As Double 

    theta_m = 2 * Application.Acos(1 - 1 / Rm_prime _ 
            * (y_prime - hm_prime + Rm_prime)) 



204 

     

    Elliptical_Am2_prime = Rm_prime ^ 2 / (2 * B_prime) _ 

                         * (theta_m - Sin(theta_m)) 
 
End Function 

 
Function Elliptical_zAm2_prime(B_prime As Double, Rm_prime As Double, _ 
hm_prime As Double, y_prime As Double) As Double 

     
    Dim theta_m As Double 
    theta_m = 2 * Application.Acos(1 - 1 / Rm_prime _ 

            * (y_prime - hm_prime + Rm_prime)) 
     
    Elliptical_zAm2_prime = Rm_prime ^ 3 / (3 * B_prime) _ 

                          * (3 * Sin(theta_m / 2) _ 
                          - Sin(theta_m / 2) ^ 3 _ 
                          - 3 * (theta_m / 2) * Cos(theta_m / 2)) 

 
End Function 

 

'Top section functions 
Function Elliptical_Tt_prime(B_prime As Double, Rt_prime As Double, _ 
y_prime As Double) As Double 

 
    Dim theta_t As Double 
    theta_t = 2 * Application.Acos((1 - y_prime) / Rt_prime - 1) 

     
    Elliptical_Tt_prime = 2 * Rt_prime / B_prime * Sin(theta_t / 2) 
 

End Function 
 
Function Elliptical_At_prime(B_prime As Double, Rt_prime As Double, _ 

y_prime As Double) As Double 
 
    Dim theta_t As Double 

    theta_t = 2 * Application.Acos((1 - y_prime) / Rt_prime - 1) 

     
    Elliptical_At_prime = Rt_prime ^ 2 / (2 * B_prime) _ 

                        * (theta_t - Sin(theta_t)) 
 
End Function 

 
Function Elliptical_zAt_prime(B_prime As Double, Rt_prime As Double, _ 
y_prime As Double) As Double 

 
    Dim theta_t As Double 
    theta_t = 2 * Application.Acos((1 - y_prime) / Rt_prime - 1) 

     
    Elliptical_zAt_prime = Rt_prime ^ 3 / (3 * B_prime) _ 
                       * (3 * Sin(theta_t / 2) - Sin(theta_t / 2) ^ 3 _ 

                       - 3 * (theta_t / 2) * Cos(theta_t / 2)) 
 
End Function 
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D.6 Pipe Arch Conduits 

'Returns y2 value for given Pipe Arch dimensions, Q, and y1 
Public Function PipeArch_y2(B As Double, D As Double, Rb As Double, _ 

Rm As Double, Rt As Double, Q As Double, y1 As Double, units As String) 
     
    '**Absolute Variables** 

    Dim g As Double 'Acceleration due to gravity 
     
    Dim hb As Double 'Bottom transition height 

    Dim hm As Double 'Neutral axis height 
    Dim ht As Double 'Top transition height 
     

    Dim B_prime As Double 'Dimensionless span 
    Dim Rb_prime As Double 'Dimensionless bottom radius 
    Dim Rm_prime As Double 'Dimensionless middle radius 

    Dim Rt_prime As Double 'Dimensionless top radius 
    Dim hb_prime As Double 'Dimensionless bottom transition height 

    Dim hm_prime As Double 'Dimensionless neutral axis height 

    Dim ht_prime As Double 'Dimensionless top transition height 
     
    Dim y1_prime As Double 'Upstream depth ratio 

    Dim T1_prime As Double 'Upstream dimensionless top width 
    Dim A1_prime As Double 'Upstream dimensionless area 
    Dim zA1_prime As Double 'Upstream dimensionless centroid-area 

     
    Dim yf_prime As Double 'Full conditions depth ratio 
    Dim Af_prime As Double 'Full conditions dimensionless area 

    Dim zAf_prime As Double 'Full conditions dimensionless 
                            'centroid-area 
     

    Dim y2_prime As Double 'Downstream depth ratio 
    Dim A2_prime As Double 'Downstream dimensionless area 
    Dim zA2_prime As Double 'Downstream dimensionless centroid-area 

     

    Dim Fr1 As Double 'Upstream Froude number 
    Dim Fr1_t As Double 'Transitional upstream Froude number 

     
    '**Iterative variables** (interval halving method) 
    Dim y2_prime1 As Double 'Lower estimate 

    Dim f1 As Double 'Function at lower estimate 
     
    Dim y2_prime2 As Double 'Upper estimate 

    Dim f2 As Double 'Function at upper estimate 
     
    Dim y2_prime3 As Double 'Intermediate estimate 

    Dim f3 As Double 'Function at intermediate estimate 
     
    Dim Error As Double 'Allowable error in y'2 

    Error = 0.00001 
     
    'Determine correct value of g 

    If units = "BG" Then 'English units 

        g = 32.21 
    ElseIf units = "SI" Then 'International units 

        g = 9.81 
    End If 
     

    'Calculate remaining shape parameters 
    hm = Rb - Sqr((Rb - Rm) ^ 2 - (B / 2 - Rm) ^ 2) 
    Rt = (B * (4 * Rm - B) - 4 * (D - hm) ^ 2) / 8 / (Rm - D + hm) 

    hb = Rb * (hm - Rm) / (Rb - Rm) 
    ht = D - Rt * (1 - Sqr((Rt - Rm) ^ 2 - (B / 2 - Rm) ^ 2) _ 
       / (Rt - Rm)) 
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    'Step 1: Calculate dimensionless parameters 

    B_prime = B / D 
    Rb_prime = Rb / D 
    Rm_prime = Rm / D 

    Rt_prime = Rt / D 
    hb_prime = hb / D 
    hm_prime = hm / D 

    ht_prime = ht / D 
     
    y1_prime = y1 / D 

    T1_prime = PipeArch_T_prime(B_prime, Rb_prime, Rm_prime, _ 
               Rt_prime, hb_prime, hm_prime, ht_prime, y1_prime) 
    A1_prime = PipeArch_A_prime(B_prime, Rb_prime, Rm_prime, _ 

               Rt_prime, hb_prime, hm_prime, ht_prime, y1_prime) 
    zA1_prime = PipeArch_zA_prime(B_prime, Rb_prime, Rm_prime, _ 
               Rt_prime, hb_prime, hm_prime, ht_prime, y1_prime) 

     
    Af_prime = PipeArch_A_prime(B_prime, Rb_prime, Rm_prime, _ 

               Rt_prime, hb_prime, hm_prime, ht_prime, 1) 

    zAf_prime = PipeArch_zA_prime(B_prime, Rb_prime, Rm_prime, _ 
               Rt_prime, hb_prime, hm_prime, ht_prime, 1) 
     

    'Step 2: Calculate upstream Froude number 
    Fr1 = Q / Sqr(g * B ^ 2 * D ^ 3 * A1_prime ^ 3 / T1_prime) 
     

    If Fr1 <= 1 Then 'No Jump 
     
        PipeArch_y2 = y1 

         
    Else 'Jump may occur 
     

        'Step 3: Calculate transitional upstream Froude number 
        Fr1_t = Sqr((T1_prime * Af_prime / A1_prime ^ 2) _ 
              * (zAf_prime - zA1_prime) / (Af_prime - A1_prime)) 

             

        'Step 4: Calculate downstream depth 
        If Fr1 < Fr1_t Then 'Complete jump 

             
            y2_prime1 = y1_prime 'Lower Limit 
            f1 = 1 - Fr1 ^ 2 

             
            y2_prime2 = 1 'Upper Limit 
            f2 = Fr1_t ^ 2 - Fr1 ^ 2 

             
            Do 
             

                y2_prime3 = (y2_prime1 + y2_prime2) / 2 
                A2_prime = PipeArch_A_prime(B_prime, Rb_prime, _ 
                           Rm_prime, Rt_prime, hb_prime, hm_prime, _ 

                           ht_prime, y2_prime3) 
                zA2_prime = PipeArch_zA_prime(B_prime, Rb_prime, _ 
                           Rm_prime, Rt_prime, hb_prime, hm_prime, _ 

                           ht_prime, y2_prime3) 
                f3 = (T1_prime * A2_prime / A1_prime ^ 2) _ 
                     * (zA1_prime - zA2_prime) _ 

   / (A1_prime - A2_prime) - Fr1 ^ 2 
                 
                If f1 * f3 > 0 Then 'y2_prime3 is new upper estimate 

                    y2_prime1 = y2_prime3 
                    f1 = f3 
                Else 'y2_prime3 is new lower estimate 

                    y2_prime2 = y2_prime3 
                    f2 = f3 
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                End If 

                 

            Loop Until y2_prime2 - y2_prime1 < Error 
             
            y2_prime = y2_prime3 

     
        Else 'Incomplete jump 
     

            y2_prime = (Fr1 ^ 2 * A1_prime ^ 2 _ 
                     * (Af_prime - A1_prime) _ 
                     - T1_prime * Af_prime _ 

                     * (zAf_prime - zA1_prime)) _ 
                     / (T1_prime * Af_prime ^ 2) + 1 
     

        End If 
     
        PipeArch_y2 = y2_prime * D 

     
    End If 

 

End Function 
 
'Returns T' = T/B value for given pipe arch parameters and y' value 

Public Function PipeArch_T_prime(B_prime As Double, _ 
Rb_prime As Double, Rm_prime As Double, Rt_prime As Double, _ 
hb_prime As Double, hm_prime As Double, ht_prime As Double, _ 

y_prime As Double) As Double 
     
    Dim Tb_prime As Double 

    Dim Tm1_prime As Double 
    Dim Tm2_prime As Double 
    Dim Tt_prime As Double 

     
    If y_prime <= hb_prime Then 
     

        Tb_prime = PipeArch_Tb_prime(B_prime, Rb_prime, y_prime) 

         
    ElseIf y_prime <= ht_prime Then 

     
        Tm1_prime = PipeArch_Tm1_prime(B_prime, Rm_prime, hm_prime, _ 
                    y_prime) 

        Tm2_prime = PipeArch_Tm2_prime(B_prime, Rm_prime, hm_prime, _ 
                    y_prime) 
                     

    ElseIf y_prime <= 1 Then 
     
        Tt_prime = PipeArch_Tt_prime(B_prime, Rt_prime, y_prime) 

         
    End If 
     

    PipeArch_T_prime = Tb_prime + Tm1_prime + Tm2_prime + Tt_prime 
     
End Function 

 
'Returns A' = A/BD value for given pipe arch parameters and y' value 
Public Function PipeArch_A_prime(B_prime As Double, _ 

Rb_prime As Double, Rm_prime As Double, Rt_prime As Double, _ 
hb_prime As Double, hm_prime As Double, ht_prime As Double, _ 
y_prime As Double) As Double 

     
    Dim Ab_prime As Double 
    Dim Am1_prime As Double 

    Dim Am2_prime As Double 
    Dim At_prime As Double 
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    If y_prime <= hb_prime Then 

     
        Ab_prime = PipeArch_Ab_prime(B_prime, Rb_prime, y_prime) 
         

    ElseIf y_prime <= ht_prime Then 
     
        Ab_prime = PipeArch_Ab_prime(B_prime, Rb_prime, hb_prime) 

        Am1_prime = PipeArch_Am1_prime(B_prime, Rm_prime, hm_prime, _ 
                    y_prime) _ 
                  - PipeArch_Am1_prime(B_prime, Rm_prime, hm_prime, _ 

                    hb_prime) 
        Am2_prime = PipeArch_Am2_prime(B_prime, Rm_prime, hm_prime, _ 
                    y_prime) _ 

                  - PipeArch_Am2_prime(B_prime, Rm_prime, hm_prime, _ 
                    hb_prime) 
                     

    ElseIf y_prime <= 1 Then 
     

        Ab_prime = PipeArch_Ab_prime(B_prime, Rb_prime, hb_prime) 

        Am1_prime = PipeArch_Am1_prime(B_prime, Rm_prime, hm_prime, _ 
                    ht_prime) _ 
                  - PipeArch_Am1_prime(B_prime, Rm_prime, hm_prime, _ 

                    hb_prime) 
        Am2_prime = PipeArch_Am2_prime(B_prime, Rm_prime, hm_prime, _ 
                    ht_prime) _ 

                  - PipeArch_Am2_prime(B_prime, Rm_prime, hm_prime, _ 
                    hb_prime) 
        At_prime = PipeArch_At_prime(B_prime, Rt_prime, y_prime) _ 

                 - PipeArch_At_prime(B_prime, Rt_prime, ht_prime) 
                  
    End If 

     
    PipeArch_A_prime = Ab_prime + Am1_prime + Am2_prime + At_prime 
     

End Function 

 
'Returns (zA)' = zA/BD^2 value for given pipe arch parameters and y' 

Public Function PipeArch_zA_prime(B_prime As Double, _ 
Rb_prime As Double, Rm_prime As Double, Rt_prime As Double, _ 
hb_prime As Double, hm_prime As Double, ht_prime As Double, _ 

y_prime As Double) As Double 
     
    Dim zAb_prime As Double 

    Dim zAm1_prime As Double 
    Dim zAm2_prime As Double 
    Dim zAt_prime As Double 

     
    If y_prime <= hb_prime Then 
     

        zAb_prime = PipeArch_zAb_prime(B_prime, Rb_prime, y_prime) 
         
    ElseIf y_prime <= ht_prime Then 

     
        zAb_prime = PipeArch_zAb_prime(B_prime, Rb_prime, hb_prime) _ 
                  + (y_prime - hb_prime) _ 

                  * PipeArch_Ab_prime(B_prime, Rb_prime, hb_prime) 
        zAm1_prime = PipeArch_zAm1_prime(B_prime, Rm_prime, hm_prime, _ 
                     y_prime) _ 

                   - PipeArch_zAm1_prime(B_prime, Rm_prime, hm_prime, _ 
                     hb_prime) _ 
                   - (y_prime - hb_prime) _ 

                   * PipeArch_Am1_prime(B_prime, Rm_prime, hm_prime, _ 
                     hb_prime) 
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        zAm2_prime = PipeArch_zAm2_prime(B_prime, Rm_prime, hm_prime, _ 

                     y_prime) _ 

                   - PipeArch_zAm2_prime(B_prime, Rm_prime, hm_prime, _ 
                     hb_prime) _ 
                   - (y_prime - hb_prime) _ 

                   * PipeArch_Am2_prime(B_prime, Rm_prime, hm_prime, _ 
                     hb_prime) 
                      

    ElseIf y_prime <= 1 Then 
     
        zAb_prime = PipeArch_zAb_prime(B_prime, Rb_prime, hb_prime) _ 

                  + (y_prime - hb_prime) _ 
                  * PipeArch_Ab_prime(B_prime, Rb_prime, hb_prime) 
        zAm1_prime = PipeArch_zAm1_prime(B_prime, Rm_prime, hm_prime, _ 

                     ht_prime) _ 
                   - PipeArch_zAm1_prime(B_prime, Rm_prime, hm_prime, _ 
                     hb_prime) _ 

                   + (y_prime - ht_prime) _ 
                   * PipeArch_Am1_prime(B_prime, Rm_prime, hm_prime, _ 

                     ht_prime) _ 

                   - (y_prime - hb_prime) _ 
                   * PipeArch_Am1_prime(B_prime, Rm_prime, hm_prime, _ 
                     hb_prime) 

        zAm2_prime = PipeArch_zAm2_prime(B_prime, Rm_prime, hm_prime, _ 
                     ht_prime) _ 
                   - PipeArch_zAm2_prime(B_prime, Rm_prime, hm_prime, _ 

                     hb_prime) _ 
                   + (y_prime - ht_prime) _ 
                   * PipeArch_Am2_prime(B_prime, Rm_prime, hm_prime, _ 

                     ht_prime) _ 
                   - (y_prime - hb_prime) _ 
                   * PipeArch_Am2_prime(B_prime, Rm_prime, hm_prime, _ 

                     hb_prime) 
        zAt_prime = PipeArch_zAt_prime(B_prime, Rt_prime, y_prime) _ 
                  - PipeArch_zAt_prime(B_prime, Rt_prime, ht_prime) _ 

                  - (y_prime - ht_prime) _ 

                  * PipeArch_At_prime(B_prime, Rt_prime, ht_prime) 
                   

    End If 
     
    PipeArch_zA_prime = zAb_prime + zAm1_prime + zAm2_prime + zAt_prime 

     
End Function 
 

'Bottom section functions 
Function PipeArch_Tb_prime(B_prime As Double, Rb_prime As Double, _ 
y_prime As Double) As Double 

 
    Dim theta_b As Double 
    theta_b = 2 * Application.Acos(1 - y_prime / Rb_prime) 

     
    PipeArch_Tb_prime = 2 * Rb_prime / B_prime * Sin(theta_b / 2) 
 

End Function 
 
Function PipeArch_Ab_prime(B_prime As Double, Rb_prime As Double, _ 

y_prime As Double) As Double 
 
    Dim theta_b As Double 

    theta_b = 2 * Application.Acos(1 - y_prime / Rb_prime) 
     
    PipeArch_Ab_prime = Rb_prime ^ 2 / (2 * B_prime) _ 

                      * (theta_b - Sin(theta_b)) 
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End Function 

 

Function PipeArch_zAb_prime(B_prime As Double, Rb_prime As Double, _ 
y_prime As Double) As Double 
 

    Dim theta_b As Double 
    theta_b = 2 * Application.Acos(1 - y_prime / Rb_prime) 
     

    PipeArch_zAb_prime = Rb_prime ^ 3 / (3 * B_prime) _ 
                       * (3 * Sin(theta_b / 2) - Sin(theta_b / 2) ^ 3 _ 
                       - 3 * (theta_b / 2) * Cos(theta_b / 2)) 

 
End Function 
 

'Middle section 1 functions 
Function PipeArch_Tm1_prime(B_prime As Double, Rm_prime As Double, _ 
hm_prime As Double, y_prime As Double) As Double 

     
    PipeArch_Tm1_prime = 1 / B_prime * (B_prime - 2 * Rm_prime) 

 

End Function 
 
Function PipeArch_Am1_prime(B_prime As Double, Rm_prime As Double, _ 

hm_prime As Double, y_prime As Double) As Double 
     
    PipeArch_Am1_prime = 1 / B_prime * (B_prime - 2 * Rm_prime) _ 

                       * (y_prime - hm_prime + Rm_prime) 
 
End Function 

 
Function PipeArch_zAm1_prime(B_prime As Double, Rm_prime As Double, _ 
hm_prime As Double, y_prime As Double) As Double 

     
    PipeArch_zAm1_prime = 1 / (2 * B_prime) _ 

* (B_prime - 2 * Rm_prime) _ 

                        * (y_prime - hm_prime + Rm_prime) ^ 2 

 
End Function 

 
'Middle section 2 functions 
Function PipeArch_Tm2_prime(B_prime As Double, Rm_prime As Double, _ 

hm_prime As Double, y_prime As Double) As Double 
     
    Dim theta_m As Double 

    theta_m = 2 * Application.Acos(1 - 1 / Rm_prime _ 
            * (y_prime - hm_prime + Rm_prime)) 
     

    PipeArch_Tm2_prime = 2 * Rm_prime / B_prime * Sin(theta_m / 2) 
 
End Function 

 
Function PipeArch_Am2_prime(B_prime As Double, Rm_prime As Double, _ 
hm_prime As Double, y_prime As Double) As Double 

     
    Dim theta_m As Double 
    theta_m = 2 * Application.Acos(1 - 1 / Rm_prime _ 

            * (y_prime - hm_prime + Rm_prime)) 
     
    PipeArch_Am2_prime = Rm_prime ^ 2 / (2 * B_prime) _ 

                       * (theta_m - Sin(theta_m)) 
 
End Function 

 
Function PipeArch_zAm2_prime(B_prime As Double, Rm_prime As Double, _ 
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hm_prime As Double, y_prime As Double) As Double 

     

    Dim theta_m As Double 
    theta_m = 2 * Application.Acos(1 - 1 / Rm_prime _ 
            * (y_prime - hm_prime + Rm_prime)) 

     
    PipeArch_zAm2_prime = Rm_prime ^ 3 / (3 * B_prime) _ 
                       * (3 * Sin(theta_m / 2) - Sin(theta_m / 2) ^ 3 _ 

                       - 3 * (theta_m / 2) * Cos(theta_m / 2)) 
 
End Function 

 
'Top section functions 
Function PipeArch_Tt_prime(B_prime As Double, Rt_prime As Double, _ 

y_prime As Double) As Double 
 
    Dim theta_t As Double 

    theta_t = 2 * Application.Acos((1 - y_prime) / Rt_prime - 1) 
     

    PipeArch_Tt_prime = 2 * Rt_prime / B_prime * Sin(theta_t / 2) 

 
End Function 
 

Function PipeArch_At_prime(B_prime As Double, Rt_prime As Double, _ 
y_prime As Double) As Double 
 

    Dim theta_t As Double 
    theta_t = 2 * Application.Acos((1 - y_prime) / Rt_prime - 1) 
     

    PipeArch_At_prime = Rt_prime ^ 2 / (2 * B_prime) _ 
                        * (theta_t - Sin(theta_t)) 
 

End Function 
 
Function PipeArch_zAt_prime(B_prime As Double, Rt_prime As Double, _ 

y_prime As Double) As Double 

 
    Dim theta_t As Double 

    theta_t = 2 * Application.Acos((1 - y_prime) / Rt_prime - 1) 
     
    PipeArch_zAt_prime = Rt_prime ^ 3 / (3 * B_prime) _ 

                       * (3 * Sin(theta_t / 2) - Sin(theta_t / 2) ^ 3 _ 
                       - 3 * (theta_t / 2) * Cos(theta_t / 2)) 
 

End Function 

 

 

D.7 User-Defined Conduits 

'Returns y2 value for given user defined dimensions, Q, and y1 
Public Function UserDefined_y2(x_Range As Range, ybot_Range As Range, _ 

ytop_Range As Range, Q As Double, y1 As Double, units As String) 
 
    '**Absolute Variables** 

    Dim g As Double 'Acceleration due to gravity 
     
    Dim i As Integer 'Incremental coordinate 

    Dim n As Integer 'Number of coordinates 
    n = x_Range.Rows.Count 
    Dim B As Double 'Conduit span 

    Dim D As Double 'Conduit rise 
    ReDim x_prime(1 To n) As Double 'Array of x' coordinates 
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    ReDim hA_prime(1 To n - 1) As Double 'Array of h'(A) values 

    ReDim hb_prime(1 To n - 1) As Double 'Array of h'(B) values 

    ReDim hC_prime(1 To n - 1) As Double 'Array of h'(C) values 
    ReDim hD_prime(1 To n - 1) As Double 'Array of h'(D) values 
     

    Dim y1_prime As Double 'Upstream depth ratio 
    Dim T1_prime As Double 'Upstream dimensionless top width 
    Dim A1_prime As Double 'Upstream dimensionless area 

    Dim zA1_prime As Double 'Upstream dimensionless centroid-area 
     
    Dim yf_prime As Double 'Full conditions depth ratio 

    Dim Af_prime As Double 'Full conditions dimensionless area 
    Dim zAf_prime As Double 'Full conditions dimensionless 
                            'centroid-area 

     
    Dim y2_prime As Double 'Downstream depth ratio 
    Dim A2_prime As Double 'Downstream dimensionless area 

    Dim zA2_prime As Double 'Downstream dimensionless centroid-area 
     

    Dim Fr1 As Double 'Upstream Froude number 

    Dim Fr1_t As Double 'Transitional upstream Froude number 
     
    '**Iterative variables** (interval halving method) 

    Dim y2_prime1 As Double 'Lower estimate 
    Dim f1 As Double 'Function at lower estimate 
     

    Dim y2_prime2 As Double 'Upper estimate 
    Dim f2 As Double 'Function at upper estimate 
     

    Dim y2_prime3 As Double 'Intermediate estimate 
    Dim f3 As Double 'Function at intermediate estimate 
     

    Dim Error As Double 'Allowable error in y'2 
    Error = 0.00001 
     

    'Determine correct value of g 

    If units = "BG" Then 'English units 
        g = 32.21 

    ElseIf units = "SI" Then 'International units 
        g = 9.81 
    End If 

     
    'Step 1: Calculate dimensionless parameters 
    B = x_Range.Rows(n) 

    For i = 1 To n 
        If ytop_Range.Rows(i) > D Then 
            D = ytop_Range.Rows(i) 

        End If 
    Next 
     

    For i = 1 To n 
     
        x_prime(i) = x_Range.Rows(i) / B 

         
        If i <> n Then 
         

            If ybot_Range.Rows(i) <= ybot_Range.Rows(i + 1) Then 
                hA_prime(i) = ybot_Range.Rows(i) / D 
                hb_prime(i) = ybot_Range.Rows(i + 1) / D 

            Else 
                hA_prime(i) = ybot_Range.Rows(i + 1) / D 
                hb_prime(i) = ybot_Range.Rows(i) / D 

            End If 
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            If ytop_Range.Rows(i) <= ytop_Range.Rows(i + 1) Then 

                hC_prime(i) = ytop_Range.Rows(i) / D 

                hD_prime(i) = ytop_Range.Rows(i + 1) / D 
            Else 
                hC_prime(i) = ytop_Range.Rows(i + 1) / D 

                hD_prime(i) = ytop_Range.Rows(i) / D 
            End If 
             

        End If 
         
    Next 

     
    y1_prime = y1 / D 
    T1_prime = UserDefined_T_prime(x_prime, hA_prime, hb_prime, _ 

               hC_prime, hD_prime, n, y1_prime) 
    A1_prime = UserDefined_A_prime(x_prime, hA_prime, hb_prime, _ 
               hC_prime, hD_prime, n, y1_prime) 

    zA1_prime = UserDefined_zA_prime(x_prime, hA_prime, hb_prime, _ 
                hC_prime, hD_prime, n, y1_prime) 

     

    Af_prime = UserDefined_A_prime(x_prime, hA_prime, hb_prime, _ 
               hC_prime, hD_prime, n, 1) 
    zAf_prime = UserDefined_zA_prime(x_prime, hA_prime, hb_prime, _ 

                hC_prime, hD_prime, n, 1) 
     
    'Step 2: Calculate upstream Froude number 

    Fr1 = Q / Sqr(g * B ^ 2 * D ^ 3 * A1_prime ^ 3 / T1_prime) 
     
    If Fr1 <= 1 Then 'No Jump 

     
        UserDefined_y2 = y1 
             

    Else 'Jump may occur 
     
        'Step 3: Calculate transitional upstream Froude number 

        Fr1_t = Sqr((T1_prime * Af_prime / A1_prime ^ 2) _ 

              * (zAf_prime - zA1_prime) / (Af_prime - A1_prime)) 
             

        'Step 4: Calculate downstream depth 
        If Fr1 < Fr1_t Then 'Complete jump 
             

            y2_prime1 = y1_prime 'Lower Limit 
            f1 = 1 - Fr1 ^ 2 
             

            y2_prime2 = 1 'Upper Limit 
            f2 = Fr1_t ^ 2 - Fr1 ^ 2 
             

            Do 
             
                y2_prime3 = (y2_prime1 + y2_prime2) / 2 

                A2_prime = UserDefined_A_prime(x_prime, hA_prime, _ 
                           hb_prime, hC_prime, hD_prime, n, y2_prime3) 
                zA2_prime = UserDefined_zA_prime(x_prime, hA_prime, _ 

                           hb_prime, hC_prime, hD_prime, n, y2_prime3) 
                f3 = (T1_prime * A2_prime / A1_prime ^ 2) _ 
                   * (zA1_prime - zA2_prime) / (A1_prime - A2_prime) _ 

                   - Fr1 ^ 2 
                 
                If f1 * f3 > 0 Then 'y2_prime3 is new upper estimate 

                    y2_prime1 = y2_prime3 
                    f1 = f3 
                Else 'y2_prime3 is the new lower estimate 

                    y2_prime2 = y2_prime3 
                    f2 = f3 
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                End If 

                 

            Loop Until y2_prime2 - y2_prime1 < Error 
             
            y2_prime = y2_prime3 

     
        Else 'Incomplete jump 
     

            y2_prime = (Fr1 ^ 2 * A1_prime ^ 2 _ 
                     * (Af_prime - A1_prime) _ 
                     - T1_prime * Af_prime _ 

                     * (zAf_prime - zA1_prime)) _ 
                     / (T1_prime * Af_prime ^ 2) + 1 
     

        End If 
     
        UserDefined_y2 = y2_prime * D 

     
    End If 

 

End Function 
 
'Returns T' = T/B value for given y' value 

Public Function UserDefined_T_prime(x_prime As Variant, _ 
hA_prime As Variant, hb_prime As Variant, hC_prime As Variant, _ 
hD_prime As Variant, n As Integer, y_prime As Double) As Double 

     
    Dim i As Integer 
    Dim T_prime_i As Double 

    Dim T_prime As Double 
     
    For i = 1 To n - 1 

     
        If y_prime <= hA_prime(i) Then 'Case 1 
         

            T_prime_i = 0 

             
        ElseIf y_prime <= hb_prime(i) Then 'Case 2 

         
            T_prime_i = (x_prime(i + 1) - x_prime(i)) _ 
                      * (y_prime - hA_prime(i)) _ 

                      / (hb_prime(i) - hA_prime(i)) 
                       
        ElseIf y_prime <= hC_prime(i) Then 'Case 3 

         
            T_prime_i = x_prime(i + 1) - x_prime(i) 
             

        ElseIf y_prime <= hD_prime(i) Then 'Case 4 
         
            T_prime_i = (x_prime(i + 1) - x_prime(i)) _ 

                      * (hD_prime(i) - y_prime) _ 
                      / (hD_prime(i) - hC_prime(i)) 
                       

        Else 'Case 5 
         
            T_prime_i = 0 

             
        End If 
         

        T_prime = T_prime + T_prime_i 
         
    Next 

     
    UserDefined_T_prime = T_prime 
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End Function 

 
'Returns A' = A/BD value for given y' value 
Public Function UserDefined_A_prime(x_prime As Variant, _ 

hA_prime As Variant, hb_prime As Variant, hC_prime As Variant, _ 
hD_prime As Variant, n As Integer, y_prime As Double) As Double 
     

    Dim i As Integer 
    Dim T_prime_i As Double 
    Dim A_prime_i As Double 

    Dim A_prime As Double 
     
    For i = 1 To n - 1 

     
        If y_prime <= hA_prime(i) Then 'Case 1 
         

            A_prime_i = 0 
             

        ElseIf y_prime <= hb_prime(i) Then 'Case 2 

         
            T_prime_i = (x_prime(i + 1) - x_prime(i)) _ 
                      * (y_prime - hA_prime(i)) _ 

                      / (hb_prime(i) - hA_prime(i)) 
            A_prime_i = 1 / 2 * T_prime_i * (y_prime - hA_prime(i)) 
             

        ElseIf y_prime <= hC_prime(i) Then 'Case 3 
         
            T_prime_i = x_prime(i + 1) - x_prime(i) 

            A_prime_i = 1 / 2 * T_prime_i * ((y_prime - hA_prime(i)) _ 
                      + (y_prime - hb_prime(i))) 
             

        ElseIf y_prime <= hD_prime(i) Then 'Case 4 
         
            T_prime_i = (x_prime(i + 1) - x_prime(i)) _ 

                      * (hD_prime(i) - y_prime) _ 

                      / (hD_prime(i) - hC_prime(i)) 
            A_prime_i = 1 / 2 * ((x_prime(i + 1) - x_prime(i)) _ 

                      * ((y_prime - hA_prime(i)) _ 
                      + (y_prime - hb_prime(i))) _ 
                      - (x_prime(i + 1) - x_prime(i) - T_prime_i) _ 

                      * (y_prime - hC_prime(i))) 
             
        Else 'Case 5 

         
            A_prime_i = 1 / 2 * (x_prime(i + 1) - x_prime(i)) _ 
                      * (hD_prime(i) + hC_prime(i) _ 

                      - hb_prime(i) - hA_prime(i)) 
             
        End If 

         
        A_prime = A_prime + A_prime_i 
         

    Next 
     
    UserDefined_A_prime = A_prime 

     
End Function 
 

'Returns (zA)' = zA/BD^2 value for given y' value 
Public Function UserDefined_zA_prime(x_prime As Variant, _ 
hA_prime As Variant, hb_prime As Variant, hC_prime As Variant, _ 

hD_prime As Variant, n As Integer, y_prime As Double) As Double 
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    Dim i As Integer 

    Dim T_prime_i As Double 

    Dim zA_prime_i As Double 
    Dim zA_prime As Double 
     

    For i = 1 To n - 1 
     
        If y_prime <= hA_prime(i) Then 'Case 1 

         
            zA_prime_i = 0 
             

        ElseIf y_prime <= hb_prime(i) Then 'Case 2 
         
            T_prime_i = (x_prime(i + 1) - x_prime(i)) _ 

                      * (y_prime - hA_prime(i)) _ 
                      / (hb_prime(i) - hA_prime(i)) 
            zA_prime_i = 1 / 6 * T_prime_i _ 

                       * (y_prime - hA_prime(i)) ^ 2 
             

        ElseIf y_prime <= hC_prime(i) Then 'Case 3 

         
            T_prime_i = x_prime(i + 1) - x_prime(i) 
            zA_prime_i = 1 / 6 * T_prime_i _ 

                       * ((y_prime - hA_prime(i)) ^ 2 _ 
                       + (y_prime - hA_prime(i)) _ 
                       * (y_prime - hb_prime(i)) _ 

                       + (y_prime - hb_prime(i)) ^ 2) 
         
        ElseIf y_prime <= hD_prime(i) Then 'Case 4 

         
            T_prime_i = (x_prime(i + 1) - x_prime(i)) _ 
                      * (hD_prime(i) - y_prime) _ 

                      / (hD_prime(i) - hC_prime(i)) 
            zA_prime_i = 1 / 6 * ((x_prime(i + 1) - x_prime(i)) _ 
                       * ((y_prime - hA_prime(i)) ^ 2 _ 

                       + (y_prime - hA_prime(i)) _ 

                       * (y_prime - hb_prime(i)) _ 
                       + (y_prime - hb_prime(i)) ^ 2) _ 

                       - (x_prime(i + 1) - x_prime(i) + T_prime_i) _ 
                       * (y_prime - hC_prime(i)) ^ 2) 
         

        Else 'Case 5 
         
            zA_prime_i = 1 / 6 * (x_prime(i + 1) - x_prime(i)) _ 

                       * (3 * y_prime _ 
                       * (hD_prime(i) + hC_prime(i) _ 
                       - hb_prime(i) - hA_prime(i)) _ 

                       + (hA_prime(i) ^ 2 _ 
                       + hA_prime(i) * hb_prime(i) _ 
                       + hb_prime(i) ^ 2) _ 

                       - (hC_prime(i) ^ 2 _ 
                       + hC_prime(i) * hD_prime(i) _ 
                       + hD_prime(i) ^ 2)) 

         
        End If 
         

        zA_prime = zA_prime + zA_prime_i 
         
    Next 

     
    UserDefined_zA_prime = zA_prime 
     

End Function 

 


