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ABSTRACT 

A Graph Theoretical Analysis of Functional Brain Networks 
 Related to Memory and Healthy Aging 

Ty Alvin Bodily 
Neuroscience Center, BYU 

Master of Science 

The cognitive decline associated with healthy aging begins in early adulthood and is 
important to understand as a precursor of and relative to mild cognitive impairment and 
Alzheimer disease. Anatomical atrophy, functional compensation, and network reorganization 
have been observed in populations of older adults. In the current study, we examine functional 
network correlates of memory performance on the Wechsler Memory Scale IV and the 
Mnemonic Discrimination Task (MST). We report a lack of association between global graph 
theory metrics and age or memory performance. In addition, we observed a positive association 
between lure discrimination scores from the MST and right hippocampus centrality. Upon 
further investigation, we confirmed that old subjects with poor memory performance had lower 
right hippocampus centrality scores than young subjects with high average memory performance. 
These novel results connect the role of the hippocampus in global brain network information 
flow to cognitive function and have implications for better characterizing and predicting memory 
decline in aging. 
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A Graph Theoretical Analysis of Functional Brain Networks in 

Healthy Aging and Memory 

According to recent work, cognitive decline due to aging begins in early adulthood at an 

age of 20-30 years old (Salthouse, 2011). The aging and cognitive decline incident to so-called 

“healthy aging” (the focus of this paper) are accompanied generally by global structural atrophy 

in the brain, including decreased cortical thickness, decreased white matter integrity, and reduced 

brain volume (Goh & Park, 2009). Interestingly, these changes have been observed to correlate 

only loosely with cognitive measures, indicating that maintenance-oriented or compensatory 

neurological changes are at least somewhat effective (Goh & Park, 2009). 

In addition to widespread structural changes, studies of the medial temporal lobe (MTL), 

a group of brain regions associated with episodic memory have observed specific anatomical 

changes in healthy aging. For instance, studies have observed that the hippocampus, its subfields, 

and other MTL regions seem to shrink increasingly rapidly with age (Abe et al., 2008; Fjell & 

Walhovd, 2010; Murphy et al., 2010; Sullivan & Pfefferbaum, 2006), and some studies show 

that hippocampus size correlates with memory performance in aging (Salthouse, 2011).  

Functional imaging studies have observed a pattern of decreased brain activity in MTL 

regions and increased activity in regions of the PFC associated with cognitive preservation in 

aging during encoding and retrieval tasks, and some studies show a reversed trend of increased 

hippocampal activity in older adults with relatively large memory deficits (Grady, 2008; Miller 

et al., 2008; Tromp, Dufour, Lithfous, Pebayle, & Després, 2015; Yassa, Lacy, et al., 2011). 

These findings—along with task-based memory studies showing increased connectivity between 

the hippocampus and PFC with decreased connectivity between the hippocampus and MTL to 

posterior and occipital regions in aging—play an important role in current cognitive models of 
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aging. One such model, the compensation-related utilization of neural circuits hypothesis 

(CRUNCH), posits that observed brain function changes in aging are compensatory for regional 

atrophy, decreased network processing efficiency, or a decrease in network input (Reuter-Lorenz 

& Cappell, 2008). For instance, a decrease in memory network input could result from MTL 

atrophy, memory circuit processing efficiency, or from the deteriorating quality of sensory 

information as sensors and sensory relays age.  

Another model of cognitive aging, the scaffolding theory of aging and cognition (STAC), 

also incorporates compensation as a key model component. Broadly, STAC describes an ongoing 

readjustment or compensation, or “scaffolding,” that occurs in brain networks in aging (Park & 

Reuter-Lorenz, 2009). Scaffolding consists of network recruitment and reorganization such that 

many older adults maintain remarkably good cognitive function despite apparent brain 

deterioration. Importantly, this model emphasizes the compensation of the prefrontal cortex for 

deficient hippocampal/parahippocampal activity in aging. This model additionally accounts for 

relatively high default mode network (DMN) activity during task performance associated with 

poor performance on cognitive tasks. 

Finally, HAROLD (hemispheric asymmetry reduction in older adults) is a model 

similarly built on compensation, though its focus is on hemispheric asymmetries within the PFC 

across a variety of tasks and conditions, including episodic and working memory (Cabeza, 2002). 

PASA (posterior-anterior shift in aging) likewise describes a compensatory process focused on 

the PFC, though it emphasizes a shift from posterior, occipital activity to frontal activity during 

task completion (Davis, Dennis, Daselaar, Fleck, & Cabeza, 2008). It is significant to note that 

most of these models include dedifferentiation as an explanatory component. Used to describe a 



ANALYSIS OF FUNCTIONAL BRAIN NETWORKS 3 

 

 

dispersal of task completion brain activity from a bounded ROI to multiple or bilateral ROIs, 

dedifferentiation plays an important role in these models of cognitive aging. 

The above models and referenced studies focus largely on region-specific or pair-wise 

brain changes in aging and memory. More broadly however, the brain can be considered to be a 

complex network or graph in which each brain region is a node and each functional connection 

between brain regions is an edge. Graph theory is a mathematical approach to analyzing the 

properties of such networks that is becoming increasingly common in functional imaging 

(Bullmore & Sporns, 2009).  

Graph theory-based studies of healthy neural aging broadly have shown a decrease in 

network modularity and global efficiency with age as well as decreases in average local 

clustering/efficiency, though some results differ between studies, likely due to parcellation, 

thresholding, or preprocessing methods. (Achard & Bullmore, 2007; Geerligs, Renken, Saliasi, 

Maurits, & Lorist, 2014; Sala-Llonch et al., 2014; Song et al., 2014). In one recent study using 

this approach to study memory in the context of aging and brain, the authors report an 

association between memory performance and decreased clustering in memory circuits, 

including the DMN and hippocampus (Sala-Llonch et al., 2014). Decreased global clustering can 

be thought of as representing a dispersion of relatively local processing of information by 

recruitment of other ROIs and/or circuits. This finding indicates that predicted compensatory 

dedifferentiation and compensation in memory circuits is observable from a whole-brain network 

perspective. 

One so far unexplored aspect of brain networks in aging is their relationship with 

performance on memory tasks like the Mnemonic Similarity Task (MST) (Kirwan & Stark, 

2007). A visual object recognition and discrimination task, the MST is thought to tax 
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hippocampal pattern separation. In this task, participants encode a series of every-day objects for 

a later memory test. At test, participants are shown exact repeats (targets), completely novel 

foils, or lure stimuli that are conceptually and perceptually similar to the previously-viewed 

targets. Discrimination of the lures from the targets has been shown to be compromised in 

hippocampal amnesia (Kirwan et al., 2012). Additionally, healthy older adults consistently 

perform worse on lure discrimination in the MST than younger controls (Doxey & Kirwan, 

2015; Toner, Pirogovsky, Kirwan, & Gilbert, 2009; Yassa, Lacy, et al., 2011). Given that this 

task is sensitive to small neurocognitive changes associated with aging, one goal of our study is 

to discover which of these neurocognitive changes are observable in a whole-brain network 

analysis approach.  

To further explore complex network properties associated with memory in aging by 

utilizing brain network metrics relating to global connectivity, clustering, and efficiency, we will 

test the following hypotheses: (a) older adults will have decreased global efficiency and 

increased global clustering as measured by graph theory analysis of their resting-state functional 

MRI; (b) memory-related brain regions in the MTL and DMN will have higher global 

connectivity and lower clustering in subjects with better memory performance; and, (c) older 

adults with better memory performance will have higher global efficiency and lower global 

clustering overall. 
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Methods 

Participants 

Twenty-five younger (mean age=22.4 yrs; 11 males; mean years of education=14.4) and 

fourteen older adults (mean age=73.8 yrs; 6 males; mean years of education=16.3) were recruited 

for this study from the university and surrounding neighborhood. Participants were screened to 

include ages 18-30 for the younger adults and 60-90 for the older adults as well as only right-

handed participants without any history of psychiatric or neurological disorders. All older adults 

underwent the Brief Cognitive Status Exam from the Wechsler Memory Scale (WMS) IV and 

scored in the normal range. The study was approved by the Brigham Young University 

Institutional Review Board (IRB), and all subjects gave informed consent before participating.  

MRI Data Acquisition and Preprocessing 

All participants were scanned with a Siemens 3T Tim Trio scanner using a 32-channel 

head coil at the BYU MRI Research Facility. Standard-resolution structural images were 

acquired using a T1-weighted MPRAGE sequence with the following parameters TR = 1900 ms; 

TE = 2.26 ms; slices = 176; flip angle = 9 degrees; FOV = 250 mm; matrix size = 256x215 mm; 

slice thickness = 1 mm; voxel size = 1 mm3. Resting state functional MRI (fMRI) data were 

acquired using a multi-band EPI sequence with the following parameters: multi-band factor = 4; 

TR = 1800 ms; TE = 42 ms; slices = 72; voxel size = 1.8 mm3; flip angle = 90 degrees; total 

acquisition time = 10 min. The first five volumes were discarded to allow for T1 equilibration. 

During the resting state scan, participants were instructed to lie still with their eyes open. 

MRI preprocessing was performed using AFNI and ANTs software (Avants, Tustison, 

Song, & Gee, 2009; Cox, 1996). Preprocessing steps included the following: within-scan 

functional alignment; structural-to-functional scan alignment; registration of structural scan to a 
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template; warping of functional scan to template space; extraction of white matter (WM), 

cerebrospinal fluid (CSF), and global signals; noise regression of motion parameters with first 

derivatives, CSF, WM, and global signals; bandpass filtering from 0.008 to 0.08 Hz; and 

censoring of TRs with motion exceeding 0.5 mm displacement. 

Graph Theory Analysis 

 ROI definitions were taken from the AAL template with a new orbitofrontal cortex 

parcellation, which were resampled to match the resting-state scan resolution (Rolls, Joliot, & 

Tzourio-Mazoyer, 2015; Tzourio-Mazoyer et al., 2002). Time courses for each ROI were 

extracted from individual subject scans in template space and were used to create functional 

connectivity matrices with Pearson correlation coefficients representing functional connectivity 

between ROI pairs. We used a relative threshold and preserved the strongest ten percent of all 

possible edges in our binary connectivity matrices. We chose a ten percent threshold because 

sparse thresholds have been shown to be most physiologically relevant and in order to maintain 

comparability with previous studies (Sala-Llonch et al., 2014). We utilized implementations of 

the MATLAB brain connectivity toolbox from (Rubinov & Sporns, 2010) to calculate graph 

theory measures.  

Behavioral Testing 

We administered the WMS-IV subtests of Visual Reproduction (VR) I and II, Logical 

Memory (LM) I and II and symbol span through the Q-Interactive iPad administration route, 

with the older adults completing the older adult variants where applicable. The visual 

reproduction task consisted of immediate and delayed (20-30 minutes) recall of presented visual 

figures. The logical memory task included immediate and delayed (20-30 minutes) recall of two 

different stories. The symbol span task is a visual working memory task that requires participants 
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to remember the identity and order of a series of symbols in order to select them from a new set 

of symbols on a subsequent screen. WMS IV data from 3 younger adults were lost in a technical 

error. 

A mnemonic similarity task (MST) was also administered. Participants were presented 

with 128 color pictures of common objects (2 seconds each with 0.5 second inter-stimulus-

interval) and were asked to respond to each by labelling it an “indoor” or an “outdoor” item. 

After a short delay, participants were given a recognition memory task. Sixty-four target, 64 lure, 

and 64 foil objects were presented. Participants were instructed to respond “old” to exact repeats 

(targets), “similar” to items that were similar to, but not identical with, previously-seen items 

(lures), and “new” to never-before-seen items (foils). We calculated a bias-corrected lure 

discrimination index (LDI) as follows: [p(“Similar”|Lure)-p(“Similar”|Foil)]. Similarly, our bias-

corrected recognition score was calculated as: [p(“Old”|Target)-p(“Old”|Foil)]. Responses of 3 

older adults were excluded because of incomplete or missing data due to failure to follow 

instructions. 

Tests and Statistics 

Statistical analyses were performed using SPSS (v25 SPSS Inc, Chicago, IL, USA). 

Analyses comparing young and old groups included years of education as a covariate. 

Behavioral 

A memory composite score was created from a subset of behavioral measures of interest 

from the WMS-IV. The following were included after conversion into z-scores for equal 

weighting: VR II, the delayed score from the LM story that was common across young and old 

groups, and SS. Partial correlations were calculated between the above-mentioned behavioral 

measures as well as with MST Lure discrimination scores while correcting for age. In addition, 
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one-tailed t-tests were performed on behavioral measures of interest to examine mean 

performance differences between young and old groups. 

fMRI 

We compared global graph theory measures between young and old subjects, including 

global efficiency, global clustering, and global modularity. Global efficiency is defined as the 

average for all pairs of ROIs of the inverse of the shortest path between an ROI pair. Global 

clustering is the average of the local clustering coefficients, where the clustering coefficient 

represents the proportion of a node’s neighbors that are connected to each other. Global 

modularity is a measure which represents how well a brain graph divides into distinct non-

overlapping modules. One way ANCOVAs with age group as a fixed factor were performed for 

these measures to test for age effects while correcting for education level.  

In addition, we defined a subset of memory-relevant ROIs for more specific testing of 

network effects. We selected DMN regions due to previous studies indicating that DMN function 

alters with age in regards to memory (Andrews-Hanna et al., 2007; Sala-Llonch et al., 2014; 

Wang et al., 2010). Our DMN network definition within the AAL atlas came originally from 

(Rosazza & Minati, 2011), with application to the AAL atlas by (Van Dellen et al., 2013). Here 

the DMN is defined as including precuneus, posterior cingulate gyrus, inferior parietal gyrus, and 

medial prefrontal gyrus (all bilateral). In addition, we included the classically memory-related 

MTL subregions of the bilateral hippocampus and parahippocampal gyrus. In order to address 

the question of differential effects of aging on local graph structure, we performed partial 

correlation analyses on the old and young adult groups separately of WMS composite and lure 

discrimination memory scores with the local graph theory metrics of clustering coefficient, 

degree, and centrality from each predefined ROI while correcting for education level. An ROI’s 
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degree is its number of connections with other nodes in the graph, and the centrality of an ROI is 

a hub measure defined as the proportion of shortest paths in the graph which pass through it. We 

corrected for multiple comparisons by using a partial Bonferroni stepdown at p≤0.005. 
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Results 

Behavioral 

A partial correlation analysis of behavioral measures revealed significant correlations 

between the WMS composite score and the other WMS sub-test scores (VR II, LM II, SSP; 

p<.0001), as well as between the WMS composite score and the MST lure discrimination score 

(p<.05). In addition, the LM II score significantly correlated with the lure discrimination score 

(p<.05).  

Table 1 Behavioral Partial Correlation Matrix. 
Matrix representing partial correlations for WMS-IV and MST behavioral scores while correcting for age. 
Correlation corresponds to Pearson’s r, and significance corresponds to the p-value of the significance test. 
Abbreviations: VR2, delayed visual reproduction score; SSP, symbol span; LM2, logical memory delayed 
score; PS score, pattern separation score. (* p<0.05, *** p<0.001) 

VR2 SSP Composite LM2 PS score 
VR2 Correlation 1.000 .054 .521 -.085 .120 

Significance .385 .001*** .325 .261 
SSP Correlation .000 .576 .029 .185 

Significance .0003*** .438 .160 
WMS 
Composite 

Correlation 1.000 .625 .376 
Significance .00009*** .019* 

LM2 Correlation 1.000 .325 
Significance . .037* 

PS score Correlation 1.000 
Significance . 

T-tests across group of age-dependent differences in memory scores show that the young

group outperformed the old group on all measures of interest except for the logical memory 

subtest. (Table 2; p<.001).  



ANALYSIS OF FUNCTIONAL BRAIN NETWORKS 11 

Table 2  Descriptive Statistics and T-test Results for Behavioral Scores. The young group scored 
significantly better on all tests and subtests except for the logical memory subtest of the WMS-IV 
(***p<.001). 

Group N Mean 
Std. 
Deviation t p 

Lure 
Discrimination 

Young 25 .43 .15 3.7 .0008*** 
Old 10 .22 .14 

VR2 Young 22 35.13 6.44 4.77 .00004*** 
Old 13 23.69 7.53 

SSP Young 22 28.36 4.47 4.97 .00002*** 
Old 13 20.15 5.11 

LM Young 22 14.86 3.75 1.26 .22 
Old 13 13.00 4.96 

WMS Composite Young 22 1.25 1.38 6.04 .0000009*** 
Old 13 -1.47 1.10 

Brain Networks and Memory in Aging 

A group-wise ANCOVA revealed that there were no differences between groups in 

global efficiency, clustering, or modularity whether or not we corrected for education level. We 

tested to see if any global graph theory metrics correlated with the WMS composite score or the 

MST lure discrimination score. We found no significant relationships between the WMS 

composite or lure discrimination score and the global graph theory metrics in a partial correlation 

analysis, including while correcting for education or age. 

We tested for local graph structure interactions with age and memory as described above. 

We found that in the older but not younger adult group, lure discrimination score correlated 

significantly with the centrality of the right hippocampus (r=.837, p<.005). Since this finding 

appeared to be influenced by a subject in the older adult group with a particularly high lure 

discrimination score, we tested for a correlative relationship between lure discrimination and 

right hippocampus centrality across all subjects combined and confirmed the presence of this 

relationship in the broader subject pool (Figure 1; r=.463, p=.006).  
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Figure 1 Partial Correlation Plot of Lure Discrimination Score by Right Hippocampus Centrality. Across 
young and older adult groups, lure discrimination score and right hippocampus centrality significantly 
correlate. (r=.463, p=.006; 0=Young 1=Older Adult).  

To further investigate this effect, we separated the older adult group by median split on 

composite WMS score. We chose the WMS composite to separate the older adults by memory 

performance, because three of the older adults were missing useable MST results. We performed 

a one-way ANCOVA across these memory performance groups while correcting for education 

on right hippocampus centrality and observed a main effect of group. There was a significant 

effect of group on right hippocampus centrality (p=.034, ηp
2=.196; Figure 2).  
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Figure 2  One-way ANCOVA of Right Hippocampus Centrality by WMS composite groupings. There is a 
significant main effect of group on centrality with education as a covariate. Post-hoc t-tests show that this 
difference is driven by the significant difference between the Young and Older Poor Memory groups (* 
p<0.05).  

Post-hoc comparisons showed that the young group (marginal mean=.011, SE=.002) and 

older poor memory group (marginal mean=.001, SE=.004) differed significantly in centrality 

(p=.034), whereas the other pair-wise comparisons between groups were not significantly 

different. 
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Discussion 

The absence of global graph differences between young and old groups is not 

unprecedented. While some studies have reported selective global differences correlating with 

aging (Achard & Bullmore, 2007; Onoda & Yamaguchi, 2013; Sala-Llonch et al., 2014; Song et 

al., 2014), others have observed no difference in specific tests (Meunier, Achard, Morcom, & 

Bullmore, 2009), and most studies have reported only a subset of global graph metrics, leaving 

uncertainty regarding reliable age differences in unreported metrics. In addition, inter-study 

differences such as group selection from different populations or differences in study protocol 

may be masking consistent results. These differences extend to analytical choices as well, since 

decisions regarding node selection, thresholding, and preprocessing methods have been shown to 

affect brain graphs non-trivially (Aurich, Alves Filho, Marques da Silva, & Franco, 2015; 

Gargouri et al., 2018; Zalesky et al., 2010). The lack of observed correlation between memory 

scores and global graph theory metrics may be attributable to limited locality of demand or 

effect. The demand that the MST places on hippocampal pattern separation and the difference 

with age in ability to meet this demand are possibly relatively focal to hippocampal subregions 

and functionally adjacent subnetwork that is small enough to not impact global graph theory 

metrics when altered (Yassa & Stark, 2011). If WMS-IV demands on brain networks are 

analogous, then both these scores and MST scores might be expected to correlate with network 

metrics only insofar as the metrics are as focal as the subnetwork demands. 

In that context, it is not surprising that we observe a significant relationship between right 

hippocampus centrality and lure discrimination score in our older adult group and a stratification 

of right hippocampus centrality levels according to memory performance grouping. The 

significantly smaller right hippocampus centrality in older adults with poor memory suggests that 
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hippocampus integration in the broader brain network may play a role in determining lure 

discrimination memory performance and may interact with hippocampus subfield pattern 

separation processes. The centrality of the hippocampus in the brain graph represents part of its 

“hubness,” or its importance to global information flow within the graph. Recent studies 

exploring hub structures in the human brain have identified a set of brain regions that typically 

can be distinguished as structural or functional hubs, including the precuneus, cingulate gyrus, 

ventromedial frontal cortex and inferior parietal regions (Cole, Pathak, & Schneider, 2010; 

Tomasi & Volkow, 2010; van den Heuvel & Sporns, 2013; Zuo et al., 2011). While many of 

these studies do not classify the hippocampus as a major brain network hub, the hippocampus 

has been observed to act as a hub region in some settings (Mišić, Goñi, Betzel, Sporns, & 

McIntosh, 2014; van den Heuvel & Sporns, 2011). Misic et al. describe the nature of 

hippocampal connections in the Macaque brain using the CoCoMac database. Utilizing a 

computational model of brain communication dynamics, they predict a network funneling of 

information flow traffic through CA1. According to this model, despite its lack of observable 

hub characteristics when accounting for structural tract connectivity alone, CA1 is an effectual 

sink for network information flow after considering network communication dynamics. Van den 

Heuvel and Sporns found by DTI measures of structural connectivity that the hippocampus was 

among a set of “rich-club” brain regions, which have both high whole-brain connectivity and 

high intraconnectivity within their own rich-club subnetwork. These two studies indicate that the 

hippocampus may play an important role in whole-brain network dynamics as a hub region. The 

findings of the current study demonstrate that preservation of the hippocampus as a high 

centrality hub region contributes to maintenance of memory function in aging. These findings 

parallel those of other studies linking brain hub profiles with other neurocognitive traits such as 
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intelligence and personality (Adelstein et al., 2011; Bassett et al., 2009; Li et al., 2009; Tomasi & 

Volkow, 2011). 

On a smaller scale, the pattern separation processes in the hippocampus that are thought 

to be associated with lure discrimination are specific to hippocampal subfields (Kirwan & Stark, 

2007; Yassa, Mattfeld, Stark, & Stark, 2011; Yassa & Stark, 2011). Furthermore, deficits in lure 

discrimination in aging have been shown to be associated with increased CA3 and dentate gyrus 

activity and other memory deficits with increased hippocampus activity (Miller et al., 2008; 

Yassa, Lacy, et al., 2011). The coherence of this trend with the present study’s centrality findings 

is explored as follows. When integrated into the brain network in healthy young and cognitively 

preserved older adults, the hippocampus acts as a relative hub, functionally connected with 

sensory and association cortices in such a way as to be an efficient route for information flow. It 

could be that in older adults with decreasing memory capacity, the hippocampus and its 

subnetwork of functional connections undergo a functional reorganization as part of atrophy, 

scaffolding, and compensation processes, that ultimately leads to less efficient information flow 

through the hippocampal hub. Such an efficiency deficiency might lead to locally increased 

hippocampus activity as an attempt to compensate for broader network reorganization. 

The correlation of hippocampus centrality with lure discrimination score is present only 

in the right hippocampus. As cited above, increased activation specifically in the right 

hippocampus has been observed during lure discrimination portions of the MST (Yassa, Lacy, et 

al., 2011). Differences in the laterality of functional activity during the MST have been observed 

in at least one other study and were attributed to laterally distinct spatial or semantic information 

processing within the right and left hippocampus, respectively (Motley & Kirwan, 2012). The 

version of the MST used in the current study did not rely on stimulus sets using primarily 
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rotation as a method for producing similar stimuli, however, some of the lures nonetheless have a 

rotation component. If participants relied on these spatial cues to identify lure stimuli, then it is 

feasible that information flow through the right hippocampus particularly would affect MST task 

performance. 

Limitations and Future Directions 

The primary limitation of this study is its limited sample size. While relatively small 

sample sizes are sometimes well suited for efficiently observing large effects, they can also 

increase the chance of false positives. Such being the case, the findings of this study should be 

further explored with a larger dataset. 

The interface of aging, memory, and brain networks remains relatively open for 

exploration. For instance, brain module composition or number may change differentially in 

aging with effects on memory performance. Other analysis routes include further 

characterization of the subnetworks underlying the observed hippocampus centrality differences 

between groups. A qualitative comparison of hippocampus subnetwork composition would shed 

light on the practical significance and implications of this study. Furthermore, the subnetwork of 

the hippocampus as elucidated by such a qualitative description could be explored as regions 

relevant to hippocampal pattern separation that have not yet been accounted for. 
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