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ABSTRACT

Integration of a Complete Detect and Avoid System
for Small Unmanned Aircraft Systems

Jared Kevin Wikle
Department of Mechanical Engineering, BYU

Master of Science

For unmanned aircraft systems to gain full access to the National Airspace System
(NAS), they must have the capability to detect and avoid other aircraft. This research
focuses on the development of a detect-and-avoid (DAA) system for small unmanned aircraft
systems.

To safely avoid another aircraft, an unmanned aircraft must detect the intruder air-
craft with ample time and distance. Two analytical methods for finding the minimum
detection range needed are described. The first method, time-based geometric velocity vec-
tors (TGVV), includes the bank-angle dynamics of the ownship while the second, geometric
velocity vectors (GVV), assumes an instantaneous bank-angle maneuver. The solution using
the first method must be found numerically, while the second has a closed-form analytical so-
lution. These methods are compared to two existing methods. Results show the time-based
geometric velocity vectors approach is precise, and the geometric velocity vectors approach
is a good approximation under many conditions.

The DAA problem requires the use of a robust target detection and tracking algorithm
for tracking multiple maneuvering aircraft in the presence of noisy, cluttered, and missed
measurements. Additionally these algorithms needs to be able to detect overtaking intruders,
which has been resolved by using multiple radar sensors around the aircraft. To achieve these
goals the formulation of a nonlinear extension to R-RANSAC has been performed, known
as extended recursive-RANSAC (ER-RANSAC). The primary modifications needed for this
ER-RANSAC implementation include the use of an EKF, nonlinear inlier functions, and the
Gauss-Newton method for model hypothesis and generation.

A fully functional DAA system includes target detection and tracking, collision detec-
tion, and collision avoidance. In this research we demonstrate the integration of each of the
DAA-system subcomponents into fully functional simulation and hardware implementations
using a ground-based radar setup. This integration resulted in various modifications of the
radar DSP, collision detection, and collision avoidance algorithms, to improve the perfor-
mance of the fully integrated DAA system. Using these subcomponents we present flight
results of a complete ground-based radar DAA system, using actual radar hardware.

Keywords: Detect and avoid, sense and avoid, multiple target tracking, recursive-RANSAC,
extended recursive-RANSAC, unmanned aircraft system, small UAS, minimum detection
range, ground-based radar, radar, detection device, collision detection, collision avoidance,
self separation, path planning
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CHAPTER 1. INTRODUCTION

1.1 Detect-and-Avoid Overview

The use of unmanned aircraft systems (UAS) in commercial and civil applications

has been expanding rapidly in recent years. Many UAS missions will require simultaneous

operation with existing airspace users. UAS currently have limited access to the National

Airspace System (NAS) because they do not have the ability to detect and avoid other air

traffic. Among many regulatory and technology issues, safety is the foremost concern and the

most significant challenge to overcome before UAS integration into the NAS can be achieved.

The Federal Aviation Administration (FAA), the national aviation authority in the United

States, calls for a target level of safety comparable to the see and avoid requirement for

manned aircraft [2].

Robust and reliable detect-and-avoid (DAA) systems will be necessary for UAS to

provide the required target level of safety. Typically, a complete functional detect-and-avoid

system is comprised of detection devices and associated trackers, collision detection, risk

assessment, collision avoidance, and self-separation algorithms. Historically, a common term

used in place of detect-and-avoid is the term sense-and-avoid (SAA). The motivation for using

the term detect-and-avoid over sense-and-avoid comes from the fact that any detection device

can be used for gathering the state information of another aircraft, and that measurement

sensors need not be required. Throughout the remainder of this thesis we will follow the

naming convention of DAA, as it pertains to a more general body of work.

The design of a DAA system for UAS should also address regulatory requirements,

and performance and reliability standards. Initial efforts to address performance, design,

construction, and reliability requirements of DAA systems for UAS are discussed in the white

papers produced by RTCA SC-228 [2]. An excellent review of existing regulations, standards,

recommended practices along with suggestions and recommendations for DAA requirements

1



to facilitate the UAS integration into the NAS system are discussed in Refs. [3–5]. Specific

design parameters required by a DAA system, such as sensor angular resolution, field of view,

and minimum time and detection range needed to prevent a collision assuming a 2D head-on

encounter geometry, are addressed in Ref. [1]. Sensor and tracking requirements are derived

for a radar-based DAA system considering a 2D flight worst-case encounter scenarios using

exhaustive Monte Carlo simulations in Ref. [6]. The authors in Ref. [7] propose a framework

that consists of a target level of safety (TLS) approach using an event-tree format to develop

specific DAA effectiveness standards linking UAS characteristics and operating environments

to midair-collision risk quantified by a fatality rate.

One problem that arises in creating a DAA system for UAS comes from the fact that

these aircraft have a much larger range of the sizes and performance capabilities than manned

aircraft [8]. These constraints of size, weight and power (SWaP) make DAA extremely

challenging using existing sensor technologies [9].

Another, more fundamental problem, is moving any DAA system to the flight testing

stage regardless of if it meets the SWaP constraints or not. One system that has reached this

flight testing stage has been developed by the Air Force Research Laboratory (AFRL) [10].

To test their DAA system, the AFRL used a Calspan Corporation Learjet in-flight simulator

aircraft. The Learjet was equipped with a radar, electro-optical (E/O) camera sensors, and a

Traffic Collision Avoidance System (TCAS) unit. Under the Multiple Intruder Autonomous

Avoidance (MIAA) program the Learjet was able to avoid multiple intruders in various

circumstances. The overall DAA algorithm they used to deal with multiple sensor measure-

ments is known as the Multiple Sensor Integrated Conflict Avoidance (MuSICA) algorithm.

There are two main sub-algorithms of MuSICA. The first sub-algorithm is Sensor Data In-

tegration (SDI), and is used for tracking multiple targets [11]. The second sub-algorithm is

Jointly Optimal Conflict Avoidance (JOCA), and is used for avoidance of multiple intruders.

SDI is comprised of four modules: EKF, data association, FTF, and track management. The

data association module uses the Jonker-Volgenant-Castanon (JVC) algorithm. The JVC

does not perform well in high-target-density and cluttered environments; therefore, it can

only by used high above the ground with relatively few intruder aircraft. While this DAA

system developed by the AFRL and other DAA systems exist, they do not meet the SWaP
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constraints required by small UAS; therefore, a new DAA system needs to be developed for

small UAS.

Within the Center for Unmanned Aircraft Systems (C-UAS), significant research

efforts have been put forth in the development of a complete DAA system. Past efforts

have included a system that includes both hardware and simulated components, however,

the primary detection device has remained as a simulated component. Research efforts have

continued to be made to develop a DAA system using actual radar hardware as the primary

measurement sensor, providing both range and bearing of the intruder aircraft. This system

has been divided among three different groups located at Brigham Young University (BYU).

One group is developing a radar unit which will meet the SWaP constraints for a small

UAS. The second group is working to support the radar hardware by creating a custom

analog-to-digital (A/D) converter board that interfaces with the radar boards and an off-

the-shelf development board. This development board contains a field-programmable gate

array (FPGA) and a processor which are meant to process the radar returns and eventually

run the remaining DAA algorithms. The final group, located within BYU’s Multiple Agent

Intelligent Coordination and Control (MAGICC) lab, is developing the target detection and

tracking, collision detection, and collision avoidance algorithms.

One question that arises in the development of a DAA system is: what is the minimum

distance that the detection device needs to detect other aircraft for effective self separation

and collision avoidance? In this thesis, we create the time-based geometric velocity vec-

tors (TGVV) and geometric velocity vectors (GVV) methods for estimating the minimum

detection range. The TGVV method includes the bank-angle dynamics of the ownship,

which results in an exact solution that is found with the aid of numerical techniques. The

GVV method assumes an instantaneous bank-angle maneuver of the ownship, allowing us

to develop an approximate closed-form analytical solution. These methods are compared to

two existing methods, which we refer to in this thesis as the turn time (TT) and geometric

tangent (GT) methods. Results show the time-based geometric velocity vectors approach is

precise, the geometric velocity vectors approach is a good approximation under many con-

ditions, and the two existing approaches are good approximations at large ownship speeds
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relative to the intruder speed, fast ownship bank-angle transients, and small ownship bank

angles.

The DAA problem requires the use of a robust target detection and tracking algo-

rithm for tracking multiple maneuvering aircraft in the presence of noisy, cluttered, and

missed measurements. Additionally this algorithms needs to be able to detect overtaking

intruders. To achieve these goals, we have developed a a target detection and tracking sys-

tem that uses radar as the primary sensor, where multiple radar sensors are mounted around

the ownship aircraft to achieve 360 degrees of horizontal surveillance coverage. These radar

sensor measurements are then used within a multiple target tracking algorithm to estimate

the states of the intruder aircraft. The tracking algorithms that we use include, recursive-

RANSAC (R-RANSAC) and extended recursive-RANSAC (ER-RANSAC). The R-RANSAC

algorithm is developed in Ref. [12], while the general formulation of the ER-RANSAC al-

gorithm is shown in this thesis, which extends the general linear R-RANSAC algorithm to

nonlinear systems. In both the R-RANSAC and ER-RANSAC algorithms, we use a con-

stant acceleration model to track the maneuvering behavior of the intruder aircraft. The

model used within R-RANSAC is a translational point mass model, while the model used

within ER-RANSAC is a nonlinear model that includes the flight characteristics of a turning,

accelerating, and climbing aircraft. The nonlinear model more accurately captures the turn-

ing and climbing behavior of aircraft, and is better suited to predict where a maneuvering

aircraft will be at some future point in time. While the nonlinear model has these added

benefits, there are other factors that make the linear model an attractive candidate that will

be discussed later. As such, both the linear and nonlinear models will be used in various

results presented in this thesis. To aid in the generation of these and other results, we use an

improved detect-and-avoid simulator that is capable of modeling multiple intruder aircraft

specified by the user. Additionally, this simulator allows the user to easily switch between

different algorithms, and allows the user to add new algorithms needed for development.

A complete DAA system includes target detection and tracking, collision detection,

and collision avoidance. In this research we demonstrate the integration of each of the

DAA-system subcomponents into fully functional simulation and hardware implementations

using a ground-based radar (GBR) setup. This integration resulted in various modifications
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of the radar DSP, collision detection, and collision avoidance algorithms, to improve the

performance of the fully integrated DAA system. The ultimate goal is to create a complete

DAA system that is fully autonomous and which uses an air-based detection device, however,

to achieve this goal, we have first chosen to utilize the radar hardware in a ground-based

radar DAA setup. This is an important step as it allows for greater debugging capabilities

when trying to develop a completely new sensor to detect small UAS with a small radar cross

section (RCS). Using this radar hardware and the other integrated DAA subcomponents,

we present flight results of a complete ground-based radar DAA system. By using the radar

in a ground-based setup, we demonstrate the feasibility of the hardware and algorithms

developed in this thesis and by members of the research team.

1.2 Summary of Contributions

The main contributions of this thesis relate to target detection and tracking elements

of the DAA problem, and the integration of subcomponents of the DAA system into fully

functional simulation and hardware implementations. The specific contributions of this thesis

include:

� The derivation of the TGVV and GVV methods, which are an exact numerical so-

lution and a closed-form analytical approximation to the minimum detection range,

respectively.

� An extensive comparison of the TGVV and GVV methods with two existing methods:

the TT and GT methods. We find that the TGVV and GVV methods create more

accurate estimates of the minimum detection range over a wide range of encounter

scenarios.

� A general formulation of the ER-RANSAC algorithm, which extends the general linear

R-RANSAC algorithm to nonlinear systems.

� The implementation of a target detection and tracking system for robustly tracking

intruder aircraft in the varied encounters a UAS might possibly experience. This system
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uses multiple radar units for increased sensor coverage, and either the R-RANSAC or

ER-RANSAC algorithms implemented with constant-acceleration dynamic models.

� An improved detect-and-avoid simulator that is capable of modeling a user specified

number of intruder aircraft, provides an elegant way for the user to choose between

alternate function implementations, and allows the user to easily add new function

implementations.

� The integration of the DAA-system subcomponents into fully functional simulation

and hardware implementations. This includes modifications to the radar DSP, collision

detection, and collision avoidance algorithms, to improve the performance of the fully

integrated DAA system.

� Flight testing of a complete ground-based radar DAA system, using actual radar hard-

ware that demonstrates the feasibility of the hardware and algorithms developed in

this thesis and by members of the research team.

1.3 Thesis Outline

The outline of the remainder of this thesis is organized as follows. In Chapter 2,

we create the TGVV and GVV methods for estimating the minimum detection range. In

this chapter, we also compare the TGVV and GVV methods with two existing methods,

including the TT and GT methods. In Chapter 3, we describe a novel method for robustly

detecting and tracking intruder aircraft in the varied encounters a UAS might possibly

experience. Chapter 3 is divided into three main sections. First, we describe the selection

of radar as the primary detection device. Second, we describe the desired properties of a

tracking system and how we have achieved these properties through the use of R-RANSAC

with a constant-acceleration model. Also in this section, we present the general formulation

of the ER-RANSAC algorithm, which extends the general linear R-RANSAC algorithm to

nonlinear systems. Third, we demonstrate the performance of this tracking system using

the ER-RANSAC algorithm and three on-board radar sensors. In Chapters 4 and 5, we

describe the integration of the DAA-system subcomponents into fully functional simulation
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and hardware implementations, respectively. For the simulation implementation we model

a 3D ground-based radar and 3D aircraft flight paths. For the hardware implementation

we describe modifications that needed to be made in the radar DSP, R-RANSAC, collision

detection, and collision avoidance algorithms, in order to be able to use actual radar hardware

that only provides measurements of range and azimuth angle. We also describe the ground-

based control station and all other hardware which were necessary to create flight test results.

Chapter 6 presents our conclusions and possibilities for future work.
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CHAPTER 2. MINIMUM DETECTION RANGE

Robust and reliable DAA systems will be necessary for UAS to provide the required

target level of safety called for by the FAA. These DAA systems typically include sensors

and associated trackers, collision detection, risk assessment, collision avoidance, and self-

separation algorithms.

The main role of the sensor and associated tracker is to detect any of the various

types of hazards, such as traffic or terrain, and track the motion of the detected object to

gain sufficient confidence that the detection is valid. Electro-optical (E/O) and infrared (IR)

cameras, light detection and ranging (LiDAR), and radar are examples of sensors employed

to detect non-cooperative traffic [13]. Non-cooperative traffic means that data about poten-

tial conflicts is not communicated or transmitted to the ownship UAS from the conflicting

intruders. The traffic alert and collision avoidance system (TCAS) and automatic dependent

surveillance-broadcast (ADS-B) are examples of systems for detecting cooperative intruders.

Both cooperative and non-cooperative sensors can be used with DAA systems and both can

be used in conjunction with the results of this chapter.

Not every aircraft that is observed by the detection system presents a risk of colli-

sion or violation of the well-clear boundary. The self-separation algorithm must, therefore,

identify potential well-clear violations and plan new paths that remain well clear of intruder

aircraft while optimizing an objective function or performance metric. Self separation is de-

signed to prevent future collision-avoidance maneuvers and is achieved using less-aggressive

maneuvers. If the well-clear boundary is penetrated, the collision detection and collision

avoidance system must be used to detect potential collisions and compute collision-free paths.

A collision avoidance maneuver is considered as the last resort effort to steer the UAS onto

a safe course to prevent an imminent collision and may require an aggressive change in flight

path.
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The design of a DAA system for UAS should also address regulatory requirements,

and performance and reliability standards. An overview of these requirements and standards

was initially shown in Chapter 1. Among these requirements and design specifications,

developing sensors that achieve sufficiently large target detection ranges for effective self

separation and collision avoidance is a crucial aspect of a viable DAA solution. This chapter

provides an exact numerical solution and a closed-form analytical approximation to the

minimum detection range. An outline of this chapter is as follows. In Section 2.1, derivation

of the minimum detection range dMDR is given along with the appropriate definitions and

assumptions. An overview of two existing methods is given in Section 2.1.1 followed by the

new methods in Section 2.1.2. In Section 2.2 results are presented providing a comparison of

the four methods: the two presented in this chapter, and those presented in Ref. [1] and [14].

2.1 Minimum Detection Range Formulation

The minimum required detection range arises from the time required to complete the

detection and avoidance of an intruder. The minimum time for the DAA system to be able

to track the intruder, detect a collision or well-clear violation, plan an avoidance maneuver,

wait for human review/approval, and fly the maneuver determines the distance at which the

UAS must detect the intruder. The detection of a well-clear violation or collision threat

must be accomplished at no less than the minimum detection range to allow the ownship

to execute the maneuver with sufficient time so that the closest point of approach is greater

than or equal to the separation requirement. A time sequence for the DAA system, similar

to the proposed sequence in Ref. [1], is shown in Fig. 2.1. According to the time sequence,

the time required for DAA operations, tDAA, is defined as the sum of the computation time,

tc, and the time that is required to maneuver, tm.
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Figure 2.1: Proposed time line for the detect and avoid system [1].

Current manned aviation regulations have no explicit values for separation require-

ments, however, various attempts have been made to define them. For collision avoidance

of manned aviation, a common requirement is the near mid-air collision (NMAC) volume,

which is a disk-shaped volume with a horizontal radius of 500 ft and a vertical height of 200

ft [15–17]. No such requirements exist for UAS, however, the NMAC volume could be used

as a conservative requirement. For self separation, the well-clear boundary is more ambigu-

ous and depends on the specific aircraft involved and their associated speeds and altitudes.

Recent efforts to define this boundary for UAS have resulted in values in the range of 0.5 to

1 nmi [18]. For UAS the potential ownship and intruder aircraft can vary widely in vehicle

size, weight, and airspeed, and the separation requirements could be scaled accordingly. For

this work, we will assume a purely geometric safety volume centered around the aircraft as

shown in Fig. 2.2. The general choice for this volume is a cylinder of radius Rs and height

hs centered at the current location of the aircraft. This volume will be used to represent the

well-clear or NMAC volume. From this volume, a well-clear violation or an NMAC is defined

as an incident that occurs when two aircraft pass with a distance less than Rs horizontally

and hs
2

vertically.
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Figure 2.2: General volume used to represent the well-clear or NMAC conditions.

Various types of sensors exist for detecting intruder aircraft and they can be located

at different locations, such as on the ownship aircraft, a stationary ground-based platform,

or a moving ground based platform. If the sensor is fixed to the ownship, the minimum

detection range calculated in this paper can be directly used as the minimum sensing range

requirement of the sensor. If the sensor is used with a ground-based system, the minimum

detection range determines how close an aircraft can fly to the edge of maximum surveillance

range and still be guaranteed to avoid intruders. The equations developed in this paper for

the minimum detection range are independent of the specific sensor type chosen, however,

because of field of view limits, multiple sensors may be required to achieve the desired field

of view.

The analysis in this chapter assumes that there is only one intruder aircraft. If

there is more than one intruder then the avoidance maneuver will likely be more complex

and will require a greater detection range. This paper considers the longest-detection-range

encounter that occurs when both the ownship and intruder are flying at a constant altitude,

course, and airspeed in a direct head-on approach. Various types of avoidance maneuvers

can be taken by the ownship to avoid the intruder’s safety volume. First, the ownship could

perform a turning maneuver at a constant altitude to stay outside the horizontal safety radius

Rs. Second, the ownship could perform a climbing/descending maneuver without turning

to achieve a relative altitude equal to or greater than hs/2 while inside the safety radius.

Third, the ownship could both turn and climb/descend simultaneously to avoid either the

safety radius or the safety altitude, whichever comes first. Finally, the ownship could adjust

its speed in addition to one of the previous maneuvers. Since Rs is generally much larger
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than hs, a constant-altitude turning maneuver will require the largest distance to avoid the

safety volume and will be the focus of our avoidance-maneuver analysis. For simplicity, the

ownship velocity is assumed to be constant and above the stall speed of the ownship. The

speed of the ownship and intruder are defined as vo and vi respectively.

In this analysis, the ownship’s turning dynamics follow the coordinated-turn relation-

ships [19]

χ̇ =
g

vo
tanφ, (2.1)

Rmin =
vo
χ̇max

=
v2
o

g tanφmax

, (2.2)

where χ̇ is the course rate, φ is the bank angle, Rmin is the minimum turning radius, χ̇max

is the maximum course rate, φmax is the maximum bank angle, and g is the gravitational

constant. This analysis is intended for use with fixed-wing aircraft with turning dynamics

that are well modeled by the coordinated-turn relationships. The analysis is also valid for

other types of aircraft, such as rotorcraft, provided their turn dynamics are approximated

by the coordinated turn.

The assumptions that have been made and other real-world issues may limit the va-

lidity of the analysis and as a result additional range may be required in practice. Ownship

and intruder states are not known perfectly due to state estimation errors resulting from im-

perfect IMU, GPS, and detection sensors. The intruder may maneuver during the encounter

by turning, changing altitude, or changing speed. Finally, the ownship may not follow the

ideal coordinated turn flight trajectory. Each of these issues will need to be considered be-

fore final sensor requirements can be made, however, the results of this paper provide a solid

foundation to build upon.

2.1.1 Prior Approaches

One method, known as the tactical separation assisted flight environment (TSAFE)

resolution algorithm developed by Erzberger [20], deserves mention. The TSAFE resolution

algorithm does not solve for the minimum detection range specifically, however, various sup-

plemental equations are common between our method and the TSAFE resolution algorithm
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including the position and course dynamics of the ownship. In the TSAFE resolution algo-

rithm, two aircraft are given arbitrary positions, headings, and speeds relative to each other.

Using these initial conditions, resolution maneuvers are calculated based on one or both of

the aircraft performing a horizontal turning maneuver followed by straight-line flight. The

turning maneuvers are performed by right or left turn maneuvers with the bank angle and

turn time as the control variables. By varying each of the variables, equations are developed

to calculate the closest point of approach (CPA) between the two aircraft during the turning

maneuver and during the straight-line flight. The final CPA between the two aircraft is then

found find taking the minimum of the CPA during the turning maneuver and the straight-

line portion. The last step of the TSAFE resolution algorithm is to choose the appropriate

bank angle, turn direction, and turn time which result in the CPA being greater than the

required safe distance. Although the TSAFE resolution algorithm was not formulated to

find the minimum detection range, the CPA equations utilized by TSAFE resolution could

be used in an iterative manner to solve for the minimum detection range by adjusting the

starting distance between the two aircraft until the CPA equals the required safe distance.

Two approaches developed specifically for calculating minimum detection range are

found in the literature. One approach, developed by Geyer et al. [1], is referred to in this

paper as the turn-time (TT) approach. The second approach, developed by Sahawneh et

al. [14], is referred to as the geometric-tangent (GT) approach. Both approaches assume

an instantaneous bank-angle maneuver and a head-on, constant-altitude, constant-velocity

encounter. A brief description of these two methods is given in the following subsections.

Turn Time Approach

Using the TT method proposed in Ref. [1], the minimum detection range is calculated

using the expression

dMDR = (vo + vi)(tc + tt), (2.3)

where tt is the time when the ownship and intruder are closest as the ownship is executing a

turning maneuver. The turn time is found using equations for the north and east positions

of both the ownship and intruder as functions of time, and the assumption that the turn
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time is approximately equal to the time to collision in the absence of a maneuver. Using this

time-based approach the minimum detection range is expressed as

dMDR ≈ (vo + vi)

(
tc +

√
2Rs cotφmax

g

)
. (2.4)

In Ref. [1], the authors acknowledge that their solution is an approximation to the

true minimum detection range, and state that it is meant to be used as a heuristic for

choosing the right sensor and its resolution. They further state that it is not suitable for

small distances and velocities, but did not specifically define limiting values.

Geometric Tangent Approach

The GT method proposed in Ref. [14] approximates the minimum detection range as

dMDR = (vo + vi)tc + dm,

where dm is the distance between the ownship and the intruder when the ownship starts

maneuvering. In this method the ownship executes a turning maneuver with a constant

turning radius. The closest point of approach is then assumed to occur when the ownship

is located on the edge of the safety circle around the intruder and the turning radius of the

ownship is tangent to the safety circle around the intruder. Using this geometric relationship

the minimum detection range is expressed as

dMDR ≈ (vo + vi)tc +

√
R2
s + 2Rs

v2
o

g tanφmax

+
vivo

g tanφmax

cos−1

(
v2
o

v2
o +Rsg tanφmax

)
. (2.5)

In Ref. [14], the authors acknowledge that their solution is an under-approximation

and state that compensation can be made by selecting a positive slack parameter, δr, to

obtain d̄MDR = (1 + δr)dMDR. Slack parameters must be found using experimental results,

such as those from Monte Carlo simulations, but insights into appropriate slack parameter

values were not given.
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2.1.2 New Approaches

The TT and GT approaches both make the assumption that the ownship executes a

turning maneuver by instantaneously banking to a specified angle. This assumption simplifies

the derivation of the minimum detection range by confining the trajectory of the ownship to a

circular arc. In the turning maneuver of real aircraft, an instantaneous bank-angle maneuver

is not physically possible. Instead, the bank angle has a transient response resulting from

the deflection of the ailerons. The response of the bank angle determines the course rate of a

coordinated turn as shown in Eq. (2.1). This non-constant course rate results in a trajectory

that is not circular and must be determined by numerical integration of complex time-based

functions. Considering the bank-angle dynamics results in a more accurate prediction of the

minimum detection range that is larger than the predictions of the TT and GT methods. The

proposed method that takes into account the bank-angle dynamics is called the time-based

geometric velocity vectors (TGVV) approach and is described fully in this paper.

The second method presented in this paper, known as the geometric velocity vectors

(GVV) approach, is a special case of the TGVV approach that maintains the assumption

of an instantaneous bank-angle maneuver. By utilizing this assumption, the GVV method

allows flight trajectories to be represented geometrically as circular paths instead as functions

of time, which allows a closed-form analytical solution for the minimum detection range to

be derived. We will show under what conditions, the instantaneous bank-angle assumption

is valid, allowing the GVV method to be used with confidence. We will further show that the

GVV method produces more accurate approximations to the TGVV solution over a wider

range of conditions than the solutions offered by the TT and GT approaches. The TGVV

and GVV methods also allow the turning angle for the avoidance maneuver to be defined by

the analyst instead of prescribing a 90-degree turn. While this may result in a slightly larger

dMDR, it also allows deviations from the nominal flight path to be reduced at the discretion

of the analyst.
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Problem Formulation

A diagram for the total minimum detection range, dMDR, is shown in Fig. 2.3, and

the resulting general equation for dMDR is represented as

dMDR = do + di + dCPA,

where do is the total head-on distance traveled by the ownship, and di is the total head-on

distance traveled by the intruder. The final term dCPA is the remaining head-on distance

between the ownship and intruder when the closest point of approach has been reached.
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Figure 2.3: The total minimum detection range, dMDR, needed. A representation of the

closest point of approach (CPA).
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In Fig. 2.3 we can also see that the variables do and di can both be broken down

into two subsegments each. The total head-on distance traveled by the ownship can be

defined as do = do,c + do,m, where do,c is the head-on distance traveled by the ownship

during computation time, and do,m is the head-on distance traveled by the ownship while

it is executing its maneuver. Similarly the total head-on distance traveled by the intruder

can be defined as di = di,c + di,m, where di,c is the head-on distance traveled by the intruder

during computation time, and di,m is the head-on distance traveled by the intruder while the

ownship is executing its maneuver. Using these definitions, the minimum detection range

becomes

dMDR = do,c + do,m + di,c + di,m + dCPA.

When analyzing the interaction between two aircraft during an avoidance maneuver,

the CPA is a significant point of interest and a detailed derivation of this location is the basis

upon which the new methods are built. The previous GT approach also uses the CPA as the

basis of their derivation of the minimum detection range, however, the GT approach differs

in where the CPA is located. In the GT method the CPA is assumed to be located where

the circular arc transversed by the ownship during its avoidance maneuver becomes tangent

to the safety circle drawn around the intruder. In the TGVV and GVV methods the CPA

is also located on the edge of the safety circle around the intruder, however, the tangency

assumption is removed. Instead, the ownship is assigned an arbitrary course angle χcpa when

it is located on the edge of the safety circle as seen in Fig. 2.3. This illustration is represented

in a right-handed X-Y -Z inertial reference frame, and the variable χcpa is defined relative

to the X axis. In addition to χcpa, an additional angle is needed to define the location of

the ownship on the edge of the safety circle when the CPA is reached which is shown by the

variable θcpa in Fig. 2.3. The variable θcpa is measured relative to the negative X axis and

represents the angle between the forward flight path of the intruder and the line connecting

the CPA of the intruder and ownship. Using the definition of θcpa, a right triangle is formed

with its hypotenuse equal to the safety radius Rs and the two sides equal to xcpa, and ycpa.
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The CPA can be identified by taking the derivative of the range with respect to time,

known as the range rate, and setting it to zero. The range rate is calculated as

ṙ =
po − pi
‖po − pi‖

· (vo − vi), (2.6)

where po, pi, vo, and vi are vectors defined in the inertial reference frame. The vector po

is the position vector of the ownship, pi is the position vector of the intruder, vo is the

velocity vector of the ownship, and vi is the velocity vector of the intruder. Using Fig. 2.3,

the position and velocity vectors can be defined in terms of the safety radius Rs, the ownship

and intruder velocities vo, and vi, and the unknown variables xcpa, ycpa, and χcpa. Since the

aircraft are assumed to be flying at constant altitude, the Z component of the position and

velocity vectors will be neglected. The origin is defined as the intruder position when the

CPA is reached so that pi = (0,0). Using the intruder’s position as the origin, the ownship’s

position is then defined as po = (−xcpa, ycpa). The intruder’s velocity vector is defined to be

in the -X direction, therefore, the intruder’s velocity vector is defined as vi = (−vi,0). The

ownship’s velocity vector points in the direction of χcpa and is defined by vo = (vo cosχcpa,

vo sinχcpa). Substituting these position and velocity vectors into Eq. (2.6) and equating it

to zero results in

0 =
(−xcpa, ycpa)− (0, 0)

‖(−xcpa, ycpa)− (0, 0)‖ · ((vo cosχcpa, vo sinχcpa)− (−vi, 0)),

=
1

Rs

[vo sinχcpaycpa − (vi + vo cosχcpa)xcpa] , (2.7)

where we now have a single equation with unknown variables xcpa, ycpa, and χcpa.

If an instantaneous bank-angle maneuver is assumed, as in the GVV method, the

three unknown variables can be expressed in terms of the single unknown variable θcpa. The

resulting equation can then be solved for θcpa explicitly, from which the specific values for

xcpa, ycpa, and χcpa are found.

If on the other hand, a non-instantaneous bank-angle maneuver is assumed, as in the

TGVV method, the variable χcpa cannot be expressed in terms of θcpa. For this case χcpa is

found by integration of the turning dynamics of the aircraft over time. Since the variable
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χcpa is now based on time, the three unknown variables are expressed in terms of the time

to maneuver to the CPA, tm, instead of the unknown variable θcpa. After substituting these

expressions back into Eq. (2.7), the resulting equation cannot be solved for tm explicitly

and must instead be found through numerical methods. Once tm has been determined, the

specific values for xcpa, ycpa, and χcpa can be found.

Using Fig. 2.3 and the definitions of the CPA as described above, dCPA is equal to xcpa.

From this figure we can also see that do,m is equal to the X component of the maneuvering

ownship when it reaches the CPA, xm. The head-on distance traveled by the intruder while

the ownship is executing its maneuver is a linear function of the time it takes the ownship to

maneuver to the CPA as di,m = vitm. Finally, since the ownship and intruder are assumed

to be traveling at constant velocity, do,c and di,c are linear function of the computation time

and are expressed as do,c = votc and di,c = vitc respectively. With each of these definitions,

the general equation for the minimum detection range finally becomes

dMDR = (vo + vi)tc + xm + vitm + xcpa. (2.8)

The remaining variables xm, tm, and xcpa are dependent on the specific maneuver

taken by the ownship and the location on the edge of the safety circle where the CPA

occurs. The specific maneuver taken by the ownship and the resulting location of the CPA

differ between the TGVV and GVV methods and will be defined in the following two sections

along with the resulting minimum detection range.

Time-Based Geometric Velocity Vectors Approach

As stated above the TGVV approach assumes that the turning maneuver executed by

the ownship is driven by a non-instantaneous bank angle change and the resulting trajectory

must be characterized by numerical integration of time-based turn dynamics. The first step

in characterizing the trajectory is to define the X and Y positions of the ownship during its

maneuver as functions of time as

px(t) =

∫ t

t0

vx(σ)dσ =

∫ t

t0

vo cosχ(σ)dσ, (2.9)
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py(t) =

∫ t

t0

vy(σ)dσ =

∫ t

t0

vo sinχ(σ)dσ. (2.10)

These positions are measured relative to the location where the ownship initiates its avoid-

ance maneuver and the time is measured relative to the time when the ownship initiates its

avoidance maneuver, t0. The variables vx and vy are the X and Y velocity components of

the ownship as functions of time while it performs its turning maneuver. The variable χ is

the course of the ownship as a function of time while it performs its turning maneuver, and

σ is the independent variable of integration.

Assuming the ownship performs a coordinated turn maneuver, the course of the

aircraft can be found by integrating the course rate from Eq. (2.1) as

χ(t) =

∫ t

t0

χ̇(σ)dσ =

∫ t

t0

g

vo
tanφ(σ)dσ. (2.11)

For the GVV, method which will be described later, φ is assumed to be a step function

with a magnitude of φmax, however, the TGVV approach assumes that the turning maneuver

executed by the ownship is influenced by the bank-angle dynamics. At this point any desired

banking dynamics could be used to define the course as a function of time, however, we have

chosen to use a first-order transfer function that describes the roll rate of the aircraft, p, in

response to the deflection of the ailerons δa. Roll rate is integrated to get the bank angle.

A block diagram of this system is shown in Fig. 2.4, where K and τ are general first-order

system parameters, and s is the Laplace variable.

φpδa 1
s

K
τs+1

Figure 2.4: Block diagram of the bank-angle response due to aileron inputs.

Using this dynamic model we design a set of aileron commands to achieve a desired

bank-angle response as shown in Fig. 2.5(a). In interval 1, a positive aileron step is used at

t0 to achieve a constant bank-angle rate, φ̇max. In interval 2, a negative aileron step is used

at t1 to stop the rolling motion at the maximum bank angle, φmax. In interval 3, the aircraft

20



holds this constant bank angle, beginning at t2, until it is time to return to level flight. The

time at which the aircraft needs to begin returning to level flight is shown by t3 and is chosen

so that the total change in course resulting from the turning maneuver is equal to χt. In

interval 4, a negative aileron step is used at t3 to achieve a constant bank-angle rate, −φ̇max.

In interval 5, a positive aileron step is used at t4 to stop the rolling motion with the bank

angle returns at zero. Finally, at t5 the aircraft remains in level flight at the desired course,

χt, for the remainder of the avoidance maneuver. In some cases the aircraft may not reach

the maximum bank angle before it is time to return to level flight to ensure the proper χt

is achieved. In these cases the bank angle has the response shown in Fig. 2.5(b) from which

we notice t2 and t3 occur at the same time instant and there is no longer an interval 3. We

also notice that intervals 2 and 4 are combined in terms of the negative step input to the

system from the ailerons.

φ̇max

φmax

0

δa

t

t0 t1 t2 t3 t4 t5
-δa

angle
1 2 3 4 5

t2
t1

(a) Case A: φmax is reached.

0

δa

t

t0 t1
t2,t3

t4 t5
-δa

φ̇max

1 2 4 5

t1
t2

φ

δa

angle

φmax

(b) Case B: φmax is not reached.

Figure 2.5: Bank-angle response to aileron step inputs.

From Fig. 2.5, the segments of the bank-angle response where φ is changing as a result

of the aileron input are intervals 1, 2, 4, and 5. The time response of φ to step inputs in

the aileron command can be derived from the ordinary differential equation describing the

bank-angle dynamics

τ φ̈+ φ̇ = Kδa(t).
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The bank-angle response due to an aileron step input of magnitude δa occurring at time t0

is given by

φ(t) = Kδa
[
τe−(t−t0)/τ − τ + (t− t0)

]
+ τ φ̇(t0)

(
1− e−(t−t0)/τ

)
+ φ(t0),

while the bank-rate response is given by

φ̇(t) = Kδa
(
1− e−(t−t0)/τ

)
+ φ̇(t0)e−(t−t0)/τ .

The magnitude of the aileron step input is chosen so that the steady-state bank-angle rate

is the prescribed maximum φ̇max, which gives

δa =
φ̇max

K
. (2.12)

Substituting this value of δa back into the equations for φ(t) and φ̇(t) results in equations in

terms of τ and φ̇max as

φ(t) = τ φ̇max

(
e−(t−t0)/τ − 1

)
+ φ̇max(t− t0) + τ φ̇(t0)

(
1− e−(t−t0)/τ

)
+ φ(t0), (2.13)

φ̇(t) = φ̇max

(
1− e−(t−t0)/τ

)
+ φ̇(t0)e−(t−t0)/τ . (2.14)

These equations are the general equations used to define the response of the bank angle to a

positive or negative step input from the ailerons for Cases A and B. The specific bank-angle

responses for each interval are derived for both cases in Appendix A.

Tables 2.1 and 2.2 provide a summary of the specific bank-angle response for each

interval, shown by φi, for Case A and Case B, respectively. Additionally, the transition times

for each segment are shown by ti, and the change in course during each segment is shown

by δχi. To determine if Case A or Case B is required for the bank-angle dynamics of the

ownship we use the value calculated for δχ3. If δχ3 ≥ 0 then Case A is used, and if δχ3 < 0

then Case B is used.
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Table 2.1: Bank angle, time intervals, and change in course for each segment of Case A.

Case A

Interval φi(t)

1 φ1(t) = τ φ̇max

(
e−t/τ − 1

)
+ φ̇maxt

2 φ2(t) = τ φ̇max

(
1− 2e−(t−t1)/τ + e−t/τ

)
− φ̇max(t− 2t1)

3 φ3(t) = φmax

4 φ4(t) = τ φ̇max

(
1− e−(t−t3)/τ

)
− φ̇max(t− t3) + φmax

5 φ5(t) = τ φ̇max

(
2e−(t−t4)/τ − 1− e−(t−t3)/τ

)
+ φ̇max(t− 2t4 + t3) + φmax

Interval ti δχi

1 t1 = −τ ln

[
e−(φmax/φ̇max)/τ

1+
√

1−e−(φmax/φ̇max)/τ

]
δχ1 =

∫ t1
t0

g
vo

tan(φ1(t))dt

2 t2 = 2t1 − φmax

φ̇max
δχ2 =

∫ t2
t1

g
vo

tan(φ2(t))dt

3 t3 = t2 + Rminδχ3

vo
δχ3 = χt − (δχ1 + δχ2 + δχ4|t3=0,t4=t1

+ δχ5|t3=0,t4=t1,t5=t2)

4 t4 = t3 + t1 δχ4 =
∫ t4
t3

g
vo

tan(φ4(t))dt

5 t5 = t3 + t2 δχ5 =
∫ t5
t4

g
vo

tan(φ5(t))dt

Table 2.2: Bank angle, time intervals, and change in course for each segment of Case B.

Case B

Interval φi(t)

1 φ1(t) = τ φ̇max

(
e−t/τ − 1

)
+ φ̇maxt

2,4 φ2,4(t) = τ φ̇max

(
1− 2e−(t−t1)/τ + e−t/τ

)
− φ̇max(t− 2t1)

5 φ5(t) = τ φ̇max

(
e−t/τ (2et1/τ − 1)2 − 1− 2 ln

[
2et1/τ − 1

])
+ φ̇maxt

Interval ti δχi

1 numerical method in Appendix A.2 δχ1 =
∫ t1
t0

g
vo

tan(φ1(t))dt

2,4 t2 = τ ln
[
2et1/τ − 1

]
, t4 = t2 + t1 δχ2,4 =

∫ t4
t1

g
vo

tan(φ2,4(t))dt

5 t5 = 2t2 δχ5 =
∫ t5
t4

g
vo

tan(φ5(t))dt

23



Using the information from Table 2.1 we create an expression for the course of the

ownship after it initiates the avoidance maneuver for Case A as

χ(t) =



0 if t ≤ t0,∫ t
t0

g
vo

tan(φ1(σ))dσ if t0 < t ≤ t1,

δχ1 +
∫ t
t1

g
vo

tan(φ2(σ))dσ if t1 < t ≤ t2,

δχ1 + δχ2 +
∫ t
t2

g
vo

tan(φ3(σ))dσ if t2 < t ≤ t3,

δχ1 + δχ2 + δχ3 +
∫ t
t3

g
vo

tan(φ4(σ))dσ if t3 < t ≤ t4,

δχ1 + δχ2 + δχ3 + δχ4 +
∫ t
t4

g
vo

tan(φ5(σ))dσ if t4 < t ≤ t5,

χt if t5 < t,

(2.15)

Similarly, using the information from Table 2.2 we create an expression for the course

of the ownship after it initiates the avoidance maneuver for Case B as

χ(t) =



0, if t ≤ t0∫ t
t0

g
vo

tan(φ1(σ))dσ, if t0 < t ≤ t1

δχ1 +
∫ t
t1

g
vo

tan(φ2,4(σ))dσ, if t1 < t ≤ t4

δχ1 + δχ2,4 +
∫ t
t4

g
vo

tan(φ5(σ))dσ, if t4 < t ≤ t5

χt, if t5 < t

(2.16)

Using Eqs. (2.15) and (2.16) for the course of the ownship and Eqs. (2.9) and (2.10)

for the position of the ownship, the trajectory of the ownship is fully defined. Using this

trajectory, we return to the analysis of the CPA location. The time to maneuver is the time

it takes the ownship to initiate a turning maneuver until it reaches the CPA location on the

edge of the safety circle around the intruder. This segment of the flight path of the ownship

is shown in Fig. 2.3 and is composed of X and Y components, xm and ym, respectively.

These X and Y components can be defined in terms of the equations for px(t) and py(t),
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Eqs. (2.9) and (2.10), and the time to maneuver as

xm = px(tm), (2.17)

ym = py(tm), (2.18)

From Eq. (2.7) we have three unknown variables xcpa, ycpa, and χcpa. Using Fig. 2.3

we see that the unknown variable ycpa, which defines the Y component of the CPA, has the

same value as the Y component of the maneuvering ownship ym at the CPA. Accordingly,

xcpa and ycpa can be expressed as

ycpa = ym = py(tm), (2.19)

xcpa =
√
R2
s − y2

cpa =
√
R2
s − py(tm)2, (2.20)

Similarly χcpa can be expressed as

χcpa = χ(tm). (2.21)

After substituting these expressions for xcpa, ycpa, and χcpa into Eq. (2.7) and simplifying we

get

0 = py(tm)vo sinχ(tm)−
√
R2
s − py(tm)2(vi + vo cosχ(tm)). (2.22)

This equation is now a function of a single variable tm, which can be solved for using the

Newton-Raphson method. Once the value of tm has been found the three variables xcpa,

ycpa, and χcpa can then be calculated, along with the variables xm and ym.

Now that the CPA location has been defined we return to the calculation of the

minimum detection range shown in Eq. (2.8). With the values for xm, tm, and xcpa just

derived, the minimum detection range can be defined as

dMDR = (vo + vi)tc + px(tm) + vitm +
√
R2
s − py(tm)2, (2.23)

where tm is found from Eq. (2.22) using the Newton-Raphson method, px(tm) and py(tm)

are found from Eqs. (2.9) and (2.10), and χ(tm) is generally defined in Eq. (2.11), but is

specifically defined for both Case A and Case B in Eqs. (2.15) and (2.16), respectively.
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Geometric Velocity Vectors Approach

The TGVV method described above incorporates the bank-angle dynamics of the

ownship into the avoidance path. If the bank-angle dynamics of the ownship are fast relative

to the maneuver time, then the assumption of an instantaneous bank angle becomes more

realistic. For the GVV method we make this assumption, and in the results section we show

under what conditions this assumption is valid by comparing it to the TGVV method.

yl
xl

yt

xt

χcpa

maneuver
initiated

ownship
CPA

χt

Rmin

yχt
cpa

Y

X

χt

intruder
CPA

maneuver
trajectory

(a) Case 1: yt ≤ yχt
cpa. Ownship completes turning

maneuver before reaching the CPA location.

χcpa

χt

xm

ym

ownship
CPA

χcpa

Rmin

Rmin − ym

maneuver
initiated

yt

yχt
cpa

intruder
CPA

maneuver
trajectory

Y

X

(b) Case 2: yt > yχt
cpa. Ownship reaches CPA lo-

cation before completing turning maneuver.

Figure 2.6: Geometric diagram for the CPA location resulting from circular turning trajec-

tories of the ownship.

Instead of solving the bank-angle dynamics we begin by defining the geometry that

can be used to calculate the minimum detection range as shown in Fig. 2.6. From this

figure we see that there are two different geometrical cases that can occur while the ownship

is maneuvering. For the first case, shown in Fig. 2.6(a), the ownship turns with a small

turning radius compared to the safety radius and is able to complete its turning maneuver

before reaching the CPA location. This means that after the ownship completes its turning

maneuver it will fly straight until the CPA location is reached. The X and Y components
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of the turning segment of the maneuver are represented by the variables xt and yt, and the

X and Y components of the linear segment of the maneuver are represented by xl and yl.

In the second case, shown in Fig. 2.6(b), the ownship turns gradually and reaches the CPA

location before completing its turning maneuver. This means that the ownship will still be

in a banked turn as it passes the CPA location. The X and Y components of the turning

segment of the maneuver for this case are similarly represented by xt and yt.

These cases can be distinguished mathematically in the following manner. First we

assume the ownship executes a turning maneuver until its course is equal to the prescribed

value for χt. The Y component of this turning maneuver for both cases is calculated from

yt as

yt = Rmin(1− cosχt). (2.24)

Second we calculate ycpa with the course set equal to the desired turn angle χt and define

this as yχtcpa. The exact derivation of this parameter will be shown in the subsection for

Case 1. This Y coordinate denotes the transition between Case 1 and Case 2 where the

turn maneuver is completed at the exact moment the CPA is reached. The final step is to

compare the calculated yt and yχtcpa, which allows us to determine which geometry should

be used to calculate the minimum detection range. For Case 1, yt ≤ yχtcpa, while for Case 2

yt > yχtcpa.

As stated previously, for the GVV method Eq. (2.7) can be expressed in terms of the

variable θcpa. Two of the variables xcpa and ycpa can be immediately expressed in terms of

θcpa as

xcpa = Rs cos θcpa, (2.25)

ycpa = Rs sin θcpa. (2.26)

Substituting these into Eq. (2.7) and simplifying results in

0 = vo sinχcpa sin θcpa − (vi + vo cosχcpa) cos θcpa. (2.27)
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The variable χcpa is different for Cases 1 and 2 and will be derived in the following two

subsections along with the resulting minimum detection range.

Case 1: yt ≤ yχtcpa

In Case 1, the ownship completes its turning maneuver before reaching the CPA,

therefore, the course of the ownship when it reaches the CPA, χcpa, will be equal to the

prescribed value χt. Substituting this into Eq. (2.27) results in

0 = vo sinχt sin θcpa − (vi + vo cosχt) cos θcpa. (2.28)

This equation is then used to solve for θcpa as

θcpa = tan−1

(
vi + vo cosχt
vo sinχt

)
,

where θcpa is now used in the expressions for xcpa, and ycpa to produce

xcpa =Rs
vo sinχt√

v2
o + v2

i + 2vovi cosχt
, (2.29)

ycpa =Rs
vi + vo cosχt√

v2
o + v2

i + 2vovi cosχt
. (2.30)

Since the ownship reaches a course of χt before reaching the CPA in Case 1, then the variable

yχtcpa is equivalent to ycpa defined by Eq. (2.30)

yχtcpa = Rs
vi + vo cosχt√

v2
o + v2

i + 2vovi cosχt
.

This value of yχtcpa is used to determine whether a specific encounter scenario is of Case 1 or

Case 2 geometry.
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Next we define the variables xt, yt, xl, yl from the geometry of Fig. 2.6(a) as

xt = Rmin sinχt, (2.31)

yt = Rmin(1− cosχt), (2.32)

yl = ycpa − yt = Rs
vi + vo cosχt√

v2
o + v2

i + 2vovi cosχt
−Rmin(1− cosχt), (2.33)

xl = yl cotχt =

[
Rs

vi + vo cosχt√
v2
o + v2

i + 2vovi cosχt
−Rmin(1− cosχt)

]
cotχt, (2.34)

Using these definitions we can define the remaining variables needed for the minimum

detection range xm and tm as

xm = xt + xl,

= Rmin sinχt +

[
Rs

vi + vo cosχt√
v2
o + v2

i + 2vovi cosχt
−Rmin(1− cosχt)

]
cotχt, (2.35)

tm =
L

vo
=
Rminχt +

√
x2
l + y2

l

vo

=

Rminχt +

[
Rs

vi+vo cosχt√
v2o+v2i+2vovi cosχt

−Rmin(1− cosχt)

]√
1 + cot2 χt

vo
, (2.36)

where L is the length of the avoidance path of the ownship during the turning and straight

segments of the maneuver.

Substituting Eqs. (2.29), (2.36), and (2.35) into Eq. (2.8), and using the relationship

defined in Eq. (2.2) for Rmin, produces the final minimum detection range equation for Case 1
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as

dMDR = (vo + vi)tc +Rmin sinχt +

[
Rs

vi + vo cosχt√
v2
o + v2

i + 2vovi cosχt
−Rmin(1− cosχt)

]
cotχt

+
vi
vo

[
Rminχt +

[
Rs

vi + vo cosχt√
v2
o + v2

i + 2vovi cosχt
−Rmin(1− cosχt)

]√
1 + cot2 χt

]
+Rs

vo sinχt√
v2
o + v2

i + 2vovi cosχt
. (2.37)

Case 2: yt > yχtcpa

For this case we begin with Eq. (2.27), however, we must define expressions for cos χcpa

and sinχcpa as functions of θcpa. We first define expressions for ym and xm as

ym = ycpa = Rs sin θcpa, (2.38)

xm =
√
R2

min − (Rmin − ym)2 =
√
Rs sin θcpa(2Rmin −Rs sin θcpa). (2.39)

These values for ym and xm can now be used to define cosχcpa and sinχcpa as

cos(χcpa) =
Rmin − ym
Rmin

=
Rmin −Rs sin θcpa

Rmin

, (2.40)

sin(χcpa) =
xm
Rmin

=

√
Rs sin θcpa(2Rmin −Rs sin θcpa)

Rmin

. (2.41)

Similarly an expression for χcpa can be defined as

χcpa = tan−1

(
xm

Rmin − ym

)
= tan−1

(√
Rs sin θcpa(2Rmin −Rs sin θcpa)

Rmin −Rs sin θcpa

)
. (2.42)

Substituting these expressions from Eqs. (2.40) and (2.41) into Eq. (2.27) and ma-

nipulating produces an equation in terms of a single parameter θcpa in the following form

0 = a sin3 θcpa + b sin2 θcpa + c sin θcpa + d, (2.43)
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where a, b, c, and d are defined as

a =2vivoRminRs,

b =v2
oR

2
s − (vi + vo)

2R2
min,

c =− 2vo(vi + vo)RminRs,

d =(vi + vo)
2R2

min.

Equation (2.43) has been formulated to be cubic in sin θcpa. Applying Cardano’s formulas [21]

and expressing sin θcpa as z produces three roots for sin θcpa as

z1 =− b

3a
+ (S + T ) ,

z2 =− b

3a
− 1

2
(S + T ) +

1

2
i
√

3 (S − T ) ,

z3 =− b

3a
− 1

2
(S + T )− 1

2
i
√

3 (S − T ) ,

where S and T are defined as S =
3
√
R +
√
D, T =

3
√
R−
√
D respectively, D is defined as

D = Q3 +R2, and Q and R are defined as Q = c
3a
−
(
b

3a

)2
, R = bc

6a2
− d

2a
−
(
b

3a

)3
respectively.

Since we are trying to find a root for the expression sin θcpa, the root must first lie within the

bounds [−1, 1]. Second, the solution for θcpa must lie within the bounds of [0, 90] degrees due

to the head-on approach of the ownship and intruder and the right turning maneuver of the

ownship as seen in Fig. 2.6, which means the root must further be restricted to [0, 1]. Finally,

there may still exist multiple roots within the bounds [0, 1], therefore, a third constraint must

be satisfied. The chosen root must produce a value of θcpa that when used to calculate χcpa

in Eq. (2.42) produces a value within the bounds of [0, 90] degrees. Once these constraints

are satisfied, the true root is identified and used to find θcpa as

θcpa = sin−1 z. (2.44)

This value of θcpa is now used to define values for xcpa and ycpa shown in Eqs. (2.25)

and (2.26), and ym and xm shown in Eqs. (2.38) and (2.39). The time to maneuver is found
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as

tm =
L

vo
=
Rminχcpa

vo
=

1

vo
Rmin tan−1

(√
Rs sin θcpa(2Rmin −Rs sin θcpa)

Rmin −Rs sin θcpa

)
. (2.45)

Substituting Eqs. (2.25), (2.39), and (2.45) into Eq. (2.8) produces the final equation for the

Case 2 minimum detection range as

dMDR = (vo + vi)tc +
√
Rs sin θcpa(2Rmin −Rs sin θcpa)

+
vi
vo
Rmin tan−1

(√
Rs sin θcpa(2Rmin −Rs sin θcpa)

Rmin −Rs sin θcpa

)
+Rs cos θcpa, (2.46)

where θcpa is defined in Eq. (2.44) and Rmin is defined in Eq. (2.2).

2.2 Results: Method Comparison and Validation

With the equations for the minimum detection range derived, we now present results

showing calculated values for the minimum detection range as a function of each of the

parameters used in the equations. We present these results for the two methods developed in

this paper, the TGVV and GVV methods. We also present results for the two prior methods,

TT and GT, and provide a detailed comparison of all four methods. The parameters that are

used by all four methods include vo, vi, Rs, φmax, and tc. For the TGVV and GVV methods

we have the additional parameter χt, and for the TGVV method we have two parameters

used to describe the bank-angle dynamics, φ̇max and τ . In creating the results, a nominal set

of values are chosen for each of these parameters except the ownship speed and are listed in

Table 2.3.

Table 2.3: Nominal parameter values used in the calculation of dMDR.

Parameter vi Rs φmax tc χt φ̇max τ
Value 150 kts 500 ft 30 deg 5.0 s 90 deg 30 deg 0.5 s
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The minimum detection range is calculated for all four methods using the parameter

values from Table 2.3 and is shown in Fig. 2.7. In this figure dMDR is plotted versus the

ownship speed, with level curves used to vary one or two additional parameters.

In Fig. 2.7(a) we first compare various values for φ̇max and τ , which only affect the

calculation of the TGVV method. The GVV method is also plotted to demonstrate what

values of φ̇max and τ result in the two methods producing similar values.

For Figs. 2.7(b) through 2.7(f) a single pair of values are used for φ̇max and τ , which

results in a single set of level curves for the TGVV method. Upon careful inspection, it can

be seen that each subplot contains one level that corresponds to the core set of parameters

in Table 2.3, which results in one common level among each of the subplots. This allows us

to see how the minimum detection range deviates from a common level as each parameter

is changed. Figure 2.7(b) is used to vary vi, Fig. 2.7(c) varies Rs, Fig. 2.7(d) varies φmax,

Fig. 2.7(e) varies tc, and Fig. 2.7(f) varies χt.

In Fig. 2.7 the right-pointing orange triangles are used to identify transition points

from Case B to Case A for the TGVV method when viewed from left to right. Similarly,

left-pointing black triangles are used to identify transition points from Case 1 to Case 2 for

the GVV method when viewed from left to right.

From Fig. 2.7(a) a general trend between the TGVV and GVV methods can be seen.

We see that as φ̇max increases and τ decreases, the TGVV method dMDR values approach the

same values as those from the GVV method, shown by the black line. It can be seen that

the TGVV method always predicts a minimum detection range slightly larger than the GVV

method, which results from including the bank-angle dynamics in the turning maneuver.

It is evident from Figs. 2.7(b) through 2.7(f) that the TT and GT methods approach

the GVV method for ownship speeds in the Case 2 region of the GVV method. This is

because Case 2 of the GVV method uses an avoidance maneuver that is performed solely

by turning, which is an assumption made in both the TT and GT methods. For ownship

speeds in the Case 1 region of the GVV method, the TT and GT methods predict values for

the minimum detection range significantly smaller than the GVV and TGVV methods.
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Figure 2.7: Comparison of dMDR as a function of vo, vi, Rs, φmax, tc, χt, φ̇max and τ .
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Finally, from each subplot of Fig. 2.7 it can be seen that as the ownship speed in-

creases, each of the methods models dMDR as a linear function of the ownship speed. For large

values of vo, the nonlinear geometric methods (GVV and GT), converge to the linear model

predicted by the TT method. Using the equation for the minimum detection range from the

TT method, the slope of these lines can be inferred from of Eq. 2.4 to be a function of Rs,

φmax, and tc. As Rs and tc increase, the slopes of the resulting lines increase, as can be seen

in Figs. 2.7(c) and 2.7(e); however, as φmax increases, the slope of the resulting lines decrease,

as can be seen in Fig. 2.7(d). As the remaining variables, vi and χt, are increased, the slopes

resulting from the geometric methods stay constant as shown in Figs. 2.7(b) and 2.7(f).

Having calculated the minimum detection range, we must now determine the accuracy

of the results. If the true minimum detection range is used to initialize the distance between

two aircraft, the resulting CPA between the two aircraft will be exactly equal to the safety

radius, Rs. This means we can check the accuracy of the minimum detection range calculated

from each of the four methods by comparing the resulting CPA to the safety radius. To find

the resulting CPA for each method, a simulation is performed. The ownship and intruder are

initialized in a head-on configuration at a distance equal to dMDR. Both aircraft fly towards

each other without maneuvering during the computation time, after which the ownship

begins turning using the bank-angle dynamics described by the TGVV method with the

parameters φ̇max, τ , φmax, and χt. Once the ownship has turned to the predefined χt, it flies

straight until it is far from the intruder. During the simulation the relative range and CPA

between the ownship and the intruder are calculated.

An example of the relative range is shown in Fig. 2.8. The parameters that are

used come from Table 2.3, and the value of the ownship speed is vo = 25 kts. The TGVV

method is shown by the solid orange line, and at time zero the relative range between the

two aircraft is approximately 5209 feet. As the two aircraft continue their flight paths, the

closest point of approach is exactly equal to 500 feet at approximately 18.9 seconds. Since

the TGVV method uses the same dynamic model as the ownship in the CPA simulation, the

predicted relative range from the TGVV method is identical to the simulation truth model.

The GVV method is shown by the dotted black line and the relative range predicted at time

zero is approximately 4942 feet. In this case the two aircraft reach a CPA of 456 feet at

35



approximately 17.9 seconds, which is a violation of the safety volume. Similarly the ownship

flight paths from the TT and GT methods result in a penetration of the safety volume with

a CPA of 243 and 116 feet at approximately 12.9 and 9.9 seconds respectively.

0 2 4 6 8 10 12 14 16 18 20
time (s)

0

1000

2000

3000

4000

5000

re
la

tiv
e 

ra
ng

e 
(f

t) truth, TGVV
GVV
TT
GT

Rs=500 ft

Figure 2.8: Relative range vs. time and the resulting CPA.

The CPA is used to compare the accuracy of each of the four methods. In Fig. 2.9

the CPA is plotted versus the speed of the ownship. In Fig. 2.9(a), four different sets of

parameters are used for the bank-angle dynamics of the ownship, whereas, in the other

subplots only the nominal set of parameters is used for the bank-angle dynamics of the

ownship, while other critical parameters are varied. The first observation to make from each

of the subplots is that the TGVV method always produces a CPA exactly equal to the value

chosen for Rs which means that the safety volume has not been penetrated and the true

minimum detection range has been found. Additionally, the GVV, TT, and GT methods

all produce a CPA less than the chosen value for Rs which means the safety volume has

been penetrated and the calculated minimum detection range is an under-approximation.

Fig. 2.9(a), however, shows that the CPA of the GVV method approaches the safety radius

of 500 ft as φ̇max increases, and τ decreases, implying that the GVV method becomes a good

approximation of the TGVV method as the speed of the bank-angle response increases.
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Figure 2.9: Comparison of the CPA as a function of vo, vi, Rs, φmax, tc, χt, φ̇max and τ .
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The next critical observation to make is seen in Fig. 2.9(b), which shows that the

CPA of the TT and GT methods converge to the CPA of the GVV method as vo increases.

Additionally, it can be seen the GT method approaches the GVV method as vi decreases.

This is because the underlying assumption of tangent turning circles is more reasonable when

the intruder speed is small relative to the ownship speed.

Figure 2.9(d) shows that the CPA of the GVV, TT, and GT methods approach the

desired value chosen for Rs as φmax decreases. This is because smaller values of φmax result

in shorter bank-angle transients and produce more circular turns that more closely match

the circular-turn assumptions of the GVV, TT, and GT methods.

Finally, from Fig. 2.9(f) the TT and GT methods depart from the GVV method as χt

decreases at low ownship speeds. This is because the TT and GT methods do not provide any

compensation for limiting the turn angle, χt. Instead, these methods assume the ownship is

always in a banked turning maneuver as it passes the intruder. This assumption matches the

avoidance trajectory of the ownship for Case 2 of the GVV method and is a valid assumption

for large ownship speeds. This assumption causes issues at low ownship speeds because the

ownship completes its turning maneuver before reaching the CPA which corresponds to Case

1 of the GVV method.

The CPA plots show that the TGVV method always results in a CPA equal to the

safety radius, which means the true minimum detection range has been found. The geometric

methods (GVV, TT, and GT), however, are computationally simpler and it is of interest to

know how well they approximate the solution produced by the TGVV method. Figure 2.10

provides this information by showing the percent relative error in the minimum detection

range between the other methods and the TGVV method.

From each subplot in Fig. 2.10 we see that the GVV method produces the smallest

relative error. We also see that the TT method generally produces a relative error less than

the GT method except when vi approaches zero as seen in Fig. 2.10(b). In Fig. 2.10(a) the

relative error in dMDR is plotted versus 1/φ̇max and τ with the remaining parameters fixed at

their nominal values and with the ownship speed equal to 150 kts. The value of τ is varied

between 0 and 1 s, while φ̇max is varied from 30 deg/s to infinity. Plotting against the inverse
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Figure 2.10: Percent relative error of dMDR, compared to TGVV, as a function of vo, vi, Rs,

φmax, tc, χt, φ̇max and τ .
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of φ̇max improves the presentation of the data and facilitates interpretation of the result. By

continuously varying φ̇max and τ , the effects of each variable on the accuracy of the GVV

method can be more easily seen. From the subplot it can be seen that the relative error

does decrease as τ decreases, however, it does not decrease to zero. As the inverse of φ̇max

decreases, however, the relative error does go to zero for all values of τ . This shows that

as the bank-angle maneuver of the ownship becomes more instantaneous, the results of the

geometric GVV method converge to those of the TGVV method.

The results presented thus far show that the TT and GT methods converge to the

GVV method for large ownship speeds relative to the intruder speed, and the GVV method

converges to the TGVV method for fast bank-angle transients and small bank angles. We

can thus conclude that the TT and GT methods provide good approximations for the mini-

mum detection range at large ownship speeds relative to the intruder speed, fast bank-angle

transients, and small bank angles.

Although the main focus of this paper is on methods for the calculation of minimum

detection range, the time to maneuver is a quantity of significant importance and accompa-

nying results for this parameter are presented in Fig. 2.11.

As stated previously, the minimum detection range of the geometric methods (GVV,

TT, and GT) approach linear functions for large ownship speeds. From Fig. 2.11, a similar

observation can be made for the time to maneuver. The TT method predicts a maneuver

time that is constant with ownship speed. Comparing Eqs. 2.3 and 2.4 and noting that the

maneuver time tm is the same as the turn time tt for the TT method, shows that the predicted

TT maneuver time is
√

2Rs cotφmax

g
, which is independent of the ownship speed. For large

ownship speeds the GT and GVV methods converge to the maneuver time value predicted

by the TT method. In Fig. 2.11(c), we see that as Rs increases the predicted maneuver times

also increase. From Fig. 2.11(d), we see that as φmax increases the maneuver times decrease.

From Figs. 2.11(b) and 2.11(f) we see that the TGVV and GVV methods account

for variations vi and χt, as seen by three sets of lines, whereas, the TT and GT methods do

not account for them. This agrees with the expressions for the predicted time to maneuver

in the TT and GT methods where the predicted tm for the GT method can be derived from

Eq. (2.5) as vo
g tanφmax

cos−1
(

v2o
v2o+Rsg tanφmax

)
.
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Figure 2.11: Comparison of tm as a function of vo, vi, Rs, φmax, tc, χt, φ̇max and τ .
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The results presented thus far have used parameter values consistent with a collision-

avoidance encounter. Results are now presented for parameter values more consistent with

a self-separation scenario. These results use the following parameters: Rs = 0.75 nmi, which

is the lateral UAS well-clear requirement, φmax = 5 deg, χt = 15 deg, tc = 20 s, which

includes tracking and typical pilot response delay with air traffic control (ATC) interaction,

φ̇max = 10 deg/s, τ = 0.5 s, vo = 0–1250 kts, and vi = 250, 500, 750, 1000, 1250 kts. The

results for these parameters are shown in Fig. 2.12.
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Figure 2.12: Self separation results.
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From Fig. 2.12(a) it can be seen that the the minimum detection range is now on the

order of 10 to 50 nmi instead of 2000 to 10000 ft. Figure 2.12(b) shows that the CPA of the

TGVV method is equal to the value chosen for Rs of 0.75 nmi. We also see that the GVV

method produces a CPA close to the desired value for Rs. In Fig. 2.12(c) we see that the

relative error of the GVV method stays well under 1 percent. Finally in Fig. 2.12(d), we see

that for large ownship speeds the time to maneuver has increased to about 57 s as would

be expected for the self separation simulation parameters. Each of the subplots in Fig. 2.12

demonstrate that the GVV method can be used as an accurate approximation to the TGVV

method when parameter values are aligned with those commonly found in self-separation

encounters. Similarly, the TT and GT methods provide good approximations to the TGVV

method, but only for large ownship speeds.

Finally, to complete our comparison of the four methods considered in this paper

we present results that characterize the computational cost of each of the methods. These

results are shown in Table 2.4 and include the average runtime of each method and the

number of lines of code needed to implement each method. The average runtime for each

method was based on 30,000 samples and was executed in Matlab on a 64-bit, 2.70 GHz,

four-core, Intel I-7 laptop with 16 GB of RAM. For the TGVV method, numerical methods

were used with a time step of 0.001 s. The number of lines of code required by each method

was determined for a MATLAB implementation. The number of lines of code for the TGVV

and GVV methods are only approximations as multiple lines of code could be combined,

however, this does provide some insight into how much effort would be required to program

each method. While the run time of each method is of interest, none of the implementations

are expensive in terms of required computation time when compared to the time scales of

the corresponding DAA maneuvers.

Table 2.4: Computational cost of each method from average runtime and lines of code.

Computational Cost

TGVV GVV TT GT

Runtime (s) 1.77e-2 2.01e-5 1.19e-6 2.27e-6

Lines of code ≈200 ≈50 1 1
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CHAPTER 3. TARGET DETECTION AND TRACKING

Target detection and tracking is a vital component of a detect-and-avoid system.

Target detection requires a detection device which is capable of receiving simultaneous mea-

surements from multiple aircraft. Target tracking involves two steps: first, a method must

be put into place that is capable of using imperfect measurements from the detection device

to identify the total number of intruder aircraft at each time step. Second, the states of each

of the identified intruder aircraft must then be estimated. The resulting target tracks will

then be used for subsequent steps of the DAA system. Specifically, they are used for pre-

dicting the relative positions between the ownship and intruder aircraft in the future, where

knowing these future positions allows us to determine if a collision is expected to occur. If

a collision is predicted to occur, then a new collision avoidance path will be calculated and

flown by the ownship aircraft.

An overview of the remainder of this chapter is as follows: In Section 3.1, the selection

of radar as the detection device is explained. In Section 3.2, the selection of recursive-

RANSAC as the tracker is motivated along with original research done to extend recursive-

RANSAC to nonlinear models. Finally in Section 3.3, the implementation of an air-based

radar detection device with extended recursive-RANSAC as the tracker is described with

accompanying simulation results.

3.1 Detection Device

The FAA released a literature review of detect, sense, and avoid technologies in

2009 [22]. In this review two overarching technologies are discussed, cooperative SAA and

non-cooperative SAA. While cooperative technologies would be preferable, it cannot be

assumed that all aircraft will be equipped with such a system, therefore, this research focuses
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on the use of non-cooperative technologies. Non-cooperative technologies can be broken into

two categories, active systems and passive systems.

Collectively, passive sensors are ideal because they do not require the generation of

power consuming signals, but instead rely on external methods to provide the detectable sig-

nal. Examples of passive systems include motion detection, electro-optical (E/O), infrared,

and acoustic sensors. Passive E/O cameras are an attractive solution because of the vast

availability of these sensors and the simplicity in interpreting the data from these sensors

using the human eye. Additionally, camera technology is ideal because of the low cost, small

size, and low power requirements; however, traditional cameras are not able to detect intrud-

ers far away, so high definition cameras are required. The main problem with these sensing

devices is that they do not work in poor weather, at night, and they do not provide a direct

measurement of range. These limitations are significant enough that an alternate solution is

desired.

Active systems have the ability to overcome the problems mentioned for passive sys-

tems, and some examples of active systems include radar, laser, and sonar. Active systems

have one main drawback when compared to passive systems. Active systems do not rely

on external sources such as reflections from the sun or heat sources to provide a detectable

signal of the target, instead, they utilize reflected signals that originate from the active sen-

sor itself. The drawbacks of this difference are that active systems must create a signal

to be transmitted that may require large amounts of power to create, and the generation

of this signal makes the ownship highly visible to others where they may desire to remain

unseen. This last issue is not as big of a concern for general civilian use, however, it would

be a concern for military surveillance and reconnaissance type missions. The focus of this

thesis is in using a detection device for the DAA problem among the general public, and not

necessarily to be used by the military. As a result, active sensors appear to be the sensor

of choice due to their ability to work in poor weather and at night, while also providing a

direct measurement of range.

Radar has been under development for many years and has many attractive features

that make it one of the best solutions for the DAA problem. Radar is ideal for situations

where normal vision is impaired, such as poor weather or night time conditions. This is
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because radar is an active sensor that generates a signal that is able to cut through poor

weather. Furthermore, it uses its own reflected signal to detect an object as opposed to the

reflection of light originating from the sun, which means it works irrespective of the amount

of sunlight. Normal radar units tend to be large and heavy, but current work is being done

at BYU to create a small, low-weight, low-power radar suitable for small UAS. Although the

research in this thesis does not include the development of this radar, the tracker and DAA

system described in this thesis have revolved around its use as the primary detection device.

3.2 Tracker

With radar selected as the primary detection device, a method must be put into place

to use these radar measurements to detect the number of intruder aircraft and to estimate

the states of each of the intruder aircraft within the field of view of the radar. For this thesis,

we use a multiple target tracking algorithm that was originally developed here at Brigham

Young University by Dr. Randy Beard and Peter Niedfeldt, known as recursive-RANSAC

(R-RANSAC) [12, 23]. A couple of early applications of this algorithm include tracking

multiple ground point scatters from an airborne synthetic aperture radar [24], and tracking

multiple dynamic targets in clutter [25].

The continued use of R-RANSAC for multiple target tracking in various applications

has been an active area of research for the past several years. Dr. Beard has led these

efforts in conjunction with various graduate students. A brief description of these various

implementations of R-RANSAC are given as follows. In Ref. [26], multiple targets are tracked

using video taken from static platforms. In Ref. [27], multiple targets are tracked using video

taken from an airborne camera. In Ref. [28], multiple landing sites for rotorcraft in urban

environments, are quickly found from large terrain maps. In Ref. [29], cooperative target

tracking is performed using moving camera platforms to geolocate the targets in an inertial

frame.

There are two main contributions that we have made to the R-RANSAC algorithm,

as a result of the research shown in this chapter. First, we extend the use of R-RANSAC to

track multiple dynamic aircraft in a three dimensional inertial frame from either airborne or

ground-based radar sensors, to be used in the DAA solution. Second, we perform a general
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formulation of the extended recursive-RANSAC (ER-RANSAC) algorithm, which extends

the general linear R-RANSAC algorithm to nonlinear systems. To explain the contributions

of this thesis to the recursive-RANSAC algorithm in greater detail, the remainder of the

section is organized as follows. In Section 3.2.1 the desired properties of a tracker are

discussed along with an explanation of why recursive-RANSAC was chosen as the tracker

for this research. In Section 3.2.2 an overview of the original recursive-RANSAC algorithm

is given. Lastly, In Section 3.2.3 a description is given on how recursive-RANSAC has been

extended to nonlinear models.

3.2.1 Desired Tracker Properties

Past research has been performed at Brigham Young University’s MAGICC lab on

the development of a DAA system. Specifically, research conducted by Klaus [30] involved

creating a Matlab and Simulink simulation environment that uses an extended Kalman filter

(EKF) to track a single intruder that flies at constant altitude, velocity, and heading. This

simulation environment also included a model of a radar unit that provides a 120 deg field

of regard (FOR) in azimuth and a 30 deg FOR in elevation.

This target detection and tracking system worked well under certain conditions, how-

ever, there are certain limitations that require further development. Specifically this system

was only set up to track a single intruder aircraft that is not maneuvering and which is

assumed to be approaching in front of the ownship. Additionally, this system does not con-

sider measurement errors resulting from spurious measurements, missed measurements, and

multiple measurements. Each of these limitations are addressed in the development of a

revised target detection and tracking system which is described next.

Overtaking Intruders

The radar model previously implemented in Klaus’s simulation included three forward-

pointing radar units. These radar units were oriented in three distinct directions so that the

return signal strength from each radar could be used to determine the azimuth angle to the

target. The resulting surveillance area from this radar setup included 120 degrees of visibility
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in the azimuth direction and 30 degrees in elevation centered about the nose of the aircraft.

This surveillance area leaves a majority of the airspace around the ownship unmonitored.

As long as the ownship maintains a large forward velocity relative to the other aircraft in

the airspace, then all possible collision scenarios will occur in the forward direction, and the

radar model implemented in Ref. [30] will be sufficient. All possible collision scenarios will

only occur in the forward direction because the ownship will be traveling too fast for aircraft

to overtake it from above, below or behind.

As the speed of the ownship decreases in comparison to the other airspace users,

the radar model used in Ref. [30] begins to decrease in effectiveness. This is because the

ownship will begin to appear stationary compared to the other aircraft and can therefore

be easily overtaken from any direction including behind, below, or above. Small UAS will

generally be traveling much slower than the associated aircraft they will be sharing the

airspace with, therefore, these small UAS and other slow moving aircraft must ideally expand

their monitored airspace to include full 360 degree coverage horizontally and vertically. In

order to get full 360 degree coverage horizontally and vertically, the field of view of the

detection devices must be known. One possible solution would be to use a single omni-

directional detection device. This solution would be ideal because it would reduce the number

of detection devices down to the minimum value of one. In practice omni-directional devices

are difficult if not impossible to find. Most detection devices will be pointing in a certain

direction with a specific field-of-view capability.

Another possible solution would be to use multiple single-direction detection devices.

The idea would be to orient each of the devices in different directions until the entire airspace

is being monitored around the ownship.

As radar has been selected as the detection device for this research, and since there

is a group at Brigham Young University currently developing radar hardware to be used in

our DAA system, we realize that a more feasible step in attaining full 360 degree coverage

horizontally and vertically would be to first achieve full 360 degree coverage horizontally

utilizing the radar hardware being developed at Brigham Young University. Although the

airspace above and below the ownship will be unmonitored with this type of detection device,
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this is a reasonable step to take because encounters in the horizontal direction have a larger

probability of occurring than encounters in the vertical direction.

The main design constraints for the radar unit being developed here at BYU were to

minimize SWaP and to provide a reasonably large field of view of approximately 120 degrees

horizontally and 30 degrees vertically. The design constraint of a 120-degree horizontal FOR

was used because for planar-array radar, the received power decreases as the angle increases

off bore-sight, and are generally only useful up to 60 degrees off bore-sight. Using these

design parameters, 360 degree coverage horizontally could be achieved by mounting three of

these radar units around the ownship oriented at azimuth angles spaced 120 degrees apart

from each other. An illustration of this setup can be seen in Figure 3.1.

radar
unit 1

radar
unit 2

radar
unit 3

(a) Top view of three radar setup.

radar
unit 1

radar
unit 2

radar
unit 3

(b) Isometric view of three radar setup.

Figure 3.1: Full 360 degree horizontal coverage achieved with three radar units.

The three radar setup is shown from a top down view in Figure 3.1(a) and a 3D view

in Figure 3.1(b). From these figures we see that the first radar unit is pointing out the nose

of the aircraft, the second radar unit is pointing backwards and to the right, and the third

radar unit is pointing backwards and to the left. The specific diagram shown in Figure 3.1

only uses a vertical field of view of approximately 30 degrees because that was the original

design constraint used for the radar hardware, however, each of the three radar units could
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theoretically be modified to increase the vertical field of view to plus or minus 60 degrees for

a total of 120 degrees, which would have a significant impact on the total surveillance area

of the radar detection system.

Multiple Intruders and Measurement Errors

The target detection and tracking algorithm previously implemented in Klaus’s simu-

lation utilized an EKF to track a single intruder without clutter measurements and without

missed measurements. While this was a necessary first step, we realize that one of the

requirements needed to make a tracking algorithm satisfactory is the ability to detect and

track multiple targets in the presence of clutter and missed measurements. This requirement

is necessary because the airspace is shared by many aircraft and almost all detection devices

contain these types of measurement errors. There are numerous multiple target tracking

(MTT) algorithms available in the scientific community and a few of them will be discussed

below. Each of these MTT algorithms has its own strengths and weaknesses, however, by

comparing each of these algorithms we will show that recursive-RANSAC is well suited for

use with radar as the detection device, and for use on-board a small UAS.

Global Nearest Neighbor (GNN) [31]. Global nearest neighbor is the simplest MTT

algorithm where each track is updated using the nearest-neighbor measurement. Some lim-

itations of GNN are that it requires prior knowledge of the number of targets, it does not

include track management, and it is not robust to clutter.

Probabilistic Data Association (PDA) [32]/ Joint Probabilistic Data Association (JPDA)

[33]. Probabilistic data association weights measurements within a gate based on their sta-

tistical distance, the probability of false alarms, and the probability of new targets. The

weights of all the measurements within the gate sum to 1 and a combined single measure-

ment is used to update the track. PDA does well in tracking single targets in clutter and can

also track multiple targets in clutter as long as the targets are well-separated; however, if the

targets are not well separated then the JPDA algorithm can be used to weight measurements

that are shared between multiple tracks. As with GNN, PDA requires that the number of

targets be known and does not include track management.
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Multiple Hypothesis Tracking (MHT) [34]. Multiple hypothesis tracking calculates

probabilities for three types of hypotheses for new measurements. The new measurements

can either come from previously known targets, new targets, or the measurements may be

false measurements. All combinations of hypotheses are compared, and the combination with

the highest probability is selected. Some advantages of MHT are that track management is

built right into the algorithm and it is robust to clutter. Two main drawbacks of MHT are

that it is computationally complex and creating the code is known to be difficult.

Probabilistic Hypothesis Density (PHD) [35, 36]. Probabilistic hypothesis density fil-

ters avoid explicitly associating measurements with individual tracks; instead, PHD updates

every track with every measurement, which results in the formation of many new tracks at

each time step. Each of these tracks are assigned a probability and only the tracks with a

high probability are retained for the next time step. PHD does well in high-clutter, high-

target-density environments, however, it struggles to retain tracks when measurements are

missed. Other advantages of the PHD filter are that it can track targets with nonlinear

dynamics and track management is built directly into the algorithm.

Particle Filter (PF) [37]. Particle filter tracking requires a sample size Ns of the

number of particles that are randomly assigned values from the state space. These particles

are propagated forward in time with random process noise and then assigned a likelihood

based on new measurements. Finally a re-sample is done based on the likelihood of the

current particles. The re-sample causes the particles to converge to locations where targets

exist. Some advantages of this algorithm are that it can track nonlinear, non-Gaussian

systems in cluttered environments. For multiple target tracking the number of targets must

be known. Another drawback is that the number of particles needed increases with the size of

the state space and with the number of targets; large amounts of particles can dramatically

increase the computational cost.

Recursive-RANSAC (R-RANSAC) [12]. Recursive-RANSAC updates each track with

all measurements within a specified gate. Any measurements not associated with a track

are used to create a new track using the RANSAC algorithm; therefore, track management

is built into the algorithm. The inlier ratio is used to identify good tracks and the top M
tracks are kept even if they have bad inlier ratios. This prevents tracks from being lost
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across multiple time steps even when there are missed measurements. R-RANSAC is robust

to clutter and missed measurements, and is computationally efficient.

Many detection devices, including radar, have two main sources of error that must be

addressed when implementing a MTT algorithm. These sensors often produce measurements

that include clutter/spurious measurements, and missed measurements at random time steps;

therefore, it is desired to use an MTT algorithm which is robust to clutter and missed

measurements. In addition to measurement errors, the MTT algorithm must also address

the specific requirements of a DAA system being run on board a small UAS. Two of these

requirements include: the MTT needs to include track management to be fully autonomous,

and it needs to be computationally efficient to be run by a small lightweight processor on

board a small UAS. With each of these requirements we notice that GNN, PDA, and PF

do not include track management, PHD is not robust to missed measurements, and MHT

is computationally complex. The R-RANSAC algorithm, on the other hand, includes track

management, is robust to clutter and missed measurements, and is computationally efficient.

Since Recursive-RANSAC meets each of the desired properties, it has been selected as the

MTT algorithm for the DAA system described in this thesis.

Maneuvering Intruders

The final improvement made to the previous target detection and tracking system is

the ability to track maneuvering intruder aircraft. In the previous tracking system, various

encounter scenarios were created with each aircraft flying at a constant altitude, velocity, and

heading. The resulting dynamic model used in the EKF was a constant-velocity model in the

horizontal plane with a known altitude, where the estimated states included the intruders’

north position, east position, velocity, and heading. The simulated radar model only provided

range and azimuth measurements, and did not provide elevation measurements, therefore,

the altitude of the intruder aircraft was unobservable and it had to be assumed that this

quantity was known.

While it may be true that most aircraft detected will be flying at a nearly constant

altitude, velocity, and heading, this research has expanded the tracker capabilities to be

more robust to maneuvering intruder aircraft. Specifically we consider aircraft that may be
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turning, climbing or descending, and accelerating or decelerating. This improved capability

requires the use of an expanded set of states that are capable of capturing each of these ma-

neuvers. One version of this expanded set of states is based on a linear constant-acceleration

model. In this model the states are pn, pe, h, ṗn, ṗe, ḣ, p̈n, p̈e, and ḧ. A second version

of this expanded set of states is based on a nonlinear constant-acceleration model. In this

model the states are pn, pe, h, Vg, χ, γ, V̇g, χ̇, and γ̇. In both of these state descriptions,

we notice that the altitude of the aircraft is now being estimated. To make the altitude

state observable, we have assumed that the radar measurements have also been expanded to

include elevation angle measurements in addition to range and azimuth angle measurements.

While both versions of the expanded sets of states are valid for capturing the dynamic

maneuvers of an aircraft and for propagating these dynamic states into the immediate future,

only the nonlinear version is successfully able to propagate accurate state estimates into the

distant future. This is because the flight characteristics of an aircraft are more accurately

described using the nonlinear constant-acceleration model. Specifically these nonlinear states

are able to accurately model an aircraft which is 1) turning at a constant rate to change

its heading or loitering about a specific location, 2) accelerating or decelerating at a fixed

value resulting from a take-off or landing type approach or from a desire to reach an optimal

airspeed based on current wind conditions and desired flight time, 3) changing its climb or

descent angle at a constant angular rate resulting from an aircraft initiating a transition

from one altitude level to another or as a result of an aircraft deciding to change from

climbing to descending or descending to climbing. Using constant-acceleration values with

the linear version of the states will result in a steady-state heading and flight path angle

with the acceleration along this directional vector, thus neglecting the continuous turning of

the aircraft and the continuous changing of flight path angle of the aircraft. On the other

hand, using constant-acceleration values with the nonlinear states will result in a future

trajectory that does not approach a single directional vector, but instead is able to maintain

a continuous arching trajectory expected from a constant turning maneuver or climbing or

descending at a constant angular rate.

Since the nonlinear model more accurately captures the turning and climbing behavior

of aircraft, it is better suited to predict where the aircraft will be at some future point in
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time. While the nonlinear model has these added benefits, there are other factors that make

the linear model an attractive candidate that will be discussed later. As such, both the linear

and nonlinear models will be used to obtain tracking results for this thesis.

3.2.2 Overview of Recursive-RANSAC

As discussed in Section 3.2.1, R-RANSAC has been selected as the MTT algorithm for

this research. Also in that section we noted that to track maneuvering targets, an expanded

set of states based on a constant acceleration model is desired. This model and subsequent

states can either be based on linear or nonlinear system dynamics. In addition to the state

equation being linear or nonlinear, the output equation can be linear or nonlinear depending

on what type of detection device we use. Based on the fact that we are using radar as the

detection device to provide measurements of range, azimuth, and elevation, and using either

set of states we have defined previously, nonlinear output equations will result. There are

however ways of transforming these nonlinear output equations resulting from the radar into

a linear set of output equations, which means it is possible to create a fully linear set of

state-space equations. Since the state-space equations for this problem can be expressed

in either linear or nonlinear form, we therefore desired to use the R-RANSAC framework

to track multiple maneuvering targets that are modeled by either linear or nonlinear state

space equations.

Prior to this work, only linear methods have been used for the dynamic models and

measurement equations of the targets being tracked with R-RANSAC; however, there is

nothing in the general R-RANSAC framework that prevents its use with nonlinear methods.

The ability to extend R-RANSAC to systems with nonlinear dynamics was first observed

by Niedfeldt as found in his discussion of future work in his dissertation. In this discussion

Niedfeldt states that any nonlinear filtering technique can be used within the R-RANSAC

framework such as the extended Kalman filter, unscented Kalman filter, or others, and

suggests that the only unresolved issue is how to appropriately initialize a new trajectory

using RANSAC [12].

In the remainder of this section we give a brief overview of the generic RANSAC

and Recursive-RANSAC frameworks. In Section 3.2.3 we then describe how we have been
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able to successfully create an implementation of R-RANSAC that extends its use to include

nonlinear state-space models.

RANSAC

In the world today, there are many types of sensors readily available to measure

elements of the space around it. Often these measurements are sampled at discrete time

intervals and the general trends of these data sets fit within the framework of known models.

For example, it may be desired to estimate the parameters of a line or curve resulting from a

set of measurements, or it may be desired to estimate the parameters of any other model. The

process of estimation of a known model from a set of noisy data is referred to as regression,

and many regression techniques have been created such as least squares, maximum likelihood,

and many others. These techniques are batch processes that use an overdetermined set of

measurements to estimate a single set of parameters. They do so by creating a simple model

that follows the general trends of the data while minimizing some error metric. Among

these regression techniques, it is often required that the received measurements originate

from a single signal and that gross errors are not present. If these requirements are not met,

the parameter estimation scheme will likely diverge from the true parameters resulting in a

failure of the regression method. The limitations of these traditional regression techniques

have resulted in the formation of many heuristics that attempt to resolve these known issues.

Due to the potential failure of traditional regression techniques to converge to the

true parameters of a model in the presence of multiple signals and gross errors, and the

various attempts to solve these issues with heuristic methods, a novel method has been

developed that estimates the parameters of a single signal in the presence of other signals

and gross errors and is referred to as Random Sample Consensus (RANSAC) [38]. The

novelty of the RANSAC method stems from the fact that instead of using large amounts

of data to estimate the parameters of a single signal, a minimal subset of measurements

are selected randomly from the batch of data and are used to initialize a model hypothesis.

Additional measurements are then added to this data set that fit within the current model

hypothesis. The size of the minimal subset is based on observability principles, and the

inclusion of additional measurements is determined by the parameters of the current model
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hypothesis and some error tolerance specification. This newly increased data set is referred

to as the consensus set hypothesis and is then used to create an updated model hypothesis.

This process is then repeated a predetermined number of times, and the estimated model

parameters from the iteration with the largest consensus set are used as the final estimated

model parameters.

Niedfeldt does a great job outlining the mathematical representation of RANSAC

and it has been repeated here in Algorithm 1. For a complete overview of this algorithm the

interested reader is referred to Ref. [12]. Variables used within this algorithm include discrete

time steps k, the measurement window length N , the time step of the first measurement in

the current measurement window is defined as kN
4
= k−N +1, the past N -length window of

time samples kN : k, the complete measurement set across the entire measurement window

ZkN :k, a minimum subset of s measurements as Sq ∈ SskN :k where q represents the indices

of the randomly selected measurements, the model hypothesis estimate x̂′, a user defined

function g(), the hypothesis consensus set χ′, a user specified function Inlier(), error threshold

parameter for RANSAC τR, an optional early termination parameter γ, and the total number

of iterations `.

Within this algorithm there are three parts which are of particular interest. First,

we see that each model hypothesis x̂′ is formed according to a general function g() using

the minimum subset Sq (Line 3). Second, the consensus set hypothesis χ′ is found through

some user defined function Inlier() using the measurement set ZkN :k, the model hypothesis

x̂′, and some user specified error tolerance parameter τR (Line 4). Third, we see that the

final estimation of the model parameters is obtained by smoothing the best estimate using

the consensus set (Line 12). The key observation from these three parts of the algorithm is

that specific methods have not been defined; instead, the user is free to use any methods

they desire.
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Table 3.1: Algorithm for RANSAC

Algorithm 1 Random Sample Consensus (RANSAC) Algorithm

Input: Measurement set ZkN :k, number of iterations `,

error threshold τR, stopping criteria γ.

1: for ` iterations do

2: Randomly select a minimum subset Sq ∈ SskN :k

3: Generate a hypothesis x̂′ = g(Sq)

4: Compute the hypothesis consensus set, χ′ = Inlier(ZkN :k, x̂
′, τR)

5: if new hypothesis has larger consensus set than previous hypothesis then

6: Store current hypothesis.

7: end if

8: if |χ′| ≥ γN then

9: break

10: end if

11: end for

12: Smooth best estimate using consensus set.

Recursive-RANSAC

The major limitations of the RANSAC algorithm described above are that it can

only estimate the parameters of a single signal and it does not have the ability to update

previously found models when subsequent measurements are received. As such, a new al-

gorithm known as recursive-RANSAC (R-RANSAC) has been developed which extends the

traditional RANSAC algorithm to overcome these issues. The basic idea of R-RANSAC is

that previously found model estimates from RANSAC are preserved between time steps and

these model estimates are recursively updated as new measurements are received at each

time step. The measurements received at each time step are only used to update existing

model estimates if they are an inlier to these models. If the current measurements are not

an inlier to any of the existing models, then they are each used within the RANSAC algo-

rithm as one of the minimum subset measurements to form a new model estimate. Only
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model hypotheses with a certain level of support are deemed as valid. As multiple model

hypotheses may end up tracking the same signal, these models are merged together. Finally,

as the number of model estimates continues to grow, these models are pruned to keep a

predetermined maximum number of models selected from the best models.

Similar to the RANSAC algorithm described above, Niedfeldt provides a good math-

ematical representation of R-RANSAC and it has been repeated here in Algorithm 2. The

details of this algorithm can similarly be found in Ref. [12]. As R-RANSAC is largely used for

state estimation of multiple targets, the term “model estimates” originating from RANSAC

is interchangeably referred to as “state estimates,” or “tracks.”

Variables used within this algorithm, not previously defined, include the previous

measurement window ZkN :k−1, current measurement scan Zk, the association matrix J , an

indexing variable for the current measurement scan i, an indexing variable for each of the

tracks j, the ith row and jth column of the association matrix Jij, the ith measurement

from the current time step zik, the jth track estimate at the current time step x̂jk, error

threshold parameter for R-RANSAC τRR, the empty set ∅, the measurement weighting for

the ith measurement and the jth track wij, a minimum subset that includes the ith current

measurement Sq ∈ {Ss−1
kN :k−1 × {zik}}, the consensus set of the jth track at the current time

step χjk, the inlier ratio of the jth track at the current time step ρjk, survival probability ps,

the number of consecutive missed detections MD, number of stored tracks M, good track

threshold τρ, the lifetime of the jth track at the current time step tjk, and the minimum

lifetime threshold τT. Although not seen in this algorithm, the jth R-RANSAC track is

stored as a six-tupleMj = (x̂j, P j, χj, ρj, tj,Lj), where P j is the state covariance, and Lj is

the track label.

Within the mathematical representation of the R-RANSAC algorithm there are four

parts of interest that each occur within the current time step, k. First, we see that the

state estimates from each track are propagated forward in time (Line 2). Second, the as-

sociation matrix J is computed by determining if each of the i measurements zik from the

current measurement scan Zk is an inlier to each of the j stored models x̂jk using some user

specified error tolerance parameter τRR (Line 3). This is done through some user defined

function if Inlier(). Third, new tracks are formed from RANSAC using each of the current
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measurements that are not an inlier to any of the existing tracks (Line 7). Fourth, current

measurements that are an inlier to existing tracks are used to update each state estimate

x̂jk using the measurement weighting wij (Line 9). The same key observation is made from

these four parts of the R-RANSAC algorithm as was made from the highlighted parts of the

RANSAC algorithm; specific methods for each of these four parts have not been defined, but

are instead free to be used with any methods the user desires.

Table 3.2: Algorithm for R-RANSAC

Algorithm 2 Recursive-RANSAC(R-RANSAC) Algorithm

Input: Previous measurement window ZkN :k−1, current measurement scan Zk, measurement

window length N , number of stored tracksM, error threshold τRR, good track threshold

τρ, minimum lifetime threshold τT.

1: for each time step k do

2: Propagate state estimate of all active tracks.

3: Compute the association matrix J , where Jij =

0 if Inlier(zik, x̂
j
k, τRR) = ∅,

1 otherwise.

4: Compute measurement weighting wij using the association matrix J .

5: for each zik ∈ Zk do

6: if the measurement is an outlier to all tracks,
∑
∀j

(Jij) = 0 then

7: Create new track using RANSAC, where the current measurement is in each

randomly selected minimum subset, Sq ∈ {Ss−1
kN :k−1 × {zik}}.

8: else

9: Update x̂jk using wij and zik.

10: end if

11: Update the consensus set χjk and the inlier ratio ρjk =
|χjk|
N

.

12: end for

13: Kill tracks with probability (1− pS)MD.

14: Merge and prune to keep best M tracks.

15: Identify good tracks, according to ρjk ≥ τρ and tjk > τT.

16: end for
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3.2.3 Extended Recursive-RANSAC (ER-RANSAC)

As explained earlier, in all previous implementations of R-RANSAC only linear meth-

ods have been used for the the dynamic models and measurement equations of the targets

being tracked; however, from our overview of the general RANSAC and R-RANSAC algo-

rithms, we have seen that both of these algorithms have been designed to be very modular

and there is nothing which restricts their use to linear methods. In this section we de-

scribe how we have successfully created an implementation of R-RANSAC that extends its

use to include nonlinear state-space models, which is called extended recursive-RANSAC

(ER-RANSAC). First, we will define the implementation details required to extend the R-

RANSAC algorithm to the nonlinear case, followed by the details required to extend the

RANSAC algorithm.

Nonlinear Extension of R-RANSAC

As was originally stated by Niedfeldt in his dissertation, the R-RANSAC algorithm

can be used with nonlinear filtering techniques such as the extended Kalman filter, unscented

Kalman filter, or others. He also explained how the R-RANSAC framework can be extended

to nonlinear systems by replacing Lines 2, 7, and 9 in Algorithm 2 with the appropriate

nonlinear propagation, hypothesis generation, and update equations, respectively [12]. We

add that Line 3 must also be replaced by the appropriate nonlinear inlier detection function.

In our implementation of a nonlinear version of R-RANSAC we have chosen to use

an extended Kalman filter (EKF). For our system dynamics and measurements we assume

time-invariance. The general state space model for a nonlinear time-invariant system is

shown as

xk = xk−1 + dt · f(xk−1) + w, (3.1)

yk = h(xk) + v, (3.2)
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where x ∈ Rn is the state vector, y ∈ Rm is the measurement vector, dt is the time step, and

w and v are zero-mean Gaussian process and measurement noise with covariance Q ∈ Rn×n

and R ∈ Rm×m, respectively.

Assuming the states and covariance matrix P have been previously initialized, the

EKF propagation of the states and covariance are given by

x̂k = x̂k−1 + dt · f(x̂k−1), (3.3)

A =
∂f

∂x

∣∣∣∣
x̂k

, (3.4)

P = P + dt(AP + PA> +Q), (3.5)

where A ∈ Rn×n is the Jacobian matrix resulting from taking the partial derivatives of

the nonlinear function f() with respect to each of the states x and evaluating these partial

derivatives using the updated state estimate x̂k.

The nonlinear measurement update equations for the states and covariance are given

by

C =
∂h

∂x

∣∣∣∣
x̂k

, (3.6)

L = PC>(R + CPC>)−1, (3.7)

P = (I − LC)P, (3.8)

x̂k = x̂k + L(yk − h(x̂k)), (3.9)

where C ∈ Rm×n is the Jacobian matrix resulting from taking the partial derivatives of

the nonlinear function h() with respect to each of the states x and evaluating these partial

derivatives using the propagated state estimate x̂k, L ∈ Rn×m is the Kalman gain, and

I ∈ Rn×n is the identity matrix.

Having defined the nonlinear propagation and update steps we now define the non-

linear inlier detection function Inlier(yik, x̂
j
k, τRR) as

I = {j : |yik − h(x̂jk)| < τRR}, ∀j = {1, . . . ,M}, (3.10)
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where the error threshold parameter has been expanded as τRR ∈ Rm. The general choice of

this parameter is now shown as

τRR =


s1σy1

s2σy2
...

smσym

 , (3.11)

where σyi is the standard deviation of each of the m elements returned from the detection

device, and si is a tunable coefficient used to scale each of the elements of the error threshold

parameter. From Equation (3.10) we see that the inlier function is calculating the difference

between the current measurement and the predicted measurement based on the nonlinear

output equation evaluated using the estimated states, and checking if this measurement error

calculation is less than the error threshold parameter. The result of this inlier function will

be a vector of elements containing logical true or false. If each element of this vector is true

then that means the current measurement is an inlier to the model. If any of the elements

in this vector are false, then the current measurement is not an inlier to the model.

The EKF propagation steps defined in Equations (3.3), (3.4), and (3.5) are now used

in Line 2 of Algorithm 2, the EKF update steps defined in Equations (3.6), (3.7), (3.8),

and 3.9 are used in Line 9, and the nonlinear inlier function defined in Equation (3.10) is

used in Line 3. It is also required to use a nonlinear hypothesis generation step in Line 7 of

Algorithm 2, however, the details of this step will be given in our description of the nonlinear

extension of the RANSAC algorithm shown next.

Nonlinear Extension of RANSAC

From Niedfeldt’s discussion of how to extend R-RANSAC to systems with nonlinear

dynamics, he has stated that the only unresolved issue is how to appropriately initialize a

new trajectory using RANSAC [12]. From the research performed in this thesis, we now

show that this issue can be resolved by replacing Lines 3, 4, and 12 in Algorithm 1 with ap-

propriate nonlinear model hypothesis generation, inlier detection, and smoothing functions,

respectively.
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From the three parts of the RANSAC algorithm that must be replaced by their

appropriate nonlinear counterpart, the model hypothesis generation step requires the most

detailed explanation. In the linear implementations of RANSAC this step has traditionally

either used a least-squares or maximum likelihood estimator method to solve for the state

estimate at the beginning of the measurement window xkN . The nonlinear method we

propose be used instead is the Gauss-Newton method [39]. The Gauss-Newton method is

a nonlinear regression technique, which similar to linear techniques, aims to determine the

parameters of a model which minimizes the sum of the squared error. The main caveat with

these nonlinear regression techniques is that the solution must instead be found through an

iterative approach. This means it takes longer to come to a solution and there are greater

computational requirements. In addition to the increase in time and greater computational

requirements, the iterative approach taken by the Gauss-Newton method also has a few other

limitations that are worth noting. The solution may converge slowly, it may have oscillations,

and it may never converge. Although these issues exist, we expect that their impact will be

negligible because the Gauss-Newton method will be called many times within the RANSAC

algorithm. If the Gauss-Newton method fails to converge with one set of data, it will be

executed many additional times with various sets of new data and will likely converge to a

solution on one of these iterations. The genius of the RANSAC algorithm is that it only

selects the results from the iteration with the best results, and as such is already configured

to reject solutions from the Gauss-Newton method which fail to converge.

Before we proceed to the derivation of the nonlinear version of RANSAC, we first

provide a high level overview of the steps performed within this new implementation of

RANSAC, as illustrated in Figure 3.2. The first two frames in this illustration help define

the general problem we are confronted with. The remaining four frames show how the

nonlinear Gauss-Newton solution is used within each of the major steps of the RANSAC

algorithm.

In the first frame, we see the trajectory taken by a nonlinear dynamic target and a

moving platform that is carrying a detection device with nonlinear output equations. The

second frame show the measurements that result from the nonlinear output equation, with

the final measurement labeled as yk. For the third frame, we show the selection of the
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minimum subset using three measurements, where the final measurement is always included

in this subset. For the fourth frame, the three measurements selected as the minimum subset

are used within the Gauss-Newton method to iteratively solve for a model hypothesis, shown

by the state estimate at the final time step x̂′k. In all previous implementation of RANSAC,

the model hypothesis is found at the initial time step of the measurement window. This

nonlinear version of RANSAC could have followed a similar process, however, later in this

chapter we show how there are benefits in solving for the state estimate at the final time step.

In the fifth frame, we propagate the model hypothesis state estimate backwards in time to

evaluate the nonlinear inlier function at each time step. The nonlinear inlier function results

in a thresholding boundary in the inertial frame that will not necessarily be elliptical, as

would be the case with radar measurements of range and azimuth angle. By evaluating

this nonlinear inlier function at each time step, we can build the consensus set for the

current model hypothesis χ′. This backwards propagation also results in an expression for

the state estimate at the beginning of the time window x̂kN . The steps performed in frames

three through five, are repeated multiple times to find a model hypothesis with the largest

consensus set. After the model with the largest consensus set has been found, we proceed

to the steps shown in the sixth frame.

In the sixth frame, we perform the smoothing step of RANSAC. For this specific

implementation, this is done using an EKF, which propagates the state estimate and covari-

ance matrix from the beginning of the measurement time window forward in time to the final

time step, where we update along the way using the measurements in the consensus set. The

evolution of the covariance matrix is also seen in the sixth frame, where the shape of this

covariance is seen to be elliptical in nature. The final state estimate after the smoothing step

x̂k and the covariance matrix P , are identified as the solution to the RANSAC algorithm,

which are then returned to the ER-RANSAC algorithm.

Now that we have illustrated the steps performed within this new implementation

of RANSAC, we are ready to begin our derivation of the Gauss-Newton solution needed

within the nonlinear extended version of RANSAC. After the derivation of the Gauss-Newton

solution, we mention some modifications we have added to minimize oscillations, prevent

divergence, and help the solution converge to the correct states.
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Figure 3.2: High level illustration of nonlinear version of RANSAC using the Gauss-Newton

method.

While the linear implementations of RANSAC solve for the state estimate at the

beginning of the measurement window, for the nonlinear version of RANSAC we have found

it to be advantageous to solve for the state estimate at the current time step, xk. The

primary reasoning for this change is to reduce the computational overhead, however, we

discuss the advantages in detail in Section 3.2.4. Due to this change it becomes necessary

to represent the state space equations by their evolution backwards in time as

xk−1 = xk − dt · f(xk) + wk−1, (3.12)

yk = h(xk) + vk. (3.13)

Before we proceed we now make a definition that will greatly simplify the notation as

f ′(xk)
4
= xk − dt · f(xk). (3.14)
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The idea behind this notation is that the multiple parts of Equation (3.12) that contain the

state vector are now combined into a single nonlinear equation as

xk−1 = f ′(xk) + wk−1. (3.15)

Now consider the sequence of N measurements characterized by
yk

yk−1

...

ykN

 =


h(xk)

h(xk−1)
...

h(xkN )

+


vk

vk−1

...

vkN

 . (3.16)

Using Equation (3.15), we now write Equation (3.16) in terms of the states at the current

time step xk as 
yk

yk−1

yk−2

...

=


h(xk)

h(f ′(xk) + wk−1)

h(f ′(f ′(xk) + wk−1) + wk−2)
...

+


vk

vk−1

vk−2

...

 . (3.17)

The goal is to solve Equation (3.17) for the states xk, however, the nonlinearities of these

equations prevent us from doing so. As a result, we have selected the Gauss-Newton method

to help us solve for these states. The key idea of the Gauss-Newton method is to express

the original nonlinear equations in a linearized form using a first-order Taylor-series approx-

imation from which we can solve for the desired variables using linear least-squares theory.

One use of a Taylor-series approximation is to provide an estimate of a nonlinear

function close to a known point, however, when performing the Gauss-Newton method the

Taylor-series approximation is used in a different way. In the Gauss-Newton method the

estimated value of the nonlinear function is treated as a known quantity which we get in the

form of measurements, and the point about which the function is linearized is treated as the

unknown quantity. By providing an initial guess of this unknown point, we can then use an

appropriate least-squares method on the Taylor-series expansion to solve for the residual.

This residual is then used to update our guess of the unknown point. This process is repeated
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in an iterative manner until the residual falls below some threshold τGN or the maximum

number of iterations is reached `GN.

In our implementation, the initial guess of the state xk will be represented by xk,j, and

the updated guess of the state is represented by xk,j+1. From these definitions we therefore

linearize the original equation using xk = xk,j+1 about the point xk,0 = xk,j. Additionally

since the process noise w is zero-mean Gaussian, we linearize the original equation about

wi,0 = 0, ∀i = (k − 1, k − 2, · · · , kN). A useful definition that we will use in the derivation

of the Taylor-series expansion is shown as

f ′1(·) 4= f ′(·),

f ′2(·) 4= f ′(f ′(·)),

f ′3(·) 4= f ′(f ′(f ′(·))),
...

where the numbered subscript represents the number of nested functions.

Starting with the first line of Equation (3.17), the Taylor-series expansion of the

nonlinear term h(xk) is shown as

h(xk,j+1) ≈ h(xk,j) +

(
∂h(xk)

∂xk

∣∣∣∣
xk,j

)
(xk,j+1 − xk,j), (3.18)

where we now define 4x
4
= xk,j+1 − xk,j. From this equation we notice that the partial

derivative term is equivalent to the Jacobian matrix of the nonlinear function h() evaluated

at some specific point. This Jacobian matrix was mentioned previously in the description of

the EKF and was defined as the matrix C. Throughout this section we will derive multiple

variations of this Jacobian matrix, and as such this specific Jacobian matrix is defined as

C1
4
=
∂h(xk)

∂xk

∣∣∣∣
xk,j

,

where the numbered subscript represents the number of nested functions around the variable

xk,j after the partial derivative has been evaluated at the specified point. This numbered
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subscript also represents one more than the number of steps the variable xk,j has been

propagated into the past before being used to evaluate the partial derivative. For this

particular C matrix, a subscript of 1 has been used because a single function h() contains

the variable xk,j that has not been propagated into the past. Although the interpretation

of this numbered subscript may seem trivial at this point, it becomes more useful in future

Jacobian matrix definitions. Using these definitions, the Taylor-series expansion of the first

row of Equation (3.17) is now expressed as

h(xk,j+1) ≈ h(xk,j) + C14x. (3.19)

From the second line of Equation (3.17), the Taylor-series expansion of the nonlinear

term h(f ′(xk) + wk−1) is shown as

h(f ′(xk,j+1) + wk−1) ≈ h(f ′(xk,j) + 0)

+

(
∂h(f ′(xk) + wk−1)

∂f ′(xk)

∣∣∣∣
xk,j ,0

)(
∂f ′(xk)

∂xk

∣∣∣∣
xk,j

)
(xk,j+1 − xk,j)

+

(
∂h(f ′(xk) + wk−1)

∂wk−1

∣∣∣∣
xk,j ,0

)
(wk−1 − 0),

≈ h(f ′(xk,j))

+

(
∂h(xk)

∂xk

∣∣∣∣
f ′(xk,j)

)(
∂f ′(xk)

∂xk

∣∣∣∣
xk,j

)
4x

+

(
∂h(xk)

∂xk

∣∣∣∣
f ′(xk,j)

)
wk−1,

≈ h(f ′1(xk,j))

+

(
∂h(xk)

∂xk

∣∣∣∣
f ′1(xk,j)

)(
∂f ′1(xk)

∂xk

∣∣∣∣
xk,j

)
4x

+

(
∂h(xk)

∂xk

∣∣∣∣
f ′1(xk,j)

)
wk−1. (3.20)

From this equation we notice that the first partial derivative term on each row is equivalent

to the Jacobian matrix of the nonlinear function h() evaluated at the updated point f ′1(xk,j).
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This Jacobian matrix is another variation of the C matrix and is defined as

C2
4
=
∂h(xk)

∂xk

∣∣∣∣
f ′1(xk,j)

.

Also from this equation we notice that the second partial derivative term on the second to

last row is equivalent to the Jacobian matrix of the nonlinear function f ′1() evaluated at some

specific point. This Jacobian matrix is similar to the previously mentioned A matrix from

the description of the EKF, however, it uses the modified dynamics function we have defined

in this section f ′() as opposed to the original dynamics function f(). Throughout this section

we will derive multiple variations of this Jacobian matrix, and as such this specific Jacobian

matrix is defined as

A1
4
=
∂f ′1(xk)

∂xk

∣∣∣∣
xk,j

.

The numbered subscripts in C2 and A1 have similar interpretations to the C1 matrix, and us-

ing these matrix definitions the Taylor-series expansion of the second row of Equation (3.17)

is now expressed as

h(f ′(xk,j+1) + wk−1) ≈ h(f ′1(xk,j)) + C2A14x + C2wk−1. (3.21)

From the third line of Equation (3.17), the Taylor-series expansion of the nonlinear

term h(f ′(f ′(xk) + wk−1) + wk−2) is shown as

h(f ′(f ′(xk,j+1) + wk−1) + wk−2)

≈ h(f ′(f ′(xk,j) + 0) + 0)

+

(
∂h(f ′(f ′(xk) + wk−1) + wk−2)

∂f ′(f ′(xk) + wk−1)

∣∣∣∣
xk,j ,0,0

)(
∂f ′(f ′(xk) + wk−1)

∂f ′(xk)

∣∣∣∣
xk,j ,0

)(
∂f ′(xk)

∂xk

∣∣∣∣
xk,j

)
4x

+

(
∂h(f ′(f ′(xk) + wk−1) + wk−2)

∂f ′(f ′(xk) + wk−1)

∣∣∣∣
xk,j ,0,0

)(
∂f ′(f ′(xk) + wk−1)

∂wk−1

∣∣∣∣
xk,j ,0

)
wk−1

+

(
∂h(f ′(f ′(xk) + wk−1) + wk−2)

∂wk−2

∣∣∣∣
xk,j ,0,0

)
wk−2,
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≈ h(f ′(f ′(xk,j)))

+

(
∂h(xk)

∂xk

∣∣∣∣
f ′(f ′(xk,j))

)(
∂f ′(xk)

∂xk

∣∣∣∣
f ′(xk,j)

)(
∂f ′(xk)

∂xk

∣∣∣∣
xk,j

)
4x

+

(
∂h(xk)

∂xk

∣∣∣∣
f ′(f ′(xk,j))

)(
∂f ′(xk)

∂xk

∣∣∣∣
f ′(xk,j)

)
wk−1

+

(
∂h(xk)

∂xk

∣∣∣∣
f ′(f ′(xk,j))

)
wk−2,

≈ h(f ′2(xk,j))

+

(
∂h(xk)

∂xk

∣∣∣∣
f ′2(xk,j)

)(
∂f ′1(xk)

∂xk

∣∣∣∣
f ′1(xk,j)

)(
∂f ′1(xk)

∂xk

∣∣∣∣
xk,j

)
4x

+

(
∂h(xk)

∂xk

∣∣∣∣
f ′2(xk,j)

)(
∂f ′1(xk)

∂xk

∣∣∣∣
f ′1(xk,j)

)
wk−1

+

(
∂h(xk)

∂xk

∣∣∣∣
f ′2(xk,j)

)
wk−2. (3.22)

Proceeding in a similar manner as the previous two steps, we now make an additional set of

C and A matrix definitions. These Jacobian matrix variations are defined as

C3
4
=
∂h(xk)

∂xk

∣∣∣∣
f ′2(xk,j)

,

A2
4
=
∂f ′1(xk)

∂xk

∣∣∣∣
f ′1(xk,j)

,

where the numbered subscripts in C3 and A2 have similar interpretations to the C1 matrix.

Using these matrix definitions, the Taylor-series expansion of the third row of Equation (3.17)

is now expressed as

h(f ′(f ′(xk,j+1) + wk−1) + wk−2) ≈ h(f ′2(xk,j)) +C3A2A14x +C3A2wk−1 +C3wk−2. (3.23)

Continuing to evaluate the Taylor-series expansion for the nonlinear term of each

subsequent row of Equation (3.17), and utilizing general definitions for all future C and A
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Jacobian matrix variations as

Ci
4
=
∂h(xk)

∂xk

∣∣∣∣
f ′i−1(xk,j)

∀i ∈ (2, 3, · · · , N),

Ai
4
=
∂f ′1(xk)

∂xk

∣∣∣∣
f ′i−1(xk,j)

∀i ∈ (2, 3, · · · , N − 1),

and utilizing the following simplification definitions as

h′1(·) 4= h(·),

h′2(·) 4= h(f ′1(·)),

h′3(·) 4= h(f ′2(·)),
...

h′N(·) 4= h(f ′N−1(·)),

where the numeric subscripts have a similar interpretation as the numeric subscripts on the

modified Jacobian matrices defined previously, ultimately results in the following linearized

form of Equation (3.17) as



yk

yk−1

yk−2

yk−3

...

ykN


=



h′1(xk,j)

h′2(xk,j)

h′3(xk,j)

h′4(xk,j)
...

h′N(xk,j)


+



C1

C2A1

C3A2A1

C4A3A2A1

...

CNAN−1 · · ·A1


4xk
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+



0 0 0 0 . . . 0

0 C2 0 0 . . . 0

0 C3A2 C3 0 . . . 0

0 C4A3A2 C4A3 C4 . . . 0
...

...
...

...
. . .

...

0 (CNAN−1 · · ·A4A3A2) (CNAN−2 · · ·A4A3) (CNAN−3 · · ·A4) . . . CN





wk

wk−1

wk−2

wk−3

...

wkN



+



vk

vk−1

vk−2

vk−3

...

vkN


(3.24)

From the first two terms on the right side of the equation we notice that the process-noise

variables wi, ∀i = (k, k − 1, · · · , kN), do not appear. From the third term of the equation,

which represents the contributions due to the process noise, we see that the state variable

xk,j+1 does not appear. The process-noise term is now only a function of the previous guess

of the state variable xk,j through the various Jacobian Ci and Ai matrices. This shows

that the process-noise terms and the updated nonlinear state term have been completely

decoupled by use of the Taylor-series expansion, which is an important result allowing linear

least-squares theory to be utilized.

A few additional definitions will now be made to simplify Equation (3.24). Let us de-

fine the measurement vector as Yk = [yk, . . . ,ykN ]>, the nonlinear function vector evaluated

at the previous guess of the state variable as H′ = [h′1(xk,j), . . . , h
′
N(xk,j)]

>, the process-noise

vector Wk = [wk, . . . ,wkN ]>, the measurement noise vector Vk = [vk, . . . ,vkN ]>, the matrix

that describes the expected measurements evolving from the ending state xk backwards in
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time as

O =



C1

C2A1

C3A2A1

C4A3A2A1

...

CNAN−1 · · ·A1


, (3.25)

and the matrix which propagates the process noise backwards in time as

G =



0 0 0 0 . . . 0

0 C2 0 0 . . . 0

0 C3A2 C3 0 . . . 0

0 C4A3A2 C4A3 C4 . . . 0
...

...
...

...
. . .

...

0 (CNAN−1 · · ·A4A3A2) (CNAN−2 · · ·A4A3) (CNAN−3 · · ·A4) . . . CN


.

(3.26)

Using these definitions Equation (3.24) can be simplified as

Yk = H′ +O4xk +GWk + Vk. (3.27)

Moving H′ to the other side of the equation, defining the difference between the measure-

ments and the estimated measurements as D = Yk − H′, and the combined process and

measurement noise as ξk = GWk + Vk results in

D = O4xk + ξk. (3.28)

Since w and v are zero-mean Gaussian, then ξk is also zero-mean Gaussian with covariance

Ξ shown as

Ξ = E[ξkξ
>
k ] = GE[WkW

>
k ]G> + E[VkV

>
k ], (3.29)

where the expected value of WkW
>
k is defined as Q = E[WkW

>
k ], and the expected value of

VkV
>
k is defined as R = E[VkV

>
k ].
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With the linearized Equation (3.24) expressed in the simplified form seen in Equa-

tion (3.28), we can finally proceed with the least-squares methods required by the Gauss-

Newton method. Temporarily ignoring the process and measurement noise, the least-squares

solution to Equation (3.28) is shown as

4xk = (O>O)−1O>D. (3.30)

If the process and measurement noise are included, then the maximum likelihood estimate

(MLE) of the ending state and the covariance are shown as

4xk = (O>Ξ−1O)−1O>Ξ−1D, (3.31)

Pk = (O>Ξ−1O)−1. (3.32)

Having solved for the residual of the estimated ending state 4xk, we now perform a

critical step in the Gauss-Newton method which is to calculate the new state estimate as

xk,j+1 = xk,j +4xk. (3.33)

This updated state is then used to seed the next iteration of calculating the residual, and

this process is repeated until the sum of the residual drops below some threshold τGN, or a

predefined maximum number of iterations has been reached `GN.

The Gauss-Newton method, which we have used as a nonlinear regression technique,

utilizes the least-squares method after appropriate linearization from the Taylor-series ap-

proximation. To incorporate the noise statistics within our solution we have used the maxi-

mum likelihood estimator within the Gauss-Newton framework. Our use of least-squares and

MLE methods to solve for the desired state estimate, matches the methods originally used

in Niedfeldt’s implementation of the RANSAC algorithm [12]. As described previously, the

RANSAC algorithm requires the use of a minimal subset of measurements that are selected

randomly from a batch of data. This comes as a result of the batch of data being corrupted

by gross outliers and secondary targets. Since we assume measurements may come from

multiple targets, we also assume that multiple measurements can be received per measure-
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ment scan. We also assume there may be time steps where measurements from the targets

may be missed.

Due to these conditions, the least-squares and MLE solutions in Equations (3.30)

and (3.32), respectively, will need to be modified slightly to only use the randomly selected

minimum subset of measurements. Since we use the same linear methods as Niedfeldt within

the Gauss-Newton method, we can utilize the solution he has developed for extracting the

minimum subset of measurements. Slight differences will result, however, since we are solving

for the residuals of the states as opposed to the states themselves, we are solving for the

ending states as opposed to the starting states, and we use the difference vector D as opposed

to the measurement vector by itself.

Modified forms of Niedfeldt’s equations are now defined as

Φk =


1ψk ⊗ Im 0 . . . 0

0 1ψk−1
⊗ Im . . .

...
...

. . . . . . 0

0 . . . 0 1ψkN ⊗ Im

 , (3.34)

where Φk ∈ RmΨk×mN is a matrix which is used to associate the correct time indices to all the

measurements received during that time step, 1ψκ is a column vector of ψκ ones, Im ∈ Rm×m

is an identity matrix, and ⊗ is the standard Kronecker product operator. Additionally, ψκ

is the number of measurements received at the κ time step, and Ψk is the total number of

measurements in the measurement window at the current time step. Utilizing Φk with the

windowed measurements results in a modified form of Equation (3.27) as



yk[ψk]
...

yk[1]

yk−1[ψk−1]
...

ykN [1]


= ΦkH′ + ΦkO4xk + ΦkGWk + ΦkVk. (3.35)
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The binary indicator matrix provides a means of selecting the minimum subset of measure-

ments from the complete measurement window and is shown as

B(d) =


0m×m(d1−1) Im 0m×m(Ψk−d1)

...
...

...

0m×m(dd−1) Im 0m×m(Ψk−dd)

 , (3.36)

where d = [d1, . . . ,dd]
> is a vector that contains the randomly selected indices of the com-

plete measurement window at the current time step. This binary indicator matrix is pre-

multiplied to both sides of Equation (3.35) shown as

B(d)Y Φ
k = B(d)ΦkH′ +B(d)ΦkO4xk +B(d)Φkξk, (3.37)

where Y Φ
k is the windowed set of measurements gathered from our measurement device.

Letting D = B(d)(Y Φ
k − ΦkH′), O = B(d)ΦkO, and ξk = B(d)Φkξk, results in the final

modified form of Equation (3.28) as

D = O4xk + ξk, (3.38)

where the modified covariance matrix is shown as

Ξ = E[ξkξ
>
k ],

= B(d)ΦkE[ξkξ
>
k ]Φ>k B(d)>,

= B(d)ΦkΞΦ>k B(d)>. (3.39)

The resulting least-squares solution of the residual as compared to Equation (3.30) is

now shown as

4xk = (O>O)−1O>D, (3.40)
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and the MLE of the residual of the ending states and covariance as compared to Equa-

tions (3.30) and (3.32), respectively, are now shown as

4xk = (O>Ξ
−1O)−1O>Ξ

−1
D, (3.41)

Pk = (O>Ξ
−1O)−1. (3.42)

Although the derivation of the nonlinear model hypothesis generation step using the

Gauss-Newton method is complete, we now describe additional modifications made to this

solution that help minimize oscillations, prevent divergence, and help the solution converge

to the correct states. The first modification is to put an upper limit on the step size taken

by each of the states between iterations as

τ4x =


τ4x1

τ4x2

...

τ4xn

 . (3.43)

This upper limit threshold helps reduce oscillations which may also help prevent diverging

solutions that are caused by extreme oscillations. The second modification has to do with the

updated state estimates. After new states have been calculated from the update equation

xk,j+1 = xk,j +4xk, these states may lie in a region of unacceptable values. For all states

which lie outside their acceptable range of values, we apply a generic correcting function as

xk,j+1 = r(xk,j+1), (3.44)

where xk,j+1 is used to identify the modified version of the states. Solutions to the Gauss-

Newton method may not necessarily be unique, however, due to the inherent nature of the

states and the regions of acceptable values, only one of these solutions may be acceptable.

By using the second modification we have just described, the solution resulting from the

Gauss-Newton method is guaranteed to converge to a range of acceptable values, if it is to

converge at all, for each of the states.
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Having defined the nonlinear model hypothesis generation step, we now define the

nonlinear inlier detection function Inlier(Yk,xk, τR) used within the RANSAC algorithm,

Line 4, as

χk =

ij ∈ {1, . . . ,Ψk} :

∣∣∣∣∣∣Yk
 ∑
∀κ={k,k−1,...,k−i+2}

ψκ + j

− h′i(xk)
∣∣∣∣∣∣ < τR

 ,

∀i = {1, . . . , N}, ∀j = {ψk−i+1, . . . , 1}, (3.45)

where the error threshold parameter has been expanded in a similar way as the R-RANSAC

algorithm as τR ∈ Rm, and the general choice of this parameter is seen to be

τR =


s1σy1

s2σy2
...

smσym

 . (3.46)

From Equation (3.45) we see that the inlier function checks if the difference between each

measurement in the measurement window and the predicted measurement based on the

the estimated ending state propagated backwards in time, is less than the error threshold

parameter. The result of this function is the set of all ij products that meet this criteria,

and that represent the index location of each measurement in the measurement window that

is an inlier to the estimated trajectory.

The final step of the RANSAC algorithm that needs to be defined for the nonlinear

case is the smoothing step, Line 12. Similar to the nonlinear extension of R-RANSAC, the

smoothing step for the RANSAC algorithm is also performed using an EKF. To use the EKF

to smooth the trajectory, a couple of steps must first be taken. First, we must calculate the

states at the beginning of the measurement window by propagating the estimated ending

states backwards in time using Equation (3.14) as

xkN = f ′N−1(xk). (3.47)
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Defining the time step of the random sample that occurred first in time is as kt1 , the estimated

covariance matrix must also be propagated backwards in time over the time steps from kt1

to kN using the same propagation equations shown in Equations (3.4) and (3.5). Now

that the states at the beginning of the measurement window have been calculated with a

corresponding covariance matrix, the final step is to propagate these forward in time to the

current time step using the EKF propagation and update steps shown in Equations (3.3),

through (3.9), where we use all measurements from the consensus set in the update step.

3.2.4 General Improvements Made to R-RANSAC

In the development of the ER-RANSAC algorithm shown above we have come across

a few general improvements that can be used with any implementation of R-RANSAC.

The first feature we have added is a two-element good-track threshold. The two

elements include the beginning and ending thresholds τ bρ and τ eρ , respectively, where the

following condition must be true, τ bρ > τ eρ . The beginning threshold is used to determine if a

previously bad track has gained enough inlier support to be identified as a good track. The

ending threshold has the opposite effect, where it is used to determine if a previously good

track has lost enough inlier support to now be identified as a bad track. The benefits of this

change are two fold. First, the higher beginning threshold allows us to prevent false tracks

from accidentally being deemed as a good track. Second, the lower ending threshold allows

us to maintain tracks we know to be good even in a temporary reduction in measurement

support, which improves track continuity.

The second improvement we have made is to expand the error threshold parameters

for the inlier functions used within the RANSAC and R-RANSAC algorithms from a single

number in R to a vector of parameters in Rm as shown in Equation (3.11), and (3.46). The

reason for this change is that the each of the m sensor returns might have differing error

statistics and they may present values with different units. By expanding the error threshold

to Rm, this allows us to set multiple error threshold values based on the error statistics and

units of each of the specific sensor returns. The benefit of this change is that we can correctly

identify if a measurement is an inlier to a specific model or not.
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The third improvement has to do with the results of the RANSAC algorithm. In the

previous implementations of the RANSAC algorithm used within the R-RANSAC frame-

work, the iteration with the largest consensus set was used to initialize a track inside R-

RANSAC, irrespective of the size of the consensus set. An optional feature that was pro-

posed in the original RANSAC algorithm was to only return the calculated estimate if the

size of the consensus set was above a certain threshold [38]. We now bring back this fea-

ture in our current implementations of RANSAC within the R-RANSAC framework using

a consensus set threshold τCS. There are a couple of reasons why this feature is beneficial.

First, this feature tends to reduce the number of stored models within R-RANSAC which

directly reduces the amount of computation performed within R-RANSAC. A drawback of

this change, however, is that if there are less stored models in R-RANSAC, then a greater

number of measurements will be outliers to existing models which means the RANSAC al-

gorithm will have to be run a greater number of times. In spite of this drawback, another

benefit of this feature is that it helps to improve the the quality of tracks being initialized by

RANSAC. In the ideal case, the RANSAC algorithm would be performed after the measure-

ment window has been completely filled with measurements from the target we are trying

to track. This will increase the likelihood that the RANSAC algorithm converges to an

estimate that is close to the true states of the target because it has more measurements to

draw from. If the RANSAC algorithm is executed with only a few measurements from the

target, then it will likely result in an estimate of the state that is not close to the true state

of the target. By only accepting results from the RANSAC algorithm when large consensus

sets are obtained, we are effectively guaranteeing that we have performed RANSAC with

a measurement window that is largely filled with measurements from the target, and that

results in the formation of more accurate state estimates used to initialize tracks.

The final improvement was developed to help optimize the R-RANSAC algorithm

when implemented in code to reduce the computational overhead caused by numerous matrix

multiplications. In the RANSAC algorithm a minimum subset of measurements from the

measurement window are selected at random and are used to obtain a least-squares or MLE

solution. To make the RANSAC algorithm work within the framework of R-RANSAC, one

of these measurements is required to be a measurement taken from the current time step yk.
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Since one of the measurements will always originate from the current time step, it would

be ideal to limit the amount of computational overhead associated with this measurement.

From the original linear implementation of RANSAC, we see that this measurement always

appears on the last row of the measurement equation, which is shown here for convenience

as 
ykN

ykN+1

...

yk

 =


C

CA
...

CAN−1

xkN +


0 0 0 . . . 0

0 C2 0 . . . 0
...

...
...

. . .
...

0 CAN−2 CAN−3 . . . C




wkN

wkN+1

...

wk

+


vkN

vkN+1

...

vk

 .

The reason the measurement from the current time step appears on the last row is because

the states that are being estimated are the states at the beginning of the measurement

window, xkN . The time difference between this estimated state and the current measurement,

therefore, spans the entire measurement window requiring numerous matrix multiplications

within the O and G matrices to correctly propagate the initial states into the same time

step as the current measurement.

The solution we have developed to eliminate these numerous matrix multiplications

is to instead solve for the ending states, xk, which corresponds to the same time step as

the most recently received measurement. Because of this change in states being estimated,

the derivation of the above equation must proceed in a slightly different manner. Instead

of developing these equations using propagation equations that evolve forward in time, we

must use propagation equations that evolve backwards in time. This is what we have done

in our derivation of the nonlinear version of RANSAC as seen in Equation (3.24). From

Equation (3.24) we now see that the first row of the equation contains the measurement

from the current time step, and in this row we also see the O matrix contains a single matrix

C1 with no matrix multiplications, and the G matrix contains purely zero values with no

matrices or matrix multiplications. Due to the large reduction in the number of matrix

multiplications, the computational cost is significantly reduced.
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3.3 Implementation of ER-RANSAC Using On-board Radar

In this section we present simulation results that demonstrate the ability to success-

fully track multiple maneuvering intruder aircraft located in all directions around a maneu-

vering ownship in the presence of spurious measurements/clutter, missed measurements, and

noisy measurements. We do so using an air-based radar fixed to the ownship as the detection

device and the newly developed ER-RANSAC as the MTT algorithm. The remainder of this

section proceeds as follows: first we describe the dynamic model used in the simulation, then

we describe the radar model, next we show the observability of our system, then we present

results demonstrating the performance of the Gauss-Newton method, and finally we provide

plots of the simulation results.

3.3.1 Nonlinear Constant Acceleration Model

As described in Section 3.2.1, to track maneuvering intruder aircraft we use a constant-

acceleration model. Specifically we use a nonlinear dynamic model based on states which

include north position pn, east position pe, altitude h, ground speed Vg, course angle χ,

flight path angle γ, ground-speed rate V̇g, course angle rate χ̇, and flight path angle rate γ̇.

The state vector is defined as x = [pn, pe, h, Vg, χ, γ, V̇g, χ̇, γ̇]>, and the nonlinear constant-

acceleration sate equation is shown as

f(x) =



ṗn

ṗe

ḣ

V̇g

χ̇

γ̇

V̈g

χ̈

γ̈



=



Vg cosχ cos γ

Vg sinχ cos γ

Vg sin γ

V̇g

χ̇

γ̇

0

0

0



. (3.48)
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This dynamic model is able to capture constant-acceleration maneuvers performed by the

intruders including accelerating/decelerating at a constant rate, turning at a constant turn

rate, and increasing/decreasing the flight path angle at a constant rate.

3.3.2 On-board Radar Sensors

As described in Section 3.2.1, to detect overtaking intruder aircraft we need a detec-

tion device that can detect intruders behind the ownship. The solution we presented is seen

in Figure 3.1 which shows three radar units mounted in three directions around the own-

ship. One is pointed forward and the other two are pointed with offset angles in the reverse

direction. This setup allows us to get full 360 degree coverage in the azimuth direction.

To develop a set of output equations for the radar sensors, we first need to define a

set of ownship states including the ownship’s position and attitude. These ownship states

are specifically the north position, east position, altitude, roll, pitch, and yaw, and will be

represented as

xo = [pn,o, pe,o, ho, φo, θo, ψo]
>, (3.49)

where the subscript indicates these states are from the ownship. This subscript has only

been added to the ownship states and not the intruder states.

Having defined the set of ownship and intruder states, we are now prepared to derive

the output equations resulting from the radar. Each radar unit produces a set of three

measurements including the range to the target r, the azimuth angle to the target measured

relative to the forward direction of the aircraft in the body frame α, and the elevation angle

to the target measured relative to the body-fixed horizontal plane ε. The output equation

resulting from these three measurements is shown as

h(x,xo) =


r(x,xo)

α(x,xo)

ε(x,xo)

 =


√

(pvn)2 + (pve)
2 + (hv)2

tan−1
(
pbe
pbn

)
tan−1

(
hb√

(pbn)2+(pbe)
2

)
 , (3.50)
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where the superscript v indicates the state is expressed in the vehicle frame of the ownship,

and the superscript b indicates the state is expressed in the body frame of the ownship.

The vehicle frame of the ownship is defined as an inertial north-east-down reference frame

centered about the ownship. The body from of the ownship is defined as a right handed

coordinate system centered about the ownship with the x-axis directed out the front of the

aircraft, the y-axis directed out the right wing of the aircraft, and the z-axis directed out

the bottom of the aircraft.

Using the position states of the ownship and intruders, a general right handed north-

east-down position vector is defined as p = [pn, pe,−h]>. From this definition the position

of the intruder in the vehicle frame of the ownship is expressed as

pv =


pvn

pve

−hv

 =


pn − pn,o
pe − pe,o
−(h− ho)

 , (3.51)

where this position vector will be used in the definition of the range equation.

For the azimuth and elevation angle equations, expressions must now be developed

for the position vector of the intruder in the body frame of the ownship. Using the three

element rotation matrix which transforms a vector from the vehicle to the body frame as

Rb
v(φ, θ, ψ) =


cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 , (3.52)

we can now express the the position vector of the intruder in the body frame of the ownship

as

pb =


pbn

pbe

−hb

 = Rb
v(φ, θ, ψ)pv. (3.53)
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Multiplying out this product results in expressions for the positions of the intruders in the

body frame of the ownship as

pbn = (pn − pn,o)cθcψ + (pe − pe,o)cθsψ − (h− ho)(−sθ), (3.54)

pbe = (pn − pn,o)(sφsθcψ − cφsψ) + (pe − pe,o)(sφsθsψ + cφcψ)− (h− ho)sφcθ, (3.55)

hb = −(pn − pn,o)(cφsθcψ + sφsψ)− (pe − pe,o)(cφsθsψ − sφcψ) + (h− ho)cφcθ. (3.56)

Having defined the position vectors of the intruder expressed in both the vehicle frame

as seen in Equation (3.51) and the body frame as seen in Equations (3.54), (3.55), and (3.56),

the final step is to substitute these back into Equation (3.50) upon which we have completed

our derivation of the output equations for range, azimuth and elevation.

3.3.3 Observability of Nonlinear System

Before proceeding to the results section, we first demonstrate that the states resulting

from the nonlinear state-space equations are indeed observable. To determine if the system

is observable we need to produce an observability matrix. The system is observable if the

rank of the observability matrix is equal to n, the number of states. Another way to show

when the system is observable is to show when the determinant of the observability matrix

is not equal to zero. The general nonlinear observability matrix is shown as

O =
∂

∂x


h(x)

Lfh(x)

L2
fh(x)

...

 =
∂

∂x



h1(x)
...

hm(x)

Lfh1(x)
...

Lfhm(x)

L2
fh1(x)

...

L2
fhm(x)

...



=
∂

∂x



h1(x)
...

hm(x)

∂h1
∂x
f(x)
...

∂hm
∂x
f(x)

∂(Lfh1(x))

∂x
f(x)

...

∂(Lfhm(x))

∂x
f(x)

...



, (3.57)

85



where terms are appended to the bottom of the matrix until rank(O) = n. If we keep

appending terms to the bottom of the observability matrix and the rank never becomes

equal to n, then the system is not observable.

The range, azimuth, and elevation equations defined previously are large and cum-

bersome, which results in a large observability matrix and an even larger determinant. The

determinant of the observability matrix using these equations results in hundreds of terms

which become too large to manipulate or interpret. To determine the observability of the

system, an assumption is needed to simplify the derivation to produce meaningful results.

The assumption we make is that the ownship’s attitude is φ = θ = ψ = 0. This results

in the previously defined rotation matrix being equal to identity and the resulting output

equations are then expressed in a simplified form as

r(x,xo) =
√

(pn − pn,o)2 + (pe − pe,o)2 + (h− ho)2, (3.58)

α(x,xo) = tan−1

(
pe − pe,o
pn − pn,o

)
, (3.59)

ε(x,xo) = tan−1

(
h− ho√

(pn − pn,o)2 + (pe − pe,o)2

)
. (3.60)

Using this simplified set of output equations we show that the states are observable

for this specific attitude of the ownship. The specific details proving our specific states are

observable can be found in Appendix B, and from this derivation we determine that three

sets of measurements are required to make the states observable. After showing that the

states are observable for this specific attitude of the ownship we then make the assumption

that the states of the intruder remain observable regardless of the attitude of the ownship.

This assumption appears to be correlated to a result found in Ref. [40]. From derivations in

this reference, it was found that the evolution of the states of a goal node were independent

of the attitude of a ground robot.

3.3.4 Gauss-Newton Results

In this section we demonstrate the performance of the Gauss-Newton method in

estimating the ending states of an aircraft from a minimum subset of measurements. For
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this demonstration we show the results from a single call to the Gauss-Newton function. In

these results we are using the nine-state nonlinear constant-acceleration model, and the on-

board radar sensor model which provides nonlinear measurements. From the observability

section of this state space model, found that three sets of range, azimuth, and elevation angle

measurements are needed for the minimum subset. Using this setup we provide an initial

guess for the states as xk,j = [0, 0, 200, 15, 0, 0, 0, 0, 0]>. The evolution of these states across

each iteration of the Gauss-Newton method are shown in Figure 3.3.
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Figure 3.3: Evolution of states across each iteration of the Gauss-Newton method.
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In this example we have defined the true states of the aircraft at the current time

step to be equal to xk = [80, 60, 110, 14,−50,−2, 1.3,−6, 3]> as seen by the black lines in

Figure 3.3. Using these states for the current time step, we solve the nonlinear differential

equation backwards in time for 50 time steps and create noisy radar measurements based

on these propagated states. Using a minimum subset of three radar measurements at three

different time steps, we begin executing the Gauss-Newton method. As seen in Figure 3.3,

this particular call to the Gauss-Newton method took 15 iterations to converge to a solution.

Since we used noisy radar measurements, the state estimates that it converges to are not

exactly equal to the true states, however, we see that the final estimates accurately represent

the true states. The value of the states from the final iteration of the Gauss-Newton method

are also shown on each of the plots next to the final state estimate. Although the resulting

solution is not exactly equal to the true states, the solution becomes more accurate as the

noise on the radar measurements decreases.

Referring back to the illustration we presented of the nonlinear version of RANSAC

in Figure 3.2, we remember that in the fourth frame we used to the Gauss-Newton method

to iteratively solve for a model hypothesis x̂′k. From Figure 3.3, we see that the model

hypothesis for this particular run of the Gauss-Newton method is equal to

x̂′k =



79.23 m

59.69 m

110.30 m

14.14 m/s

−49.62 deg

−2.14 deg

1.40 m/s2

−5.92 deg/s

2.07 deg/s



. (3.61)

Also Referring back to the illustration in Figure 3.2, we remember that in the fifth

frame we evaluated the nonlinear dynamic equation backwards in time using the the model

hypothesis states as the starting point. As we propagated these states backwards in time we
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ended up with a trajectory that was used for inlier detection needed to find the consensus

set. Up to this point we have shown that the Gauss-Newton method is successfully able to

create a model hypothesis of the states at the final time step, as x̂′k. For the last part of

the results in this section, we show that that the process of solving the nonlinear dynamic

equation backwards in time does indeed create a trajectory that passes through each of the

three minimum subset radar measurements, thus demonstrating that the states generated

from the Gauss-Newton method will indeed be effective in creating a trajectory for inlier

detection. The original Gauss-Newton model hypothesis and the resulting trajectory are

shown in Figures 3.4 and 3.5

Figure 3.4: The true trajectory, minimum subset of radar measurements, and resulting

Gauss-Newton trajectory.

89



50 60 70 80 90 100
east (m)

35

45

55

65

75

85
no

rth
 (m

)

(a) Top view.

35 45 55 65 75 85
north (m)

105

110

115

120

al
tit

ud
e 

(m
)

true trajectory
Gauss-Newton trajectory
minimum subset
Gauss-Newton xk

(b) Side view.

Figure 3.5: The true trajectory and Gauss-Newton trajectory shown in 2D.

In Figures 3.4 and 3.5, we have also plotted the true trajectory of the aircraft and

the three radar measurements used as the minimum subset. The two random measurements

occurred 1.5 and 3.9 seconds in the past compared to the current time step. From these

figures we see that the estimated trajectory passes directly through each of the three radar

measurements, and that because the three radar measurements do not have large noise

properties, the resulting trajectory follows very closely to the true trajectory.

These results complete the analysis of the Gauss-Newton method, showing that it is

indeed a valid method for generating a model hypothesis. The results of this Gauss-Newton

method would then need to be integrated into the remaining steps of the nonlinear RANSAC

algorithm and subsequently into the ER-RANSAC algorithm, which is what we do in the

next section by integrating all the pieces of ER-RANSAC together to track multiple dynamic

targets.

3.3.5 Simulation Results

To present the tracking results for this section we have utilized the improved simula-

tion environment described in Appendix C which has been developed in Matlab/Simulink.
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For our simulation each of the aircraft are modeled using a full 12-state dynamic model

controlled by an autopilot similar in structure to one described in Ref. [19]. The specific

flight paths taken by each of the aircraft are shown in Figures 3.6 and 3.7.

Figure 3.6: Flight paths of the ownship and three intruder aircraft.

In our previous discussion of desired tracker properties we stated that the tracker

needed to be able to track multiple maneuvering intruders. As such we have included three

intruder aircraft with varying flight-path maneuvers as seen in Figures 3.6 and 3.7. For the

first intruder we have defined a flight path with a constant velocity, heading and flight-path

angle. The constant flight-path angle results in the aircraft descending in altitude instead

of a constant-altitude flight path. For the second intruder, we have defined an upwards

spiraling flight path which changes course-rate direction half way through the simulation.

This aircraft is also commanded to accelerate at a constant value followed by a command

to decelerate at a constant value. This results in an aircraft with a constant acceleration,

constant turn rate, and constant flight-path angle. Finally, for the third intruder we have
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defined a flight path with a constant velocity, constant heading, and constant flight-path

angle rate. This intruder is initialized with a negative flight-path angle, which results in the

aircraft first descending, then leveling off, then climbing with an increasing flight-path angle.

(a) Top view. (b) Side view.

Figure 3.7: Flight paths shown in 2D.

The ownship which is used in this simulation is also modeled to include an on-board

radar sensor. Specifically, the ownship is carrying three radar units oriented in the three

directions described in previous sections. Since these three radar units are fixed to the body

of the ownship, their orientation changes as the attitude of the ownship is altered. The range

measurements received from the radar units are not affected by the orientation of the radar,

however, the azimuth and elevation angle measurements are affected by the orientation. In

addition to the attitude, the position of the ownship also has an affect on the received radar

measurements. The position, however, affects the received range measurements in addition

to the azimuth and elevation measurements. The specific effects of the ownship position and

attitude on the radar measurements were derived previously, shown by Equations (3.50),

(3.51), (3.54), (3.55), and (3.56). These output equations are the output equations used

within the simulated radar model, and the EKF update and Gauss-Newton steps of the ER-

RANSAC algorithm. To demonstrate that the ER-RANSAC tracking algorithm correctly
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deals with these variations in radar measurements, we have given the ownship a highly

maneuverable flight path, also seen in Figures 3.6 and 3.7.

The radar model used in this simulation calculates the true range, azimuth and eleva-

tion measurements based on the true states of the ownship and intruders. Starting with this

complete list of radar measurements, we then simulate missed measurements by randomly

removing measurements based on a specified probability of detection. For the results in this

section we have used a probability of detection of 0.8. Normally distributed random noise is

then added to each of the sensor measurements based on their unique standard deviations.

In addition to missed measurements and noisy measurements, we have also added clutter

measurements to the simulation. For the clutter we have added a random number of mea-

surements based on a uniform distribution of integers from zero to three. The final step in

this radar model was to assign each of these radar measurements to the correct radar unit

based on which azimuth direction it was pointing. The simulated radar units also had a lim-

ited field of view (FOV) in elevation, so any measurements outside this elevation threshold

were eliminated from the output.

Using the three different intruder aircraft trajectories and the maneuvering ownship

trajectory, the simulated radar measurements are transformed into their respective north-

east-down components and are plotted with the actual flight paths flown by the aircraft as

seen in Figures 3.8 and 3.9.

Another desired tracker property includes the ability to track intruders which may

be overtaking the ownship from behind. The three radar units described above are mounted

on the ownship in such a way as to provide 360-degree coverage around the ownship in the

azimuth direction. The maneuvering flight paths of the ownship and intruders described

above were also designed to ensure that the intruder aircraft are located behind the ownship

at various times throughout the simulation. Since the three radar units are oriented at three

different azimuth angles compared to the ownship’s forward direction, we have applied an

offset to the azimuth returns from the two backwards pointing radar units. This allows us to

use a single measurement equation within the ER-RANSAC tracking algorithm. This also

results in the ability to plot the radar returns from all three radar on the same plot as seen

in Figure 3.10.
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Figure 3.8: Flight paths and radar measurements shown in the inertial reference frame.
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Figure 3.9: Flight paths with radar measurements shown in 2D.

94



0
200
400
600

ra
ng

e
(m

)

radar measurements intruder 1 intruder 2 intruder 3

-180
-90

0
90

180

az
im

ut
h

(d
eg

)

0 10 20 30 40 50 60
time (s)

-60
-30

0
30
60

el
ev

at
io

n
(d

eg
)

Figure 3.10: Radar measurements in ownship body frame.

Observing the azimuth measurements in Figure 3.10 we can distinguish between the

radar measurements received from each of the three radar units. The first radar unit is

mounted in the forward pointing direction on the ownship. Since the field of view (FOV) of

each radar is 120 degrees in azimuth, all radar measurements with an azimuth angle between

-60 and 60 degrees originate from the first radar unit. The second radar is mounted backwards

and to the right at an azimuth angle of 120 degrees. All azimuth angle measurements between

60 and 180 degrees, therefore, originate from the second radar unit. Finally, the third radar

unit is mounted backwards and to the left at an azimuth angle of -120 degrees. This results

in all azimuth measurements between -60 and -180 degrees.

Also from Figure 3.10 we can see the effects of the limited elevation FOV. The ele-

vation FOV used in this simulation spans from -60 to 60 degrees, and as a result we notice

that there are no radar measurements below -60 degrees or above 60 degrees. Upon careful

inspection we also see that 2nd and 3rd intruders briefly drop below the -60 degree elevation

FOV boundary at approximately 3 seconds into the simulation. The 2nd intruder leaves the
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FOV for about 0.5 seconds, while the 3rd intruder leaves the FOV for about 1 second. By

leaving the elevation FOV of the radar, we temporarily lose all three range, azimuth, and

elevation measurements from these aircraft which is most noticeable in the range plot.

Having shown the simulation will properly test each of the desired properties of the

tracker, we now move to the results of the estimated intruder tracks resulting from the ER-

RANSAC tracking algorithm. For the results in this simulation have used a sample rate

of 0.1 seconds, R-RANSAC parameters shown in Table 3.3, RANSAC parameters shown in

Table 3.4, and Gauss-Newton parameters shown in Table 3.5.

Table 3.3: R-RANSAC parameters.

Parameter Value

N 150

M 10

τRR (srσr, sασα, sεσε)

sr 17.5

sα 3.5

sε 3.5

σr 0.4 m

σα 1 deg

σε 1 deg

τ bρ 0.4

τ eρ 0.3

τCS 0.3

τT 20

MD 15

Q (0.0001 , 0.0001, 0.01, 0.01, 0.01, 0.0005, 0.0009, 0.001, 0.00001)

R (σ2
r , σ

2
α, σ

2
ε )

τxi (10 m, 10 m, 10 m, 3 m/s, 0.5 deg, 0.5 deg, 1 m/s2, and 0.3 deg/s, 0.3 deg/s)
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Table 3.4: RANSAC parameters.

Parameter Value Parameter Value

` 10 τR (srσr, sασα, sεσε)

γ 0.8N sr, sα, sε 2.5

Table 3.5: Gauss-Newton parameters.

Parameter Value Parameter Value Parameter Value

τ4pn 1000 m τ4Vg 50 m/s τ4V̇g 0.2 m/s2

τ4pe 1000 m τ4χ 20 deg τ4χ̇ 1 deg/s

τ4h 1000 m τ4γ 5 deg τ4γ̇ 1 deg/s

`GN 30 τGN 1e-10

For the state correcting function used within the Gauss Newton method we perform

the following checks. For the estimate of Vg we required that the solution be greater than

zero. If Vg < 0 m/s, we perform the following functions V g = |Vg|, and χ = χ + π. For the

estimate of χ we require that the solution lie between -180 and 180 degrees. If χ < −180

deg, we add 2π until the solution is greater than -180 degrees. If χ > 180 deg, we subtract

2π until the solution is less than 180 degrees. Finally, for the estimate of γ we require that

the solution lie within -90 and 90 degrees. If γ > 90 deg, we perform the following function

γ = 89.999 deg. If γ < −90 deg, we perform the following function γ = -89.999 deg. We do

not set the flight-path angle exactly equal to 90 or -90 degrees because, as we have shown in

the nonlinear observability derivation in Appendix B, this will make the course angle state

unobservable.

Using these tracking parameters we plot the estimated states as a function of time

as seen in Figures 3.11, 3.12, and 3.13. In each of these figures we compare the estimated

states with the true states of the intruders.

In Figure 3.11 we have plotted the position states of the aircraft which include the

position north, position east, and altitude. In addition to the true and estimated position

states, we have also plotted the transformed radar measurements. From this figure we see
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that the position estimates of ER-RANSAC follow very closely with their respective radar

positions. Since there was not any bias in the radar measurements, this means the position

estimates of ER-RANSAC also followed the true positions of the intruder aircraft very closely.

-200

0

200

400

600

po
si

tio
n

no
rth

 (m
)

position truth position estimate measurements

-200

0

200

400

po
si

tio
n

ea
st

 (m
)

0 10 20 30 40 50 60
time (s)

0

200

al
tit

ud
e

(m
)

Figure 3.11: ER-RANSAC position estimates.

Also from this figure we see that we did not receive any tracks of the targets until

approximately 10 to 11 seconds into the simulation. Since we used a step size of 0.1 seconds

and a measurement window size of 150, the measurement window will not be completely full

until 15 seconds into the simulation. Using the fact that we had a consensus set threshold

within RANSAC of 0.3, and that we had a probability of detection of 0.8, the earliest a track

could have been created within this simulation would be 5.6 seconds into the simulation.

After a track has been initialized it must exist for a certain amount of time before it is

counted as a good track. Since we used a minimum track threshold time of 20, then the

earliest a track could have been deemed a good model would be 2 seconds after it has been
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created, or 7.6 seconds into the simulation. The fact that our tracks were not actually deemed

as good tracks until roughly 10 to 11 seconds, or about 2.4 to 3.4 seconds after they could

have been deemed as good tracks, can be explained by a couple of factors. For our minimum

subset used within RANSAC, we randomly selected two measurements in addition to the

measurement at the current time step. The likelihood that both of these measurements

originate from a single intruder, and that both of these measurements are spaced far enough

apart, is low. Also, for the RANSAC algorithm we only iterate a maximum of 10 times.

Although our tracks were not deemed good tracks until roughly 2.4 to 3.4 seconds after

they could have been, they were deemed good tracks roughly 4 to 5 seconds before the

measurement window was completely filled.
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Figure 3.12: ER-RANSAC velocity estimates.

In Figure 3.12 we have plotted the states that relate to the velocity of the aircraft

which include the ground speed, course, and flight-path angle. Although the course and

flight-path angle are not measurements of speed, they do provide a direction for the velocity
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of the aircraft. The estimated states seen in this figure are slightly more noisy than the

position estimates seen earlier, however, they still track the true states relatively well.
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Figure 3.13: ER-RANSAC acceleration estimates.

In Figure 3.13 we have plotted the states that relate to the acceleration of the aircraft

which include the ground-speed rate, course rate, and flight-path angle rate. The first

observation to make from this figure is that we have successfully created maneuvers for each

of the intruders which include constant accelerations, constant turning rates, and constant

flight-path angle rates. From the estimates of these states we see that ER-RANSAC was

able to successfully lock onto each of these states resulting from a highly maneuverable

aircraft. The second observation to make is to note how well the Gauss-Newton method

did in initializing each of the states resulting from a nonlinear dynamic model. This same

observation can also be seen in Figures 3.11 and 3.12, where we see that the initial estimates

of each of the states were close to the true states of the intruder aircraft.
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CHAPTER 4. COMPLETE DAA SYSTEM USING GBR

A detect-and-avoid system has many subcomponents that must all be working seam-

lessly together to create a fully operational DAA system. These subcomponents include a

detection device, processor platform, and DAA algorithms including target detection and

tracking, collision detection, and collision avoidance path planning. At Brigham Young

University, research is actively being done to create such a system. The ultimate goal is

to create a complete DAA system that is fully autonomous and which uses an air-based

detection device.

Initial efforts by Klaus have been performed to create such a system [30]. In his

research, Klaus was able to integrate all the pieces of a DAA system together in a sys-

tem that included both hardware and simulated components. He was then able to extend

this system using the state information from small UAS hardware, including two fixed-wing

autopilot-controlled aircraft, as opposed to simulated aircraft. The state information from

these unmanned aircraft were fed into a program that generated simulated radar measure-

ments and performed the remaining DAA algorithms. New flight paths obtained from these

DAA algorithms were then sent to the ownship aircraft that performed the new flight path in

real time. The simulated radar and DAA algorithms were run on a ground station PC, and

the states were obtained and the waypoints were sent through a wireless communications

link to the aircraft.

Currently, additional research is being done to create a complete DAA system using

actual radar hardware in place of a simulated radar. A team of students under the direction

of Dr. Karl Warnick and Dr. Doran Wilde are attempting to create a radar unit that will

ultimately be mounted on-board a small UAS, and which therefore must meet the size weight

and power (SWaP) requirements of small UAS. An additional team of students under the

direction of Dr Tim McLain and Dr Randy Beard are working to create the target detection
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and tracking, collision detection, and collision avoidance algorithms that will be used in

conjunction with the radar hardware being developed. Results from these current efforts are

the primary contributions shown in this chapter.

To achieve the ultimate goal of using an air-based detection device in the DAA so-

lution, we have first chosen to utilize the radar hardware in a ground-based radar (GBR)

DAA setup. This is an important step as it allows for greater debugging capabilities when

trying to develop a completely new sensor to detect small UAS with a small radar cross

section (RCS). Although an air-based DAA system is the ultimate goal, a ground-based

solution comes with certain benefits that make it an attractive alternative option the the

air-based DAA system. Airborne DAA systems require scaling sensors down to small UAS

sizes which often requires compromises in range, field of view, measurement accuracy, or

processing speed. Such compromises reduce the overall capability of the DAA system, and

consequently, decrease the assurance of safety. In addition, carrying sensors on board reduces

the UAS payload capability. Ground-based DAA systems do not require modifications to

the UAS airframe, do not consume the UAS payload capacity, and reduce power consump-

tion resulting in longer flight times. The ground-based DAA system provides an alternative

means of complying with the FAA sense-and-avoid regulations. A ground-based DAA sys-

tem consists of a ground control station that includes all sensors, communication, processing

and logic. The main limitation of a ground-based DAA systems is that the aircraft which

utilize this DAA system are restricted to fly in a confined volume of airspace, whereas, for

air-based DAA systems the aircraft are free to fly within any volume of airspace.

For the results in this chapter we first show that we have been able to create a com-

plete DAA system using a ground-based radar setup within simulation. These simulation

efforts will then be extended to a complete DAA system using actual radar hardware in

a GBR setup, shown in Chapter 5. The primary contributions of these two chapters in-

clude the implementation of a target detection and tracking algorithm using R-RANSAC,

the integration of the subcomponents of the DAA system into fully functional simulation

and hardware implementations, and other various contributions in the radar digital signal

processing, and collision detection and collision avoidance algorithms.
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Figure 4.1: Ground-based radar detect-and-avoid system structure diagram.

The system shown in Figure 4.1 is a complete GBR DAA system for small UAS. It

is viable for both fixed-wing and multirotor aircraft, and could reasonably be extended for

larger UAS outside of the small UAS definition. As shown in Figure 4.1, radar returns from

all of the targets are received by a phased-array antenna. The radar data is processed to

produce range and azimuth and elevation angles to all targets. In the tracking step, the tar-

get’s measurements are processed using the recursive-RANSAC (R-RANSAC) algorithm [12]

to estimate the state estimates of potential intruders, and to distinguish the ownship. After

the R-RANSAC filtering, the distance at the closest point of approach is computed to iden-

tify possible collisions. If a collision threat is detected, the intruder position and velocity

estimates and an activation flag are passed into the collision avoidance algorithm. Once the

collision level of the avoidance logic has been activated, a new collision-free path is generated
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using a two-step path planning algorithm. In the first step, an initial suboptimal path is

generated using A∗ search. In the second step, a simulated chain of unit masses connected

by springs and dampers evolves in a simulated force field. The chain is described by a set

of ordinary differential equations that is driven by virtual forces to find the steady-state

equilibrium. The final output of the DAA system is a revised set of ownship waypoints that

are transmitted to the ownship.

We now describe each of these subcomponents in greater detail as follows. In Sec-

tion 4.1 we describe the simulated GBR model, in Section 4.2 we integrate the nonlinear

radar output equations within a linear version of R-RANSAC, in Section 4.3 we describe

a deterministic collision detection algorithm, in Section 4.4 we describe the two-step colli-

sion avoidance algorithm, and in Section 4.5 we show simulation results using each of these

subcomponents.

4.1 Ground-based Phased-array Radar

Figure 4.2 shows the typical operating volumes associated with a ground-based DAA

system. In this configuration, the ground-based sensor detects air traffic in a fixed volume of

airspace called the surveillance volume. The ownship flies in a volume of airspace referred as

the operation volume. The size and geometry of the operation volume is dependent on the

surveillance volume, minimum detection range, and other dynamics characteristics of the

UAS, like the minimum turning radius. The size of the operation volume should depend on

(1) the minimum required detection range to be able to detect and track the intruder, (2) the

time required to evaluate the encounter scenario, (3) the time required to plan an avoidance

maneuver if required, and (4) the time required to take an evasive action. A drawback to

using the ground-based DAA system is that it provides a static coverage volume, which may

be less than the operating range of the UAS. Also, using ground-based DAA introduces the

issue of maintaining a reliable, and efficient data link between the ground control station

and the ownship. In addition, local terrain may also reduce the surveillance volume, and

introduce noise in the measured information.
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Figure 4.2: Surveillance and operating volumes associated with the ground-based radar DAA

system.

For our specific ground-based DAA system we are attempting to use radar, which will

provide measurements of range, azimuth angle, and elevation angle. These three measure-

ments are needed to track the altitude of the aircraft, in addition to its horizontal position

states. The radar antenna configuration we are using is a planar phased-array radar with a

wide field of view angled directly at the sky. Due to beamwidth characteristics of radar, this

would create a 3D surveillance volume above the radar in the form of an inverted raindrop

as seen in Figure 4.3.

The primary development of a simulated GBR was done by Jonathan Spencer, Michael

Boren, and Kaleo Roberts. This simulated radar was designed to mirror current efforts in the

development of actual radar hardware. As such, a frequency-modulated, continuous-wave

(FMCW) radar system has been designed with a four-by-four planar array antenna pattern.

These array antennas are manufactured using low-cost printed circuit board (PCB) methods.

Using the propagation path difference between each of these receiver array elements, the di-

rection of arrival of a target can be found. This is done by first digitizing the signal and then

performing digital beamforming. Digital beamforming allows the user to form many beams
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and track multiple targets at different angles simultaneously. The four-by-four planar array

pattern allows the user to determine a two element angle of arrival including the azimuth

and elevation angle measurements.

(a) Side view. (b) Top view.

Figure 4.3: Radar surveillance volume using planar phased array.

Most modern radar systems, including air traffic control (ATC) radars, employ digital

signal processing (DSP) on the signals generated by the radar. The different processing

techniques range from simple operations such as averaging radar pulses to more sophisticated

methods like synthetic aperture radar (SAR) imaging. The required DSP techniques depend

on the type of radar system used and the desired information to be extracted. For our

proposed ground-based radar, we need to extract range, azimuth angle, and elevation angle.

To extract these three metrics, the DSP tools needed are the fast Fourier transform (FFT),

correlation and averaging, target range detection, and digital beamforming.

The signal produced by an FMCW homodyne radar is a sum of sinusoids of different

frequencies, where each frequency corresponds to a target’s range. This signal is sampled Ns

times at a rate of Fs to bring it into the digital domain. The sampled data is transformed

from the time domain to the frequency domain via the FFT to get a range-compressed image

(RCI) for a single radar pulse. Each RCI is composed of the positive frequency bins of the

FFT, where the number of bins is Nbins = Ns/2 and each frequency bin is proportional to a

specific range bin. The sampling and FFT are performed on each of the Nr receiver channels.
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After the RCI’s are attained from each channel, they are correlated together in prepa-

ration for digital beamforming. If the signals from each receiver are combined as

vi = [v1[i], v2[i], . . . , vNr [i]]
>, (4.1)

where vk denotes the values of the RCI from each channel k = 1, 2, . . . , Nr, and i =

1, 2, . . . , Nbins denotes the ith range bin, then the correlation matrix for each range bin is

formed by

Ri = viv
H
i . (4.2)

To increase the signal-to-noise ratio (SNR) of the targets, Navg correlation matrices, from

consecutive radar pulses, are averaged to create the averaged correlation matrix Ri.

Using these averaged correlation matrices, target range detection is performed. Tar-

gets are detected by setting an amplitude threshold based on the noise statistics of the radar.

The detection system then discriminates between targets and non-targets based on whether

a particular return rises above the threshold or not. Research efforts specific this thesis have

resulted in the use of a thresholding scheme similar to the thresholding technique described

in Ref. [41]. In this thresholding method, the radar system sets a threshold based on an

estimate of the noise power in each range bin. To calculate this estimate, we must take

the following steps. First, we calculate the mean of the diagonal elements of the averaged

correlation matrix as

Pi =
1

Nr

∑
j≤Nr

Ri[j, j], (4.3)

where Pi represents the mean power from each of the Nr channels in the ith range bin.

An example of this mean power for each range bin across multiple time steps is shown in

Figure 4.4. For this particular example, the averaged correlation matrix Ri was only based

on a single correlation matrix, or equivalently Navg = 1.
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Figure 4.4: The mean power in each range bin over a discrete time window.
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Figure 4.5: Histogram of range bin 150 across 557 time samples.
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The data in Figure 4.4 was collected from the radar hardware directed at a sidewalk

with multiple pedestrians walking in two different directions. From this data, we can de-

termine the noise statistics for each range bin, and use them to create a threshold value to

detect targets. As an example of how this is to be done, we create a histogram of range bin

150 across all 557 time samples as seen in Figure 4.5.

The distribution found from this histogram is representative of the distribution that

will be found in each of the range bins in the data set, and which follows an exponential

distribution shown as

pi(Pi) = λie
−λiPi ,

where λi = 1/µi is the inverse of the noise power estimate in each range bin. Generally the

expected value of the noise power estimate is found by saving Nsave samples in a noise-only

environment and then averaging them as

µi = E[Pi] =
1

Nsave − 1

∑
j≤Nsave

Pi(j).

By using this noise power estimate to calculate the exponential parameter λi for each range

bin, we can write an expression for the probability of false alarm for each range bin as

P i
FA =

∫ ∞
Ti

λie
−λiPidPi

= e−λiTi ,

where the probability of false alarm is equivalent to the integral of the pdf above a specified

value. This value defines the starting point of the integral and is equivalent to the threshold

value we are trying to find. By choosing an appropriate value for the probability of false

alarm, this equation can be solved for the threshold as

Ti =
ln(1/P i

FA)

λi
. (4.4)

Using this thresholding equation on the mean power data shown in Figure 4.4, we create a

threshold for each range bin as seen by the orange line in Figure 4.6. For these threshold

109



values we have used a constant P i
FA = 0.01. In addition to the threshold line, we have also

randomly selected the first time step to provide an example of the mean power that would

be expected at each time step. By comparing this mean power to the threshold level, we see

that the mean power rises above the threshold in a few discrete range bins which signifies

that a target has been detected in these particular range bins.
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Figure 4.6: Threshold using a constant PFA = 0.01.

Using these same threshold values on the mean power at each time step, we get the

final thresholded data seen in Figure 4.7. From this figure we can see multiple diagonal

lines which are a result of measurement returns from each of the walking pedestrians. We

also see a significant amount of clutter measurements. These clutter measurements could be

decreased by either increasing the number of correlation matrices we average, decreasing the

probability of false alarm, or simply collecting measurements in a less noisy environment.

Although these improvements could be made to reduce clutter, we have nonetheless shown

that we have successfully created an appropriate thresholding scheme which works on real

radar data.
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Figure 4.7: Final thresholded radar data in each range bin over a discrete time window.

Finally, digital beamforming is used to obtain the azimuth and elevation angles to

each target. This utilizes R[r] for each range bin r where a target is detected. The result of

this process gives the return power as a function of range bin r, azimuth α, and elevation ε

as

S[r, α, ε] = wH(α, ε)R[r]w(α, ε), (4.5)

where w(α, ε) is the weight vector for multiple discrete bearing angles (α, ε), and has been

derived by Spencer in Ref. [42]. The bearing angle pair with the greatest returned power is

used as the estimate of the target’s azimuth and elevation angles.

4.2 Constant Acceleration R-RANSAC Tracker

As was mentioned in the desired tracker properties section of Chapter 3, to track

maneuvering aircraft, an expanded set of states based on a constant-acceleration model can

be used. This expanded set of states can either be implemented with a linear or nonlinear
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dynamic model. In that chapter, we stated that the nonlinear model is better suited for

predicting the states of the aircraft into the distant future because it appropriately models

the turning, climbing, and accelerating dynamics of the aircraft. To utilize the added benefits

of the nonlinear model, the collision detection and collision avoidance algorithms would both

need to account for the the future flight path trajectories resulting from maneuvering aircraft.

For the DAA system we are presenting in this chapter, the collision detection and collision

avoidance algorithms do not account for maneuvering aircraft, but instead assume future

trajectories that follow straight-line paths. As a result of this limitation, we must therefore

restrict our DAA tests to scenarios where the intruders are flying straight line paths.

Since the collision detection and collision avoidance algorithms implemented in this

DAA system do not account for maneuvering aircraft and the aircraft themselves are only

flying straight line paths, a nonlinear tracking algorithm is no longer needed and we have

chosen to utilize the original linear version of the R-RANSAC tracking algorithm. The states

used within R-RANSAC will still however be defined by the expanded set of states based on

a constant-acceleration model as

x = [pn, pe, h, ṗn, ṗe, ḣ, p̈n, p̈e, ḧ]>. (4.6)

Since we are also using a ground-based radar as opposed to an on-board air-based radar, the

nonlinear output equations for range, azimuth and elevation are slightly different and are

defined as

h(x) =


r(x)

α(x)

ε(x)

 ,=


√
n2 + e2 + d2

tan−1
(
e
n

)
sin−1

(
−d√

n2+e2+d2

)
 , (4.7)

where [n, e, d]> is the north-east-down location of each aircraft relative to the radar as

n = pn − nrd ,

e = pe − erd ,

d = −h− d
rd
,
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where [n
rd
, e
rd
, d

rd
]> is the north-east-down location of the ground-based radar station. Using

the states defined above, the linear state propagation equation is shown as

x̂k = Ax̂k−1 =



1 0 0 dt 0 0 0 0 0

0 1 0 0 dt 0 0 0 0

0 0 1 0 0 dt 0 0 0

0 0 0 1 0 0 dt 0 0

0 0 0 0 1 0 0 dt 0

0 0 0 0 0 1 0 0 dt

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1





pn

pe

h

ṗn

ṗe

ḣ

p̈n

p̈e

ḧ



. (4.8)

The linear implementation of R-RANSAC also requires a linear output equation modeled as

yk = Cxk (4.9)

As shown in Equation (4.7), the range, azimuth, and elevation measurements are nonlinear

in the states. To use the R-RANSAC algorithm, we must perform a nonlinear transformation

of the range, azimuth, and elevation into three pseudo measurements of north position, east

position, and altitude shown as

pn = r cos(α) cos(ε) + n
rd
, (4.10)

pe = r sin(α) cos(ε) + e
rd
, (4.11)

h = r sin(ε)− dradar. (4.12)

The C matrix in the linear output equation is therefore seen as

C =


1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

 . (4.13)
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One issue with these transformed measurements is that the noise characteristics can-

not be accurately transformed into the new coordinate frame. This is a problem because

the noise characteristics are used to decide if a new measurement is an inlier to an existing

model. The noise characteristics in the range, azimuth, and elevation frame can be described

as an inverted shallow bowl as illustrated in Figure 4.8. As the range to the target increases

the diameter of this bowl also increases because σα and σε remain constant. This means that

the noise in the north, east, and altitude directions grows with range, and the relative noise

among the three directions changes depending on the azimuth and elevation angles.

ε

northα

r

σε

σr

σα

east

Figure 4.8: Covariance of radar measurements.

The solution used to solve this problem is to convert the estimated states into range,

azimuth, and elevation using Equation (4.7), and then use τr, τα, and τε to determine if the

new measurements are inliers to the existing models. The specific inlier function needed is

the nonlinear R-RANSAC inlier function described in Chapter 3 shown by Equation (3.10).

If the measurements are inliers then they are converted into north position, east position,

and altitude pseudo measurements as described above, and then are used in the update step

of the Kalman filter. This has the advantage of maintaining the true noise characteristics

for inlier detection, while still being able to use linear state space equations for the Kalman

filter and other R-RANSAC equations.

Another modification is needed to make R-RANSAC work with a ground-based radar.

Since a ground-based radar will provide measurements for all aircraft in its field of view, mea-
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surements of the ownship will be sent to the R-RANSAC algorithm, a track will be created

for the ownship, and the ownship track will be identified as an intruder. If the ownship is

identified as an intruder, the path planner will create an avoidance path causing the ownship

to deviate from its path when such a maneuver is not necessary. The modification made

within R-RANSAC is to use the ownship’s known states, received from a data link between

the ownship and the radar ground control station, as a second set of measurements which

are used to update an additional ownship consensus set χo and inlier ratio, ρo. These addi-

tional metrics require that we store the jth R-RANSAC tracks as an increased eight-tuple

Mj = (x̂j, P j, χj, ρj, tj,Lj, χjo, ρjo). The extra ownship measurements are only used to up-

date the ownship consensus set and resulting ownship inlier ratio, and are not used in the

measurement update step of the Kalman filter in updating the state estimates. To deter-

mine if a given set of ownship measurements are an inlier to a given model we first convert

the ownship position states into range, azimuth, and elevation values using Equation (4.7),

and then use the same nonlinear R-RANSAC inlier function used with the true radar mea-

surements. If the current ownship measurement is indeed an inlier to a specific model, the

ownship consensus set and ownship inlier ratio are updated. If the ownship inlier ratio ρo

for any of the Mj models goes above the threshold τρ,o, then a flag is set identifying it as

the ownship. If any of the models are identified as the ownship, they are subsequently not

used within the collision detection or collision avoidance algorithms.

4.3 Collision Detection

Using the estimated states of the intruders found from the R-RANSAC algorithm,

we must now predict if future collisions are expected to occur using a collision-detection al-

gorithm. As was mentioned in Section 4.2, the collision-detection algorithm implemented in

this DAA system does not account for maneuvering aircraft, but instead assumes future tra-

jectories that follow straight-line paths. The primary development of this collision-detection

algorithm was done by Sahawneh [43], however, additional capabilities have been added as

a result of the research in this thesis.

The primary capability that has been added to this collision-detection algorithm

is the ability to account for future waypoints of the ownship flight path. In the original
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implementation, the ownship was assumed to fly in a straight line for an infinite duration of

time. If the ownship has more than two waypoints, however, the transitions between each set

of waypoints may cause the ownship to change its flight path direction, thus nullifying the

assumption. This added capability takes the collision-detection algorithm one step closer to

being able to detect collisions of maneuvering aircraft by considering the known maneuvers

of the ownship, however, it still does not account for the maneuvers of the intruder aircraft.

The other capabilities have to do with understanding the various collision encounter

scenarios which will lead to a collision. As a result of implementing the original collision-

detection algorithm, we have discovered that a few flight encounter scenarios were not con-

sidered in the original collision detection logic. As a result, the original collision detection

logic has been corrected to account for each of these scenarios. These additional capabilities

will now be explained followed by a description of the updated collision-detection algorithm.

The safety volume which is used to determine if a collision has occurred was previously

shown in Figure 2.2 of Chapter 2. This volume is in the form of a hockey puck with radius

Rs and height hs. By using this shape for the safety volume, the collision detection logic

must be separated into two parts for the horizontal and vertical components, respectively.

The basic idea of the collision-detection algorithm is to first find the times when the intruder

is within the horizontal and vertical safety boundaries. These times are then compared to

determine if the intruder is within the horizontal and vertical safety boundaries during the

same time period. If they are within both boundaries during the same time period, then we

conclude that a collision is expected to occur.

In addition to the intruder physically entering the safety volume at some future time,

one of two additional conditions must be met for the collision-detection algorithm to produce

a collision detection flag. For the first condition, the predicted collision must occur within

some time threshold τT . For the second condition, both the intruder’s horizontal and vertical

distance from the ownship must fall within some horizontal and vertical distance threshold

τp and τh, respectively.

In the original collision-detection algorithm, the time at which the intruder exits the

vertical boundary is compared to the time at which it enters the horizontal boundary. If the

vertical exit time is greater than the horizontal entry time, then a collision is identified. This
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is, however, only part of the logic necessary. In reality, all four entry and exit times for the

horizontal and vertical components must be compared to determine if a collision will occur.

A diagram showing each of these entry and exit times is found in Figures 4.9 and 4.10 for

the horizontal and vertical dimensions, respectively.

Figures 4.9 and 4.10 are meant to demonstrate the entry and exit times resulting from

every possible encounter scenario. Each of the scenarios shown were included in the original

collision-detection algorithm, except one. The encounter scenario that was not included in

the original collision-detection algorithm is seen in Figure 4.9 by the fourth intruder which

starts inside the horizontal safety boundary. This type of scenario could occur for example

if the intruder was descending on the ownship from above or ascending into the ownship

from below. This additional encounter scenario is therefore included in the updated collision

detection logic.

The added waypoint following capability, the correct entry and exit time logic, and the

additional encounter scenario logic are all added to an improved collision-detection algorithm

seen in Algorithms 3, 4, and 5. These algorithms are now described in detail. The inputs to

the collision-detection algorithm include the horizontal and vertical positions of the ownship

po = [pn,o, pe,o]
> and ho, respectively, the ownship ground speed Vg, the horizontal and

vertical positions of the intruder pi = [pn,i, pe,i]
> and hi, respectively, the horizontal and

vertical velocities of the intruder vi = [vn,i, ve,i]
> and vh,i, respectively, the number of future

waypoints N , the future waypoint pathW = {w1, . . . ,wN}, the horizontal distance threshold

τp, the vertical distance threshold τh, and the time to collision threshold τt.

To account for future waypoints of the ownship, the collision detection logic must be

performed for discrete time intervals in the future. These time intervals start with the time

at each waypoint node and end with the time at the waypoint node immediately following.

The collision-detection algorithm, therefore, iterates through each of the waypoint segments

(Line 2), where the start time has been initialized on Line 1. As will be shown later, this

start time will be updated at each successive waypoint node. Next we calculate the 3D

position vector from the current location of the ownship to the next waypoint as n (Line 3).
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Table 4.1: Algorithm for collision detection

Algorithm 3 Collision Detection Algorithm

Input: Ownship horizontal and vertical positions po = [pn,o, pe,o]
> and ho, respectively,

ownship ground speed Vg, intruder horizontal and vertical positions pi = [pn,i, pe,i]
>

and hi, respectively, intruder horizontal and vertical velocities vi = [vn,i, ve,i]
> and vh,i,

respectively, number of future waypoints N , future waypoint path W = {w1, . . . ,wN},
horizontal distance threshold τp, vertical distance threshold τh, and time to collision

threshold τt.

1: tstart ← 0

2: for i← 1, i++, while i ≤ N do

3: n← wi − [p>o , ho]
>

4: tn ← ‖n‖
Vg

5: vo = Vo(1, 2), vh,o = Vo(3), where Vo = Vg
n
‖n‖

6: pr ← pi − po
7: vr ← vi − vo
8: [tpent, t

p
ext]
> ← EntExtPosition(pr,vr, Rs)

9: hr ← hi − ho
10: vh,r ← vh,i − vh,o
11: [thent, t

h
ext]
> ← EntExtAltitude(hr, vh,r, hs)

12: tent ← max tpent, t
h
ent

13: text ← min tpext, t
h
ext

14: if i=1 then

15: ‖p‖r,0 ← ‖p‖r
16: hr,0 ← hr

17: end if

18: tcol = tstart + tent
19: if tent ≤ text and tent ≤ tn and ((‖p‖r,0 ≤ τp and hr,0 ≤ τh) or tcol ≤ τT ) then

20: C(i)← 1

21: else

22: C(i)← 0

23: end if

24: tstart ← tstart + tn
25: pi ← pi + tnvi
26: hi ← hi + tnvh,i
27: po ← wi(1, 2)

28: ho ← wi(3)

29: end for

30: col ← ∑
i≤N

Ci > 0
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Using this 3D position vector and the ground speed of the ownship, we calculate the time

to the next waypoint node tn (Line 4). Also using the 3D position vector and the ground

speed of the ownship, we calculate the 3D velocity vector of the ownship at the current

waypoint node Vo. The first two elements of this velocity vector is the horizontal velocity

vector of the ownship vo, and the third element is the vertical velocity of the ownship vh,o

(Line 5). Next we calculate the relative horizontal position and velocity vectors between

the intruder and the ownship as, pr and vr, respectively. (Lines 6-7). Using these relative

horizontal position and velocity vectors and the horizontal safety radius, we then run the

EntExtPosition() function, shown in Algorithm 4, which will be described later, to find the

horizontal entrance and exit times as, tpent and tpext, respectively (Line 8). Next we calculate

the relative vertical position and vertical velocity between the intruder and the ownship as,

hr and vh,r, respectively (Lines 9-10). Using these relative vertical position and velocity

values and the vertical safety height, we then run the EntExtAltitude() function, shown in

Algorithm 5, which will be described later, to find the vertical entrance and exit times as,

thent and thext, respectively (Line 11). Next we find the union of the horizontal and vertical

time intervals to define when the intruder is within both the horizontal and vertical safety

boundaries simultaneously. The entrance time of the union is calculated as the maximum of

the entrance times from the horizontal and vertical dimensions tent (Line 12). The exit time

for this union is calculated as the minimum of the exit times from the horizontal and vertical

dimensions text (Line 13). Next we save the relative horizontal and vertical distances between

the two aircraft from their initial locations as ‖p‖r,0 and hr,0, respectively (Lines 14-17), and

then use the updated entry time tent to calculate the time to collision as measured relative

to the time when the algorithm was first initiated tcol (Line 18).

We are now set up to perform the primary logic used to determine if a collision is

expected to occur during the current waypoint segment (Line 19). This logic includes three

conditions that must all be true. The first condition compares the entrance and exit times

resulting from the union of the horizontal and vertical entrance and exit times. For the

intruder to be within the horizontal and vertical safety boundaries at the same time, then

the entrance time must be less than or equal to the exit time. The second condition compares

the entrance time to the time to the next waypoint node. For a collision to occur during
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this waypoint segment, the entrance time must be less than or equal to the time to the next

node. The final condition was explained previously and has to do with the horizontal and

vertical distance thresholds and time threshold. For the horizontal and vertical distance

threshold comparison, we are using the distances from the initial location of the ownship

and intruder, which will not change between iterations of the main for loop. For the time

threshold comparison, we are using the time to collision as measured relative to the time

when the algorithm was first initiated. If each of the three conditions mentioned have been

satisfied, then a collision flag for the current waypoint segment C(i) is set to one (Line 20). If

one of these three conditions is not satisfied, then the collision flag for the current waypoint

segment is set to zero. The last step within the for loop is to update the start time and

position variables (Lines 24-28). The start time is updated by adding the previous start time

with the time to the next node (Line 24). The intruder’s horizontal and vertical starting

position and altitude at the time of the next waypoint is updated according to a constant

velocity model (Lines 25-26). The ownship’s horizontal and vertical starting position and

altitude at the time of the next waypoint is updated by simply using the location of the next

waypoint node (Lines 27-28). The final step of the collision-detection algorithm is to sum

the elements of the collision flag vector (Line 30). If this sum is greater than zero, then a

collision was detected on at least one of the waypoint line segments followed by the ownship

and we conclude that a collision is expected to occur.

Next we describe the EntExtPosition() function shown in Algorithm 4. The purpose

of this algorithm is to calculate times at which the intruder enters and exits the horizontal

safety radius around the ownship. The equations used within this algorithm were developed

by Sahawneh [43], however, we have combined the necessary logic into a single algorithm.

For the description of this algorithm we will provide specific examples from Figure 4.9. The

inputs to this algorithm are the relative horizontal position and velocity vectors along with

the safety radius. First we check if the distance between the two aircraft is greater than the

safety radius (Line 1). This condition can be seen in Figure 4.9 by intruders 1, 2, and 3,

which are outside the safety radius. Next we check if the two aircraft are converging (Line

2). This is seen by intruders 1 and 2 at the top of the figure. Next we calculate the time to

closest point of approach tcpa and the resulting distance at the closest point of approach dcpa
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(Lines 3-4). Next we check if the distance at the closest point of approach is greater than

the safety radius (Line 5). This is seen by intruder 1. If each of these conditions have been

met, the intruder is not expected to penetrate the horizontal safety radius and the entrance

and exit times are therefore set to infinity (Line 6). If the distance at the closest point of

approach is less than the safety radius, then the intruder will penetrate the horizontal

Table 4.2: Algorithm to find the entrance and exit times horizontally.

Algorithm 4 EntExtPosition Algorithm

Input: Relative position pr, relative velocity vr, horizontal safety radius Rs.

1: if ‖pr‖ > Rs then

2: if p>r vr < 0 then

3: tcpa ← −p>r vr
‖vr‖2

4: dcpa ←
√
‖pr‖2 + tcpap>r vr

5: if dcpa > Rs then

6: tpent, t
p
ext ←∞

7: else

8: tpent ← −p>r vr−
√

∆

‖vr‖2
, tpext ← −p>r vr+

√
∆

‖vr‖2
, where ∆← (p>r vr)

2−‖vr‖2 (‖pr‖2−R2
s)

9: end if

10: else

11: tpent, t
p
ext ←∞

12: end if

13: else

14: tpent ← 0

15: if ‖vr‖ = 0 then

16: tpext ←∞
17: else

18: tpext ← −p>r vr+
√

∆

‖vr‖2
, where ∆← (p>r vr)

2 − ‖vr‖2 (‖pr‖2 −R2
s)

19: end if

20: end if

21: return [tpent, t
p
ext]
>
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safety radius and the entrance and exit times are calculated according equations developed

in Ref. [43] (Lines 7-8). This is seen by intruder 2. If the intruder is outside the safety radius

and not converging, then a collision is not expected to occur and the entrance and exit times

are set to infinity (Lines 10-11). This is seen by intruder 3. Now we consider the case where

the intruder starts within the horizontal safety radius (Line 13). This is seen by intruder

4. This was the scenario that was not taken into account in the original collision-detection

algorithm. Since these intruders are already inside the horizontal safety radius, the entrance

time is set to zero (Line 14). If the relative horizontal velocity between the two aircraft

is zero, then the intruder will never leave the horizontal safety radius and the exit time is

set to infinity (Lines 15-16). If on the other hand the relative velocity is not equal to zero,

then the intruder will exit the horizontal safety radius at some instant in time according the

equations developed in Ref. [43] (Lines 17-18). Having considered all possible cases for the

horizontal entrance and exit times, we return these values to the main collision-detection

algorithm.

vr

vr

vr

vr

pr

pr

pr

pr

t
p
ent

t
p
ext

t
p
ent = 0

t
p
ext

t
p
ent, t

p
ext = ∞

t
p
ent, t

p
ext = ∞

1

2

3

4

Figure 4.9: Horizontal encounter scenarios.
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Finally we describe the EntExtAltitude() function shown in Algorithm 5. The purpose

of this algorithm is to calculate times at which the intruder enters and exits the vertical safety

height above and below the ownship. For the description of this algorithm we will provide

specific examples from Figure 4.10. The inputs to this algorithm are the relative altitude

and altitude velocity values along with the safety height. First we check if the magnitude

of the altitude difference between the two aircraft is greater than the safety height (Line 1).

This condition is seen by intruders 1, 2, 3, 4, 5, and 6. Next we check if the two aircraft are

converging (Line 2). This is seen by intruders 3 and 4. Then we check if the intruder is above

the ownship (Line 3). This is seen by intruder 3. If each of these conditions have been met,

the intruder is expected to penetrate the vertical safety height from above. The entrance

time is then found from the time it takes to hit the top of the safety volume (Line 4). The

exit time is found form the time it takes to hit the bottom of the safety volume (Line 5).

Alternatively the intruder may start below the ownship (Line 6). This is seen by intruder 4.

In this case the intruder will penetrate the vertical safety height from below. The entrance

time is therefore found from the time it takes to hit the bottom of the safety volume (Line

7). The exit time is now found from the time it takes to hit the top of the safety volume

(Line 8). If the intruder is outside the vertical safety volume and is not converging to the

ownship, then the intruder is not expected to penetrate the vertical safety volume and the

entrance and exit times are set to infinity (Lines 10-11). This is seen by intruders 1, 2, 5, and

6. Now we consider the case where the intruder starts within the vertical safety height (Line

13). This is seen by intruders 7, 8, 9, 10, 11, and 12. Since these intruders are already inside

the vertical safety height, the entrance time is set to zero (Line 14). If the relative vertical

velocity between the two aircraft is zero, then the intruder will never leave the vertical safety

height and the exit time is set to infinity (Lines 15-16). This is seen by intruders 8 and 11.

If on the other hand the relative velocity is not equal to zero, then the intruder will exit the

vertical safety height at some future point in time (Line 17). This is seen by intruders 7, 9,

10, and 12. If the intruder is traveling in a downwards direction, then the exit time is set

equal to the time it takes to hit the bottom of the safety volume (Lines 18-19). This is seen

by intruders 9 and 12. If the intruder is traveling in an upwards direction, then the exit time

is set equal to the time it takes to hit the top of the safety volume (Lines 20-21). Having
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considered all possible cases for the vertical entrance and exit times, we return these values

to the main collision-detection algorithm.

Table 4.3: Algorithm to find the entrance and exit times vertically.

Algorithm 5 EntExtAltitude Algorithm

Input: Relative altitude hr, relative altitude velocity vh,r, altitude safety height hs.

1: if |hr| > hs
2

then

2: if hrvh,r < 0 then

3: if hr > 0 then

4: thent ← ttop ← hr−hs/2
vh,r

5: thext ← tbottom ← hr+hs/2
vh,r

6: else

7: thent ← tbottom ← hr+hs/2
vh,r

8: thext ← ttop ← hr−hs/2
vh,r

9: end if

10: else

11: thent, t
h
ext ←∞

12: end if

13: else

14: thent ← 0

15: if vh,r = 0 then

16: thext ←∞
17: else

18: if hr > 0 exclusive or vh,r > 0 then

19: thext ← tbottom ← hr+hs/2
vh,r

20: else

21: thext ← ttop ← hr−hs/2
vh,r

22: end if

23: end if

24: end if

25: return [thent, t
h
ext]
>
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Figure 4.10: Vertical encounter scenarios.

4.4 A*/Chain-based Collision Avoidance

If a collision has been detected by the collision detection algorithm, the collision

avoidance algorithm must be executed to create a collision free waypoint path. The primary

development done for this algorithm was also performed by Sahawneh [43]. Although, the

general concept for this algorithm was developed by Sahawneh, specific implementation

details were also developed as a result of the research in this thesis.

One of the primary contributions was the integration of the each of the pieces of the

DAA algorithm. Specifically this required the development of a waypoint control function.

This function includes both the collision detection and collision avoidance algorithms, and is

responsible for determining when new waypoint paths should be generated and for sending

the new waypoints out for the ownship to start executing. To determine if the collision

avoidance algorithm should be run, this waypoint control function requires that the collision

detection function detect a collision for a predetermined consecutive number of times Ncol.

Once the collision detection function has been run and the ownship begins executing the

current avoidance path, the intruders may deviate from their initial flight paths or the

estimate of the intruders paths might change. In either case, the intruders may now be
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moving in a direction that will once again result in a collision with the current waypoint

flight path of the ownship, which will trigger a second execution of the collision detection

algorithm. The waypoint control function must, therefore, also take on the responsibility of

managing multiple collision avoidance paths that may be created throughout the duration of

the collision avoidance maneuver. This is done by locking all collision avoidance waypoints

that the ownship has already visited, discarding each of the remaining collision avoidance

waypoints, and recalculating a new set of waypoints using the collision avoidance algorithm

from the current location of the ownship to its next original waypoint.

The specific collision avoidance algorithm used in this DAA system is a two-step

algorithm that first uses the A* algorithm to initialize a set of waypoints based on fixed nodes

within the operation volume of the GBR [44], and second updates these waypoints based on a

chain-based algorithm that uses the physical analogy of a chain placed in a force field [45,46].

The specific details of these algorithms will not be given in this thesis, however, we will

describe a few of the contributions resulting from this thesis. Through the integration of this

two-step algorithm within the larger complete DAA system, we found it desirable to append

certain functionality within each of these algorithms to enable more robust collision avoidance

planning. The details of these appendages are given in the remaining two paragraphs of this

section.

In the development of the A* algorithm various costs are assigned to each of the

possible nodes that the ownship could move towards. The general equation for the cost at a

particular node wb is shown as

g(wb) = g(wa) + cd(ia, ib) + ct(wb,p
j
int) + cn(wb) + ccpa(pr,vr, hr, vh,r) + cV(Vo,Vi) (4.14)

where wa is the previous node, and ci represents various costs. The cost cd is the distance

cost which is calculated based on the distance to the next waypoint and then continuing on

to the final waypoint. Longer distances have a higher cost. The ct cost is the threat cost

which is calculated based on the locations of the two aircraft at the future node. The cost

cn is a nominal path cost which is calculated based on the deviation of the node from the

original waypoint path of the ownship. The addition of the remaining two costs has resulted
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from research efforts shown in this thesis. The ccpa cost is the closest point of approach cost.

This cost uses the same closest point of approach equations shown in the collision detection

algorithm. If the distance at the closest point of approach multiplied by the time to the

closest point of approach is small, a greater penalty is applied as seen by the equation

ccpa =
kcpa

dcpatcpa
, (4.15)

where kcpa is a tunable cost parameter. The reason for including dcpa in the denominator

is because if a small distance at the closest point of approach is expected to occur, then a

high cost should be applied to this path. The reason for including tcpa in the denominator is

primarily to offset the effects of a small dcpa in certain situations. Specifically, if a small dcpa

is not expected to occur for an extended period of time, then we should temporarily reduce

this cost allowing the ownship greater versatility in its flight path to overcome other threats

in the immediate future. The cv cost is a cost that rewards a node that causes the ownship

to travel in a direction opposite the direction the intruder is traveling. The idea behind

this cost is to try and select nodes which are behind the intruder. This cost is expressed

mathematically as

cV =
kVVo ·Vi

tcpa
, (4.16)

where kv is another tunable cost parameter. If the ownship and intruder velocity vectors

are in the same direction then the dot product will be a large positive number, if they are

in opposite directions then the dot product will be a large negative number. The reason for

including tcpa in the denominator has similar reasonings as described above for the closest

point of approach cost.

In the development of the chain-based algorithm various forces are applied to each

of the nodes that cause the chain to settle on a more appropriate set of waypoints. One of

the forces developed for this chain resulted from research efforts shown in this thesis. The

force that we have added is a force that pushes the node behind the intruder if it is within

a certain distance of the intruder as

Fb =
kb
‖pr‖

(−Vi), (4.17)
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where kb is a tunable parameter. In this equation we divide by the norm of the relative

position vector. This results in large forces being applied that drive the ownship path away

from the intruder as the relative position becomes small. The direction that this force is

applied is opposite the direction of the intruder velocity vector. The benefit of this force is

that it does not allow the ownship path to be pushed directly in front of an intruder which

would certainly lead to a collision.

4.5 Simulation Results

To demonstrate the performance of the proposed ground-based radar sensor model,

the R-RANSAC estimation scheme, and the collision detection and avoidance algorithms,

we developed a simulation environment with a six-degree-of-freedom aircraft model for both

the ownship and the intruders as described in Appendix C. The encounter geometry is con-

structed using typical collision encounters that include multiple intruders flying at different

altitudes, approaching head-on, converging, and overtaking scenarios.

In the first encounter scenario the ownship starts at (−400, 0,−200)> in the NED

coordinate system, with an initial heading of 0 degrees measured from north and follows a

straight line path at a constant speed of 13 m/s to reach a waypoint located at (500, 0,−200)>

as shown in Figure 4.11. The radar system is located at (0, 0, 0)> and uses a simulated

transmit power of 5 kW. The radar is simulated with a center frequency of 10.25 GHz, with

a 500 MHz bandwidth and a 2 ms chirp time. We also simulate sampling 4096 times at a

sampling frequency of 2.048 MHz. The receiver antennas are simulated as a four-by-four

array for a total of 16 receiver channels. We also averaged 20 correlation matrices and used

a probability of false alarm of 0.1. In the following simulations, our choice of the collision

volume is a cylinder of radius, ds=153 m (500 ft) and height, hs =61 m (200 ft) centered on

each of the intruders. All aircraft use a simulated radar cross section of 0.1 m2.

In each encounter scenario, the intruders are following a straight-line path at a con-

stant velocity and altitude. Figure 4.11 shows the first encounter scenario. It consists of

two intruders: one is approaching head on and the other is converging from the right. The

speed of the intruders are 17 m/s and 15 m/s, respectively. The altitude of both intruders

is 200 m. If no collision avoidance is planned, the dcpa with respect to the first and second
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intruders is approximately 67.5 m and 66.5 m. Since all aircraft are flying at same altitude

and the dcpa is less than the horizontal safety distance ds, then these encounters will lead to

a collision. Figures 4.12, 4.13(a) and 4.13(b) shows the intruder paths and the avoidance

path planned by the ownship.
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Figure 4.11: Encounter scenario number 1.
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Figure 4.12: The avoidance path of the ownship.
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Figure 4.13: Avoidance path followed by the ownship in encounter scenario number 1.

Table 4.4: Collision avoidance parameters.

A* Chain

Parameter Value Parameter Value

kdist 100 k 2.5

kalt 559 ksh, ksv 200

kmax 1e6 κ 2.5

% 2.3 b 4

kr 500 θmax 45 deg

λ 20

γmax 30 deg

fmax 20

δ1 2.3

δ2 2.639
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The parameters used for collision detection in the simulation were dth= 800 meters

and τ
th

= 25 seconds. For the collision avoidance path planning algorithms a grid size of 100

meters horizontally and 50 meters vertically were used. The parameters used for collision

avoidance are shown in Table 4.4.

Figure 4.14 shows the range, azimuth and elevation to all aircraft measured by the

radar system. These figures predict that the principal signal decay happens at low elevation

angles as the aircraft enter and exit the antenna beam. Despite the noise in the elevation

angle data, range and azimuth measurements maintain a high degree of accuracy until the

aircraft exits the radar sensing volume at about 600 m. The aircraft with radar measurements

in the NED inertial frame are shown in Figure 4.15. Figure 4.15(a) shows that the north

and east coordinates constructed from radar measurements have a high degree of accuracy,

whereas Figure 4.15(b) shows that the altitude has a lower degree of accuracy because of

noisy elevation measurements.
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Figure 4.14: Radar measurements: range, azimuth and elevation.
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Figure 4.15: Aircraft’s paths with radar measurements in encounter scenario number 1.

The state estimates of position and velocity are shown in Figures 4.16 and 4.17

respectively. In this simulation we chose a sample rate of 0.1 seconds and R-RANSAC

parameters shown in Table 4.5. The dynamic model used for the three aircraft in R-RANSAC

is a constant-acceleration model of the north position, east position, and altitude of the

aircraft. From Figures 4.16 and 4.17, we see that this dynamic model worked well within R-

RANSAC to successfully track all aircraft for which measurements are received. Additionally

from these figures we see that the modifications made to R-RANSAC were successfully able

to distinguish the ownship track from the intruder tracks. Furthermore, we see that R-

RANSAC takes about 5 seconds to initiate good tracks. This is due to the initial noisy

radar elevation measurements, the sample rate at which R-RANSAC is running, and the

underlying R-RANSAC design parameters. Both intruder tracks die slightly after we stop

receiving radar measurements, due to the aircraft being outside the visible field of view of

the radar; however, the ownship’s track never dies. We also see that the estimates become

more noisy at about 55 seconds due to the noisy elevation measurements that start occurring

as the aircraft leave the field of view of the radar.
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Table 4.5: R-RANSAC parameters.

Parameter Value Parameter Value Parameter Value

M 10 Q 10e-7(10,10,1,10,10,1,10,10,1) τρ 0.6

N 50 R 10e-3(1,1,1) τT 40

τR 2.5(σr, σα, ε) τxi (10,10,10,3,3,3,1,1,1) τCMD 15

` 100 τ own
xi

(20,20,20,10,10,10) τ own
ρ 0.2
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Figure 4.16: R-RANSAC tracks: position estimates of aircraft.
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Figure 4.17: R-RANSAC tracks: velocity estimates of aircraft.
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Figure 4.18: Relative range and altitude to intruders.
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Figure 4.18 shows the results of the relative range and altitude to both intruders. The

relative range to the first intruder falls below ds between about 28 and 33 seconds, however,

the relative altitude remains above hs/2 during that same interval. For the second intruder

the relative range is below ds from about 30 to 40 seconds, and the relative altitude also

remains above hs/2 during that time interval. The relative altitude is below hs/2 during the

first 24 seconds and after about 59 seconds, however the relative range is above ds during

those same intervals. Based on these observations no collisions occurred between the ownship

and two intruders.

In the second encounter geometry, the ownship initially starts at (−300, 0,−200)>

in NED coordinates system, with an initial heading of 0 degrees measured from north and

follows a straight-line path at constant speed of 13 m/s to reach a waypoint located at

(500, 0,−200)> as shown in Figure 4.19. This encounter scenario consists of four intruders

flying at speed of 16 m/s, 14 m/s, 13 m/s and 17 m/s, respectively. The intruders are flying

at constant altitude of 250 m, 150 m, 215 m, and 200 m as shown in Figures 4.19.
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Figure 4.19: Encounter scenario number 2.

The dcpa with respect to the four intruders are approximately 79.9 m, 240.3 m, 0 m

and 40 m. Based on these paths, there will be a collision with the third and fourth intruders.

The ownship, however, should plan an avoidance maneuver that does not lead to a collision

with intruders that were not on a collision course initially. Figures 4.20, 4.21(a) and 4.21(b)

show the intruders paths and the avoidance path planned by the ownship.
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Figure 4.20: The avoidance path of the ownship.
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Figure 4.21: Avoidance path followed by the ownship in encounter scenario number 2.

Figures 4.22 and 4.23 demonstrate similar results as Figures 4.14 and 4.15. The

addition of more intruders does not significantly degrade the radar’s ability to detect multiple

targets. Figure 4.23(a) demonstrates that the aircraft remain well resolved, even when in

close proximity.

136



0

200

400

600

ra
ng

e 
(m

)

radar measurements intruder truth ownship truth

-100
0

100

az
im

ut
h 

(d
eg

)

0 10 20 30 40 50 60 70
time (s)

0

25

50

75

el
ev

at
io

n 
(d

eg
)

Figure 4.22: Radar measurements: range, azimuth and elevation.
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Figure 4.23: Aircraft’s paths constructed using radar measurements in encounter scenario

number 2.
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Figures 4.24 and 4.25 show similar results to those in the first scenario, and that

R-RANSAC algorithm is able to track multiple intruders. From these figures we also see

that one of the intruder tracks is lost at about 45 seconds, but that it is picked up again at

about 50 seconds. This is due to missed radar measurements during that same time interval.
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Figure 4.24: R-RANSAC tracks: position estimates of aircraft.

Figure 4.26 shows the results of the relative range and altitude to all intruders. These

results show that the avoidance path safely maneuvers the ownship without any collisions

with the intruders. In Figure 4.26, the avoidance planner ensures that when the relative

horizontal range is less than ds, the relative altitude is greater than hs/2. For example, the

relative range to the third intruder over time interval [41, 55] s is below ds, however, over

the same time interval the relative altitude is above hs/2.
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Figure 4.25: R-RANSAC tracks: velocity estimates of aircraft.
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Another important aspect to evaluate the performance of the proposed algorithm is

its ability to reduce the length of the avoidance path while avoiding the intruders. This is

important because it reduces the amount of deviation from the original path, and ultimately

the flight time, which is of critical importance for the small UAS with limited power resources.

Table 4.6 shows that the length of the avoidance paths is fairly acceptable compared to the

initial path length.

Table 4.6: Length of the avoidance path.

Scenario Initial path Avoidance

number length (m) path length (m)

1 900 1383.8

2 800 1296.9

We have also recorded the average and maximum time required to execute the radar

measurements processing logic in Table 4.7. In practice these radar processing steps will be

run within the FPGA of a the radar processing board, and will not be consuming valuable

processing power on the processor which runs the DAA algorithms.

Table 4.7: Radar FPGA run time.

Scenario 1 2

Algorithm Average time (s) Max. time (s) Average time (s) Max. time (s)

Radar Processing 0.2273 0.2978 0.3393 0.4346

The run times of the DAA algorithms are also given in Tables 4.8 and 4.9. Table 4.8

shows the average and maximum times for each of the algorithms separately. Table 4.9

shows the average and maximum run times for combinations of the individual algorithms to

represent the total DAA time at each time step.
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Table 4.8: Run times for detect and avoid algorithms.

Scenario 1 2

Algorithm Average time (s) Max. time (s) Average time (s) Max. time (s)

R-RANSAC 0.2384 0.3459 0.3533 0.4441

Collision detection 0.00015 0.00593 0.00211 0.03259

A* 0.1260 0.1260 0.2259 0.2259

Chain 0.0429 0.1603 0.0605 0.1541

Table 4.9: Run times for combined detect and avoid algorithms.

Scenario 1

Algorithm Average time (s) Max. time (s) N

RR 0.2509 0.3459 39

RR & CD 0.2371 0.2784 523

RR, CD, A* & Chain 0.5643 0.5643 1

RR, CD & Chain 0.2886 0.4384 37

Total 0.2414 0.5643 600

2

RR 0.3642 0.4197 76

RR & CD 0.3515 0.4454 475

RR, CD, A* & Chain 0.7677 0.7677 1

RR, CD & Chain 0.4373 0.5418 48

Total 0.3603 0.7677 600

At certain time steps, not every DAA algorithm is executed. At each time step,

however, there are four DAA algorithm combinations that will always execute and are shown
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by the first four rows in the top and bottom sections of Table 4.9. The last column of this

table shows how many times each of these algorithm combinations were executing during

the simulation. The average run time for a time step in scenario 1 is 0.2414 seconds, which

is about two and a half times longer than real time. The average run time for a time step

in scenario 2 is 0.3603 seconds which is about three and a half times longer than real time.

These algorithms were run in Matlab 2015b on an Intel core i7-4770 processor. Using the

total maximum time from scenario 2, we see that the combined DAA algorithm run time

stays within 0.7677 seconds, however, the current implementation is coded in Matlab and

was not optimized for run time. Significant speed increases could be achieved by optimizing

the code and by porting it to C++.
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CHAPTER 5. DAA FLIGHT RESULTS USING RADAR HARDWARE

We now demonstrate the successful implementation of a complete DAA system with

real radar hardware in a ground-based setup. As a step in developing a 3D radar sensor

that provides measurements of range, azimuth, and elevation, a 2D line array radar system

capable of measuring range and azimuth has been developed. Since this radar only provides

a single angular measurement of azimuth and not elevation, the altitude of the aircraft is

unobservable; therefore, we require that all aircraft fly at a common known altitude. This

requires that we modify the DAA algorithms slightly to work at a constant altitude.

The remainder of this section is organized as follows: In Section 5.1 we describe the

ground control station that was used in the flight tests. In Section 5.2 we provide more

details of the radar hardware and the associated digital signal processing. In Section 5.3 we

describe modifications that had to be made to the DAA algorithms as a result of performing

the test at a constant altitude. Finally, in Section 5.4 we describe the details of the complete

test setup and provide the results of the flight experiment.

5.1 Ground-based Control Station

In a ground-based radar setup, the radar is not physically attached to the ownship

aircraft, but is instead located at a ground-based control station. For the ownship to utilize

the information gained from the ground-based radar sensor, there must be some sort of

wireless transmission of data between the ownship and this ground-based control station.

Our particular ground-based control station uses the MAVLink message protocol for this

wireless communication over a 3D Robotics (3DR) radio antenna. The transmission and

reception of these MAVLink messages is controlled by a Matlab/Simulink model that is

located on a laptop control station. This Matlab/Simulink model is also responsible for

interfacing with the radar hardware and for running the DAA algorithms including target
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detection and tracking, collision detection, and collision avoidance path planning. Each of

these components within the Matlab/Simulink model have been organized into four main

blocks in an interconnected block diagram as seen in Figure 5.1.

Figure 5.1: Implementation of ground-based radar control station with hardware.

The first Simulink block, located on the left side of the laptop in Figure 5.1, is

the block responsible for interfacing with the radar hardware. For this block to receive

radar measurements, the radar is first physically connected to the laptop using a wired

connection. The information from this wired connection is then read into Simulink using

a UDP receive block. The data that is received from the radar hardware includes a large

packet of information that is grouped into 32-bit single-precision floating-point words. The

first word provides an integer quantity that represents the number of range and azimuth

measurement pairs in this current time step. The next two words include the first range

measurement and the first azimuth angle measurement. Each of the remaining range and

azimuth measurement pairs are then sent within successive two-word packets.
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The second Simulink block is the target tracking block which runs a linear version of

R-RANSAC. The primary input to this block are the radar measurements that come from

the previous UDP block. The R-RANSAC algorithm is able to find targets out of the radar

measurements and provide estimated state information for each of these aircraft. In addition

to the radar measurements being input in this tracking block, we see that a feedback line that

carries the ownship state information is also sent into the tracking block. This information

is necessary for the modified R-RANSAC algorithm to identify which tracks belong to the

ownship aircraft.

The third Simulink block is the collision detection/collision avoidance block. This

block receives inputs from the R-RANSAC target tracks from the previous block and the

feedback ownship state information. Inside this block we run the waypoint manager function

in addition to the collision detection and collision avoidance algorithms. The output of this

block is a comprised of four main components. The first component is a flag that indicates if

a new set of waypoints needs to be sent to the ownship. The second component is an integer

specifying the total number of waypoints being sent. The third component is composed of

the waypoints themselves. The fourth component is an integer specifying the index of the

current waypoint the ownship should be flying towards.

The fourth Simulink block is the the block responsible for the transmission and re-

ception of MAVLink messages between the laptop control station and the Pixhawk autopilot

located on the ownship aircraft. Specifically the laptop needs to transmit new collision avoid-

ance waypoints to the autopilot, and needs to receive the state information of the ownship

from the autopilot. Within this block two sub functions are used. The first function is a

waypoint message formatter that gathers all the necessary information needed for a way-

point message to be sent according to the MAVLink waypoint message protocol. The second

function is the MATLink S-function block used within Simulink. This function is written

and compiled in C++. The primary purpose of this function is to provide a means of in-

terfacing the MAVLink messages that must be sent and received across the 3DR radio with

the Matlab/Simulink environment, hence the name MATLink. This MATLink function is a

critical piece of the ground-based radar DAA solution because it allows us to utilize the DAA

algorithms we have written in Matlab scripts with actual aircraft hardware. This MATLink
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function was originally developed by Gary Ellingson, however we have added the capability

of sending waypoint messages. In our particular setup we use the MATLink function to send

waypoint messages in the correct timing sequence, and to receive the state information of the

ownship aircraft that is needed for the tracking and collision detection/collision avoidance

algorithms. To send waypoint messages in the correct timing sequence, a couple of consid-

erations must be made. MAVLink messages are sent using a serial communications link. As

such each waypoint is sent sequentially, one after another. The transmission of a complete set

of waypoints to a Pixhawk autopilot using MAVLink messages requires a fair bit of overhead

and logic. After each waypoint has been been sent to the autopilot, the autopilot then sends

back an acknowledge (ACK) message that indicates the autopilot has received the current

waypoint. If the autopilot does not send back an ACK message, the ground control station

attempts to resend the current waypoint until the ACK message from the Pixhawk autopilot

is finally received. The MATLink function must also keep track of how many waypoints

have been sent. Once the final waypoint has been sent, and an ACK message from the au-

topilot has been received the MATLink function sets an internal flag indicating that all the

waypoints have been sent. This flag is used within the MATLink function to ensure all of

the waypoints have been completely sent before attempting to send a new set of waypoints.

In addition to sending MAVLink messages, we also use the MATLink function to receive

MAVLink messages from the autopilot. Specifically we receive messages that include the

states of the ownship aircraft and the current waypoint indicator. This waypoint indicator

is an integer that specifies the index of the waypoint that the ownship is currently flying

towards, and is used within the collision detection/collision avoidance algorithms.

5.2 10 GHz FMCW Radar and BOARAC Processing Board

The radar hardware that is used in this GBR DAA test was developed by Dr. Karl

Warnick and three of his masters students: Jonathan Spencer, Kaleo Roberts, and Michael

Boren. Much of the radar processing was also performed by Dr. Doran Wilde and one of

his masters students Luke Newmeyer. This radar system is shown in Figure 5.2, and the

key design parameters are listed in Table 5.1. Although the test results are given for the

ground-based setup, the design parameters were driven primarily for its use as an on-board
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sensor for small UAS. The main design constraints were to minimize SWaP and to provide

a reasonably large field of view of approximately 120 degrees horizontally and 30 degrees

vertically.

Table 5.1: Radar Sensor Parameters

Parameter Value
Weight 120 g (0.26 lbs)
Consumed power 12 W
Center frequency 10.25 GHz
Sweep duration (Tc) 2.048 ms
System noise figure (F) 6 dB
Antenna gain 12 dB
Array steerable range 120 deg
Peak channel coupling approx. -20 dB
Size 2.25 in x 4 in x 1 in
Transmitted power (P rad) 250 mW
Radio frequency bandwidth 500 MHz
Intermediate frequency bandwidth 1 MHz
Antenna elevation beamwidth 18 deg
Antenna azimuth beamwidth 80 deg
Number of receive elements 4
Synthesized azimuth beamwidth 25 deg

This system uses a single transmitting antenna and a four-channel phased-array re-

ceiver that scans in the azimuth angle, shown in Figure 5.2(a). The beamwidth of the

synthesized beam varies from approximately 25 degrees when steered at boresight to 32

degrees when steered near the edge of the field of view. Since these beamwidths are still

quite wide, if two aircraft are within 10 to 15 degrees of each other in the same range bin,

the system will be unable to resolve them. Since the range bins are quite narrow, this is a

somewhat rare occurrence. Even so, the R-RANSAC tracking algorithm is designed to take

into account unresolved measurements of multiple targets.

Since this radar only provides an angular measurement in one direction, we must

orient this radar slightly differently than the 3D radar used in the simulation in Chapter 4.

The primary states we are interested in estimating are the horizontal north position and

east position of each aircraft. Instead of pointing the radar directly upwards into the sky, we
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(a) Single transmitting and four-channel
phased-array receiving antennas.

(b) Radar system processing boards.

Figure 5.2: Portable phased-array radar system designed for use on-board UAS.

point this radar in a horizontal direction with the azimuth angular measurements going from

left to right. We do not require that this radar be perfectly level with the horizontal plane.

Instead we angle this radar slightly upwards at a known elevation angle. In addition to the

elevation angle of the radar, we also allow the radar to be pointed in an arbitrary heading

relative to north, and the radar can be located at any known position and altitude relative

to the global grid pattern used by the collision avoidance algorithm. Using this radar setup

the output equations resulting from the radar are given by

h(x) =

 r(x)

α(x)

 ,=


√

(pin)2 + (pie)
2 + (hi)2

tan−1

(
pbe√

(pbn)2+(hb)2

)  , (5.1)

where the superscript i indicates the state is expressed in the inertial frame of the radar,

and the superscript b indicates the state is expressed in the body frame of the radar. The

inertial frame of the radar is defined as a right handed north-east-down coordinate frame

centered about the radar antenna. The body frame of the radar is defined as a right-handed

coordinate frame withe x axis pointing in the same direction as the radar, the y axis pointing

out the right side of the radar, and the z axis pointing out the bottom of the radar.

148



The position vector of an aircraft in the inertial frame of the radar is defined as

pi =


pin

pie

−hi

 =


pn − pn,r
pe − pe,r
−(h− hr)

 , (5.2)

where pn,r is the north position of the radar, pe,r is the east position of the radar, and hr is

the altitude of the radar. These three position values are then used to calculate the range

to the target.

For the azimuth angle, expressions must now be developed for the position vector of

the aircraft in the body frame of the radar. To do this we must use the two-element rotation

matrix that transforms a vector from the inertial frame to the body frame as

Rb
i(θ, ψ) =


cθcψ cθsψ −sθ
−sψ cψ 0

sθcψ sθsψ cθ

 , (5.3)

where θ is the elevation of the radar, and ψ is the heading of the radar measured relative to

north. Using this rotation matrix we can now express the the position vector of the aircraft

in the body frame of the radar as

pb =


pbn

pbe

−hb

 = Rb
i(θ, ψ)pi. (5.4)

For radar processing, this system uses four boards shown in Figure 5.2(b). From

bottom to top the boards are: radio frequency (RF) transmitter and receivers, Intermittent

frequency (IF) amplification and filtering, A/D converters, and digital signal processing and

control board. The bottom two RF and IF boards were developed by the group of students

under the direction of Dr. Karl Warnick. The third A/D board is called the BOARAC

board and was developed by Dr. Doran Wilde’s students. The top board is a commercial

off-the-shelf development board called MicroZed. This board contains a Xilinx Zynq All
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programmable system-on-chip (SoC) that includes a field-programmable gate array (FPGA)

and microprocessor. All of the DSP steps are performed on this Zynq SoC, where the specific

implementation of each of these DSP steps resulted from a combined effort of the radar team

and the the research performed in this thesis.

The DSP steps that are implemented on the FPGA of the Zynq SoC include the

fast-Fourier transform (FFT), correlation, and averaging. The DSP steps that are imple-

mented on the microprocessor of the Zynq SoC include target range detection and digital

beamforming. Eventually, these last two DSP steps should be moved to the FPGA, and the

microprocessor should be primarily used for the DAA algorithms including target tracking,

collision detection, and collision avoidance.

The BOARAC board includes eight 12-bit A/D converters, however, currently only

four of them are being used for the four receiver channels. The output of these four A/D

converters are sent from the BOARAC board, and into the FPGA of the Zynq SoC on the

MicroZed board. Using these four A/D inputs, the FPGA performs an FFT that retains 16

bits of accuracy at its output. Next the correlation step is performed, which is essentially

squaring the result of the FFT. Since this value is getting squared, 32 bits of accuracy are

then retained. Next the correlated values are averaged from multiple time steps to increase

the SNR. To preserve additional data resulting from this correlation step, 37 bits of accuracy

are then retained. Finally, these 37-bit numbers must be truncated to 32 bits before we can

send them to the microprocessor. Pairs of these 32-bit values must then be created because

the microprocessor is expecting to receive 64-bit messages. Within the microprocessor, the

32-bit input values are then stored as single-precision floating-point numbers. The last

two DSP steps performed in the microprocessor have various contributions resulting from

research in this thesis and will now be described.

The first contribution has to do with the thresholding shown previously in Equa-

tion (4.4) by Ti =
ln(1/P iFA)

λi
, where i represents the index for each range bin. For the simu-

lation results in Chapter 4, we used a constant value for the probability of false alarm. For

the hardware results, however, we found it to be advantageous to use a variable P i
FA. For

this variable false alarm probability we have defined an inverted quadratic function that is

smaller at the close range bins and bigger at the far range bins as seen in Figure 5.3. Having
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a larger P i
FA at the far range bins allows us to detect small signals out of the noise floor more

easily. We found this to be necessary because the received power of a signal drops of as 1/r4,

where r is the range to the target. The specific quadratic equation we used for this variable

probability of false alarm is given by

P i
FA = a(i− b)2 + c,

=
−(PFA,f − PFA,n)

i2max
(i− imax)2 + PFA,f , (5.5)

where PFA,n is the probability of false alarm at the near range bin, PFA,f is the probability

of false alarm at the far range bin, i is the index of the range bin, and imax is the maximum

range-bin index.

range bin

PFA

PFA,f

PFA,n

0

0

imax

Figure 5.3: Variable probability of false alarm as a function of range bin.

The next contribution has to do with target range detection. One issue with the

current radar hardware is that close objects to the radar cause overflow in the A/D converters,

which then results in harmonic range detections out of the FFT. Essentially this means that

a single target will show up in multiple range locations that are evenly spaced from one

another. The solution that was developed to overcome this issue was to require two or

more measurements in adjacent range bins to rise above the threshold. If a group of two or

measurements does indeed rise above their respective thresholds, then we conclude that a

target has been detected within this range-bin group. This method is able to reject harmonic
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range measurements because these harmonic measurements always appear in a single range

bin and therefore do not meet the requirement to be identified as a target. This logic also

has the added benefit of reducing the amount of noise measurements received from the radar.

As a result of this requirement, groups of measurements are now expected to be

received. Instead of outputting each of these elements as separate measurements, we have

also created a system that groups these measurements into a smaller number of outputs.

The first step in this process is to identify each of the groups of measurements. An example

of this grouping is seen in Figure 5.4 by the groups of points that have been circled.

In this figure, we are plotting the received power for each range bin at one specific

instant in time.

Also shown is a generic threshold line for each range bin and a single measurement

that is not part of any group because it does not have any measurements in adjacent range

bins. This measurement is depicted with a red × over it.

threshold

range bins

received power

Figure 5.4: Grouping and peak identification.

After each of the groups has been identified we then perform a process of peak iden-

tification. In this process we locate all measurements that are larger than the measurements

directly adjacent to them. These peaks are depicted with a green point. This process of

peak identification has been used to help detect multiple targets that may be in relatively
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close range bins, but are distinct enough to create separate peaks. The peaks from each of

the groups are then used as the range indices where we conclude that a target is located.

The next contribution has to do with the results of target range detection and digital

beamforming. In both of these methods discrete range and angle bins are identified, which

results in all measurements falling within predefined circular grid locations. These DSP steps

are unable to provide measurements of a target in between range and azimuth angle bins.

Research efforts in this thesis have been able to overcome this limitation and will be shown

next.

Once the target range detection and digital beamforming bin indexes have been cal-

culated, we notice that the magnitude of the signal in this particular bin is larger than the

magnitude of the signals in the bins immediately before and after the current bin. This is

seen in Figure 5.5, where the bin index with the largest magnitude is identified as B, the bin

index to the left is identified as B − 1, the bin index to the right is identified as B + 1, and

the corresponding magnitudes are identified as MC , ML, and MR, respectively.

B − 1 Bmax

bin index

magnitude

B B + 1

ML

MR

MC

Mmax

Figure 5.5: Spline fitting.

By using these three points, we can fit a second-order polynomial. From this poly-

nomial we notice it has a maximum Mmax, and that this maximum corresponds to a bin

index location in between two integer bin indices as Bmax. The equation for this fractional
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bin index is shown as

Bmax = B +
ML −MR

2(ML − 2MC +MR)
. (5.6)

This fractional bin index is then used to update the bin indices previously found for the

range and azimuth angles.

The method of fitting a second-order polynomial to three data points does quite well

at finding appropriate angles in between angle bins, however, finding appropriate ranges in

between range bins requires additional processing. As an object passes across multiple range

bins at a constant velocity, the new data points are not uniformly spaced apart, but instead

lie close to the original discrete range bin. By collecting a large sample of range data and

calculating the difference between the range value and its associated discrete range bin, we

see the general clustering behavior of many range bins from the histogram in Figure 5.6.

For the data in this figure, a target moved through approximated 120 range bins at a slow

constant velocity, for a total data sample size of 1300 measurements. In this figure we notice

that the x-axis ranges between -0.5 and 0.5. This is because if the difference was larger than

0.5 or less than -0.5, then the measurement would show up in a different bin index.
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Figure 5.6: Histogram of xdiff .

In Figure 5.6, we see that the updated range-bin indices have clustered around the

original range-bin index in roughly a double sided exponential distribution centered about

zero. Since the object used to collect this data was moving across multiple range bins at

a constant velocity, we need to provide a method that spreads this data away from the
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discrete range bin, into a uniform distribution. To help gather the needed parameters for

this operation we first take the absolute value of these difference values to create a positive

exponential distribution, as shown in Figure 5.7.
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Figure 5.7: Histogram of the absolute value of xdiff .

The first step needed, is to convert this exponential distribution into a symmetric

beta distribution ranging between 0 and 0.5 using

x2 =
1

2
(1− e−x1λ), (5.7)

where x1 represents the exponential distribution, x2 represents the symmetric beta distribu-

tion, and λ is the exponential parameter that is equal to the inverse of the expected value of

the distribution. Using λ = 9.18 in Equation (5.7) results in the symmetric beta distribution

shown in Figure 5.8.

155



-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
range-bin offset

0

20

40

60

80

100
nu

m
be

r o
f m

ea
su

re
m

en
ts

Figure 5.8: Histogram after converting the exponential distribution into a symmetric beta

distribution.

The next step is to convert this beta distribution into a uniform distribution ranging

between 0 and 0.5. To do this, we use interpolation within a lookup table that converts

the beta distribution into a uniform distribution. The values for this lookup table come

from the cumulative distribution function (cdf) of the beta distribution. The cdf of the beta

distribution is found by integrating the pdf of the beta distribution shown as

fx(x) =
1

B
xα−1(1− x)β−1 (5.8)

where fx(x) is the pdf function, B is the beta function coefficient, and α, β are the beta

function parameters. Using B = 3.1871, and α = β = 0.6 in Equation (5.8) results in the

lookup table shown graphically in Figure 5.9.

The input to this lookup table are the values from the beta distribution shown on

the abscissa, and the output of this lookup table are the resulting values of the uniform

distribution found on the ordinate. By using interpolation in conjunction with this lookup

table, we get the uniform distribution shown in Figure 5.10.
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Figure 5.9: Beta function cdf.
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Figure 5.10: Histogram after converting the beta distribution into a uniform distribution.

The final step is to relocate the data points that were originally negative back to

the negative side of the plot. This is shown in Figure 5.11. By comparing Figures 5.6 and

5.11 we see that we have successfully transformed the double-sided exponential distribution

centered about a particular range bin into a uniform distribution about that same point. The

operations we have developed provide a means of evenly distributing range measurements in

between range bins, which will then be sent to the R-RANSAC tracking algorithm.
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Figure 5.11: Final uniformly distributed histogram.

5.3 2D Modifications of DAA Algorithms

As was stated previously, the DAA algorithms must be modified slightly to operate

at a constant altitude. In this section we give brief overview of the changes that had to be

made for each DAA algorithm.

The primary change that needed to be made within R-RANSAC was in the states

being estimated. Since the altitude in no longer observable from the radar measurements,

we must exclude these states, which results in

x = [pn, pe, ṗn, ṗe, p̈n, p̈e]
>. (5.9)

In addition to this change in states, the output equation resulting from the new ground-based

radar setup must also be used shown in Equation (5.1).

For the collision-detection algorithm, we use the same algorithm as the 3D case,

however, we supply the algorithm with the known altitude of the aircraft, and the vertical

velocity of each aircraft is set equal to zero.

For the collision-avoidance algorithm, we use the same algorithm as the 3D case. For

this collision-avoidance algorithm, however, we create a grid of flyable waypoints that only

includes points from the nominal altitude. This prevents the avoidance path from choosing

waypoints at varying altitudes.
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5.4 Hardware Results

For the DSP of the radar signal for this flight test we sampled 4096 times at a sampling

frequency of 2.048 MHz. To increase the SNR, we averaged correlation matrices across 32

time steps. For the background subtraction we collected 400 noise only measurements using

a variable probability of false alarm from 0.03 at the near range bins to 0.15 at the far range

bins.

Figure 5.12: 3DR X8 and Y6 aircraft used in flight test with corner reflectors.

To demonstrate the performance of the proposed ground-based radar sensor model,

R-RANSAC estimation scheme, collision detection, and collision avoidance algorithm, we

conducted a flight test using 3D Robotics X8 and Y6 multicopter airframes for the ownship

and two intruders, with an attached corner reflector for greater detectability by the radar

as seen in Figure 5.12. During this flight test, the top radar processing board was only used

for digital signal processing. In the future, however, this board will also run the tracking,
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collision detection, and collision avoidance algorithms. From the radar processing boards,

the radar measurements were sent to a laptop, which served as a ground control station and

which also ran the tracking, collision detection, and collision avoidance algorithms. Since the

current radar hardware is only capable of providing angular measurements in the azimuth

direction, the altitude of the tracked targets is unobservable and we therefore perform the

test at a constant altitude. An explanatory sketch of the flight experiment is depicted in

Figure 5.13. In this figure we see that the ground control station and radar are located on a

platform that is above the ground by 1.83 meters, and the radar is angled up by 3 degrees.

We also see that each of the aircraft are flying at a constant altitude of 4.5 meters, and that

each of the aircraft start roughly 50 meters apart from each other.

1.83 m

ownship intruder 2 intruder 1

3 deg.

4.5 m
ground control

station with radar

50 m 50 m

Figure 5.13: Sketch of the encounter geometry of flight test (not to scale).

For this test we have defined the paths of the ownship and intruders in the NED

reference frame, however, the 2D plots have been shown in the forward-right(FR) reference

frame relative to the heading of the radar. This FR reference frame comes from rotating the

inertial NED reference frame about the down axis by the heading angle of the radar unit.

We have shown the 2D plots in the FR reference frame because the radar was oriented with

a heading of approximately 73.8 degrees relative to north due to the physical location of

the flight test. The FR reference frame is also used as the reference frame within which the
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collision avoidance paths will be shown. The final parameters needed for the setup of the

flight experiment are the GPS home location, and the location of the ground control station

and radar with respect to this home location.

Ownship
Intruder 2Intruder 1

Figure 5.14: Ground control station with radar and three aircraft at the start of the test.

A photograph taken at the start of the test is shown in Figure 5.14. Within this

figure, labels have been added to help identify the ownship and two intruder aircraft. The

actual geometry of the planned encounter scenario is shown in Figure 5.15 by the black and

blue lines, with the starting location of each aircraft shown by an ×.

In the encounter scenario, the ownship starts at (1, 0)> in the FR radar coordinate

system, with an initial heading of 0 degrees measured from the forward direction and follows

a straight line path at a constant speed of 1 m/s to reach a waypoint located at (101, 0)>.

Although the location of the ground control station is not shown, it is located at (−2, 0)>.

Since our test is limited to 2D, the collision volume is also converted to 2D by using a circle

of radius ds=10 m (32.8 ft).
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Figure 5.15: Encounter geometry of ground-based DAA flight test.

In this flight test, we follow a similar encounter scenario as scenario 1 in the simulation

results section of Chapter 4. It consists of two intruders: one is approaching head-on and the

other is converging from the right. These intruders follow straight-line paths at a constant

velocity of 1 m/s. If no collision avoidance path is planned, the dcpa with respect to the first

and second intruders is approximately 8.0 m and 27.0 m. Since the dcpa to the first intruder

is less than the horizontal safety distance ds, then this encounter will lead to a collision. The

ownship, however, should plan an avoidance maneuver that does not lead to a collision with

the second intruder. Figure 5.16 shows the intruders’ paths and the avoidance path taken

by the ownship. Notice that all avoidance must be done in the horizontal plane since we

assumed all aircraft are flying at a constant known altitude, unlike the simulation results

presented earlier in Chapter 4.
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Figure 5.16: The avoidance path of the ownship and the paths of the intruders in the FR

inertial frame centered about the home location.

Table 5.2: Collision avoidance parameters.

A* Chain

Parameter Value Parameter Value

kdist 10 k 1

kmax 1e8 ksh 10

% 4 κ 2

kr 1000 b 2

θmax 45 deg

λ 20

fmax 50

δ1 4
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The parameters used for collision detection in the flight test were dth= 100 meters,

and τ
th

= 10 seconds. For the collision avoidance path planning algorithms a grid size of

10 meters horizontally was used. The parameters used for collision avoidance are shown in

Table 5.2.

Figure 5.17 shows the range and azimuth angle to all aircraft measured by the radar

system. This figure shows that the principal signal decay happens as the azimuth angle

increases off boresight as the aircraft leave the antenna beam. The range data, however,

remains well resolved for the duration of the test. From this figure we also see that the

measured range has a slight scale factor error compared to the true range to each of the

aircraft, which could be corrected through further calibration and testing. We also see that

the azimuth angle does not line up perfectly with the true azimuth angle, which is due to

multiple issues.
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Figure 5.17: Radar measurements: range, and azimuth of ownship and intruders.

As explained earlier, during the flight test we attempted to orient the radar with

a precise heading relative to north, and a specific elevation angle. We also attempted to

position the radar at a specific GPS latitude and longitude location and altitude relative to

the ground. Although we attempted to position and orient the radar with specific values,
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errors were unavoidable that resulted in inaccuracies in our measured values when compared

to truth. For ground truth data, we used the estimated GPS positions of the three aircraft

from the Pixhawk autopilot state estimators that also had inaccuracies due to IMU sensor,

GPS, and state estimator errors. These errors are further seen in Figure 5.18, which shows

the radar measurements of each aircraft in the FR coordinate frame. Considering all possi-

ble sources of error, the radar measurements and truth line up quite well, although future

calibration and testing would be beneficial.
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Figure 5.18: Aircraft’s paths constructed using radar measurements.

The state estimates of position and velocity are shown in Figures 5.19 and 5.20,

respectively. In this flight test we chose a sample rate of 0.1 seconds and R-RANSAC

parameters shown in Table 5.3. The dynamic model used for the three aircraft in R-RANSAC

is a constant acceleration model of the north position, and east position of the aircraft.

Similar to the simulation results in Chapter 4, we see in Figures 5.19 and 5.20 that this

model works within R-RANSAC to successfully track all aircraft for which measurements

are received. Additionally, from these figures we see that the modifications made to R-
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RANSAC were still successfully able to distinguish the ownship track from the intruder

tracks while receiving the ownship states from the telemetry link via an 3DR radio. In the

figures we see that R-RANSAC takes about 5 seconds for good models to appear after the

first measurements are received.

Table 5.3: R-RANSAC parameters.

Parameter Value Parameter Value Parameter Value

M 20 Q 1e-5(100,100,166.6,166.6,2,2) τρ 0.3

N 50 R (0.1,0.1) τT 30

τR (0.4267 m, 4 deg) τxi (5,5,0.8,0.8,1,1) τCMD 40

` 5 τ own
xi

(7,7,0.8,0.8) τ own
ρ 0.2
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Figure 5.19: R-RANSAC tracks: position estimates of aircraft.
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Figure 5.20: R-RANSAC tracks: velocity estimates of aircraft.
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Figure 5.21: Aircraft’s paths constructed using radar measurements and R-RANSAC posi-

tion estimates.

167



The estimated position states of the aircraft have also been plotted in the radar’s FR

reference frame centered about the home location as seen in Figure 5.21. From this figure

we see that the R-RANSAC tracks line up well with the predicted location of the radar

measurements.

The relative range between the ownship and the two intruders is shown in Figure 5.22.

For both intruders the relative range never falls below ds, which means that no collisions

have occurred and that a successful avoidance maneuver has been taken.
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Figure 5.22: Relative range to intruders.
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK

6.1 Summary

The main contributions of this thesis relate to target detection and tracking elements

of the detect-and-avoid (DAA) problem, and the integration of subcomponents of the DAA

system into fully functional simulation and hardware implementations. Each of these con-

tributions are specifically demonstrated in Chapters 2 through 5.

The main contribution contained within Chapter 2 is the presentation of two methods

used to calculate the minimum detection range, the time-based geometric velocity vectors

(TGVV) approach, and the geometric velocity vectors (GVV) approach. These methods

assume that the direct head-on encounter is the scenario that requires the largest detection

range. This assumption facilitates the derivation of analytical expressions for the calculation

of the minimum detection range required to avoid a predefined safety volume using both

dynamic and geometric models of the encounter. Using the GVV approach, a closed-form

analytical expression for the minimum detection range is found by making the assumption

that the ownship performs an instantaneous bank-angle maneuver. If this simplifying as-

sumption is removed, the TGVV method can be used to numerically solve for the minimum

detection range by utilizing a model of the turning dynamics of the ownship. The mini-

mum detection range calculation takes into account the computation time involved in target

tracking, risk assessment, path planning, and pilot response time delay in addition to the

time required to execute the avoidance maneuver. The TGVV and GVV approaches were

compared to the existing TT and GT methods and were shown to create more accurate

estimates of the minimum detection range over a wide range of encounter scenarios. For

every variation of the encounter parameters, the TGVV method determined a CPA estimate

equal to the desired safety radius value indicating that the true minimum detection range

had been found. It was also shown that as the bank-angle dynamics of the ownship became
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more aggressive, the geometry-based GVV method produced results that approached those

of the dynamic-model-based TGVV method. The conditions under which the TT and GT

methods produce results that approach the TGVV method were also found to occur at large

ownship speeds relative to the intruder speed, fast bank-angle transients, and small bank

angles.

Chapter 3 contains two primary contributions. The first contribution is the formu-

lation of the generic extended recursive-RANSAC (ER-RANSAC) algorithm, which extends

the generic linear recursive-RANSAC (R-RANSAC) algorithm to nonlinear systems. The

primary elements needed to extend R-RANSAC to nonlinear systems include the use of and

extended Kalman filter (EKF) in the propagation and update steps within the R-RANSAC

framework and in the smoothing step of the RANSAC framework, new inlier functions within

R-RANSAC and RANSAC that use the nonlinear measurement equations and noise statis-

tics of the measurements, and the use of the Gauss-Newton method within RANSAC to

initialize new model hypotheses.

The Gauss-Newton method is a nonlinear regression technique which must be found

through an iterative approach. The Gauss-Newton method uses the Taylor-series approxima-

tion to create linearized equations about a current estimate of the states. These linearized

equations along with a measurement set can then be used to solve for the residual state

difference using traditional least-squares theory. By solving for the residual state difference,

we can provide an updated estimate of the states to be used for the next iteration of the

Gauss-Newton method. This process is continued until the residual of the state difference

falls below some threshold τGN, or the maximum number of iterations is reached `GN.

The second contribution within Chapter 3 is the implementation of a target detec-

tion and tracking system that robustly tracks intruder aircraft in the varied encounters

a UAS might possibly experience. This system uses multiple radar units for increasing

the sensor coverage to detect overtaking intruders. It also uses either the R-RANSAC or

ER-RANSAC algorithms, implemented with constant-acceleration dynamic models. These

recursive-RANSAC methods are used to help track multiple maneuvering aircraft in the pres-

ence of noisy, cluttered, and missed measurements. These and other results are validated

using an improved detect-and-avoid simulator tool, also developed from research efforts de-
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scribed in this thesis in Appendix C. In the improved simulator an increased number of

intruder aircraft can be simulated from a user specified quantity. This simulator has also

been restructured to provide and elegant way for the user to choose between alternate func-

tion implementations, and to provide the user a simple process for including new function

implementations.

The main contribution contained within Chapters 4 and 5 is the integration of the

DAA-system subcomponents into fully functional simulation and hardware implementations

using a ground-based radar setup, respectively. This implementation required an intimate

knowledge of each of the components of the DAA system, and as a result additional capa-

bilities were found for each of the subcomponents to improve the overall performance of the

DAA system. For the radar, a novel method for thresholding was integrated that uses the

noise statistics of the received power from the radar measurements.

For the tracking algorithm a linear version of R-RANSAC was used because the col-

lision detection algorithm only predicts collisions that result from straight line paths, which

also required that the each of the intruder aircraft fly in straight line paths. Additionally,

we recognize that a ground-based radar setup will provide measurements for all aircraft

in its field of view, including the ownship. As such, modifications had to be made to R-

RANSAC which allow for the identification of the ownship tracks. These modifications

include inputting the ownship’s know states into R-RANSAC, creating an additional own-

ship consensus set χo, and an additional ownship inlier ratio ρo. If the inlier ratio rises above

a threshold τρ,o, then the track is identified as the ownship.

In the collision detection algorithm, additional encounter scenarios were considered

and the integration of the ownship’s known waypoint path was accounted for. For the A*

step of the collision avoidance algorithm, additional costs were added which penalize a node

if the closest point of approach is small or if the direction of the node is in the same direction

as the intruder. For the chain-based step of the collision avoidance algorithm, a force was

added that pushes the a node behind the intruder if it is within a certain distance of the

intruder.

For the simulation implementation, we model a 3D ground-based radar and 3D air-

craft flight paths. For the hardware implementation we use the radar hardware developed
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here at Brigham Young University (BYU) in a 2D ground-based radar setup with aircraft

that fly at a constant altitude. The hardware implementation had to be performed in the

horizontal plane because the radar is currently only able to provide range and azimuth angle

measurements. Without the additional elevation angle measurements from the radar, the

altitude state information of the aircraft is unobservable. Since the hardware implementa-

tion had to be performed at a constant altitude, slight modifications had to be made to the

R-RANSAC, collision detection, and collision avoidance algorithms.

Finally, extensive effort was put into creating strong and accurate radar measurements

from the radar hardware. Contributions from this thesis include various DSP techniques

on the radar data capable of creating range and azimuth angle measurements in between

range and angle bins. After integrating each of these components of a ground-based radar

DAA system together, we performed a successful flight test using three small UAS platforms,

including one ownship and two intruder aircraft, thus providing the first completely successful

DAA system with real hardware and no simulated components.

6.2 Recommendations for Future Work

Each of the contributions contained in this thesis have multiple areas for future re-

search. This section describes a few of these avenues for possible future work.

6.2.1 Minimum detection range

While the direct head-on encounter is important because it requires a large minimum

detection range, it would be valuable to extend the minimum detection range methods to

a variety of encounter scenarios in addition to the head-on case. Additionally, validation of

the minimum detection range results with flight tests to confirm the validity of the under-

lying assumptions and models would represent a valuable next step in defining integration

requirements for UAS.
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6.2.2 Tracking

In this thesis we have demonstrated the successful implementation of the ER-RANSAC

algorithm, however, we have neglected to provide a detailed comparison with the traditional

linear version of R-RANSAC. Providing a detailed performance comparison of these two

algorithms would certainly be required to fully understand the implications for using the

ER-RANSAC algorithm and would be a valuable avenue for future research.

Without the support of numerical data, it appears that ER-RANSAC has a significant

increase in computation time compared to R-RANSAC. To reduce this computation time,

we realize that there may be alternate ways to extend R-RANSAC to nonlinear systems.

In our implementation of ER-RANSAC we used a nine-state constant-acceleration model.

One method for reducing the computational overhead could be to use the full nine-state

model within the R-RANSAC framework, and use a lower-order model such as a six-state

constant-velocity model within RANSAC for model hypothesis and generation. As the mod-

els are passed from RANSAC to R-RANSAC, the acceleration terms could then be set to

zero. Another method could be to use a hybrid approach, where we use the nonlinear EKF

propagation and update steps within R-RANSAC, linear RANSAC methods for model hy-

pothesis and generation, and a nonlinear transformation of the linear states resulting from

RANSAC as they get passed back to R-RANSAC. These and other approaches could also

be examined to determine the best approach for tracking truly nonlinear systems.

Just as there may be cases where the Kalman filter diverges, while the extended

Kalman filter does not, we believe there may be cases where the R-RANSAC algorithm will

be unable to track certain nonlinear dynamic models, while the ER-RANSAC algorithm is

able to track them. We have not yet explored various types of nonlinear dynamic models that

may result in this behavior, however, if these models can be identified, this would provide

additional motivation for using the ER-RANSAC algorithm over the linear R-RANSAC

algorithm.

For the development of a robust target detection and tracking system, we imple-

mented a tracking simulation which uses multiple radar sensors around the ownship aircraft

to increase its surveillance area. One area of future work, would be to implement this setup

in hardware to verify that it works. Additionally, we have mentioned that two additional
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detection devices could be added to this setup to detect objects above and below the own-

ship. This is an improvement that would greatly increase the robustness of the DAA system

to all types of encounter scenarios.

6.2.3 Complete DAA

There are many avenues of future work for improving the complete DAA system.

The first and most obvious improvement would be to extend the use of the radar hardware

to an air-based setup. This would allow the ownship the freedom to move within any

airspace. Another improvement that needs to be made to the radar is the ability to get

elevation measurements in addition to azimuth measurements. This will result in the altitude

state information of the aircraft being observable, and will allow us to perform 3D DAA

experiments. The last major improvement that could be made with the radar hardware is

an increased range detection capability, and as a related improvement, the ability to detect

objects with a smaller radar cross section (RCS). This last improvement would hopefully

allow a future flight test using small UAS without corner reflectors attached.

The primary capability that was not added to the general DAA simulator described

in Appendix C, was the ability to easily perform Monte Carlo simulations. This addition

would be a very valuable contribution, allowing one to truly test each of the DAA algorithms

in a variety of test conditions.

Many of the autopilot functions have already been implemented in compiled C-MEX

s-Functions within Simulink, however, the target detection and tracking, collision detection,

and collision avoidance algorithms have not yet been implements in compiled C-MEX s-

Functions. By implementing these DAA algorithms in compiled C-MEX s-Functions, the

integration of these algorithms in an on-board microprocessors will be one step closer to

reality. This will help integrate these DAA algorithms into an air-based DAA solution as

opposed to a ground-based solution.

From the complete ground-based radar DAA system, we made the assumption that

the intruder aircraft were flying in straight-line paths. This resulted in the use of the linear

R-RANSAC algorithm, a straight-line collision detection algorithm, and a collision avoidance

algorithm which uses straight-line paths of the intruder aircraft. An improvement that could
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be made to this DAA system would be to use the nonlinear ER-RANSAC tracking algorithm

developed for tracking maneuvering aircraft in conjunction with a new collision detection and

collision avoidance algorithm that takes into account the behavior of maneuvering aircraft.
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APPENDIX A. TGVV BANK-ANGLE RESPONSE

A.1 Case A: φmax is reached

Using Fig. 2.5(a) we see that interval 1 has a positive step in the aileron command

and t0 = 0, φ(t0) = 0, and φ̇(t0) = 0. This results in the following equations for φ1(t) and

φ̇1(t)

φ1(t) = τ φ̇max

(
e−t/τ − 1

)
+ φ̇maxt (A.1)

φ̇1(t) = φ̇max

(
1− e−t/τ

)
Interval 2 has a negative step input with t0 = t1, φ(t0) = φ1(t1), and φ̇(t0) = φ̇1(t1).

This results in the following equations for φ2(t) and φ̇2(t)

φ2(t) = −τ φ̇max

(
e−(t−t1)/τ − 1

)
− φ̇max(t− t1) + τ φ̇1(t1)

(
1− e−(t−t1)/τ

)
+ φ1(t1)

= τ φ̇max

(
1− 2e−(t−t1)/τ + e−t/τ

)
− φ̇max(t− 2t1) (A.2)

φ̇2(t) = −φ̇max

(
1− e−(t−t1)/τ

)
+ φ̇1(t1)e−(t−t1)/τ

= φ̇max

(
2e−(t−t1)/τ − e−t/τ − 1

)
For interval 3 the aileron command is zero. This means the bank angle only expe-

riences the free response due to the initial conditions, and does not experience any forced

response from the aileron input. This free response is taken from the terms on the right side

of Eqs. (2.13) and (2.14) as

φf (t) = τ φ̇(t0)
(
1− e−(t−t0)/τ

)
+ φ(t0), (A.3)

φ̇f (t) = φ̇(t0)e−(t−t0)/τ . (A.4)
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Using these equations for interval 3 and t0 = t2, φ(t0) = φ2(t2), and φ̇(t0) = φ̇2(t2), gives the

following response for interval 3

φ3(t) = τ φ̇2(t2)
(
1− e−(t−t2)/τ

)
+ φ2(t2),

φ̇3(t) = φ̇2(t2)e−(t−t2)/τ .

From Fig. 2.5(a) values for t1 and t2 are chosen that result in φ2(t2) = φmax and φ̇2(t2) = 0.

With these requirements the response for interval 3 becomes

φ3(t) = φmax, (A.5)

φ̇3(t) = 0.

Interval 4 has a negative step input with t0 = t3, φ(t0) = φ3(t3), and φ̇(t0) = φ̇3(t3).

This results in the following equations for φ4(t) and φ̇4(t)

φ4(t) = −τ φ̇max

(
e−(t−t3)/τ − 1

)
− φ̇max(t− t3) + τ φ̇3(t3)

(
1− e−(t−t3)/τ

)
+ φ3(t3)

= τ φ̇max

(
1− e−(t−t3)/τ

)
− φ̇max(t− t3) + φmax (A.6)

φ̇4(t) = −φ̇max

(
1− e−(t−t3)/τ

)
+ φ̇3(t3)e−(t−t3)/τ

= φ̇max

(
e−(t−t3)/τ − 1

)
Interval 5 has a positive step input with t0 = t4, φ(t0) = φ4(t4), and φ̇(t0) = φ̇4(t4).

This results in the following equation for φ5(t)

φ5(t) = τ φ̇max

(
e−(t−t4)/τ − 1

)
+ φ̇max(t− t4) + τ φ̇4(t4)

(
1− e−(t−t4)/τ

)
+ φ4(t4)

= τ φ̇max

(
2e−(t−t4)/τ − 1− e−(t−t3)/τ

)
+ φ̇max(t− 2t4 + t3) + φmax (A.7)

As stated above, we must choose values for t1 and t2 that result in φ2(t2) = φmax and

φ̇2(t2) = 0. To find the values of t1 and t2 we start with the expression for φ̇2(t) and the

requirement that φ̇2(t2) = 0 to get

0 = φ̇max

(
2e−(t2−t1)/τ − e−t2/τ − 1

)
. (A.8)
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Next we use the expression for φ2(t) and the requirement that φ2(t2) = φmax to get

φmax = τ φ̇max

(
1− 2e−(t2−t1)/τ + e−t2/τ

)
− φ̇max(t2 − 2t1),

where we notice that the first term on the right side of the equation is the negative of

Eq. (A.8) multiplied by τ . This cancels the first term resulting in

φmax = −φ̇max(t2 − 2t1).

Rearranging we get the final expression for t2 as

t2 = 2t1 −
φmax

φ̇max

. (A.9)

To find t1 we substitute this value of t2 back into Eq. A.8 and after algebraic manipulation

we get

0 =
(
e−t1/τ

)2 − 2e−t1/τ + e−(φmax/φ̇max)/τ ,

which is a quadratic function in e−t1/τ . Using the quadratic formula we can find the roots

to this equation as

e−t1/τ = 1±
√

1− e−(φmax/φ̇max)/τ .

Rearranging this equation we can solve for t1 as

t1 = −τ ln
[
1±

√
1− e−(φmax/φ̇max)/τ

]
.

For this expression to give a positive value for t1 we must use the negative sign inside the

natural logarithm as

t1 = −τ ln
[
1−

√
1− e−(φmax/φ̇max)/τ

]
.

While this equation is mathematically correct, if the quantity (φmax/φ̇max)τ gets too large,

numerical roundoff errors can occur while computing the value of t1. To help reduce the

chance of numerical roundoff error we multiply the term inside the natural logarithm by its
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conjugate on the numerator and denominator which produces the final expression for t1 as

t1 = −τ ln

[
e−(φmax/φ̇max)/τ

1 +
√

1− e−(φmax/φ̇max)/τ

]
. (A.10)

Now we finish defining the rest of the time variables t3, t4, and t5. The time variable

t3 is defined as

t3 = t2 + δT3, (A.11)

where δT3 is the total time during interval 3 where the bank angle is at a constant value of

φmax and can be calculated as

δT3 = L3/vo, (A.12)

where L3 is the length of the path traveled by the ownship during interval 3 and can be

calculated as

L3 = Rminδχ3, (A.13)

where δχ3 is the change in course experienced by the ownship during interval 3 which can

be calculated as

δχ3 =

∫ t3

t2

g

vo
tan(φ3(t))dt = χt − (δχ1 + δχ2 + δχ4|t3=0,t4=t1 + δχ5|t3=0,t4=t1,t5=t2), (A.14)

where δχ1, δχ2, δχ4, and δχ5 are the change in course experienced by the ownship during

intervals 1, 2, 4, and 5, and χt is the desired change in course during the complete turning

maneuver. These variables can be found using Eq. (2.11) from a coordinated turn as

δχ1 =

∫ t1

0

g

vo
tan(φ1(t))dt, (A.15)

δχ2 =

∫ t2

t1

g

vo
tan(φ2(t))dt, (A.16)

δχ4 =

∫ t4

t3

g

vo
tan(φ4(t))dt, (A.17)

δχ5 =

∫ t5

t4

g

vo
tan(φ5(t))dt. (A.18)
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The final expression for t3 is now found to be

t3 = t2 +
Rminδχ3

vo
, (A.19)

where δχ1, δχ2, δχ4, and δχ5 are defined in Eqs. (A.15), (A.16), (A.17), and (A.18). Now

that we have found t3 we can define t4 and t5 as

t4 = t3 + t1, (A.20)

t5 = t3 + t2. (A.21)

A.2 Case B: φmax is not reached

Similar to Case A, we use Eqs. (2.13) and (2.14) to define the response of the bank

angle to step inputs from the ailerons. Using Fig. 2.5(b) we see that interval 1 has a positive

step and, therefore, has the same response to Case A as

φ1(t) = τ φ̇max

(
e−t/τ − 1

)
+ φ̇maxt, (A.22)

φ̇1(t) = φ̇max

(
1− e−t/τ

)
.

The bank-angle response for intervals 2 and 4 can be combined into a single expression

because the aileron input is −δa for both intervals. The response for these intervals has the

same response as interval 2 in Case A.

φ2,4(t) = τ φ̇max

(
1− 2e−(t−t1)/τ + e−t/τ

)
− φ̇max(t− 2t1), (A.23)

φ̇2,4(t) = φ̇max

(
2e−(t−t1)/τ − e−t/τ − 1

)
.

Interval 5 differs from Case A because the previous interval 4 has been combined

with interval 2. For interval 5 of this case we also have a positive step and t0 = t4, however,
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φ(t0) = φ2,4(t4), and φ̇(t0) = φ̇2,4(t4). This results in the following equation for φ5(t)

φ5(t) = τ φ̇max

(
e−(t−t4)/τ − 1

)
+ φ̇max(t− t4) + τ φ̇2,4(t4)

(
1− e−(t−t4)/τ

)
+ φ2,4(t4),

= τ φ̇max

(
2e−(t−t4)/τ − 2e−(t−t1)/τ + e−t/τ − 1

)
+ φ̇max(t+ 2t1 − 2t4). (A.24)

In deriving t1 for Case A we used the constraint φ2(t2) = φmax, however, this constraint

is not true for Case B. Finding t1 for this case requires a more in depth analysis. From the

total turning maneuver of the ownship for Case B we know that

χt = δχ1 + δχ2,4 + δχ5,

where δχ1 and δχ5 were defined in Eqs. (A.15) and (A.18) in Case A, and δχ2,4 is the change

in course experienced by the ownship during the combined intervals 2 and 4 as

δχ2,4 =

∫ t4

t1

g

vo
tan(φ2,4(t))dt. (A.25)

Moving χt to the right side of the equation results in

0 = δχ1 + δχ2,4 + δχ5 − χt. (A.26)

To find t1 we express each of the components of Eq. (A.26) in terms of the variable t1 and

use the Newton-Raphson method to find the value of t1 that makes the equation equal zero.

The variables that need to be expressed in terms of t1 are t2, t4, and t5.

A constraint from Case A that we can use for Case B is φ̇2(t2) = 0. This constraint

resulted in Eq. (A.8) which can be solved for t2 in terms of t1 as

t2 = τ ln
[
2et1/τ − 1

]
. (A.27)
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Using Fig. 2.5(b) and Eq. (A.27) we create expressions for t4 and t5 in terms of t1 as

t4 = t2 + t1 = t1 + τ ln
[
2et1/τ − 1

]
, (A.28)

t5 = 2t2 = 2τ ln
[
2et1/τ − 1

]
. (A.29)

Using the expression for t4 we modify Eq. (A.24) to be expressed in terms of t1 as

φ5(t) = τ φ̇max

(
e−t/τ (2et1/τ − 1)2 − 1− 2 ln

[
2et1/τ − 1

])
+ φ̇maxt (A.30)
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APPENDIX B. NONLINEAR OBSERVABILITY

Using radar as the detection device which provides range, azimuth, and elevation

measurements, we now show the states used within our specific nonlinear dynamic model

are indeed observable. To standardize the notation used within this section we first define

the intruder states in numeric form as

x = [x1, x2, x3, x4, x5, x6, x7, x8, x9]>. (B.1)

Since the ownship states are not being estimated, but are instead inputs to the estimator,

we do not give the ownship states numeric subscripts as we did with the intruder states.

Instead we maintain the original notation for the ownship states as

xo = [pn, pe, h, φ, θ, ψ]>, (B.2)

where we have dropped the ownship identifier from the subscript of each of the individual

state components for simplicity.
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Utilizing this notation for the states of the intruder and ownship the observability

matrix for this specific problem is seen as

O =
∂

∂x


h(x,xo)

Lfh(x,xo)

L2
fh(x,xo)

 =
∂

∂x



h1(x,xo)

h2(x,xo)

h3(x,xo)

Lfh1(x,xo)

Lfh2(x,xo)

Lfh3(x,xo)

L2
fh1(x,xo)

L2
fh2(x,xo)

L2
fh3(x,xo)



=



∂h1
∂x1

∂h1
∂x2

∂h1
∂x3

∂h1
∂x4

∂h1
∂x5

∂h1
∂x6

∂h1
∂x7

∂h1
∂x8

∂h1
∂x9

∂h2
∂x1

∂h2
∂x2

∂h2
∂x3

∂h2
∂x4

∂h2
∂x5

∂h2
∂x6

∂h2
∂x7

∂h2
∂x8

∂h2
∂x9

∂h3
∂x1

∂h3
∂x2

∂h3
∂x3

∂h3
∂x4

∂h3
∂x5

∂h3
∂x6

∂h3
∂x7

∂h3
∂x8

∂h3
∂x9

∂(Lfh1)

∂x1

∂(Lfh1)

∂x2

∂(Lfh1)

∂x3

∂(Lfh1)

∂x4

∂(Lfh1)

∂x5

∂(Lfh1)

∂x6

∂(Lfh1)

∂x7

∂(Lfh1)

∂x8

∂(Lfh1)

∂x9

∂(Lfh2)

∂x1

∂(Lfh2)

∂x2

∂(Lfh2)

∂x3

∂(Lfh2)

∂x4

∂(Lfh2)

∂x5

∂(Lfh2)

∂x6

∂(Lfh2)

∂x7

∂(Lfh2)

∂x8

∂(Lfh2)

∂x9

∂(Lfh3)

∂x1

∂(Lfh3)

∂x2

∂(Lfh3)

∂x3

∂(Lfh3)

∂x4

∂(Lfh3)

∂x5

∂(Lfh3)

∂x6

∂(Lfh3)

∂x7

∂(Lfh3)

∂x8

∂(Lfh3)

∂x9
∂(L2

fh1)

∂x1

∂(L2
fh1)

∂x2

∂(L2
fh1)

∂x3

∂(L2
fh1)

∂x4

∂(L2
fh1)

∂x5

∂(L2
fh1)

∂x6

∂(L2
fh1)

∂x7

∂(L2
fh1)

∂x8

∂(L2
fh1)

∂x9
∂(L2

fh2)

∂x1

∂(L2
fh2)

∂x2

∂(L2
fh2)

∂x3

∂(L2
fh2)

∂x4

∂(L2
fh2)

∂x5

∂(L2
fh2)

∂x6

∂(L2
fh2)

∂x7

∂(L2
fh2)

∂x8

∂(L2
fh2)

∂x9
∂(L2

fh3)

∂x1

∂(L2
fh3)

∂x2

∂(L2
fh3)

∂x3

∂(L2
fh3)

∂x4

∂(L2
fh3)

∂x5

∂(L2
fh3)

∂x6

∂(L2
fh3)

∂x7

∂(L2
fh3)

∂x8

∂(L2
fh3)

∂x9



, (B.3)

where we have extended the matrix down by nine rows or equivalently three sets of mea-

surement equations. This will later prove to be a sufficient number of rows to make the

rank of the observability matrix equal to the number of states n = 9. Evaluating the partial

derivatives in the matrix above results in many of the terms being equal to zero. Although

we do not show the derivation of these zero terms, we insert them into the observability
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matrix at this time as

O =



a11 a12 a13 0 0 0 0 0 0

a21 a22 a23 0 0 0 0 0 0

a31 a32 a33 0 0 0 0 0 0

b11 b12 b13 c11 c12 c13 0 0 0

b21 b22 b23 c21 c22 c23 0 0 0

b31 b32 b33 c31 c32 c33 0 0 0

d11 d12 d13 e11 e12 e13 f11 f12 f13

d21 d22 d23 e21 e22 e23 f21 f22 f23

d31 d32 d33 e31 e32 e33 f31 f32 f33



=


A 0 0

B C 0

D E F

 , (B.4)

where we have grouped multiple elements together to form Rm×m block matrices, A, B, C,

D, E, F , and 0.

To determine if the intruder states are observable, we will now evaluate the deter-

minant of the observability matrix and verify that it does not equal zero. Using the block

matrix representation shown above, this determinant is calculated as

det |O| = det |A| det |C| det |F |, (B.5)

where we notice that the matrices B, D, and E matrices do not appear in the solution. Since

we do not need the B, D, and E matrices, we will not derive expressions for them, and will

only derive expressions for the A, C, and F matrices.

To simplify the notation of the derivation process we make the following definitions

L1 = (x1 − pn)2 + (x2 − pe)2 + (x3 − h)2, (B.6)

L2 = (x1 − pn)2 + (x2 − pe)2, (B.7)

x1 = x1 − pn, (B.8)

x2 = x2 − pe, (B.9)

x3 = x3 − h (B.10)
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B.1 Matrix A

After making the necessary calculations, the A matrix is shown as

A =


x1√
L1

x2√
L1

x3√
L1

−x2
L2

x1
L2

0

−x1x3
L1
√
L2

−x2x3
L1
√
L2

x21+x22
L1
√
L2
,

 , (B.11)

where the determinant of this matrix is shown as

det |A| = 1√
L1L2

=
1√

[(x1 − pn)2 + (x2 − pe)2 + (x3 − h)2] [(x1 − pn)2 + (x2 − pe)2]
.

(B.12)

B.2 Matrix C

To calculate the C matrix we first define

Lfh =
∂h

∂x
f(x) =


x1x4 cosx5 cosx6+x2x4 sinx5 cosx6+x3x4 sinx6√

L1

−x2x4 cosx5 cosx6+x1x4 sinx5 cosx6
L2

−x1x3x4 cosx5 cosx6−x2x3x4 sinx5 cosx6+(x21+x22)x4 sinx6

L1
√
L2

 . (B.13)
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To get the C matrix we only need to take the partial derivatives with respect to the states

x4, x5, and x6. These partials are calculated as

∂

∂x4

(Lfh1) =
x1 cos x5 cos x6 + x2 sin x5 cos x6 + x3 sin x6√

L1

=
N1√
L1

, (B.14)

∂

∂x5

(Lfh1) =
−x1x4 sin x5 cos x6 + x2x4 cos x5 cos x6√

L1

=
N2√
L1

, (B.15)

∂

∂x6

(Lfh1) =
−x1x4 cos x5 sin x6 − x2x4 sin x5 sin x6 + x3x4 cos x6√

L1

=
N3√
L1

, (B.16)

∂

∂x4

(Lfh2) =
−x2 cos x5 cos x6 + x1 sin x5 cos x6

L2

=
N4

L2

, (B.17)

∂

∂x5

(Lfh2) =
x2x4 sin x5 cos x6 + x1x4 cos x5 cos x6

L2

=
N5

L2

, (B.18)

∂

∂x6

(Lfh2) =
x2x4 cos x5 sin x6 − x1x4 sin x5 sin x6

L2

=
N6

L2

, (B.19)

∂

∂x4

(Lfh3) =
−x1x3 cos x5 cos x6 − x2x3 sin x5 cos x6 + (x2

1 + x2
2) sin x6

L1

√
L2

=
N7

L1

√
L2

, (B.20)

∂

∂x5

(Lfh3) =
x1x3x4 sin x5 cos x6 − x2x3x4 cos x5 cos x6

L1

√
L2

=
N8

L1

√
L2

, (B.21)

∂

∂x6

(Lfh3) =
x1x3x4 cos x5 sin x6 + x2x3x4 sin x5 sin x6 + (x2

1 + x2
2) x4 cos x6

L1

√
L2

=
N9

L1

√
L2

.

(B.22)

Using these definitions the C matrix is now shown as

C =


N1√
L1

N2√
L1

N3√
L1

N4

L2

N5

L2

N6

L2

N7

L1
√
L2

N8

L1
√
L2

N9

L1
√
L2
,

 , (B.23)

where the determinant of this matrix is shown as

det |C| = x2
4 cos x6√
L1L2

=
x2

4 cos x6√
[(x1 − pn)2 + (x2 − pe)2 + (x3 − h)2] [(x1 − pn)2 + (x2 − pe)2]

.

(B.24)
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B.3 Matrix F

To calculate the F matrix we first define

L2
fh =

∂(Lfh)

∂x
f(x) =


g1(x1, ..., x6) + N1√

L1
x7 + N2√

L1
x8 + N3√

L1
x9

g2(x1, ..., x6) + N4

L2
x7 + N5

L2
x8 + N6

L2
x9

g3(x1, ..., x6) + N7

L1
√
L2
x7 + N8

L1
√
L2
x8 + N9

L1
√
L2
x9

 , (B.25)

where gi(x1, ..., x6) denotes a generic function of the states x1 through x6. To get the F

matrix we only need to take the partial derivatives with respect to the states x7, x8, and x9

which means the generic functions gi(x1, ..., x6) will have no effect. The partials for the F

matrix are now calculated as

∂

∂x7

(L2
fh1) =

N1√
L1

, (B.26)

∂

∂x8

(L2
fh1) =

N2√
L1

, (B.27)

∂

∂x9

(L2
fh1) =

N3√
L1

, (B.28)

∂

∂x7

(L2
fh2) =

N4

L2

, (B.29)

∂

∂x8

(L2
fh2) =

N5

L2

, (B.30)

∂

∂x9

(L2
fh2) =

N6

L2

, (B.31)

∂

∂x7

(L2
fh3) =

N7

L1

√
L2

, (B.32)

∂

∂x8

(L2
fh3) =

N8

L1

√
L2

, (B.33)

∂

∂x9

(L2
fh3) =

N9

L1

√
L2

. (B.34)

Using these definitions the F matrix is now shown as

F =


N1√
L1

N2√
L1

N3√
L1

N4

L2

N5

L2

N6

L2

N7

L1
√
L2

N8

L1
√
L2

N9

L1
√
L2

 . (B.35)
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This matrix is exactly the same as matrix C, so the determinant of F is shown as

det |F | = x2
4 cos x6√
L1L2

=
x2

4 cos x6√
[(x1 − pn)2 + (x2 − pe)2 + (x3 − h)2] [(x1 − pn)2 + (x2 − pe)2]

.

(B.36)

The final step is to calculate the determinant of the observability matrix which was

previously shown to be det |O| = det |A| det |C| det |F |. Using the expressions we have

derived for the determinant of the A, C, and F matrices, the determinant of the observability

matrix is shown as

det |O| = x4
4 cos2 x6

[(x1 − pn)2 + (x2 − pe)2 + (x3 − h)2]3/2 [(x1 − pn)2 + (x2 − pe)2]3/2
. (B.37)

There are two cases when this determinant equals zero. The first case is when x4 = 0. This

means that the ground speed Vg of the intruder is equal to zero. If the intruder has zero

velocity then there is no course angle or flight path angle which means these two states are

unobservable and therefore the determinant of the observability matrix will be equal to zero.

The second case is when x6 = mπ
2
,m = 1, 3, 5, .... This means that the flight path angle γ is

either 90 degrees up or 90 degrees down which means the aircraft is traveling straight up or

straight down. If this is the case then there is no course angle which means it is unobservable

and therefore the determinant of the observability matrix will be equal to zero.
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APPENDIX C. GENERAL PURPOSE DAA SIMULATOR

The DAA problem contains several subcomponents that require significant develop-

ment processes. In the development of these types of systems, a simulation environment is

typically used to test the validity of each of the individual subcomponents. The use of a

simulation environment is particularly useful for DAA systems, as the types of encounter

scenarios required by this system include multiple aircraft directed at one another to pro-

vide potential collision conflicts. By first testing these DAA systems in simulation, we help

prevent potential accidents that may lead to the injury or destruction of people, animal life,

hardware, or personal property. In this appendix we describe the development of a general

purpose DAA simulator that includes components originally developed in Ref. [30].

C.1 Desired Capabilities

At the most basic level, a DAA simulator needs to contain a model of the ownship

aircraft and at least one intruder aircraft. It also needs to include some method of detecting

and tracking the intruder aircraft, an algorithm to determine when potential collision threats

are expected to occur and when the ownship should perform an evasive maneuver, and an

algorithm to plan new flight paths to avoid the potential collisions. Finally, the simulator

needs some way of collecting and analyzing important data gained from the simulation.

While these capabilities are the minimum requirements necessary to implement a basic

DAA simulator, additional capabilities are both necessary and helpful in the development

of a robust DAA systems. A few of these additional capabilities include the ability to

display the simulation as it is running, record movies of the simulation, change the playback

speed of the simulation or any other parameters, increase the number of intruder aircraft,

select between alternate DAA function implementations for comparison purposes, easily

add new DAA function implementations, implement various DAA functions using compiled
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languages to increase the speed of the simulation or using interpreted languages for faster

initial development time, run Monte Carlo simulations, and many others. In adding each of

these capabilities, another convenient feature is the ability to turn each option on and off, or

change their value, within a centralized configuration function easily accessible to the user.

Given the fact that such a simulator would potentially be created and used among

multiple researching students and professors, and shared with external interested parties, one

final attribute for the simulator is needed. This final attribute includes the use of version

control to prevent the loss of valuable working implementations, and the storage of this

version-controlled simulator on a remote repository that can easily be accesses by all those

who need access to this simulation. By using a remote repository to save a version-controlled

DAA simulator, future research efforts can easily be appended, resulting in a single up-to-

date version of a DAA simulator.

By adding the optional capabilities listed, the DAA simulator will become a more

useful tool in the development of a DAA solution. Also, by making this simulator config-

urable, the research goals of various users can more easily be achieved as it allows for the

personalization of the DAA simulator. Finally, the ultimate goal of the DAA simulator is to

provide a stepping stone in the implementation of the DAA subsystems with actual hard-

ware. By creating a method for integrating functions written in compiled languages into the

simulator, we are facilitating the portability of these functions to microprocessor hardware,

which would certainly be required by small UAS with limited payload capabilities.

C.2 Previous Simulator

A general purpose DAA simulator was previously developed at BYU by Robert Klaus

using Simulink/Matlab [30]. This simulator met all of the basic requirements defined in

the previous section, and provided several of the other optional capabilities including the

ability to display the simulation as it is running, record movies of the simulation, change the

playback speed of the simulation, and the use of compiled C-MEX s-functions to increase

the speed of the simulation.

This simulator modeled a single ownship and intruder UAS using high fidelity dy-

namic models. This simulator also used a basic radar model with a limited field of view of

195



approximated 135 degrees in azimuth and 15 degrees in elevation. This radar provides mea-

surements of range, range rate, and bearing. The radar module used within this simulator

was only set up to accept the states from a single intruder aircraft, and to output a single set

of radar measurements corresponding to this same intruder aircraft. The tracking algorithm

used within this simulator was a basic EKF for tracking a single intruder aircraft, and as

a result the output of the tracking module was only designed to carry the estimated state

information of a single intruder aircraft. Finally, this simulator did not contain a convenient

way to use modular function blocks, but was set up with a single block type for each function

module.

C.3 Improved Simulator

The previous DAA simulator provided an excellent starting point in the development

of a more generic and modular simulator. The following two sections will describe the

improvements we have made in the new simulator, followed by graphical depictions of how

this simulator is setup within Simulink.

C.3.1 Capabilities Achieved

The first and most notable improvement that has been made to the DAA simulator

is the addition of an increased number of intruders. This has been done using a single

intruder module, where the contents of the module have been parameterized to simulate

a user specified number of aircraft. Additionally, all of the buses that route information

related to the intruders have been parameterized. One of these buses is used to send the state

information of each of the aircraft to the tracking module contained within the simulator.

This tracking module has also been parameterized to accept an increased number of intruder

aircraft.

The second improvement has to do with making the simulator more modular. Within

Simulink there are four basic methods for implementing a user-defined function that we

are interested in using. The first method uses an interpreted Matlab function, the second

method uses a level-1 Matlab s-Function, the third method uses a level-2 Matlab s-Function,
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and the fourth method uses a compiled level-2 C-MEX s-function. We have added the

capability to specify the type of user defined function block used for each module within the

simulation. After the user specifies the desired function types for each function, the model

is automatically occupied with each of these function-block types. In addition to specifying

the the type of function used in the simulation, the user is also able to select from a variety

of specific function implementations. These implementations could, for example, be written

using different algorithms, or using code from various contributors. Since the user is now

capable of selecting a variety of specific function implementations, we have standardized a

method for integrating new user-defined functions. This standardized approach allows the

user to quickly implement new functions they are writing within the simulation.

For the previous two contributions mentioned, we have describe how the input from

the user can be used to select appropriate options to be used within the current simulation

run. These options, and many other options specified by the user have been collected into

a single Matlab setup script. This setup script provides a readily accessible location, where

the user does not have to dig through significant amounts of code to change basic operations

of the simulation. Additional details on how to use this simulator are contained within a

README.txt file. This file contains all the necessary information needed to get the simulator

up and running for the first time and for adding user-defined functions. Finally, this new

DAA simulator is now version controlled and stored on a remote repository that can be easily

accesses by all those who need this simulation.

C.3.2 Organizational Structure

We now provide a high-level overview of the structure of this new DAA simulator.

At the highest level there are four main blocks as seen in Figure C.1. The large blue block

contains the ownship aircraft dynamics and control, and the necessary DAA algorithms. The

large red block contains the parameterized intruder aircraft dynamics and control. The other

two smaller blocks include a green block that generates environmental wind, gravity, and air

density values, and a gray block that contains all of the software necessary to visualize the

results of the simulation.
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Figure C.1: Top level of general DAA simulator.

The contents of the ownship and intruder blocks are seen in Figure C.2, where we

notice that the control and dynamics of the aircraft are modeled using the autopilot structure

developed in Ref. [19]. This autopilot structure includes a path planner, path manager, path

follower, autopilot, unmanned aircraft dynamic model, and a state estimator. The last

MAV block in Figure C.2 include two subcomponents including the autopilot block and the

unmanned aircraft block shown in Figure C.3.
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Figure C.2: Autopilot structure used for the ownship and intruder aircraft.
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Figure C.3: Contents of MAV block.

For the ownship block, two additional subcomponents have been added as seen in

Figure C.4. One of these subcomponents is shown by the red block, which is the target

detection and tracking block. This block also has two subcomponents within it shown in

Figure C.5. One is for the sensor model that is responsible for detecting the intruder aircraft,

and the other is for the tracking algorithm that is responsible for estimating the states of

the intruder aircraft. The second main subcomponent that has been added to the ownship

block is shown by the green block. This block is the collision avoidance planner block, which

contains a function that implements both the collision detection and collision avoidance

algorithms.
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Figure C.4: All blocks used for the ownship including the target detection and tracking block

and the collision avoidance planner block.

Figure C.5: Contents of TargetDetectionAndTracking block.
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Within each of the subcomponents in this simulator, we have defined a generic con-

figurable subsystem. An example of the contents of one of these subcomponents is seen in

Figure C.6, where the configurable subsystem is shown by the large gray block.

Figure C.6: Location of configurable subsystem within main Simulink block.

Each of the configurable subsystems must be stored in a user defined Simulink library

model, as shown in Figure C.7. The first four blocks in this library contain an interpreted

Matlab function, a level-1 Matlab s-Function, a level-2 Matlab s-Function, and a compiled

level-2 C-MEX s-function, respectively. The fifth block is the configurable subsystem block,

which selects between each of the previous four blocks based on user input.
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Figure C.7: Configurable subsystem defined in a Simulink library, used to choose between 4

function types.

This general purpose DAA simulator was used in the development of various simula-

tion results shown throughout this thesis including the ER-RANSAC tracking results, and

the complete ground-based radar DAA system. This simulator was a vital tool in moving

from the simulated ground-based radar DAA system to the actual DAA flight test using a

real radar hardware.
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