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ABSTRACT

Art to Engineering: Curved Folding and Developable Surfaces
in Mechanism and Deployable Structure Design

Todd G Nelson
Department of Mechanical Engineering, BYU

Doctor of Philosophy

This work investigates how curved-crease origami and the developable surfaces which
compose it can be transitioned to engineering design. Methods for creating flexible, tailorable-
property surfaces that function as thick panels in place of paper are presented. Concepts from
curved-crease origami and developable surfaces that can describe and extend engineering appli-
cations are discussed and demonstrated. These concepts are particularly beneficial to applications
where curved surfaces are integral to the function, deployability is desired, and planar manufactur-
ing could be beneficial.

The first part of this work uses arrays of compliant elements to create flexible-tailorable
property surfaces. The key feature to these arrays is the alignment of the most flexible bending axis
of the individual elements to the ruling line arrangement of a developable surface. This alignment
can enable bending of thick panels while maintaining lower stresses, a quality necessary for the
transitioning of curved-crease origami into thick materials. The stiffness and stress of these arrays
is modeled and physical prototypes are demonstrated. Additionally, shape factors are developed
for these compliant arrays (CAs) to facilitate material selection for the panels and understand how
the geometry of the array changes the effective properties of the panel.

The second part of this work describes and demonstrates several concepts of curved-crease
origami and developable surfaces that can benefit mechanism and structure design, particularly
in the context of rolling-contact mechanisms. The design of a rolling-contact joint connected by
flexible bands similar to a Jacob’s Ladder toy is extended through incorporating curved creases
into the design. The resulting design is deployable from a compact state to a functional state and
can be manufactured from a single plane and folded into shape.

Mathematical formulations are presented to describe the classes of developable surfaces
in terms of properties which are frequently important in mechanism design. These natural equa-
tions for a single class of developable surface are conducive to modeling the folding motion of
rigid-ruling developables, developables whose ruling lines do change location in a surface during
folding. These formulations are used to generalize the design of rolling-contact joints to a family
of joints capable of single degree of freedom spatial motions, being manufactured from a plane,
and exhibiting a tailorable force response. Finally practical design suggestions for the implementa-
tion of rolling-contact joints is given. These include methodology to create sunken flexures which
serve to increase the normal force between rolling bodies to prevent slip.

Keywords: developable, curved folding, origami, deployable
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CHAPTER 1. INTRODUCTION

1.1 Problem Statement

Although origami models were created for art or amusement, they represent the edge of

a field consisting of complex mathematical relationships spelled out in a spatial form, kinematic

structures made with nearly zero-thickness panels, and avenues towards constructing deployable

mechanisms and structures. Furthermore, if certain constraints in traditional origami, such as keep-

ing creases as straight lines, are relaxed then interesting and complex bending surfaces emerge in

the paper models. While the aesthetic appeal of origami is well known, mathematicians and engi-

neers have joined artists in investigating what potential origami holds for progressing theory and

the creation of real-world products. This thrust prompts the primary hypothesis of the dissertation:

Knowledge from curved-crease origami, and the developable surfaces which form it, can be

translated into engineering design, beginning with the development of novel tailorable-property

compliant surfaces, and demonstrated through extending rolling-contact joint design.

1.2 Background

The earliest recorded forms of curved-crease origami occurred during an era of napkin or

linen folding which peaked during the 17th century [1]. These patterns were used to adorn tables

as decorative pieces and eventually became status symbols for high-class society. After the peak

of the movement much of the art of napkin folding was lost. Joan Sallas has worked in recreating

these techniques from historical records and engravings and published a book about it in 2010 [2].

Early curved-fold origami forms in paper were recorded in the late 1920s at the Bauhaus,

a German art school [3]. Bauhaus instructor Josef Albers used curved-crease paper folding as a

teaching tool in his classroom. Later other artists would record works utilizing curved creases,

including Hiroshi Ogawa and Kurt Londenberg [4, 5].
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Rigorous study of curved-fold origami began in the 1960s and 1970s when two computer

scientists, David Huffman and Ron Resch, contributed pioneering work. Ron Resch, an artist

and computer scientist at the University of Utah, used his background in computational graphics

to construct curved-crease surfaces, but published relatively few papers about his curved-folding

work [6,7]. David Huffman, who is remembered more often for his data compression contributions,

created an expansive body of curved-fold sculptures. Like Resch, he published little about his paper

folding [8].

Notwithstanding the many works of curved folding by Resch and Huffman, curved-crease

models remain difficult to design and understand. Recently Duks Koschitz documented and cate-

gorized Huffman’s collection of curved-crease sculptures and notes to illuminate design strategies

with curved creases [1]. This comprehensive work includes and expands upon four strategies re-

viewed by Demaine et al. [9] which are used to understand curved-crease pieces. These strategies

are a differential geometric analysis, a constructive geometric approach, the inverse calculation of

a crease, and a discrete geometric approach. These strategies represent the current state of the art

in understanding curved-crease models, but a general approach to describe the folding process and

to be able to generate novel forms is yet to be determined.

To understand these strategies it is necessary to understand curved-crease origami as com-

binations of developable surfaces. While a more thorough treatment of developable surfaces is

provided in the background of Chapter 2, here we mention several key points to introduce the

reader to developable surfaces.

Developable surfaces result from bending a plane with no stretching or tearing [10]. Be-

cause bending is the only action to form these surfaces it is common to relate a curved or formed

developable surface to its planar unrolled or unwrapped state. Distances along the surface are

equivalent for both the curved and unrolled states. Another important characteristic of developable

surfaces is that a developable surface is composed of straight lines, called ruling lines. Constraining

ourselves to three-dimensional space, these ruling lines qualify developable surfaces as a subset of

a more general classification of surfaces called ruled surfaces [11]. Somewhat surprisingly, devel-

opable surfaces can be decomposed into four fundamental classes. The first class is a plane, where

the orientation of ruling lines is arbitrary. The remaining three classes are curved surfaces. These

are generalized cylinders, generalized cones, and tangent developables. In generalized cylinders
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the ruling lines are parallel to each other. Ruling lines meet at a point for generalized cones. Lastly

for tangent developables the ruling lines are tangent to a space curve. When these fundamental

classes are joined together by aligning ruling lines, reflection of the surface across a plane, or in

some other fashion such that the entire surface remains developable, the surface is referred to as a

composite developable, general developable, or discrete developable [12–14].

As curved-crease origami starts with a planar surface and uses only bending to create a

folded form, it can be viewed as a method to combine developable surface classes together into a

general developable surface.

Using the framework of viewing curved creases as combinations of developable surfaces,

each of the four strategies discussed by Demaine et al. [9] will briefly be presented here as they

represent the state of the art in understanding curved-crease patterns.

Differential geometric analysis approaches curved-fold origami by investigating how the

paper surface behaves locally at a curved crease. Both Resch and Huffman used this approach

in designing some of their curved-fold models [6, 8]. Fuchs and Tabachnikov expanded on this

approach through explicitly defining differential equations governing the behavior of ruling lines

along creases and investigating several observations of how paper creases behave [15]. Duncan et

al. provided a mathematical description for folded developable shapes [16].

The constructive geometric approach builds shapes by reflecting a developable surface

across a plane. An example of using this approach is a cone inverted upon itself as is found in

some compact collapsible umbrellas. The approach is a special case of curved folding, where the

curved crease is contained in a single plane. This plane is also called the osculating plane, as it

reflects the ruling lines from the incoming developable surface to form the complementary surface

moving out of the crease. Jun Mitani has created software based on this approach to synthesize

curved-fold origami based on reflections [17, 18].

The inverse calculation of a crease approach defines the final curved shape and works back-

wards to find the curved crease necessary to achieve the shape [19,20]. A variation of this approach

is investigated by Gattas et al. in describing curved-crease Miura-base patterns [21].

The discrete geometric approach is an attempt to generalize a representation for curved

surfaces so as to predict behavior without as many assumptions as the other three approaches

require. This can be accomplished in a variety of ways including fitting a developable surface to a
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generic surface [22], using a PQ mesh coupled with a optimization algorithm to find a ruling [23],

and simulating a folding based on a known ruling line pattern in a flat state [24].

These four strategies prove useful in the design of curved-crease origami, yet a general

approach to designing novel curved-fold forms still proves elusive.

Curved-crease origami sculptures hold interesting potential not only for decorative art,

but for structures and mechanisms in engineering applications. Several qualities of curved-fold

origami which would enable unprecedented structures and mechanisms are discussed below.

• Like straight-crease origami, curved-crease origami lends itself towards deployable appli-

cations. Complex three dimensional configurations can be moved into a different or flat

configuration for storage or transport. Specific applications which have benefitted from de-

ployable configurations in the past include aerospace applications (such as the deployment of

solar panels and communication equipment), minimally invasive surgery applications (such

as laparoscopic tools), emergency response and outdoor recreational equipment, (such as

shelters), conformable body armor, and portable furniture (such as folding tables and chairs).

• Curved-crease origami can inspire structures which are made from planar sheet goods. As

origami begins as a sheet of paper, similar folding or bending processes on other sheet goods,

such as sheet metal, can be implemented to manufacture origami-inspired products.

• Unlike straight-crease origami, curved creases enable specific curved geometries which can

have engineering applications such as drag reduction, wave and signal collection or disper-

sion, rolling joints, and improved aesthetics.

• Economical and quick prototyping is enabled with curved-fold origami as designs can be

rapidly created in various configurations in paper or chosen from an existing large body of

origami works.

However, using curved-folding origami to facilitate structures and mechanisms is not with-

out its challenges. Many of these challenges are a result of transitioning curved-fold designs to

materials thicker than paper. These challenges, some of which are listed below, are addressed in

this research.
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• High bending stresses can result in the curved panels of curved-crease patterns when tran-

sitioning from paper to thick materials. Failure can result from these stresses both in the

panel itself and also in the creases, or hinges, of the pattern. These stresses also prevent

many curved-folding patterns from being transitioned into thick deployable applications, as

the bending stresses can cause yielding in the material.

• Thick panels can also possess unintended directional stiffness which may resist the move-

ment of the panel into the shape dictated by the curved creases. These opposing forces can

alter the final shape from the intended design of the curved-fold-origami pattern.

• There is not currently a general design method for novel curved-fold-origami structures,

which inhibits the identification and development of curved-folding principles in engineer-

ing design. Addressing this may increase the number of curved-fold-inspired engineering

applications.

1.3 Research Hypotheses

Two research hypotheses were formed to investigate first, how curved-fold origami facets,

or panels, can be transitioned to thick materials, and second, the potential benefits of curved-

folding ideas in engineering design, particularly with the design of rolling joints. These research

hypotheses support the fulfillment of the overall research hypothesis described in Section 1.1.

1.3.1 Hypothesis 1

Flexible, tailorable-property surfaces suitable for use as thick curved-crease origami panels can

be created and analyzed by employing networks of compliant joints.

Description

A novel approach to morphing surfaces was explored to address the challenge curved fold-

ing presents with high bending stresses in panels and the need for specific directional stiffness in

the same panels. The field of lamina emergent mechanisms (LEMs) has created mechanisms which

are designed to be planar manufactured and supply motion out of plane [25–28]. By placing these
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mechanisms into arrays a customizable surface can be created with variable directional bending

stiffness, a specified orientation of ruling lines and thus a specific curvature, and a selectable com-

pressive or tensile stiffness. In addition, the bending stresses in the panel at large deflections can

be dramatically reduced through the use of lamina emergent arrays.

Chapters Addressing Hypothesis 1

• Chapter 2: Knowledge from compliant mechanisms, particularly lamina emergent mecha-

nisms, is used to construct tailorable morphing surfaces. Methods on how to incorporate

these morphing surfaces into curved-crease origami patterns are presented. Models are char-

acterized and validated to describe the stiffness properties of these novel morphing surfaces.

• Chapter 3: Shape factors are presented to quantify the effect of placing compliant arrays in

a sheet to create a morphing surface. These factors can be used in conjunction with material

property charts to visualize the effects of converting a sheet material into a morphing surface

through compliant arrays.

1.3.2 Hypothesis 2

Curved-crease origami concepts and developable surfaces can be used to describe and extend

several types of engineering applications, particularly in the design of rolling-contact joints.

Description

Concepts from curved-crease origami and the developable surfaces which compose them

can provide pathways towards deployability, compactness, and design-space exploration of mech-

anisms that rely on curved surfaces to function. To explore this potential, developable surfaces are

mathematically modeled in a way conducive to engineering design and analysis. These models are

leveraged to explore rolling joints.

Rolling joints, or joints which rely on two surface pairs rolling over one another to achieve

motion, are a strong example of how an engineering application can be modeled and theory ex-

tended using curved-crease origami concepts. For example, the rolling joint cams can be made
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deployable to enable the joint to stow in a flat, collapsed position. Furthermore, the fundamen-

tal architecture of a COmpliant Rolling Element (CORE), a rolling joint using interlaced flexible

bands to hold the two rolling surfaces together, can be described using concepts of curved-crease

origami. This modeling in conjunction with knowledge of curved-crease principles enables de-

signers to explore a new area in the rolling-joint design space where novel architectures, such as

conical and tangent-developed rolling joints are developed. In a collaborative work stemming from

this research certain characteristics of rolling joints, such as an instantaneous axis of rotation which

moves during the joint motion, were leveraged to create a thickness-accommodation technique for

folding thick origami models.

Chapters Addressing Hypothesis 2

• Chapter 4: Deployability in rolling joints, particularly the CORE architecture, is achieved

through the use of curved-crease origami concepts.

• Chapter 5: A mathematical model of developable surfaces is presented that highlights prop-

erties of the surface important in engineering design and analysis. In particular, the curva-

tures of a prinicpal curve, the cross curve, are used to describe a single-class developable

surface. The material in this chapter sets up an exploration of more general rolling-contact

joints.

• Chapter 6: The CORE architecture is described in terms of developable surfaces enabling

further exploration of the design space of this type of rolling joints. Kinematic and kinetic

models of these joints are presented and the specific case of static balancing is discussed.

• Chapter 7: A study is carried out of how rolling joints can be feasibly implemented. This

work builds on the work of this dissertation and collaborative work which investigated how

custom rolling joints can be leveraged to create a thickness-accommodation technique for

folding thick origami models.
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1.4 Overview of Organization

This dissertation is composed of chapters that are meant to be able to stand alone. There-

fore, each chapter contains its own introduction and conclusions. A section is included at the first

of each chapter to provide the reader with extra information about the chapter, such as where the

content of the chapter has been published, but also to provide a framework to guide the reader in

seeing the connections between the chapters. The notation and terminology is consistent within

each chapter. Occasionally there are terms which have evolved as this work has progressed. To

provide consistency with the other published versions of the chapters, the terminology has been

left to match the other publications with any changes explained in the first section.
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CHAPTER 2. FACILITATING DEPLOYABLE MECHANISMS AND STRUCTURES
VIA DEVELOPABLE LAMINA EMERGENT ARRAYS

1Imagine that as an engineer you’ve found an exquisite curved-crease origami piece that

shows promise as a potential solution to an engineering challenge involving deployable curved

surfaces. It won’t take long for the elephant in the room to emerge from its corner. While paper

is quite an amazing material, it is not the best candidate for many engineering applications. This

leads us to a fundamental question for this work and the subject of this chapter: How does one

move curved-crease origami out of paper?

2.1 Introduction

The objective of this chapter is to create a method to mathematically model and design

large-curvature, developable structures suited to deployable applications using lamina emergent

arrays. These arrays are networks of lamina emergent joints, which are compliant joints made

from a single layer of material. The principles presented in the chapter enable the construction

of developable surfaces in thick or brittle materials which often reside outside the design space

when working with sheet material. It also explores how greater elastic deflection can be achieved

in sheet products. This increased deflection lends itself towards deployable mechanisms requiring

large elastic deflection. These networks of lamina emergent joints can also create a structure that

is biased to move along a specific deployment path.

Developable surfaces have emerged as subjects of interest not only to mathematicians, but

engineers and artists as flat sheets are morphed into intriguing and complex shapes which can

be used in automobiles, boats, architecture, furniture, and clothing construction. Developable

surfaces also take a prominent place in origami, specifically curved-fold origami. However, the

1This chapter is also published as Nelson, T.G., Lang, R.J., Pehrson, N.A., Magleby, S.P., and Howell, L.L.,
Facilitating Deployable Mechanisms and Structures via Developable Lamina Emergent Arrays, Journal of Mechanisms
and Robotics, ASME, Vol. 8, pp. 031006-10, DOI: 10.1115/1.4031901, 2016 [29].
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transition between the mathematical descriptions and paper-thin origami into engineering mate-

rials and structures presents some unique challenges. These challenges include the high bending

stresses that develop when a thick, stiff material is bent to form the desired developable surface.

These bending stresses can be reduced by using arrays of previously developed torsional and bend-

ing joints. Furthermore, particular placement of the torsion hinge axes along the ruling lines of the

developable surface results in a configuration where stresses are reduced effectively. This method

thus extends the range of elastic motion for engineering materials utilized in deployable mecha-

nisms and creates a structure that is inclined to moved into a specific shape.

2.2 Background

2.2.1 Developable Surfaces

A developable surface is formed from a flat plane by the process of bending, but not stretch-

ing or shrinking [10]. Leonhard Euler and Gaspard Monge pioneered the first of many studies of

these intriguing surfaces [30,31]. These surfaces possess the attribute of being isometric, meaning

that a distance between two points on the flat undeveloped plane will be equivalent to the distance

between the two corresponding points on the developed surface [10]. Developable surfaces are a

subset of ruled surfaces when limited to R3 space [11]. Ruled surfaces are characterized by the

quality that for each point on the surface there exists a straight line, known as a ruling line or

generating line, lying upon the surface through the point. The ruling line does not need to charac-

terize one of the principal curvatures at the point in a ruled surface. However, for the surface to be

developable, the additional constraint is imposed that the ruling line must be one of the principal

curvatures. This leads to the useful mathematical definition of a developable surface that the Gaus-

sian curvature, or product of the two principal curvatures, at all points of a developable surface is

zero. Another alternative but useful definition of a developable surface is the normal of the tangent

plane to the surface does not change direction when moving along the ruling lines [10]. Lastly, a

developable surface can be considered the envelope of a one-parameter family of planes [10].

In addition to the trivial case of the plane, there are three fundamental classes of devel-

opable surfaces: generalized cylinders, generalized cones, and tangent developed [32]. These are

also referred to as torsal ruled surfaces and are shown in Fig. 2.1. Generalized cylinders contain
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Cylinder (Parallel 

Ruling Lines)
Cone (Ruling Lines 

Meet at a Point)

Tangent Developed (Ruling 

Lines Tangent to a Curve)

Figure 2.1: The three classes of developable surfaces: cylinder (left), cone (middle), and tangent
developed (right).

Figure 2.2: Example of a general developable surface in an unfolded and folded configuration with
ruling lines shown.

ruling lines parallel to each other. Generalized cones contain ruling lines which meet at a point

on or off the actual surface. Tangent developed surfaces consist of ruling lines that correspond to

the family of tangent lines of a space curve. More complex developable surfaces can be created

by combining the different classes [11]. This is achieved by joining a developable patch of a cer-

tain class to another by aligning the ruling lines [33] or reflection of a patch across the osculating

plane at each point in a crease [15]. Combinations of torsal ruled surfaces which retain the prop-

erty of being developable have been named discrete developable surfaces, composite developable

surfaces, or general developable surfaces [12–14].

Curved-crease origami is intrinsically tied to developable surfaces because curved creases

tie together developable patches. While much of the field of curved folding is yet unexplored, a

summary of curved folding research is set forth in an article by Demaine et al. [9] and some of the

11



best known curved folding work comes from David Huffman [8] and Ron Resch [6]. Mathematical

descriptions of curved folding were furthered by Fuchs et al. [15] and Duncan et al. [16]. Recently

David Huffman’s work has been further analyzed by Demaine et al. and new insights into the

design of curve-folded origami have been explained [1, 34, 35].

2.2.2 Lamina Emergent Mechanisms

Like developable surfaces Lamina Emergent Mechanisms (LEMs) are also formed from

the flat plane. LEMs are defined as mechanical devices fabricated from planar materials (laminae)

with motion that emerges out of the fabrication plane [26]. These mechanisms draw upon flexi-

bility to achieve their motion and are therefore considered a subset of compliant mechanisms, or

mechanisms that use flexible members to achieve at least some of their mobility [36]. The main

benefits of LEMs include planar fabrication, easily scalable to the micro-level, reduced part counts,

lack of friction contacts, and a compact size.

Delimont et al. explored various types of joints suitable for LEMs [27, 28], particularly

for origami-inspired mechanisms. This study utilizes several of these joints in specific arrays to

create developable surfaces. These joints exhibit a primary motion similar to folding and can be

manufactured using two-dimensional geometry. The joints have been modeled with an equivalent

stiffness, Keq, to represent the rotational stiffness about the joint where

Keqθ = T (2.1)

with T being the torque applied across the joint and θ is the angular deflection of the joint.

A summary will be presented of the geometry and equations of seven joints. Six of the

joints are pictured in Figure 2.3 and the seventh joint is a simple groove joint. Figure 2.4 shows the

parameters connecting the equations and the geometry for two of the joints. While the geometry

of the other joints is defined similarly, the reader is referred to the literature [27, 28] for further

clarification of the parameters of the joints not shown in Fig. 2.4.
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Figure 2.3: A sample of joints suitable for constructing developable surfaces.

The Outside LET Joint

The Outside Lamina Emergent Torsional (Outside LET) joint shown in Fig. 2.3 and Fig. 2.4

enables large angles of rotation in its primary folding direction but is subject to secondary motions

of torsion, lateral bending, compression, and tension. It does not have a stable center of rotation in

folding. Jacobsen et al. [37] developed a spring model of the joint for a folding motion to find an

equivalent stiffness. The equivalent stiffness can be expressed as

Keq =
2KBKT

2KB +KT
(2.2)
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Figure 2.4: Geometric parameters for the Outside LET and Mixed Tension Resistant joints. The
regions of bending and torsion are labeled on the Outside LET for the moment loading shown.

The spring constant of the torsion legs, KT , is

KT =
Gwt3

(
1
3 −0.21 t

w

(
1− t4

12w4

))
LT

(2.3)

where w≥ t and G is the shear modulus.

The spring constant of the bending area, KB, is given by

KB =
EI
LB

with I =
bt3

12
(2.4)

The Inside LET Joint

The Inside Lamina Emergent (LET) joint shown in Fig. 2.3 also exhibits torsion, lateral

bending, compression, and tension as secondary motions while allowing for large deflections in

the folding motion. With large magnitudes of compression or tension, the Inside LET shows a
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stiffer response than the Outside LET. The spring model for the Inside LET yields an equivalent

stiffness expressed as

Keq =
KBKT

KB +KT
(2.5)

where KT and KB are given by Eq. 2.3 and 2.4.

Torsion Parallel Joint

The Torsion Parallel joint shown in Fig. 2.3 shows an increased stiffness in tension and

compression when compared to the Outside or Inside LET joints and also provides a more fixed

center of rotation. The stiffness of this joint in folding is given by

Keq =
2KT KB

KB +KT
(2.6)

where KT and KB are given by Eq. 2.3 and 2.4.

Torsion Parallel With Buckling Member Joint

The Torsion Parallel with Buckling Member joint shown in Fig. 2.3 provides better resis-

tance to tension and compression loads as compared to the Inside and Outside LET joints by the

addition of a member to withstand a buckling motion induced by the loads. The equivalent stiff-

ness of the joint in folding reduces to the same formula as the Inside LET joint as shown in Eq. 2.5

with KT and KB being described by Eq. 2.3 and 2.4.

Mixed Tension Resistant Joint

The Mixed Tension Resistant joint, where φ ranges from 0 to π/2 radians, is depicted in

Fig. 2.3. This joint is useful when greater resistance to tension than compression is desirable. The

stiffness can be characterized by the following equation with φ in radians

Keq =

∣∣∣∣1− 2φ

π

∣∣∣∣0.1096

KB cos2
φ +KT sin2

φ (2.7)
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with KB and KT given by

KB =
2ρEI

LT
with I =

wt3

12
(2.8)

KT =
2Gwt3

(
1
3 −0.21 t

w

(
1− t4

12w4

))
LT

(2.9)

In these equations ρ is commonly approximated as 1.5164 [28], w is the width and t is the thickness

of the compliant section with w≥ t, E is Young’s modulus, G is the shear modulus, and LT is the

length of the compliant section.

Mixed Compression Resistant Joint

When a stiffer resistance to compression is desired, the Mixed Compression Resistant Joint

as shown in Fig. 2.3 is a good candidate. The stiffness of this joint can also be described by Eq.

2.7, 2.8, and 2.9 where φ ranges from π/2 to π radians.

Groove Joint

The groove joint is simply an area of reduced cross section in a panel and is simple to

create. The center of rotation on a groove joint is relatively stable throughout its bending motion.

A living hinge can be considered as a groove joint with a very small stiffness in bending. The

expression for the equivalent stiffness of the groove joint is

Keq =
GWH3

(
1
3 −0.21 H

W

(
1− H4

12W 4

))
L

(2.10)

where G is the shear modulus, H is the height of the groove, L is the depth of the groove, and W is

the length of the groove and panel. For a diagram of these parameters the reader is referred to the

literature [28].
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2.2.3 Current and Past Applications

Previous research has yielded intriguing methods to create 3D geometry from sheet mate-

rial. One of the oldest methods of creating 3D structures from sheet material is origami. Origami

uses combinations of paper folds to create a 3D structure. You [38] discussed the advantages and

challenges of origami in creating folding structures. Dureisseix [39] presented an overview of

how origami patterns have been applied in engineering applications, such as deployable structures.

Cylinders, spirals, and bi-directional sheets were created using microassembly techniques based

on origami by Jamal et al. [40]. Origami metamaterials were investigated Silverberg et al. [41].

Lee et al. [42] explored how the origami waterbomb base, a common origami-fold pattern, could

be utilized as a dynamic wheel structure. Energy absorption applications in crushing of thin walled

square tubes with origami structures was analyzed by Ma et al. [43]. An interesting method of self-

folding origami structures from thin polymer material and controlled heat absorption was presented

by Liu et al. [44]. A self folding robot was created by Felton et al. [45]. Kirigami techniques have

been used to investigate the creation of custom honeycomb cross sections from flat sheets [46].

Miyashita et al. [47] used self folding with curved creases to create propellers and Gattas et al. [21]

explored how curved creases and panels can be used in Miura-derivative prismatic base patterns.

Construction of developable surfaces has received attention from a variety of industries,

including ship building, automotive, architecture, clothing and footwear, computer animation, and

image processing. A process of designing shoe uppers using triangles and optimizing the surface

to make it more developable has been explained by Chung et al. [48]. Kilian et al. [23] created an

algorithm to approximate a nearly developable structure as a combination of developable patches,

culminating in a case study of a fully developable car body. Pottman et al. [49] approximated

freeform architectural surfaces by using developable panels connected together. Further approxi-

mation of freeform surfaces was explored using single and doubly curved panels by Eigensatz et

al. [50].

This chapter presents a novel method of creating developable surfaces that will enable many

of these processes to be applied to thicker materials in addition to allowing a greater elastic range

of motion.
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Approximate Discrete Surface

Exact Curved Surface

Figure 2.5: Discretized surface model using hinges and panels.

2.3 Method

Each of the joints discussed in Section 2.2.2 can be considered as the fundamental unit

of an array. These units can be connected together in parallel, series, or a combination of both.

Deployable developable surfaces, that is surfaces which can move back and forth between a flat

configuration and a developed surface without yielding, can be created with these joint arrays. It

should be noted that while deployable structures normally lock into two positions, the surfaces

created by these joint arrays have a single stable position to which the surface wants to return.

Additional hardware could be used to lock the surface into the deployed shape. Only an approx-

imation of the surface is possible because the joint arrays cannot create a smooth curved surface

but rather a discrete approximation of a surface. This discretization can be roughly modeled as a

series of pin joints and rigid panels as shown in Fig. 2.5.

While the design space for arrays of joints used to form a deployable developable surface is

vast, several unique properties of developable surfaces cause one specific arrangement to stand out

as particularly efficient in terms of achieving the elastic deflection while maintaining stresses below

the strength of the material. This configuration consists of aligning the folding axis of the joints

to the rules of the developable surface. When the joints are arranged in this fashion, the direction

of the primary motion of each joint is matched to the most extreme curvature of the surface. This

result can be seen from the following informal proof. At each point of a developable surface

the Gaussian curvature vanishes, or restated, the Gaussian curvature is equal to zero. Because
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Figure 2.6: Illustration of the method of aligning the axes of the joints to the ruling lines in a
Mobius strip: (a) before alignment (b) after alignment.

the Gaussian curvature is the product of the two principal curvatures, one can see that at least

one of the principal curvatures at any point is also equal to zero. The direction of this principal

curvature corresponds to the direction of the ruling line. As is discussed in [51], the directions

of the principal curvatures are orthogonal at any point. Thus the direction of the other principal

curvature is orthogonal to the ruling line. The implementation of this method can be seen in Fig.

2.6, where torsion joints of a Mobius strip are not aligned (a) and then aligned to the rules (b).

A finite element analysis (FEA) was performed to investigate the sensitivity of the stress

caused by bending to the alignment the joints along the ruling lines of developable surfaces with

parallel ruling lines. An array of torsional joints was created as shown in Fig. 2.7 with a thickness

of 1.143 mm (0.045 inch) and torsion bars 22.225 mm (0.875 in) long with a width of 1.651 mm

(0.065 inch). An isotropic material with a modulus of 207 GPa (30x106 psi) and Poisson’s Ratio

of 0.3 was used. Twelve models were created by varying the angle of the torsional joint axes as

measured from the parallel ruling lines from 0 to 20 degrees in increments of 2 degrees. Using

ANSYS (Shell 181) the models were fully fixed at one edge and a displacement load of 7.62 mm

(0.3 in) was applied to the opposite edge orthogonal to the plane of the initially flat surface. While

not a pure bending load, these loading and boundary conditions represent a scenario similar to a

cantilever beam with a tip load. The models were stress converged to within a 10% change of Von

Mises maximum stress.

A graph of the maximum Von Mises stress for each of the models is shown in Fig. 2.8

along with a reference line which shows the maximum stress of a solid plate without a torsional

joint array moved through the same displacement. Images of three cases of the joint arrays (0,
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Figure 2.7: CAD model used in FEA to determine the sensitivity of hinge axis alignment to parallel
ruling lines.
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Figure 2.8: Von Mises stress sensitivity to hinge axis alignment for parallel ruling lines.
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Figure 2.9: Von Mises stress contours of the (a) 0 degree offset model (b) 10 degree offset model
and (c) 20 degree offset model.

10, and 20 degree offsets) are shown in Fig. 2.9. As expected from studies of shear stresses in

rectangular torsional bars, the maximum stress in the 0 degree offset occurs on the outside of the

middle of the wider side of the rectangular torsional beam. In the 10 degree offset model the

maximum shear stress has changed locations and occurs at the base of the torsional bar reflecting a

stress concentration that has developed due to the hinge axis and ruling line offset. Further, in the

20 degree offset model the maximum stress location has changed to the second torsion member

and is similar to the location of the maximum stress of a cantilever beam in bending. As the offset

is increased from 0 to 20 degrees, the stresses grow in a exponential manner with an R2 value of

0.9976.

By using joints which have one axis that is markedly less stiff than any other direction, an

array which is aligned to a particular ruling will resist moving away from the path of developable

shapes characterized by that ruling during the array’s deployment. It may be possible to quantify

this reluctance towards deviation from the path through energy methods or through characterizing

the stiffness of the arrays for motions other than the primary folding motion.

2.4 Mathematical Model

A relatively straightforward mathematical model was created to describe how arrays of

joints function when aligned with the rules of a developable surface. If each joint unit is considered

as a torsional spring with a stiffness, Keq, as described for each type of joint in Section 2.2.2, then

arrays of these joints can be modeled as a network of torsional springs in parallel and series.
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Joints placed along a single ruling line can be considered as torsional springs placed in a parallel

arrangement. This can be described by

Kp =
m

∑
i=1

Keq,i (2.11)

where Kp is the equivalent stiffness of all the joints along the ruling line, m is the number of joints

along the ruling line, and Keq,i is the stiffness of the ith joint along the ruling line.

When multiple ruling lines contain joints Ktot , the total stiffness of the array in bending,

can be found using

1
Ktot

=
n

∑
j=1

1
Kp, j

(2.12)

where n is the number of ruling lines which contain joints and Kp, j is the stiffness of the jth ruling

line as found from Eq. 2.11.

Knowing the angular displacement of each individual unit facilitates the stress analysis

on the torsion bars. Finding this angle is relatively straightforward for parallel ruling lines of

generalized cylinders because the angular displacements of the individual units sum to the angular

displacement of the entire array in bending. However, in the case of generalized cones and tangent

developed surfaces, the combined angular displacement of the individual units is not equal to the

angular displacement of the array when the angular displacement of the array is defined about a

single axis such as shown Fig. 2.10. Rather the sum of the angular displacements of the individual

units represents a total wrapping angle where the axis the angle is measured about changes for each

individual joint.

For a generalized cylinder with parallel arrangements of the same stiffness (i.e. constant

Kp) and equal spacing between the parallel arrangements, the relationship between the total angular

displacement of the array, Θ, and the angular displacement of a parallel arrangement (which is also

the displacement of an individual unit, θ ) is described by

θ =
Θ

n+1
(2.13)

where n is the number of ruling lines containing joints.
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Θ

2R

Figure 2.10: Definition of the total angular displacement of a partially formed cone.

For a generalized cone with parallel arrangements of the same stiffness (constant Kp), and

equal spacing, the relationship between the total angular sweep of the formed array in degrees, Θ

as shown in Fig. 2.10, and the angular displacement of any parallel arrangement in degrees, θ , is

dependent upon not only n, the number of ruling lines containing joints, but also γ , the angle swept

by the planar undeveloped cone as shown in Fig. 2.11. To facilitate simplicity in the formulas, let

ξ = cos2
(

γ

2n+2

)
+

cos
(

γ

n+1

)
−1

2tan2
(

Θ

2n+2

) (2.14)

The angle of any parallel arrangement in degrees, θ , which is also the displacement of the individ-

ual units in the arrangement can be described as

θ = 180− arccos

(
(ξ −1)+(−1−ξ )cos

(
Θ

n+1

)
(ξ +1)+(1−ξ )cos

(
Θ

n+1

) ) (2.15)

The geometry of the formed cone where R is the radius of the formed cone and H is the height of

the formed cone can be related to ξ and r, the radius of the planar undeveloped cone as shown in

Fig. 2.11, by

R = r (1−ξ )
1
2 (2.16)

H = r (ξ )
1
2 (2.17)
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Figure 2.11: Parameters of the planar undeveloped cone.

If the number of joints containing ruling lines is allowed to approach infinity, then the

angular displacement of the joints on the ruling lines, θ , goes to zero and the expression for ξ

becomes

ξ = 1− γ2

Θ2 (2.18)

2.5 Conical Array Pattern Generation

A technique to generate an array pattern for a conical developable surface using torsional

joints is explained in this section. The product of this technique is a network of lines that provide a

cut pattern which will form the array. When using the technique the designer is allowed to choose a

minimum torsion bar width, which is often one of the critical dimensions in determining the stress

present in the developed surface. Using the selected minimum torsion bar width, the technique

finds a pattern which maximizes the amount of ruling lines containing torsion joints as well as

maximizing the length of the torsion bars in order to minimize the stress present in the developed

conical structure.

The steps to generating a conical array pattern are as follows:

• First the designer needs to select a radius for the hole which will be at the top of the cone.

As ruling lines collect towards a focal point, interference between hinges will occur if the

hole is not present. As the hole becomes larger more torsion bars can be placed in the pattern

near the top of the cone and lower stresses will result. Let this radius be called r1.
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Figure 2.13: Introducing additional levels of cuts.

• Next the number of repeating units, N, in the cut pattern (as shown in Fig. 2.12) should

be preliminarily selected. The minimum width of the torsion bars, wmin, can be found by

applying the Law of Cosines with the result

wmin = r1

(
2−2cos

(
γ

N

)) 1
2

(2.19)

where γ is the angle swept by the planar undeveloped cone. The number of repeating units,

and consequently the minimum width, can be selected based on the amount of expected

deflection of each individual unit in conjunction with a stress analysis of a rectangular bar in

torsion.
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• More levels of cuts can be introduced along the ruling lines as shown in Fig. 2.13. The radii

of the circles at which these cuts can be introduced are described by

ri = r1

 1− cos
(

γ

N

)
1− cos

(
γ

2(i−1)N

)
 1

2

(2.20)

where ri is the ith level radius.

• Once these lines have been generated to the desired radius, the designer must choose where

to preserve material to create a continuous structure while maintaining the desired stiffness.

At least one connection must be made between the repeating units to provide continuity,

while more can be put into the pattern to increase resistance to parasitic in-plane movement

of the surface. Figure 2.14 shows examples of two patterns where material is preserved to

provide continuity. The outermost edge cut of the repeating unit can be interrupted at any

point and similar interruptions can occur on at most every other cut line across the pattern to

maintain the function of the torsional units. Also, triangular cuts rather than linear cuts can

be made to cause the minimum torsion bar width to be utilized as much as possible in the

design.

2.6 Structure and Mechanism Examples

Subtractive and additive manufacturing techniques can be used to create structures and

mechanisms using lamina emergent arrays in a variety of materials. The arrays can vary widely in

appearance depending upon the requirements of each application. When selecting attributes of the

arrays, such as n and m, the type of lamina emergent mechanism used as the fundamental unit, and

the geometry of the fundamental unit itself, it is useful for the designer to consider factors such

as the required displacement of the surface, the material being used, the thickness of the material,

and aesthetics. These factors dictate the stress developed in the surface and will help the designer

select array attributes which will enable the array to function without failure.
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Figure 2.14: Examples of cut patterns adjusted in the circled regions to preserve continuity.

2.6.1 Subtractive Manufacturing

Subtractive manufacturing techniques such as milling, etching, laser cutting, and waterjet

cutting can be used to create the lamina emergent arrays in a planar sheet. The two-dimensional

geometry in the following four developable structures was created with a laser cutter.

Figure 2.15 (a) shows a cylinder made of 2.54 mm (0.1 in) cold press illustration board

using the mixed tension resistant joint. A cone made of 4.8 mm (0.19 in) cherry plywood is shown

in (b). This cone uses torsional parallel joints to enable deployment motion and the cut pattern was

generated using the technique described in Section 2.5. For this cone γ = 100 degrees and Θ = 360

degrees with a radius r = 16.17 cm (6.37 in) and inside hole radius r1 = 0.508 cm (0.2 in). Each

ruling line containing a torsion bar is considered to be a ruling line with a joint giving n = 80. The

number of repeating units was selected to be N = 5. These parameters are shown labeled on the

cone in the flat state in Fig. 2.15. From these parameters the height of the formed cone can be

calculated as H = 15.5 cm (6.11 in) from Eqs. 2.14 and 2.17, the formed radius as R = 4.49 cm

(1.77 in) from Eqs. 2.14 and 2.16, and the minimum width of a torsion bar as wmin = 1.76 mm

(0.069 in) from Eq. 2.19.
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Figure 2.15: Examples of lamina emergent arrays to create developable surfaces in materials other
than paper: (a) cylinder (b) cone (c) cone in the flat state with labeled parameters.

Figure 2.16: Crashing Volcanoes transitioned from paper (origami model is shown in the inset) to
acrylic with a fabric backing in its (a) flat state and (b) deployed state.
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Figures 2.16 and 2.17 show curved-fold origami models designed by author Lang that have

been transitioned into thick material [33]. The model shown in Fig. 2.16 is “Crashing Volcanoes”

made of 0.292 cm (0.115 in) acrylic with a fabric backing. This model consists of four conical

developable patches which are joined by splicing together ruling lines and reflecting ruling lines

over a conic line. A single LET joint was patterned in series across the developable patches to

maximize the torsion bar lengths and thus reduce stress in the structure.

The design can be analyzed by separately considering the two distinct conical patches,

the outside blue patch and inside red patch. The parameters for these conical patches are shown

in Table 2.1. In determining n, the number of ruling lines containing joints, each torsion bar

is considered as a joint. For the outside blue patch n is observed to be 44. For the inside red

patch a group of torsion bars near both ends of the conical patch were intentionally made short to

noticeably stiffen the structure in these regions. The resulting number of ruling lines containing

joints was therefore reduced for the inside patch to account for these stiffer ends by only counting

torsion bars which had longer torsion bar lengths, resulting in n = 20. Assuming that each of

the torsion bars have the same angular displacement allows for the computation of the angular

displacement of each joint unit using Eq. 2.15. Note that the planar undeveloped radius, r, is not

required to compute the displacement of each of the torsion bars. Once again disregarding the

stiffer portions of the inside red patch, the geometry of the smallest length torsion bar in both

patches is used to calculate the maximum torsion stress, τmax, induced by the joint displacement

using equations for torsion of rectangular beams [52]. Table 2.1 reports the material properties

used, where G is the shear modulus of the acrylic and Ssy is the material’s shear yield stress.

Figure 2.17 is Lang’s origami model Elliptic Infinity transitioned into 2.692 mm (0.106 in)

medium density fiber-board and 22.86 µm (0.9 mils) metallic glass to create the creases. Metallic

glass is an amorphous metal with properties that make it a suitable material for compliant structures

[53]. The model Elliptic Infinity is based off a single ellipse with ruling lines radiating from the

focal points of the ellipse. The technique described in Section 2.5 was adjusted for each conical

developable patch to create the pattern of torsion joints with hinge axes that match the ruling lines.

The structure in the flat state is approximately 50 cm (19.7 in) wide by 43 cm (16.9 in) tall with a

deployed height of 30 cm (11.8 in).
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Figure 2.17: Elliptic Infinity transitioned from paper (origami model is shown in the inset) to
particle board in its (a) flat state and (b) deployed state.
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Table 2.1: Crashing Volcanoes Conical
Patch Analysis

Outside Conical
Patch (Blue)

Inside Conical
Patch (Red)

Pattern Parameters
Θ 280 deg 280 deg
γ 96.38 deg 263.74 deg
n 44 20
Calculated Joint Displacement

θ 5.84 deg 4.49 deg
Joint Geometry

LT 1.20 cm (0.472 in) 0.622 cm (0.245
in)

t 0.180 cm (0.071
in)

0.163 cm (0.064
in)

w 0.292 cm (0.115
in)

0.292 cm (0.115
in)

Material Properties
G 1020 MPa (148

ksi)
1020 MPa (148
kpsi)

Ssy 38.5 MPa (5.59
ksi)

38.5 MPa (5.59
ksi)

Calculated Max Shear Stress
τmax 13.7 MPa (2.00

ksi)
18.9 MPa (2.75
ksi)

2.6.2 Additive Manufacturing (3D printing)

Additive manufacturing has commonly been used to create complex 3D shapes, yet it also

has the ability to rapidly create lamina emergent arrays which can be designed to be folded or

deployed into a specific shape. Recent research in 3D printing investigates not only how complex

shapes can be accomplished with 3D printing, but how assembly and function can be facilitated

through the use multiple types of materials, deposition processes, and embedding materials [54,

55]. The following two mechanisms show how developable origami patterns can be transitioned

to thick materials using lamina emergent arrays by 3D printing flat designs which are biased to be

assembled, or folded, into a certain structure.

The oriceps are an origami-inspired mechanism for use in robotic surgery applications

where the instrument must be compact for entry into the body through small incisions and deployed
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Figure 2.18: 3D printed curved-fold oriceps in its (a) flat printed state (origami model which
provided inspiration is shown in the inset) and (b) folded, functional state.

to its functional state after entering the body [56]. The origami pattern used in the oriceps can be

adapted to a curved crease pattern which is developable. A lamina emergent array of groove joints

can be specified along the ruling lines and curved creases of the pattern. 3D printing was used

to create this lamina emergent array as shown in Fig. 2.18 (a) from polylactic acid (PLA) on

a Makerbot Replicator 2. The compliant reduced cross sectional area in the groove joints was

created by printing two layers of PLA with the tool path orthogonal between the two layers. The

build time was 25 minutes and required 5 grams of PLA. The folded, functional oriceps are shown

in Figure 2.18.

The deployable compliant rolling contact element (D-CORE) is a curved-crease inspired

mechanism which can be planar manufactured and folded into its functional state as a compliant

rolling hinge [57]. Groove joints were placed upon the ruling lines and curved creases of this

design similar to the oriceps pattern and the flat pattern was 3D printed. Each D-CORE required 3

grams of material and 17 minutes to print in its flat configuration shown in Fig. 2.19 (a). The joints

where folded and attached to rigid panels as shown in Fig. 2.19 (b). With the D-CORE hinges

the panels can undergo nearly 360 degrees of rotation. The hinged panels from Fig. 2.19 (b) were
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Figure 2.19: 3D printed D-CORES in (a) flat printed state and (b) folded state connecting two
panels with nearly 360 degrees of rotation.

compressively loaded with the panels 180 degrees from each other. The hinges failed at a load of

approximately 220 newtons (49.5 pounds).

2.7 Conclusion

This chapter has demonstrated a method to create developable structures suited to deploy-

able applications by implementing arrays of lamina emergent joints. Furthermore, the alignment

of the axes of these joints to the ruling lines of the surface has been shown to be an efficient config-

uration in terms of stress reduction in the structure and bias the structure to fold and deploy along

a specific path. A mathematical model was developed for finding the stiffness of these types of

structures as well as for computing the angular displacement of surfaces with parallel ruling lines

and ruling lines which meet at a focus. A technique for generating a cut pattern for a generalized

cone was laid out. Using these ideas several example pieces were created.

Using lamina emergent arrays with joint axes aligned to ruling lines provides a vehicle for

transitioning curved-fold origami patterns to engineering materials. These ideas can progress ap-

plications where storage space is a constraint, such as in devices for minimally invasive surgery,

aerospace, and portable outdoor equipment. Particular possible applications include folding an-
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tennae, emergency shelters, flexible decorative or functional paneling, morphing surfaces such as

wings on UAVs, and conformable protective equipment. Using arrays of lamina emergent joints

enables a designer to decouple certain material properties from the modulus of the material. For

example, electrical conductivity and the modulus of a material generally increase with each other,

but using lamina emergent arrays it may be possible to construct a highly flexible panel that is also

electrically conductive.

While this chapter outlines methods for constructing cylindrical and conical surfaces from

lamina emergent arrays, future work may include the development of methods to design tangent

developable surfaces suited to deployment and to incorporate other types of joints besides those

investigated. Intentionally using joints which enable additional motions besides a primary folding

motion can possibly facilitate double-curvature or approximately developable shapes to be real-

ized from planar materials. Panels which can stretch and shear in plane, a commonly desired

characteristic in applications such as morphing wings, may also be possible. In addition, further

methods can be developed in generating conical arrays which enable a designer to begin with var-

ious parameters, such as a desired cone shape and maximum stress, and calculate the remaining

parameters.
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CHAPTER 3. MATERIAL SELECTION SHAPE FACTORS FOR COMPLIANT AR-
RAYS IN BENDING

1While the last chapter introduced a method to accommodate thickness in curved panels

using lamina emergent arrays (LEAs), this chapter will build upon the work by setting forth factors

that assist in the selection of a material for curved panels in bending. The reader will notice the shift

from the term lamina emergent array (LEA) to compliant array (CA) in this chapter. The reason

for this is that the term LEA carries a distinct connotation for monolithic planar elements while

the term CA is applicable to more general cases where any compliant elements are assembled into

networks. In the previous chapter monolithic planar compliant elements were the particular focus

in forming the flexible arrays (LEAs). The theory presented in this chapter, while still applicable

to LEAs, has a more general scope, prompting the use of the term CAs.

3.1 Introduction

Compliant Arrays (CAs) are panels with geometry consisting of a fundamental unit that

is patterned in parallel and series to achieve target material properties, particularly out-of-plane

bending stiffness. An example of a CA in acrylic is shown in Figure 3.1. Similar to metamaterials,

CAs create responses typically not achievable from a flat panel of a single material. They can be

potentially manufactured in micro, meso, or macro scales. Many candidates for the fundamental

unit of these arrays come from the field of Lamina Emergent Mechanisms (LEMs). LEMs are

mechanical devices fabricated from planar materials (laminae) with motion that emerges out of the

fabrication plane [26]. CAs lend themselves towards applications such as deployable or collapsible

structures as they enable a larger elastic deformation in out-of-plane bending than is possible with

a solid sheet for a given material. Recent developments with the use of patterns similar to those

1This chapter is also published as Nelson, T.G., Bruton, J.T., Rieske, N., Walton, P., Fullwood, D.T., and Howell,
L.L., Material Selection Shape Factors for Compliant Arrays in Bending, Materials and Design, Vol. 110, pp. 865-
877, DOI: 10.1016/j.matdes.2016.08.056, 2016 [58].
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investigated in this chapter include an array for solar tracking [59], flexible lithium-ion batteries

[60], an optical shutter [61], the creation of super-conformable materials for applications such

as flexible circuits [62], and creating materials with extreme Poisson’s ratios [63, 64]. CAs can

also be modified to create thick-material approximations of curved-crease origami patterns used in

origami-inspired mechanisms and structures [29]. While the body of work investigating stiff and

light panels is extensive and ongoing through a variety of avenues [46,65–73], there is significantly

less research describing methods to create panels with a lower, yet selectable, stiffness to enable

large amounts of elastic deflection. Recent informative work by Ohshima et al. investigates the

analysis and design of slit-based materials [74], which can also be classified as a type of CA. Isobe

et al. also characterize motions of a kirigami pattern which could be considered a CA [75].

Shape factors were developed to show the effect of a variable cross section for beams [76].

Also known as a shape transformer, a shape factor is defined as the ratio of a geometric quantity

for a specific cross section over the same geometric quantity of a reference cross section [77, 78].

Shape factors can be used to compare properties of a component or structure as a combination of

geometry and material simultaneously. They provide a way to represent the properties of a shaped

component as a ‘new’material through modification of the material properties. Comparison to

other materials and geometries is then facilitated in the material selection process. Elastic bending

shape factors have been previously developed for a variety of cross sections [79, 80], yet shape

factors have not been developed to describe the impact of panels with patterns that can be described

by planar geometry, such as those found in CAs. This chapter characterizes elastic bending shape

factors and strength efficiency shape factors associated with two types of CAs. These factors

function as design guidelines in selecting materials for applications requiring large magnitudes of

elastic bending.

3.2 Background

3.2.1 Compliance

CAs rely on the fundamental principles of compliant mechanisms to function. Compliant

mechanisms “gain at least some of their mobility from the deflection of flexible members rather

than from movable joints only” [36]. Using compliant mechanisms to achieve the lamina-emergent
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Figure 3.1: An acrylic compliant array (CA), shown on the right, bending under its own weight
with a reference panel of same material, thickness, and area shown on the left.

function has several advantages over using traditional mechanisms, including simplified manufac-

turing, reduced wear, and reduced part count. In many cases, a lamina-emergent mechanism can

have a part count of one, a quality retained by a CA. Because a CA consists of a single part, it can

also be viewed as a modified material rather than strictly a mechanism. For a CA to function, the

array must be able to deflect without failing by undergoing some combination of torsion and/or

bending. As such, a fundamental unit consisting of different members that bend or twist can be

developed to be used in arrays. Multiple individual units that can bend or deflect elastically to a

certain displacement can be arrayed in series to achieve the desired elastic range of motion.

3.2.2 CA Applications: Deployable Structures and Developable Surfaces

Because CAs can be designed to achieve a large elastic range of motion, they are good

candidates to be incorporated into deployable structures. Deployable structures have been used in

space technology [81], portable shelters [82], microelectromechanical systems (MEMS) [83], out-

door equipment, and furniture. They come in a variety of sizes, shapes, and materials. These struc-

tures are commonly composed of developable surfaces because of planar manufacturing or storage

requirements. While developable surfaces can be rigorously described by mathematics [10,15,16]

and design guidelines for specific deployable applications exist [84], limited investigation of guide-

lines for material selection for deployable mechanisms has been conducted. Characterizing the

elastic bending and strength efficiency shape factors of CAs provides material selection guidelines

that can be incorporated into bending applications and deployable structure design.
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CAs are particularly suited for transitioning curved-fold origami into thicker materials to

create mechanisms and structures. This is because curved-fold origami results in a combination

of curved surfaces joined by creases which Solomon [14] classifies as a general developable sur-

face. While much of the field of curved folding is unexplored, several recent papers have presented

design guidelines utilizing principles from optics for the creation of developable curved-fold de-

signs [1, 33, 35]. The transition between paper-thin curved-fold origami to thicker engineering

materials presents a unique set of challenges, including the high bending stresses introduced by

the large possible curvatures of the surfaces. The majority of origami designs that have been tran-

sitioned to engineering materials fall into the category of rigidly foldable [85] as seen in the self-

folding design of Felton et al. [45], where the panels do not flex or bend, thus facilitating physical

construction. CAs can provide a path to creating curved-fold designs in thick materials [29].

3.2.3 Shape Factors and Material Selection

The concept of dimensionless shape factors and how they can be incorporated into material

selection was first investigated by Ashby [76]. These shape factors enable designers to see the

effect of shape on effective material properties. For example, an extruded aluminum I-beam can

be considered a “new”material that is stiffer and stronger than a square aluminum beam. Shape

factors describe how the material properties, such as modulus and yield strength, can be modified

to achieve the effective properties of the “new”material. This chapter will examine two shape

factors in particular. The elastic bending shape factor for bending about a particular axis, φ e
B, is

used to describe relative stiffness gain for a shape as compared to a reference shape of the same

area and material. This shape factor can be expressed as [79]

φ
e
B =

S
So

(3.1)

where S is the stiffness of the shape and So is the stiffness of the reference shape. For example,

steel I-beams can have elastic bending shape factors ranging from approximately 1 to 65 [86]. This

can be interpreted as the I-beam being a “new”material which has an effective modulus that is 1 to

65 times as stiff as the modulus of the material for a square beam of an equivalent cross-sectional

area.
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Another shape factor, the strength efficiency shape factor φ
f

B , is a measure of how much

stronger a shape is in bending compared to a reference shape of the same area and material. The

strength efficiency shape factor is described [79] by

φ
f

B =
Mmax

Mo,max
(3.2)

where Mmax is the bending moment at failure of the shape and Mo,max is the bending moment at

failure of the reference shape. Similarly, an I-beam made of aluminum of cross-sectional area, A,

with a strength efficiency shape factor of 5 can be considered a “new”material with an effective

yield strength 5 times as large as the yield strength of a square aluminum beam of the same cross-

sectional area.

Shape factors have been characterized for many common cross-sectional shapes of beams

[79]. Elastic bending shape factors for solid cross sections of circles, squares, and other regu-

lar polygons are typically close to one. Elongated, hollow, and I-shaped cross sections can have

elastic bending shape factors of 50 or more. It is rare to find real components with shape fac-

tors above 65 due to manufacturing constraints and the onset of local buckling as the predominant

failure mode [86]. The possible range of shape factors can also vary significantly from material

to material. Several methods exist to incorporate shape factors into material selection processes.

These include the method developed by Birmingham [87] to link material property charts with

shape-efficiency charts, developing material indices (measures of material performance in a spe-

cific engineering situation) with shape factors included, and modifying material property charts

by plotting a “new”material that is possible with shape factors. [79] The application of material

indices to facilitate material selection has recently been introduced into the field origami-inspired

structures, as seen in the research by Tolman et al. [88]

3.3 Methods

3.3.1 Compliant Array Geometry

The geometry of CAs can vary greatly as CAs are formed by linking together multiple units

of a lamina emergent mechanism or multiple types of lamina emergent mechanisms. In this study
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two particular CAs have been chosen to illustrate general methods for CA shape factor analysis.

These two CAs also demonstrate how a reduction in out-of-plane bending stiffness can be achieved

in particular directions determined by the geometry of the array. The bending stiffness of an array

about a particular axis, Karray,axis, will be defined such that the angular rotation about the axis, Θ,

is related to the moment applied across the axis, M, by the equation

M = Karray,axisΘ (3.3)

Unidirectional CA

The Unidirectional CA is formed with the Outside Lamina Emergent Torsion joint (Outside

LET) [89] as the fundamental unit, as illustrated in Figure 3.2. This array maintains a stiff bending

axis, the x-axis, which can be nearly as stiff as a solid panel. It also enables a compliant bending

axis offset by 90 degrees from the stiff bending axis, the y-axis. Its name, Unidirectional CA, is

derived from this property of having one bending direction that sees a marked decrease in stiffness.

When a moment is applied about the flexible axis, the y-axis, the four legs function as torsion bars.

When a moment is applied about the stiff axis, the x-axis, the fundamental unit’s four legs function

as bending beams, which can retain much of the original solid panel’s stiffness.

The stiffness of the Outside LET unit is characterized using a model similar to the torsion

spring model developed by Jacobsen et al. [37] The bending stiffness about the y-axis, ky, can be

expressed using the geometry definitions of Figure 3.2 as

ky =
kbkt

kb + kt
(3.4)

or if kb is much greater than kt (at least two orders of magnitude)

ky = kt i f kb� kt (3.5)

The spring constant of the torsion legs, kt , equivalent to a rectangular beam in torsion [52],

is expressed as
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Figure 3.2: The Unidirectional CA geometry and parameters with a detailed fundamental unit and
its corresponding spring model for bending across the y-axis.

kt =
Gwt3

(
1
3 −0.21 t

w

(
1− t4

12w4

))
Lt

(3.6)

where t is the thickness of the sheet, w≥ t, and G is the shear modulus. This symbolic expression

for the torsional stiffness of a rectangular beam where w ≥ t is an approximation of the infinite

series solution derived from elasticity theory [52, 90]. Comparisons of the approximate equation

solution to the series solution show error of less a half a percent [37]. The spring constant of the

bending regions, kb, is given by

kb =
EI
Lb

with I =
bt3

12
(3.7)

where E is Young’s modulus. This stiffness is used to relate the moment applied to the joint about

the y-axis, M, and the resulting angular deflection of the joint about the y-axis, θ , as

M = kyθ (3.8)

These definitions for the fundamental unit can be extended to the Unidirectional CA by

considering each fundamental unit as a torsion spring connected to the neighboring units in parallel
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and series. By letting m be the number of units along the x-axis and n be the number of units along

the y-axis, the total stiffness of the Unidirectional CA across the y-axis, Kuni,y, can be expressed as

Kuni,y =
( n

m

)
ky (3.9)

As explained in Equation 3.3, the total angular displacement of the array, Θ, is related to the

moment applied to the array about the compliant bending axis, M, by

M = Kuni,yΘ (3.10)

In a similar manner, the rotational stiffness of the fundamental unit about the x-axis, kx, can

be expressed as

kx =
Ew
(
w+ 1

2Lb
)

t3

6(4bw+2wLt +LbLt)
(3.11)

where E is Young’s modulus. This expression was derived by accounting for each leg of the

fundamental unit as a spring in bending (as none of the legs act in torsion for loading across the

x-axis) and combining the legs together as springs in parallel and series to find an expression for

the total rotational stiffness for bending around the x-axis. The form for the bending stiffness of

each leg resembles Equation 3.7, with variation in the expression for I and in the denominator of

the stiffness expression for kb corresponding to the geometry of each leg.

The total stiffness of the Unidirectional CA across the x-axis can be expressed as

Kuni,x =
(m

n

)
kx (3.12)

where once again m is the number of units along the y-axis and n is the number of units along the

x-axis.

Bidirectional CA

The Bidirectional CA uses a variation of the Outside LET joint as its fundamental unit to

provide a reduction in stiffness in two orthogonal directions as shown in Figure 3.3. Across the
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Figure 3.3: Bidirectional CA geometry and parameters with a detailed fundamental unit and its
corresponding spring model for bending across the y-axis.

compliant bending axis, the y-axis, the legs of the fundamental units function as torsion bars while

across the stiffer bending axis, the x-axis, they are placed in bending.

The bending stiffness of the fundamental unit about the y-axis, ky, for the Bidirectional CA

can be expressed as

ky =
kbkt

3kb +2kt
(3.13)

or if kb is at least two orders of magnitude greater than kt

ky =
kt

3
i f kb� kt (3.14)

where kt and kb are described by Equation 3.6 and Equation 3.7. The middle portion of the funda-

mental unit is considered to be rigid for bending about the y-axis as it is stiffer than all other areas

of the joint in this bending mode. Equation 3.8 describes the relationship of the angular deflection

of the unit, the bending stiffness of the unit, and the moment applied to the unit.
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The total stiffness of the Bidirectional CA across the y-axis, Kbi,y, can be expressed as

Kbi,y =
( n

m

)
ky (3.15)

where m represents the number of units along the x-axis and n represents the number of units along

the y-axis.

By modeling each leg of the joint as a spring, the expression for the bending stiffness of

the fundamental unit of the Bidirectional CA across the x-axis, kx, is

kx =
Ew
(
w+ 1

2Lb
)

t3

6(2wb+3Lt (Lb +2w)+2w(Lb +2b))
(3.16)

where E is Young’s modulus. Similar to the way Equation 3.11 was derived, this expression was

found by considering each leg of the fundamental unit to be in bending, calculating the bending

stiffness of each leg as is shown in Equation 3.7, and then combining the stiffnesses of all the

legs together using rules for springs in parallel and series to find an equivalent total stiffness for

the fundamental unit. It should be noted that the middle portion of the Bidirectional CA is not

considered to be rigid for computing the stiffness across the x-axis as it was for computing the

stiffness across the y-axis. This is because the middle portion is no longer much stiffer compared

to the other areas of the joint. The total stiffness of the Bidirectional CA across the x-axis, Kbi,x,

can be expressed as

Kbi,x =
(m

n

)
kx (3.17)

Examples of the Unidirectional and Bidirectional arrays were created through laser cutting

0.292 cm (0.115 in) thick acrylic and 0.114 cm (0.045 in) thick steel. These are shown in Figure

3.4.
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Figure 3.4: Examples of (a) Unidirectional CA in acrylic bending about its y (compliant) axis,
(b) Bidirectional CA in acrylic bending about its x (stiff) axis, and (c) Unidirection CA in steel
bending about its y (compliant) axis.

3.3.2 Analytical Characterization of Bending Shape Factors and Strength Efficiency Fac-
tors

Bending Shape Factors

The shape factor and strength efficiency shape factor for the Unidirectional and Bidirec-

tional CAs can be analytically determined for both the compliant and stiff bending axes. Using the

elastic bending shape factor definition from Equation 3.1, the elastic bending shape factor for the

Unidirectional array across the y-axis with a moment loading can be expressed as

φ
e
B =

Sy

So,y
=

Kuni,y
EIo,y
Lo,y

(3.18)

where Io,y is the second moment of area for the cross section of the reference shape and is expressed

as

Io,y =
n(4b+2Lt) t3

12
(3.19)

and Lo,y is the length of the reference shape perpendicular to the bending axis and is expressed as

Lo,y = m(2w+2Lb) (3.20)
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Typically, elastic bending shape factors are most useful when they are only a function of geometry.

To minimize the number of properties affecting the shape factor, Equations 3.4, 3.6, 3.7, 3.9 and

G =
E

2(1+ν)
(3.21)

are combined. Note that Equation 3.21 is only valid for isotropic materials where G is the shear

modulus, E is Young’s modulus, and ν is Poisson’s ratio. Combining these equations results in

φ
e
B =

6bw(w+Lb)
(2b+Lt)

(
1
3 −0.21

( t
w

)(
1− t4

12w4

))
(1+ν)bLt +6Lbw

(
1
3 −0.21

( t
w

)(
1− t4

12w4

)) (3.22)

If kb� kt , then the equation simplifies to

φ
e
B =

6w(w+Lb)

(1+ν)Lt (2b+Lt)

(
1
3
−0.21

t
w

(
1− t4

12w4

))
(3.23)

By approximating ν by 0.3, which is common for metals and many isotropic materials [91], this

equation can be expressed as

φ
e
B =

4.615w(w+Lb)

Lt (2b+Lt)

(
1
3
−0.21

t
w

(
1− t4

12w4

))
(3.24)

The elastic bending shape factor about the x-axis for the Unidirectional array can be found

in a similar manner as follows

φ
e
B =

Sx

So,x
=

Kuni,x
EIo,x
Lo,x

(3.25)

where

Io,x =
m(2w+2Lb) t3

12
(3.26)

and

Lo,x = n(4b+2Lt) (3.27)
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Table 3.1: Bending Shape Factors for CAs with w≥ t.

Unidirectional CA

Bending about y-axis, φ e
B

In general,
6bw(w+Lb)
(2b+Lt )

(
1
3−0.21( t

w)
(

1− t4

12w4

))
(1+ν)bLt+6Lbw

(
1
3−0.21( t

w)
(

1− t4

12w4

))
if kb� kt

6w(w+Lb)
(1+ν)Lt(2b+Lt)

(
1
3 −0.21 t

w

(
1− t4

12w4

))
if ν = 0.3 and kb� kt

4.615w(w+Lb)
Lt(2b+Lt)

(
1
3 −0.21 t

w

(
1− t4

12w4

))
Bending about x-axis, φ e

B
w(2w+Lb)(2b+Lt)

(w+Lb)(4bw+2wLt+LbLt)

Bidirectional CA

Bending about y-axis, φ e
B

In general,
6bw(w+Lb)
(2b+Lt+Lb)

(
1
3−0.21( t

w)
(

1− t4

12w4

))
(1+ν)bLt+4Lbw

(
1
3−0.21( t

w)
(

1− t4

12w4

))
if kb� kt

6w(w+Lb)
(1+ν)Lt(2b+Lt+Lb)

(
1
3 −0.21 t

w

(
1− t4

12w4

))
if ν = 0.3 and kb� kt

4.615w(w+Lb)
Lt(2b+Lt+Lb)

(
1
3 −0.21 t

w

(
1− t4

12w4

))
Bending about x-axis, φ e

B
w(2w+Lb)(2b+Lt+Lb)

3(w+Lb)(6bw+2wLb+3LtLb+6Ltw)

Substitutions from Equations 3.11 and 3.12 allow the shape factor about the x-axis for the Unidi-

rectional array in bending to be written as a function of geometry as

φ
e
B =

w(2w+Lb)(2b+Lt)

(w+Lb)(4bw+2wLt +LbLt)
(3.28)

The procedure for finding the elastic bending shape factor for the Bidirectional array is

similar to that of the Unidirectional array. Similarly, elastic bending shape factors can be written

for both arrays when t ≥ w by swapping t and w in Eq. 3.6 during the derivation. The elastic

bending shape factors for both arrays are summarized in Table 3.1 for w ≥ t and in Table 3.2 for

t ≥ w.

47



Table 3.2: Bending Shape Factors for CAs with t ≥ w.

Unidirectional CA

Bending about y-axis, φ e
B

In general,
6bw3(w+Lb)

(2b+Lt )

(
1
3−0.21(w

t )
(

1− w4

12t4

))
(1+ν)bLt t2+6Lbw3

(
1
3−0.21(w

t )
(

1− w4

12t4

))
if kb� kt

6w3(w+Lb)
(1+ν)Ltt2(2b+Lt)

(
1
3 −0.21w

t

(
1− w4

12t4

))
if ν = 0.3 and kb� kt

4.615w3(w+Lb)
Ltt2(2b+Lt)

(
1
3 −0.21w

t

(
1− w4

12t4

))
Bending about x-axis, φ e

B
w(2w+Lb)(2b+Lt)

(w+Lb)(4bw+2wLt+LbLt)

Bidirectional CA

Bending about y-axis, φ e
B

In general,
6bw3(w+Lb)
(2b+Lt+Lb)

(
1
3−0.21(w

t )
(

1− w4

12t4

))
(1+ν)bLtt2+4Lbw3

(
1
3−0.21(w

t )
(

1− w4

12t4

))
if kb� kt

6w3(w+Lb)
(1+ν)Lt t2(2b+Lt+Lb)

(
1
3 −0.21w

t

(
1− w4

12t4

))
if ν = 0.3 and kb� kt

4.615w3(w+Lb)
Lt t2(2b+Lt+Lb)

(
1
3 −0.21w

t

(
1− w4

12t4

))
Bending about x-axis, φ e

B
w(2w+Lb)(2b+Lt+Lb)

3(w+Lb)(6bw+2wLb+3LtLb+6Ltw)

Strength Efficiency Shape Factors

The strength efficiency shape factor as defined in Equation 3.2 can be found for a moment

load across the y-axis for the Unidirectional CA with the following procedure. Using standard me-

chanics equations, the maximum bending moment of the reference panel, Mo,max, can be expressed

as

Mo,max =
σyIo,y

c
with Io,y =

n(4b+2Lt) t3

12
(3.29)

where c is the distance furthest from the neutral axis of the cross section of the panel and σy is the

yield stress of the material.

The maximum moment of the Unidirectional CA about the y-axis, Mmax,y, is equal to the

maximum moment that one torsion bar of the fundamental unit can withstand before failure mul-

tiplied by 2n, as the maximum moment of the entire array is divided into load paths through 2n
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torsion bars. This reasoning holds only when using ductile materials. With ductile materials the

stress concentrations at the joints between the torsion and bending regions of the fundamental units

can be disregarded as localized strengthening occurs from plastic strain. Thus for ductile materials

the maximum moment the CA can withstand before failure can be expressed as [92]

Mmax,y = 2nτQ with Q =
8
(wt

4

)2

3
(w

2

)
+1.8

( t
2

) (3.30)

where τ is the maximum shear stress of the material and w ≥ t. If a brittle material is used to

construct the CA, an appropriate stress concentration factor should be applied which will in effect

reduce the value of τ .

Substitution of Equations 3.29 and 3.30 into Equation 3.2 results in

φ
f

B =
2nτQ
σyIo,y

c

(3.31)

For this array c= t
2 and the approximation of τ = 0.577σy [92] can be used to simplify the equation

to contain only geometric factors resulting in

φ
f

B =
0.577nQt

Io,y
(3.32)

Further substitution for Io,y and Q and simplifying gives the following expression of the strength

efficiency shape factor for out-of-plane bending about the y-axis of the Unidirectional array where

w≥ t.

φ
f

B =
1.154w2

(w+0.6t)(2b+Lt)
(3.33)

The strength efficiency shape factor for bending about the x-axis with a moment load for

the Unidirectional array can similarly be found. The maximum moment of the reference panel,

Mo,max, can be expressed as

Mo,max =
σyIo,x

c
with Io,x =

m(2w+2Lb) t3

12
(3.34)
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Table 3.3: Strength Efficiency Shape Factors for CAs with w≥ t.

Unidirectional Bidirectional

Strength Efficiency about y-axis (φ f
B

) 1.154w2

(w+0.6t)(2b+Lt)
0.3846w2

(w+0.6t)(2b+Lt+Lb)

Strength Efficiency about x-axis (φ f
B ) w

w+Lb

w
3(w+Lb)

where c is the distance furthest from the neutral axis of the cross section of the panel and σy is

the yield stress of the material. The maximum moment of the Unidirectional CA about the x-axis,

Mmax,x, is equal to 2m times the maximum moment which the bending bars of the fundamental unit

can withstand before failure when using ductile materials. Beam mechanics equations can be used

to express Mmax,x as

Mmax,x =
2mσyIu,x

cu
with Iu,x =

wt3

12
(3.35)

where σy is the yield stress of the material and cu is the distance furthest from the neutral axis of

the cross section of the bending portion of the fundamental unit. Substituting Equations 3.34 and

3.35 into Equation 3.2 results in

φ
f

B =
2mIu,xc
Io,xcu

(3.36)

Making further substitutions for Iu,x and Io,x and noting that c = cu =
t
2 for the array, the strength

efficiency shape factor for the Unidirectional array with moment load about the x-axis and w ≥ t

can be expressed in geometrical parameters as

φ
f

B =
w

w+Lb
(3.37)

A similar procedure can be carried out to find the strength efficiency shape factors of the

Bidirectional array about the x and y axes. In addition, expressions for strength efficiency factors

for both arrays when t ≥ w can be found by swapping t and w in Eq. 3.30 during the derivation.

The results are summarized in Table 3.3 for w≥ t and in Table 3.4 for t ≥ w.
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Table 3.4: Strength Efficiency Shape Factors for CAs with t ≥ w.

Unidirectional Bidirectional

Strength Efficiency about y-axis (φ f
B

) 1.154w2

(t+0.6w)(2b+Lt)
0.3846w2

(t+0.6w)(2b+Lt+Lb)

Strength Efficiency about x-axis (φ f
B ) w

w+Lb

w
3(w+Lb)

Figure 3.5: Three stainless steel prototypes of the Unidirectional CA: left 2x2 array, middle 3x2
array, right 4x2 array.

3.3.3 Experimental Verification

Physical testing of the Unidirectional CA for bending about the y-axis was conducted to

verify the method used to derive the shape factors described in this chapter. Three unidirectional

CA patterns were cut into 1.22 mm (0.048 in) thick stainless steel sheet using a water jet and

described by the number of fundamental units used in the array (mxn). Two prototypes, the 2x2

array and the 3x2 array, had all geometry of a fundamental unit the same (with small variation due

to tolerances on the water jet). The third prototype was the largest array, a 4x2 array, with different

geometry parameters than the first two prototypes. These prototypes are shown in Figure 3.5.

A four-point bending test performed on a hydraulic tensile test machine (Instron Model

1321 with a 200 lb load cell) was used to approximate a constant moment loading of the CAs
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Figure 3.6: Four point bending test parameters.

across the y-axis. The rotational stiffness for each of the patterns, Kuni,y, was calculated using the

elastic portion of the force displacement data from each of the tests as described next.

The moment imposed on the array by the four-point bending test, M4point , can be calculated

as follows

M4point =
PL1

2
(3.38)

where P is the measured applied force and L1 is the length between the outside roller and closest

middle roller, as shown in Figure 3.6.

The rotational deflection was calculated by assuming the stainless steel plate area without

the CA to be rigid. This assumption is only appropriate when the bending stiffness of the CA is

much less than that of the plate (a large shape factor), as is the case for each of the three geome-

tries used in the prototypes. With this assumption the rotational deflection of the CA, Θ, can be

computed from the measured linear deflection, δ , using the following formula derived from the

diagram in Figure 3.6.

Θ = 2sin−1 δ

L1
(3.39)

where L1 is the length between the outside roller and closest middle roller.
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Using Eqs. 3.38 and 3.39 and fitting a linear line to a plot of M4point and Θ gives the stiffness

of the array, Kuni,y.

The reference stiffness of a panel without the CA, So, is calculated by Eqs. 3.18, 3.19,

and 3.20. The flexural modulus, E, used in this equation was obtained for this particular stainless

steel through a four-point bending test on a solid panel with the following equation derived from

deflection equations from the shear moment diagrams:

E =

(
P
δ

)
L2

1(2L1 +3L2)

12Is
(3.40)

where P is the measured applied force, L1 is the length between the outside and closest middle

roller, L2 is the distance between the two middle rollers, Is is the second moment of area for the

sample in bending, and δ is the measured deflection. The measured modulus was E = 193 GPa

(28.0 Mpsi).

The experimental bending shape factors can now be computed using Eq. 3.18. The experi-

mental shape factors for each of the three CAs are shown in Table 3.5 along with the analytically

determined shape factors using the general shape factor equations from Table 3.1.

The strength efficiency shape factor was also measured experimentally for the three arrays.

The moment at failure, Mmax,y was estimated from the recorded force-deflection plots by identi-

fying the approximate force at yield and using Eq. 3.38. The maximum moment of the reference

panel was calculated using Eq. 3.29 where σy, the yield stress, was measured from a four-point

bend test on a solid panel using Eqs. 3.29 and 3.38. The measured yield stress was 254 MPa (36.9

kpsi) for the stainless steel.

The experimental strength efficiency shape factors were computed using Eq. 3.2 for each

of the three CAs. These experimental strength efficiency factors are shown in Table 3.5 with the

analytically determined shape factors computed from Table 3.3. The analytical and experimental

results agree reasonably well.
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Table 3.5: Comparing experimentally determined and analytical shape factors
for stainless steel Unidirectional CA prototypes.

Experimental Analytical
2x2 array Bending about y-axis φ e

B 0.010 0.014

Strength Efficiency about y-axis φ
f

B 0.049 0.055
3x2 array Bending about y-axis φ e

B 0.011 0.013

Strength Efficiency about y-axis φ
f

B 0.051 0.055
4x2 array Bending about y-axis φ e

B 0.008 0.010

Strength Efficiency about y-axis φ
f

B 0.039 0.043

3.4 Results and Discussion

3.4.1 CA Shape Factor Analysis

The elastic bending shape factors for the Unidirectional and Bidirectional arrays are sum-

marized by the geometric parameters in Table 3.1. The strength efficiency shape factors are sum-

marized for these two arrays in Table 3.3. Careful examination of the tables shows that the elastic

bending shape factors for bending about the y-axis for the Unidirectional and Bidirectional CAs

are nearly equivalent. The marked difference between the two arrays can be seen in bending about

the x-axis where the Bidirectional CA contains a larger denominator and thus smaller bending

shape factor than the Unidirectional CA.

These shape factor expressions also show the independence of the shape factor from the

scale of the shape. Multiplying all the geometric parameters by a constant scaling factor creates

no variation in the expressions of the shape factors. Similarly, adding elements to the array in

parallel and series as described by m and n has no effect on the shape factor as the shape of the

fundamental unit remains the same. Only changing the ratio of geometric parameters to each other,

and consequently changing the shape of the fundamental unit, causes the shape factor to change

in value. This is seen in the results from the experimental prototypes as shown in Table 3.5. The

2x2 and 3x2 arrays have nearly equivalent shape factors with small variation due to manufacturing

tolerances that effected the shape slightly. The 4x2 array has different ratios of the geometric
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parameters and thus a different shape of the fundamental unit than the other prototypes. This

differing shape is reflected in the change in the shape factor value.

It should be noted, as a small I-beam and larger scaled I-beam may share the same shape

factor, the values of the stiffness and the load they can carry are not the same. Similarly, a CA

with a larger scaled fundamental unit will have a larger stiffness and load carrying capacity than a

CA with an equivalent shape factor on a smaller scale. The efficiency of the shapes in modifying

the stiffness and strength are the same. This relationship is clearly seen in Equations 3.1 and 3.2

where the scale factors cancel out in the right side of the equations. However, if the equations are

rearranged to find the stiffness and strength of a shape at a particular scale, the scale factor dictates

the magnitude of the values.

A range of shape factor values for CAs made of metals and polymers were generated by

placing limits based on current manufacturing techniques and tolerances on the geometrical pa-

rameters used to define the arrays.

Laser cutting was found to be one of the most effective manufacturing methods in achieving

the largest range of limits for these types of arrays. The parameters were then varied within these

limits to establish a range of shape factors. In addition, a constraint was imposed to ensure the

torsion bars would deflect in the intended torsion mode rather than a bending mode. This constraint

can be described as kb,uni > 2kt for the Unidirectional array and kb,bi > 2kt for the Bidirectional

array. In these constraints kt is described by Eq. 3.6 and kb,uni and kb,bi are the bending stiffness

corresponding to the torsion bars for the Unidirectional array and Bidirectional array, respectively,

and can be calculated for w≥ t as

kb,uni =
E (4b+2Lt) t3

12w
(3.41)

kb,bi =
E (4b+2Lt +2Lb) t3

12w
(3.42)

The constraints can also be formulated for t ≥ w by swapping t and w in the above expres-

sions and in Eq. 3.6.

An optimization routine was used to generate the extreme values for the shape factors

with geometry still in the manufacturable ranges and satisfying the model assumption constraint.
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Table 3.6: Range of manufacturable shape factors, geometrical parameter limits,
and constraints for metals and polymers.

Unidirectional Array Shape Factor Ranges
Geometric Parameters Limits (m) Constraint Shape Factor Ranges

Lb 0.0003 to 0.01 kb,uni > 2kt φ e
B about y-axis 1.26e-5 to 0.964

b 0.0015 to 0.01 φ e
B about x-axis 0.137 to 0.984

w 0.0015 to 0.01 φ e
f about y-axis 0.0023 to 0.822

Lt 0.0003 to 0.05 φ e
f about x-axis 0.131 to 0.971

t 0.0001 to 0.015
Bidirectional Array Shape Factor Ranges

Geometric Parameters Limits (m) Constraint Shape Factor Ranges
Lb 0.0003 to 0.01 kb,bi > 2kt φ e

B about y-axis 1.25e-5 to 0.9837
b 0.0015 to 0.01 φ e

B about x-axis 0.018 to 0.210
w 0.0015 to 0.01 φ e

f about y-axis 6.83e-4 to 0.2710
Lt 0.0003 to 0.05 φ e

f about x-axis 0.044 to 0.324
t 0.0001 to 0.015

Table 3.6 lists the imposed limits, constraint equation, and the resulting shape factor values for

a range of manufacturable arrays. It was seen that the length of the torsion bar, Lt , played the

most dramatic role in determining the reduction of stiffness in bending about the y-axis. This was

expected as Lt , most easily seen in the simplified shape factor equations, appears as a squared

term in the denominator of the elastic bending shape factor expression about the y-axis whereas

other parameters appear in a linear form. Similarly, when considering the strength efficiency shape

factor for bending about the y-axis it is expected and was found that the parameter w, the width of

the torsion bar, has the most dramatic impact in preserving bending strength.

Besides establishing the extreme values for the shape factors with a optimization routine,

Latin hypercube sampling [93] of the five geometric parameters of the arrays was used to generate

a visual depiction of the design space for both bending and strength efficiency factors. This space

is shown in Figure 3.7 for bending about both the y and x axes for the Unidirectional array and in

Figure 3.8 for the Bidirectional array.

These plots for the elastic bending shape factors and strength efficiency factors show that

while the stiffness in a particular bending direction can be decreased by using the Unidirectional

and Bidirectional arrays, the bending strength for that direction is also decreased. It is also clear
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Figure 3.7: Shape Factor Design Space for Unidirectional Array.

in the plots that the x-direction bending shape factor is smaller for the Bidirectional array than the

Unidirectional array.

3.4.2 Material Selection with CAs

The shape factors for the Unidirectional and Bidirectional CAs can be used in conjunction

with Ashby charts of material properties to understand how the CA geometry affects the effec-

tive material properties of a component. Because CAs are generally employed to reduce bending

stiffness, charts which include stiffness on at least one axis are most applicable for CA design.

For example if a designer is concerned about mass and bending stiffness, the chart of Young’s
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Figure 3.8: Shape Factor Design Space for Bidirectional Array.

Modulus vs. Density can be used as shown in Figure 3.9. To see the effect of the elastic bending

shape factor for bending about the y-axis of the Unidirectional CA, the chart can be modified by

the corresponding shape factor and reference shape parameters. This is accomplished by scaling

the axis with Young’s modulus by the constant, I0
L0

, where Io is the second moment of area of the

reference shape about the bending axis and Lo is the length of array perpendicular to the bending

axis. By scaling this axis the chart now shows the stiffness of the reference panel, EIo
Lo

, for each

material on the chart plotted against the density of the material. The shape factor for elastic bend-

ing about the y-axis can now be applied to the chart by taking any point of interest and multiplying

the y coordinate, (the stiffness of the reference panel), by the shape factor. The resulting point is
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the stiffness of the CA made of the same material as the point of interest and with an equivalent

cross-sectional area as the reference panel.

Using this method, the material envelopes of the Ashby chart can be expanded to show the

effects of the shape factors on the effective material properties. The effects of the shape factor

for elastic bending about the y-axis for the Unidirectional array according to the manufacturable

range for metals and polymers are shown in Figure 3.10. It should be noted that while these

expanded envelopes are accurate for metals and polymers, they are extrapolated to other types of

materials, such as ceramics, where the ability to physically manufacture the CA geometry needs to

be considered before using the chart.

While scaling the modulus axis of a material property chart by the constant EIo
Lo

presents a

straightforward representation of how the stiffness of a panel changes depending on the material

and shape factor, it can also be useful to think of the shape factor as representing a “new”material

with a modulus, φ e
BE. With this thought process a designer can look at a material property chart

such as that in Figure 3.9 and plot a “new”material with modulus φ e
BE and the original density, ρ .

The same type of approach can be employed to show the effect of the strength efficiency

shape factor on the material property elastic yield strength for bending applications. The elastic

yield strength can be multiplied by the constant Io
c , where Io is the second moment of area of the

reference shape about the bending axis and c is the farthest distance from the neutral axis of the

reference shape in bending. This scaling of the axis modifies the chart to show the maximum

bending moment carried by the reference shape plotted against the density. The shape factor for

strength efficiency can be applied in the same way as with the elastic bending. In addition, the

CA again can be considered a “new”material with an effective yield strength of φ
f

B σy in bending.

The modified Ashby chart of elastic yield strength plotted against density with the effects of the

strength efficiency shape factors of the manufacturable range for polymers and metals in bending

about the y-axis for the Unidirectional array is shown in Figure 3.11.

To maximize angular deflection of a panel, which is often the impetus for using a CA, a

designer is interested in maximizing the ratio of yield strength over bending stiffness. For this case,

the Ashby plot for yield strength vs. Young’s modulus is used. Figure 3.12 shows how a single

point on the chart can be moved about the material property space using various geometries of the

Unidirectional CA within the manufacturable range for polymers and metals in bending about the
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Figure 3.9: The Ashby chart of Young’s modulus vs. density.
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Figure 3.10: The Ashby chart of Young’s modulus vs. density modified to show bending stiffness
about the y-axis for a panel and shape factor effects for the Unidirectional CA.
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Figure 3.11: The Ashby chart of elastic yield strength vs. density modified to show the effect of the
shape factor on the maximum moment withstood in bending about the y-axis for the Unidirectional
CA.

y-axis. The possible area to where the point can be moved in the material property space correlates

with the possible shape factor space shown in Figure 3.7.

Other material property charts, such as the electrical conductivity vs. modulus chart in

Figure 3.13, provide examples of how a reduction in stiffness by a CA can enable a designer to

access previously empty sections of the material property charts. The electrical conductivity chart

shows a trend where an increase in conductivity is accompanied by an increase in modulus. Here if

a designer desires a flexible panel which is still electrically conductive, such as in a flexible circuit,

a CA can be used to achieve this decrease in stiffness.

3.5 Conclusions

This chapter demonstrates how the notion of shape factors can be extended to flexible

panels characterized by planar geometries. It describes how the specific geometry of two CAs, the

Unidirectional and Bidirectional, can be captured in shape factors for elastic bending and strength

efficiency. These shape factors help to show the tradeoff between a reduction in bending stiffness

and a reduction in bending strength. Realistic ranges of these shape factors were determined and
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Figure 3.12: The Ashby chart of yield strength vs. Young’s modulus with modified axes and ex-
amples of how single material property points can be moved about the chart as a consequence of
using a Unidirectional CA in bending about the y-axis.
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CAs placed in bending about the y-axis.
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plotted on several Ashby material property charts. These charts show the previously inaccessible

spaces which now can be accessed through the use of the compliant array. The designer can

use the CA to decouple properties which are commonly linearly connected, such as electrical

conductivity and stiffness. The expressions for the CA shape factors in conjunction with Ashby

material charts provide a succinct way for designers to easily explore the benefits and drawbacks

of using Unidirectional and Bidirectional CAs for particular bending applications.
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CHAPTER 4. CURVED-FOLDING-INSPIRED DEPLOYABLE COMPLIANT ROLLING-
CONTACT ELEMENT (D-CORE)

1The past two chapters addressed how thickness can be accommodated and material se-

lection can be informed for curved panels of curved-origami-inspired mechanisms. This chapter

begins our exploration of how curved-crease origami and developable-surface principles can be

leveraged to enhance the performance of mechanisms and enable the creation of novel mecha-

nisms. We begin by looking at a rolling-contact element (specifically the CORE). By incorpo-

rating curved-origami principles into this mechanism’s design we add the strengths of origami,

such as deployability and the ability to be manufactured from a planar sheet, to the mechanism’s

capabilities.

4.1 Introduction

This chapter draws upon curved-folding techniques from origami to create a compliant

rolling-contact element (CORE) [94] with the capability of being deployed from a planar state

to a deployed state. CORE joints are large-displacement angle, compliant, multi-stable, revolute

joints [94]. CORE joints and other types of revolute joints have been investigated to mitigate the

challenges encountered by traditional pin-joints such as backlash and wear. Wear can intensify

undesired motion as the clearance between the pin and the hole increases with use. Traditional

bearings present another alternative but can significantly increase cost, weight, and size. The

CORE uses compliant flexures that join two cams together, as shown in Figure 4.1. The tension in

the flexures holds the cams together as they roll across each other.

While still preserving the desirable properties of CORE joints to reduce undesired motion

and wear, deployable CORE (D-CORE) joints enable the joint to be stored in a compact position

1This chapter is also published as Nelson, T.G., Lang, R.J., Magleby, S.P., and Howell, L.L., Curved-Folding-
Inspired Deployable Compliant Rolling-contact Element (D-CORE), Mechanism and Machine Theory, Vol. 96, pp.
225-238, DOI:10.1016/j.mechmachtheory.2015.05.017, 2016 [57].
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Figure 4.1: A CORE with circular cams.

before and after use. This facilitates use of the joint in applications where space is a constraint

before or after the joint is to function. This constraint is commonly seen in spacecraft, aircraft,

minimally invasive surgery devices, and stowable furniture. The ability of the D-CORE to be

manufactured from a single sheet of material and assembled through folding make it a low cost

alternative to a traditional joint. The D-CORE, as well as the CORE, differ from traditional pin

joints as the axis of rotation moves during the rotation of the joints. While this prohibits the use

of the D-CORE or CORE in some precision movement applications where a fixed axis of rotation

is required, the movement of the axis of rotation is calculable enabling predicted motion paths.

Another desirable property of one of the D-CORE configurations discussed in this chapter is the

ability to be a zero-degree-of-freedom static structure in its stowed, planar state and to transition

to a one-degree-of-freedom mechanism in its deployed state. This type of mechanism is known as

a metamorphic mechanism [95].

4.2 Background

The use of compliant flexures in the D-CORE and CORE to join two rigid bodies together

is reminiscent of a single unit in a Jacob’s ladder toy. The D-CORE is created using curved-fold

origami techniques to construct the curved surfaces of the cams. This enables the joint to maintain

the advantages of the CORE while adding the capability of the joint to be deployed to and from a

flat position.
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4.2.1 Jacob’s Ladder

The underlying mechanism of the CORE is also what creates the optical illusion of a falling

block in a Jacob’s Ladder. The Jacob’s Ladder is an ancient toy [96] that consists of ribbons

connected in a specific pattern to wooden blocks, as shown in Figure 4.2. When the top block of a

Jacob’s Ladder is rotated, the illusion of a falling block is created as each block flips in alternating

directions one after another. Similar to the study of the underlying mechanism of a color changing

toy ball by Ding et al. [97], insights into mechanism design can be gained from an investigation of

the Jacob’s Ladder.

By isolating a single unit of the Jacob’s ladder one can see how two rotational axes are

present about which the top block can revolve, as shown in Figure 4.3. All of the degrees of free-

dom are constrained through either contact of the faces of the block and the ribbon or tension in the

ribbon. Similarly, in the CORE all degrees of freedom besides the rolling motion are constrained

through contact of the flexures and the cams or tension in the flexures. However, the introduction

of a curved surface as the cam face rather than a flat surface as in the Jacob’s Ladder causes the

instantaneous axis of rotation to follow the curvature of the cam throughout the motion rather than

switching between two stable axes of rotation. This difference in location of the instantaneous axis

of rotations during the joint motions is shown in Figure 4.4.

4.2.2 Compliant Mechanisms

The CORE is a compliant mechanism, whose motion is derived at least partly from flexing

members [36]. Compared to traditional mechanisms, compliant mechanisms can offer cost reduc-

tion due to lower part count and assembly time, simplified manufacturing processes, performance

improvement through increased precision and reliability, and reduced wear, weight, and mainte-

nance [36]. In the CORE, there is no need for lubrication, wear is dramatically reduced, and the

compliance of the CORE enables design for specific force-deflection properties and an ease of

miniaturization.
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Figure 4.2: A Jacob’s Ladder toy with hinge axis locations shown.

Figure 4.3: A single functional unit of a Jacob’s Ladder in a closed position with hinge axes shown.
The top block is transparent to show the attachment scheme of the bands.

4.2.3 Contact-Aided Rolling Joints

The development of the CORE was preceded by similar mechanisms that utilize the mech-

anism described in the Jacob’s Ladder. The Rolamite concept was developed in the 1960’s [98].

This design used a band between two rollers to create linear displacement with little friction. Fur-

ther development of the Rolamite has occurred as seen in the creation of analysis techniques of the

joint [99], implementation of the concept in a prosthetic knee joint [100], and more recently using

the concept to create variable joint stiffness [101].
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Figure 4.4: Location of the instantaneous axis of rotation of the Jacob’s Ladder fundamental unit
and a CORE through the joint motion.

The CORE [94] uses flexible bands to join two rolling surfaces similar to the Rolamite.

However, while the Rolamite joint provides a linear displacement, the CORE allows the two rolling

surfaces to roll over top of each other creating a motion similar to a revolute joint. Halverson et

al. [94] used a strain energy approach to derive models for the CORE. Their work particularly

examines tension-based multi-stable CORE joints and develops equations to describe the angular

velocities of the cams, stress in the joint, strain of the flexures, and retaining forces (forces in the

flexures) for these joints. A variation of this joint was used to create an artificial disc implant

for the human spine designed to mimic the motion and stiffness characteristics of a human spinal

disc [102].

The ability to scale the CORE and mechanisms similar to it has resulted in their use in med-

ical devices for minimally invasive surgery [103] and robotic components such as a bio-mimetic

finger [104].

4.2.4 Origami Inspired Mechanisms

Origami constructions have inspired the study of a variety of mechanisms and folding struc-

tures [38] including planar-spherical over-constrained mechanisms [105] and queer-square mech-
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anisms with multi-furcation qualities [106]. Folding techniques have been used to formulate a

systematical approach to carton folding [107]. Most of these origami constructions used in mech-

anism analysis are prismatic, where the straight creases can be modeled as revolute joints and

the panels as links as is the case in the development of a systematic approach to modeling car-

ton folding [107]. Kirigami, which uses cutting as well as folding, has also inspired mechanism

design [108].

Curved-fold origami is intrinsically tied to curved surfaces. When paper is folded along a

curved crease, the two surfaces created are developable surfaces [15]. Developable surfaces are

sometimes called singly-curved surfaces as at every point of the surface one of the principle cur-

vatures is zero [10, 49]. They are a subset of ruled surfaces, or surfaces where a straight line,

or ruling line, can be used to generate the surface [10]. Three types of developable surfaces ex-

ist: generalized cylinders, generalized cones, and tangent-developable surfaces [32]. Curved-fold

origami can thus be thought of as a combination of developable surface patches that are joined

through curved creases. David Huffman [8] [1] and Ron Reusch [6] pioneered a rigorous approach

to curved folding with their work in the 1970’s. Recent work by Lang [33] and Demaine et al. [9]

has demonstrated methods to design curved-fold structures by treating the ruling lines of the devel-

opable surfaces as optics lines and curved-creases as lenses. Curved-folding techniques are used

in this chapter to create the curved surfaces of the CORE. In addition, curved-folding enables the

CORE joint to be stowed in a flat position and gives the possibility of the joint to be self-deployed.

4.3 Deployable CORE (D-CORE)

4.3.1 Description

The deployable CORE (D-CORE) is made of two flat panels with curved creases that form

the cams of the joint when deployed and three flexible bands which hold the two panels together.

These components are chained together alternating between panels and flexible bands as is shown

in Figures 4.5 and 4.6. The two flat panels that form the cams also require curved cut edges if

the angle between the cam sides and cam’s contact surface varies from 90 degrees. The geometry

of the curved cut edges and curved creases is discussed in Section 4.3.1. Two configurations of

the D-CORE are presented below. Configuration 1 enables motion in the undeployed state while
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Configuration 2 does not. Both configurations can be manufactured from a single sheet, assembled

by folding and one point of attachment, and are three layers thick in the assembled but undeployed

state. Anchoring either configuration of D-COREs to rigid bodies can be achieved through sliding

fits to accommodate for the motion of deployment. These sliding fits are discussed in Section 4.3.1

as an anchoring solution.

Configuration 1

Configuration 1 of the D-CORE enables a Jacob’s ladder like motion when the joint is in

its undeployed state and full CORE motion in the deployed state. It can be manufactured in a

planar state (Figure 4.5(a)), folded into an assembled but undeployed flat state (Figure 4.5(b)), and

deployed into the CORE geometry (Figure 4.5(c)). The length of the panels that form the cam

surfaces, L, is equivalent to the length of the flexible bands, Lband , when the bands are thin. The

joint can be cut out of a single sheet or assembled from multiple components. If a single sheet is

used for fabrication, one attachment point is required to complete a chain where the single flexible

band passes between the two parallel flexible bands.

Configuration 2

The second configuration of the D-CORE is a static structure in its undeployed state and

shows full CORE motion in its deployed state. Similar to the Configuration 1, Configuration 2

can be manufactured in a planar state (Figure 4.6(a)), folded into an assembled but undeployed

flat state (Figure 4.6(b)), and deployed into the CORE geometry (Figure 4.6(c)). Configuration

2 is constrained from motion in the undeployed state by placing hard stops on the panel’s edges.

One pair of these hard stops on each panel can be folded over themselves to accommodate for

the thickness of the bands. This causes the panels to interfere with one another if the joint tries

to rotate in the undeployed state. The addition of these hard stops slightly decreases the range of

motion of the joint in the deployed position.
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Figure 4.5: Configuration 1 of the D-CORE shown in its (a) planar, as-manufactured state, (b)
folded undeployed state, and (c) deployed state.
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Figure 4.6: Configuration 2 of the D-CORE shown in its (a) planar as-manufactured state, (b)
folded undeployed state, and (c) deployed state.

Cam Construction Using Curved Creases

Configurations 1 and 2 both draw upon curved creases to create the cam surfaces. The

geometry of the curved creases used to form the cams as well as the length of the flexible bands of

the D-CORE determines the range of motion for the angular deflection of the joint and the radius of

the cam. The crease geometry can be determined by considering the intersection of cylinders where

the cam face is modeled as a section of a cylinder and the two cam side panels are also modeled as

sections of cylinders, as shown in Figure 4.7. Apostol et al. [20] show that the intersection curve

between a cylinder and a plane is an elliptical cross section and when the cut cylinder is unwrapped
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Figure 4.7: Modeling the CORE cam shown in gray as a combination of three oblique cylindrical
sections intersected with one another.
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Figure 4.8: Intersection geometry for a cylinder and a cutting plane with the resulting unwrapped
cylinder.

the profile of the cut edge is a sine wave, as shown in Figure 4.8. To form a deployable CORE

cam, the cutting planes of three cylinders are placed on top of one another and the elliptical cross

sections are aligned as shown in Figure 4.7. When any cylinder is unwrapped the profile of the

cut edge forms the geometry of the curved crease. If the angle between the face and sides of the

deployed cam, α , differs from π/2 the panels that form the cams will need to have an additional

curved cut edge to enable the joint to sit on a flat plane in the deployed state.

The equations describing the relationship between the range of angular deflection of the

joint in radians, Θ, the radius of a cylindrical cam, R, the angle between the face and sides of

the deployed cam in radians, α , and the geometry of the curved crease and curved cuts expressed

as functions, ycrease(x) and ycut(x), can be determined for deployable joints with cylindrical side
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Figure 4.9: Parameters for a cylindrical cam with cylindrical side panels in the undeployed and
deployed states.

panels of the cams as is described in the next section. Figure 4.9 shows the parameters which will

be used in the expressions.

Deployable CORE Model for Design

The following relationships were developed for the D-CORE such that the radius of the

cam, R, the deflection of the joint, Θ, the angle between the cam sides and face, α , and the width

of the cam, W , are selected and all other parameters of the D-CORE are computed. After selecting
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the radius of the cylindrical cam, R, and the desired angular deflection of the joint, Θ, which can

range from 0 to π , the required panel length, L, can be calculated by

L = RΘ (4.1)

It should be noted that the addition of the hard stops in Configuration 2 causes the effective angular

deflection of the joint to be decreased to

Θcon f ig2 =
Lband

R
(4.2)

Using the selected angle in radians between the cam face and side panels in the deployed state, α ,

the height of the crease, hcrease, is computed as follows

hcrease = R tan
(

α

2

)(
1− cos

Θ

2

)
(4.3)

The height of the curved cut edge of the panel, hcut , when α is in radians is described as

hcut = R tan
(

α− π

2

)(
1− cos

Θ

2

)
(4.4)

The crease geometry, which corresponds to the unwrapped curve of a cylinder cut by a plane, can

then be expressed by the following equation with the coordinate system placed as shown in Figure

4.9.

ycrease(x) = R tan
(

α

2

)(
cos

x
R
− cos

Θ

2

)
(4.5)

where the domain for x is from −L
2 to L

2 . This expression was derived in a manner similar to that

described by Apostol et al. [20] for unwrapping curves from cylinders. Similarly, the curved cut

edge geometry, which also corresponds to the unwrapped curve of a cylinder, can be expressed by

the following equation where the coordinate system is placed as shown in Figure 4.9

ycut(x) = R tan
(

α− π

2

)(
cos

x
R
− cos

Θ

2

)
(4.6)

The length of the deployed cam, Ld , is expressed as
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Ld = 2Rsin
Θ

2
(4.7)

The height of the deployed cam, Hd , is computed from

Hd = R
(

1− cos
Θ

2

)
(4.8)

The length of the bands are shown in Figures 4.5 and 4.6 for the two configurations.

While the D-CORE cams created with these equations are circular cylindrical cams in

the final deployed state, the surfaces are not guaranteed to remain as circular cylinders during

the deployment of the cam from a flat state. The shape the surface of the cam takes during the

deployment process can be investigated using the process outlined by Apostol et al. [20] of finding

the shape of a generalized cylinder cut by a plane where the unwrapped curve of intersection is

known. The generalized cylindrical shape can be considered as the profile of the cam while the

plane shown in Figure 4.7 can be considered the cutting plane. The unwrapped curve of intersection

is the cam’s crease geometry as described in Equation 4.5. This crease geometry is constant for

any stage of the deployment process.

Anchoring the D-CORE to Rigid Bodies

The joint boundaries move during deployment which complicates anchoring the D-CORE

to rigid bodies. One method of anchoring the joint while still allowing for the deployment motion

is to use sliding fits as shown in Figure 4.10. These fits are joined to the cam panels with a crease.

The length of the sliding fit is (L−Ld)/2 to accommodate the deployment motion. If the anchor

points can be placed underneath the deployed cam, the range of motion of the joint will not be

affected, yet the undeployed folded state will be an additional two layers thick. If the anchor points

are placed on the outside of the cam, the range of motion will be decreased due to interference of

the anchors at the extreme positions of the joint. Also, if the angle between the sides of the cam

and the cam’s contact surface, α , falls between the range of 0 to 3π/4, interference can occur

during deployment as the sides of the cam swing below the anchoring plane. To ensure clearance,

appropriate cuts can be made in the panels to which the D-CORE is anchored.
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Figure 4.10: Anchoring the D-CORE using sliding fits shown in a position for (a) planar manufac-
ture, (b) a folded undeployed state, and (c) a deployed state.
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Stiffness and Stress Characteristics of the D-CORE

The D-CORE manufactured from a single sheet is unlikely to have the same performance

in compression as a solid CORE. However, the deployability of the D-CORE gives it advantages

besides compressive strength which can make the joint suitable to applications requiring a small

stowed volume or low-cost manufacturing. The development of a simple analytical model for

stiffness and stress of the D-CORE under various loading conditions is challenging because of

the combined effects of stress from deployment and the stress induced by the joint loading. As

such, prototype testing and finite element analysis methods are recommended for determining the

stiffness and stress characteristics for particular applications of the D-CORE.

Despite the difficulty in developing a simple analytical model, insight can be gained by

comparing finite element models of hollow CORE and D-CORE cams with the same dimensions,

material, and compressive loads. Two finite element models (ANSYS, BEAM 188) were created

to represent hollow CORE and D-CORE cams. The hollow CORE cam was modeled as an initially

curved beam fixed at both ends as shown in Figure 4.11. The cam of the D-CORE was modeled as

an initially flat beam which was morphed into its deployed shape using moment loads on either end

of the beam. As the curved creases of the D-CORE cam force the initially flat center panel to take

the same circular shape as the moment loading, this method to create the deployed stresses was

considered as a reasonable approximation. Once in the deployed shape the ends of the beam were

fixed and compressive loadings were applied at various locations around the cam as described by

the load location parameter γ . The variation in the load location parameter was used to simulate

the variation in the compressive loading location as the joint rolls through its range of motion.

These two finite element models were stress converged to within a 5% change in maximum

Von Mises stress for two loading locations. The maximum Von Mises stress developed under the

compressive loads at various locations is shown in Figure 4.12 for both the hollow CORE and D-

CORE cams. The prestress component from the deployment of the D-CORE cam is reflected in the

higher stresses present in the D-CORE cam for all of the loading locations. The deflection of the

point where the compressive loading was applied was also plotted for both the hollow CORE and

D-CORE cams in Figure 4.13. Interestingly the D-CORE cam shows a slight improvement in the

stiffness at this point over the hollow CORE cam. While these finite element models give insight

to general characteristics of the D-CORE performance under compressive loadings compared to a

78



γ
M M

F

Deployed 

State

Deployed State with 

Compressive  

 Loading (prestress)

Undeployed, 

Unloaded State

γ

F

Compressive 

Loading (no prestress)
Unloaded State

(b)

(a)

Figure 4.11: Finite element model set up for (a) the D-CORE and (b) hollow CORE cams illus-
trating the presence of a prestress condition from deployment of the D-CORE and definition of the
compressive load location parameter, γ .

hollow CORE, further work would need to be conducted for specific applications. Also, analysis

of the local stresses developed in the curved creases of the D-CORE rather than the curved panels

during the loaded states needs to be explored.

4.3.2 Physical Models

Physical models of Configurations 1 and 2 were constructed out of a range of materials

to demonstrate the transition from paper to engineering materials. Figure 4.14 shows a family

of Tyvekr models with common radius of the cylindrical cam, R, but varying values of the angle

between the sides and contact surface of the cam, α , and range of motion, Θ. Tyvekr is made from

fusing together finely spun high density polyethylene fibers into a web. This results in a paper-like

material that is tough, water resistant, and yet still maintains the ability to hold creases [109].

Configuration 1 was also constructed out of 0.38 mm (0.015 in) thick polycarbonate panels

with 0.023 mm (9 mils) thick metallic glass hinges as shown in Figure 4.15. Bulk metallic glasses

are metallic alloys which fail to crystallize during solidification. This gives them a unique combi-
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Figure 4.12: Maximum Von Mises Stress developed under compressive loadings at various loca-
tions for the hollow CORE and D-CORE cams.
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Figure 4.14: Tyvekr models of Configuration 1 with varying values of α and Θ and a common
radius, R, of 5 cm.

Figure 4.15: Configuration 1 made of polycarbonate panels and metallic glass hinges shown (a)
during planar manufacture, (b) in a folded undeployed state without the top panel, and (c) in a
deployed state.

nation of properties including high elastic strain and strength, making them a good candidate for

compliant applications [53]. The metallic glass was secured with adhesive transfer tape between

two layers of polycarbonate panels from which material in the curved crease regions had been re-

moved. The joint was anchored to the foamboard panels by polycarbonate tabs that were inserted

into slits in the foamboard.
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Figure 4.16: Configuration 2 made of polypropylene anchored to wood panels shown (a) during
planar manufacture, (b) in a folded undeployed state, and (c) in a deployed state.

A 0.81 mm (0.032 in) polypropylene sheet was used to construct Configuration 2 of the

D-CORE. The polypropylene sheet was cut as shown in Figure 4.16(a). The curved creases and

creases where the bands and sliding fits connect to the cam panels were created by using an em-

bossing tool to remove material to form living hinges in the polypropylene. The polypropylene

was folded and secured to wooden panels with nails to complete the sliding fits. Figure 4.16(b)

and 4.16(c) show the D-CORE in the undeployed and deployed state. Polypropylene tabs on the

base of the cams were inserted into grooves in the wood panels to lock the joint into the deployed

state. The deployed joint functioned under a 100 N (22.5 lb) compressive load before visually

detectable deformation of the cams occurred.

4.4 Deployable Translating Platform

4.4.1 Description

By using two or more inverted D-CORE joints and adjusting the cam profile to be a half

circle to enable 180 degrees of angular rotation, a deployable translating platform can be formed.

The deployable translating platform has the ability to be stored flat with effectively no degrees of

freedom and to deploy to a state where linear translation is facilitated. This change in the degrees of

freedom between the stored and deployed state qualifies the translating platform as a metamorphic

mechanism [95].
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Figure 4.17: Translating platform geometry shown in (a) a planar state for manufacturing, (b) the
assembled but undeployed state, and (c) the functioning deployed state.

Figure 4.17 shows the geometry of the translating platform. Each of the joint units can be

made from two identical pieces that are placed on top of one another and joined along the opposite

edges of the panels which form the cams, as shown in Figure 4.17(a). These units are attached to

the platforms by the flexible bands. The undeployed state is four layers thick (see Figure 4.17(b)).

The deployed state of the platform is shown in Figure 4.17(c).

The range of linear translation, δ , can be expressed in terms of the radius of the cam

cylinder, R, as

δ = πR (4.9)

This range can be easily adjusted to a shorter length by shortening the length of the flexible bands.

The cam geometry and curved crease geometry are described by Equations (4.1),(4.3),(4.5),(4.7),

and (4.8) where Θ = π . If α < 3π/4, the two cam units joined together will need to be actuated at

separate times to avoid interference of the cam side panels. If α ≥ 3π/4 the cams can be actuated

simultaneously and furthermore all edges of the cam units can be joined together instead of only

the opposite edges shown in Figure 4.17(a). The motion that occurs during deployment of the
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Figure 4.18: Translating platform constructed of polycarbonate cams attached to translating panels
via Tyvekr flexible bands.

translating platform does not require sliding fits to anchor the joint units to the translating panels

because the joint units can be anchored to the translating panels by the flexible bands.

4.4.2 Physical Model

A model of the translating platform was constructed from deployable cams made of 0.38

mm (0.015 in.) polycarbonate sheets and connected to foamboard translating panels via Tyvekr

flexible bands. A small piece of wood and mono-filament lines were used to lock the mechanism

into the deployed position. Figure 4.18 shows the physical model of the translating platform in the

deployed state.

4.5 Discussion

As the D-CORE can be stowed in a flat configuration it can be used in applications where

space constraints would limit the use of a traditional CORE. These applications include minimally

invasive medical implants, space applications, and stowable furniture. However, when the cams of

the CORE are made to be deployable, the compressive strength of the joint decreases.

Actuation of the joint can be accomplished through a force which pulls the edges of the de-

ployable cams together or through forces which fold the creases to the appropriate angles. Springs

or hand actuation, as was used with the models in this chapter, are two methods of deploying the

joint by forcing the edges of the deployable cam together. Shape memory alloys and thermally ac-

tuated contractile polymers [45, 110] also present possible methods of self-folding or deployment

of the joints. Inflation is a possible actuation method for the cams of the translating platform if

α ≥ 3π/4 and all edges of the cam units are joined together.
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4.6 Conclusion

This chapter applied curved-fold origami techniques to create the geometry of a D-CORE

that is manufacturable from a single sheet. Two configurations were presented which have the

ability to be stored in a flat state and deploy to a functioning state, making them suitable for space-

constrained applications such as medical devices and in aerospace. The crease geometry was

mathematically related to key properties of the D-CORE to facilitate design of the joint. These re-

lations were used to create physical prototypes of the D-CORE. A deployable translating platform

was presented as a derivative of the D-CORE.

This chapter outlines how the geometry of the D-CORE is created for a cylindrical radius.

It may be possible to characterize other profiles which can be created using curved creases. These

non-cylindrical profiles could be used to create multiple stable positions of the joint and also to

change the location of the instantaneous axis of rotation.
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CHAPTER 5. NATURAL EQUATIONS FOR RIGID-RULING SINGLE-CLASS DE-
VELOPABLE SURFACES

Now we have had the chance to see an example of the potential of curved-crease origami

and developable-surface principles at work in mechanism design in the previous chapter, it’s time

to take a step back and cast the mathematical representations of developable surfaces into a form

that is based on properties which have significant meaning for the design of mechanisms containing

developable surfaces. In particular, this chapter sets forth a representation for developable surfaces

based on curvatures of a principal curve, or cross curve, on the surface. This form of representing

developable surfaces makes it convenient to differentiate between and relate all the rigid-ruling

states of a surface, that is all the possible folded states that share a common ruling. We call this

form the natural equations for a rigid-ruling developable surface. With the cross-curve curvatures

explicitly defined, engineering quantities such as bending stresses which are proportional to one of

the curvatures can be found in a straightforward manner.

One purpose of this chapter is to introduce fundamentals of differential geometry appli-

cable for this work to an audience who may not be as familiar with the field. It is the hope that

these fundamentals and results will prepare the reader to more fully utilize developable surfaces in

engineering design by giving concise mathematical descriptions that are especially applicable to

a specific category of developable surfaces, rigid-ruling developables. Rigid-ruling developables

are developable surfaces where the ruling lines do not change location in a surface during folding.

While we didn’t call it by this name, this category of developables has already been encountered

in this work where the compliant arrays define the ruling-line locations in a surface and force a

rigid-ruling folding motion. We will also find in the following chapter that the natural equations

for a ruling-rigid developable surface clearly show the requirements for developable surfaces to

roll on each other.
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5.1 Introduction

Developable surfaces, surfaces which can be formed by bending a plane with no stretching

or tearing [10], have been studied to facilitate efficient forming of 3D shapes from planar stock

materials. With the recent interest in origami-inspired engineering [111–116], and more particu-

larly curved-crease origami [1, 21, 34, 35, 117], which is composed of developable surfaces, there

is renewed interest in developable surfaces to model folding for deployable applications. In par-

ticular, some of the forms of creating thick developable surfaces involve the fixing of ruling-line

locations in a panel through lines of decreased stiffness in the ruling-line directions [29, 118]. In

past work these surfaces have been commonly represented by specific forms of the generalized

parametrization for ruled surfaces and more recently other parameterizations such as using lines of

curvature [12, 119–122]. In this chapter we present an equation form for rigid-ruling single-class

developable surfaces. The ruling lines in a rigid-ruling developable do not change location in the

surface [118]. A single-class developable surface refers to the surface being either a generalized

cylinder, generalized cone, or tangent developable where the edge of regression is C1 continuous.

The contributions of this chapter are

• Recasting developable surface equations into a natural equation form where properties con-

taining information about folding and bending stress analysis of a curved surface are identi-

fied and explained. These properties are coordinate system independent and are thus natural

properties. These natural equations can describe all possible folded forms for rigid-ruling

single-class developable surfaces.

• Conditions are defined for the natural properties which readily communicate to which devel-

opable class the surface belongs.

• Osculating shapes are described to further physical intuition of the natural property of ruling

curvature.

• Explicit formulas are written to find the principal curvatures at any point on a surface from

its natural properties.

• Equations to move between the traditional and natural equations of a developable surface are

listed to facilitate design of surface using the form most conducive to a particular application.
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The natural equations presented give a concise and simple description of both the formed

and developed states of a rigid-ruling surface using properties often essential to engineering and

manufacturing applications. This representation can be useful for computer graphic models of de-

velopable surfaces, in further understanding curved-crease origami, and in curved-crease origami

applications such as self-assembling propellers [47] and new metamaterials [123]. This method of

expressing developable surfaces can also be beneficial in manufacturing processes, such as rolling,

to create specific developable surfaces by defining the desired surface concisely in terms of its nat-

ural properties. These natural properties can be used to control the process, such as the speed and

angle of the rollers, to create the desired shape. Examples of developable surface classes described

by their natural equations will be explained and graphically plotted.

5.2 Background

5.2.1 Natural Equations of Curves

Natural, or intrinsic, equations for curves can be used to specify the geometry of a pla-

nar or space curve irrespective of the coordinate system in which the curve is placed [10, 124].

Consequently these equations are written in terms of natural properties, that is quantities or prop-

erties that are invariant to the choice of coordinate system. Typically these include arc length (s),

curvature (κ), tangential angle (θ ), and torsion (τ) or a combination of these properties [124].

Euler described curves with natural equations in terms of arc length and curvature as part

of a work presented to the St. Petersburg Academy in 1735 [10, 125]. Since this time other nat-

ural measures have been used to write natural equations for curves [126–128]. The Fundamental

Theorem of Space Curves states that the natural measures of curvature and torsion define a unique

space curve [10]. Frenet and Serret developed the following formulas, now known as the Frenet-

Serret Formulas, to relate curvature and torsion to the tangent, normal, binormal frame (TNB

frame) [129, 130]:
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dT
ds

= κN

dN
ds

=−κT+ τB

dB
ds

=−τN

(5.1)

where d/ds is the derivative with respect to arc length s, κ is the curvature of the space curve, and

τ is the torsion of the space curve.

5.2.2 Intrinsic properties of surfaces

Surfaces have been described using intrinsic properties. For surfaces, intrinsic properties

are defined as properties that are constant for all isometries (distance preserving transformations)

of a surface [131]. For example, cylinders and planes are related isometrically to each other and

thus share intrinsic properties. The first fundamental form is an intrinsic measure of a surface and

can be used in determining arc lengths of curves on a surface, angles between curves on a surface,

and areas [132].

While there is much utility in intrinsic measures (isometric equivalence) in describing sur-

faces, the goal of this chapter is to describe specific rigid-ruling folding states of developable sur-

faces and thus differentiate between surfaces which have isometric equivalence. As developable

surfaces share equivalent intrinsic properties, natural measures which are not necessarily intrinsic

measures will be identified to write natural equations for each of the three curved classes of devel-

opable surfaces. These natural measures still do not depend on the coordinate system in which a

surface is placed.

5.2.3 Normal, Principal, Geodesic, and Gaussian Curvatures

Several curvatures of curves on an arbitrary surface will be important in this chapter. The

normal curvature of a curve on an arbitrary surface is the curvature of the projected curve on the

plane containing the tangent vector of the curve and surface normal vector [10]. When consider-

ing all possible curves through a given point, the maximum and minimum values of the normal
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curvature are the principal curvatures of the surface at that point. The principal curvatures are

orthogonal to each other. The Gaussian curvature is the product of the two principal curvatures.

Gauss showed that remarkably this curvature is an intrinsic property [133].

The geodesic curvature of a curve on a surface is the curvature of the projected curve on

the surface’s tangent plane. The geodesic curvature represents the deviation of a curve from a

geodesic on a surface, which is a straight line for developable surfaces in their developed (planar)

state. While the geodesic curvature is not an intrinsic property for developable surfaces, it is a

constant property for all forms of a rigid-ruling developable surface.

The sign of the geodesic and normal curvatures are meaningful when the direction of the

surface normal is selected. A positive geodesic curvature denotes counterclockwise rotation of the

tangent line of the projected curve on the surface’s tangent plane with the surface normal pointing

towards the observer. A negative geodesic curvature denotes clockwise rotation. A positive normal

curvature of a curve on a surface denotes that the projected curve on the plane containing the

curve’s tangent vector and the surface normal curves in the direction of the surface normal, with

negative normal curvature denoting curvature of the projected curve in the opposite direction of

the surface normal.

5.2.4 Darboux Frame (T, L, U frame)

A Darboux frame moves across a surface along a curve [133]. This frame will be used in

explaining how to move between natural equations of developable surfaces and canonical paramet-

ric representations of the surfaces in Cartesian coordinates. Let unit vectors T, L, and U define the

Darboux frame. T is the tangent vector to the curve, U is the normal vector to the surface, and L

the tangent normal vector (U×T). This frame is shown in Fig. 5.1.

Similar to the Frenet-Serret Formulas are the Darboux formulas [133]:
T′

L′

U′

=


0 κg κn

−κg 0 τg

−κr −τg 0




T

L

U

 (5.2)
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Figure 5.1: The Darboux frame (T, L, U frame) following a principal curve on a developable
surface.

where κg, κn, and τg are the geodesic curvature, normal curvature, and geodesic torsion of the

curve along which the Darboux frame travels. The geodesic torsion is the rate of rotation of the

tangent plane to the surface about the tangent to the curve the frame is following [132].

5.2.5 Developable Surfaces

A developable surface is characterized by zero Gaussian curvature at any point on the

surface [10]. Zero-Gaussian curvature at a point is the result of one, or both in the trivial case

of a plane, principal curvatures being zero. Furthermore, developable surfaces are a subset of

ruled surfaces, and can be described using straight lines called ruling or generator lines [11]. Four

primary classes of developable surfaces exist: planes, generalized cylinders, generalized cones,

and tangent developables [32]. The three curved classes are shown in Figure 5.2. Generalized

cylinders are created by translating a constant-direction line to sweep out the surface. Generalized

cones are created by rotating a line about a point to generate a surface. Finally, tangent developable

surfaces correspond to the family of tangent lines extending away from a space curve, called the

edge of regression, such that no intersection of the tangent lines occurs. The four primary classes

of developable surfaces can be joined together to create general or composite developable surfaces
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[13]. In these general surfaces, as with each class of surface, the ruling lines cannot cross one

another.

Parametric equations have traditionally been used to represent these surfaces [134]. Any

ruled surface, r, has the form

r(t,u) = α (t)+uβ (t) (5.3)

where t and u are the parameters of the surface, α(t) is the directrix of the surface, and β (t) is the

direction of the ruling lines. Notice that t specifies which ruling line a point lies on in addition to

the direction of the ruling line, while u specifies the position along a ruling line. A generalized

cylinder is represented more specifically with the form

r(t,u) = α (t)+uβ (5.4)

where the directrix, α(t), is the cross section of the generalized cylinder. The director, β , is a

vector in the direction of all the parallel ruling lines of the generalized cylinder. A generalized

cone has the form

r(t,u) = α +uβ (t) (5.5)

where the directrix is the cone-apex position vector, α , and the curve defining the direction of the

ruling lines, β (t) is the curve defining the cross section of the cone. This equation shows that the

ruling lines intersect at the apex of the cone. Since developable surfaces cannot have intersecting

ruling lines, this point defines a boundary of a developable surface. Thus, the parametric equation

for a generalized cone depicts two conical developable surfaces separated at a shared apex. We can

denote a single generalized conical developable surface by limiting the parameter u to the domain

[0,∞) or (−∞,0]. We will call a generalized cone with u ∈ [0,∞) the forward parametrization,

r f (t,u), and with u ∈ (−∞,0] the reverse parametrization, rr(t,u).

Lastly, a tangent developable surface commonly takes the form

r(t,u) = α (t)+uα
′ (t) (5.6)
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where α(t) is the equation of the edge of regression off of which tangent lines radiate to form

the ruling lines of the surface. The direction of the ruling lines and tangent lines to the edge of

regression are equivalent, as seen in the relation of β (t) = α ′(t). The edge of regression and

apex of generalized cones are sometimes referred to as focal curves of the surface [135]. Here we

assume α(t) has C1 continuity. If α(t) is not C1 continuous, we consider the tangent developable

to be a combination of two or more tangent developables where α(t) is C1 continuous.

As with the generalized cone parametric equation, allowing u to vary from (−∞,∞) results

in intersecting ruling lines from two tangent developable surfaces. By limiting the domain of u

to [0,∞) or (−∞,0] we can separate the two tangent developable surfaces. We will denote these,

as with generalized cones, as the forward and reverse parametrizations respectively. Observe that

a forward parametrization of a tangent developable has the ruling line direction and edge of re-

gression tangent collinear, while in a reverse tangent developable parametrization the ruling lines

radiate away from the edge of regression in the direction opposite the edge of regression tangent.

These two parametrizations for tangent developable surfaces are shown in Fig. 5.3. This differen-

tiation will be useful later in the chapter.

A unit surface normal vector exists for orientable developable surfaces (which includes all

topological discs) [136]. The standard unit normal [136] can be found using

U(t,u) =
rt(t,u)× ru(t,u)
‖rt(t,u)× ru(t,u)‖

(5.7)

where rt(t,u) and ru(t,u) are the partial derivatives of the surface r(t,u) with respect to t and u,

respectively. While −U(t,u) also represents an equally valid surface normal, to avoid ambiguity

Eq. 5.7 is used to specify a particular side of a surface with a positive surface normal. Also, for

developable surfaces the surface normal does not vary along a ruling line and thus u does not appear

on the right side of Eq. 5.7. Therefore we will sometimes write the surface normal as a function of

a single parameter, U(t). In this chapter, whenever a surface normal for a parametrically defined

surface is referred to, it will be the standard unit normal following the form of Eq. 5.7.

As developable surfaces describe many 3D objects created from planar stock materials, var-

ious computational representations and approximations for these surfaces have been created such

as in [23, 137]. One method that is related most closely to this chapter is approximating devel-
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Figure 5.2: The three curved classes of developable surfaces: generalized cylinder (blue), gener-
alized cone (green), and tangent developable (red) shown folding (increasing the magnitude of the
ruling curvature) from left to right.

opable surfaces with cone splines [138, 139]. In this work osculating cones are defined and used

to approximate developable surfaces and manipulate them. Another work uses both the Darboux

and Frenet-Serret frames to describe parametrically defined ruled surfaces and investigates some

interesting properties of these surfaces such as the pitch and angle of pitch of the surface [140].

5.3 Natural Equations of Rigid-Ruling Single-Class Developable Surfaces

For the set of natural equations that is developed in this chapter we desire to have a single

natural measure for the direction of the ruling lines in a developable surface and another measure

describing the rigid-ruling folding of the developable surface from a plane. These two measures

take the form of the geodesic curvature and ruling (principal) curvature of a cross curve.
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Figure 5.3: Forward and reverse parametrizations for tangent developable surfaces where the di-
rection of the edge of regression (green) and cross curves (red) are shown with arrows.

5.3.1 Cross Ruling Principal Curves (Cross Curves)

A developable surface contains an infinite family of principal curves which cross orthog-

onally to the ruling lines. A cross ruling principal curve (cross curve) is a single curve of our

choosing in this family. The geodesic curvature, κg, of a cross curve gives the direction of the

ruling lines in the developable surface. The geodesic curvature of a cross curve is constant for all

folded forms of a rigid-ruling pattern. It is helpful to visualize how the geodesic curvature deter-

mines the direction of the ruling lines in the surface by thinking about developing or unrolling the

surface into a plane. The geodesic curvature of a cross curve is equivalent to the curvature of the

planar (developed) cross curve. Because a cross curve is a principal curve we can draw the ruling

lines of the surface by drawing lines orthogonal to this planar curve. Let us look at how the ruling

lines are described by the geodesic curvature for each class of developable surface.

For a generalized cylinder the geodesic curvature of a cross curve is κg = 0. A single cross

curve is shown in Fig. 5.4 where on the left the surface is developed (so κg is the curvature of the

planar curve resulting in a straight line) and is in the formed shape on the right.
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Figure 5.4: Generalized cylinder flat (left) and formed (right) with a cross curve (red) and the
Darboux frame (orange).

Figure 5.5: Generalized Cone flat (left) and formed (right) with a cross curve (red) and the Darboux
frame (orange).

For a generalized cone κg = 1/vc where vc is the distance from the apex of the cone to a

cross curve. This cross curve is an arc of constant radius vc when the surface is developed and is

shown on the left side of Fig. 5.5 and in the 3D form on the right.
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Figure 5.6: Tangent developable flat (left) and formed (right) with a cross curve (red) and the
Darboux frame (orange).

For a tangent developable surface a cross curve of arc length s has geodesic curvature κg(s).

This function should have C1 continuity, be increasing or decreasing, and should not change signs

as the edge of regression which will be derived from this function should be convex or concave

to form a single tangent developable surface. A cross curve with κg(s) = −1/(3− s)0.5 with

s ∈ [0,2.9] for a tangent developable is shown on the left side of Fig. 5.6 in the developed state and

on the right in a formed state.

We will see later that we can either select a cross curve on a surface to write a set of natural

equations for a surface or alternatively write the natural equations for a cross curve to generate

a developable surface. The choice of which cross curve to use with the natural equations can be

made by looking at which curve will be most convenient for a particular application.

5.3.2 Canonical Developable Parametrizations

It is useful to adjust the parametrizations given by Eqs. 5.4, 5.5, or 5.6 in Sec. 5.2.5 to create

a canonical parametrization [118]. For this parametrization we require an arc-length parametriza-

tion for parameter u. By examining Eq. 5.3 we see that it is impossible to write an arc-length

parametrization for both parameters of a ruled surface as the two parameters interact with each

other. However, we can write an arc-length parametrization for u easily for any ruled surface by

normalizing β (t), denoting the normalized vector as β̂ (t). Let us denote the arc length along a rul-

ing line with the parameter v. Additionally we require certain conditions for α(t) and represent the
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new canonical directrix as α̂(t). For generalized cylinders α̂(t) is perpendicular to β̂ (t). For cones

α̂(t) is the cone-apex position vector. Lastly for tangent developables β̂ (t) = α̂
′(t). In summary,

the canonical parametrization for developable surfaces symbolically is

r(t,v) = α̂ (t)+ vβ̂ (t) (5.8)

where v is the arc length measured along the ruling lines from the directrix.

For this chapter’s purposes we are interested in letting r(t,cv(t)) correspond to a cross

curve where cv(t) is a function describing the distance along the ruling line at t from the directrix

to the cross curve. This is accomplished with the expression

cv(t) =
−1

κg(t)
(5.9)

where κg(t) is the signed geodesic curvature of a cross curve. The surface normal used to define

the sign of the geodesic curvature is the standard unit surface normal from Eq. 5.7 applied to Eq.

5.8.

For generalized cylinders since κg = 0 Eq. 5.9 is undefined. We can interpret this to mean

that for generalized cylinders cv(t) can be equal to any constant and still describe a cross curve

with κg = 0. This is because with generalized cylinders all cross curves have the same geodesic

curvature (zero).

For a parametric equation in the form of Eq. 5.8 with the surface normal given by Eq. 5.7 a

forward generalized cone parametrization has a negative κg or equivalently vc. If κg or equivalently

vc is positive we have a reverse generalized cone parametrization.

For parametric equations in the form of Eq. 5.8 where β̂ (t) = α̂
′(t) with the surface nor-

mal given by Eq. 5.7 forward tangent developable parametrizations have a negative κg(t), reverse

tangent developable parametrizations have a positive κg(t), while both parametrizations have a

negative κ ′g(t), the derivative of κg(t) with respect to t. If these conditions are not met for κg(t)

it is impossible to describe the surface in the form of Eq. 5.8 where β̂ (t) = α̂
′(t) with the surface

normal given by Eq. 5.7.
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5.3.3 Ruling Curvature

With the direction of the ruling lines in the surface defined with a cross curve’s geodesic

curvature, it is useful to define another natural measure for a cross curve, the ruling curvature.

The ruling curvature measures the formed or folded shape of a rigid-ruling developable surface.

As bending can only occur across a ruling line we define the ruling curvature of a cross curve,

κr(t), to describe the deviation of a surface from a plane as we move transversely across a ruling

lines along a cross curve. While this curvature is equal to the non-zero principal curvature of a

developable surface at a point we give it a name, the ruling curvature, to emphasize it is a curvature

for a curve rather than a surface curvature as well as to emphasize importance for theoretical as

well as practical purposes.

Since the ruling curvature of a cross curve is the non-zero principal curvature it can be

calculated the same way as the principal curvature of a surface. This process involves finding the

roots of a characteristic equation from a determinant composed of the coefficients of the first and

second fundamental forms of a parametric surface as described in [141]. We can also find the

ruling curvature along a specific cross curve, r(t,cv(t)) as

κr(t) =−
1
ṡ

dU(t)
dt
·T(t) (5.10)

where U(t) is the unit surface normal as one moves along the cross curve, T(t) the unit tangent

vector to the cross curve, and ṡ is the curve speed of the cross curve (ṡ = ‖ṙ(t,cv(t))‖) where dotr

is the derivative with respect to t. Because the cross curve is orthogonal to the ruling lines, the

vector dU(t)
dt and T are aligned. Since T(t) is a unit vector the ruling curvature has a magnitude

equal to the magnitude of vector dU(t)
dt .

The sign of the ruling curvature behaves like that of the normal and principal curvatures. A

positive ruling curvature denotes that the surface curves towards the direction the surface normal

is pointing. A negative ruling curvature denotes that the surface bends away from the direction

the surface normal points. Figure 5.1 shows a conical developable surface with positive ruling

curvature.
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Figure 5.7: On the left a generalized cylinder with the osculating cylinder (green) shown for a
single ruling line and on the right a generalized cone with the osculating cone (red) shown for a
single ruling line.

5.3.4 Osculating Shapes

Intuition for the ruling curvature measure can be developed by examining physical interpre-

tations of the non-zero principal curvature, κ1, for each class of developable surface as the ruling

curvature at a point on a cross curve is equal to the non-zero principal curvature at that point.

For a generalized cylinder κ1 can be related to an osculating right circular cylinder, much

as an osculating circle is related to the curvature of a curve. An osculating cylinder of a generalized

cylinder at a given ruling line can be defined as a right circular cylinder that shares the given ruling

line, has the same tangent plane along the ruling line as the generalized cylinder, and has the same

maximum principal curvature along that ruling line as the generalized cylinder. Figure 5.7 shows

an osculating cylinder for a single ruling line of a generalized cylindrical surface. The radius of the

osculating cylinder, R(t), for every ruling line in a generalized cylinder is (see A.1.1 for derivation)

R(t) =± 1
κr(t)

(5.11)

For a generalized cone it can be shown that the non-zero principal curvature of a cone varies

as 1/v from the apex of the cone. Therefore the curvature defines an osculating right circular cone.

This osculating cone of a generalized cone at a given ruling line is a right circular cone that shares

the given ruling line and conical apex, has the same tangent plane along the ruling line as the

generalized cone, and has the same maximum principal curvature variation along the ruling line as

the generalized cone. Note that the maximum principal curvature along ruling lines decreases as

one moves away from the apex of the cone. This decrease is equivalent for the shared ruling line
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of both the generalized conical surface and the osculating cone. Figure 5.7 shows an osculating

right circular cone for a single ruling line on a generalized conical surface.

The osculating cone can be characterized by the angle between the osculating cone’s ruling

lines and cone axis, φ . This angle is related to the ruling curvature of a cross curve κg(t) = 1/vc

as (see A.1.2 for derivation)

φ(t) = tan−1
(
−1

vc(κr(t))

)
(5.12)

Similar to a generalized cone, κ1 along a tangent developable surface can be shown to

vary along a ruling line as 1/v. Therefore, we can use the ruling curvature to define either an

osculating helical tangent developable or an osculating cone [142]. Figure 5.8 shows a tangent

developable surface patch with the osculating circular helical tangent developable for a single

ruling line. There exists a family of osculating helical tangent developables for a given ruling line

in a tangent developable surface. This family is characterized by a constant ratio of τ/κ where τ

is the torsion and κ the unsigned curvature of the helix corresponding to the edge of regression of

the osculating helical tangent developable. We can find this ratio with the expression (see A.1.3

for derivation)

τ(t)
κ(t)

=
κr(t)
κg(t)

(5.13)

The osculating cone for a tangent developable surface characterized by the angle between

the osculating cone’s ruling lines and cone axis, φ , is (see A.1.4 for derivation)

φ(t) = tan−1
(
−κg(t)
κr(t)

)
(5.14)

An osculating cone for a tangent developed surface is shown in Fig. 5.8.

5.3.5 Ruling Curvature Related to Principal Curvature Variation

The ruling curvature of a cross curve can be used to describe the variation in the principal

curvature as one moves along a ruling line for all three curved classes of developable surfaces.

The principal curvature is often of interest in engineering applications as it is proportional to the
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Figure 5.8: A tangent developable surface patch (the edge of regression for the surface is the red
curve) with the osculating helical tangent developed (orange) shown for a single ruling line and
the equivalent osculating cone (red).

bending stress in a surface [29]. A.1.5 contains derivations for the equations in this section. For

generalized cylinders there is no variation in the principal curvature along a ruling line so the ruling

curvature is the principal curvature along a ruling line.

For conical surfaces the variation of the principal curvature as one moves along a ruling

line at t is

κ1(v) =−κr(t)vc

(
1
v

)
(5.15)

where κ1 is the non-zero principal curvature of the developable surface, κr(t) is the ruling curvature

of the cross curve at t, vc is the radius of the cross curve, and v is the position along the ruling line.

Or in terms of the osculating cone’s opening half angle φ

κ1(v) = cot(φ)
(

1
v

)
(5.16)

For a tangent developable surface the variation of the principal curvature as one moves

along a ruling line at t is

κ1(v) =−
κr(t)
κg(t)

(
1
v

)
(5.17)
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Or in terms of the osculating helical tangent developable

κ1(v) =−
τ(t)
κ(t)

(
1
v

)
(5.18)

where κ and τ are the parameters for the helix which is the edge of regression of the osculating

helical tangent developable, and v is the position along the ruling line.

5.3.6 Developable Surface Formulas

We can write a simplified version of the Darboux formulas for the T, L, U frame moving

along a cross curve in terms of natural properties for a developable surface. Because a cross curve

is a principal curve and a principal curve points in the principal direction [16, 133] we can write

τg = 0 (5.19)

Because τg = 0 the Darboux frame moving along a principal curve also qualifies as a

rotation-minimizing frame [143].

Further we note that the normal curvature κn along a principal curve is one of the principal

curvatures (and also ruling curvature) so

κn = κr (5.20)

Simplifying the Darboux formulas in this way give what we will call the developable sur-

face formulas and they are written symbolically as

dT
dt

= ṡ(κgL+κrU)

dL
dt

=−ṡκgT

dU
dt

=−ṡκrT

(5.21)

where d/dt is the derivative with respect to parameter t, κr is the ruling curvature of a cross curve,

κg is the geodesic curvature of the same cross curve, and ṡ is the curve speed of the cross curve.
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This set of equations can be written concisely in matrix form as


T′

L′

U′

= ṡ


0 κg κr

−κg 0 0

−κr 0 0




T

L

U

 (5.22)

where the derivative of the vectors is with respect to the parameter t of the cross curve and the

matrix is noted to be skew symmetric.

5.3.7 Natural Equations for Generalized Cylinders

A generalized cylinder can be expressed with two natural equations using the natural mea-

sures of ruling curvature and geodesic curvature of a chosen cross curve as

κg = 0

κr = κr(s)
(5.23)

where κg is the geodesic curvature of the cross curve (zero) and κr(s) is the ruling curvature as a

function of the arc length of the cross curve s.

Figure 5.4 shows how each of these natural equations characterize a generalized cylinder.

A cross curve, which defines the direction of ruling lines in the developable surface, is a straight

line (κg = 0) of length s for a planar surface (κr = 0). The ruling curvature describes how much

the surface bends from a planar state, or in other words how folded the developable surface is into

a 3D state. In the left of the figure the generalized cylinder is shown with κr(s) = 0 while on the

right of the figure the generalized cylinder is shown folded from its flat state (shown in blue) to its

formed state with κr(s) = s/2.

Generalized Cylinders: From Natural Equations to a Canonical Parametrization

We move from the natural equations of a generalized cylinder to a canonical parametriza-

tion given by Eq. 5.8 using the developable surface formulas given by Eqs. 5.21. This system of

first order ordinary differential equations can be solved (numerically if need to be) to find T, L,

and U as functions of s. Note that since the geodesic and ruling curvature functions were defined
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using the arc length of the cross curve s, our curve speed ṡ = 1. We can then relate these vectors to

the canonical parametric equation for a developable surface given in Eq. 5.8 by

α̂(s) = α̂(so)+
∫ s

so

T(w)dw

β̂ (s) = L(s)
(5.24)

where α̂(so) is an arbitrary vector determining the initial location of the directrix. Once we have

Eq. 5.8 we can locate the surface in a coordinate system using Euclidean transformations.

5.3.8 Natural Equations for Generalized Cones

A generalized cone can be expressed using the natural equations

κg =
1
vc

κr = κr(s)
(5.25)

where κg is the geodesic curvature of a cross curve, vc is the radius of the cross curve, and κr(s)

is the ruling curvature as a function of the arc length of the cross curve s. As mentioned previ-

ously, a negative κg results in a forward parametrization while a positive κg results in a reverse

parametrization with the surface normal defined by Eq. 5.7.

Figure 5.5 shows a planar generalized cone (κr = 0) with a cross curve defining the cone’s

ruling lines on the left and then shows how this cone is formed into a 3D shape controlled by the

ruling curvature equation on the right.

Generalized Cones: From Natural Equations to a Canonical Parametrization

To move from the natural equations given by Eq. 5.25 to a canonical parametrization of

a generalized cone we use the developable surface formulas given by Eqs. 5.21. Like with the

natural equations for generalized cylinders this system of first order ordinary differential equations

can be solved to find T, L, and U as functions of s. These vector valued functions are related to the

canonical equation for a developable surface from Eq. 5.8 by

105



α̂(s) = α̂

β̂ (s) = L(s)
(5.26)

where α̂ is a vector to the desired cone tip location.

5.3.9 Natural Equations for Tangent Developables

A tangent developable surface can be expressed using the natural equations

κg = κg(s)

κr = κr(s)
(5.27)

where κg(s) is geodesic curvature of a cross curve and κr(s) is the ruling curvature both as functions

of arc length of the cross curve s. As mentioned before to form a tangent developable surface κg(s)

must not change sign, have C1 continuity, and be always increasing or decreasing. Further for a

canonical parametrization with the surface normal defined by Eq. 5.7 with β̂ (t) = α̂
′(t) a negative

κg(s) results in a forward tangent developable parametrization, a positive κg(s) gives a reverse

tangent developable parametrization, and both have a negative κ ′(g).

Figure 5.6 shows a cross curve for a flat tangent developed surface on the left and shows

how the ruling curvature equation causes the surface to fold into a 3D shape on the right.

Tangent Developables: From Natural Equations to a Canonical Parametrization

Similar to both generalized cylinders and cones we use the developable surface formulas

given by Eqs. 5.21 to solve for T, L, and U. We can use these results to write a canonical parametric

equation for the tangent developed surface in the form of Eq. 5.8 as

α̂(s) = C(so)+
∫ s

so

T(w)dw+
1

κg(s)
L(s)

β̂ (s) = L(s)
(5.28)
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where C(so) is an arbitrary vector to the location of the cross curve’s initial point.

Sometimes it is desirable to write a canonical parametric equation for tangent developable

surface patches where the edge of regression is written in an arc-length parametrization rather

than the cross curve. This can be accomplished through traditional methods of integrating the

magnitude of the derivative of the directrix, α̂(s), and inverting the expression. However, we can

use the unique relation of a cross curve being an involute of the edge of regression to obtain the

relation between arc lengths of a cross curve, s, and arc length of the edge of regression, se. For a

forward tangent developed surface the relationship is

se =
1

κg(s)
− 1

κg(so)
(5.29)

where κg(so) is the geodesic curvature of a cross curve at the starting point of the cross curve (see

Fig. 5.3 point r f (to,uo)).

For a reverse tangent developable surface the relationship is

se =
1

κg(s)
(5.30)

These relations can be solved for s and substituted into the canonical parametric equation

given by Eq. 5.8 to give an arc-length parametrization for the edge of regression rather than the

principal curve.

5.3.10 From a Surface to its Natural Equations

It is not uncommon to start with a known curved developable surface and to desire infor-

mation about its unfolded flat state or how it folds in a rigid-ruling fashion to its formed state. This

information can be found in the surface’s natural equations. If one knows the parametric equations

of a formed developable surface in the form of Eqs. 5.4, 5.5, or 5.6 a set of natural equations can

be found as described below.

A cross curve C(t) is selected on the surface by letting the parameter describing the position

along the ruling lines, u, be equal to a constant of one’s choice for generalized cylinders and cones.
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For tangent developables a particular cross curve is chosen by writing the equation for an

involute of the edge of regression, α̂ . For forward tangent developables a cross curve passing

through the point r(to,uo) is

C(t) = α̂(t)+(uo− s(to, t))α̂ ′(t) (5.31)

where uo is the distance to the selected cross curve at to (as shown in Fig. 5.3), and s(to, t) is the arc

length function of α̂(t). For reverse tangent developables a cross curve passing through the point

r(to,0) is written as

C(t) = α̂(t)− s(to, t)α̂ ′(t) (5.32)

where to specifies the point at which the cross curve intersects the directrix (see Fig. 5.3).

The set of natural equations for the chosen cross curve on the surface is found using Eq.

5.10 and

κg(t) =−
1
ṡ

dL(t)
dt
·T(t) =−1

ṡ
d(U(t)×T(t))

dt
·T(t) (5.33)

where T(t) is the unit tangent to the cross curve, U(t) is the unit surface normal along the cross

curve, and ṡ is the cross curve speed.

With these equations one now knows the planar state of the developable as described by

the planar cross curve with the parameter κg(t) and a measure of how folded the formed surface is

with κr(t).

5.4 Results and Discussion

The natural equations for developable surfaces presented in this chapter provide a concise

and meaningful way to describe a developable surface of a single-class. In many instances devel-

opable surfaces are used as they can be manufactured in a plane and folded into shape. However,

information for the planar state of a developable surface and its rigid-ruling folding can be difficult

to access directly from the traditional parametrization for representing developable surfaces. The

natural equations presented here can provide a new tool for use in industries where developable

surfaces play a critical role such as curved-fold origami, boat hull design, clothing and shoe con-
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struction, sheet metal rolling, architecture, and recent applications such as mechanism design [57]

and folding of 3D printed medical structures [144].

By using the geodesic curvature and ruling curvature of a cross curve as the natural mea-

sures in the natural equations of developable surfaces, a designer can have a strong understanding

of how to mathematically describe and also manufacture a desired surface. For example, design-

ers can connect the flat, or developed, surface which forms into a desired 3D surface by letting

the ruling curvature equation be equal to zero and computing the planar surface. The rigid-ruling

folding of the surface can be modeled and visualized by allowing the ruling curvature to increase

to its final desired values.

There is a strong parallel between the developable surface formulas given by Eqs. 5.21 and

the Frenet-Serret Formulas. Careful selection of the Darboux frame enabled this parallel where the

natural equations of developable surfaces in terms of the geodesic curvature and ruling curvature

of a cross curve correspond to space curves being denoted by their curvature and torsion. This

formulation helps to see how this description of rigid-ruling developable surfaces fits between the

natural equations for a space curve and the fundamental forms which are expressed in natural

measures describing an arbitrary surface.

A collection of surfaces given by natural equations are shown in their flat and folded states

in Fig. 5.9. This figure shows a sampling of the variety of surfaces that can be concisely described

and easily mapped to their developed state using natural equations.

The first row of Fig. 5.9 shows surfaces whose ruling curvature is defined with a cosine

function. The second row shows the three curved classes of developable surfaces where the ruling

curvature is the curvature of a logarithmic spiral with the polar equation

r = e0.4θ (5.34)

The equation for the third row’s ruling curvature was generated by fitting a curve to points

describing the relationship between the arc length and curvature of a parabola with the distance

from the focal point to the base of the parabola as a variable a. This curve fit was parametrized

such that it has an error of less than ±5×10−4/a for κr (which is to the curvature of the parabola)

for arc lengths s≤ 27.8075a. This curve fit is given by
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Figure 5.9: A collection of developable surfaces expressed by their natural equations in both their
formed states (κr = κr(s)) shown with the colored surfaces and their planar states (κr = 0) shown
with the transparent green surfaces. Four types of functions for κr(s) as listed on the right were
plotted for each of the three curved classes of developable surfaces. For the tangent developables
the edge of regression is shown for the planar state in green and for the formed state in red. The
range plotted for the parameters s and v is also given.
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Figure 5.10: The step function used as κr(s) in the fourth row of Fig. 5.9.

κr(s) =
0.07264 |s|+1.272a

s2 +0.1371 |s|a+2.544a2 (5.35)

where a is the distance from the focal point to the base of the parabola. In creating Fig. 5.9 we

chose a = 0.3.

The fourth row surfaces in Fig. 5.9 were generated with a step function as the ruling curva-

ture function. This step function is shown in Fig. 5.10.

5.5 Conclusions

Specific developable surfaces for each of the three curved classes of developable surfaces

can be expressed concisely using natural equations in terms of the geodesic curvature of a cross

curve to describe the arrangement of the ruling lines and the ruling curvature of the same cross

curve to describe the bending of the surface about the ruling lines. While this chapter investigates

natural equations for a single class of developable surfaces, further work can be done to concisely

express composite developable surfaces (surfaces made of two or more classes of developable sur-

faces joined together). The natural measures used in the natural equations set forth in this chapter

carry physical meanings that enable strong intuition between the natural equations and the phys-

ical shape they create. These equations can provide succinct representations and straightforward

rigid-ruling folding modeling for many applications which rely on developable surfaces ranging

from computer graphics to sheet metal rolling.
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CHAPTER 6. DEVELOPABLE COMPLIANT-AIDED ROLLING-CONTACT MECH-
ANISMS

1With the natural equations of developable surfaces presented in the last chapter we are

prepared to use this representation to extend the design space of rolling-contact joints. When a

specific class of developable surface is used in a mechanism or structure, it presents an opportunity

for the designer to explore new variations and even new functionality by considering other classes

or combined classes of developable surfaces in place of the surface presently in use. The natural

equations for developable surfaces present a convenient tool to facilitate this exploration for not

only all the classes or developable surfaces, but every possible folded shape of the surface.

We also introduce in this chapter the idea of adding stiffness, prestress, and/or changing

geometry to the components of rolling-contact joints to achieve specific force-displacement re-

sponses.

6.1 Introduction

Rolling-contact mechanisms are characterized by surfaces exhibiting pure rolling relative

to each other to create relative motion between bodies. These types of mechanisms have proven

useful in applications where unique motion paths are required, friction needs to be kept to a mini-

mum, and under high compressive loads. For example, an artificial disc replacement rolling mech-

anism was created for degenerated vertebral discs that mimics the motion of a healthy disc [102].

Compliant-aided rolling-contact mechanisms use flexible bands or segments to help enforce the

rolling constraint. Existing compliant-aided rolling-contact mechanisms commonly utilize cylin-

drical rolling surfaces to achieve motion [94, 145, 146]. Recently rolling-contact joints created

from generalized cylindrical surfaces, surfaces formed from translating a generator line such that

all ruling lines on the surface are parallel to each other, were employed to create the required panel

1This chapter has been accepted for publication as Nelson, T.G., Herder, J.L., Developable Compliant-Aided
Rolling-Contact Mechanisms, Mechanism and Machine Theory, MECHMT 2018 146, (Accepted April 14, 2018)
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offsets for a thickness accommodation technique for origami vertices [147]. In addition Lang et al.

set forth theorems for 3D rolling motion [147]. This chapter presents a method that illustrates how

developable surfaces can be used to design a family of compliant-aided rolling-contact mechanisms

with both planar and 3D motion. Specific kinetic responses can also be designed by modifying the

stiffness of the flexible bands and curvature of the rolling surfaces [99].

In Section 6.2 we give a brief background of rolling mechanisms and developable surfaces.

In Section 6.3 we set forth a mathematical notation for developable surfaces convenient for rolling

contacts, discuss how rolling-contact mechanisms can be created using developable surfaces as a

basis, give kinematic and kinetic models, and discuss a special case force response, static balance.

In Section 6.4 we show several rolling-contact mechanisms and discuss their construction. Lastly

we close with a final discussion and mention areas of potential future work.

6.2 Background

6.2.1 Rolling-contact Mechanisms

Mechanisms incorporating rolling into their motion can provide unique benefits for engi-

neering applications. For example, ball and other rolling bearings have been commonly used to

reduce friction during movement in the past [148] and continue to be researched [149]. Cams and

followers provide specific cyclic motion and have been highly utilized in engines [150]. Cylin-

ders rolling on each other, implemented in forms such as gears, can create dramatic changes in

mechanical advantage and change directions of motion [151].

One class of rolling-contact mechanisms uses compliant flexures to enforce a rolling con-

straint between two surfaces. For example, a Jacob’s Ladder toy can be considered a compliant-

aided rolling-contact mechanism [96]. The compliant rolling-contact element (CORE) [152] and

Xr joint [146] use the same type of flexure architecture as the Jacob’s Ladder toy to create a joint

with two rolling-contact surfaces which curve away from each other, such as two circles. Mul-

tiple stable locations can be built into these compliant-aided rolling-contact joints [94]. Another

flexure arrangement is seen in the Rolamite joint, which exhibits linear motion with low fric-

tion [99]. Advantages of elliptical rolling-contact joints over circular joints are explored by Mon-
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tierth et al. [153]. An interesting analysis of planar rolling-contact mechanisms has been written

by Kuntz [154].

It should be noted that compared to a traditional revolute joint where the axis of rotation

is stationary throughout the motion, rolling-contact mechanisms have an instantaneous axis of

rotation which continuously moves locations as the surfaces roll across each other [155]. This

quality gives rise to unique motion paths, but also can complicate actuation and implementation.

In addition, rolling-contact mechanisms have the ability to take complex motions which

are normally two degrees of freedom (translation and rotation), and reduce the system to a single

degree of freedom, provided that a no-slip condition is enforced during the rolling motion [154].

Compliant-aided rolling-contact mechanisms have been used in multiple applications. Many

of these applications involve some degree of biomimicry, as rolling motions are readily seen in bi-

ological joints. A prosthetic knee joint was designed by Hillberry and Hall [156]. More recently

rolling joints were used to mimic the motion of a knee in the creation of a knee prosthesis and

brace [157–159]. Finger joints have been constructed out of cylindrical rolling elements joined

by flexible bands [104, 145]. Rolling joints were employed in the creation of a human-oriented

biped robot [160]. Steerable surgical tools have utilized rolling architectures to facilitate small part

sizes [103,161]. A grapser with force perception was designed using compliant-aided rolling con-

tacts [162]. A deployable compliant-aided rolling-contact joint was created by employing curved-

folding origami techniques [57]. Folding plate structures have been facilitated using rolling-contact

mechanisms [163]. Pellegrino et al. created a compliant-aided rolling-contact joint suited to de-

ploying structures in space using a tape spring for actuation [164].

Recent work on a thickness accommodation technique for origami patterns used compliant-

aided rolling-contact mechanisms to create offsets between panels as they moved into a stacked

position [147]. As part of this work two rolling-contact theorems were set forth. The first describes

how relative planar motion between two bodies that is well-behaved, meaning the motion never is

pure translation, but is always coupled with a rotational component, can be accomplished through

two translationally symmetric surfaces rolling on each other. These translationally symmetric

surfaces are ruled surfaces and can furthermore be described as generalized cylinders. The second

theorem states that relative 3D motion between two bodies that is well behaved and satisfies a no-

lateral sliding condition can be created through rolling two ruled surfaces upon each other. Besides
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Figure 6.1: Three classes of developables shown flat and with curvature. A single cross curve for
each class is shown in red in both the curved and developed states.

stating these two general theorems, their application was shown in the paper through the design of

rolling surfaces which match the kinematics of origami vertices.

6.2.2 Developable Surfaces

Rather than creating specific rolling-contact pairs which satisfy origami-vertex kinemat-

ics, in this chapter we will discuss how developable surfaces can be used to create a family of

compliant-aided rolling-contact pairs. A developable surface is a surface that can be created by

bending a plane without any stretching or tearing [10]. Developable surfaces are composed of

ruling lines (straight lines) making them also ruled surfaces [11]. Planes, generalized cylinders,

generalized cones, and tangent developables are the four basic classes of developable surfaces [32].

The three classes other than planes are shown in Fig. 6.1. General or composite developable sur-

faces can be created by splicing these classes together using ruling lines or curved creases [1, 13].

The traditional parametric representation of developable surfaces takes the form of

r(t,u) = α (t)+uβ (t) (6.1)

where t and u are the parameters of the surface, α(t) is the directrix of the surface, and β (t) is the

direction of the ruling lines.

Its often convenient to represent developable surfaces with their canonical parametrization

r(t,v) = α̂ (t)+ vβ̂ (t) [118]. In this form we require β̂ (t) be a unit vector and change u to v to

reflect that v is now an arc length along a ruling line. Additionally for generalized cylinders α̂ (t)

(representing a cross section of the cylinder) is orthogonal to β̂ (t), a constant. For generalized
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Figure 6.2: Positive notation for curvature and moments acting on a surface in relation to the
standard unit normal of the surface.

cones α̂ (t) is a constant vector pointing to the apex of the cone. Finally for tangent developables

α̂ (t) is the equation for the edge of regression with β̂ (t) = α̂ ′(t).

We also note that while the canonical parametrization for a generalized cylinder is valid for

the interval v ∈ (−∞,∞), the generalized cone and tangent developable parametrizations represent

two developable surfaces, one where v ∈ [0,∞) which we call the forward parametrization and one

where v ∈ (−∞,0] which we call the reverse parametrization.

The standard unit normal, which will be used in this chapter, for all orientable developable

surfaces [136] can be found using

U(t,u) =
rt(t,u)× ru(t,u)
‖rt(t,u)× ru(t,u)‖

(6.2)

where rt(t,u) and ru(t,u) are the partial derivatives of the surface r(t,u) with respect to t and u.

Using the standard unit normal for an orientable developable surface we can define a pos-

itive notation that will be used through the rest of this chapter. This notation is shown in Fig.

6.2 where a positive moment results in positive curvature which curves the surface towards the

direction of the standard unit normal.

A particular family of curves on developable surfaces, the principal curves, are helpful

in analyzing and designing developable rolling contacts. Principal curves follow the principal

curvatures of a surface. On a developable surface the ruling lines form one set of principal curves

while the curves crossing perpendicular to the ruling lines (which we call cross curves for short)

form the other set. A single cross curve is highlighted for each of the three classes of developable

surfaces in Fig. 6.1. With the canonical parametrization of developable surfaces the family of cross
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curves can be written with t being the parameter of the curve and w differentiating one cross curve

from another as [118]

c(t,w) =


α̂(t)+w β̂ (t) (generalized cylinder),

α̂(t)+w β̂ (t) for w > 0 or w < 0 (generalized cone),

α̂(t)+ s(t,w) β̂ (t) for w > t or w < t (tangent developable),

(6.3)

where s(t,w) is the arc length along the edge of regression from t to w. For the planar (developed)

mapping of a developable surface the cross curves are straight lines for generalized cylinders,

circular arcs (and a point at the cone tip extreme) for generalized cones, and the involutes of the

edge of regression for tangent developables.

6.3 Methods

While planar motion using rolling contacts has been extensively investigated and used in

various applications, 3D motion using rolling-contact joints has been limited. Examples of 3D

rolling motion are most often seen in gears, such as hyperboloid gears or bevel gears. These are

special case scenarios where fixed, skewed axes exist between two rolling bodies. Analytic studies

were conducted for spherical motions using conical cams [165, 166] and designing for motion

paths using instantaneous screw axes has been investigated [167]. Developable surfaces can help

further illuminate the design space available with rolling-contact joints, especially for complex 3D

motions.

Planar rolling-contact joint surfaces can be described using generalized cylinders. Rolling-

contact joint surfaces that produce 3D motion can be described with generalized cones and tangent

developable surfaces, or combinations of the primary classes of developable surfaces (general de-

velopables). It should be noted that not all rolling surfaces producing 3D motion are developable.

Some ruled surfaces, such as those that create hyperboloid gears, are not developable and still pro-

duce a rolling motion. This chapter will focus on how developable shapes can be used to design

rolling contacts to access a large portion, but not the entire design space, of rolling-contact joints

117



Figure 6.3: On the left is an illustration of the geodesic curvature κg at a point along a cross
curve shown in red with its osculating circle of radius 1/κg in the plane containing the ruling
line direction L and the tangent to the cross curve T. On the right is an illustration of the ruling
curvature κr at the same point with its osculating circle in the plane containing the surface normal
U and tangent to the cross curve T.

producing 3D motion. First we discuss a mathematical notation for developable surfaces conducive

to rolling-contact mechanism design.

6.3.1 Representing Developable Surfaces for Rolling Contacts

We will see in the following sections that geodesic curvature and ruling curvature of a

chosen cross curve highlight several properties important in rolling-contact mechanism design.

The geodesic curvature of a curve is a measure of twist about the unit normal of the surface a

curve is embedded in. The ruling curvature is a measure of the twist about a ruling line for a curve

embedded in a surface. For a cross curve the ruling curvature is the non-zero principal curvature

of the surface. These two curvatures with their osculating circles are shown in Fig. 6.3 for a point

along a cross curve of a generalized cone. The importance of these two parameters for a chosen

cross curve leads to two scenarios of interest for representing developable surfaces. The first is

that the canonical parametrization of a developable surface is known leaving the designer to chose

a specific cross curve for analysis of the geodesic and ruling curvatures. The second is that a

designer has desired functions for geodesic and ruling curvatures and is interested in finding a

parametrization of the developable surface for which these are valid. We present both directions of

work flow below.
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From Canonical Parametrizations of Developables to Geodesic and Ruling Curvatures

From the canonical parametrization we choose a single cross curve c(t) by using Eq. 6.3

and setting w equal to a value. We can then calculate the geodesic curvature and ruling curvature

as

κg(t) =−
1
ṡ

d(U(t)×T(t))
dt

·T(t) (6.4)

κr(t) =−
1
ṡ

dU(t)
dt
·T(t) (6.5)

where T(t) is the unit tangent vector to the cross curve c(t), U(t) is the standard unit normal to the

surface computed from Eq. 6.2, and ṡ is the curve speed of the cross curve (ṡ(t) = ‖ċ‖).

From Geodesic and Ruling Curvatures to Canonical Developable Parametrizations

Similar to the way a space curve can be uniquely defined using its curvature and torsion,

we can describe a specific developable surface with the geodesic curvature κg and ruling curvature

κr of a cross curve. As mentioned previously, while κr for a cross curve is equal to the non-zero

principal curvature of a developable surface, we call it the ruling curvature to specify it as a measure

of curvature of a curve lying on a surface rather than a surface curvature. The geodesic and ruling

curvatures are independent of each other with the geodesic curvature containing information about

the direction of ruling lines within the surface while the ruling curvature describes the deviation of

the surface from a plane as one moves along the cross curve.

As the geodesic curvature of a cross curve contains information about the direction of the

ruling lines within the surface, we can determine the class of developable surface by it. Let κg(s)

be a function of the geodesic curvature defining a cross curve where s is the arc length along the

cross curve. The conditions on κg(s) for every class is summarized in Table 6.1. For generalized

cones vc is a positive constant corresponding the distance from the cone’s apex to the cross curve.

Our chosen desired geodesic curvature function determines a single cross curve of a devel-

opable surface and consequently the full ruling pattern.
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Table 6.1: Summary of Geodesic Curvature Functions and the Corresponding Class
of Developable Surface

Forward Parametrization v ∈ [0,∞) Reverse Parametrization v ∈ (−∞,0]

Generalized Cylinder κg(s) = 0 κg(s) = 0
Generalized Cone κg(s) =− 1

vc
(negative constant) κg(s) = 1

vc
(positive constant)

Tangent Developable
κg(s) = C1 continuous decreasing function
with κg(s) ∈ (−∞,0)

κg(s) = C1 continuous decreasing function
with κg(s) ∈ (0,∞)

Now we can choose a function for the ruling curvature along the cross curve, κr(s). The

continuity of this function is equivalent to the continuity of the developable surface and a change

in sign is reflected as a change in concavity in the surface.

With these two functions we can write a simplified version of the Darboux formulas (also

called the moving-frame equations [168]) because the geodesic torsion for a cross curve is zero

[16, 133] and the ruling curvature is equal to the normal curvature as


T′

L′

U′

=


0 κg κr

−κg 0 0

−κr 0 0




T

L

U

 (6.6)

where the vectors T, L, U form a Darboux frame and are the unit tangent vector to the cross curve,

the unit vector in the direction of the ruling lines, and the unit surface normal, respectively. The

derivative of the vectors is with respect to the arc length s of the cross curve and the matrix is noted

to be skew symmetric. This system of first order ordinary differential equations can be solved

(numerically if need be) to find T, L, and U as functions of s with a set of initial conditions T(so),

L(so), and U(so).

The canonical parametrizations {α̂ (s)+vβ̂ (s)} in terms of the arc length of the cross curve

s can the be written for each type of surface with


α̂(s) = α̂(so)+

∫ s
so

T(t)dt (cylinder),

α̂(s) = α̂(so) (cone),

α̂(s) = α̂(so)+
∫ s

so
T(t)dt + 1

κg(s)
L(s)− 1

κg(so)
L(so) (tangent developable),

β̂ (s) = L(s) (all classes)

(6.7)
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where α̂(so) is an arbitrary vector determining the initial location of the directrix.

We can relate our original choice of κg(s) to a specific cross curve described by w from Eq.

6.3 by

w =− 1
κg(s)

(generalized cones)

s(t,w) =− 1
κg(s)

(tangent developables)
(6.8)

where it is noted that because cross curves for cylinders are straight lines and do not have unique

curvature, κg(s) could apply to any cylindrical cross curve.

6.3.2 Designing Rolling-Contact Mechanisms with Developable surfaces

Architecture Modeling

While both convex and concave rolling surfaces can be described with developable sur-

faces, this chapter will focus on pairs of surfaces that curve away from each other. Maintaining

a rolling constraint between two bodies with compliant flexures, such as is seen in the Jacob’s

ladder joint, requires two surfaces to curve away from each other. If an attempt is made to move

these rolling bodies away from each other, tension forces develop in the bands resisting the mo-

tion. A relationship where two surfaces curve in the same direction for rolling bodies with flexures

of negligible stiffness does not exhibit this behavior as slack in the flexures enables the rolling

bodies to move away from each other. It may be possible to prestress the bands between surfaces

which curve in the same direction such that the no-slip condition is enforced up to a specific force

threshold.

Figure 6.4 shows a generalized architecture for compliant-aided rolling-contact mecha-

nisms such as the CORE joint and Xr joint. In this architecture two developable surfaces are held

together by interwoven flexible bands. Part (a) of Fig. 6.4 shows how separating the mechanism at

a single point and unfolding the developable surfaces to a flat state produces an arrangement where

all components are contained in a single plane. In some cases where no overlap occurs between

bands and surfaces, this arrangement could be used for monolithic manufacture and subsequent

folding of the mechanism. Part (b) of Fig. 6.4 shows what the mechanism would look like when

folded, but keeping the developable surfaces and bands in a flat configuration. In this arrange-
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Figure 6.4: Generalized architecture for a compliant-aided rolling-contact mechanism made of a
single developable class shown in an (a) planar separated state, (b) planar stacked state and (c)
formed functional state.

ment 3 layers exist (the two unfolded developable surfaces composing of the outside layers and the

bands creating the inside layer). Finally, part (c) shows the folded and formed mechanism where

the developable shapes have taken their final form and rolling motion is exhibited.

In Figures 6.4 and 6.5 the ruling lines are shown by thin red lines. The edges of the de-

velopable that correspond to ruling lines, which we will call the ruling line edges, are shown by

thick red lines. The thick black boundaries can be arbitrary selected for the application without

consequence to the fundamental rolling motion.

Rolling without slip of two surfaces maintaining line-contact (rather than point-contact)

throughout the motion results in equivalent ruling patterns, or rulings, for the two surfaces. This

means that we are limited to creating line-contact rolling mechanisms where a generalized cylinder

rolls on a generalized cylinder, generalized cone on a generalized cone, or a tangent developable on

a tangent developable. It is possible to join developable surface classes together to create a general

developable shape which can be used in rolling-contact mechanisms, however developable classes

will always be rolling on a member of their own class. An architecture using general developables

connected by flexible bands is shown in Fig. 6.5. Connecting developable classes together to form

a general developable surface can be accomplished by connecting the classes by a common ruling

line.

We call the shared ruling pattern of both rolling surfaces the base ruling. If we select any

cross curve on the base ruling we note that the geodesic curvature, κg along this curve is shared by

all possible developable shapes that can roll on each other with line contact. The variation in these

shapes can be quantified using the ruling curvature κr along the cross curve.
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Figure 6.5: Generalized architecture for a compliant-aided rolling-contact mechanism made of
general developables shown in an (a) planar separated state, (b) planar stacked state and (c) formed
functional state.

There is some flexibility when choosing the path of the compliant bands used to connect

two rolling developable surfaces, which we will call the construction bands. To create the necessary

rolling constraint conditions with the construction bands, the bands must correspond to common

geodesics of the two rolling surfaces which connect the ruling line edges of the surfaces together.

When the bands correspond to the geodesics, any motion introduces tensile forces which hold

the two rolling surfaces in contact. If the bands do not correspond to a common geodesic of

both surfaces, then the bodies connected by the bands can move relative to each other without

introducing band tension.

It is convenient to view developable surfaces in a planar state when determining the path

for the flexible bands, as a geodesic in a plane corresponds to a straight line. In this arrangement

construction bands can be chosen as any straight lines connecting the ruling edges that do not

leave the surface and do not cross one another, or when the bands have thickness, the bands do

not overlap. If a smaller range of motion is desired, construction bands can be connected between

the two ruling lines that correlate to the lines of contact for the two most extreme positions. In

the case where full rotation is possible with the two surfaces, that is the ruling line edges of the

surfaces are connected together when the surfaces are formed, as is the case with a full cylinder

rotating on a full cylinder, the bands can be extended to allow for a larger range of motion. This

can be accomplished by lengthening the bands within the envelope created by connecting multiple

instances of the surface together as is shown in Fig. 6.6. It should be noted that some paths chosen
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(a) (b)

Figure 6.6: Compliant construction band path possibilities enabling more than 360 degrees of
rotation, where multiple instances of the planar shape (shown in the lighter colors) are pieced
together by ruling lines and the bands are connected from one ruling edge to the other extreme
ruling edge in straight lines without crossing or overlapping.

for bands which provide more than 360 degrees of rolling motion can result in overlap of the bands

wrapping multiple times around the surfaces.

Kinematic Modeling

The kinematics of rolling contacts has been extensively studied for point-contact rolling

rigid bodies as well as line-contact rolling [147, 169–172]. In the following kinematic modeling

we present a sequence of steps particularly suited to tracking the position of any point on a body

during rolling motion for developable shapes which curve away from each other.

Let rg(t,v) be a canonical parametrization of a developable surface which is grounded. Let

r1(t,v) be a canonical parametrization of a developable surface curving away from rg(t,v) which

can roll on rg(t,v). As explained in a previous section for the rolling condition to be met r1(t,v)

must have an equivalent ruling pattern as rg(t,v) and thus the geodesic curvature of the cross curves

cg(t,w) and c1(t,w) will be equivalent for all w. Furthermore, we require rg(0,v) = r1(0,v), which

represents the initial line of contact between the two surfaces, and the standard unit normals for

rg(t,v) and r1(t,v) found from Eq. 6.2 at t = 0 are equivalent giving equivalent tangent planes at

the initial line of contact. This initial configuration is shown in Fig. 6.7(a) for cylindrical rolling

surfaces and Fig. 6.8(a) for conical rolling surfaces.

While it can be difficult to find pairs of canonical parametrizations which meet these criteria

other than for simple cases, it is straightforward to write a pair of canonical parametrizations by

defining a shared base ruling with a function κg(s) and allowing the two surfaces to have differing

ruling curvature functions κr(s) (one negative and one positive if two surfaces are to curve away
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Figure 6.7: Cylindrical rolling surfaces showing (a) the initial position (b) the frames used to
develop the rotation matrix (c) the rolled state at t∗.

from each other enabling a compliant band architecture). This procedure was discussed previously

in Section 6.3.1.

Let P denote any point on the rolling body containing the surface r1(t,v). We will track

the motion of this point throughout rolling r1(t,v) on the grounded rg(t,v). Let P0 to be the vector

from the origin to the point P when t = 0.

To establish the position of point P throughout the rolling motion we can write vector, q,

from a point lying on the line of contact to point P as

q(t,vc) =−r1(t,vc)+P0 (6.9)

where vc is an arbitrarily chosen constant to define a reference point along a ruling line. We

will show how to formulate a rotation matrix, R which will rotate q to the appropriate angle for a

particular state of rolling. We can then translate the rotated vector to its appropriate position during

rolling as shown in Fig. 6.7(c) and 6.8(c). The rotation matrix R is formulated by combining the

contributions of both the ground and rolling surfaces to the change of the angle of the vector q. We

can define a particular position during the rolling with t = t∗. Because the parameter t describes

movement from ruling line to ruling line, which is also how the rolling motion progresses, this

single parameter is sufficient to define the position of the rolling body.

The contribution of each surface to the rotation of vector q is calculated with the following

method. We call the world coordinate frame {0} as shown in Figs. 6.7(b) and 6.8(b). We create a
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coordinate frame {1} at the initial line of contact, t = 0, aligned with T(0), L(0), and U(0). These

vectors are computed in the world frame using Eq. 6.2 for U(0) and

T(0) =
ċ(0)
‖ċ(0)‖

L(0) = U(0)×T(0)

where ċ(t) is the derivative of a cross curve of either surface for a chosen w.

The rotation matrix R0
1 to rotate frame {0} to frame {1} is

R0
1 =

[
T(0) L(0) U(0)

]
(6.10)

We create frames {2g} and {2r} at the position t = t∗ on the ground surface and rolling

surface, respectively. Frames {2g} and {2r} are not shared between the two surfaces unlike Frame

{1}. Frame {2g} is aligned with unit vectors T(t∗), L(t∗), and U(t∗) where U(t∗) is found from

Eq. 6.2 using the ground surface rg and
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T(t∗) =
ċg(t∗)∥∥ċg(t∗)

∥∥
L(t∗) = U(t∗)×T(t∗)

where ċg(t) is the derivative of a cross curve of the ground surface for a chosen w.

The rotation matrix R0
2g to rotate frame {0} to frame {2g} is

R0
2g =

[
T(t∗) L(t∗) U(t∗)

]
(6.11)

Frame {2r} and rotation matrix R0
2r is found in a similar manner using the rolling surface

rather than the ground surface t compute T(t∗), L(t∗), and U(t∗).

With these rotation matrices we can compute the contribution of the ground surface Rg and

of the rolling surface Rr to the rotation of vector q as

Rg = R0
2gR0

1
T

(6.12)

Rr = R0
2rR

0
1

T
(6.13)

Finally the full rotation matrix, R for rotating vector q with both the rolling and grounded

surface contributions is defined by

R = RgRT
r (6.14)

We can write the vector P to point P at t∗ as

P(t∗) = rg(t∗,vc)+Rq(t∗,vc) (6.15)

These equations enable us to track the position of a point on the rolling body for any class

of developable surface pair rolling on each other. By writing the rotation matrices as functions of

t it is possible to differentiate Eq. 6.15 to find the velocity and acceleration of any point during the

motion.
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We can use Euclidean transformations applied to the parametric equation representation

of the rolling surface to express how the entire surface changes rather than a single point. We

accomplish this by tracking the origin of the parametric equation using the procedure above to

obtain rotation matrix R and vector P. These are applied to the rolling surface parametric equation

as

rt∗ (t,v) = Rα̂ (t)+ vRβ̂ (t)+P (6.16)

to find rt∗ , the parametric surface representation of the rolling surface when the line of contact is at

the ruling line specified by t∗. Note that this expression rotates the directrix, α̂(t), about the origin.

It is oftentimes desirable to rotate the directrix about its initial point. This can be accomplished by

using the following equation

rt∗ (t,v) = R(α̂ (t)− α̂(to))+ α̂(to)+ vRβ̂ (t)+P (6.17)

where α(to) is the vector to the initial point of the directrix.

Kinetic Modeling

Stiffness can be introduced into a rolling-contact mechanism joined with compliant flex-

ures by adding additional bands with non-negligible bending stiffness, or by adding stiffness to

the construction bands themselves. Adding stiffness can enable a designer to choose a desired

moment-rotation response throughout the rolling-contact motion.

The kinetic modeling developed here for rolling-contact mechanisms will describe the mo-

ment required to roll the rolling body about the grounded body. Moon et al. describe the kinetic

modeling for a rolling mechanism synthesized from an equivalent four-bar linkage [104]. Here

the kinetic modeling will utilize the vector equations employed in the kinematic modeling of the

previous section and extend the analysis to conical and tangent developable rolling surfaces.

Let’s consider first generalized cylindrical surfaces rolling on each other. Figure 6.9 shows

a free body diagram of the two rolling bodies midway through the rolling motion with a cut made

to the bands with stiffness at t∗ and the rolling bodies moved apart for clarity. Band g represents

all the bands connected to the grounded surface on the ruling line rg(0,v) and then to the rolling
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Figure 6.9: Kinetic model for generalized cylinder surfaces which curve away from each other.

surface r1(t f ,v) where t f is the endpoint of the rolling surface. This representative band is shown

in white in Fig. 6.9. Similarly, Band 1 represents all bands connected to the rolling surface on

the ruling line r1(0,v) and then to the grounded surface on the ruling line rg(t f ,v). This band is

shown with the cross hatchings. The resulting moments from cutting the bands at t∗ are shown and

labeled in the figure using the positive notation set forth earlier.

From the figure we can write the total moment exerted on the body with the rolling surface

by summing the moments where the counterclockwise direction is positive as

Mtot =−Mg,g +Mg,1−M1,g +M1,1 +Mg (6.18)

where Mg is the moment caused by the weight of the body of the rolling surface.

The Bernoulli-Euler relation for beams in bending can be used to write the moment expres-

sion in terms of the geometry and material properties of the bands and the geometry of the rolling

surfaces. This relation for a beam in bending is expressed as

M =
EI
R

= EIκ1 (6.19)
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where M is the moment induced by bending, E is Young’s modulus of the material, I is the second

moment of area for the axis in bending, and R is the radius of curvature of the deformed beam (the

inverse of the non-zero principal curvature, κ1).

By applying the Bernoulli-Euler relation to Eq. 6.18 we have the following expression for

the total moment exerted on the rolling surface, r1 as

Mtot(t) =−
EbgIbg(t)

Rg(t)
+

Eb1Ib1(t)
Rg(t)

−
EbgIbg(t)

R1(t)
+

Eb1Ib1(t)
R1(t)

+Mg(t) (6.20)

where Ebg and Eb1 are the material moduli of Band g and Band 1 respectively, Ibg(t) and Ib1(t)

are the second moment of area about the bending axis for Band g and Band 1 respectively, Rg(t)

and R1(t) are the radii of curvature (whose signs are determined by the surface normals shown in

Fig. 6.9) for the ground surface rg and the rolling surface r1 respectively, and Mg(t) is the moment

caused by the weight of the body with the rolling surface.

It is possible to add a stiffness response to the rolling-contact joint through pre-curving the

stiffness bands. In this case Eq. 6.20 becomes

Mtot(t) =−
EbgIbg(t)

Rg(t)−Rbg(t)
+

Eb1Ib1(t)
Rg(t)−Rb1(t)

−
EbgIbg(t)

R1(t)−Rbg(t)
+

Eb1Ib1(t)
R1(t)−Rb1(t)

+Mg(t) (6.21)

where Rbg(t) and Rb1(t) are the radii of precurvature of Band g and Band 1 respectively where the

sign is determined from the unit normals shown in Fig. 6.9.

By examining Eq. 6.21 we can see that the force response of a rolling joint can be specified

by choosing a combination of the curvature of the rolling surfaces, precurvature of the flexible

bands, and stiffness of the bands either through geometry and material choice or both.

For generalized cones and tangent developable rolling-contact surfaces a kinetic model

can also be developed to describe the moment required to roll one surface over the other. For

generalized conical and tangent developable surfaces it should be noted that the model becomes

more complex as the curvature of the surface changes as one moves along a single ruling line

causing the moment developed in the band to vary along the ruling lines.

We can find this variation of curvature along a ruling line in terms of κg and κr of a

cross curve using the first and second fundamental forms as described in [141] with the canon-
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Figure 6.10: Diagram of a conical surface with construction and stiffness bands with a differential
element of the stiffness band shown in detail. The standard unit normal is coming out of the page.

ical parametrization of a surface. For conical and tangent developable surfaces this results in the

variation of the principal curvature as one moves along a ruling line at t as

κ1(v) =−
κr(t)
κg(t)

(
1
v

)
(6.22)

With the variation of the curvature along a ruling line we are prepared to write an expression

for the differential moment produced by a differential piece of a stiffness band as shown in Fig.

6.10. Using the Bernoulli-Euler relationship of Eq. 6.19 we can write

dM = E
(dv)h(t)3

12
κ1(v) (6.23)

where dM is the differential moment, E is Young’s modulus of the band, dv is the differential

length along the ruling line, h(t) is the height of the stiffness band at t, and κ1(v) is the principal

curvature as a function of v. Integrating this expression gives

M(t) =
Eh(t)3

12

∫ v f (t)

v0(t)
κ1(v)dv (6.24)

where v0(t) and v f (t) are the positions along the ruling line where the stiffness band begins and

ends as a function of t.
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If the stiffness band is initially curved we can write the moment equation as

M(t) =
Eh(t)3

12

∫ v f (t)

v0(t)
κ1(v)−κ1,b(v)dv (6.25)

where k1,b(v) is the variation of the non-zero principal curvature for the band’s initial shape.

A figure similar to Fig. 6.9 can be constructing for conical and tangent developable rolling

surfaces. Similarly, the relationship of Eq. 6.18 is valid for these types of surfaces. With this

equation we can write an expression for the total moment exerted on a rolling body by the stiffness

bands for conical and tangent developable surfaces using Eq. 6.24 or Eq. 6.25 if the bands are

precurved. For example, to write the expression for M1,g of Eq. 6.18 for a conical rolling surface

without precurved stiffness bands we use Eq. 6.24 where k1(v) is determined from Eq. 6.22 for the

rolling surface r1 and h(t), v0(t), v f (t), and E, are determined from Band g.

Special Case Force Response, Static Balance

One special case of a force-displacement response potentially available with these rolling-

contact mechanisms is that of static balance, or a zero-force response. As suggested by its name,

static balance refers to a condition where the rolling-contact mechanisms requires no force (if

friction is considered to be negligible) to quasi-statically move from one position to a finitely

separated other position. Mechanisms that are statically balanced can greatly reduce the size of

actuators required to cause movement, increase energy efficiency, and provide accurate force feed-

back [173, 174].

Static balance of rolling-contact mechanisms can be achieved by adjusting the geometry,

pre-curvature, and materials affecting Eq. 6.18 such that Mtot(t) is equal to zero for every value of t.

This approach could provide statically balanced rolling-contact mechanisms that exhibit complex

large-range 3D motions with the addition of compact static balancing elements that minimally

increase the size or weight of the rolling joint. In comparison, other common static balancing

methods of adding additional linear or compliant springs connected to particular locations between

moving bodies or the addition of counterweights to provide the balancing force can substantially

increase the size or weight of the mechanism. An example of statically balancing a rolling-contact

mechanism will be shown in results and discussion section of this chapter.
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6.4 Results and Discussion

This section will show and discuss several prototypes demonstrating the methodology ex-

plained above for creating rolling-contact mechanisms using developable surfaces and show an ex-

ample of designing a statically balanced rolling-contact mechanism created by tailoring the mecha-

nism’s force response. The accuracy of the kinematic modeling was verified by computing motion

paths of points on the rolling bodies for the prototypes constructed and comparing the behavior to

the physical models. Additionally, simple cases of rolling-contact pairs where the motion paths

of points on the rolling body are known were computed with the kinematic model and compared.

Both approaches yielded good agreement. The accuracy of the kinetic modeling was tested by

measuring the performance of the statically balanced rolling-contact mechanism presented in this

section and the findings are discussed.

6.4.1 Generalized Cylinder Parabolic Rolling-Contact Mechanism

A rolling-contact mechanism with rolling surfaces comprised of generalized cylinders in

the form of parabolas was 3D printed (Makerbot 2) with polylactic acid (PLA) and is shown in

Fig. 6.11. The rolling surfaces were combined using flexible canvas bands. The parabolic rolling

surfaces for this mechanism are defined by the canonical parametrization

r(t,v) =


t

0

t2/a

+ v


0

1

0

 (6.26)

where a, the distance from the base of the parabola to the focal point, is 19.05 mm (0.75 in),

t ∈ [−63.5,63.5] mm ([−2.5,2.5] in), and v ∈ [0,50.8] mm ([0,2] in). This particular rolling-

contact mechanism results in a straight line path for the focus of one of the parabolic surfaces as

it rolls across the other anchored parabolic surface. Motion paths calculated from the procedure

described in the methods section for ten other points on the rolling body are shown in Fig. 6.11.
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Figure 6.11: (a) Generalized cylinder (parabolic surfaces) rolling-contact mechanism and (b) the
kinematic paths of 11 points on the rolling body with the straight line path emphasized in orange.

6.4.2 Developable Compliant-Aided Rolling-Contact Mechanisms from Planar Sheets

Two paper models were constructed for rolling-contact mechanisms using developable sur-

faces. These were constructed by designing the mechanism in the flat state where the construction

bands are straight lines and then increasing the ruling curvature of the surface while holding the

ruling line positions fixed to make the formed 3D shape.

A generalized conical mechanism with constant ruling curvature in shown in Fig. 6.12. In

this prototype three red paper construction bands are used to connect the two conical surfaces.

Each component starts in a flat form as shown in Fig. 6.12(a). The mechanism is folded together

as shown in Fig. 6.12(b) and Fig. 6.12(c) and the final attachment of the middle construction band

is made at the location shown in the figure. The conical surfaces are formed into their 3D shape

and secured using adhesive to create the functional mechanism in Fig. 6.12(d). This joint has a

large range of motion where the rolling cone is able to rotate 360 degrees about the grounded cone

as shown in the series of pictures in Fig. 6.12(e).

A second interesting paper rolling-contact mechanism was created from a convex hull of

two disks, similar to an oloid. The width of the developed (flat) pattern of this shape is 4R where

R is the radius of the semicircle caps, and the height 3.535R as shown in Fig. 6.13. This shape

is a general developable (using two or more types of the four fundamental developable surfaces)

and a rolling developable as it develops its entire surface on a plane as it rolls [175]. Figure 6.13

also shows a folded paper prototype of this oloid-like rolling-contact mechanism constructed with

R = 38.1 mm (1.5 in).
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Figure 6.12: A generalized conical mechanism formed from paper (a) in a planar separated state,
(b) being folded into a planar stacked state (c) in a planar stacked state, and (d) in the final formed
state. The bottom pictures (e) show the range of motion where one cone is able to rotate 360
degrees about the grounded cone.

Figure 6.13: The flat pattern of a general developable (convex hull of two disks similar to an
oloid) rolling-contact mechanism (top) and the mechanism constructed of paper in four rolled
states (bottom).
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Figure 6.14: 3D printed generalized conical rolling-contact mechanism in multiple positions
demonstrating the range of motion.

Figure 6.15: 3D printed tangent developable rolling-contact mechanism in multiple positions
demonstrating the range of motion.

6.4.3 Rolling-Contact Mechanisms with Rolling Surfaces of Differing Ruling Curvatures

A generalized conical rolling-contact mechanism and tangent developable rolling-contact

mechanism were created to demonstrate the principle that two rolling surfaces can still roll on each

other with differing ruling curvatures as long as the geodesic curvatures are equivalent.

A generalized conical mechanism was 3D printed out of PLA with braided filament utilized

in the three construction bands (SpiderWire Stealth-Braid 36.2 kg (80 lb) test). Bead crimps and

small 3D printed blocks were used to appropriately tension the bands. The 3D printed blocks were

inserted underneath the bands on the backsides of the rolling surfaces and twisted into place to

create tension in the bands. The grounded surface is a partial cone with constant ruling curvature

while the rolling surface has a variable ruling curvature. The joint is shown in Fig. 6.14 in multiple

positions.

A tangent developable rolling-contact mechanism was also constructed in the same manner

and is shown in Fig. 6.15. In this mechanism four construction bands were used. The tangent

developable surface making up the grounded surface has zero ruling curvature (a planar surface),

while the tangent developable surface rolling on it has a variable ruling curvature. The geodesic

curvature and equivalently edge of regression of both of these tangent developable surfaces are the

same enabling the mechanism’s function.
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Figure 6.16: (a) 3D printed conical rolling-contact mechanism demonstrating the coupling of rota-
tion and translation and (b) model of the rolling surfaces with the green surface being the grounded
surface while the dark blue and light blue surfaces are the extreme rolling positions with the kine-
matic paths of the sheets endpoints shown for the entire rolling motion.

6.4.4 Sheet-Stowing Conical Rolling-Contact Mechanism

To demonstrate the unique coupling of rotation and translation into a single degree of free-

dom joint, two conical mechanisms were 3D printed with Tyvek bands and attached to flat sheets

of balsa each 178 mm (7.0 in) in length. These conical mechanisms are composed of quarter cone

rolling surfaces with constant ruling curvature and a cone height of 38.1 mm (1.5 in). Hardstops

were incorporated into the rolling-contact mechanism design to prevent the rolling motion from

being extended past the joint range limits. Figure 6.16(a) shows how the flat sheets of balsa are

spread apart at one extreme in the joint’s range of motion and compactly stored together at the other

extreme. The kinematic paths of the endpoints of the sheets were calculated using the kinematics

presented in the chapter and are shown in Fig. 6.16(b) with the rolling-contact surfaces and sheet

for one half of the prototype.
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Figure 6.17: (a) The rolling-contact surfaces and kinematic path of the center of gravity of a
rolling-contact mechanism designed to be statically balanced, (b) the constructed mechanism and
(c) the test set up to measure the force response of the mechanism.

6.4.5 Statically Balanced Generalized Cylindrical Rolling-contact Mechanism

A statically balanced rolling-contact mechanism was designed, built, and is shown in Fig.

6.17. The weight of the moving arm of the mechanism was desired to be balanced throughout the

motion. A circle and a plane were chosen as the rolling-contact surfaces. Three bands with no pre-

curvature were used to hold the surfaces together during the rolling motion. Two of the bands were

assumed to have negligible bending stiffness as they were made of thin steel shim stock. The other

band made of spring steel also served to provide the stiffness response to counteract the weight of

the rolling arm. The design process using the method developed in this chapter will be explained

here.

The two rolling-contact surfaces were represented mathematically; the plane as

rg(s,v) =


v

s

0

 (6.27)

and the quarter circle as

r1(s,v) =


v

Rsin s
R

−Rcos s
R +R

 (6.28)

138



Alternatively the surfaces can be expressed using geodesic and ruling curvature functions as

 κg(s) = 0 κr(s) = 0 (plane)

κg(s) = 0 κr(s) = 1/R (circle)
(6.29)

For either representation we restrict s ∈ [0, πR
2 ] for a quarter circle of rolling contact and v ∈ [0,6].

The center of gravity of the 500 gram arm was selected to be 150 mm directly above

the rolling-contact point when the arm is in a vertical position. The moment about the rolling-

contact point caused by the weight of the arm was computed through the rolling motion. This was

accomplished by using Eq. 6.15 to track the position of the rolling-contact point and the center of

gravity enabling the length of the moment arm to be computed throughout the motion. The graph

of the moment caused by the weight of the arm is plotted in Fig. 6.18 by the line for the analytical

moment without balancing. The geometry of the steel band was computed such that the moment

caused by gravity was to be balanced by the rolling mechanism. The Bernoulli-Euler relationship

from Eq. 6.19 was used to relate the moment as a function of arc length of the band, s, to the

second moment of area of the band as a function of arc length, I(s). Further we know that for a

circle of radius R, like was chosen for the rolling surface, the curvature is κ = 1/R, a constant.

This along with a substitution of the second moment of area for a rectangular cross section where

h is a constant height and b is the width varying with arc length of the band gives

b(s)h3

12
=

MR
E

(6.30)

We can solve for function of the width of the band as it varies by arc length as

b(s) =
12RM(s)

Eh3 (6.31)

Our selection of the height h and radius for the circular surface R determine the maximum

bending stress experienced in the beam independent of the value of b. This can be seen by taking

the equation for bending stress

σb =
Mz
I

(6.32)
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where σb is the bending stress and z is the distance from the neutral axis to the point of interest

in the cross section, solving for M and substituting into the Bernoulli-Euler relationship given by

Eq. 6.19. Using the second moment of area for a rectangular beam in the equation, setting z to its

maximum value, and simplifying gives

σb =
Ehκ

2
(6.33)

where we can see the stress due to bending is independent of the width b. This relation gives us

guidance in selecting an appropriate h and curvature to ensure the design will not yield the stiffness

band.

The band was also adjusted at one end (by increasing b near this end) to create a small

moment to keep the mechanism in an upright position. Once moved more than approximately

8 degrees from the vertical, the mechanism moves into a statically balanced state. This initial

resistance to perturbations is shown by the sloped section in Fig. 6.18 at the left end of the line of

the analytically expected moment.

A spring (visible in the bottom right of Fig. 6.17(b)) was added when anchoring the stiffness

band to regulate the tension in all of the bands, though during motion this spring is inactive with the

entire balancing force due to the stiffness band alone. The moment displacement response as the

arm moves from a vertical to horizontal position and back was measured using a hydraulic tensile

testing machine (Instron Model 1321 with a 22.3 N (5 lb) load cell). Several dummy moments

ranging from 0Nm to 5.51Nm were applied to the mechanism for the testing as it can be difficult

to measure zero force. This moment was applied by hanging weights across the bottom cylinder

(which provides a constant moment arm if the distributed load from the string on the cylinder is

considered negligible) and attaching the other end of the cable to the force gauge on the tensile

tester. Using this set up the moment displacement response can be found and is plotted for several

magnitudes of the dummy moments tested in Fig. 6.18. In this plot the dummy moment has been

subtracted from the measured values to show deviation from the zero force response more clearly.

The data shows limited hysteresis in the rolling-contact motion.

The plots show that while the stiffness band reduced the load, it did not provide enough

of a counter moment to fully balance the mechanism. This behavior could be due in part to a
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Figure 6.18: A graph of the moment occurring through a full cycle of motion (up and down) for
various dummy moment loads with the dummy load subtracted from the measured data.

lifting-off effect occurring between the cylinder and plate it rolls on. The stiffness band wants to

push the rolling cylinder off the flat plate. While this separating motion is resisted by the tension

bands, the initial resistance to lift off is zero no matter how much initial tension is applied to

the tension bands. This allows for some separation between the rolling bodies and decreases the

curvature of the stiffness band. Since the curvature is proportional to the moment, a decrease in

curvature is reflected in the graph as a decrease in the counter-moment to balance the mechanism.

This lifting-off effect was not captured in the kinematic model presented. Further study is needed

to characterize the impact of the lifting-off to appropriately implement it into a more refined and

accurate kinetic model for rolling contacts with stiffness bands or mechanical means in the test

set-up to eliminate the lifting effect.

Additional further study could be conducted to determine an approach for designing rolling-

contact surfaces for desired motion paths and exploration of alternative connection methods which

maintain a rolling constraint with or without compliant bands. While the theory presented should

enable large ranges of statically balanced motion with rolling-contact mechanisms, further study

could be conducted for particular rolling-contact mechanisms to achieve better force-response ac-

curacy and to characterize the feasible limits of static balance.
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6.5 Conclusions

This chapter has developed kinematic and kinetic models that enable the design of novel

mechanisms from developable surfaces within the class of rolling-contact mechanisms. The mea-

sures of geodesic and ruling curvature of cross curves were emphasized to help designers see which

combinations of developable surfaces can roll on each other. The possible paths of the compliant

bands that create the rolling constraint between two bodies were analyzed. Several prototypes

demonstrating the capabilities of this design method were constructed. One of these prototypes

showed how stiffness bands can be added to these rolling mechanisms to create a tailorable force-

displacement response. It is anticipated that a greater understanding of these rolling-contact mech-

anisms will lead to their use in applications where unique kinematic paths (particularly 3D paths)

and kinetic responses are required.
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CHAPTER 7. IMPLEMENTATION OF ROLLING CONTACTS FOR SORCE JOINTS

1In collaborative research carried out during work on this dissertation the use of curved

rolling surfaces was leveraged to create a thickness-accommodation technique for straight-crease

origami vertices [147]. This technique in particular and the other rolling-contact applications in the

previous chapters highlight the need for a study investigating techniques to physically implement

rolling contacts inspired from developable surfaces and curved-crease origami.

7.1 Introduction

Both ancient and contemporary origami art have produced folding patterns that can be

employed in the design of deployable mechanisms and structures. Among other things, engineering

has leveraged origami for applications where two states are desired, a compact folded state and

deployed state. For example, origami designs have been employed in folding solar arrays [81], self

folding robots [45], and deployable joints [57].

One of the challenges of using origami design in engineering applications is the accom-

modation of thickness of the panels. Various techniques have been developed to accommodate

for thickness to move from an origami pattern, where the panels are modeled with zero-thickness,

into a structure made of thick materials [111, 176, 177]. These techniques take advantage of meth-

ods such as trimming away material from panels [85], offsetting panels [178], introducing extra

creases [179], and spacing panels on a flexible membrane [81] to facilitate the folding of thick

material. Each of these techniques has strengths and limitations in regards to qualities such as

preservation of the original origami kinematics, application to only certain crease patterns, and

the ability to have parallel-stacked flat-folded states or planar-unfolded states. For example, the

1This chapter will be published in the conference proceedings for ReMAR 2018 as Nelson, T.G., Lang, R.J.,
Magleby, S.P., Howell, L.L., Implementation of Rolling Contacts for SORCE Joints, 4th IEEE/IFToMM International
conference on Reconfigurable Mechanisms and Robots (ReMAR 2018), Delft, The Netherlands, June 20-22, 2018,
Paper ID: 11 (accepted Mar 23, 2018)
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membrane technique can be simple to manufacture, aligns all the panels in a single plane in an un-

folded state and stacks panels parallel to each other in a flat-folded state; however, the membrane

introduces extra freedom into the system during folding and unfolding.

The Synchronized-offset-rolling-contact element (SORCE) technique, has demonstrated

the ability to combine many strengths of other thickness accommodation techniques while avoid-

ing many of their limitations. This technique uses cam surfaces at each joint to maintain the

zero-thickness origami-folding-model axis locations throughout the folding motion while simulta-

neously moving panels up or down to accommodate for thickness. In this way the SORCE tech-

nique preserves origami kinematics, is applicable to arbitrary crease patterns, has a planar unfolded

state, and allows for parallel-stacked flat-folded states [147]. In addition, the SORCE technique

imposes no constraints on the thickness of the panels. However, the limitation for this technique

comes in the difficulty for physical implementation. Additionally, the Jacob’s-ladder-like inter-

woven bands used originally on the SORCE technique do not allow for convex-concave rolling

surfaces. This chapter explores how rolling contacts such as those used for the SORCE technique

can be physically realized and gives some constraint methods for convex-concave rolling elements.

We present principles which can be used to effectively implement the SORCE technique

and demonstrates these in the construction of several thick-panel origami vertices and structures.

Fold-Angle Multipliers are used to characterize families of vertices which can be constructed us-

ing a single set of SORCE joints. Range control is shown by incorporating hard stops into the

SORCE cams. Multiple methods of flexure assembly are explored and discussed. While this

chapter specifically addresses rolling joints for the SORCE technique, many of the principles pre-

sented apply generally to rolling joints in their various forms and applications. These include

biomimetic joints [104,165], multistable joints [94,180], joints for thick origami and folding struc-

tures [163,164,181], medical instruments [103], and rolling joints with spatial motions [166,167].

Cam-based linkages also present similar challenges in implementation and a large body of work

addressing these challenges including force-closed and form-closed cams, custom follower geome-

tries, and regulation of the pressure angle and normal force exists [150]. The principles presented

here may also be useful in furthering cam-based-linkage implementation strategies. These prin-

ciples are demonstrated in prototypes including the construction of two vertices with a shared

fold-angle multiplier and a birds-foot array.
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7.2 Background

7.2.1 The SORCE Technique

The SORCE technique for creating thick material origami vertices preserves the zero-

thickness origami kinematic model during folding while simultaneously moving the thick panels

vertically away from the zero-thickness model’s panels to allow for stacking in the folded shape.

The zero thickness model ”moves through” the panels as they fold and become vertically offset

from each other for stacking. Rolling contacts are a type of joint which can enable this axis shift

with simultaneous rotation of the folding motion. These rolling cam surfaces enable the zero thick-

ness model to be moved during the folding from one side of a panel to the other, or even off the

panel to allow for other panels to stack between panels. Vector functions, sl(t) and sr(t) as shown

in Fig. 7.1, are used to define the rolling-contact surfaces. The vector functions can be solved

for using the kinematics of the zero-thickness origami vertex (specifically the fold-angle rates,

γi(t)) and by choosing offset functions to describe how the panels move away from each other (zi).

Furthermore, offsets can be introduced into the zero thickness model by splitting the mechanism

along a fold to produce a relative motion vector d(t) as shown in Fig. 7.1 both in the full vertex

schematic and the detail view. Only summarized here, but treated fully in [147], the equations for

determining the two rolling surfaces are given by

sl =
1
γ ′
[
z′rû(π + γ)+ z′lû(0)+R(π

2 ) ·d
′]− zlû(π

2 )+d, (7.1)

sr =
1
γ ′
[
z′lû(−γ)+ z′rû(π)+R(π

2 − γ) ·d′
]
− zrû(π

2 ) (7.2)

where the explicit t dependence of the functions is dropped for brevity, and û(θ) is a unit vector

given by

û(θ)≡ (cosθ ,sinθ) (7.3)

and R(θ) is a counterclockwise rotation matrix given by

R(θ)≡

 cosθ −sinθ

sinθ cosθ

 . (7.4)
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Figure 7.1: The SORCE technique: Using the kinematics of a zero-thickness origami vertex to
create rolling surfaces at each fold line (such as the one shown in the dashed circle where the green
dashed lines are the zero-thickness model plane) which allow for a vertex made of thick material to
begin in a planar state and fold to a stacked state while preserving the zero-thickness kinematics.

7.3 Method

Principles are identified in this section to facilitate the physical implementation of the

SORCE technique. A discussion of several current manufacturing techniques suitable to creat-

ing the custom surfaces required for the SORCE technique is also included.
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7.3.1 Shared Fold-Angle Multipliers

For a flat-foldable degree-4 vertex the cam shapes depend on the panel offset functions

{zi(t)} and the fold-angle functions {γi(t)}, and the latter can be expressed solely in terms of the

fold-angle multiplier µ , and µ is the only place where the values of the sector angles enter into

the analysis. That means that any set of four sector angles with the same fold-angle multiplier can

make use of the same set of cams for a given panel thickness.

Suppose we have an initial set of flat-foldable sector angles satisfying the Kawasaki-Justin

Theorem, (α1,α2,π−α1,π−α2). The fold-angle multiplier µ is given in Equation (7.5),

µ =
sin 1

2(α1 +α2)

sin 1
2(α1−α2)

. (7.5)

Now, if we change sector angle α1→ α∗1 and wish to preserve µ , we must change α2→ α∗2

with

α
∗
2 = 2cos−1

[
2sin

(
α1

2

)
cos
(

α2

2

)
cos
(

α∗1
2

)
/√

cos(α2)cos
(
α∗1
)
− cos(α1)

(
cos
(
α∗1
)
+ cos(α2)

)
+1
]
. (7.6)

So, for example, for the example vertex of Fig. 7.2 where

α1 = 120◦, α2 = 80◦, α3 = 60◦, α4 = 100◦,

the fold-angle multiplier µ is 2.8794, and if we change α1→ α∗1 = 140◦, then the vertex with the

same fold-angle multiplier will have sector angles

α
∗
1 = 140◦, α

∗
2 = 106.165◦, α

∗
3 = 40◦, α

∗
4 = 73.835◦,

and the same rolling contact surfaces would give this vertex a single-DOF kinematic motion.
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Figure 7.2: Two vertices related by a shared fold-angle multiplier of µ = 2.8794 with mountain
and valley folds shown by the red and blue dashed lines.
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Figure 7.3: (a) Schematic diagram of how tangent lines can be used to control the folding angle
range of a SORCE joint. (b) Hard stops incorporated into the cam design to limit the motion of the
vertex to a certain angle.

7.3.2 Joint Range Control

The folding angle range of a vertex can be controlled by adjusting the geometry of the

SORCE joint rolling surfaces. The following procedure describes how to construct a vertex with a

particular folding angle range. Let t1 and t2 denote the fold parameters for γ(t) corresponding to

the two extreme angles of the desired folding angle range. The SORCE cam which enables this

range of motion is created by extending lines tangent to the cam surfaces at the points s(t1) and

s(t2) for both the left and right cam surfaces. These tangent lines will have slopes of s′(t1)/‖s′(t1)‖

and s′(t2)/‖s′(t2)‖ for the two extreme points and are shown in Fig. 7.3(a). The modified SORCE

cams only allow motion up to the desired fold-angle range as portions of the surface corresponding

to the tangent lines create hardstops. An example of a SORCE rolling joint that has been limited

to a 90◦ fold angle is shown in Fig. 7.3(b).
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Figure 7.4: Cams can be split apart to facilitate assembly of the bands and then joined together on
the cross-hatched faces.

7.3.3 Flexure assembly

Achieving the correct tension in each of the flexures joining the SORCE cams is important

to create a rolling joint which avoids excess play, imbalance, or excessive stress in the flexures.

Weaving the flexures between the SORCE cams and attaching them to the cam can be difficult so

alternatives were explored.

One method which allows the bands to be tensioned effectively involves separating the

SORCE cam into sections for assembly as shown in Fig. 7.4. In a SORCE joint, the two SORCE

cams are held together by interwoven flexures which create balanced tensile forces that pull the

cams together. Separating the cams into sections corresponding to the areas where the flexures

pull the cams together in a single direction enables the flexures to be assembled in a relaxed state

(no tension present). After the flexures are attached, the cams can be attached together effectively

tensioning the opposing bands simultaneously.

Another method to facilitate cam assembly involves using contractile materials. Heat-

activated contractile polymer (heat shrink) was investigated as a possible flexure material. This

material allowed the joint to be assembled in loose configuration as shown in Fig. 7.5(a). Heat was

used to contract the flexures and pull the cams together, creating the necessary tension for the joint

to function. The joint after this contraction is shown in Fig. 7.5(b).

7.3.4 Sunken Flexures

While tensioning the flexures draws two convex rolling bodies together, if the curvature

of the rolling bodies is small or one of the rolling bodies is planar it takes a negligible amount of
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(a) Assembly (b) Activated

Figure 7.5: Heat-activated contractile polymer (heat shrink) can be used to facilitate assembly of
the joint and then is activated to finalize the assembly.
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Figure 7.6: Labeled geometry of sunken flexures pulling together two rolling cams with the front
panels of the rolling cams translucent.

force to initiate separation of the bodies regardless of the amount of tension in the flexures. To

mitigate this effect for small curvature or planar surfaces, sunken flexures can be used. Sunken

flexures are wrapped about surfaces set inside the rolling contact surface as shown in Fig. 7.6 and

schematically in Fig. 7.7. The tension forces in sunken flexures have components of force normal

to the rolling surfaces which draw the bodies toward each other.

Besides the special case of circular rolling surfaces, purely offsetting the rolling surfaces

to create wrapping surfaces upon which the sunken flexures can wrap will result in the sunken
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Figure 7.7: Schematic of sunken flexures on wrapping surfaces.

flexures having to stretch or even worse, go slack as the rolling motion occurs. This stretch or

slack can be accommodated by incorporating a spring with sufficient travel to enable the extension

and contraction of the sunken flexure length.

Alternatively, the wrapping surfaces upon which the sunken flexures wrap can be computed

to minimize the stretch or slack during the rolling motion. While proving the existence of wrapping

surfaces for arbitrary rolling surfaces which enable zero change of length in the sunken flexures is

beyond the scope of this work, we present an optimization method which minimizes the change of

length of the sunken flexures and show its performance on a prototype of two non-similar rolling

surfaces. We first describe the geometry in a way that enables us to apply an optimization routine

and then describe how the algorithm functions.

Geometry and Set-up for Optimization Algorithm

For any set of rolling-contact surfaces sl(t) and sr(t) (convex-convex or convex-concave

pairs), the left and right wrapping surfaces, swl and swr, are constrained to be convex surfaces

which do not self-intersect and are symmetric about a vertical axis, the y axis of Fig. 7.7. Because

of the symmetry, we first look at swl . The convexity of the wrapping surface can be ensured by

defining swl with a single function where the domain is the direction of the slope, θ , from 0 to

2π , and the range is the magnitude of the slope M(θ) with M(θ) > 0. The function starts from a

selected initial point, (−x0,y0). From this information we can calculate
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dswl(θ)

dθ
= (M(θ)cosθ , M(θ)sinθ) (7.7)

which can be integrated to

swl(θ) =

(∫
M(θ)cosθ dθ + x0,∫
M(θ)sinθ dθ + y0

) (7.8)

The right wrapping surface can be formulated as the reflection of swl(θ) and we reverse the

parametrization direction to maintain a counter-clockwise rotation as θ increases giving

swr(θ) =

−1 0

0 1

swl(2π−θ) (7.9)

We can determine if a wrapping surface self intersects by putting the wrapping surface into

polar coordinates (φ ,r) and checking to see that the polar angle as a function of the slope direction

θ , φ(θ), is monotonic increasing. We numerically carry this out by stepping through the domain

of θ and using a multi-valued inverse tangent function (i.e. atan2) to find φ as

φ(θ) = atan2(y,x) (7.10)

where (x,y) = swl(θ).

If the polar angle decreases with any positive step in θ , it signifies that self-intersection

has occurred. We later use this determination to impose a penalty constraint in our optimization

routine for self-intersection.

The wrapping surfaces swl and swr are vector-valued functions given in the global xy frame

shown in Fig. 7.7. However, once rolling starts to occur, the transformation relationships describing

the rolling bodies and their surfaces are needed to analyze the sunken flexures joining the two

rolling bodies. We can obtain this transformation information from sl(t) and sr(t). For simplicity

we assume sl is grounded while sr rolls. The rotational component of the transformation is found

using the composition of two rotations in the form of Eq. 7.4. The first rotates the global xy frame
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about the z axis so the new y axis corresponds to the tangent vector at the point of contact, s′l(t).

The angle of rotation for this rotation is θz1 = atan2(yc,xc)−π/2 where (xc,yc) are the coordinates

the point of contact, sl(t). The second rotation is from the frame at the point of contact to the frame

xRyR at the initial point of the second rolling surface shown in Fig. 7.8. The angle of rotation for

this rotation is θz2 = π/2− atan2(yc,xc). We can therefore write the rotational component as

R(θR) = R(θz1 +θz2) (7.11)

where the explicit dependence of θR, θz1, and θz2 on t has been dropped for brevity.

We can find the translational component, q(t), of the transformation by

q(t) = sl(t)−R(θR)sr(t) (7.12)

where sl(t) and sr(t) are the vectors to the point of contact shown in Fig. 7.8.

We can calculate the length of a sunken flexure at any rolling state t, (and as the wrapping

surfaces are symmetric, the lengths of both sunken flexures are equivalent at any t) by

`(t) = `l(t)+ `s(t)+ `r(t) (7.13)

where `l is the length of the flexure wrapped on swl , `s is the length of the straight tangent line

segment of the flexure connecting swl and swr, and `r is the length of the flexure wrapped on swr.

While this equation contains simple terms, some effort is required to evaluate it. We choose points

to anchor the sunken flexures to the wrapping surfaces swl(a1), swr(a2), swl(a3), and swr(a4). These

points are shown in Fig. 7.8 where they are chosen to be the extreme ends of the wrapping surfaces

(a1 = a2 = 0, a3 = a4 = 2π). The sunken flexures connect swl(a1) to swr(a2) and swl(a3) to swr(a4).

Besides the four anchor points, we need to know four more points, swl(b1), swr(b2), swl(b3),

and swr(b4) to determine the lengths of the sunken flexures at rolling state t. These points are shown

in Fig. 7.8 for a specific rolling state t.

Because the sunken surfaces are symmetric we look at only one band as shown in Fig. 7.9.

The straight portion of the band connecting the two rolling bodies is a diagonal tangent between the

two convex wrapping surfaces. An optimization approach can be used to find the diagonal tangent

and consequently points swl(b1) and swr(b2). We let θwl be our single free variable. Starting at
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zero, we can incrementally increase this angle to minimize the distance δ between two parallel

tangent vectors shown in gold. The tangent vector coming off the left wrapping surface has a slope

of θwl and goes through point swl(θwl). The tangent vector coming off the right wrapping surface

has a slope of θwr = θwl +π − θR going through point swr(θwr). If θwr > 2π we can decrease it

by 2π (i.e. θwr = θwr− 2π) to keep it in the domain of swr(θ). The distance between these two

parallel lines is

δ =
|yr− yl +(xl− xr) tan(θwl +π)|√

1+ tan2(θwl +π)
(7.14)

with

(xl,yl) = swl(θwl)

(xr,yr) = R(θR)swr(θwr)+q(t)
(7.15)

Minimizing the distance δ gives the diagonal tangent and angles b1 and b2 for a specific

rolling state t. It is important to search by increasing from θwl = 0 as δ will go to zero multiple

times, but the first time will give the diagonal tangent we are interested in.

With the points swl(b1) and swr(b2) we can compute the terms in Eq. 7.13 using arc lengths

and the magnitude of a vector as

`l(t) =
∫ b1

a1

‖s′wl(θ)‖ dθ

`r(t) =
∫ b2

a2

‖s′wr(θ)‖ dθ

`s(t) = ‖(R(θR)swr(b2)+q(t))− swl(b1)‖

(7.16)

With the ability to calculate the length of a flexure at a given rolling state t, we describe an

optimization algorithm for finding the wrapping surfaces which provide constant length flexures.

Optimization Algorithm

We let the shape of swl vary with n free variables by choosing values Mi = M(i(2π/n))

for i = 1 to n and using cubic spline interpolation with these points to get M(θ). We select an
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initial point (−x0,y0) and use Eq. 7.7 and 7.8 to find an expression for swl(θ). We check to make

sure the surface does not self-intersect by using Eq. 7.10 and stepping through θ from 0 to 2π . If

intersection occurs we impose a penalty (in our implementation, we set a value to cause an equality

constraint to be false). We then use Eq. 7.9 to obtain swr(θ).

We choose nt values for t at which to compute the length of a flexure band. We find the

transformation information R(θR(t)) and q(t) from the rolling surfaces sl(t) and sr(t) at these nt

values using Eq. 7.11 and 7.12. Note that this information need only be computed once and can be

used for any iteration as it does not change with the free variables.

We compute the length of the band at each of the nt values of t using the procedure ex-

plained previously with Eq. 7.13. We select one of these lengths to be our reference length, `re f .

We subtract `re f from the computed band lengths to get changes in length ∆` for the nt rolling

states. We use this information to construct our objective function, F(Mi), to minimize as

F(Mi) = max(∆`) (7.17)

where max(∆`) represents the largest change in length for the nt rolling states checked.

We can use an optimizer (such as MATLAB’s fmincon) to adjust the free variable Mi and

iterate to converge to a solution that minimizes the change of length ∆` during rolling.

Note the choice of the initial point of the wrapping surfaces (−x0,y0) largely affects the

shape of the wrapping surfaces and can be adjusted if the wrapping surface found by the algo-

rithm is not desirable. Further constraints could be added to the algorithm such as preventing the

wrapping surfaces from extending beyond the rolling surfaces.

The algorithm described above was implemented with n = 60 and nt = 10 for the surfaces

shown in Fig. 7.10. The two rolling surfaces consisted of a section of a parabola and a quarter

circle. The optimizer arrived at a solution with a maximum change in length of the sunken flexures

during rolling of 0.5%. A physical prototype was created out of acrylic and tested which showed a

maximum change in length of about 1.5%. This discrepancy could be to inaccuracies in fabrication

and small amounts of slip occurring during testing.
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Figure 7.8: Sunken Flexures on wrapping surfaces at an arbitrary rolled state t.
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(a) (b)

(c) (d)

Figure 7.10: Prototype of a constant-length sunken flexure joint rolling from one extreme position
(a) to the other (d) with dissimilar green rolling surfaces, white wrapping surfaces and dark green
sunken flexures with straight regions highlighted in yellow for visibility.

7.3.5 Geared Teeth and flexure bands

Inaccuracies in flexure assembly and stretch in flexures can cause a decrease in the normal

force and even slip between the two rolling bodies. Additional friction, or even geared teeth can

be added to the rolling surfaces to create a no-slip rolling condition. Increasing the tension in the

bands for sunken flexures will generate more normal force and may decrease the possibility of slip.

7.3.6 Form-Closed Rolling Joints

The traditional flexure-based architecture necessary for compliant rolling elements limits

the design of SORCE cams to convex surfaces [147]. Like sunken flexures, form-closed rolling

joints can provide architectures that allow these conditions to be relaxed. Analogous to the defini-

tion of form-closed traditional cams and followers, a rolling joint can be considered as form closed

when geometric constraints hold the rolling surfaces together. This is in contrast to force-closed

architectures, such as the flexure based architecture, where force elements keep the rolling surfaces

together.
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Figure 7.11: Roller tracks can be used instead of flexible bands to create form closed cams.

Roller Tracks

One method of creating a form-closed rolling joint is to cut grooves into two rolling cams

such that two roller bearings joined by a link pull the two rolling cam faces together. This type of

form-closed rolling joint is shown in Fig. 7.11. The grooves should maintain a constant offset from

the cam surfaces corresponding to the length of the rigid link connecting the two roller bearings.

This type of architecture for rolling joints enables cam surfaces to be joined where one of the

rolling surfaces is convex while the other is concave with a smaller curvature than the convex

surface. This mixing of convex and concave rolling surfaces enables the construction of SORCE

joints for vertices who have surface functions that are difficult to make entirely convex.

Conjugate Cams

Conjugate cams create a geometric constraint that holds the two rolling surfaces together by

introducing a conjugate surface for each rolling surface. These conjugate surfaces roll on a frame

which constrains the two cam faces to be in contact. Figure 7.12 shows an example of symmetric

rolling cams (green rolling surfaces) with their conjugate surfaces (blue surfaces) inside a frame.

We leave the development of an analytic or numerical technique to create conjugate cams

as an open problem for further work.
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SORCE Rolling Surface

Conjugate Surface

Frame

Figure 7.12: Conjugate surfaces can be created on the cams to enable the joint to roll within a
frame to create a form closed cam.

7.3.7 Manufacturing Methods

The custom cam surfaces needed to implement SORCE technique are perhaps the most

difficult elements of the joint to fabricate. Various manufacturing methods that are able to achieve

custom 2D profiles can be used to achieve the cam surfaces including 3D printing, laser cutting,

water jet, CNC mills, and wire electrical discharge machining (EDM). For high volume manu-

facturing injection molding and casting present suitable manufacturing methods. The growing

commonality of 3D printing offers an economical way to manufacture the custom rolling cams

required for the SORCE technique.

7.4 Examples

This section shows several examples of how the SORCE technique and principles discussed

above can be implemented in thick origami applications.

7.4.1 Fold-Angle Multiplier Vertices

The pair of vertices with a shared fold-angle multiplier described in Fig. 7.2 were physi-

cally constructed using a sandwich panel, wooden cams, and flexible bands of Tyvek. Two sets

of identical cams were used on these vertices to demonstrate that fold-angle multipliers can be
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(a)

(b)

(c)

Figure 7.13: Physical prototypes of two vertices related by a shared fold-angle multiplier of µ =
2.8794 shown (a) unfolded, (b) partially folded, and (c) fully folded.

used to find multiple vertex configurations which allow the same geometry of SORCE cams. The

physically constructed vertices are shown in Fig. 7.13.

7.4.2 Birds-Foot tessellation

A multi-vertex birds-foot tesselation was created by repeating and connecting a vertex.

This vertex consisted of sector angles of (135◦, 45◦, 45◦, and 135◦), similar to one of the ver-

tices described in [147]. Also, the zero-thickness pattern of this vertex was split along its line of

symmetry to obtain rolling surfaces better suited to the CORE architecture when accommodating

thickness. 3D printing was used to create the rolling surfaces with flexible bands holding them

together made of Tyvek. The panel facets were created from 1.016 cm (0.4 in) thick sandwich

panel commercially available as Gatorboard. This Birds-foot tessellation is shown in Fig. 7.14.
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(a) (b)

(c)

Figure 7.14: Birds-foot tessellation created with 3D printed cams with Tyvek flexures shown (a)
fully folded, (b) partially folded, and (c) unfolded.

7.5 Conclusion

The principles presented in this chapter enable the use of the SORCE technique for thick-

ness accommodation. They are also well suited for use in other areas where rolling joints are

beneficial due to their unique qualities of a moving axis and low friction. These principles include

using fold-angle multipliers to find shared rolling geometries for related origami vertices, various

assembly techniques of the rolling joints, the use of sunken flexures, adding geared teeth, and

form-closed possibilities. While some of the principles simplify manufacturing, such as the use of

shared fold-angle multipliers and flexure assembly methods, other principles extend the capabili-

ties of the SORCE technique. For example, sunken flexures present viable solutions to increasing

the normal force between and preventing separation of rolling bodies that can occur with tradi-

tional interwoven flexures. These sunken flexures can enable convex-concave rolling surfaces, yet

they come at the expense of increased complexity. With the ever increasing availability of custom

manufacturing processes coupled with these principles, the barrier to using rolling joints can be

lowered to enable innovative mechanisms and structures.
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CHAPTER 8. CONCLUSIONS

In the previous chapters we have presented evidence that curved-crease origami with the

developable surfaces that compose it can be used effectively in engineering challenges. Broadly

put, the engineering applications that stand the most to gain from the work presented have certain

attributes. These attributes include: 1. the presence of curved surfaces integral to the application’s

function, 2. the possibility to benefit from the ability to be deployed from a compact or planar state

and 3. constraints on what manufacturing methods can be used such that planar operations and

folding into the final shape may be desirable or even required.

Incorporating concepts from curved folding and developable surfaces can provide a path-

way to using planar manufacturing processes with mechanisms and structures with curved surfaces

and can also enable deployable mechanisms and structures with compact or flat storage. The par-

ticular concepts explored in this dissertation include the importance of ruling-line and hinge-axis

alignment for creating deployable thick developable surfaces, the addition of curved creases to de-

velopable surfaces present in mechanisms and structures to create deployability, the unfolding of

mechanisms and structures into a single plane to enable 2D manufacturing followed by assembly

through folding, and the consideration of all classes of the developable surfaces to extend the de-

sign space for mechanisms and structures where developable surfaces are present. Multiple meth-

ods were employed to analyze and facilitate the incorporation of these concepts. These include

analytic mathematical models (particularly trigonometry, vector-based, and differential geometry

models), numerical simulations such as finite element models, optimization routines, pseudo-rigid

body modeling, and graphical methods. This medley of approaches to implement 2D manufac-

turing followed by folding assembly or to create deployability characteristics from the concepts

presented in the dissertation suggests the importance of examining each engineering application

individually and selecting an appropriate methodology for what is desired. Further study is war-

ranted to understand appropriate methodology selection for categories of applications.
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Theory was presented for the synthesis of flexible, tailorable-property surfaces that can

be used as thick curved-crease origami panels. This was accomplished through chaining together

compliant elements. Particularly several types of lamina emergent mechanisms whose major ro-

tational displacement came from distributed torsional members were utilized in the arrays. These

networks of joints were used to locally decrease the stiffness along the ruling lines of a developable

surface panel. Prototypes were built and tested to demonstrate moving curved-crease origami out

of paper.

Further insight into the design and use of these thick flexible surfaces was gathered through

the creation of shape factors to describe the effects of the array geometries on the effective prop-

erties of the flexing surface. These factors in conjunction with Ashby material property charts can

provide designers with a material selection methodology for thick flexing panels.

The second part of this dissertation described and demonstrated how concepts from curved-

crease origami and developable surfaces can be used in engineering design, particularly in the

case study of rolling-contact joints. Elements of deployability and planar manufacturing were

incorporated into a rolling-contact joint design using curved creases. A form of equations for

developable surfaces, natural equations, was described that enables a designer to straightforwardly

choose a developable surface of a single class with specific characteristics important to several

engineering properties. This equation form was used to describe the entire family of single-class

developable rolling-contact joints. Lastly some practical methodology of constructing these types

of rolling joints was set forth.

Besides the contributions to the body of scholarly knowledge described above, this work

has the capability to impact our broader society. As some of the chapters have begun to demon-

strate, curved-origami-inspired mechanisms have applications in medical devices, deployable joints,

efficient flexible solar arrays, morphing wings on aircraft, deployable emergency structures, airbag

safety, and conformable body armor. Besides significant applications, this research will hopefully

facilitate further cooperation and learning between two fields that often are viewed as separate:

art and science. It has been a fruitful opportunity to work with artists and industrial designers on

collaborative projects, where all have come away enlightened by the insights of the others. Such

cooperation builds interest in the science, technology, engineering and math (STEM) fields from

others and also gives those in the STEM an appreciation and value for work done outside of STEM.
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Finally, this dissertation represents a step forward, but not a destination in the application

of curved-crease origami and developable surfaces to engineering design. Many aspects of curved

folding remain unexplored. Further mathematical characterization and design methodology is war-

ranted to enable the understanding and intentional design of complex generalized developables.

While one method for enabling the flexibility needed for thick panels in curved-origami-inspired

mechanisms and structures was presented, alternative processes should be and are being explored

to enable stronger, yet still flexible panels. Additionally methods of thickness-accommodation at

the vertices where curved folds meet is needed. Though mainly rolling-contact joints were studied

in this work, it is anticipated that future work will illuminate the breadth of engineering applica-

tions where curved-folding concepts form part of the path towards continuing innovation.
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APPENDIX A. DERIVATIONS AND EXPLANATIONS FOR CHAPTER 5

A.1 Derivations and Explanations

This section contains derivations and explanations referred to in Chapter 5.

A.1.1 Derivation for Eq. 5.11

This derivation shows how the ruling curvature of any cross curve for a generalized cylinder

relates to the radius of an osculating cylinder as expressed in Eq. 5.11.

Let a generalized cylinder be parametrized in the form of Eq. 5.8 such that r(t,vc) with vc

being an arbitrary constant is the cross curve in a 3D state. The ruling curvature of the cross curve

is expressed by Eq. 5.10 and the unit normal vector U(t) found from Eq. 5.7.

Similar to how a circle has constant curvature and can be used as a osculating shape for a

planar curve, a right circular cylinder has a constant non-zero principal curvature and can be cor-

related to the ruling curvature for any cross curve of a generalized cylinder to create an osculating

cylinder. Let us look at how the radius of a right circular (osculating) cylinder is related to the

ruling curvature.

As Euclidean transformations can be used to align a right circular cylinder to a given ruling

line without affecting the ruling curvature or maximum principal curvature along a ruling line, let

us consider a right circular cylinder located at a convenient location expressed in the canonical

parameterization specified by Eq. 5.8 as

r(t,v) =


Rcos t

R

Rsin t
R

v

 (A.1)

where R is the radius of the right circular cylinder.

Using Eq. 5.7 to compute an expression for the unit normal gives
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U(t) =


cos( t

R)

sin( t
R)

0

 (A.2)

and using Eq. 5.10 we find the ruling curvature is

κr(t) =−
1
R

(A.3)

However, we must be careful here as Eq. A.1 can be modified slightly by adding a negative

to the y term. This results in a normal that points in the same direction as the curvature of the

cylinder making κr(t) positive. This ambiguity results from the ability to define an osculating

shape using two different orientations of the surface normal. Because of this we denote R(t) as

±1/κr(t) giving us Eq. 5.11.

A.1.2 Derivation for Eq. 5.12

This derivation relates the ruling curvature of a generalized cone to the opening angle of an

osculating right cone as expressed by Eq. 5.12.

Let a generalized cone be parametrized in the form of Eq. 5.8 such that r(s,vc) is the cross

curve. The ruling curvature is expressed by Eq. 5.10.

An osculating cone with matching variation of principal curvature along a ruling line can

be designated for each ruling line of the generalized cone. The osculating cone’s apex and apex of

the generalized cone will also be the same. As the principal curvature variation depends on just the

opening angle of the cone when both apexes are the same, we will relate the opening angle of a right

circular cone to the ruling curvature. As with the first derivation Euclidean transformations can be

used to align the right circular cone to a given ruling line without affecting the ruling curvature or

maximum principal curvature, so we will assume a convenient location to express a right circular

cone in the form of Eq. 5.8 with the cross curve at r(t,vc) as
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r(t,v) =


vsin(φ)cos t

vc sin(φ)

vsin(φ)sin t
vc sin(φ)

vcos(φ)

 (A.4)

where φ is the angle between the cone axis and the cone’s ruling lines.

We find the unit normal using Eq. 5.7 resulting in

U(t) =


cos(φ)cos t

vc sin(φ)

cos(φ)sin t
vc sin(φ)

−sin(φ)

 (A.5)

and using Eq. 5.10 we get the ruling curvature in terms of the opening angle of the cone and vc as

κr(t) =
−cot(φ)

vc
(A.6)

Rewriting this equation yields Eq. 5.12. As with the cylinder, we can change the direction of the

normal and still have an osculating cone by starting with Eq. A.4 with an added negative on the y

term. However, to preserve continuity with signs in other equations with the way we defined the

sign of vc (being the same as the sign of κg) we will select the sign choice from Eq. A.5.

A.1.3 Derivation for Eq. 5.13

This derivation relates the ruling curvature of a tangent developable to the ratio of the radius

and pitch of an osculating tangent developable helical surface.

Let a tangent developable surface be parametrized in the form of Eq. 5.8 such that r(t,cv(t))

is the cross curve. The ruling curvature is expressed by Eq. 5.10.

To find the osculating helical tangent developable for each ruling line we want to know

the ruling curvature that corresponds to a helical tangent developable with a constant radius, a,

and constant pitch between the windings, 2πb. This results in a helical tangent developable that

has matching variation of principal curvature along a ruling line for a specific ruling line of the

tangent developable. As with the first two derivations a convenient location to express a helical

tangent developable characterized by a and b will be selected as Euclidean transformations do not
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affect the curvature of the osculating shape. We will write a helical tangent developable in the

form of Eq. 5.8 for a reverse tangent developable with rr(t,cv(t)) describing a cross curve (we

could straightforwardly repeat this derivation using the forward parametric representation). To

accomplish this we first write the parametric equation in the form of Eq. 5.8 for helical tangent

developable where r(se,0) is the edge of a regression (a helix specified by parameters a and b and

se is the arc length of the edge of regression). This equation is

rr(se,v) =


acos se√

a2+b2 −
a√

a2+b2 vsin se√
a2+b2

asin se√
a2+b2 +

a√
a2+b2 vcos se√

a2+b2

bse√
a2+b2 +

bv√
a2+b2

 (A.7)

Instead of writing this parametric equation such that the edge of regression is arc-length

parametrized we would like a cross curve to be arc-length parametrized to make the calculation of

the curve speed ṡ trivial. This is done by using Eq. 5.30 to relate the arc length se to the geodesic

curvature of the cross curve. Further, since the cross curve is an involute of the edge of regression

when developed to a plane, and for a helical tangent developable the edge of regression when

developed to a plane is a circle, we know that the geodesic curvature of the cross curve is the

curvature of the involute of a circle. The curvature of the involute of a circle and thus geodesic

curvature of the cross curve for this reverse parametrization is

κg(t) =
1

(2a′t)1/2 (A.8)

where t is the arc length of the cross curve and a′ is the radius of the planar circle (and developed

helix). We relate the planar circle with radius a′ to the radius of a formed helix (the edge of

regression of a helical tangent developable) by noting that the curvature of a formed helix is equal

to the geodesic curvature of a helical tangent developable. This results in the expression

a′ =
a2 +b2

a
(A.9)

We use Eqs. 5.30, A.8, and A.9 to write

se =

(
2t
(

a2 +b2

a

))1/2

(A.10)
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and substitute this equation into Eq. A.7 to find the parametric equation written with the cross

curve arc-length parametrized as

rr(t,v) =


acos

((2t
a

)1/2
)
− a√

a2+b2 vsin
((2t

a

)1/2
)

asin
((2t

a

)1/2
)
+ a√

a2+b2 vcos
((2t

a

)1/2
)

b
(2t

a

)1/2
+ bv√

a2+b2

 (A.11)

We find the unit normal of this parametric equation using Eq. 5.7 resulting in

U(t) =
1√

a2 +b2


−bsin

((2t
a

)1/2
)

bcos
((2t

a

)1/2
)

−a

 (A.12)

An arc-length parametric equation of the cross curve itself can be found using Eq. A.8 and

Eq. A.11 as

C(t) = rr

(
t,
−1

κg(t)

)
(A.13)

We can take the derivative of this expression to find T(t) and use Eq. 5.10 to get the ruling

curvature, but the equations become complex quickly.

Instead to find the ruling curvature we take magnitude of the derivative of Eq. A.12 with

respect to arc length t and note that the sign is positive as the unit normal points in the direction

the reverse parametrized surface curves to find the ruling curvature in terms of a, b, and t as

κr(t) =
b

(2at (a2 +b2))
1/2 (A.14)

Using Eqs. A.8, A.9, and A.14 we can find that

κr(t)
κg(t)

=
b(t)
a(t)

(A.15)
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We also know that for a helix the parameters a and b are related to the curvature and torsion of the

helix by [131]

κ =
a

a2 +b2

τ =
b

a2 +b2

(A.16)

Rearranging and substituting these expressions into Eq. A.15 give Eq. 5.13.

A.1.4 Derivation for Eq. 5.14

This derivation shows how an osculating cone can be the equivalent of an osculating helical

tangent developable for a tangent developable surface and derives the relationship given in Eq.

5.14.

If the variation of the principal curvature along a ruling line is equivalent for a particular

osculating cone as it is for an osculating helical tangent developable we can conclude that the two

shapes can be interchanged as the osculating shape. Using Eq. 5.16 and Eq. 5.17 we see that the

principal curvature variation along a ruling line for both an osculating cone and helical tangent

developable is 1/v multiplied by a constant written in terms of the geometry of the osculating

shapes. By equating these constants we can relate the geometry of the osculating cone to the

osculating helical tangent developable as

cotφ =
−κr(t)
κg(t)

(A.17)

which can be rearranged to get Eq. 5.14.

A.1.5 Derivation for Eqs. 5.15, 5.16, 5.17, and 5.18,

This derivation shows how to find the variation of the principal curvature along a ruling

line for generalized cones and tangent developables. We leverage osculating shapes to write ex-

pressions for the variation of the principal curvature.

We will find the variation of principal curvature of the osculating shape (which will be the

same as the variation of the principal curvature of the generalized shape along the ruling line of
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interest). For generalized cones let the osculating shape be parametrized as Eq. A.4. We use the

first and second fundamental forms with this parametrization to find the principal curvatures (one

of which will be zero). This process is described in [141] where the principal curvatures are the

roots of a characteristic equation formed from the fundamental forms. The result of this process is

that the principal curvatures are indeed zero and Eq. 5.16. It is straightforward substitution from

Eq. 5.12 into Eq. 5.16 to get Eq. 5.15.

The same process is used for tangent developables surfaces where the osculating shape is

parametrized as Eq. A.7 and we use the fundamental forms and characteristic equation to find Eq.

5.18. It is again a straightforward substitution from Eq. 5.13 into Eq. 5.18 to get Eq. 5.17.
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