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Abstract

Wild Low-Dimensional Topology and Dynamics

Mark Hansen Meilstrup

Department of Mathematics

Doctor of Philosophy

In this dissertation we discuss various results for spaces that are wild, i.e. not locally sim-
ply connected. We first discuss periodic properties of maps from a given space to itself, similar
to Sharkovskĭı’s Theorem for interval maps. We study many non-locally connected spaces
and show that some have periodic structure either identical or related to Sharkovskĭı’s re-
sult, while others have essentially no restrictions on the periodic structure. We next consider
embeddings of solenoids together with their complements in three space. We differentiate
solenoid complements via both algebraic and geometric means, and show that every solenoid
has an unknotted embedding with Abelian fundamental group, as well as infinitely many in-
equivalent knotted embeddings with non-Abelian fundamental group. We end by discussing
Peano continua, particularly considering subsets where the space is or is not locally simply
connected. We present reduced forms for homotopy types of Peano continua, and provide a
few applications of these results.

Keywords: Sharkovskii’s Theorem, periodic points, solenoids, 3-manifolds, fundamental
group, Peano continua, homotopy invariants.
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Chapter 1. Introduction

In this dissertation we discuss various results in wild low-dimensional topology and dynamics.

There are three main topics we consider: periodic properties of maps from a given space to

itself, solenoids together with their complements in S3, and Peano continua. In each of these

areas, we derive interesting results while considering spaces that are wild, i.e. not locally

simply connected.

In Chapter 2, we study the periodic properties of maps on non-locally connected spaces.

This work is motivated by the result of Sharkovskĭı [44], which completely describes which

orders of periodic points for a map of an interval to itself imply the existence of other orders.

Sharkovskĭı’s result states that the possible period sets for interval maps are very structured,

in that he defines a total order on the natural numbers that precisely determines when a

certain period must imply the existence of succeeding periods.

Sharkovskĭı’s work has been generalized in various ways. A few authors have found other

spaces that satisfy the same strong result as Sharkovskĭı’s Theorem. Others have considered

what possible period sets and period implications may arise for spaces that definitely do

not have such a rigidly structured result. Some of the spaces that have been considered are

arbitrary linear continua, circles, and graphs. For more details and citations see Section 2.1.

Most spaces do not have a total order that describes the implications for the existence of

certain periods for maps on the space. However, we are often able to describe the possible

period sets, usually as the union of sets of a particular form. It is interesting to note that for

many of the spaces previously studied, the form of period sets is often built from segments,

or multiples of segments, of Sharkovskĭı’s order for the interval. There are also spaces that

have essentially no structure in the form of their possible period sets, such as a 2 dimensional

disk, which has no restrictions other than the existence of a fixed point.

We consider the periodic properties for spaces that are not locally connected, such as

the topologist’s sine curve and the Cantor set, as well as many others. We prove that the
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topologist’s sine curve has the same periodic structure as the interval, while the Cantor set

has essentially no periodic structure at all (except when restricting to maps with every point

periodic). Additionally, we discuss many other examples with varying levels of periodic

structure ranging from the strict total order of Sharkovskĭı’s Theorem to the flexibility of

the Cantor set. We also investigate how the existence of aperiodic points for interval maps is

related to the result of Sharkovskĭı’s Theorem, as this issue affects the result for the Cantor

set. One last question we study in this chapter is what period implications are possible for

any space, i.e. for m,n, is there a space where a period m point implies the existence of a

period n point?

Chapter 3 discusses embeddings of solenoids in the three sphere. Solenoids are inverse

limits of circles, where the bonding maps may be chosen to be any integer, corresponding to

wrapping one circle around the next n times. There are different solenoids that result from

different choices of bonding maps, although some different choices may lead to the same

resulting inverse limit. In any case, the resulting topological space is a compact topological

group, yet it is not locally path connected, nor are its path components.

Solenoids do in fact embed in three space, and in fact there are many inequivalent ways

to embed any given solenoid, even if we restrict to a fixed choice of bonding maps. The

complements of these embeddings provide interesting examples of open 3-manifolds with

complicated structure at “infinity,” as the boundary of the manifold in S3 is the solenoid,

which is not locally connected.

We can distinguish some of these embeddings by their fundamental groups. We show

that each solenoid has embeddings with Abelian fundamental group, as well as embeddings

with non-Abelian fundamental group. We calculate the fundamental group by decomposing

the complement into pieces that are each a braid in a solid torus, and combining the resulting

groups appropriately via the Seifert Van Kampen Theorem. The resulting presentation is

infinite, and thus it is difficult to further distinguish the resulting groups, particularly as all

of the groups for a given solenoid have a common Abelianization.
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We can further distinguish the complements of certain embeddings by geometric means.

As long as infinitely many of the pieces in our decomposition have hyperbolic structures,

we may use an extension of the JSJ-decomposition to differentiate between manifolds with

different hyperbolic pieces. This method provides infinitely many distinct complements for

every solenoid, and in fact for every defining sequence of bonding maps except for one ending

constantly with 2 for the dyadic solenoid.

In Chapter 4 we finish by discussing Peano continua, that is, spaces that are compact,

connected, locally connected metric spaces. While Peano continua have these very nice

properties, there are still many interesting examples that arise. In particular, it is useful to

distinguish those points that have simply connected neighborhoods and those that do not.

For example, the Hawaiian earring is a Peano continuum with a unique point where the

space is not locally simply connected. On the other hand, the Sierpinski carpet is a space

which is nowhere locally simply connected.

We first prove the existence of certain reduced forms for Peano continua up to homotopy

equivalence. One of these reduced forms involves contracting all strongly contractible sets

attached at cut points of the space. The second reduces the one-dimensional subspace to

be a disjoint collection of arcs, together with the set of points where the space is not locally

simply connected, which we prove are homotopically fixed. We give some applications of

these reduced forms, including showing that adding arcs to a space preserves the homotopy

groups of the original space as a subgroup.

We then state some special results that hold for one-dimensional Peano continua. In this

setting, the first reduced form implies the existence of a minimal deformation retract. The

second reduced form represents the continuum as a compactification of a null sequence of

open arcs by some compact set of dimension 0 or 1. We also give an application of these

results for one-dimensional continua with the shape of a graph.

We conclude by discussing homotopy invariants for one-dimensional Peano continua. Two

of these are subsets of the continuum, consisting of points where the continuum is not locally
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simply connected, while the third is a number in N∪∞. These invariant subsets are enough

to determine the homotopy type of the continuum in many cases, and we conjecture that

they are in fact complete homotopy invariants for all one-dimensional Peano continua.
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Chapter 2. Periodic Properties of Maps on Non-Locally

Connected Spaces

2.1 Introduction

A central topic of study in dynamical systems is that of periodic points of maps from a

given space to itself. In this setting we may iterate the map, and then ask questions about

when points of the space return to their original position, under repeated application of the

function. The topology of certain spaces provides significant structure as to what periods,

or sets of periods, may occur, while other spaces are essentially unrestricted in this regard.

Sharkovskĭı [44] has proven a remarkable result about self-maps of an interval, and which

periodic orders imply the existence of other orders. He introduces a total ordering of the

positive integers that describes the periodic structure of interval maps. We first describe this

total order, and then proceed with a few definitions before stating Sharkovskĭı’s Theorem

(Theorem 2.1.2). Sharkovskĭı’s order on the positive integers (�) starts with the odd integers

in ascending order (excluding 1), followed by 2 times the odd integers, then 22 times the

odds, and 2i times the odds. The end of the ordering is the powers of 2 in descending order.

It is interesting to note that Sharkovskĭı’s order is almost a well-ordering of the natural num-

bers, as there is only one Dedekind cut that has no least element in this ordering, namely

the cut consisting of all powers of 2: {. . . , 2n, . . . , 22, 2, 1}.

Sharkovskĭı’s Order:

3 � 5 � 7 � 9 � · · · � 2 · 3 � 2 · 5 � · · · � 22 · 3 � 22 · 5 � · · · � 2n � · · · � 22 � 2 � 1

Definitions 2.1.1. Let f be a map from a space to itself. A point x has period k if fk(x) = x.

If k is the smallest such positive integer, we say that x has order k, or least period k. The

period set of f , Per(f), is the set of all least periods (orders) for the function f . A tail of

5



the Sharkovskĭı order is a set S of positive integers such that if n ∈ S, then m ∈ S whenever

n � m.

We now have the definitions in place to state Sharkovskĭı’s Theorem:

Theorem 2.1.2 (Sharkovskĭı [44]). Let I denote an interval.

A: For every continuous map f : I → I, Per(f) is a tail of the Sharkovskĭı order.

B: Every non-empty tail of the Sharkovskĭı order occurs as Per(f) for some continuous

map f : I → I.

We show in Lemma A.1.1 that the maps f in Theorem 2.1.2B can be taken to fix the

endpoints of the interval. This will be useful in some of our later results.

Although it is sometimes assumed that I is a closed interval, this is not necessary, and

the theorem is true for open (or half open) intervals as well [14, 44]. In the case where I is

not closed, I no longer has the fixed point property. However, Theorem 2.1.2A is still true, as

any map without a fixed point has no periodic points. Theorem 2.1.2B is also true as stated,

but can be strengthened by removing ‘non-empty’ from the statement: the map f(x) = x+1

on the real line has no periodic points, for example, and thus has Per(f) = ∅. A proof of

Sharkovskĭı’s Theorem can be found in many articles or books on dynamical systems, see

for example [4, 12, 14, 24, 44].

About 11 years after Sharkovskĭı proved his theorem, Li and Yorke [33] independently

proved related results about interval maps, only finding out about Sharkovskĭı’s earlier work

at a later date. One of the results in this paper was a partial result of Sharkovskĭı’s Theorem,

in that Li and Yorke proved that a point of period 3 implies the existence of periodic points

of all other periods. However, Li and Yorke also proved facts that were not a result of

Sharkovskĭı’s Theorem; in particular they showed that period 3 implies the existence of an

uncountable set of aperiodic points with certain properties.
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Definition 2.1.3. A space X is called a Sharkovskĭı space if Theorem 2.1.2A is true when

I is replaced by X. That is, for maps f : X → X, the period set Per(f) is some tail of

Sharkovskĭı’s order.

Sharkovskĭı’s Theorem has been generalized in various ways. Schirmer proves that any

connected linear order space is a Sharkovskĭı space [43]. While Schirmer also proves that

Theorem 2.1.2B also holds for connected linear spaces if they contain an arc, Baldwin shows

that Theorem 2.1.2B does not hold for all connected linear spaces [8]. It is interesting to

note that Baldwin shows that the only way Theorem 2.1.2B can fail for a connected linear

space is if the space does not admit any map with a certain period. While chainable (or arc-

like) continua are generally not Sharkovskĭı spaces, Minc and Transue show that hereditarily

decomposable chainable continua are Sharkovskĭı spaces [37].

As most spaces are not Sharkovskĭı spaces, many people have studied the possible period

sets for maps on other spaces, and have classified what periods imply the existence of other

periods, and more generally, what period sets are possible. We note that such work has been

done for spaces such as n-ods, trees, circles, and others, see for example [2, 3, 5, 7, 9, 12, 23,

26, 31, 38, 45, 54, 56].

In this chapter, we prove that the topologist’s sine curve and the Warsaw circle are both

Sharkovskĭı spaces, as are other examples of non-locally connected continua based on those

spaces. These spaces also satisfy Theorem 2.1.2B, and most have the fixed point property.

We also discuss examples that are not Sharkovskĭı spaces, and we describe the possible

period sets for functions on these spaces. For these spaces, the possible periods sets are

usually based on combinations of multiples of tails of the Sharkovskĭı order.

Further, we discuss period sets for maps of the Cantor set. The Cantor set is quite flexible,

and has no restrictions on the possible period sets. However, if we require every point to

be periodic then we do get a restricted result. Consequently, at the end of the chapter we

consider the relationship between aperiodic points and Sharkovskĭı’s order for interval maps.
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Figure 2.1: The topologist’s sine curve (left) and the doubled sine curve (right).

We also briefly discuss period implications that may be possible for any space, which seem

to be strongly related to Sharkovskĭı’s order.

2.2 Non-Locally Connected Spaces

Definition 2.2.1. A space X is locally connected if for every point x ∈ X, and for every

neighborhood U containing x, there is a connected neighborhood V with x ∈ V ⊂ U .

Many common spaces are locally connected, for example: arcs, graphs, Euclidean n-space,

and manifolds. While all of these examples are locally simply connected, there are also many

examples of locally connected spaces that are not locally simply connected, including the

Hawaiian earring, the Sierpinski curve, and the Menger curve.

We will discuss various non-locally connected spaces, in relation to Sharkovskĭı’s The-

orem. Perhaps the simplest example of a space that is not locally connected is that of

a convergent sequence, with its limit point, since no neighborhood of the limit point is

connected. While this space is not connected, there are examples of connected, non-locally

connected spaces such as the topologist’s sine curve, and the Warsaw circle, which we discuss

below.

Example 2.2.2 (Topologist’s sine curve). Let C be the graph of sin(1/x), for x ∈ (0, 1],

and let A be the limit arc {0}× [−1, 1]. The topologist’s sine curve is the space X = C ∪A.

Note that X is compact and has two path components C and A which are intervals (C is

8
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Figure 2.2: The Warsaw circle (left) and a doubled Warsaw circle (right).

half-open, while A is closed). See Figure 2.1.

Example 2.2.3 (Warsaw circle). The Warsaw circle is a topologist’s sine curve together

with an arc connecting endpoints of the two path components. See Figure 2.2.

We note here that for the Warsaw circle it is important that the arc that connects the

two path components of the topologist’s sine curve connects to one of the endpoints of the

limit arc A instead of an interior point of A; otherwise we get a different space that retracts

onto a subspace triod, which clearly does not satisfy Sharkovskĭı’s theorem.

We will discuss various examples of spaces related to the topologist’s sine curve and the

Warsaw circle. We divide these examples into sections about arc-like, circle-like, and star-

like continua. We recall the definition of P-like (for more information see [41]): If P is a

collection of continua, a continuum X is P-like if for every ε > 0 there is a surjective ε-map

f : X → P , for some P ∈ P . A map f is an ε-map if diam(f−1(p)) < ε for every p ∈ P .

Note that the collections of arc-like, circle-like, and star-like continua are not disjoint. For

example, the buckethandle continuum, or Knaster continuum, is both arc-like and circle-like

(see [41], especially 2.9 and 12.48); this continuum can be realized as a union of semicircles

in the plane, or also as an inverse limit of arcs with the bonding maps folding the arc in half

over itself. Another space that falls into two of these collections is Example 2.3.2, which is

both arc-like and triod-like (star-like). We will also discuss a few non-compact examples,
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and include them in the section with similar spaces. We also include a section on spaces

that we call archetypal, which is somewhat different than the other sections.

2.3 Arc-Like Continua

In this section we discuss certain arc-like continua as Sharkovskĭı spaces. Arc-like continua

are sometimes referred to as either snake-like or chainable continua. While the examples

we present are hereditarily decomposable, and thus are considered in [37], we include them

here because of our simple direct proof, which applies to other examples in later sections.

Additionally, we discuss some non-compact examples where our methods apply (recall that

continua are compact by definition).

Theorem 2.3.1. The topologist’s sine curve is a Sharkovskĭı space.

Proof. Denote the topologist’s sine curve by X = C ∪A as in Example 2.2.2, where C is the

sin(1/x) curve, and A is the limit arc. Let x ∈ X be a point of order n, and let m � n. We

will show that there is a point y of order m.

If f(A) ⊂ C, then by continuity f must also map C into C, and f(X) is a compact

connected subset of C, thus an interval I. Thus f maps I into I, and any periodic point of

f must be in I; in particular x ∈ I. Therefore, by Sharkovskĭı’s Theorem, there must be a

point y ∈ I of order m.

If f(C) ⊂ A, then f also maps A into A, and any periodic point must be in A. Again

Sharkovskĭı’s Theorem gives a point y ∈ A of order m.

The remaining case is where f maps A into A and C into C. Since both A and C are

intervals, Sharkovskĭı applies, and the existence of the point x of order n implies the existence

of a point y of order m (in the same path component as x).

We can now discuss many other examples of Sharkovskĭı spaces based on this example.
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For many of these examples, the proof is a fairly straightforward extension of the proof for

the topologist’s sine curve; the main idea is generally to consider where the path components

of the space map to, and show that a periodic point must lie in a path component that maps

to itself.

There are, however, a few more interesting examples that we will discuss. In particular,

the following example shows some difficulties that also arise in examples in later sections.

Example 2.3.2 (A doubled topologist’s sine curve). Let X = X1 ∪X2 be the union of two

topologist’s sine curves, where A1 = A2. We can also write X = C1∪A∪C2. See Figure 2.1.

Theorem 2.3.3. The doubled topologist’s sine curve is a Sharkovskĭı space.

Proof. Let X = C1 ∪ A ∪ C2 be the doubled sine curve as above. Similar to the case of

the topologist’s sine curve, by considering the images of path components, most of the cases

reduce to the known cases of periodic points contained in either an interval or topologist’s

sine curve that maps to itself. The interesting case is where f maps A to A, but maps C1

into C2, and C2 into C1. If the periodic point x lies in A, then Sharkovskĭı applies. If x ∈ Ci,

then x must have even order 2n.

Then x has order n as a periodic point for the map f 2, which maps each path component

to itself. Then f 2 has a periodic point y of order m, for every m � n (in the same component

Ci as x). Then y must have order 2m for f .

By considering Sharkovskĭı’s ordering, this proves everything except that a point of even

order implies a fixed point. Note however, that in this case f(A) = A, and thus has a fixed

point (so that this space has the fixed point property).

Example 2.3.4 (A line of topologist’s sine curves). Let S be a consecutive sequence of

integers (finite, infinite, or bi-infinite). For i in S, let Xi = Ci ∪ Ai be a topologist’s sine

curve, with Ci being the sin(1/x) curve, and Ai being the limit arc. Let X =
⋃
Xi, where

Ai ⊂ Ci+1 for each i. We call the space X a line of topologist’s sine curves. See Figure 2.3.
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Figure 2.3: A line of topologist’s sine curves.

Theorem 2.3.5. Any line of topologist’s sine curves is a Sharkovskĭı space. It has the fixed

point property if and only if it is a finite line of sine curves.

Proof. This comes down to the fact that for any map f : X → X, f must be weakly

increasing on path components of X, i.e. if we define ni so that f(Ci) ⊂ Cni
, then for

i < j we have ni ≤ nj. To see this, note that Ci limits on Ai ⊂ Ci+1, and that f(Ai) is a

compact subset of f(Ci+1) = Cni+1
. Thus f(Ci) limits on Cni+1

, and therefore we can see

that ni ∈ {ni+1, ni+1 − 1}.

With this property of being weakly increasing on path components, we see that the only

way that a point can be periodic is if it lies in a path component that maps to itself. Each

path component is an interval, so Sharkovskĭı’s Theorem applies.

Note that X has the fixed point property if and only if it is the union of finitely many

sine curves. Even for an infinite line, Sharkovskĭı’s Theorem still holds, so that any map

without a fixed point (such as a translation) cannot have any periodic points. Also note that

the infinite line of topologist’s sine curves is an infinite cover of the Warsaw circle.

2.4 Archetypal

We now discuss a class of spaces that are bijective images of arcs, but not necessarily arc-like

(chainable), or even Hausdorff. While these spaces may have certain strange properties, they

are similar enough to arcs that they are still Sharkovskĭı spaces (Theorem 2.4.4).
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Definition 2.4.1. A space X is archetypal if X is a uniquely arcwise connected T1 space and

there is a continuous bijection from an arc to X. The arc may be open, closed, or half-open.

Conjecture 2.4.2. The only archetypal spaces that are arc-like are arcs.

An example of an archetypal space that is not an arc is the Warsaw circle, since it is

the bijective image of a half-open interval. An example of an archetypal space that is the

image of an open arc is shown in Figure 2.4, on the left. This example is the union of two

Warsaw circles sharing a common limit arc. The circle S1 is not archetypal: although there

is a continuous bijection from [0, 1) to S1, it is not uniquely arcwise connected. Note that

archetypal spaces need not be compact.

. . . . . .
. . .

A

C

B

y
z

Figure 2.4: Two archetypal spaces. On the right is a schematic for Example 2.4.3, which is
a non-Hausdorff archetypal space as described below.

Example 2.4.3. We construct an archetypal space X that is not Hausdorff. We will write

X as a union of three arcs, and then describe the topology. The first arc A is a topologist’s

sine curve, without the limit arc. The second arc B is the arc in the Warsaw circle that

connects A to its limit arc, although B does not include any of the limit arc. As it will be

useful later in defining the topology, let x be the endpoint of B that lies in the limit arc of

A. Note that A ∪ B is just an open arc, but A ∪ B ∪ x is not locally connected at x. The
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final arc C is a closed arc with endpoints y, z. The space X as a set is A∪B ∪C, where y, z

are roughly identified with x, as described in the next paragraph. See Figure 2.4.

The topology of X at any point other than y, z is the standard topology of an arc; that

is, a basis element is any open set in X − {y, z} = A ∪ B ∪ int(C). Define a basis element

containing y to be the union of an open set of C − z containing y together with an open

set of A that is a neighborhood of x in the plane. Define a basis element containing z to be

the union of an open set of C − y containing z together with an open set of A ∪B that is a

neighborhood of x.

There is a bijection from a half open arc onto X, that maps the endpoint to y, then

proceeds along C to z, and then follows B and then A. The space X is T1; the only possible

difficulty lies in considering the points y, z, and there are open sets around each that miss

the other point. The points y, z show that X is not Hausdorff, since neighborhoods of the

two points must intersect in A (in a neighborhood of x).

The space X is clearly arc connected, being the bijective image of an arc. It remains to

show that X is uniquely arc connected. First note that X − {y, z} is the disjoint union of

two open arcs, with the standard topology. Notice that in small neighborhoods of y, z, the

path components containing these points are exactly the neighborhoods in the arc B ∪ C

(which is homeomorphic to a standard arc). Thus any arc in the space X must correspond

to the image under the bijection described in the previous paragraph, and we see that X is

uniquely arcwise connected.

Thus X is an archetypal space that is not Hausdorff.

Theorem 2.4.4. Archetypal spaces are Sharkovskĭı spaces.

This theorem generalizes the result in [54] that the Warsaw circle is a Sharkovskĭı space.

The proof relies on showing that a map of the Warsaw circle lifts to a map of the interval.

Our definition of an archetypal space gives the necessary conditions to prove the generalized

theorem.
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Proof of Theorem 2.4.4. Let X be archetypal, with continuous bijection p : I → X, and let

f : X → X be a continuous map. Since p is a bijection, f̃ = p−1fp : I → I is a function,

and we claim that f̃ is continuous. Then since p is a bijection, the periods of f and f̃ are

the same, and since I is a Sharkovskĭı space, so is X.

To see that f̃ is continuous, consider a point t ∈ I, and let U be a metric ball in I

containing f̃(t) = p−1fp(t). Let A be the set of endpoints of U , i.e. A = ∂U and |A| ≤ 2.

Since X is T1, points are closed, and thus X−p(A) is an open set in X containing fp(t). Let

W ⊂ I be the path component of (fp)−1(X−p(A)) containing t. The set W is open in I since

fp is continuous, and I is locally path connected. Now consider pf̃(W ) = fp(W ) ⊂ X−p(A).

SinceW is path connected, we see that pf̃(W ) is contained in the path component ofX−p(A)

containing fp(t).

This path component is just p(U): clearly the path component contains p(U), and it

cannot contain any other point x since X is uniquely arcwise connected and p defines an arc

from p(t) to x that goes through p(A). Thus pf̃(W ) ⊂ p(U), so f̃(W ) ⊂ U , and therefore f̃

is a continuous map on the interval I.

Corollary 2.4.5. The Warsaw circle is a Sharkovskĭı space.

Note that while the Warsaw circle is the bijective image of a half-open arc, it does not

retract to a half-open arc, but only to a closed arc. In fact, the Warsaw circle does satisfy

Theorem 2.1.2B, and it has the fixed point property, even though the half-open arc does not.

Note that the proof that the Warsaw circle is a Sharkovskĭı space is substantially different

than the proof for the previous examples, such as the topologist’s sine curve. The main

difference is that the Warsaw circle only has one path component, which limits on itself, so

that it is not an arc; on the other hand, in the previous examples, every path component

was an arc.
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2.5 Circle-Like Continua

We will now discuss various examples of non-locally connected circle-like continua. A primary

example of these is the Warsaw circle, which was discussed in the last section. While some

of the spaces we discuss are Sharkovskĭı spaces, others are not, and for these we discuss the

possible period sets for maps on these spaces. We note that the results for circle maps are

quite different than Sharkovskĭı’s Theorem [5, 38, 45].

Example 2.5.1 (A doubled Warsaw circle). Let X be the space obtained by taking the

double topologist’s sine curve from Example 2.3.2, and joining the endpoints of Ci by an

arc. We can write X = C ∪ A, where C is an open interval, with each ‘end’ limiting on the

closed arc A as a topologist’s sine curve. See Figure 2.2.

Theorem 2.5.2. The doubled Warsaw circle is a Sharkovskĭı space.

Proof. This is actually much simpler than either the double topologist’s sine curve or the

Warsaw circle. Either A maps to C (in which case C also maps to C), or C maps to A (and

A also maps to A), or each path component maps to itself. Any periodic point must then

lie in a path component that maps to itself and Sharkovskĭı’s Theorem applies. Note that

this space has the fixed point property.

All of the above examples satisfy Theorem 2.1.2 as stated, and all have the fixed point

property, except for infinite lines of topologist’s sine curves. Also, these all retract onto an

interval, and thus we can see that Theorem 2.1.2B is also satisfied for these spaces. Note

that we can drop the requirement ‘non-empty’ for the infinite line of sine curves, as there is

a shift map with no periodic points.

The examples that we will discuss for the remainder of this section, and in the following

sections, are not Sharkovskĭı spaces. Just as the earlier examples, these spaces retract to
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Figure 2.5: A double cover (left) and a 3-fold cover (right) of the Warsaw circle.

an arc, and thus Theorem 2.1.2B holds for these examples; additionally, some (but not all)

have the fixed point property.

Example 2.5.3 (A double cover of the Warsaw circle). This space is the union of two

topologist’s sine curves where A1 ⊂ C2 and A2 ⊂ C1. If each Ai is at the closed end of Cj

(i 6= j), then this connected space is a double cover of the Warsaw circle. See Figure 2.5.

The double cover is almost a Sharkovskĭı space, but there is one set of implications that

does not hold – an even period does not always imply a fixed point.

Theorem 2.5.4. Let f be a map of the double cover of the Warsaw circle to itself. Suppose

f has a point of order n, and m � n. If either n is odd or if m 6= 1, then f has a point of

order m.

Proof. This is very similar to the doubled topologist’s sine curve. The only difficult case is

if f permutes the path components C1, C2. In this case, f 2 maps each path component to

itself, and just as in the proof for the doubled sine curve, by looking at the map f 2 we get all

of Sharkovskĭı’s Theorem, except for a point of even order implying the existence of a point

of order 1. This part of Sharkovskĭı’s Theorem is not in fact true for this space, as a simple

rotation gives every point order 2, with no fixed point. Otherwise, Sharkovskĭı’s Theorem

holds as stated.

Note that any function that permutes the path components shows that this space does
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not have the fixed point property. However, we can prove that any map without a fixed

point has a point of order 2.

If f maps X into one path component Ci, then f(X) is a compact interval that maps to

itself, giving a fixed point. If f maps into both path components, it can be seen that f must

be surjective, and must satisfy f(Ai) = Aj. If f maps each Ci to itself, then we get fixed

points in each Ai. If f permutes the path components, then f 2(Ai) = Ai, so that f 2 has a

fixed point in each Ai, and thus f has a point of order 2 (in each Ai).

This example gives rise to more questions than the simple “Is X a Sharkovskĭı space?”

For any space X, we can define a partial order �X on the positive integers by n �X m if

every map of X to itself that has a point of order n has a point of order m. We can then

ask what this partial order �X is. However, for many spaces this is not as informative as

the standard Sharkovskĭı Theorem. In general, it is more informative to ask: What are all

possible Per(f) for a given space X? If we know all possible sets of least periods, we can

reconstruct the partial order �X , however the converse is not true. We will discuss the

partial order �X further in Section 2.9.

We introduce some notation to deal with these questions. Write the Sharkovskĭı order as

a relation from Z+ to itself: S = {(n,m) ∈ Z+ ×Z+ | n � m}. A multiple of the Sharkovskĭı

order is then d · S = {(dn, dm) ∈ Z+ × Z+ | n � m}. This mutliple of Sharkovskĭı’s

order only has multiples of d as initial points. As such, we can extend the relation to

include all other integers as initial points, representing vacuous implications, e.g. we may

add k � m when there are no maps with points of period k (for a certain multiple d ·S). This

will allow us to describe the periodic implications for various spaces, as they often involve

certain combinations of tails of different multiples of Sharkovskĭı’s order. Thus we define

d · S = d ·S ∪{(a, b) ∈ Z+×Z+ | d does not divide a}. We note that we could have extended

d · S to a total order, but that does not work as well in the following since we will want the
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maximal set of implications, even if many of them are vacuous in this case.

In the following, it will be useful to note that all possible tails of the Sharkovskĭı order

can be realized as the period set of an interval map that fixes the endpoints of the interval

(see Lemma A.1.1). In other words, we may take the maps in Theorem 2.1.2B to be maps

fixing the endpoints of the interval.

Example 2.5.5 (An n-fold cover of the Warsaw circle). This space is the union of n topol-

ogist’s sine curves Xi = Ci ∪ Ai, where Ai ⊂ Ci+1 (indices taken mod n). If each Ai is at

the closed end of Ci+1, then this connected space is an n-fold cover of the Warsaw circle. A

3-fold cover is shown in Figure 2.5.

Some dynamical properties of the n-fold cover of the Warsaw circle have been studied in

[56]. They show that if a function has a fixed point, then it satisfies Theorem 2.1.2 for that

function; however if there are no fixed points then it does not. While the n-fold cover is not

a Sharkovskĭı space, we prove which period sets are possible.

Theorem 2.5.6. Let f be a map of the n-fold cover of the Warsaw circle to itself. Then

Per(f) is a non-empty tail of d · S for some d|n. Furthermore, every such tail is Per(f) for

some f .

Proof. As with the double cover, it can be seen that either f maps X into one component

Ci, or f is surjective, in which case there is some fixed number k such that f(Ci) = Ci+k,

and f(Ai) = Ai+k for all i (indices taken mod n). Let d be the order of the induced map on

components, so that fd(Ci) = Ci; in other words, d is the order of k in Zn. We say that f

has type d. Note that d divides n.

If d = 1, then we get the usual Sharkovskĭı ordering, as any periodic point is in an interval

Ci that maps to itself. Since f(Ai) = Ai, f has a fixed point as well. Now consider the case

where d 6= 1. For any periodic point x of f , d must divide the order of x, call it d · n. Then

x is a point of order n for the map fd. So there is a point y of order m � n for fd, which

will have order d ·m for f .
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Thus for any map f of type d, we see that Sharkovskĭı’s Theorem is true for the partial

ordering on the integers which is d times the original Sharkovskĭı order: d · S. Thus every

map of type d satisfies Sharkovskĭı’s Theorem with the extended partial ordering d · S. Then

for the n-fold cover X of the Warsaw circle we get that the maximal partial ordering (�X)

for Sharkovskĭı’s Theorem is defined by the relation S(n) =
⋂
d|n d · S.

We note that this actually agrees with our result for the double cover of the Warsaw

circle, although it may appear different at first. The number 2 is unique with respect to S

in the sense that 2 · S is actually a subset of S (as a relation). In fact, except for 1, all of

the numbers that do not show up in 2 · S (namely the odds) precede all the evens. Thus

S(2) = S ∩ (2 · S) = S − {(2n, 1) | n ∈ Z+}.

As with the double cover, we note that the n-fold cover does not have the fixed point

property, but that every map of type d has a point of order d (since fd(Ai) = Ai). This

is related to the fact that all factors d of n are maximal elements in S(n) (or equivalently

�X). So every self-map of the n-fold cover of the Warsaw circle has a point of period n (not

necessarily least period).

Now we discuss the possible period sets Per(f) for the n-fold cover. We note that our

partial order �X defined by S(n) =
⋂
d|n d · S is not particularly informative here. It can

easily be seen that for most integers this intersection will remove almost all information

about periods of functions. For instance, we get no implications for a point of period d|n.

However, the way we have written the partial order as an intersection of other partial orders

is more informative, as will be seen.

If f maps into one path component, then the possible period sets are just tails of S. Such

maps must have a fixed point, since f is essentially the map from the compact set im(f) to

itself. Each map f that does not map into one path component is surjective and has type d

for some d|n, and Per(f) must be a tail of d · S. We show that we get all such non-empty

tails.
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Given any (non-empty) tail T of S, by Lemma A.1.1 there is a map h : I → I fixing

the endpoints of I with Per(h) = T . We will use h to construct a map f of type d with

Per(f) = d · T . First take homeomorphisms fi : Ci → Ci+1 (indices mod n) that respect the

limit structure on Ai and that are coherent, i.e. so that F defined by F |Ci
= fi is not only a

homeomorphism of type n, but also so that F n = IdX.

Now, choose intervals Ii ⊂ Ci −Ai−1 coherent with the homeomorphisms fi, i.e. fi(Ii) =

Ii+1. Then define the map Hd to perform h on the first n/d intervals Ii,

Hd =


h on Ii for 1 ≤ i ≤ n/d

Id otherwise

,

and then we can define f by

f = F (n/d) ◦Hd.

Notice that fd = H1, which is a map of type 1 that performs h on each Ii, and is the identity

otherwise. Thus Per(f) = d · Per(h) = d · T , which is a (non-empty) tail of d · S. Note that

we only consider non-empty tails since every map of type d has a point of order d.

Thus for maps f of the n-fold cover of the Warsaw circle, Per(f) is a non-empty tail of

d · S for some d|n, and every such tail is Per(f) for some f .

2.6 Star-Like Continua

Our last set of examples based on the topologist’s sine curve are star-like continua. An

n-star, or n-od, is just a union of n arcs each sharing one endpoint, and disjoint otherwise.

Baldwin discusses Sharkovskĭı’s Theorem for all n-ods, giving a complete characterization

of the possible period sets [7]. We discuss non-locally connected n-ods, and note that our

results are related to Baldwin’s.
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Example 2.6.1 (A topologist’s n-od). Let Xn be a union of n topologist’s sine curves with

a common limit arc, Xn = A ∪
⋃
Ci. Note that for n = 2 this is just the doubled sine curve

of Example 2.3.2. Also, this space is planar for all n, which can be seen by letting Ci be the

graph of sin(1/x) + ix, for x ∈ (0, 1].

Theorem 2.6.2. Let f be a map of the topologist’s n-od to itself. Then there is some

partition K of n such that Per(f) is a union of non-empty tails of d · S, where d varies over

all integers in K ∪ {1}. Furthermore, every such union of tails occurs as Per(f) for some

map f .

Proof. First note that if A maps into any Ci, then Xn maps into a compact interval in Ci,

and the standard Sharkovskĭı Theorem applies. Suppose now that A maps into A. If im(f)

contains any point in Ci, then by connectivity we can see that im(f) must contain a tail of

the sine curve Ci, and thus limits on all of A. So if f(A) 6= A, then im(f) ⊂ A, and the

standard theorem applies.

We may then assume that f(A) = A. The map f induces a map g on the path compo-

nents, which we think of as a map on Y = {0, 1, . . . , n} where we consider A = 0 and Ci = i.

Thus we are assuming g(0) = 0. Some points may map to 0, which is fixed, others may not

be in the image; we are concerned with those points that are always in the image (of any

iterate of g), since any periodic point of f will correspond to some such path component.

Let N be the number of such points (not counting 0), i.e. N = lim
m→∞

|gm(Y )| − 1. We

note that equivalently, N = |gn(Y )| − 1. By reordering, we may assume that for 1 ≤ i ≤ N ,

i ∈ gm(Y ) for all m (if N = 0 this statement is vacuous). Now if we restrict g to Y (N) =

{1, . . . , N}, we get a permutation in SN . Let K = {k1, . . . , k`} be the cycle type of the

permutation. We say that g (and also f) is of type K.

Suppose that f is of type K, and k ∈ K. Then there is a set of k of the path components

Ci that f cyclicly permutes. Any periodic point in these path components must have period

divisible by k. As in earlier examples, we get the implications on periodicity derived from

22



the partial order k · S. Note that fk need not have a fixed point in Ci, as the sine curve

could be continually pushed toward the limit arc A. However, if this is the case then there

are no periodic points in these path components, and we have an empty tail of k · S.

Then for a map f of type K, we see that Per(f) is a union of tails of d ·S, where d ranges

over K ∪ {1} (recall that f(A) = A). Note that the union of two tails of d · S is still a tail

of d · S. The possible types of f are all partitions of m, where 0 ≤ m ≤ n. Since A is always

fixed (as a set), we always include 1 as a possibility for d, whether or not 1 is in the type

K. To simplify, we may then assume that K is a partition of n (instead of a partition of

m ≤ n).

Thus for each map f , there is some partition K of n such that Per(f) is a union of non-

empty tails of d · S, where d varies over K ∪ {1}. We may assume the tails are non-empty:

since Xn has the fixed point property there is always a non-empty tail of 1 · S, and if there

were no non-empty tail for some d 6= 1 in the partition, we could consider a map of a different

type K ′ where we replace d in the partition K by d copies of 1.

We will now show that all such Per(f) described in the last paragraph actually occur.

For the most part, this is very similar to the last example of an n-fold cover of the Warsaw

circle. Given a partition K of n, and an element d ∈ K, we can choose d path components

of Xn to be cyclicly permuted by f , and design the map f to have the appropriate periods

as before. For any other d′ ∈ K, we repeat using distinct path components of Xn.

The only difficulty arises if 1 6∈ K, for example, if K = {n}. Then as before we can

construct a map g that has any union of nonempty tails of d · S, for d ∈ K. The trick is

to still get a tail T of 1 · S corresponding to the limit arc A. To do this, first note that our

construction of g will give a neighborhood U of the limit arc A where g only permutes the

path components by the coherent homeomorphisms fij. In other words, we want U to be

disjoint from all the sets Ii ⊂ Ci used to create the tails of k · S for k ∈ K.

Now choose an interval J ⊂ A. Consider the preimage of J under a (suitably nice)
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projection map from Xn to A. For instance, with the standard embedding of the topologist’s

sine curve in the plane, take horizontal projection. Let Ji be the components of the preimage

of J that are contained in U . By Lemma A.1.1 there is a map h : J → J that fixes the

endpoints of J , and has Per(h) = T . To define f , precompose the function g with the map

h on J and each Ji, where the map h must be performed coherently on each Ji. This will

define a continuous map f , that has T ⊂ Per(f).

Unfortunately this may also give periodic points that were not desired in the sin(1/x)

curves Ci. This can be corrected however, by pushing all of the sine curves Ci toward A, in

the portion Ci∩U . This is still continuous, and will avoid the creation of undesired periodic

points. Thus all of the possible sets Per(f) are exactly as described above.

We note here the relationship between our results for the topologist’s n-od and Baldwin’s

results for the standard n-od [7]. Baldwin defines partial orders �d for all integers d, and

shows that for a map f of the n-od, Per(f) is a union of tails of �d, where d is allowed to

vary over all positive integers less than n. We note that d · S is a terminal segment of �d, so

that all period sets for the topologist’s n-od can be achieved as a period set for the standard

n-od. However, the partial order �d is a nontrivial extension of d · S, and allows for different

periods. Additionally, there is no restriction in the case of the standard n-od that all the

values of d used sum to n (or more precisely, some value ≤ n + 1, since we are allowed a

partition of n, union 1). In fact, Baldwin shows that you can achieve any possible period set

fixing a neighborhood of the basepoint. This extra freedom is possible since the arcs of the

n-od can map to more that just one other arc.

Example 2.6.3 (A topologist’s ∞-od). X = A ∪
⋃
Ci, for i = 1, . . . ,∞. This is similar to

Example 2.6.1, but with infinitely many sine curves. This space is still planar; for instance

take Ci to be the graph of sin(1/x) + x/i.

This example can also be made compact by adding C0 as the graph of sin(1/x).

Theorem 2.6.4. For a map f of the topologist’s ∞-od to itself, Per(f) can be any set of
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positive integers that contains 1.

Proof. First note that X has the fixed point property. If f(A) ⊂ A, then there is clearly a

fixed point, and if f(A) ⊂ Ck, then f maps the topologist’s sine curve A∪Ck to itself, which

also has the fixed point property.

Let S be a subset of N that contains 1. First note that N can be partitioned into

sets Ni where each Ni has si elements, for every si ∈ S (and N0 will be infinite if S is

finite). Then define the map f to be the identity on the limit arc A together with the sine

curves Ck for k ∈ N0, and for i 6= 0 define f to cyclicly permute the si sine curves Ck

for k ∈ Ni. If the cyclic permutation is defined nicely, i.e. so that f restricts to coherent

homeomorphisms that compose to the identity, then this gives points of all orders si, and

fixed points, with no other periodic points. For an example of coherent homeomorphisms,

consider the planar embedding described above, and use vertical projection between the

corresponding sine curves. Note that if the ∞-od is taken to be compact, then the curve C0

should be fixed by f .

While it may not be obvious at first, this result is similar to the n-od case. The answer

for that case deals with K ∪ 1 for partitions of n. Here, we consider S ∪ 1, for any subset

S ⊂ N; and any set of positive integers could be considered a partition of infinity, in some

sense, as we allow repetitions in our partitions.

Note that the above result can also hold for path connected, and even locally connected

spaces. For instance, consider a ‘standard’ ∞-od as a cone over {1/n}, with or without

the limit point 0 included. For an example of a locally connected space, simply make each

arc of the ∞-od get smaller. Another way of expressing this last space is as the one-

point compactification of a sequence of half-open arcs. Note that this space is planar and

contractible, being a dendrite. The proof for these spaces is essentially the same as for the

topologist’s ∞-od, where the main difference is showing the fixed point property.

We also note that the same result also holds for a 2-dimensional disk. It is easy to
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construct examples for the disk if for any n you can construct a map of the disk that fixes

the boundary with Per(f) = {1, n}. We leave the details to the reader.

A similar result holds for the Hawaiian earring H, which is the one-point compactification

of a sequence of open arcs. However, there is a difference here, as the Hawaiian earring does

not have the fixed point property since H retracts to a circle, which we can rotate without a

fixed point. So while we can have any period set containing 1, we can also have any period

set of a circle map of degree one (without a fixed point) – these are described by Misiurewicz

in [38]. We note that any finite set of periods can be added to any period set of a degree

one map of a circle, and there are possibly many more complicated things that can happen

on the Hawaiian earring:

Question 2.6.5. What are the possible period sets for maps of the Hawaiian earring that

do not contain 1?

2.7 Cantor Set Maps

The last few examples in the preceding section had maps with any period set desired, as-

suming a fixed point. This mainly relied on being able to describe the space in a symmetric

fashion, and then permuting the different pieces while limiting on a fixed point to ensure

that the map is continous. In a similar manner, we can find self-maps of the Cantor set with

any period set that contains 1. There are also many Cantor set maps with no fixed point

that have various period sets, and after considering the question of possible period sets for

the Cantor set, we came to believe and eventually prove:

Theorem 2.7.1. Given any subset S of the natural numbers, there is a continuous map f

from the Cantor set to itself with Per(f) = S.

Why should this result be true? While the interval is very restrictive as far as what

period sets are possible as given by Theorem 2.1.2, the restriction is mainly due to the fact
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that the interval is path connected. The proof of Sharkovskĭı’s Theorem relies on the fact

that the interval between points in a periodic orbit must map onto the interval between the

images of those points. When applied to an appropriate interval and iterate of the map,

this fact together with a version of the fixed point theorem (due to the intermediate value

theorem) shows the existence of other periodic points.

The Cantor set, on the other hand, is totally disconnected, and it seems that you should

always be able to arrange for the periodic points that arise for the interval maps to lie

in the complementary open sets of the Cantor set, thus avoiding any undesired periods.

Additionally, it is a well known fact that the Cantor set maps onto any compact metric

space. This would seem to imply that any flexibility available in the period sets for any

compact metric space should also exist for the Cantor set.

While any period set is possible for a Cantor set map, it is not simple to construct

maps with arbitrary infinite period sets that do not contain 1. There are also interesting

restrictions that arise when considering maps where every point is periodic. In the remainder

of this section, we will discuss these restrictions, as well as maps achieving any desired set

of periods.

2.7.1 The Cantor Set. The standard construction of the Cantor set is as an intersection

of nested subsets of the unit interval. Let X0 = [0, 1]. Remove the middle third of this

interval to get X1 = [0, 1/3] ∪ [2/3, 1]. Thus X1 is the disjoint union of 21 intervals of

length 1/31. The set X2 is obtained by removing the middle third of both intervals in X1:

X2 =
(
[0, 1/9]∪[2/9, 1/3]

)
∪
(
[2/3, 7/9]∪[8/9, 1]

)
. The subsequent sets Xi are define similarly:

Xi consists of 2i intervals of length 1/3i, and Xi+1 is obtained by deleting the middle third

of each interval. The Cantor set C is then the intersection of the sets Xi: C =
⋂
Xi.

The Cantor set can also be represented in other ways which will be useful in constructing

various maps. First, the Cantor set is a product of countably many two point sets {0, 1}.

Equivalently, a point in the Cantor set is a sequence of 0’s and 1’s, where two sequences
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are close if they agree on initial segments. The first digit of a point corresponds to which

interval in X1 the point lies, 0 for the left, and 1 for the right. The next digit corresponds

to which of the subintervals in the next level Xi the point is in.

C =
∞∏
i=1

{0, 1}

Another useful representation for the Cantor set is that it is equal to the union of copies

of itself. Since the construction of the Cantor set is the same independent of the level i, the

points of C that lie in any number of the intervals of a given Xi will also form a Cantor set.

C =
n⋃
i=1

C

Similarly, the Cantor set can be written as an infinite union of copies of itself, together

with a limit point. This can be seen by taking the right half of X1 as a Cantor set C1 =

[2/3, 1], then the right half of what is left of X2 as a Cantor set C2 = [2/9, 1/3], and so on,

which limits on the point 0.

C = {p} ∪
∞⋃
i=1

C

More generally, we have the following lemma:

Lemma 2.7.2. If X is a compact, totally-disconnected metric space and D is a Cantor set,

then C = X ×D is also a Cantor set.

Corollary 2.7.3. If f : X → X, then for the map g = f × IdD : C → C we have

Per(g) = Per(f).

This corollary is the main reason we will use this lemma, so that we may achieve a desired

period set on some simpler totally disconnected space, and then apply the corollary to get

that period set for a map of the Cantor set.

Definitions 2.7.4. Recall that given a map f , a point x is periodic if fn(x) = x for some
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n. A point x is pre-periodic if some iterate of x is periodic, i.e. fm(x) is periodic for some

m. The pre-periodic length of x is the minimal such m. Note that periodic points are pre-

periodic, with pre-periodic length 0. A point is aperiodic if it is not pre-periodic. Aperiodic

points have infinite orbits.

2.7.2 Maps with every point periodic. We now construct examples of maps where

every point is periodic. In this section, all of the maps will be homeomorphisms of the Cantor

set.

First consider any set P ⊂ N containing 1. Enumerate P = {1, p1, p2, . . . }. Let X be a

convergent sequence xn → x0. Define f : X → X as follows.

• Fix the limit point x0.

• Permute the first p1 points x1, . . . , xp1 cyclicly.

• Permute the next p2 points cyclicly, the next p3, and so on.

Then Per(f) = P , with x0 being a fixed point, and the first p1 points having period p1, and

the next pi points having period pi. Since X is totally disconnected, compact, and metric,

we can apply Lemma 2.7.2 and Corollary 2.7.3 to get a map g from the Cantor set to itself

with Per(g) = P .

Note that if P is finite, we may fix most of the points of X after permuting the initial

points of X to get the desired periods.

Given a function f : C → C and a number n ∈ N we now show how to construct a map

g : C → C with Per(g) = n · Per(f) := {np | p ∈ Per(f)}. Write C =
n⋃
i=1

Ci, and define g as

follows.

• g|Ci
= id : Ci → Ci+1 for i = 1, . . . , n− 1.

• g|Cn = f : Cn → C1.
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Note that each Ci only is mapped to itself after n iterates of g. Then we can see that the

map gn performs f on each Ci, so that Per(gn) = Per(f), and therefore Per(g) = n · Per(f)

as desired.

Now, given fi : C → C for i = 1, . . . , n, we construct a map f whose period set is the

union of the period sets for fi. Write C =
n⋃
i=1

Ci, and define f |Ci
= fi : Ci → Ci, where each fi

acts on Ci independently of the other maps. Then it is easy to see that Per(f) =
n⋃
i=1

Per(fi).

Combining these three previous results, we see that we can construct a map f with

Per(f) = P for any set P that is a finite union of sets with a common divisor in the set.

Equivalently,

P =
k⋃
i=1

ni · (Pi ∪ {1}).

Recall that all of these maps can be constructed as homeomorphisms, with every point

periodic.

Cannon et al [19] prove that any Cantor set map with every point periodic has this form:

Theorem 2.7.5. If f : C → C is a map of the Cantor set C such that every point x ∈ C

is periodic, then there is a finite set B = {p1, . . . , pk} of periods of f such that every period

p(x) is divisible by at least one of the elements of B. We call the set B a basis for the period

set P = P (f). Every subset P of [1,∞) that has such a finite basis can be realized as the

period set of a Cantor set homeomorphism f , with every point periodic.

A proof of Theorem 2.7.5 is given in [19], but we give a simple corollary here.

Corollary 2.7.6. The same result holds if every point of C is pre-periodic, with uniformly

bounded pre-periodic length.

Proof. Let m be a bound on the pre-periodic length of points in C for a map f , i.e. fm(x)

is periodic for every x ∈ C. Since every periodic point is in the image of every iterate of f ,

we see that X = fm(C) is a retract of C containing exactly the periodic points of f . Let
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f̃ = f |X . Since X is totally disconnected, compact and metric, we may apply Corollary 2.7.3

to get a map g : C → C with every point periodic, and Per(g) = Per(f̃) = Per(f). We may

now apply the theorem to see that the period set of f must be of the same form, having a

finite basis.

2.7.3 Maps with any period set. Cannon et al [19] have also proved the following

result for Cantor set maps when the restriction that every point be periodic is removed.

This is essentially Theorem 2.7.1 as stated above, but with the additional result that the

maps can be homeomorphisms or totally pre-periodic.

Theorem 2.7.7. For any set P ⊂ N, there is a Cantor set map whose period set is P .

The map f may be taken to be either a homeomorphism, or a map with every point pre-

periodic, but not both.

Note that for f to be a homeomorphism will usually require there to be aperiodic points,

unless the set P has a finite basis as in Theorem 2.7.5. We will now discuss examples of

maps with various infinite period sets, leading up to examples of arbitrary period sets.

We now construct a map s with all periods, that is, Per(s) = N. Recall that C =
∞∏
{0, 1},

where elements are sequences in {0, 1}. The shift map s is defined by shifting all digits to

the left once. Some examples of this definition are given in Table 2.1. The shift map has

all periods: Per(s) = N. To see this, notice that for every n ∈ N, the repeating sequence

cn = 00 . . . 01 has period (n + 1) if there are n 0’s in the repeating sequence. Also, the

shift map has aperiodic points, for example c = 101001000100001 . . . is aperiodic, where

the number of 0’s between consecutive 1’s continually increases. Additionally, the shift map

has pre-periodic points of unbounded pre-periodic length, such as 11 . . . 1000 . . . which has

pre-periodic length n, where n is the number of 1’s.

Notice that s has precisely two fixed points, 0 and 1. We can modify s to have no fixed

points, but retain all other periods. To do so, take neighborhoods of the fixed points where

31



x1x2x3x4x5x6 . . . 7→ x2x3x4x5x6 . . .

11111111111 . . . 7→ 1111111111 . . .

00000000000 . . . 7→ 0000000000 . . .

10110010111 . . . 7→ 0110010111 . . .

7→ 110010111 . . .

7→ 10010111 . . .

7→ 0010111 . . .

Table 2.1: The shift map s on the Cantor set.

Period point
2 01
3 110
4 0110
5 11010
6 011010
7 1101010

Table 2.2: Periodic points in the altered shift map on the Cantor set.

the first three digits agree, i.e. 000. . . and 111. . . , and change s to map these neighborhoods

to a chosen aperiodic point a. The point a needs to be chosen so that there are no strings

of three consecutive 0’s or 1’s, as such a point would then become periodic. For example, a

can be any non-repeating word composed from the strings 01 and 001.

To see that we retain all other periods n, consider repeating sequences of length n. In

constructing such a periodic point, you must be careful to make sure that it is not repeating

of a smaller period (e.g. 0101 has period 2, not period 4). Also, you need to ensure that

there are never three adjacent 0’s, nor three adjacent 1’s, as such points would eventually

be mapped to the aperiodic point a. One way to achieve this is to consider repeating strings

in 01,10, and 110. In particular, to find a point of period 2m + 2, start with 01 followed

by m copies of 10; to find a point of period 2m + 3, start with 110 followed by m copies of

10. This construction will give you any period p ≥ 2 desired. See Table 2.2 for examples of
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11111111111 . . . 7→ 00000000000 . . .

7→ 10000000000 . . .

10110010111 . . . 7→ 01110010111 . . .

7→ 11110010111 . . .

7→ 00001010111 . . .

7→ 10001010111 . . .

Table 2.3: The odometer map on the Cantor set.

points with periods 2 through 7.

In a similar manner, we may alter the shift map s to remove any finite set of periods we

desire. There are only finitely many points of any period, as there are only finitely many

strings in {0, 1} of length n. By taking small neighborhoods of these points and mapping

these neighborhoods to a specified aperiodic point, we can remove those periods. If the

neighborhoods are taken sufficiently small (2n + 1 digits should work), and if the aperiodic

point is chosen to miss all of those neighborhoods, then the period set of the altered shift

map will be precisely those periods we did not remove.

This works to give an altered shift map with any co-finite period set. Unfortunately, this

method doesn’t quite work to obtain an arbitrary infinite period set. In removing infinitely

many different periods, there are continuity issues because of limit points of the altered

neighborhoods.

We now give an example of a completely aperiodic map, that is, a map whose period set

is empty. Again we will write elements of C as sequences in {0, 1}. The odometer map, or

the ‘+1’ map, is defined by adding 1 (base 2) to the first digit, and carrying to the right, as

in the odometer of a car. Thus we are considering elements of C as ‘infinite binary integers’.

Every point is aperiodic under the odometer map, as adding 1 finitely many times will never

return a point to itself.
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D ⊂ S1 α̂ //

π

��

D

π

��

A ⊂ D
α̂ //

π

��

A

π

��
S1 α // S1 X

α // X

Figure 2.6: Constructing an ‘irrational rotation’ on the Cantor set.

2.7.4 An irrational rotation. We now give another example of a totally aperiodic map.

This map was presented by Cannon et al [19], and was used to construct homeomorphisms

with arbitrary period sets. This map is based on an irrational rotation of a circle, and is

essentially the same as the example due to Denjoy, which Denjoy showed can in fact be made

a C1 diffeomorphism (see for example [24, 29]).

Let α be any irrational number. Take a Cantor set D ⊂ S1. Let A ⊂ D be the accessible

points of the Cantor set. Collapsing complementary intervals of D to single points gives a

map π : D � S1, where π(A) is a countable dense set X ⊂ S1. Since any two countable

dense sets in S1 are equivalent up to an ambient homeomorphism of S1, we may take X

to be invariant (as a set) under the irrational rotation by α. For instance, given any other

countable dense set Y , let X =
⋃
n∈Z

αn(Y ).

Then as shown in the diagrams in Figure 2.6, we may lift the rotation by α on X to a

map α̂ on D as follows. The map π is 2-1 on the accessible points A, and 1-1 on D−A. As

the rotation α is orientation preserving and takes the set of images of accessible points X

to itself, we may define α̂ on A by requiring that it be orientation preserving. The lift α is

well defined on the inaccessible points D−A. Thus we get the ‘irrational rotation’ α̂ on the

Cantor set, which is a homeomorphism. Every point is aperiodic under α̂ as the rotation α

is totally aperiodic on S1.

Cannon et al [19] then use this irrational rotation to construct a homeomorphism of

C with an arbitrary period set. The idea is based on the example of a sequence of circles

limiting on a circle, i.e. S1×X, where X = {x0, x1, x2, . . . } is a convergent sequence xi → x0.

Define a map f on this space by rotating S1 × {x0} by an irrational amount α, and then
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rotating each circle S1×{xi} by a rational amount ri. If the rational numbers ri converge to

α, we get a continuous map. If the rational numbers ri = pi/qi in lowest terms, then we get

Per(f) = {qi}. It is a number theoretic result that for any irrational number α, and any set

of positive integers {qi}, there exist rational numbers ri = pi/qi in lowest terms with ri → α.

This map we constructed was on the space S1 × X. We will use this same idea to

get a map on the Cantor set. Write C = D × X, where C,D are Cantor sets, and X

is a convergent sequence as before. We have already discussed how to get an ‘irrational

rotation’ α̂ on D × {x0}. It remains to approximate the rational rotations by ri = pi/qi in

a manner that converges to α̂. In particular, we need to construct maps fi on D × {xi}

such that f qii = Id and such that fi agrees with α̂ on accessible points adjacent to large

complementary intervals. This process is discussed in more detail in [19].

Thus we can produce a homeomorphism on the Cantor set with any desired period set,

as long as we are allowed aperiodic points.

For our final examples, we discuss related examples by Zastrow and Cannon. Zastrow’s

example has aperiodic points, while Cannon’s example has no aperiodic points, but has pre-

periodic points of unbounded pre-periodic length. Both examples are based on the following

idea. Given a set P ⊂ N, take some element k ∈ P , and partition P into equivalence classes

modulo k: P =
k−1⋃
r=0

Pr, where Pr = {p ∈ P | p = qk + r}. Then, as we may take unions of

period sets, it suffices to construct maps with period sets {k} ∪ Pr, or equivalently, period

sets {k} ∪ {qik + r} for fixed k, r, where the qi may vary arbitrarily.

In both of these examples, we will take a space that is a union of sequences, and then

apply Corollary 2.7.3 to get a map on the Cantor set. We give an overview of the idea in

this paragraph, and then discuss the examples in more details in the following paragraphs.

Start with the space S, which is a convergent sequence of sequences, i.e. if Xi is a convergent

sequence of points, then S is the one point compactification of
⋃∞
i=1Xi. Also let the space
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// T1
// · · · // Tr

yy

// // . . . //

S1
// S2

// . . . // Sk
xx N

VY[]_aceh
p

// // . . . //

· · ·

Figure 2.7: Schematic for examples of Cannon and Zastrow.

T be just a convergent sequence of points. Then our space Y will be the union of k copies of

Si, and r copies of Tj. A schematic for the space Y is shown in Figure 2.7. In both examples,

the map f sends Si to Si+1 by the identity, for i < k, and then f maps Sk to S1 in a manner

that permutes the levels of the sequences, in a periodic fashion according to the numbers qi.

This gives periods qik; to get periods qik + r, each periodic point runs through the sets Ti

once before completing the periodic cycle.

Zastrow’s Example. As stated above, we want a map with period set {k} ∪ {qik + r}

for fixed k, r, where the qi may vary arbitrarily. For ease in defining the function for this

example, we will write each Si as a union of two sequences S+
i , S

−
i with a common limit

point si. As S∗i is a sequence of sequences, we will write S∗i =
∞⋃
m=0

S∗i (m), where each S∗i (m)

is a convergent sequence, and the sets S∗i (m) converge to si. Thus we can write our space as

Y =

[
k⋃
i=1

(
{si} ∪

∞⋃
m=0

(
S+
i (m) ∪ S−i (m)

))]
∪

(
r⋃
j=1

Tj

)
.

First we will define a map g : Y → Y , and then modify the map g to get a map f : Y → Y

with the desired periods. Define the map g in the following manner, where sequences are

mapped to other sequences, with the limit points being mapped to limit points.
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g :



S+
i (m) 7→ S+

i+1(m) if i 6= k

S−i (m) 7→ S−i+1(m) if i 6= k

S+
k (m) 7→ S+

1 (m+ 1)

S−k (m) 7→ S−1 (m− 1) if m 6= 0

S−k (0) 7→ T n1

T nj 7→ T nj+1 if j 6= r

T nr 7→ S+
1 (0)

(2.1)

Note that the map g permutes the sets Si cyclically, and the subsets S+
i (m) are shifted

toward the limit point si (with the index m 7→ m+ 1), while the subsets S−i (m) are shifted

away from the limit point si (with the index m 7→ m− 1). Additionally, the sequence S−k (0)

takes a tour through the sets Tj. The only periodic points for g are the limit points si of the

sets Si, and their period is q. All other points are aperiodic.

We will modify the map g to get a map f with the desired periods qnk + r. We will

redefine the map only on a sequence of points of Y . To this end we need to write the

sequence S∗i (m) = {s∗i (m)} ∪
∞⋃
n=0

S∗i (m,n), where each S∗i (m,n) is a single point, and the

sequence S∗i (m,n)→ s∗i (m) as n→∞.

Let mn = bqn/2c and φ(mn) = b(qn − 1)/2c. Thus if qn is odd, then qn = 2mn + 1 and

φ(mn) = mn. If qn is even, then we have qn = 2mn, and φ(mn) = mn − 1. Now we define

the change from g to f by the following formula:

S+
k (mn, n) 7→ S−1 (φ(mn), n)

On the remainder of Y , the map f agrees with g. In other words, for each n, we just change

the map on the nth point of the sequence S+
k (mn), and now instead of mapping to S+

1 , the

37



point maps to S−1 in the appropriate m-level. The ‘correct’ m-level is either mn or (mn− 1)

depending on whether qn is odd or even. For these formulas to work, it is important that we

start indexing at m = 0.

This map is still continuous, as we only redefined the map g on a sequence of points

that limit on sk, and their images limit on s1, which is the image of sk. The point S+
1 (1, n)

has period qnk + r, as the point moves down the m-levels on the sets S+
i , then back up the

m-levels of S−i for a total of qn circuits through the k sets Si, and then finally through the r

sets Tj. One can check that our modifications give no other periodic points. Note that the

intermediate limit points s∗i (m) are all aperiodic. The points s−i (m) cycle through i and m

decreases until these points traverse the sets Tj and end at s+
1 (0). The points s+

i (m) also

cycle through the subscripts i, while m continually increases, thus giving aperiodic points.

Thus Per(f) = {k} ∪ {qnk+ r}. We note that if there are any points with qn = 0, 1 then

the construction above does not quite work as stated, but there are only finitely many such

points, and we can add any finite period set as discussed in section 2.7.2.

Cannon’s Example. Cannon gives a similar example with no aperiodic points, but with

pre-periodic points. The basic form of the map is the same as Zastrow’s example, as shown

in Figure 2.7. However, the map from Sk to S1 is quite different, so as to avoid aperiodic

points. We do not present this map here, but a complete description is given in [19].

2.8 Aperiodic and pre-periodic points for interval maps

While the main result from the previous section simply states that any period set is attainable

for Cantor set maps, the complete result is more interesting than just that, in that the

existence of aperiodic or pre-periodic points changes the result. In particular, if every point

is periodic on the Cantor set, then there is a restriction that the period set have a ‘finite

basis’ (see Theorem 2.7.5).

This raises the question of how the presence of aperiodic or pre-periodic points is related
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to the possible period sets for other spaces. The period sets for most spaces discussed in this

chapter (other than the Cantor set) are built upon pieces of Sharkovskĭı’s order for period

sets of the interval. Thus we focus on the following questions.

Question 2.8.1. For maps on an interval, what period sets can occur in the absence/presence

of aperiodic points? of pre-periodic points?

First recall that for a non-compact interval there are maps with empty period set, i.e.

every point aperiodic, such as a translation of the real line. For P = {1}, the identity map

has every point periodic, and for P = {1, 2}, the map f(x) = 1 − x on the interval [0, 1]

also has every point periodic. It seems that these are the only possibilities if there are no

pre-periodic points.

Conjecture 2.8.2. A point of period 4 implies the existence of pre-periodic points.

Now we consider the case of aperiodic points. As mentioned above, the identity is a map

with P = {1} and with no aperiodic points. We now describe another map that also has

P = {1}, but that also has aperiodic points. Consider a closed interval as the extended real

line, that is, R taken with the endpoints −∞,∞. The desired map a : I → I shifts R by

1 and fixes ±∞, thus having fixed points and aperiodic points. Note that this can also be

done on a half open interval simply by deleting one endpoint and using the same map, and

on an open interval by taking two such half open intervals together and identifying the two

endpoints as in (x, y) = (x, z] ∪ [z, y).

As noted above, the map f(x) = 1 − x has P = {1, 2} with no aperiodic points. Using

the map a from the preceding paragraph together with the map b = T̂h(2) from Lemma A.1.1,

we will construct a map with P = {1, 2} having aperiodic points. Recall the map b : [0, 2]→

[0, 2] fixes the endpoints 0, 2, and has Per(b) = {1, 2}. Define the map c : [−1, 2] → [−1, 2]

by the map a on [−1, 0] and the map b on [0, 2]. Thus Per(c) = {1, 2} and c has aperiodic

points. In a similar manner, using maps T̂h for different values of h, we can get maps with

any period set that also has aperiodic points.
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If we want to consider ∞ as the period of an aperiodic point (as the orbit has infinitely

many points), we see that ∞ does not fit in nicely to Sharkovskĭı’s ordering, as neither 2

nor ∞ imply the other. Only in the case of a compact interval does ∞ imply 1, as there is

always a fixed point. While ∞ does not imply any other period, it does seem that certain

periods imply the existence of aperiodic points.

Conjecture 2.8.3. If Per(f) is an infinite set, then f has an aperiodic point.

For every n, there are maps with finite period set {2n, . . . , 2, 1} without aperiodic points.

By Sharkovskĭı’s Theorem (Theorem 2.1.2) we know that a non-empty period set P of

an interval map falls into one of three categories:

• P contains some number that is not a power of 2

• P contains all powers of 2: P = {. . . , 2n, . . . , 2, 1}

• P contains only finitely many powers of 2: P = {2n, . . . , 2, 1}

Conjecture 2.8.3 states that only in the first two cases is there necessarily an aperiodic point.

Li and Yorke [33] prove a special case of Conjecture 2.8.3, when 3 ∈ P . Not only do they

prove the existence of an aperiodic point, but they show that there is an uncountable set of

aperiodic points with certain properties that warrant the title of their paper: “Period Three

Implies Chaos.” We extend their methods to prove the conjecture in the case where there is

a period not a power of 2.

We also will use a few techniques from the proof of Sharkovskĭı’s Theorem, which we

briefly discuss here. The basic idea is that the image of an interval must cover at least the

interval between the image of its endpoints. Then a periodic orbit of a point gives various

intervals that must cover each other in a particular way, based on the order of the orbit.

A particular type of orbit, called a Štefan cycle, is then shown to correspond directly to

the minimal number in the Sharkovskĭı order that lies in the period set. For more details,

consult a proof of Sharkovskĭı’s Theorem, for instance [14] or [4].

40



Now, suppose that the period set P contains a period that is not a power of 2. Let p be

the minimal element of the period set, according to Sharkovskĭı’s order. Note that p will not

be a power of 2. We first prove the result in the case where p is odd, and the case when p

has factors of 2 follows easily.

Case A: p is odd. Let x be a point of period p. The orbit of x must be a Štefan cycle, by

Proposition 5.3 in [14]. The orbit of x creates (p − 1) intervals Ii that satisfy the following

covering properites, where we write I → J if f(I) ⊃ J .

k︷ ︸︸ ︷
I1 → I1 → · · · → I1 → I2 → I3 → · · · → Im−1 → I1

We may concatenate copies of this finite cyclic sequence to get an infinite sequence of intervals

Mn such that f(Mn) ⊃Mn+1, and where each Mn is some Ii, i = 1, . . . ,m− 1. As we want

to avoid periodicity, we change the number k of copies of I1 used in each repetition of our

sequence; for example it suffices to set kj = j. It is also important to note that no point in

the original orbit of x may follow this sequence of intervals Mn, as these points may only

stay in I1 for two consecutive iterations, while the sequence has arbitrarily large strings of

copies of I1. This is then essentially the same setup as in Li and Yorke [33], and we then get

intervals Qn such that Qn+1 ⊂ Qn and fn(Qn) ⊂ Mn. Then any point z in Q =
⋂
Qn will

satisfy fn(z) ∈Mn, which we have chosen to be aperiodic.

We note that the existence of intervals such as Qn is a standard lemma used in proving

Sharkovskĭı’s Theorem, and is also given in Li and Yorke [33]. Also, the other results of Li

and Yorke involving properties of these aperiodic points should also follow from this similar

setup we have produced, but we do not desire to get into that discussion here.

Case B: p = q2k with q odd. We use the following proposition from [14]. We note that

we have defined Sharkovskĭı’s order in the opposite direction as they have, and thus we have

switched ‘maximal’ for ‘minimal.’
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Proposition 2.8.4 (Proposition 2.3 from [14]). If m = 2n is Sharkovskĭı minimal for f

then n is Sharkovskĭı minimal for f 2.

As we have chosen p to be Sharkovskĭı minimal, by Proposition 2.8.4 we see that f 2k
has

odd minimal Sharkovskĭı period q. Thus from case A, f 2k
has an aperiodic point. This point

must then also be aperiodic for f , as the orbit of a point under f 2k
is a subset of the orbit

under f .

Thus we have shown that if an interval map has a point with period not a power of 2,

then there must be an aperiodic point.

The second case, where P consists of all powers of 2 is the least clear of all. Unlike the

previous case, there is no one periodic orbit which guarantees infinitely many others, and

the methods akin to Li and Yorke fail here. We will discuss an example of this case after

the next case, as it is constructed from the examples there.

For the final case where P = {2n, . . . , 2, 1}, we construct examples of maps with no

aperiodic points, that is, with every point pre-periodic. In this discussion, we will often use

the idea of the double of a map. This idea is presented in [24] and is used to give examples

of maps with certain period sets. Given a map f : [0, 1]→ [0, 1], a new map F (x) called the

double of f is defined as follows.

F (x) =


2/3 + f(3x)/3 if 0 ≤ x ≤ 1/3

−(2 + f(1))(x− 2/3) if 1/3 ≤ x ≤ 2/3

x− 2/3 if 2/3 ≤ x ≤ 1

This map ‘shrinks’ the original map f and performs it on an altered domain and range:

f̃ : [0, 1/3] → [2/3, 1]. The rest of the map is piecewise linear, passing through the points(
1/3, (2 + f(1))/3

)
, (2/3, 0), and (1, 1/3).

Note that the interval [0,1/3] maps to [2/3,1], which in turn is mapped to [0,1/3]. Thus

any periodic point in these intervals has even period. Now consider F 2; on both of these
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intervals this map is just an adjusted version of the original map f , thus the periods of

points for F 2 are exactly the periods of points of f , which gives periodic points for F of

periods 2 · Per(f). In the interval (1/3, 2/3), there is a unique fixed point x0 =
2(2 + f(1))

3(3 + f(1))
,

and any other point x in this interval is not periodic as F n(x) eventually lies outside of

(1/3, 2/3). This last statement is related to the fact that the fixed point x0 is repelling, as

|F ′(x0)| = 2 + f(1) > 1. Thus Per(F ) = 2 · Per(f) ∪ {1}.

We now use the process of doubling to find functions with any possible finite period,

having no aperiodic points. Start with f0(x) = x, the identity map, with Per(f0) = {1}. As

before, note that f0 has no aperiodic points. Let f1 be the double of f0. Then Per(f1) =

{2, 1}. As mentioned in the last paragraph, every point in (1/3, 2/3) other than the fixed

point is eventually sent outside of (1/3, 2/3). The map f1 has slope 1 on [0, 1/3] ∪ [2/3, 1],

and so f1
2 is the identity on this set. Therefore every point is pre-periodic for f1.

The maps fi are defined similarly: fi is the double of fi+1, so that Per(fi) = {2i, . . . , 2, 1}.

Since every point is pre-periodic under fi−1, we also get that every point is pre-periodic under

fi: the middle third interval again gets sent to the outer intervals (other than the fixed point),

and the map fi
2 is essentially fi−1 on these outer intervals, so that every point is pre-periodic.

This proves Conjecture 2.8.3 in the case where P is finite and non-empty.

The only case where Conjecture 2.8.3 is not proven is the second case, where P consists

of all powers of 2. We will consider a limit of the maps fi above as an example of this

case, which is also discussed in [24], where they call this example the Adding Machine, due

to Misiurewicz. We note that our example may seem slightly different as we start with a

different function f0, but the resulting limit function is the same.

Consider the function f defined as the pointwise limit of the functions fi described above:

f(x) = lim
i→∞

fi(x). In fact, for every x ∈ (0, 1], the sequence fi(x) is eventually constant, and

thus the limit exists. The sequence fi(0) is not eventually constant, but fi(0) = 1 − 1/3i

so that f(0) = 1. This map does in fact have period set being exactly all the powers of 2:

Per(f) = {. . . , 2n, . . . , 2, 1}. However, the property that each fi only has pre-periodic points
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i Orbit of x = 0 under fi Orbit of x = 1 under fi

0 0 1
1 0, 2

3
1, 1

3

2 0, 8
9
, 2

9
, 2

3
1, 1

3
, 7

9
, 1

9

3 0, 26
27

, 8
27

, 20
27

, 2
27

, 8
9
, 2

9
, 2

3
1, 1

3
, 7

9
, 1

9
, 25

27
, 7

27
, 19

27
, 1

27

Table 2.4: Orbits of 0 and 1 under the maps fi, in order of the orbit.

is not preserved in the limit. The points 0,1, for example, are now aperiodic. Consider the

orbits of 0 and 1 under the various maps fi.

The orbits are shown in Table 2.4, ordered by the orbit structure, i.e. where f(xi) = xi+1.

Note that the orbit under fi is a subset of the orbit for fi+1, and that the structure remains

intact from one level to the next, as the additional points in the orbit are all inserted in

between one pair of points, with the rest remaining in the same order in the orbit. It also

becomes instructive for this discussion if we order the points of the orbits in the standard

order from [0,1], as shown in Table 2.5, where the top row shows all of the points in the

orbits for both 0 and 1 combined, which is followed by the different orbits of 0 under the

maps fi, followed by the orbits of 1 under fi, with all of the points positioned consistently.

Notice from Table 2.5 how the orbits of 0 and 1 under the map fi each pick out half of the

endpoints of the intervals in stage i of the construction of the middle thirds Cantor set. Then

for the limit function f(x), these become aperiodic points whose orbits lie in the accessible

points of the Cantor set. Notice that as f(0) = 1, these orbits are joined, and the points in

the orbit of 0 under fi will still eventually map to 0, then 1, and continue on in that orbit.

Thus considering f−1 as well as f on these points, we get a bi-infinite orbit.

Thus this map f has Per(f) = {. . . , 2n, . . . , 2, 1}, and although f is a limit of maps fi,

each with no aperiodic points, the map f does have aperiodic points.

In summary, Conjecture 2.8.3 is true if P has a period not a power or 2, or if P is a finite

set, and is undecided in the case that P is the set of all powers of 2: P = {. . . , 2n, . . . , 2, 1}.

We state these results from this section in the following theorem.
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0, 1
27

, 2
27

, 1
9
, 2

9
, 7

27
, 8

27
, 1

3
, 2

3
, 19

27
, 20

27
, 7

9
, 8

9
, 25

27
, 26

27
, 1

i Orbit of x = 0 under fi

0 0,
1 0, 2

3
,

2 0, 2
9
, 2

3
, 8

9

3 0, 2
27

, 2
9
, 8

27
, 2

3
, 20

27
, 8

9
, 26

27

i Orbit of x = 1 under fi

0 1
1 1

3
, 1

2 1
9
, 1

3
, 7

9
, 1

3 1
27

, 1
9
, 7

27
, 1

3
, 19

27
, 7

9
, 25

27
, 1

Table 2.5: Orbits of 0 and 1 under the maps fi, in order of the real line.

Theorem 2.8.5. Let P be the period set of an interval map.

• If P has a period that is not a power of 2, then there must be an aperiodic point.

• If P is finite and non-empty, there need not be an aperiodic point.

2.9 Period implications

In the final section of this chapter, we return to the topic of the partial order of period

implications for a given space X, as discussed in Section 2.5 prior to Example 2.5.5. Recall

that for a space X, we define the partial order n �X m to mean that every map of X to itself

having a point of order n also has a point of order m. As noted earlier, this partial order

is generally not very informative, as few spaces have as much structure in the period sets

as the interval does. However, it is interesting to ask what period implications are possible

for any space. In this section we will want to avoid vacuous implications, so we make the

following definition:

Definition 2.9.1. Given a space X, n�X m if there exists a map f : X → X with a point

of order n, and if every such map also has a point of order m.
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For most of the examples discussed in this chapter, the structure of possible period sets

is built around unions of multiples of Sharkovskĭı’s order. In fact, these spaces retract onto

an interval, and so there are maps on these spaces with every period set possible for the

interval (as given by Theorem 2.1.2B). Thus any implication n�X m must be contained in

Sharkovskĭı’s order. For other spaces such as the Cantor set or a compact disk B2 there are

no implications other than maps on the disk must have a fixed point, i.e. n �B 1 for all n.

This leads us to make the following conjecture.

Conjecture 2.9.2. For any space X, any non-vacuous period implication is a multiple

of a Sharkovskĭı implication. That is, if n �X m, then there is some number a such that

n = an0,m = am0, and n0 � m0 in Sharkovskĭı’s order.

While all of the examples considered above have every implication being precisely a

Sharkovskĭı implication, the fact that some period sets are based on multiples of Sharkovskĭı’s

order hints that taking multiples might be necessary, and we will present some examples that

show this is indeed the case.

In addition to considering the examples discussed previously in this chapter, we have

begun to look at finite topological spaces. The finite spaces of interest will not be Hausdorff,

as a finite Hausdorff space is discrete, and has no period implications other than the existence

of periodic points of periods n ≤ |X|. While some may think it uninteresting to consider

non-Hausdorff spaces in and of themselves, it is interesting to note that the homotopy type

of any finite simplicial complex can be encoded in a finite non-Hausdorff space, as well as

the information of simplicial maps.

2.9.1 Computer aided search. We wish to describe these finite spaces and continuous

maps in a manner that can be checked by a computer program. First note that a finite

topology has a basis consisting of minimal open sets: for every point x ∈ X, define Ux to

be the minimal open set containing x, Ux =
⋂
U3x

U , where U is open. Since X is finite, the
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intersection is finite and Ux is open. We then use this basis of minimal open sets to define a

partial pre-order, or equivalently a directed graph on X, that is equivalent to the topology.

Define x ≤ y, or x→ y, if y ∈ Ux, i.e. every open set containing x also contains y. Note that

this relation is clearly transitive and reflexive. It may not be anti-symmetric as the existence

of distinct points x, y such that x→ y and y → x is equivalent to having a partial pre-order

instead of a partial order, which is also equivalent to the directed graph having a directed

cycle, and to the existence of a nontrivial indiscrete subset of X.

Thus we may encode a topology on a finite space as a matrix M with entries in {0, 1},

where entry Mij = 1 means that i→ j, while Mij = 0 means that i 6→ j. A continuous map

on this space is simply a map that preserves the partial pre-order: f is continuous if and only

if whenever x→ y then f(x)→ f(y). Thus given a function, which can be represented as an

n-tuple with entries in {1, . . . , n}, we may check the corresponding entries in the topology

matrix to check if the continuity condition is satisfied.

Note that to answer the question of which period implications are possible, for any given

space we must consider all continuous functions. We may sample different spaces, and see

what implications do or do not arise for that space, but to find these implications we must

consider all continuous functions on each space considered. This makes it difficult to compute

all implications for all spaces of a certain size, as the most obvious method of constructing

spaces of size n and maps on spaces gives approximately 2(n2) spaces (n × n matrices with

entries in {0, 1}), with nn maps on each space (n-tuples with entries in 1, . . . , n).

Fortunately, many of these 2(n2) matrices do not give topologies, and there are many

homeomorphic repetitions among those that are. Also, many of the nn maps are not con-

tinuous. We have taken some preliminary measures to cut down the number of spaces and

functions to check. To ensure that the n × n matrix gives a topology, we must have the

following conditions. First, aii = 1 as a point is in every open set containing it. Second, the

relation x→ y must be transitive; this can be checked by taking Mn and checking that the 0

pattern matches that of M . This is due to the fact that a non-zero entry in Mn means that
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there is a directed path from i to j of length at most n. Thirdly, the intersection property

for open sets must be satisfied, which can be checked by taking intersections of rows of M .

One last simplification of the space we have implemented is that we require the row sums of

the matrix to be increasing; this can be done by a simple renumbering of the points.

While we must still consider all continuous functions on the space, there is a simplification

so that we do not need to enumerate all possible functions and then check if they are

continuous. The basic idea is to partially define the function (on some subset of the points),

and check if that is continuous so far by checking the preservation of the partial pre-order.

If some partial function is already discontinuous, then we do not need to enumerate the

remaining functions that agree with this partial function. When defining the function on

one additional point, we only need to compare the new point to each of the previously

defined points for order preservation, so that for a continuous function this method has the

same number of comparisons as if we had defined the entire function and then checked for

continuity.

With these simplifications in place, we have written a program for Mathematica that

runs through spaces and checks for non-vacuous period implications that hold for every

continuous map on that space. We enumerate the spaces by considering the matrix M as

a binary number with n2 digits, and then check that it satisfies all of the properties in the

preceding paragraphs before considering the continuous functions on that space. The code

for this program is given in Appendix A.2.

Over a period of weeks, this program has calculated period implications for over one

billion matrices. This includes all matrices up to 5 × 5, while the vast majority of the

matrices considered are 6× 6. As there are 236 ≈ 68 billion 6× 6 matrices, we will need to

find a more efficient algorithm for enumerating topologies, or resort to some sort of Monte

Carlo approach. Of the spaces considered, the program has only found implications of n�n

and n� 1, which are Sharkovskĭı implications.
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X2,1 :

 1 0 0
1 1 0
1 0 1

 , X3,1 :


1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

 , X6,1 :



1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 0 1 0 0 0 0
1 0 0 1 0 0 0
1 0 0 0 1 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1



X6,2 :



1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1

1 0 0 0
1 1 0 0
1 0 1 0
1 0 0 1


, X6,3 :



1 0 0
1 1 0
1 0 1

1 0 0
1 1 0
1 0 1

1 0 0
1 1 0
1 0 1


Table 2.6: Spaces Xmn,n with period implications mn� n.

2.9.2 Non-trivial period implications. Independent of the computer program dis-

cussed in the previous section, we have discovered spaces Xmn,n with implications mn � n

for all m,n. These are non-trivial multiples of the Sharkovskĭı implications m � 1. The

space Xmn,n is constructed as the disjoint union of n copies of the space Xm,1, which has

(m+ 1) points. The space Xm,1 has one special point 1 that is in every nonempty open set,

while the minimal open set for any other point i is just {1, i}. Examples of the matrices are

shown in Table 2.6, where the empty blocks are all zeroes.

Theorem 2.9.3. The space Xmn,n has non-vacuous period implication mn� n.

Proof. We first consider the spaces Xm,1, i.e. where n = 1. It is easy to see that there is a

map with periods m and 1, as the space is symmetric with respect to the points 2, . . . ,m+1,

and we may permute them cyclically, while fixing 1. To see that m does imply 1, recall

that continuous maps must preserve the partial pre-order. Thus if the special point 1 maps

to any point i 6= 1, then the whole space must map to i, as all points precede 1 but none
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precede i. Thus if there is a point of period m, then the point 1 must be fixed.

Now consider the space Xmn,n, with n ≥ 2. Again, it is fairly simple to construct a map

with periods mn and n. Permute the n blocks cyclically, via the identity map on the first

(n − 1) blocks, and on the final block, permute the m undistinguished points cyclically as

above. Thus the special points of each block form a cycle of order n, while the remaining

points form a cycle of order mn.

Now we show the implications mn � n. First consider the case where n < m. Note

that Xmn,n has n(m + 1) = mn + n points, and that mn + n − m < mn. Then if any of

the special points of one of the blocks maps somewhere other than another special point,

then all of the other m points of that block must also map to the same point, resulting in

at most mn + n − m < mn points in the image, so there cannot be an mn cycle in this

case. Thus any mn cycle cannot contain any of the n special points, but must consist of

all mn of the remaining points of the space. A similar argument shows that the n special

points must be permuted bijectively, otherwise there are not enough points in the image of

the map. If the permutation is not an n cycle, then the map partitions the blocks according

to the permutation on the special points, and there cannot be a mn cycle on all mn of the

non-distinguished points.

A slight alteration of the above argument works for the case m < n, where m 6= 1. Again,

if the mn cycle contained a special point of any block, the the remainder of that block could

not be in the cycle, as the entire block eventually maps to the same point as the special

point does. Then consider the quotient collapsing all such blocks to their special points; the

resulting space will have some blocks together with isolated points. The special points for

the blocks that remain cannot be part of our mn cycle, as we collapsed all such points. Then

there no longer remain enough points to create an mn cycle, as we have deleted m points for

each block collapsed, an can only use the 1 special point from that block. Thus any mn cycle

cannot contain any of the special points, and as before the special points must themselves

form an n cycle in order to create an mn cycle.
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If m = 1, then we are looking for the implication n implies n, which is always true, but

may be vacuous if there are no possible maps with an n cycle. However, our space Xn,n is

just the discrete topology on n points, which clearly admits an n cycle.
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Chapter 3. Solenoids and their Complements

3.1 Introduction

A solenoid is a topological space that is an inverse limit of circles. Let {ni} be a sequence

of positive integers, and let fi : S1 → S1 be defined by fi(z) = zni , where S1 is thought of

as the unit circle in the complex plane. Then we define the solenoid

Σ(ni) = lim←−(S1, fi).

If the tail of the sequence is 1, 1, 1, . . . , then the solenoid is degenerate, being simply a circle.

If the sequence ends in 2, 2, 2, . . . , then we have what is called the dyadic solenoid, Σ2. We

will use the dyadic solenoid for specific examples throughout this chapter.

We note that multiple sequences {ni} can determine the same solenoid, up to homeomor-

phism. For instance, we may assume each ni is prime by replacing any composite number

by the sequence of its prime factors. We may also remove any finite initial segment of the

sequence, and we may reorder the sequence (infinitely). Bing notes that if you remove a

finite number of elements from two sequences so that in the remainders, every prime occurs

the same number of times, then the solenoids are topologically equivalent; he also says that

perhaps the converse is true [11]. The converse is confirmed by McCord [35]. A few other

references discussing solenoids are [28, 32, 49, 50].

As solenoids are obtained via an inverse limit construction of compact topological groups

S1, we get the standard result that solenoids are also compact topological groups. Addition-

ally, it is standard that a solenoid has uncountably many path components, each of which

is dense in the solenoid, and also that solenoids are not locally connected, nor are its path

components. However, the path components are fairly nice in that they are archetypal, as de-

fined in Section 2.4. In particular, there is a continuous bijection from the real line onto each

path component. This bijection however is not a homeomorphism, as small neighborhoods
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in the solenoid path component are not locally connected. A lift of a small neighborhood to

the real line contains infinitely many small disjoint neighborhoods centered at a collection

of points unbounded on the line.

While these standard facts together with the inverse limit construction give some nice

properties of solenoids, they do not make it apparent that all solenoids embed in S3. To see

this, we will construct the solenoid Σ(ni) as a nested intersection of solid tori. Take a solid

torus T0 with cross-sectional diameter d0 in S3, using the standard metric from S4. Embed

a solid torus T1 with cross-sectional diameter d1 < d0/2 inside of T0 that wraps around T0

n1 times. Continue this process, embedding a solid torus Ti with cross-sectional diameter

di < di−1/2 inside of Ti−1, which wraps around Ti−1 ni times. The nested intersection
⋂
Ti is

an embedding of Σ(ni) in S3. See Figure 3.1 for an example with the dyadic solenoid (where

ni ≡ 2).

We note that while this nested intersection construction may seem canonical, there are in

fact many ways to embed each Ti inside of Ti−1, even if we require that Ti never ‘folds back’

on itself (i.e. Ti is embedded in a monotone fashion inside Ti+1). In the simple case where

ni ≡ 2, Ti can have any odd number of half twists with itself; when ni > 2, there can be

much more complicated braiding. While this does not change the topology of the solenoid

itself, this does change its complement significantly. This is analogous to knot theory: while

every knot is itself a circle, knot complements are quite different. Thus, we could consider

the study of solenoid embeddings and their complements as solenoid knot theory. This is also

quite related to braid groups, as each (nice) embedding of Ti into Ti−1 can be represented by

a braid on ni strands that gives a transitive permutation of the strands (otherwise the closed

braid will result in a link with multiple components). This issue will be discussed further in

the following sections, and some diagrams are given in Figure 3.3.

All of the embeddings of solenoids that we will consider here will be obtained as nested

intersections of solid tori, where each torus is a closed braid in the previous torus. We note

that similar work has been done in [32], where they discuss what they call tame embeddings,
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Figure 3.1: Embedding the dyadic solenoid in S3. Begin with a standard unknotted solid
torus T0 (top left). Then embed a second torus T1 inside T0, wrapping around the longitude
of T0 twice (top right). A third torus T2 is shown wrapping twice inside T1 (bottom left).
The solenoid is the infinite intersection of such nested tori (bottom right).
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similar to our braided embeddings.

It is also interesting to note that solenoids arise in the theory of dynamical systems.

In the case where the sequence ni is constant, the solenoid can be a hyperbolic attractor

of a dynamical system. These solenoids as attractors were first studied by Smale, and are

sometimes called Smale attractors. A discussion of solenoids as hyperbolic attractors can

be found in many books on dynamics, see for instance [29]. A recent result of Brown [13]

shows that generalized solenoids (classified by Williams [53]) are the only 1-dimensional

topologically mixing hyperbolic attractors in 3-manifolds.

3.2 Fundamental Groups

When a solenoid Σ is embedded in S3, the complement Σc = S3−Σ is an open 3-manifold. As

these manifolds are the complement of a non-locally connected space, they have a complicated

structure “at infinity,” and are not the interior of a compact manifold with boundary. We

will discuss the fundamental groups of such manifolds, which will depend on the particular

embedding chosen for the solenoid. Recall that we are starting with an embedding of the

solenoid as a nested intersection of solid tori:

T0 ⊃ T1 ⊃ T2 ⊃ . . . ; Σ =
⋂

Ti.

This gives us that the solenoid complement is an increasing union of torus complements:

(S3 − T0) ⊂ (S3 − T1) ⊂ (S3 − T2) ⊂ . . . ; Σc =
⋃

(S3 − Ti).

These torus complements are in fact knot complements, where the knots will generally be

satellite knots, assuming there is some knotting in the embedding (see the following sections).

The fundamental group of the solenoid complement is then the direct limit of the funda-

mental groups of the knot complements. This direct limit is in fact injective, i.e. each group
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injects into the final direct limit, so that it is in fact a union of knot groups, as given by

the following lemmas. Note that our embeddings of solenoids as nested closed braids ensure

that the core curve of each torus links the meridional curve of the previous solid torus with

linking number ni 6= 0.

Lemma 3.2.1. Suppose that T1, T2 are solid tori in R3 with T2 ⊂ int(T1) and such that the

core curve J of T2 links the meridional curve K of ∂T1 having linking number lk(J,K) 6= 0.

Then the map π1(R3 − T1)→ π1(R3 − T2) is injective.

Proof. Suppose to the contrary that there is a loop ` in R3− T1 that is not nulhomotopic in

R3− T1 but is nulhomotopic in R3− T2. Let D : B2 → R3− T2 be a singular disk in R3− T2

bounded by `.

Put D in general position with respect to ∂T1. By cut and paste, remove all curves of in-

tersection with ∂T1 that are nulhomotopic in ∂T1. Since the core curve J is not nulhomotopic

in R3 − T1, at least one curve of intersection must remain.

Take such a curve whose preimage is innermost in the domain B2 of D. This curve is

essential in ∂T1 but trivial either in R3 − int(T1) or in T1 − T2. The loop theorem thus

supplies a nonsingular disk D′ whose boundary is nontrivial in ∂T1 but whose interior either

lies in R3 − T1 or in T1 − T2.

In the latter case, ∂D′ must be the meridian of ∂T1, hence must link the core curve J

of T2, and D′ must intersect J , a contradiction. Hence D′ ⊂ R3 − int(T1), ∂D
′ must be the

longitude of T1, and T1 must be unknotted.

But that implies that ` is a multiple m ·K of the meridional curve K of ∂T1, hence must

have linking number m · lk(J,K) 6= 0 with J , hence cannot be nulhomotopic missing T2, a

contradiction.

Lemma 3.2.2. Let Σ =
⋂
Ti be the intersection of solid tori Ti in S3, such that for each i, the

core curve J of Ti+1 links the meridional curve K of ∂Ti having linking number lk(J,K) 6= 0.
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Then for every i, the map ι∗ : π1(S
3 − Ti) → π1(S

3 − Σ) induced by inclusion is injective,

and π1(S
3 − Σ) = lim−→

i

π1(S
3 − Ti) =

⋃
i

π1(S
3 − Ti).

Proof. Let γ be a nulhomotopic loop in S3−Σ, and let H be a nulhomotopy of γ in S3−Σ.

As Σ and the images of γ,H are compact, we see that there must be indices i, k such that γ

lies in S3 − Ti, and the image of H lies in S3 − Ti+k. Since the core curve of each Ti+k links

with the meridional curve of ∂Ti with linking number
i+k∏
j=i+1

nj 6= 0, we may use Lemma 3.2.1

to see that γ is in fact nulhomotopic in S3−Ti. Thus each π1(S
3−Ti) injects into π1(S

3−Σ),

and the lemma is proven.

Recall that S3 is the union of two solid tori; we will embed a solenoid into one of these.

In order to calculate the fundamental group of the solenoid complement, we will cut the

space along the tori {Ti}, to get pieces Ti − Ti+1 that are each a solid torus minus a braid,

together with one piece that is simply a solid torus (the initial complementary solid torus

in S3). We will calculate the fundamental group of each piece, and then use the Seifert Van

Kampen Theorem to get relations between the pieces, as the outer torus of one piece is the

inner torus, or braid, in the previous piece. The union of all of these groups and the Van

Kampen relations will give a presentation for the fundamental group by Lemma 3.2.2.

The fundamental group π1(Ti−Ti+1) can be calculated by considering the space Ti−Ti+1

as a mapping cylinder over an ni-punctured disk. Thus the group has the form

π1(Ti − Ti+1) =
〈
t, x1, . . . , xni

∣∣ t−1xkt = wk(x1, . . . , xni
)
〉

The xi’s represent free generators of the fundamental group of a punctured disk, and t

represents the longitude of Ti. Here wk is some word in the xj’s, depending on the embedding

(braiding) of one solid torus inside the previous. We note that the for each k, if strand k

attaches to strand m in the closed braid, then the word wk is a conjugate of xm. See

Figure 3.2.
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x1

x2

x3

t

Figure 3.2: Generators for π1(Ti − Ti+1).

Now apply Seifert Van Kampen to get the relations connecting the various pieces. Using

the variables x(i)k, t(i) to denote the generators of the fundamental group of the piece (Ti −

Ti+1), we get relations such as

x(i)1 =

ni+1∏
k=1

x(i+1)k, t(i+1) = tni

(i)v(i)(x(i)1, . . . , x(i)ni
).

The word v(i)

(
{x(i)k}

)
is determined by the embedding, relating the longitudes ti, ti+1 of the

tori Ti, Ti+1.

Putting all of this together, we get an infinite presentation for π1(Σ
c). The generators are

t(i), x(i)k from each level i, with k = 1, . . . , ni. The relations come from each level and Van

Kampen’s theorem. Recall that the words w(i)k, v(i) are dependent on the braided embedding

of one torus in the previous. Also note that t(0) = e, since the longitude of T0 is trivial in

S3, as its complement is simply a solid torus.

π1(Σ
c) =

〈
t(i), x(i)k

∣∣∣ t−1
(i)x(i)kt(i) = w(i)k({x(i)k}), t(0) = e

x(i)1 =

ni+1∏
k=1

x(i+1)k, t(i+1) = tni

(i)v(i)({x(i)k})
〉

Example 3.2.3 (Dyadic Solenoid). In the case of the dyadic solenoid with defining sequence

ni ≡ 2, our presentation for π1 simplifies. There are only two x(i)k’s at each level i, and since
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x(i)1 = x(i+1)1x(i+1)2, we do not actually need any of the generators x(i+1)2. If we let zi = x(i)1

be the meridian of Ti, and si = t(i) the longitude of Ti, we then get a simplified presentation,

where R represents relations dependent on the braiding:

π1 =
〈
si, zi

∣∣ [si, zi] = e, R, s0 = e
〉

3.3 Unknotted Solenoids

We define an unknotted embedding of any solenoid in S3, and discuss the fundamental group

of its complement. We will discuss knotted embeddings in the next section.

Definition 3.3.1. An embedding of a solenoid as a nested intersection of solid tori Ti is

unknotted if each Ti is unknotted (in S3).

We will show that every solenoid has an unknotted embedding, and that the complement

of an unknotted embedding has Abelian fundamental group.

While there are many braids on n strands that give the unknot, the simplest is probably

b(n) =
∏
σi = σ1σ2 . . . σn−1, in terms of the standard braid generators σi. Note that we

could just as easily have reversed the order, or used inverses (σ−1
i ). These closed braids just

wrap around (n − 1) times without any crossings, and then take the first (or last) strand

over (or under) all of the other strands.

There is an obvious way to try to embed the next level in this one: thicken each strand

to a tube, draw ni+1 parallel strands in each tube (crossing all of the strands in one tube

over all of the strands in another when the tubes cross), and put the braid for the next level

in one tube in some portion where there are no crossings of the tubes. Unfortunately, this

obvious way to iterate this process does not produce an unknot. This is due to the fact that

there is some inherent twisting in each stage that will show up in the following stages, if not

dealt with carefully.

As an example, consider just two levels, where both n1, n2 = 2, as shown in Figure 3.3. On
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the first level, we have two strands, and we will use b(1) = σ1 as our braid (if we had chosen

to use inverses for b(n) the following works out similarly). On the next level, we have four

strands. If we start with σ1, and then just follow the previous stage with the strands parallel

to each other, the resulting knot is actually a trefoil, rather than the unknot. However, if

you instead start with σ−1
1 (or even σ−3

1 ), you do get the unknot. It is more enlightening

to say that if you begin with σε1σ
−2
1 you get the unknot, if ε = ±1. This is true because

unwinding the doubled structure from the first level cancels out the σ−2
1 , leaving σε1, which

is the unknot. We leave it to the reader to verify that the given braids yield the specified

knots. These braids and the resulting knots are shown in Figure 3.3.

Even though the obvious method does not work, it is possible to keep track of the twists

in such a way to get an unknotted embedding of the solenoid. This basically amounts to

adding some amount of extra full twists (of all the strands) to correct for the twisting from

the previous level. In the case of the braids b(n) which we have chosen above, this ends up

being precisely (n − 1) full twists. The case of the dyadic solenoid with ni = 2 amounts

to adding one full twist, and three levels of this embedding are shown in Figure 3.4. This

twisting will also become apparent as we discuss the algebraic structure later, particularly

in the example of the dyadic solenoid (see Example 3.3.2).

We note here that this process of constructing unknotted braids can be continued indefi-

nitely, thus providing an embedding of the solenoid. At first there may seem to be a difficulty

due to the fact that our embedding requires nested tori, while our braid construction here

does not obviously satisfy that condition. However, one can check that each level of our

braid construction does nicely embed in the previous. For example, in Figure 3.4, taking

a tubular neighborhood of the four strands on the left and the four strands on the right

gives a 2-braid with one crossing, just as in the top left single crossing in the diagram. Also,

taking a neighborhood of two strands at a time gives a 4-braid that is the same as the top

left portion of the diagram (above the full twist on four strands).

We briefly describe one other way to see that this always works, even for more complicated
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Figure 3.3: Two levels of the dyadic solenoid embedded as the trefoil (top row), the unknot
(middle row), and another version of the unknot (bottom row). The diagrams on the right
show the corresponding braids.
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braids that may represent the unknot. Start with one level embedded in S3 as a torus, which

has an ambient isotopy h to the standard unknotted torus. Embed the next desired level in

the interior of the standard unknotted torus, and then composing with h−1 gives the desired

embedding of the next level. While this process works for any braid representation for the

unknot, our chosen simple braids b(n) admit a formulaic description.

To compute the fundamental group of the solenoid complement, we first compute the fun-

damental group of a solid torus minus the chosen closed braid b(n) =
∏
σi. As in the previous

section, we can present the fundamental group of this piece as G(n) = 〈t, x1, x2, . . . , xn | R 〉,

where xi represents the loop going around the ith puncture once, t represents the longitude

of the solid torus. The relators R are determined by the braid b(n) as follows: for i > 1,

we have t−1xit = xi−1, together with the relation t−1x1t = x1x2 . . . xn−1xnx
−1
n−1x

−1
n−2 . . . x

−1
1 .

Note that if we kill t (i.e. set t = e), then these relators become xi = xi−1, and thus the

quotient G(n)/� t �= 〈x1〉 = Z. This should be expected, as this is equivalent to gluing

in a solid torus to get S3 minus the braid b(n), which was the unknot. In the following, it

will be convenient to set x0 =
∏
xi, which satisfies the relation t−1x0t = x0.

Now we consider the Seifert Van Kampen relations. If we denote the elements of the

inner piece with ‘primes,’ (as in x′i compared to xi for the outer piece), then the relations

determined by the meridian and longitude of the intersection torus are x1 = x′0 =
∏
x′i, and

t′ = tn1w(xi), where w is some word in the xi’s.

This is where the issue of twisting comes into play. By considering a diagram, one can see

that w = x0 does work (it’s useful to remember that x0 commutes with t). While not every

other word in xi will work, we can match this longitude of the intersection torus with any

longitude t′(x′0)
k of the inner torus, perhaps wrapping around more (or fewer) times than we

think we should. As x′0 = x1, we see that we can append any number of x1’s at the end of

w. In order to get the unknot at this second level, we choose w = x0x
−n1
1 . Thus when we

set t = e, we get that xi = xj, so that x0 = xni
1 and w = e. Then t′ = e, and we similarly

have x′i = x′j. Also, x1 = x′0 =
∏
x′i = (x′1)

n2 . Thus the fundamental group is generated
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Figure 3.4: Multiple levels of unknotted braids.
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by x′1, where the generator x1 from the previous step satisfies x1 = (x′1)
n2 . Therefore the

second stage is unknotted, being a knot with fundamental group Z, and the fundamental

group from the first stage embeds via the map Z→ Z : 1 7→ n2.

We can continue this process of inserting unknotted solid tori Ti, and we get that each

fundamental group π1(S
3−Ti) is cyclic. If we call the generators from two consecutive stages

a, a′, then we have a = (a′)nk . Thus we see that the fundamental group of the complement

of the unknotted solenoid Σ(ni) is the direct limit G(ni) = lim−→(Z, fi : 1 7→ ni). This group

can be described more directly as follows, since we are allowed to divide by any of the ni:

G
(
{ni}

)
=

{
p

q
∈ Q

∣∣∣∣∣ q =
k∏
i=1

ni for some k

}
.

The element 1 in this group represents the meridian loop of the first torus in the construc-

tion, and 1/n1 represents the meridian loop of the second level, or going around one strand

of the braid in the first level. At each stage we can divide by ni, and in general 1/
(
Πkni

)
represents a loop going around a strand of the braid on the kth level, or equivalently, a

meridian of the (k + 1)st level. Since any loop can only come to within a finite (non-zero)

distance of the solenoid, this gives us all loops in the fundamental group.

Example 3.3.2 (Dyadic Solenoid). If Σ is the dyadic solenoid with defining sequence ni ≡ 2,

then this tells us that the fundamental group is the direct limit lim−→(Z, 2), which is just the

dyadic rationals G = {p/2k}.

This can also be seen from the presentation as given in Example 3.2.3. For each level

being unknotted we get the following presentation, where we have filled in the relations R

from the presentation earlier.

π1 =
〈
si, zi

∣∣∣ [si, zi] = e, si
−1zi+1si = zi+1

−1zi, si+1 = si
2zizi+1

−2, s0 = e
〉

Notice that on any level, if si = e, then zi+1
2 = zi, and then si+1 = s2

i = e. Thus this group
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becomes 〈zi | z2
i+1 = zi〉 = lim−→(Z, 2).

Similarly, for an n-adic solenoid, where ni ≡ n, we get the (non-complete) n-adic ratio-

nals {p/q | q = nk}. In general, the group G can be any non-trivial subgroup of Q. We

characterize the subgroups of Q in Lemma A.1; we restate the lemma here for convenience,

and give a proof in the appendix. We then describe how to achieve those as the fundamental

groups of specific solenoid complements.

Note that for additive subgroups of Q, multiplication by a nonzero constant is an iso-

morphism, so that we may assume that any non-trivial subgroup contains 1. In the lemma,

the number ki represents the number of times (plus 1) that the prime pi is allowed to appear

in the denominators of the subgroup elements.

Lemma A.1. Let {ki} be a sequence in N ∪∞. Define

Q
(
{ki}

)
=

{
p

q
∈ Q

∣∣∣∣∣ q =
m∏
i=1

pni
i for some ni < ki and some m

}

where pi denotes the ith prime number.

Then Q
(
{ki}

)
is a subgroup of Q containing 1. Furthermore, every subgroup G ≤ Q

containing 1 is equal to Q
(
{ki}

)
for some sequence {ki}.

For a solenoid with defining sequence {ni}, the fundamental group is G
(
{ni}

)
as men-

tioned above, which can also be described as the subgroup Q
(
{kj}

)
from Lemma A.1 by

setting kj to be one more than the cumulative number of times the jth prime occurs as a

factor in the sequence {ni} (where kj might be infinite). For example, if the sequence {ni}

begins with 2, 4, 6, 8, 5, . . . , where the tail of the sequence consists of odd numbers, then for

i = 1, we have pi = 2, and ki = 1 + (1 + 2 + 1 + 3 + 0) = 8, as we add one more than the

sum of the powers of 2 that appear in the ni.

From this, it is now easy to see that given any subgroup Q(kj) ≤ Q, there is a solenoid Σ
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and an unknotted embedding into S3 such that π1(S
3 − Σ) = Q(kj). The defining sequence

{ni} can be chosen in various ways, but the homeomorphism type of the solenoid described

is uniquely determined. One construction that will always work is as follows:

ni =
i∏

j=1

p
mij

j , where mij = 1 if i− j < kj − 1 and 0 otherwise.

This construction may have some ni = 1, and these may be removed if the tail of the

sequence ni is not identically 1. In the case where the ni are eventually 1, the subgroup

Q
(
{kj}

)
is cyclic (∼= Z), and the required solenoid is the circle S1 (with ni ≡ 1). The circle

is not always considered a solenoid, being degenerate. If not considering S1 to be a solenoid,

then we may reformulate the result to say that any subgroup of Q that is neither {0} nor Z

may be obtained as the fundamental group of a solenoid complement.

As mentioned earlier, any finite segment of {ni} does not change the solenoid Σ(ni). It

also does not change the fundamental group of the unknotted complement. If G
(
{ni}

)
is

the group for the sequence {ni}, and G
(
{ni}, k

)
is the group where we start the sequence at

i = k, then we have the isomorphism ϕ : G
(
{ni}

)
→ G

(
{ni}, k

)
defined by ϕ(x) = x

k−1∏
i=1

ni.

Also notice that any reordering of {ni}, or replacing a term nj by a sequence of its prime

factorization, will also not change the group (here the isomorphism is the identity map).

In the previous discussion, we considered a particular unknotted embedding, based on

a choice of braids b(n) that give the unknot. There are obviously many other choices of

braids that give the unknot; for example, the combined braid from the first and second

stages described above is an unknot on n1n2 strands, which differs from our chosen braid

b(n1n2). However, the results stated above still hold. Given any unknotted embedding, we

have π1(S
3 − Σ) = lim−→ π1(S

3 − Ti) = lim−→Z, where the bonding maps are still fi : 1 7→ ni.

While, for a given solenoid, the fundamental group of the complement of any unknotted

embedding is the same, one may ask the following question.
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Question 3.3.3. Are all unknotted embeddings of a given solenoid equivalent?

Here we might take equivalent to mean that there is an ambient isotopy, or perhaps

ambient homeomorphism (possibly orientation preserving) between the two embeddings, or

perhaps just requiring that the complements in S3 be homeomorphic.

As noted above, changing any finite segment of the ni’s does not change the fundamental

group of the complements. Additionally, if we use the same braids b(ni) in each embedding,

then in this case the complements will be homeomorphic, as we may ‘unwind’ the first k

levels of unknotted tori, with an ambient isotopy. Similarly, any finite reordering of the ni

or replacement by factorizations or products will also give ambient isotopic embeddings. If

there are infinitely many of these changes made, it is no longer clear whether this changes

the homeomorphism type of the complement.

It seems likely that infinitely many changes will result in different complements, or at

least embeddings that are not ambient isotopic, and that there should be uncountably many

inequivalent unknotted embeddings for any solenoid.

Conjecture 3.3.4. For every solenoid, there are uncountably many inequivalent unknotted

embeddings in S3.

We summarize the results of this section in the following theorem:

Theorem 3.3.5. For any solenoid Σ, there exists an embedding Σ ⊂ S3 such that π1(S
3−Σ)

is Abelian, and in fact a subgroup of Q.

Furthermore, for every nontrivial subgroup G ≤ (Q,+), there exists a solenoid Σ and an

embedding Σ ⊂ S3 such that π1(S
3 − Σ) ∼= G.

3.4 Knotted Solenoids

In the previous section, we took care to ensure that each torus in the nested intersection

construction was unknotted in S3. First, we used a braid b(n) that represents the unknot,
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and then we took care how we glued in the next stage, with respect to twisting. Relaxing

these conditions, we will consider any braid b on n strands that is transitive on the strands;

transitivity gives us a knot instead of a link.

Again, the fundamental group of a solid torus minus this closed braid will have the form

G(b) = 〈t, x1, . . . , xn | R〉. The relators in R are of the form t−1xit = wi, where the word wi

can be determined directly from the braid. We only mention here that if the braid b sends

strand i to strand j, then the corresponding relator has the form t−1xit = g−1xjg, where

g is some word depending on the braiding. Then due to the transitivity, we see that after

Abelianization, the relators give xi = xj for all i, j.

To connect two such tori, we need the extra relations x1 = x′0 =
∏
x′i, and t′ = tn1w(xi).

By careful consideration of a braid diagram, one can determine a suitable word wb for a

given braid. Again, we may allow w = wbx
k
1 for any k (since we are not worried about extra

twisting anymore).

After Abelianization, these relations become x1 = (x′1)
n2 , and t′ = tn1w(xi). At each

level, we get a Z generated by x′1, and while t′ might not equal zero, it can be written as

a word in x′1 as the previous t could be written as a word in x1. We note here that we

can always take the first solid torus T0 to be standardly embedded, so that the longitude

t0 = e. This follows from a theorem of Alexander [1], which states that every knot (or link)

can be represented as a closed braid. Then the maps from Z → Z are again multiplication

by ni. Thus the Abelianization of all these groups depends only on the solenoid, not the

embedding.

The preceding fact is actually a simple consequence of Alexander duality:

Theorem 3.4.1 (Alexander Duality). For a compact set K ⊂ Sn, Hi(S
n−K) ∼= Ȟn−i−1(K).

In our setting, this tells us that the first homology, or the Abelianization of the fundamen-

tal group, of the complement of an embedded solenoid is equal to the first Čech cohomology

of the solenoid, which is independent of the embedding: (π1)Ab = H1(S
3 − Σ) = Ȟ1(Σ).
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Of course the Čech cohomology of Σ(ni) must then be the group G(ni) as discussed in the

previous section, as in that case the fundamental group is the first homology group, being

Abelian. That this group is in fact the Čech cohomology is shown/discussed in [35].

Example 3.4.2 (Dyadic Solenoid). Again, consider the dyadic solenoid with ni ≡ 2. On

each level we will use the braid σ1
3, which gives the trefoil knot. In this case the presentation

for the fundamental group becomes:

π1 =
〈
si, zi

∣∣∣ [si, zi] = e, si
−1zi+1si = zi

−1zi+1
−1zi

2, si+1 = si
2zi

3zi+1
−6, s0 = e

〉

Note that if we Abelianize, then z2
i+1 = zi, and then si+1 = s2

i = e as before. This gives

us that H1 = (π1)Ab is the dyadic rationals.

However, this fundamental group is non-Abelian. This follows from Lemma 3.2.2 and

the fact that the trefoil group is non-Abelian. This can also be seen more directly, as the

fundamental group maps onto the infinite alternating group A∞. To see this, map each

generator zi to the 3-cycle
(
i (i + 1) (i + 2)

)
. As each si is just a word in the zi’s and the

previous sj’s, this defines the homomorphism.

While the homology of a solenoid complement only depends on the solenoid, the funda-

mental groups can be quite different. However, it is still difficult to tell them apart. We

have given a way to present these groups, but our presentations are infinite, which makes

it difficult to determine when two groups are isomorphic; in fact it is difficult to tell when

two finite presentations give isomorphic groups. For instance, if we take a dyadic solenoid

with ni ≡ 2, at any level we may either use the unknotted embedding from Example 3.3.2,

or the trefoil embedding from Example 3.4.2. The presentation will look similar to those in

the examples, using the relations from one or the other at different levels i depending on

which embedding was chosen. While it seems likely that these give different fundamental

groups, it is hard to prove that for these given infinite presentations, especially as they have

isomorphic Abelianizations (see Theorem 3.4.1).
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However, despite these difficulties, we can tell some of these embeddings apart via the

fundamental group. Lemma 3.2.2 tells us that the fundamental groups of the various stages

inject into the fundamental group of the entire complement. A standard result from knot

theory states that the fundamental group of the complement of any knot that is not the

unknot is non-Abelian. Thus if there is any knotting in our embedding of the solenoid,

π1(S
3−Σ) will be non-Abelian, in contrast to the unknotted embeddings which always have

Abelian fundamental groups.

There are many knotted embeddings of any solenoid, which seemingly should all be dif-

ferent. As fundamental groups determine knots (up to chirality), it seems that if there is any

substantial difference in the knottings, the fundamental groups should differ. Unfortunately,

it is hard to show this given our infinite presentations.

We summarize the results of this section in the following theorem and conjecture.

Theorem 3.4.3. For every solenoid Σ, there are knotted embeddings Σ ⊂ S3, and such

embeddings have π1(S
3 − Σ) non-Abelian. These embeddings are inequivalent to unknotted

embeddings, whose complements have Abelian fundamental groups.

Conjecture 3.4.4. If a solenoid is embedded in two ‘different’ knotted ways, the fundamental

groups of the complements are different.

3.5 Distinguishing Non-Abelian Complements

As discussed in the previous sections, for any solenoid there is an embedding with a non-

Abelian fundamental group, which is clearly not equivalent to the Abelian embeddings. As

knots are essentially determined by the fundamental group of their complements (up to an

issue of chirality), it seems that unknotted embeddings of a solenoid that are knotted in

different ways should give different fundamental groups. Unfortunately, the result for knots

does not easily carry over to solenoids, as the fundamental groups are now ascending unions
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of knot groups, and it is not clear whether two ascending unions could be equal in the end,

yet differ at every finite stage.

In order to distinguish non-Abelian embeddings of a given solenoid, we consider the

geometry of the complements. A standard tool we will use is the JSJ-decomposition, cutting

the manifold along incompressible tori. As the JSJ-decomposition only applies to compact

manifolds, we will generalize it to apply to a certain class of embeddings of solenoids. The

following statement is taken from Hatcher’s notes on 3-manifolds [30], under the section on

Torus Decomposition.

Theorem 3.5.1 (JSJ-Decomposition). A compact irreducible orientable 3-manifold has a

minimal collection of disjoint incompressible tori such that each component of the complement

of the tori is either atoroidal or Seifert fibered. This minimal collection is unique up to

isotopy.

To generalize this result for solenoid embeddings, we need to consider embeddings such

that infinitely many of the ‘solid torus minus a braid’ pieces are hyperbolic. As long as the

braid has at least 3 strands, this should generically be the case. If there are only 2 strands,

the piece will always be Seifert fibered.

Proposition 3.5.2. Given n ≥ 3, there exist (at least) two n-braids B(n, i) in a solid torus

T such that the complements T −B(n, i) have distinct hyperbolic structures for i = 1, 2.

Proof. An n-braid in a solid torus is the mapping torus of an n-punctured disk B2. Thurston

[47, 48] proves that such manifolds are hyperbolic precisely when the monodromy is pseudo-

Anosov, and states that this is in fact the generic case (see Theorem 0.1 in [48]).

The proof above using Thurston’s results only shows that an n-braid in a solid torus will

generically give a hyperbolic 3-manifold with 2 cusps, without constructing specific examples.

For a fixed choice of n, we can construct specific examples with different hyperbolic structures

quite easily, and in Table 3.1 we present a few specific braids for n = 3, 4, 5 in terms of the
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n Braid Hyperbolic Volume
3 σ−1

1 σ2 4.05
σ−3

1 σ2 5.97
4 σ−1

1 σ2σ3 4.85
σ−1

1 σ2σ
−1
3 7.51

5 σ−1
1 σ2σ3σ4 5.08

σ−1
1 σ−1

2 σ3σ4 5.90
σ−1

1 σ2σ
−1
3 σ4 11.2

Table 3.1: Braids in a solid torus with distinct hyperbolic volumes.

standard braid generators σi. In general, it seems that the braids
n−1∏
i=1

σei
i , where ei = ±1,

each give different volumes, unless there is either some obvious symmetry (i.e. − + + gives

the same as + +−, +−− and −−+), or if it is Seifert fibered (i.e. −−− or + + +). Of

course, for n = 3 we must add extra twisting, since there are only 2 generators σi, which

only gives one hyperbolic 3-braid knot with two crossings, up to symmetry. The hyperbolic

volumes given in Table 3.1 were calculated using SnapPea [51].

Recall that hyperbolic structures on 3-manifolds are in fact topological invariants, as

given by Mostow-Prasad rigidity [40, 42]:

Theorem 3.5.3 (Mostow-Prasad Rigidity). If a 3-manifold admits a complete hyperbolic

structure with finite volume, then that structure is unique up to isometry.

Using Mostow-Prasad rigidity and Proposition 3.5.2, we are able to prove the existence

of inequivalent non-Abelian embeddings for any given solenoid.

Theorem 3.5.4. For any solenoid, there exist uncountably many inequivalent non-Abelian

embeddings, i.e. such that the complements are different manifolds.

Proof. Choose a defining sequence ni for the solenoid Σ, with the condition that ni 6= 2. If

necessary, we may take the product of consecutive terms ni to ensure that ni 6= 2.

We will construct different non-Abelian embeddings of Σ. Let T0 be a knotted solid torus

with cross-sectional diameter 1 in S3. To the complement of T0, glue in either T −B(n1, 1)
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or T −B(n1, 2), one of the hyperbolic manifolds from Proposition 3.5.2. Continue attaching

either T−B(ni, 1) or T−B(ni, 2). As we fill in the braids, make sure that the cross-sectional

diameter of each braid is less than half the diameter of the previous level. This will embed

the solenoid Σ(ni). As we have two choices at each stage, there are uncountably many ways

of doing this. It remains to show that these each give different complements.

We will use the JSJ-decomposition. Take any incompressible torus T ∗ in S3−Σ. This cuts

S3 into a compact piece and a noncompact piece, because Σ is connected. There is a small

torus Tk in our construction that lies inside the non-compact piece, as T ∗ is bounded away

from Σ, and we ensured that the tori Ti had cross-sectional diameter less than 2−i. This torus

Tk then cuts S3 into two new pieces, again one compact and one not, with the originally

chosen incompressible torus T ∗ in the compact piece. Now apply the JSJ-decomposition

(Theorem 3.5.1) to the compact piece. As the pieces T 2 − B(n, i) in our construction were

chosen to be hyperbolic they are atoroidal, and thus the torus T ∗ must be isotopic to one of

our defining tori Ti.

Thus we get a canonical JSJ-decomposition of our solenoid complement, with every in-

compressible torus in the complement being isotopic to one of the defining tori. In particular,

the incompressible tori cut S3 − Σ into pieces, one of which has one cusp (the original knot

complement), and all the rest having 2 cusps. These pieces may be ordered by taking the

piece with one cusp as the first, and then considering which other pieces share a common

boundary. So we have a canonical way of cutting up the solenoid complement into these

ordered pieces. If any of the pieces are different at any spot in the sequence, the resulting

manifolds are distinct, which proves the theorem.

Corollary 3.5.5. Let {ni} be any defining sequence of a solenoid, other than a sequence

that is eventually 2 for the dyadic solenoid. Then there are uncountably many inequivalent

embeddings of the solenoid using the sequence ni.

Proof. Proceed with the construction as in the proof of the theorem, except when ni = 2, fill
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in with any Seifert fibered 2-braid. In fact, all we need is that infinitely many of the pieces are

hyperbolic. Then to get the generalized JSJ-decomposition, when given an incompressible

torus T ∗, choose the small torus Tk such that Tk represents the inner braid in one of the

hyperbolic pieces. Again we may apply the standard JSJ-decomposition to the compact

complementary component of Tk. This gives us that T ∗ is either one of our defining tori Ti,

or that T ∗ lies in one of the Seifert fibered pieces.

Again, we get a canonical JSJ-decomposition, where on each compact piece we take

the minimal collection of tori guaranteed by the standard JSJ-decomposition. As we have

infinitely many hyperbolic pieces, and since we can choose to fill in with non-isometric pieces,

we get uncountably many distinct complements.

Note that this argument cannot extend to the defining sequence ni ≡ 2, as the home-

omorphism type of a solid torus minus any 2-braid is only dependent on the number of

components of the closed braid (i.e. either 1 or 2). As we have only been considering knots,

we will always have 1 component, giving only one homeomorphism type of a solid torus

minus a 2-braid.
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Chapter 4. Peano Continua

4.1 Introduction

This chapter is dedicated to studying Peano continua, which are compact, connected, locally

path connected metric spaces. We first concentrate on simplifying Peano continua by finding

certain reduced forms, up to homotopy equivalence. In the remainder of this section we

briefly discuss these results together with some informal definitions, and also state the main

theorems. The precise definitions, theorems and proofs are given in the subsequent sections.

The first reduced form we consider deals with finding deformation retractions which are

in certain senses minimal and canonical. We deforest Peano continua by contracting sub-

continua attached at single points, in a maximal way (see Definition 4.2.5).

Theorem 4.3.1. Every non-contractible Peano continuum has a strong deformation retrac-

tion to a deforested continuum.

Such a deforested Peano continuum is a strong deformation retract, and is minimal in

the sense that it admits no proper deforestation. However, a deforested Peano continuum

may not be a minimal deformation retract, or even admit a minimal deformation retract, as

we show in Examples 4.1 and 4.2.

Some types of relatively simple Peano continua, such as simplicial complexes, always

admit minimal deformation retracts. If such a minimal deformation retract of a space exists,

it is called a core of the space (Definition 4.2.6). It is evident that for a given space all cores

must be homotopy equivalent, but cores need not be homeomorphic, nor unique as subspaces.

Theorem 4.3.2. In a deforested Peano continuum, the set of points with simply connected

one-dimensional neighborhoods forms a locally finite graph.
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While this graph admits many homotopies, it will be shown in Theorem 4.3.3 that the

complement of this graph in the one-dimensional subspace is homotopically rigid, and is

exactly the set of points with one-dimensional neighborhoods that are fixed by all self-

homotopies of the space.

We proceed to show that there is a homotopy equivalence to another reduced form, which

we call arc-reduced, where the graph mentioned above is the disjoint union of a countable

family of arcs (Definition 4.2.8). If the entire space is one-dimensional, we see that such a

space is in fact a compactification of a null sequence of arcs by a particular homotopically

fixed subspace, as mentioned in the previous paragraph. We now briefly explain the notation

in the following theorem, and note that the corresponding definitions are given in Defini-

tion 4.2.7. The one-dimensional set I(X) is the set of points in X with one-dimensional

neighborhoods, the bad set B(X) is the set of points in I(X) where X is not locally simply

connected, and the good set G(X) is the complement of B(X) in I(X).

Theorem 4.3.4. Every Peano continuum X is homotopy equivalent to an arc-reduced con-

tinuum Y, i.e. where G(Y ) = I(Y )−B(Y ) is a disjoint union of arcs.

As an example, consider a compact, zero or one-dimensional metric space B together

with an infinite binary tree limiting on a Cantor set. We can form a one-dimensional Peano

continuum by mapping the Cantor set at the end of the tree onto the set B and taking the

quotient space. If the original space B is locally path connected, then the set of points with

simply connected neighborhoods is just the tree, so Theorem 4.3.4 tells us that this space is

homotopy equivalent to a null sequence of arcs attached to the set B on a countable dense

set. Figure 4.1 shows the case where B is an interval.

While Theorem 4.3.4 tells us that the graph from Theorem 4.3.2 can be made very nice,

Theorem 4.3.3 tells us that the complement of this locally finite graph is rigid, being exactly
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Figure 4.1: Example of Theorem 4.3.4.

the set of points in I(X) that are fixed by all self-homotopies of X.

These reduced forms give stronger results when restricting to one-dimensional Peano con-

tinua. In fact, they lead to homotopy invariants that together form a complete invariant of

homotopy type. We have proven the following theorem for continua where B(X) is nice in

various ways, and conjecture the result to hold for all continua regardless of the complexity

of B(X). In the theorem, Q(X) and rank(X) are certain homotopy invariants, defined in

Definition 4.6.2 and Definition 4.6.10. Briefly, Q(X) is a subset of B(X), containing certain

limit points of arcs in G(X), while rank(X) is the number of non-separating arcs in G(X),

and is related to the rank of free groups that are free factors of π1(X).

Theorem 4.6.12. The triple (B(·), Q(·), rank(·)) is a complete invariant of the homotopy

type of one-dimensional Peano continua that are sufficiently nice.

We now outline the structure of the chapter. In Section 4.2, we give definitions and

results which will be used throughout the chapter. In Section 4.3, we discuss the existence

of the deforested and arc-reduced forms for all Peano continua. In Section 4.4, we study the

special case of one-dimensional Peano continua, where we can prove some stronger results;

for instance, all such continua have a unique core. In Section 4.5, we present an application

discussing one-dimensional Peano continua with the shape of a graph. Finally, in Section 4.6,

we discuss topologically defined homotopy invariants for one-dimensional Peano continua,

and show that these often determine the homotopy type of the continuum.
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We note that many of the results in this chapter are generalizations of work from [36],

which only considered one-dimensional Peano continua. Herein we generalize many of the

results to continua of arbitrary dimension, considering subspaces that are one-dimensional,

as well as adding new results.

4.2 Preliminaries and Definitions

We begin by recalling a few standard definitions that will be used throughout the rest of

the chapter. Dimension will mean covering dimension. We will denote the identity map on

X by IdX . A Peano continuum is a compact, connected, locally path connected separable

metric space. A dendrite is a one-dimensional Peano continuum containing no simple closed

curves. A loop in a space X is a continuous map from S1 to X.

Theorem 4.2.1 (Hahn-Mazurkiewicz). A space is a Peano continuum if and only if it is a

metric space that is the continuous image of a closed arc.

Many of our arguments in this paper will use the notion of reduced loops:

Definition 4.2.2. A loop f : S1 → X is reduced if whenever f |I is a closed curve for some

interval I ⊂ S1, then f |I is either essential or constant.

The following lemma about reduced loops will be important in many of our proofs. For

a proof of Lemma 4.2.3 and more information on reduced loops, see the work of Cannon and

Conner [16].

Lemma 4.2.3. In a one-dimensional Peano continuum, every loop f is homotopic to a

reduced loop f̃ , which is unique up to reparametrization. Furthermore, the image of f̃ is

contained in the image of f . We call f̃ a reduced representative for f .

Definition 4.2.4. A connected open set D in X is an attached strongly contractible subset

if
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(i) the boundary of D in X consists of one point, and

(ii) the closure D has a strong deformation retraction to its boundary point.

Note that the boundary point of an attached strongly contractible subset is a cut-point

of the space, where one complementary component of the cut point can be contracted fixing

the cut-point.

Definition 4.2.5. A space is deforested if it contains no attached strongly contractible

subsets.

The name for the previous definition is motivated by the one-dimensional case, where

the closure of strongly contractible subsets are dendrites, which are tree-like.

Definition 4.2.6. A core of a continuum is a minimal strong deformation retract. That is,

a strong deformation retract that admits no proper strong deformation retraction.

Definition 4.2.7. The one-dimensional set I(X) of a space is the set of points with one-

dimensional neighborhoods. A point x ∈ I(X) in a Peano continuum is bad if it has no

simply connected neighborhood, or equivalently if every neighborhood of x contains a simple

closed curve. Notice that by Lemma 4.2.3 every simple closed curve in a one-dimensional

Peano continuum is essential. We denote the set of all bad points of X by B(X), and its

complement in I(X) is the good set, denoted by G(X) = I(X)−B(X).

These subsets of the space will be useful in the proofs of the main theorems, and have

certain nice properties that will be discussed in the remainder of the paper. In fact, the

set B(X) has been studied before in slightly different contexts. Cannon and Conner [17]

define the set B(X) for connected planar sets, and prove that every self-homotopy must

fix B(X) pointwise. This agrees with our definition in the case of planar one-dimensional

Peano continua, and we prove a similar theorem in Theorem 4.3.3 and a stronger version for

one–dimensional spaces in Theorem 4.4.3. While not explicitly defined, these same notions
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are also used in Theorem 5.2 of [18]. Conner and Eda also discuss the set B(X) in [22, 25],

although there they use the notation Xw for the set B(X), and call these points wild. While

they define the set as those points where the space is not semi-locally simply connected,

by Lemma 4.2.3 we see that for one-dimensional spaces this is the same as points that are

not locally simply connected, or points where every neighborhood contains a simple closed

curve, which is our definition of B(X).

Definition 4.2.8. We say that X is arc-reduced if G(X) is either a disjoint union of a null

sequence of (open) arcs or a finite bouquet of circles.

The Hawaiian earring (the one point compactification of a null sequence of arcs) is a

simple example of an arc-reduced continuum that is not just a finite bouquet of circles. In

fact, Theorem 4.3.4 shows that every one-dimensional arc-reduced continuum (with B(X) 6=

∅) is a compactification of a null sequence of arcs by the set B(X), which is homotopically

fixed. We note that the set B(X) can be any zero or one-dimensional compact metric space.

4.3 Reduced Forms for Peano Continua

We will first prove the existence of the deforested reduced form for Peano continua. Recall

that a space is deforested if it has no subsets attached at a point that are strongly contractible

to that point. It is important here that we require strongly contractible subsets in the

definition of deforested, even if we only want to require a weak deformation retraction to the

reduced form. To see this, consider taking two copies of a cone over the Hawaiian earring

joined at their base points. While both of the cones are contractible, the wedge is a space

with uncountable fundamental group [15, 16, 27, 39, 55].

It is also important that each strongly contractible subset is only attached at a single

point. In Example 4.2 we present a space with infinitely many disks attached along arcs

where it is not possible to contract all of the disks.
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Also note that while a contractible continuum has a contraction to a point, which is a

deforested continuum, it is unclear whether every contractible Peano continuum has a strong

deformation retraction to a point. This issue comes up in the construction of a partial order

in the proof.

Theorem 4.3.1. Every non-contractible Peano continuum has a strong deformation retrac-

tion to a deforested continuum.

Proof. Let X be a non-contractible Peano continuum. Let D be the union of all attached

strongly contractible subsets in X. Recall that attached strongly contractible subsets are

open, thus D is also open. Let E be the set of points in X that are the boundary of some

attached strongly contractible subset.

Now, consider the points in E−D, those points that are the boundary of some attached

strongly contractible subset, but are not in the interior of any strongly contractible subset.

Each such point has at least one complementary component whose closure is an attached

strongly contractible subset, and we will call such strongly contractible subsets maximal.

Maximal strongly contractible subsets must be disjoint: the boundary point of one cannot lie

in another by definition of maximal, and if any point were in the intersection of two maximal

strongly contractible subsets, then there would be a path in each strongly contractible subset

to its boundary point, and some point along that path would give a second boundary point

for the other dendrite. Thus the collection of all maximal strongly contractible subsets must

form a null sequence by Lemma A.4.1. Since X is locally connected, any point that is a

limit of the collection of maximal strongly contractible subsets cannot be contained in the

interior of any maximal strongly contractible subset, but could possibly be the boundary

point of some strongly contractible subset. Because the strong deformation retractions fix

the boundary points of the strongly contractible subsets, then by Lemma A.4.2 we can paste

all of the deformation retractions of the maximal strongly contractible subsets together.

Thus there is a strong deformation retraction of X that retracts all of the maximal strongly
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contractible subsets simultaneously.

We will show that every point of D is contained in a maximal strongly contractible subset,

so that the deformation retraction above maps to X−D. Partially order the set E by defining

x < y if x is contained in a strongly contractible subset with boundary point y. Note that if

x1 < x2 and x2 < x1, then we have a strongly contractible subset D1 with boundary x1, and

some other strongly contractible subset D2 with boundary x2, with x1 ∈ D2 and x2 ∈ D1.

If this is the case, then X contractible: if ri(x, t) are strong deformation retractions from X

to X −Di, then the map r defined by

r(x, t) =


r1(x, 2t) t ∈ [0, 1

2
]

r1(r2(x, 2t− 1), 1) t ∈ [1
2
, 1]

gives a contraction of X to x1. Note that this contraction may not fix x1.

Thus if X is not contractible, the relation x < y is antisymmetric and we now show that

it is also transitive. Let x < y and y < z, so that x ∈ Dy that strongly contracts to y,

and y ∈ Dz that contracts to z. If z ∈ Dy, then we have the case discussed in the previous

paragraph, which can only happen if X is contractible. Thus z 6∈ Dy and so since y separates

x from z we can see that x lies in the same component of X − z as y does, namely Dz, and

therefore x < z. So the relation x < y is indeed a partial order if X is not contractible.

We will prove that every chain in E has an upper bound, so that by Zorn’s lemma there

exist maximal points in E. To see that the maximal points in E do not lie in D, note

that given strongly contractible subsets Di with boundary xi as above, if x1 lies in D2, then

D1 ∪D2 is an attached strongly contractible subset with boundary x2 (since x2 cannot lie in

D1 if X is not strongly contractible). These facts together will show that every point in D

is contained in a maximal strongly contractible subset, as defined above.

Let C be a chain in E, and suppose that C has no maximum element (otherwise that

element is an upper bound for C). Since X is compact, there is a point z in the nested
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intersection of the closure of tails of the chain C; i.e., there is a point z that is a limit of

every tail of C. We will show that z is unique, and that z is an upper bound for the chain

C.

Suppose there are two such limits z1, z2. Then since X is first countable, we can find

a countable subchain {ci} in C so that c2i+1 converges to z1 and c2i converges to z2. For

each ci, some number of the complementary components are attached strongly contractible

subsets with boundary ci. Lemma A.4.1 tells us that they must form a null sequence.

Denote the union of this null sequence of attached strongly contractible subsets as Di; then

by Lemma A.4.2 we get a strong deformation retraction hi from X to X − Di. Note that

the sets (Di+1 − Di) have nonempty interior, connected closures, and boundary consisting

of at most two points (namely ci, ci+1). Thus Lemma A.4.1 applies again, and the sets

(Di+1−Di) form a null sequence, which must converge to z1 since c2i+1 → z1, but they must

also converge to z2, since c2i → z2. Thus there can only be one such limit point z.

There is one complementary component of z containing the entire chain C. If not, then

there is some k such that ck, ck+1 are in different complementary components. Every path

from ck to ck+1 then passes through z, and since there is a deformation retraction that takes

ck to ck+1, this deformation also takes z to ck+1. But then z would not be a limit of every

tail of C. So there is one complementary component of z containing all of the chain C, call

it A. Notice that A is open, with boundary equal to z.

We claim that A is an attached strongly contractible subset, and thus z is an upper

bound for C. First take a sequence ci in C that limits on z. As before, define the set Di

to be the union of all dendrites attached at ci. For each i there is a strong deformation

retraction hi that contracts Di. It will be useful to name the retraction fi(x) = hi(x, 1), and

define f0 = IdX .

To deformation retract X to X − A, first perform h1 = f0 ◦ h1 for t ∈ [0, 1
2
], followed by

f1 ◦ h2 for t ∈ [1
2
, 2

3
], and fi−1 ◦ hi for t ∈ [ i−1

i
, i
i+1

]. Composing with fi ensures that we don’t

backtrack too much, in particular that the image of our deformation retraction h misses Di
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for times t > i
i+1

. More precisely, the deformation retraction is defined by

h(x, t) =


fi−1 ◦ hi(x, i(i+ 1)(t− i−1

i
)) if t ∈ [ i−1

i
, i
i+1

], for i ≥ 1,

z if (x, t) ∈ A× {1},

x if (x, t) ∈ (X − A)× {1}.

This function is clearly continuous on X × [0, 1) by the standard pasting lemma. To see

that h is continuous when t = 1, first recall that the sets (Di+1 −Di) form a null sequence,

which must converge to z since ci → z. Note that h(z, t) = z for all t. Also, the image of

(Di+1 −Di) × [0, 1] is contained in (A−Di) = {z} ∪
⋃
k≥i (Dk+1 −Dk), which also forms

a null sequence converging to z because the sets (Dk+1 −Dk) converge to z. Since X =

(X − A) ∪
⋃
i (Di+1 −Di), and since h fixes every point x ∈ X − A for all t, we can apply

Lemma A.4.2 (which is an infinite pasting lemma), to see that h is continuous on all of

X × [0, 1].

Thus A is a strongly contractible subset attached at z, so by Zorn’s lemma maximal

elements of E exist, so that every attached strongly contractible subset is contained in a

maximal one, and there is a strong deformation retraction from X to X −D. It is easy to

see that X −D contains no attached strongly contractible subsets, since the preimage of a

strongly contractible subset of X−D under the deformation retraction would be an attached

strongly contractible subset of X.

Therefore X has a strong deformation retraction to X−D, which has no attached strongly

contractible subsets.

We will now discuss a nice property of deforested continua: the set G(X) is in fact a

locally finite graph, i.e. a one-dimensional CW-complex such that each 0-cell intersects the

closure of only finitely many 1-cells. In the proof we will use Lemma A.4.3, which gives an

equivalent definition for a locally finite graph, and also the technical results Lemma A.4.4
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and Lemma A.4.5.

Theorem 4.3.2. In a deforested Peano continuum, the set of points with simply connected

one-dimensional neighborhoods forms a locally finite graph. If this graph is nonempty and

finite then it is the entire continuum.

Proof. Assume that G(X) 6= ∅. By Lemma A.4.3, it suffices to show that each point in G(X)

has a deleted neighborhood that is a finite disjoint union of arcs.

Fix x ∈ G(X), and let W be a simply connected one-dimensional neighborhood of x. Fix

a path connected neighborhood U of x such that U ⊂ W . Then for any w ∈ U , there is a

unique arc p(w) from x to w. For points w1, w2 ∈ U , if neither w1 nor w2 lies on the arc

from x to the other, we will call the last point in p(w1) ∩ p(w2) a y-point (relative to x). So

each y-point y is the endpoint of at least three arcs. By Lemma A.4.5, we see that these arcs

can be extended to join y to ∂U , and these extended arcs intersect only at y since U ⊂ W

is simply connected. For a set A ⊂ U define Y (A) to be the set of all y-points in U formed

by the paths from x to the points of A. In other words, Y (A) consists of the first points of

intersection of paths from A to x. Note that if A is finite, then so is Y (A).

We claim that Y (U) is finite. To see this, consider an open set V such that U ⊂ V ⊂

V ⊂ W . Suppose that Y (U) is infinite. Then we may choose a sequence {yn} in Y (U)−{x}

such that yi 6∈ Y ({y1, . . . , yi−1}). Choose the unique arc p from x to y1 in U . Since y1 is

a y-point in U , there are three arcs emanating from y1. Choose one of these arcs that is

disjoint from p, and call it p̃. By Lemma A.4.5, p̃ can be extended to an arc p′ which joins

y1 to ∂U to ∂V . Let p1 be p p′. Continuing by induction, since yi is a y-point, but not for

any two of the previous yk’s, there are three arcs emanating from yi, of which at most two

intersect the previous pk’s. Thus there is an arc pi joining x to yi to ∂U to ∂V , with the

segment of pi from yi to ∂U to ∂V not intersecting the previous pk’s. Let ri be the segment

of pi from ∂U to ∂V . Then {ri} is infinite, which contradicts Lemma A.4.4, so Y (U) must
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be finite.

Then there is a path connected neighborhood A ⊂ W of x with no y-points (other than

possibly x). Each point in A lies on an arc with x as one endpoint, and which extends to ∂A

by Lemma A.4.5. Then a path connected neighborhood of each point contained in A− {x}

is exactly a portion of that arc, since if there were any other point in the neighborhood it

would need to be connected by a path to that arc, which would give a y-point, but there are

no y-points in A − {x}. Again by Lemma A.4.4, there can only be finitely many of these

arcs from x to ∂A. So A − {x} is a disjoint union of finitely many arcs, hence G(X) is a

locally finite graph.

If X − G(X) = ∅, then X = G(X) is a compact graph, which must be finite. If neither

G(X) nor its complement is empty, then there exists a path from some point in G(X) to

some point in X −G(X). This path gives a ray that must hit infinitely many vertices of the

graph G(X), otherwise it could not limit on X −G(X). Thus if G(X) is a finite graph then

X = G(X).

This now allows us to characterize the points B(X) as those points in the one-dimensional

subspace I(X) which must be fixed by all self homotopies of the space.

Theorem 4.3.3. A point in I(X) is contained in B(X) if and only if it is fixed by every

self-homotopy of X, that is, a map f : X → X where f ' IdX .

Proof. Suppose x ∈ G(X) = I(X)−B(X). We may assume that X has no attached strongly

contractible subsets by Theorem 4.3.1, and if x is not in the image of the deformation retrac-

tion given there, then that is a self-homotopy that does not fix x. Then by Theorem 4.3.2,

we know that x has a neighborhood that is a locally finite graph, and can clearly be moved

by a self-homotopy of X.

Let x ∈ B(X) and suppose by way of contradiction that f : X → X is homotopic to

IdX with f(x) 6= x. Let H : X × I → X be a homotopy between f and IdX . Choose a
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one-dimensional neighborhood U of x and a value t ∈ I such that H(U × [0, t]) ⊂ I(X) and

H(x, t) 6= x. Take a smaller neighborhood V ⊂ U so that V ∩H(V, t) = ∅. Then any simple

closed curve ` in V is disjoint from its image H(`, t) ⊂ H(V, t). But ` and H(`, t) are freely

homotopic in the one-dimensional subspace I(X), and since a simple closed curve is reduced,

H(`, t) must contain its reduced representative ` by Lemma 4.2.3, which is a contradiction.

Thus f fixes x for every x ∈ B(X).

This says that B(X) is fixed pointwise by all homotopies of X within X, and is exactly

the set of such points in I(X), although there may be other points in X − I(X) that must

also be fixed. For example, consider a sphere wedged with a Hawaiian earring. The base

point of the Hawaiian earring will be fixed by every self-homotopy of X, but this point is

not in I(X), and therefore not in B(X).

We now prove the existence of the arc-reduced form for all Peano continua.

Theorem 4.3.4. Every Peano continuum X is homotopy equivalent to an arc-reduced con-

tinuum Y, i.e. where G(Y ) = I(Y )−B(Y ) is a disjoint union of arcs.

Proof. We first prove the theorem in the case where X − G(X) 6= ∅, and the case when

X = G(X) will follow easily. The theorem is obviously true if G(X) = ∅, so we assume that

G(X) 6= ∅.

First note that by Theorem 4.3.2 we may assume that G(X) = I(X)−B(X) is a locally

finite graph. Since X is separable, G(X) must have a countable number of edges and

vertices. Recall that instead of allowing a half-open (or open) edge in our graph, we choose

a sequence of points on the edge approaching the endpoint(s) (X is compact) and consider

those as vertices of valence 2.

To define the continuum Y and the homotopy equivalence between X and Y, we will

choose paths in G(X) along which we will retract the vertices of G(X) into X − G(X).

Essentially, we want a maximal forest in G(X) that strongly deformation retracts to X −

G(X).
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In order to do this, define a sequence of covers Ui of X −G(X) by path connected open

sets in X of diameter εi, where U0 = {X}, ε0 = diam(X), and εi+1 < εi/2. Since X −G(X)

is compact, we can also require that εi+1 < λi, a Lebesgue number for the cover Ui, so that

each U ∈ Ui+1 is contained in some U ′ ∈ Ui. For convenience, we define Ai to be the union

of all U ∈ Ui. By our choice of εi, we have the following inclusion: Ai ⊃ Ai+1 ⊃ X −G(X).

Note that there are only finitely many vertices in each Ai−Ai+1, since each Ai+1 contains a

λi+1-neighborhood of X − G(X), and so an infinite set of vertices in Ai − Ai+1 would have

a limit point in G(X), which is a locally finite graph.

We now begin to choose the paths by which we will retract the vertices of G(X) to

X − G(X). Consider the vertices in Ai − Ai+1. Each such vertex x is contained in some

U ∈ Ui, and there is an arc a(x) from x to X−G(X) contained in U . Since our graph contains

no open edges, this arc a(x) must hit vertices as it approaches X − G(X). Let q(x) be the

initial segment of a(x) until it first hits a vertex in Ai+1. Denote the end vertex of q(x) by

v(x). Continue choosing such paths with the added condition that for vertices x, x′ ∈ Ai, the

paths q(x) and q(x′) are either disjoint, or they coincide after their first intersection. Note

that for vertices x ∈ Ai, we have d(x, y) ≤ εi for all y ∈ q(x), since q(x) ⊂ a(x) ⊂ U ∈ Ui.

Iterate this process for the remaining vertices in the sets Aj, j > i.

After all the paths q(x) have been chosen, set r(x) to be the ray defined by the con-

catenation of the paths q(x), q(v(x)), q(v2(x)), . . . (i.e. r(x) follows the path q(x) from x,

then the path from the endpoint of that path, and so on). The sequence {vk(x)} is Cauchy

since εk+1 ≤ εk/2, and thus limits on a unique point b(x) ∈ X − G(X). Thus we can de-

fine the path p(x) to equal r(x) up to time 1, and then map to the limit point b(x). It

will be important to note that if x ∈ U ∈ Ui, then the path p(x) has diameter at most∑∞
k=i εk ≤

∑∞
k=0 εi2

−k = 2εi, and thus the set of paths {p(x)} forms a null sequence, since

there are only finitely many vertices in each of the levels (Ai − Ai+1).

Denote the union of all the paths p(x) as F =
⋃
x p(x). Note that F is ‘mostly’ contained

in G(X), except for a countable number of endpoints
⋃
x b(x) ⊂ X − G(X). This set F is
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our desired maximal forest. To see that F deformation retracts to X−G(X), first note that

each path p(x) deforms to its endpoint b(x), and does so in its image. Then since any limit of

the sets p(x) cannot be contained in the locally finite graph G(X), all such limit points must

be in X −G(X) and thus fixed by all the deformations of the paths p(x). These conditions

are sufficient to apply Lemma A.4.2, which states that we can paste all these maps together

to get a continuous deformation of F .

We now define the space Y and the maps f : X → Y and g : Y → X, and show that

they are homotopy inverses. The space Y is a quotient space of X, where each path p(x)

constructed above is identified with its endpoint b(x) in X−G(X), and f is the corresponding

quotient map. This is well defined since if any of the paths intersect, they coincide the rest

of the way to X −G(X). Thus Y is a Peano continuum with G(Y ) a disjoint union of arcs,

corresponding to those edges in G(X) that are not part of any ray.

To define the map g, first label all of the edges in G(X). Then subdivide each arc a

in G(Y ) into a bi-infinite sequence of subarcs. Label the middle third of a with the label

for b = f−1(a), the corresponding arc in X. Then for an end third of a, let vi be the

corresponding endpoint of the arc b. Label the infinite sequence of subarcs with the labels

of the edges in the path p(vi), noting orientation (i.e. which direction is going to toward

X −G(X)). The map g is also a quotient, identifying all closed subarcs in G(Y ) that have

the same oriented label.

The composition f ◦ g simply takes the arcs of G(Y ) and slides the end thirds to their

endpoints in Y − G(Y ), and stretches the middle third over the whole arc. This is clearly

homotopic to the identity map on each arc, and is the identity on Y −G(Y ). Since the arcs

in G(Y ) form a null sequence, and any limit point of the arcs is in Y −G(Y ) which is fixed

by each homotopy, we can paste these homotopies together by Lemma A.4.2 to see that f ◦g

is homotopic to IdY .

We now show that g ◦ f is homotopic to IdX . Let h : F × I → F be a strong deformation
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retraction of F onto
⋃
x b(x), as described above.

For each arc a in G(X)−F with endpoints vj and vk, define C(a) to be the concatenation

of paths pj a pk. The homotopy H : X × I → X fixes X − G(X) for all times, retracts F

by h, and stretches each arc a in G(X)− F over the arc C(a). Explicitly, for x ∈ C(a) the

homotopy looks like

H(x, t) =



h(x, t) if x ∈ pj,

h(a(0), t− s(2t+ 1)) if x = a(s) for s ∈ [0, t/(2t+ 1)],

a(s(2t+ 1)− t) if x = a(s) for s ∈ [t/(2t+ 1), 1− t/(2t+ 1)],

h(a(1), t− (1− s)(2t+ 1)) if x = a(s) for s ∈ [1− t/(2t+ 1), 1],

h(x, t) if x ∈ pk,

Again we use Lemma A.4.2 to paste the homotopies on each C(a) together to get a

homotopy on all of X. This follows since the collection {C(a)} forms a null sequence, with

each C(a) mapping into itself continuously for all time, and as before, any limit point x0 of

the C(a)’s will be in X −G(X), which is fixed for all time. Thus g ◦ f is homotopic to IdX .

Thus f : X → Y is a homotopy equivalence of Peano continua X and Y, where G(Y ) is

a disjoint union of arcs and f maps X −G(X) homeomorphically onto Y −G(Y ).

In the case where X = G(X) = I(X)− B(X), by Corollary 4.4.2 and Theorem 4.3.2 X

is homotopy equivalent to a locally finite graph. Pick any vertex of X to play the role of

X −G(X) above. The rest of the proof follows as above. The bouquet must be finite since

X is compact, and has no bad points (B(X) = ∅) by hypothesis.

The following lemma gives an application, discussing the homotopy groups of such arc-

reduced spaces. We note that a version of this lemma for n = 1 is given and used in [20],

but the proof there does not extend to higher dimensions.
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Lemma 4.3.5. Let X be a metric space. Let Ξ ⊂ X be a disjoint union of arcs, that is,

open sets in X, each of which is homeomorphic to an open arc. Let Y = X −Ξ. For n ≥ 1,

if f : Bn+1 → X with f(Sn) ⊂ Y , then there is a map f ′ : Bn+1 → Y with f ′|Sn = f |Sn.

Alternatively, we could say that for n ≥ 1, the map i∗ : πn(Y ) → πn(X), induced by the

inclusion i : Y → X, is injective.

Proof. Let X0 = f(Bn+1). Then X0 is a Peano continuum contained in X, since it is the

image of a Peano continuum Bn+1. Note that since X0 is a Peano continuum, there can

only be countably many of the arcs in Ξ that intersect X0, and that these must form a null

sequence. For every arc ci in Ξ, let a2i−1, a2i be two points in the interior of ci.

We will define a sequence of maps fi : Bn+1 → X such that fi agrees with f on the

boundary, Sn, and that the image of f2i misses the open interval (a2i−1, a2i) ⊂ ci. Then we

will show that the limit of these maps is continuous, and that since it misses some point in

each arc in Ξ, we can retract the image off of all of the arcs in Ξ.

To define fi, start with fi−1, where f0 = f . Let Ai = f−1
i−1(ai). Since Ai ∩ Sn = ∅, there

is only one component of Bn+1 − Ai that intersects (and contains) Sn. Define the map fi

to agree with fi−1 on this component containing Sn, and define fi = ai elsewhere. Thus

f−1
i (ai) does not separate. Note that if Ai does not separate Bn+1, then this construction

gives fi = fi−1.

Additionally, it will be useful to note that f−1
j (ai) does not separate, for j ≥ i, since in

subsequent steps, all we might do is delete components of f−1
i (ai) to get f−1

j (ai).[*]

It is fairly easy to see that each fi is continuous, since all we have done is take a continuous

function and redefine it to be a constant on certain set whose boundary originally mapped

to that particular constant. In particular, using the ε−δ definition of continuity, we see that

for any ε, any value of δ that shows that fi−1 is continuous will also work to show that fi is

continuous.

We also claim that the image of f2i does not hit the interval (a2i−1, a2i) ⊂ ci. Suppose
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that it did. Let Â2i−1, Â2i be the preimages of a2i−1, a2i under the map f2i. Note that

Â∗ ⊂ A∗ (recall that A∗ was the preimage under the map f∗−1), but might not be equal if

we redefined the function on part of that set. Since the set {a2i−1, a2i} separates the image

of f2i, then Â2i−1 ∪ Â2i separates Bn. We now note a certain property of Euclidean space,

that is related to unicoherence: if Fk is a countable collection of disjoint closed sets whose

union separates, then one of the sets Fk separates. We will actually only use this property

for the case of the two closed sets Â2i−1 and Â2i, to see that at least one of these sets must

separate. But we redefined the maps so that these sets would not separate (see [*] above).

We now define the limit map f∞ to be the pointwise limit of the maps fi. We first show

that this is well defined. Let x be a point in Bn+1, and consider the sequence {fi(x)}. Note

that by the way we defined fi, the only repetitions in this sequence must be consecutive, and

that the only interesting case is when the sequence is not eventually constant. Let p be a

path in Bn+1 from x to Sn. We claim that there is an increasing sequence of points yi along

p (actually non-decreasing) that satisfy f(yi) = fi(x). Thus the sequence {yi} converges to

some point y, and by continuity of f , we see that fi(x) converges to f(y).

To show that such a sequence of yi’s exists, let y0 = x. Assume that yi−1 has been

defined. If fi(x) = fi−1(x), then let yi = yi−1. Otherwise, we may assume that fi(x) = ai

and that Ai = f−1
i−1(ai) separates x from Sn. Define yi to be the first point along the tail of

the path p, from yi−1 to Sn, with the property that fi−1(yi) = fi(x) = ai.

The fact that f∞ is continuous will follow easily from the fact that we can use the same

δ for all the fi’s. Given ε, choose a δ that works for ε/2 (for all fi). Then f∞ will map the

δ-ball into a closed ε/2-ball, which is contained in an open ε-ball. Thus f∞ is continuous.

It is now easy to modify f∞ into the desired map f ′. Since the image of f∞ does not

contain any arc in Ξ, there is a deformation retraction h that retracts the image of f∞ of

off all of the arcs in Ξ. That we can do all of these retractions simultaneously follows from
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Lemma A.4.2. Then the composition f ′ = h ◦ f∞ is the desired map.

4.4 Results for One-Dimensional Peano Continua

In the previous section, we made no assumption about the dimension of a Peano contin-

uum in our theorems, although in some theorems we were able to prove results about the

one-dimensional portion of the continuum. In this section, we restrict to one-dimensional

Peano continua, and prove stronger results that hold in this special case. Note that in a

one-dimensional Peano continuum, strongly contractible subsets are exactly dendrites, that

is, simply connected one-dimensional Peano continua. Recall that a dendrite is strongly

contractible to any of its points.

We will prove the existence of minimal deformation retracts (core continua) for all one-

dimensional Peano continua. It is not apparent that every continuum has a minimal de-

formation retract, and in fact this is not true for all continua, not even for planar Peano

continua.

Example 4.1. We give an example of a planar Peano continuum X that has no minimal

deformation retract, but is deforested. To construct X, start by embedding a Warsaw circle

W into the inaccessible points of a Sierpinski curve S in the plane. This can be done

by embedding the Warsaw circle W into the interior of a closed disc, and then removing

the interiors of a null sequence of closed discs that are disjoint from W . By Whyburn’s

characterization theorem [52], if these smaller closed discs are dense in the original disc,

then we have embedded W into the Sierpinski curve, and in fact into the inaccessible points.

Next, fill in the interior of the embedded Warsaw circle in the plane. Finally, remove the

interior of a small closed disc from the interior of the filled-in Warsaw circle. The resulting

space is X. See Figure 4.2.

The space X is a planar Peano continuum with no minimal deformation retract. To see
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. . .

Figure 4.2: A planar Peano continuum with no minimal deformation retract.

this, it is first important to note that the Warsaw circle is contained in B(X), since W is

contained in the inaccessible points of S, and therefore no point of W will have a simply

connected neighborhood (not even after filling in the interior of W ). As such, it must be

fixed by every homotopy of X within X (as proved in [17]), in particular, by any deformation

retraction of X.

It is possible to deformation retract the interior of the punctured Warsaw disc into any

neighborhood of the Warsaw circle, so the only possible minimal deformation retract would

be the set B(X). However, the punctured Warsaw disk does have a deformation retraction

to the boundary circle of the puncture, so it can not deform to the simply connected Warsaw

circle.

Thus it is not possible to deformation retract the space X to the set B(X) which is the

Warsaw circle and the exterior portion of the Sierpinski curve containing it. Therefore X

has no minimal deformation retract. Clearly X is deforested, having no cut-points to allow

attached strongly contractible subsets.

Example 4.2. We define a specific deformation retract Y of the space X from Example

4.1. Expand the central puncture so that the upper boundary of the puncture touches each

of the valleys of the sine curve in the Warsaw circle. Essentially, Y is the union of a portion

of the Sierpinski curve together with countably many disks Di, each of which is attached
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along an arc of Y in the sine curve.

Since Y is a deformation retract of X, and X has no core, neither does Y . Then it

is not possible to deformation retract all of the disks Di. Thus Y demonstrates why the

existence of deforested continua cannot be generalized to a similar reduced form where

strongly deformation retractible subsets are attached along arcs (or other sets) instead of

only being attached at single points.

While the examples above show that not every Peano continuum has a minimal de-

formation retract, we will prove that every one-dimensional Peano continuum does have a

unique minimal deformation retract, or core continuum. We first prove that core continua

are precisely those with no attached dendrites and state a few other convenient equivalent

characterizations.

Theorem 4.4.1. If X is a non-contractible one-dimensional Peano continuum, then the

following conditions are equivalent:

(i) X is a core continuum.

(ii) X admits no proper strong deformation retraction.

(iii) X has no attached dendrites.

(iv) ∀x ∈ X and ∀ path component p of X − {x}, p ∪ {x} is not simply connected.

(v) ∀x ∈ X, ∃ an essential loop ` such that ` cannot be homotoped off x.

(vi) Every point of X lies on an essential reduced loop.

Proof. We prove the equivalences as follows: (1)⇔(2), (3)⇔(4), (5)⇒(6)⇒(2)⇒(3)⇒(5).

(1)⇔(2) By definition.

(3)⇔(4) A path component p of X − {x} with p ∪ {x} simply connected is an attached

dendrite.
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(5)⇒(6) Follows from the existence of reduced loops (Lemma 4.2.3).

(6)⇒(2) If X admits a proper strong deformation retraction r : X → Y , then any loop

through a point in X − Y can be homotoped into Y (by r), and thus cannot be an essential

reduced loop.

(2)⇒(3) An attached dendrite can be contracted, giving a proper strong deformation retract.

(3)⇒(5) We consider a few cases.

Case 1: No neighborhood of x is simply connected. Then there is a sequence of essential

loops converging to x. Concatenating these loops together with small paths connecting them

to x gives an essential curve that passes through x, and cannot be homotoped off x.

Case 2: x separates X. Then by (4) each component (together with x) must contain an

essential loop. Concatenating two of these loops, together with paths to the point x, gives

an essential loop that cannot be homotoped off of x.

Case 3: x does not separate X, and has a simply connected neighborhood U that x

separates. Since X − {x} is locally path connected and connected, it is path connected.

Thus any two points y1, y2 ∈ U separated by x are connected by a path in X − {x} (that

does not stay in U). Since there is a path from x to yi in U , we get an essential loop passing

through x, that cannot be homotoped off x.

Case 4: x does not separate any simply connected neighborhood U . Since X has no

attached dendrites, x is in a locally finite graph by Theorem 4.3.2. Then the above conditions

require that x must be a pendant vertex (i.e. a vertex with valence 1), but this would be an

attached dendrite, which is a contradiction.

We can now easily show the existence of core continua for all one-dimensional Peano

continua. Note that for any space that has a core, all cores must be homotopy equivalent,

but they need not be a uniquely defined subspace or even homeomorphic. For example,

consider a twice punctured disk, which deformation retracts to both a theta and a figure
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8. However, in the case of one-dimensional Peano continua we do get the result that cores

always exist as a unique subspace as long as the space is not contractible.

Corollary 4.4.2. Every one-dimensional Peano continuum has a minimal strong deforma-

tion retract, or core. If the continuum is not contractible, then the core is a unique subspace.

Proof. That core continua exist for all one-dimensional Peano continua is a simple combina-

tion of Theorem 4.3.1 and Theorem 4.4.1 (3)⇒(1). If the continuum is contractible, the core

will not be unique, as it may contract to different points. On the other hand, if the continuum

is not contractible, then by Theorem 4.4.1 (6) every point must lie on an essential reduced

loop, and all such points must be contained in every deformation retract (cf. Lemma 4.2.3).

Thus the core of a one-dimensional Peano continuum may also be defined as the union of all

essential reduced loops in the space, which is a uniquely defined subspace.

When restricting to one-dimensional continua, we get the following result, which is related

to Theorem 4.3.3, but stronger.

Theorem 4.4.3. In a one-dimensional Peano continuum X, a point is bad if and only if it

is fixed by every self-homotopy of X, that is, a map f : X → X where f ' IdX . Moreover,

if h : X → Y is a homotopy equivalence, then h|B(X) is a homeomorphism onto B(Y ).

Proof. Since X is one-dimensional, X = I(X), so by Theorem 4.3.3 we see that B(X) is

precisely those points in X that are fixed by every self-homotopy of X.

Now let h : X → Y and g : Y → X be homotopy inverses. For b ∈ B(X), if h(b) 6∈ B(Y ),

then there is a simply connected neighborhood of h(b), and thus h∗ cannot be injective since

h must map small loops to small loops. So h maps B(X) into B(Y ), and similarly g maps

B(Y ) into B(X).

Then g ◦ h ∼= IdX , so by Theorem 4.3.3 g ◦ h|B(X) = IdB(X), and thus h|B(X) is injective.

Also, h ◦ g ∼= IdY , so h ◦ g|B(Y ) = IdB(Y ), which implies that h|B(X) is surjective (onto B(Y ))

since g maps B(Y ) into B(X). Since both h and g are continuous, it follows that h maps

B(X) homeomorphically onto B(Y ).
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While the set B(X) is homotopically rigid, being fixed pointwise by every self-homotopy

of X, its complement G(X) can be homotoped to be a disjoint union of arcs. Note also

that the result that homotopy equivalences restrict to homeomorphisms on B(X) does not

generalize to higher dimensional continua. To see this, consider a Hawaiian earring where

each arc is thickened everywhere except at the base point, i.e. each arc becomes a pinched

annulus. Another way of viewing this space is to fill in alternating complementary compo-

nents of the Hawaiian earring in the plane. This new space X is clearly homotopy equivalent

to the Hawaiian earring, but I(X) = ∅.

As an application of Theorem 4.3.4, we will discuss the following example for one-

dimensional Peano continua X:

If B(X) is finite (and nonempty), then X is homotopy equivalent to a finite number of

Hawaiian earrings connected in either a line or a circle.

If B(X) is non-empty and finite, then X is homotopy equivalent to an arc-reduced con-

tinuum Y with the finite set B(X) = B(Y ), and the remainder of Y is a null sequence of

arcs. Each point of B(Y ) must have a Hawaiian earring attached to it, as these points are

in the bad set. Thus we have finitely many Hawaiian earrings connected by arcs (with only

vertices of valence 2). Note that there can only be finitely many arcs connecting distinct

points of B(Y ). So we have some finite connected graph, with a Hawaiian earring attached

at each vertex. By a homotopy equivalence, we may assume that the graph is a circle; any

extra arcs can be absorbed by one of the Hawaiian earrings, and if we need an extra arc (i.e.

to make the circle from a line) we can take it from a Hawaiian earring.

Thus X is homotopy equivalent to an n-fold cover of the Hawaiian earring, where n =

|B(X)|.

We can then use this form to see that any homomorphism from the fundamental group
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of the Hawaiian earring, π1(H), to the fundamental group of an n-fold cover of the Hawaiian

earring (as in the arc-reduced form above) is conjugate to a homomorphism induced by a

continuous map. This is an extension of the result by Summers [46] which proved the case

where n = 2, and is related to the result of Eda [25] which states that every homomorphism

from π1(H) to itself is conjugate to one induced by a continuous map. It is convenient to

note that if we replace the Hawaiian earring by a homotopy equivalent space obtained by

joining one arc to the basepoint of the Hawaiian earring, we get that all homomorphisms

are in fact continuous, removing the possibility of being conjugate to a continuous map. We

can extend this idea to prove the following theorem.

Theorem 4.4.4. If m < n, then there is no surjection π1(mH) � π1(nH).

Proof. First note that nH is a covering space of the Hawaiian earring with covering map p.

Thus if we have a homomorphism φ : π1(H)→ π1(nH), then p∗ ◦φ is a homomorphism from

the Hawaiian earring to itself, and is therefore continuous by Eda’s result [25].

Now suppose φ : π1(mH) → π1(nH) is a homomorphism. Writing π1(mH) as a free

product of π1(H), we can see that each of the m factors are mapped continuously to π1(nH).

As m < n, there is at least one basepoint b in nH that is not in the image of the basepoints

of mH. Let r be a retraction of nH to a Hawaiian earring based at b that does not contain

the images of the basepoints of mH. Now consider the composition r∗ ◦ φ. As φ is induced

by a continuous map, and each of the basepoints of mH do not map to b, the image of r∗ ◦φ

can only be countable. If φ were surjective then this image would be uncountable, since

π1(H) is uncountable. Therefore φ cannot be a surjection.

4.5 Shapes of One-Dimensional Continua

We would like to thank Craig Guilbault for telling us about the following problem: Does a

one-dimensional Peano continuum with the shape of a circle contain a circle? We prove a
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somewhat stronger result that answers this question in the affirmative, and is used in Maggie

May’s dissertation [34].

We recall the definition of shape for compact metric spaces: Two compact metric spaces

have the same shape if when embedded in the Hilbert cube, their complements are homeo-

morphic. The shape group of X is the inverse limit of fundamental groups of nerves of covers

of X, where the mesh of the covers goes to zero. Recall that the shape group is an invariant

of the shape of the space. Note that for CW-complexes, there is a cover where X is homotopy

equivalent to its nerve, and thus the shape group is isomorphic to the fundamental group.

Theorem 4.5.1. Every one-dimensional Peano continuum X with the shape of a graph G

has a core which is homotopy equivalent to G. Thus such a space has a strong deformation

retraction to a finite subgraph.

Proof. Let H be the core of X assured by Corollary 4.4.2, which is a strong deformation

retract of X. Note that X, G and H all have the same shape, and thus the same shape

group. Since G is a graph, its shape group is isomorphic to its fundamental group, which

is countable. If H were not locally simply connected, then its fundamental group would

be uncountable by a result from Cannon and Conner [16]. Also by [16] we know that one-

dimensional Peano continua are shape injective (the natural map from the fundamental

group into the shape group is injective). Thus the fundamental group of H must embed in

that of G, and so must be countable. Thus H is locally simply connected [16, 21]. Then

by Theorem 4.3.2 we see that H is a (locally finite) graph. Since H is compact, it must be

a finite graph. Since H,G are shape equivalent, they have the same shape group, which is

their common fundamental group since they are CW-complexes. Therefore they are both

homotopy equivalent to a bouquet of n circles, where n is the rank of their fundamental

group, which is a free group. Thus we see that H ⊂ X is homotopy equivalent to G.

Corollary 4.5.2. Every one-dimensional Peano continuum that has the shape of a circle

admits a strong deformation retraction to a circle.
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Proof. By the theorem, the space has a core graph Γ that is homotopy equivalent to a circle.

It remains to show that Γ is in fact a circle.

Since Γ is not simply connected, it contains a subgraph C which is a simple closed curve.

Suppose Γ 6= C, and let x ∈ Γ − C. Let y be an interior point on a path from x to C in

Γ. If y does not separate x from C, then there is another path from x to C, and thus π1(Γ)

has rank at least two, which is a contradiction. Thus y separates x from C, and by part 4 of

Theorem 4.4.1 we see that the path component of Γ−y containing x is not simply connected

(when taken together with y). This also implies that π1(Γ) has rank at least two, which is

a contradiction.

Thus the only core graph which is homotopy equivalent to a circle is a circle, so we

immediately obtain that a one-dimensional Peano continuum having the shape of a circle

has a circle as its core.

The following examples show that the hypothesis of being one-dimensional is necessary.

Example 4.3. Let X be the wedge product of a circle with the cone over the Hawaiian

earring, where the wedge point is the bad point of the base Hawaiian earring. The cone

over the Hawaiian earring is contractible, hence has the shape of a point. Thus X has the

shape of a circle. However, X does not have a strong deformation retraction to a circle, since

the base point of the cone over the Hawaiian earring must move over the cone point in any

contraction. Note that X does have a weak deformation retraction to a circle.

Let Y be the wedge product of a circle with two cones over the Hawaiian earring, again

with the wedge point as the bad point of the base Hawaiian earrings. Similar to X, the

space Y has the shape of a circle, but the fundamental group of Y is uncountable, since

the fundamental group of the doubled cone is uncountable [16]. Thus Y cannot deformation

retract to a circle.
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4.6 Homotopy Invariants for One-Dimensional Peano Continua

The reduced forms given in Section 4.3 lead to homotopy invariants for one-dimensional

Peano continua. As mentioned in Theorem 4.4.3, the set B(X) of non-locally simply con-

nected points in a one-dimensional Peano continua is invariant, in that any homotopy equiv-

alence restricts to a homeomorphism on the set B(X). However, the set B(X) does not by

itself determine the homotopy type of the continuum. In this section, we define two more

homotopy invariants, and prove for some cases that these do determine the homotopy type.

A number of times in this section we will consider the limit set L of a collection of sets

C = {Sα}α (usually the sets will be arcs). By this we mean that a point x is in L if every

neighborhood of x contains a set Sα that is disjoint from x. Note that it is not sufficient for

Sα to intersect the neighborhood; we will make that distinction when we want to consider

that case.

Lemma 4.6.1. Let Y1, Y2 be Peano continua each containing the Peano continuum X as

a subspace such that Yi − X = Ai is a disjoint union of infinitely many open sets, each of

which is homeomorphic to an open arc. If the limit set (in X) of the arcs of A1 is the same

as the limit set of the arcs of A2, then Y1 is homotopy equivalent to Y2.

Proof. Let Q ⊂ X denote the common limit set of A1, A2. Partition A1 and A2 into disjoint

sequences iteratively as follows:

To get the sequence d2i, take the lowest indexed arc in A1 (which has not yet been chosen)

to be d2i
1 . Choose q2i to be a closest point in Q to d2i

1 (note this may not be unique), and

choose a sequence in A1 (of arcs not yet chosen) that converges monotonically to q2i, starting

with d2i
1 . Take every other element of this sequence to form the sequence d2i, so that the

remaining arcs in A1 −
⋃2i dk still limit on all of Q(X).

Then choose a matching monotone sequence in A2 (of arcs not yet chosen) converging to

q2i, starting with an arc c2i1 in A2 that is within 2−2i of q2i. Again, take every other arc in

the sequence to make up the sequence c2i.
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Now for 2i + 1, do the same as above, this time starting with the lowest indexed arc in

A2 not used yet, to first get a sequence c2i+1 in A2, and a matching sequence d2i+1 in A1,

where both sequences limit on the same point q2i+1 ∈ Q.

Repeat.

This now gives us A2 =
⋃
i c
i, and A1 =

⋃
i d

i, with a pairing dij ↔ cij. First note that

minq{diam(dij, q)} forms a sequence converging to zero; if not, then there would be a sequence

of arcs with no point in Q nearby, but since the space is compact we must have a limit point,

which by hypothesis is in Q. Now we can see that the diameters of the sets dij ∪ cij form a

null sequence: diam(dij ∪ cij) ≤ diam(dij ∪ qi) + diam(qi ∪ cij) ≤ diam(di1 ∪ qi) + diam(qi ∪ ci1).

The one term above is chosen to be less than 2−i, and the comment above shows that the

other term is small if i is chosen large enough since we pick qi to be as close as possible.

Now since X is compact and locally path connected, for each i, j we can choose small

diameter paths pij, r
i
j in X connecting the pairs of endpoints of dij and cij. The homotopy

equivalence f : Y1 → Y2 will send dij to pij c
i
j r̄

i
j while fixing X, and its homotopy inverse g

will send cij to p̄ij d
i
j r

i
j. Since the images of the arcs dij form a null sequence, Lemma A.4.2

shows that f (and similarly g) is continuous. Since both f, g fix X, then g ◦ f maps dij

to pij p̄
i
j d

i
j r

i
j r̄

i
j, which is homotopic to the identity. Again we use the continuity lemma

Lemma A.4.2 to see that the compositions are homotopic to the identity.

Thus Y1 is homotopy equivalent to Y2.

We will define a subset Q(X), which will be the limit set of the arcs Ai in the lemma. This

setQ(X) will be another homotopy invariant forX, which together withB(X) will essentially

determine the homotopy type of X in many cases. We will also develop some equivalent

definitions and properties of the set Q(X) so that we will be able to apply Lemma 4.6.1 by

getting collections of arcs that limit on Q(X).

Definition 4.6.2. The subset Q(X) ⊂ B(X) is the set of points of X such that every

neighborhood contains a simple closed curve intersecting G(X).
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We first prove the analog of Theorem 4.3.3 for Q(X).

Theorem 4.6.3. If f : X → Y is a homotopy equivalence of one-dimensional Peano con-

tinua, then f |Q(X) is a homeomorphism onto Q(Y ). Furthermore, if f is a self-homotopy of

X, then f fixes Q(X) pointwise.

Proof. Let x ∈ Q(X), and let ` be a simple closed curve near x that intersects G(X). Since

f is a homotopy equivalence, f(`) cannot be nulhomotopic, and thus must contain a simple

closed curve. Suppose that this simple closed curve is contained in B(Y ). Then since g|B(Y )

is a homeomorphism by Theorem 4.3.3, g ◦f(`) must contain a simple closed curve in B(X),

but this cannot be homotopic to `, which is a simple closed curve not contained in B(X),

since simple closed curves are reduced (see Lemma 4.2.3). Thus f(`) contains a simple closed

curve intersecting G(Y ), so that f maps Q(X) into Q(Y ). We note that it can also be shown

that the reduced representative for f(`) is a simple closed curve (which intersects G(Y )).

Then since g ◦ f |Q(X) = IdQ(X), f |Q(X) must be injective, and since f ◦ g|Q(Y ) = IdQ(Y ),

f |Q(X) must be surjective because g maps Q(Y ) into Q(X). Since f and g are continuous,

we see that f maps Q(X) homeomorphically onto Q(Y ).

If f is a self-homotopy of X, then by Theorem 4.3.3 f must fix Q(X) pointwise since

Q(X) ⊂ B(X).

In order to characterize the points of Q(X) as limits of certain arcs in G(X), we first

need the following lemma.

Lemma 4.6.4. Let X be an arc-reduced one-dimensional Peano continuum. Then there is

a subcollection T of the arcs in G(X) such that B(X) ∪ T is connected and every arc in T

separates B(X) ∪ T .

Proof. Enumerate the null sequence of arcs in G(X) as T0 = {ai | i ∈ N}. Given Ti, define

Ti+1 iteratively by sequentially throwing out all non-separating arcs. To be more precise, if
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ai+1 does not separate B(X)∪Ti, then let Ti+1 = Ti−{ai+1}, otherwise Ti+1 = Ti. Then set

T =
⋂
Ti.

Suppose that B(X) ∪ T is not connected. First note that B(X) ∪ T is compact, being

closed (its complement is a union of open arcs), so given any two distinct components, there

is a positive distance between them. So there are only finitely many arcs in G(X) which can

connect (in X) these components of B(X)∪T , but none of the arcs we pulled out separated

the space. This is a contradiction, hence B(X) ∪ T must be connected. It is then clear by

the construction that every arc in T separates.

We now give two equivalent definitions of Q(X).

Lemma 4.6.5. Let X be an arc-reduced one-dimensional Peano continuum.

• With T as in Lemma 4.6.4, Q(X) is the limit set of the collection of arcs not in T (i.e.

G(X)− T ).

• A point is in Q(X) if it is the limit of some collection of arcs C ⊂ G(X) that do not

collectively separate, i.e. X − C is connected.

Proof. Let R be the limit set of G(X)−T , and let S be the union of limit sets of collections

C, where the union is take over collections C ⊂ G(X) with X −C connected. We will show

that Q(X) ⊂ R ⊂ S ⊂ Q(X).

Every neighborhood of a point in Q(X) contains a simple closed curve intersecting G(X).

Since every arc of T separates B ∪T , T cannot contain all of the arcs of G(X) in this simple

closed curve. So Q ⊂ R, and clearly R ⊂ S since X − (G− T ) = B ∪ T is connected.

It remains to show that S ⊂ Q. Suppose that x is a limit of a collection of arcs C with

X − C connected. First, if X − C is locally path connected at x, then in any neighborhood

of x, there is a small arc a in C ⊂ G(X) whose endpoints are connected in X−C by a small

path. This gives a closed curve that traverses a exactly once, and can be modified to give a

simple closed curve traversing a. Thus x ∈ Q.

105



Now suppose that X − C is not locally path connected at x. Consider any small neigh-

borhood U of x such that U contains no path connected neighborhood of x in X −C. Since

X−C is connected, we must have a non-null sequence of path components Pi in V ∩(X−C)

approaching the path component P containing x, and thus these path components must also

limit on another point x′ 6= x. Let V,W ⊂ U be disjoint path connected neighborhoods of

x, x′ in X. Then there are two path components Pi, Pj that intersect both V and W . Since

V and W are both path connected, we can construct a closed curve by connecting Pi to

Pj by a path aV in V , traversing Pj, then connecting to Pi by a path aW in W , and then

traversing Pi. Since Pi, Pj were different path components of U − C, we see that our closed

curve must intersect C ⊂ G(X). Again we get a simple closed curve intersecting G(X) from

this, showing that x ∈ Q.

Notice that Lemma 4.6.5 implies that while the choice of arcs in T from Lemma 4.6.4

may not be unique, any choice of T will work to define Q(X) as the limit of arcs not in T .

Thus every point in Q(X) is a limit of arcs in G(X), but the arcs in T ⊂ G(X) may limit

on points not in Q(X). Because of this, we have the following definition and lemma, which

characterize all limit points of the collection of arcs G(X).

Definition 4.6.6. In a one-dimensional Peano continuum X, define P (X) to be the set of

all points that are limits of components of B(X). In other words, a point x is in P (X) if

every neighborhood of x contains a component of B(X) disjoint from x.

Lemma 4.6.7. In a one-dimensional Peano continuum X, the limit set of the arcs in G(X)

is exactly P (X) ∪Q(X).

Proof. From Lemma 4.6.5 we know that the limit set of the arcs in G(X) − T is exactly

Q(X).

Suppose that x is a limit point of the arcs in T . Every neighborhood of x must intersect

infinitely many components of B(X), since otherwise there could not be infinitely many arcs
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of T in that neighborhood (recall that every arc of T separates B(X) ∪ T ). Either every

neighborhood contains a component of B(X), in which case x ∈ P (X), or there is some

neighborhood U of x intersecting infinitely many components of B(X), but containing none

of them. This then will also be true for all neighborhoods contained in this one.

For such a neighborhood U , choose a sequence of points xi ∈ U that converge to x, where

the points xi come from distinct components Ci of B(X). These components Ci cannot form

a null sequence (otherwise they would eventually be contained in a neighborhood of x), so

by passing to a subsequence we may assume that diam(Ci) ≥ δ. Let ε < δ/2 be such that

B(x, 2ε) ⊂ U . Take a sequence of points yi ∈ Ci such that d(xi, yi) = ε. Then the points

yi converge to some point y ∈ U with d(x, y) = δ. Then for small disjoint path connected

neighborhoods of x and y, we can find two distinct components Cj, Ck that intersect both

small neighborhoods. In these neighborhoods, there are paths connecting Cj, Ck, and each

of these paths must contain an arc of G(X). At least one of these arcs must not be in T ,

since otherwise they would not separate B(X) ∪ T . Therefore any small neighborhood U of

x contains an arc of G(X)− T , and thus x ∈ Q(X).

It remains to show that every x ∈ P (X)−Q(X) is in the limit set of T . Since x 6∈ Q(X),

there is a neighborhood V of x that does not contain any arc of G(X) − T . Let U be an

arbitrary neighborhood of x contained in V . Because X is locally path connected, we may

assume that U is path connected. There are infinitely many components of B(X) in U

because x ∈ P (X), and since U is connected there must be an arc of G(X) in U . This arc

must then be in T , hence x is in the limit set of T .

Lemma 4.6.8. Let X be an arc-reduced one-dimensional Peano continuum with Q(X) 6= ∅.

Then there is a partition of the arcs in G(X) as G(X) = T ∪ C ∪D with

(i) B(X) ∪ T is connected and every arc in T separates B(X) ∪ T ,

(ii) B(X) ∪ T ∪ C = X −D is a Peano continuum, and

107



(iii) The limit sets of both C,D are Q(X).

Proof. Part 1 is just Lemma 4.6.4. Now we will partition the remaining arcs in G(X) − T

to achieve conditions 2 and 3. To do this, we will use a sequence of small finite covers of

Q(X), that limits on all of Q(X), and pull out arcs to constitute D (only from every other

step to assure C also limits on Q(X)), while being careful that the remaining arcs (in C)

are sufficient to locally path connect the subspace X ′ = B(X)∪T ∪C. Lemma 4.6.5 tells us

that C,D can only limit on a subset of Q(X), so constructing them to limit on all of Q(X)

is sufficient to prove part 3.

Start with some ε0 > 0. Having εi, cover Q(X) by finitely many path connected neigh-

borhoods Sk in X of diameter < εi. Throwing out some of the sets Sk, if necessary, we may

assume that each Sk intersects Q(X). For every set Sk, choose a point qk ∈ Sk ∩Q(X). Let

r be a small radius such that r < 1
2

minj,`{d(qj, q`)} and also such that for all k we have

Rk = B(qk, r) ⊂ Sk.

Since qk ∈ Q(X), there is a simple closed curve ` ⊂ Rk that intersects G(X). So either `

contains an arc in G(X) that connects a component of B(X) to itself, or it contains multiple

arcs in G(X) connecting different components of B(X). Since every arc in T separates

B(X)∪ T , ` must contain at least one arc in G(X)− T . Choose one such arc from each Rk.

To iterate, choose εi+1 < εi/2 such that no chosen arc is contained in B(Q(X), εi+1).

We define D as the set of arcs chosen when i is even, and then C consists of the remaining

arcs: G(X) − (T ∪D). Thus both C and D limit on all of Q(X). It remains to show that

X ′ = B(X) ∪ T ∪ C is a Peano continuum, in particular that it is locally path connected.

Since D only limits on Q(X), the only place X ′ = X−D cannot be locally path connected

is at points of Q(X). Given q ∈ Q(X) and ε > 0, there is some neighborhood U containing

q of diameter < ε/2, where U was one of the Sk’s chosen in the above construction, say at

step i0. Now while U is path connected, U −D may not be, since an arc removed at some
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step after i0 may disconnect U . To fix this, set Ui0 = U , and for i > i0 let Ui+1 = Ui
⋃
{all

Sk from step i + 1 that intersect Ui}. Thus {Ui} is an ascending chain of path connected

neighborhoods, so that V =
⋃
Ui is a path connected neighborhood (in X) of q. Note that

since εi+1 < εi/2 and since the diameter of U is less than ε/2, we see that the diameter of V

is less than ε.

It remains to show that V −D is still path connected. Let a, b ∈ V −D. Then there is

a path p0 in V from a to b. Given pi, define pi+1 by replacing any arc ` ⊂ Rk ⊂ Sk in pi

that was chosen in step i (to go to D) by a complimentary path `′ ⊂ Rk (Recall that ` was

chosen on a simple closed curve in Rk). We claim that the paths pi converge to a path p

from a to b.

Well, by our construction, we know that ∀x ∈ [0, 1], d(pi(x), pi+1(x)) < εi+1, so that

pi converges pointwise to a function p. It is easy to verify that the image of p lies in

V − D. To check that p is continuous, let x ∈ [0, 1] and ρ > 0. Choose n such that∑∞
i=n εi < ρ/3, and choose δ such that if d(x, y) < δ then d(pn(x), pn(y)) < ρ/3. Then for

such y we have d(p(x), p(y)) ≤ d(p(x), pn(x)) + d(pn(x), pn(y)) + d(pn(y), p(y)) < ρ. [Note

that d(p(x), pn(x)) ≤
∑∞

k=n d(pk(x), pk+1(x)) <
∑

n εk < ρ/3.]

Thus p is continuous and V −D is path connected. Hence X−D is locally path connected.

Corollary 4.6.9. Let X be a one-dimensional Peano continuum with Q(X) 6= ∅, and let A

be null sequence of arcs (possibly a finite collection) with endpoints in X. If the limit set of

A is contained in Q(X), then X ∪ A is homotopy equivalent to X.

Proof. By Lemma 4.6.8 we have X = (X −D)∪D where X −D is a Peano continuum, and

where D limits on all of Q(X). Then since A ∪D also limits on Q(X), by Lemma 4.6.1 we

have

X = (X −D) ∪D ' (X −D) ∪ (A ∪D) = X ∪ A.

It is fairly easy to check that X ∪ A is a one-dimensional Peano continuum, so that
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Lemma 4.6.1 actually applies.

We now proceed to define one last invariant. In an arc-reduced continuum X, some of

the arcs in G(X) may form a loop attached at a single point of B(X) instead of having

two distinct endpoints. In this case, we can consider X as a pointed union, or wedge, of a

subspace with a circle: X = X ′ ∨ S1. If multiple loops form at the same point, we have

X = X ′∨kS1. Note that since X is path connected, X ′ must be also, so that by a homotopy

equivalence we can move this circle to any point of X ′. Also note that X ′ will be a Peano

continuum, since removing finitely many loops will leave the space locally path connected.

This gives rise to the following definition.

Definition 4.6.10. The rank of a one-dimensional Peano continuum X is the number

rank(X) = sup{k | X ' X ′ ∨ kS1}.

Note that rank(X) is either a non-negative integer or infinite, and is equal to the number

of arcs in G(X) − T . Since Q(X) is the limit set of G(X) − T (Lemma 4.6.5), we see that

rank(X) is infinite if and only if Q(X) 6= ∅. This number is clearly a homotopy invariant

from its definition.

This new invariant rank(X) together with the invariant sets B(X) and Q(X) should

form a complete homotopy invariant for one-dimensional Peano continua, i.e. these invariants

together determine the homotopy type of the Peano continuum. We have proven this result

in many cases, and conjecture it to always hold.

Theorem 4.6.11. If X and Y are one-dimensional Peano continua that are sufficiently

nice, then X and Y are homotopy equivalent if and only if one of the following hold:

(i) Q(X) 6= ∅ and there is a homeomorphism of pairs h : (B(X), Q(X))→ (B(Y ), Q(Y )).

(ii) Q(X) = ∅, there is a homeomorphism h : B(X)→ B(Y ), and rank(X) = rank(Y ).

A more compact way of stating this result is the following:
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Theorem 4.6.12. The triple (B(·), Q(·), rank(·)) is a complete invariant of the homotopy

type of one-dimensional Peano continua that are sufficiently nice.

The phrase “sufficiently nice” is determined by the cases at the end of the proof, and

only depends on the structure of B(X) and Q(X).

Proof. We will prove this in various cases, where we put various restrictions on the set B(X).

The beginning of the proof is the same for the different cases, so we first present that, and

then show how to complete the proof in the separate cases.

By Theorem 4.3.3 and Theorem 4.6.3, if X and Y are homotopy equivalent, then there

is a homeomorphism of pairs h : (B(X), Q(X))→ (B(Y ), Q(Y )), and rank(X) = rank(Y ).

To prove the converse, first we assume that Q(X) 6= ∅ and that there is a homeomor-

phism of pairs h : (B(X), Q(X)) → (B(Y ), Q(Y )). By Theorem 4.3.4 we may assume that

X and Y are both arc-reduced. We will extend the homeomorphism h : B(X)→ B(Y ) to a

homotopy equivalence of X and Y .

Using Lemma 4.6.8, we can write each of the spaces X and Y as the disjoint unions

X = B(X) ∪ T (X) ∪ C(X) ∪ D(X) and Y = B(X) ∪ T (Y ) ∪ C(Y ) ∪ D(Y ) (recall that

B(Y ) = B(X)) with the properties from the lemma. In particular, we know that the

subspaces
(
B(X)∪T (X)∪C(X)

)
and

(
B(Y )∪T (Y )∪C(Y )

)
are both Peano continua and

that the collections C(X), D(X), C(Y ), D(Y ) all limit on Q(X) ⊂ B(X) = B(Y ). Thus we

may apply Lemma 4.6.1 to get the following homotopy equivalences.

X =
(
B(X) ∪ T (X) ∪ C(X)

)
∪D(X) '

(
B(X) ∪ T (X) ∪ C(X)

)
∪ C(Y )

Y =
(
B(X) ∪ T (Y ) ∪ C(Y )

)
∪D(Y ) '

(
B(X) ∪ T (Y ) ∪ C(Y )

)
∪ C(X)

To consolidate, call C(X) ∪ C(Y ) = A and B(X) = B. Now it remains to show that
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B ∪ A ∪ T (X) ' B ∪ A ∪ T (Y ). We will pause with the case Q 6= ∅ for a moment and

consider the finite rank case (when Q = ∅), and then continue with the individual cases.

Suppose that Q(X) = ∅, and let k = rank(X) = rank(Y ) < ∞. Then we have a space

X ′ containing B(X) such that X ' X ′ ∨ kS1. Recall that X ′ is a Peano continuum. We

may assume that X ′ is arc-reduced. Consider any arc a in G(X ′). If a does not separate

X ′, then there is a path in X ′ − a between the endpoints of a, and we could homotop a to

an additional loop making X ' X ′′ ∨ (k + 1)S1, contradicting the fact that k = rank(X).

Thus rank(X ′) = 0, and we may write X ′ = B(X)∪ T (X), which is connected (in fact path

connected) and every arc in T separates.

The same results hold for Y , and since X ′ and Y ′ are path connected, we can homotop

the kS1 in either space to any point of B(X) we choose, so that they match up for both

X and Y . Denoting the arcs in the loops kS1 as the set A, we get X ' B ∪ A ∪ T (X),

and Y ' B ∪ A ∪ T (Y ). Note that this is almost the exact same situation as in the infinite

rank case, but here we have the added nicety that each component of B is itself a Peano

continuum; in particular the components are locally path connected.

Thus to prove the finite rank case, it suffices to prove the rank zero case.

So in either case, we need to show that B ∪A∪ T (X) ' B ∪A∪ T (Y ). We now proceed

with various cases, depending on the structure of the set B.

(i) There are finitely many components of B.

Here T consists of only finitely many arcs, and is easily homotoped to match.

(ii) B = Q.

Here T limits on a subset of Q, and so by Corollary 4.6.9 we can add the arcs of T to

each space. Thus X ' B ∪ A ∪ T (X) ' B ∪ A ∪ T (X) ∪ T (Y ) ' Y .
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Sometimes the structure of the set B itself requires that B = Q, as in the following

three cases.

(iii) There are no arbitrarily small essential curves in B.

Here B(B(X)) = ∅, or in other words, B = Q, since arbitrarily small loops are not

contained in B.

(iv) Some iterate B(k)(X) = B(B(. . . (X) . . . )) = ∅.

As in the previous case, it can be shown that B must equal Q (with a few more steps).

(v) Each component of B is a simply connected Peano continuum.

This fits the previous cases, but we present a more direct approach, which will be useful

in further cases.

Then B ∪ T is simply connected. We can map each arc in T (X) to a reduced path in

B∪T (Y ), and vice versa. These maps are continuous since the collection of the images

of the arcs (the reduced paths) form a null sequence by local path connectivity, and so

Lemma A.4.2 applies.

The composition of these maps sends an arc in T to a path in B ∪ T with the same

endpoints. Since B ∪ T is simply connected, this is homotopic to the identity on each

arc. Applying Lemma A.4.2 again, we see that this is a homotopy equivalence.

The remaining two cases we consider here are with the space having rank 0.

(vi) Q = ∅ and |P ∩ C| <∞ for each component C of B.

Since Q = ∅, each component of B is a Peano continuum (Lemma A.4.6). Then we

can homotop the arcs with endpoints in C so that all the endpoints are in P . Choose

a tree (simply connected graph) in C connecting the points of P . If C has no points of
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P , then choose a tree connecting the endpoints of arcs in C, or alternatively, homotop

the arcs so all share the same endpoint in C. Since the components of B form a null

sequence (Lemma A.4.7), we can perform all of these homotopies on all components

at the same time, and get a continuous map by Lemma A.4.2.

Then the subspace consisting of the union of T with the tree in each component is

simply connected, and just as above, we get a homotopy equivalence from X to Y .

(vii) Q = ∅ and |P ∩ C| 6= ∅ for finitely many components C of B.

Take disjoint neighborhoods of such components C. Homotop the arcs in each of these

neighborhoods so that they have one endpoint in C. Recall that since Q = ∅, C is a

Peano continuum. So then we can homotop the endpoints of the arcs in C to match

up between X and Y . Note that there will be finitely many arcs not contained in any

of these neighborhoods, which are easily dealt with.

We close by noting that Theorem 4.6.12 should be true for all one-dimensional Peano

continua. The difficulty lies in proving that the set of arcs T (X) may be homotoped to the

arcs T (Y ) and vice versa in a consistent manner – that is, so that the composition is in

fact homotopic to the identity. In Theorem 4.6.12 we have proven that this is possible in

many specific cases, and we conjecture that the theorem holds for all one-dimensional Peano

continua, independent of the structure of the set B(X).

Conjecture 4.6.13. The triple (B(·), Q(·), rank(·)) is a complete invariant of the homotopy

type of all one-dimensional Peano continua.
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Appendix A.

A.1 Interval Maps Fixing Endpoints

Lemma A.1.1. For a closed interval I, there are maps f : I → I fixing both endpoints of I

with all possible period sets Per(f) as described in Theorem 2.1.2.

Proof. Consider the one-parameter family of truncated tent maps Th : [0, 1] → [0, 1], for

0 ≤ h ≤ 1, as discussed in [4].

Th(x) = min(h, 1− 2|x− 1/2|) =


2x if x ∈ [0, h/2]

h if x ∈ [h/2, 1− h/2]

2(1− x) if x ∈ [1− h/2, 1]

They note that given m there is a way to determine h so that Per(Th) is exactly the tail

of the Sharkovskĭı order beginning with m. While they do not give a precise formula,

they describe h in terms of the orbits of size m of T1 (of which there are less than 2m):

h(m) = min{maxP | P is an m-cycle of T1}. They also give a value of h corresponding to

2∞, so that Per(Th) = {2n | n ∈ N}: h(2∞) = sup{h(2n) | n ∈ N}. The family of maps Th

provide examples of functions that achieve every possible period set, although the endpoints

are not fixed, as Th(1) = 0 for all h.

We extend these to maps T̂h : [0, 2]→ [0, 2] that fix both endpoints of the interval [0, 2].

T̂h(x) =


Th(x) if x ∈ [0, 1]

2x− 2 if x ∈ [1, 2]

Clearly T̂h fixes 0 and 2, and 1 is not periodic since (T̂h)
n(1) = 0. Any other periodic point

must lie in (0, 1), since for x ∈ (1, 2) we have T̂h(x) < x, which together with T̂h([0, 1]) ⊂ [0, 1]
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implies that fn(x) 6= x. Thus the maps T̂h have the same periodic properties as Th, but they

also fix both endpoints of the interval.

A.2 Mathematica Code for Period Implications on Finite Spaces

We include here the Mathematica code for computing period implications on finite topologies.

This code was run on Mathematica version 7.

Topologize[A_] := (

n = Length[A];

AA = A + IdentityMatrix[n];

B = ConstantArray[1, {n, n}];

For[i = 0, i < n, i++;

For[ii = 0, ii < n, ii++;

If[AA[[ii]][[i]] == 0, , B[[i]] = B[[i]]*AA[[ii]]]

]

];

BB = MatrixPower[B, n];

For[i = 0, i < n, i++;

For[ii = 0, ii < n, ii++;

If[BB[[ii]][[i]] == 0, , BB[[ii]][[i]] = 1]

]

];

BB

)
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RandomTopology[n_] :=

Module[{A = RandomInteger[1, {n, n}] + IdentityMatrix[n],

B = ConstantArray[1, {n, n}], BB = B},

For[i = 0, i < n, i++;

For[ii = 0, ii < n, ii++;

If[A[[ii]][[i]] == 0, , B[[i]] = B[[i]]*A[[ii]]]

]

];

BB = MatrixPower[B, n];

For[i = 0, i < n, i++;

For[ii = 0, ii < n, ii++;

If[BB[[ii]][[i]] == 0, , BB[[ii]][[i]] = 1]

]

];

BB

]

isLegal := (value = True;

For[i = 0, i < k - 1, i++;

If[A[[i]][[k]] == 1 && A[[array[[i]]]][[array[[k]]]] == 0,

value = False];

If[A[[k]][[i]] == 1 && A[[array[[k]]]][[array[[i]]]] == 0,

value = False];

];

value

)
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increment := (

While[(array[[k]] == n && k != 0), array[[k]] = 1; k--]

If[k != 0, array[[k]] = array[[k]] + 1, k--]

)

FindImps := (

array = ConstantArray[1, n];

SpacePeriods = {};

SpaceImps = ConstantArray[1, {n, n}];

For[k = n, k != 0,

If[(isLegal && k == n),

(*Print[array]*)

per = PeriodSet;

perComp = Complement[Array[# &, n], per];

SpacePeriods = Union[SpacePeriods, per];

For[q = 0, q < Length[per], q++;

For[t = 0, t < Length[perComp], t++;

SpaceImps[[per[[q]]]][[perComp[[t]]]] = 0;

]

]

];

If[(isLegal && k != n), k++, increment; w++];

];
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(* now ignore periods that never show up *)

SpacePeriods2 = ConstantArray[0, n];

For[i = 0, i < Length[SpacePeriods], i++;

SpacePeriods2[[SpacePeriods[[i]]]] = 1;

];

SpaceImps = SpaceImps*SpacePeriods2;

(* Print[MatrixForm[A]];

Print[SpacePeriods];

Print[MatrixForm[SpaceImps]];

*)

(* update master imp list *)

For[i = 0, i < n, i++;

For[j = 0, j < n, j++;

If[SpaceImps[[i]][[j]] == 1 && MasterImps[[i]][[j]] == 0,

MasterImps[[i]][[j]] = SpaceNumber]

]

];

)

Space2Num[A_] := (

m = Length[A];

For[Num = 0; i = 0, i < m, i++;

For[j = 0, j < m, j++;

Num += 2^(j - 1 + (i - 1) m)*A[[i]][[j]];
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]

];

Num

)

Num2Space[num_] := (

number = num;

m = Ceiling[Sqrt[Log[2, num]]];

Aa = ConstantArray[0, {m, m}];

For[i = 0, i < m, i++;

For[j = 0, j < m, j++;

Aa[[i]][[j]] += Mod[number, 2];

number = Quotient[number, 2];

];

];

Aa

)

PeriodSet := (

fn = Array[# &, n];(* f^0=id *)

For[i = 0, i < n, i++; (* each point *)

For[j = 0, j < n, j++; fn[[i]] = array[[fn[[i]]]]

] (*find f^n(i)*)

];

periods = {};

points2consider = ConstantArray[0, n];
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For[i = 0, i < n, i++; points2consider[[fn[[i]]]] = 1

];

For[i = 0, i < n, i++; p = 1;

If[points2consider[[i]] == 1,

For[j = array[[i]], j != i, p++; j = array[[j]]

];

AppendTo[periods, p];

]

];

periods = Union[periods]

)

(*************** main program starts here ****************)

MasterImps = ConstantArray[0, {30, 30}];

lowersize = 2;

uppersize = 6;

For[space = lowersize - 1, space < 2^(uppersize^2), space++;

If[Mod[space, 100000] == 0, Print[space];];

A = Topologize[Num2Space[space]];

SpaceNumber = Space2Num[A];

(*Print[MatrixForm[A]];

Print[space];*)

If[SpaceNumber == space,

rowsums = A.ConstantArray[1, Length[A]];
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For[index =

1, (index < Length[A] &&

rowsums[[index]] >= rowsums[[index + 1]]), index++

];

If[index == Length[A], FindImps];

];

];

(*** to construct random spaces and check ***)

trials = 100;

For[index = 0, index < trials, index++;

n = RandomInteger[{6, 10}];

A = RandomTopology[n];

FindImps;

(*If[Mod[index,10]==0,Print[index]];*)

Print[index];

]

A.3 Subgroups of Q

This lemma characterizes the additive subgroups of the rational numbers. We note that these

subgroups were previously discussed and characterized in [6, 10], but we give our own proof

here. Note that for additive subgroups of Q, multiplication by a constant is an isomorphism,

so that we may assume that the subgroup contains 1. In the lemma, the numbers ki represent
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the number of times (plus 1) that the prime pi is allowed to appear in the denominators of

the subgroup elements.

Lemma A.1. Let {ki} be a sequence in N ∪∞. Define

Q
(
{ki}

)
=

{
p

q
∈ Q

∣∣∣∣∣ q =
m∏
i=1

pni
i for some ni < ki and some m

}

where pi denotes the ith prime number.

Then Q
(
{ki}

)
is a subgroup of Q containing 1. Furthermore, every subgroup G ≤ Q

containing 1 is equal to Q
(
{ki}

)
for some sequence {ki}.

Proof. Since the definition does not require the fraction p/q to be in lowest terms, Q
(
{ki}

)
is clearly closed under addition and inverses, and is thus a subgroup containing 1.

Let Q be any subgroup of Q containing 1. Let D be the set of denominators of elements

of Q when written in lowest terms, i.e. D = {q | p/q ∈ Q in lowest terms}. Note that for

every q ∈ D, we must have 1/q ∈ Q, since p/q ∈ Q with (p, q) = 1, so that if we multiple

p/q by the multiplicative inverse of m mod q we get mp/q = M + 1/q. Since 1 ∈ Q, then

1/q ∈ Q. Then also a/q ∈ Q for every a ∈ Z and q ∈ D, and in fact Q = {a/q} as every has

a reduced fraction with denominator q ∈ D.

Define the number ki ∈ N ∪∞ to be one more than the maximum number of times the

prime pi appears in an element of D; ki = sup
{

1 + k
∣∣ pik divides q for some q ∈ D

}
. We

first show that Q ⊂ Q
(
{ki}

)
. Let a/q ∈ Q, where q ∈ D. Consider the prime factorization

q =
m∏
i=1

pni
i , where ni < ki by the definition of ki. Thus a/q ∈ Q

(
{ki}

)
for every a/q ∈ Q.

It remains to show Q
(
{ki}

)
⊂ Q. Note that Q

(
{ki}

)
is generated by elements of the form

1
/∏m pni

i . In fact, we can take elements of the form 1/pni
i as our generating set: since the

pni
i are relatively prime, we may choose ai so that

∑
(ai/p

ni
i ) = 1

/∏m pni
i . Thus it suffices

to show that 1/pni
i ∈ Q if ni < ki. By the definition of ki, we know that there is an element

a/(bpni
i ) ∈ Q in reduced form. As before, since a is relatively prime to the denominator q,
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we may multiply by the inverse of a mod q and thus assume that a = 1. Then multiplying

by b gives 1/pni
i ∈ Q.

Therefore every subgroup of Q is of the form Q
(
{ki}

)
for some sequence {ki}.

We note that while different sequences {ki} give distinct subsets of Q, they do not always

give non-isomorphic subgroups. This is due to the fact that multiplication gives isomorphisms

of subgroups of Q. Thus if two sequences {ki}, {k′i} differ in only finitely many spots by a

finite amount (i.e. if ki 6= k′i then both are finite), then the subgroups are isomorphic by

multiplication/division by
∏
p
ki−k′

i
i . This is in fact the only way differing sequences can give

isomorphic groups.

A.4 Peano Continua Lemmas

Lemma A.4.1. Let U = {Uα} be a collection of disjoint sets in a Peano continuum X, such

that each Uα has nonempty interior, and also so that each Uα is connected. If there is a

uniform finite bound n on the number of points in the boundary of each Uα, then U forms a

null sequence.

Proof. Since X is second countable, U must be countable since the sets in U are disjoint and

each has nonempty interior. Suppose that U = {Ui} is not a null sequence. Then by passing

to a subsequence, we may assume that diam(Ui) > ε for all i. Since there are at most n

boundary points of Ui, we claim there is a point xi ∈ Ui such that d(xi, ∂Ui) ≥ ε/(2n). If

not, then the union of balls Bk of radius ε/(2n) centered at the boundary points of Ui would

cover Ui. In the connected set Ui, there would then be a chain of the sets Bk between any

two points x, y ∈ Ui. Since each Bk has diameter less than or equal to ε/n, we see that

d(x, y) ≤ n · ε/n = ε, which contradicts the fact that diam(Ui) > ε. So there exist points

xi ∈ Ui with d(xi, ∂Ui) ≥ ε/(2n).

Then since X is compact, there is a limit x of the sequence xi, and by passing to a

subsequence we may assume that xi → x. Since X is locally path connected, there is a path
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connected neighborhood V about x of diameter less than ε/(2n). Eventually, the points xi

are contained in V , and so there are paths in V that join Uj and Uk, for j, k large enough.

But this gives a boundary point in Uj that is within ε/(2n) of the point xj, which is a

contradiction. Thus U is a null sequence.

Lemma A.4.2. Let H be a function from the metric space X × Y into a metric space Z.

Let {Ci} be a null sequence of closed sets whose union is X. Suppose that H is continuous

on each Ci × Y , and that the images Di = H(Ci × Y ) form a null sequence of sets in Z. If

for every subsequence Cik converging to x0 there exists a point z0 ∈ Z such that Dik → z0

and H({x0} × Y ) = {z0}, then H is continuous on all of X × Y .

Proof. Let (xn, yn) → (x0, y0). We need to show that H(xn, yn) → H(x0, y0). For each n,

choose i(n) such that xn ∈ Ci(n). If {Ci(n)} is finite, then by restricting H to
⋃
nCi(n) × Y

we have H(xn, yn)→ H(x0, y0) by an application of the finite pasting lemma.

If the collection {Ci(n)} is infinite, then by ignoring repetitions, we see that the sets Ci(n)

converge to x0 since the Ci’s form a null sequence and the points xn ∈ Ci(n) converge to

x0. Thus by our hypothesis, the images Di(n) converge to z0 = H(x0 × Y ). Then for any

neighborhood U of z0, only finitely many Di(n) are not contained in U . Again, by a finite

application of the pasting lemma, we see that the points H(xn, yn) that correspond to these

finitely many Di(n) must converge to H(x0, y0) = z0, and so are eventually contained in U .

The remainder of the points H(xn, yn) are all contained in U , since each corresponding Di(n)

is contained in U . Thus the sequence H(xn, yn) converges to z0 = H(x0, y0), and therefore

H is continuous.

Lemma A.4.3. If X is a second countable metric space such that each x ∈ X has a deleted

neighborhood that is a 1-manifold with finitely many components, then X is homeomorphic

to a locally finite graph.

Proof. For x ∈ X, we can choose a small deleted neighborhood of x that is a 1-manifold

with finitely many components, with each component limiting on x ‘exactly once,’ i.e., if
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any component together with x forms a circle, then delete one point of the circle, as well as

deleting any components that do not limit on x. Define the valence of a point, v(x), to be

the number of components of such a deleted neighborhood. Let V = {x ∈ X | v(x) 6= 2},

which will be a subset of our set of 0-cells. Then X −V is just a disjoint union of open arcs.

Suppose there is one of these arcs, a, without compact closure. Let a be parameterized by

(0, 1), and consider the sequences {a(1/n)} and {a(1 − 1/n)} (n ≥ 2). If either sequence

does not converge in X, then include that sequence in V as well. It can be seen that V

is discrete and that X − V is a collection of open arcs with boundary in V , each having

compact closure. Also, each 0-cell intersects only finitely many closed 1-cells, thus X is a

locally finite graph.

Lemma A.4.4. Let C1, C2 be disjoint closed subsets of a simply connected one-dimensional

neighborhood W of x in a Peano continuum. Then any collection of paths {pi} in W from

C1 to C2 that are pairwise disjoint on their interiors is finite.

Proof. Suppose that {pi} is infinite. Let δ be the distance from C1 to C2. Let yi be a point

on pi that is a distance δ/3 away from C1. Then there is a limit point q1 of {yi}. Let U ⊂ W

be a path connected neighborhood of q1 with diameter < δ/6. Then in U there must be

infinitely many of the paths pi, which then have points zi a distance δ/3 from C2. These

points zi have a limit q2. Let V ⊂ W be a path connected neighborhood of q2 with diameter

< δ/6. Then there are distinct pj, pk that are joined by a path in V as well as one in U . Since

the paths pi are disjoint, as are the sets U and V , we get an essential curve contained in

U, V, pj and pk. This contradicts the fact that W is simply connected and one-dimensional.

Thus {pi} must be finite.

Lemma A.4.5. Let K be a simply connected closed set contained in the one-dimensional set

I(X) of a non-degenerate Peano continuum X with no attached strongly contractible subsets.

Then any closed arc p in K can be extended to an arc from either of its endpoints to ∂K.
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Proof. First note that ∂K 6= ∅, since otherwise K would be both open and closed, hence

K = X would be a simply connected one-dimensional continuum with no attached strongly

contractible subsets, and must therefore be degenerate, which it is not. Now let y be an

endpoint of an arc p in K. We show that there is an arc from y to ∂K that does not

intersect the interior of p.

We first show that the result follows if there is a component C of K −{y} that does not

contain the interior of p. If C ∩ ∂K = ∅, then C is also a component of int(K)− {y} hence

of X −{y}, but C ∪ {y} ⊂ K is simply connected and contracts to y, contradicting the fact

that X has no strongly contractible subsets. So C ∩ ∂K 6= ∅, and since K is arc connected

C ∪ {y} is also arc connected, and must contain an arc from y to ∂K.

Now suppose by way of contradiction that the result is false, i.e. every arc from y to

∂K intersects the interior of p. By the result of the last paragraph, there can only be one

component of K −{y}, namely the one containing p. Consider a point z in the interior of p.

Since K is simply connected and one-dimensional, z must separate the path p into distinct

components of K − {yi}, in particular, there is a component A that does not contain the

portion of p from z to y, and a component B that does contain that portion of p from z to

y. Then using the point z and the component A as C in the paragraph above, we see that

there is an arc az from z to ∂K that does not intersect the interior of A. The arc az cannot

pass through y due to our assumption. So az leaves the arc p at some point xz in B between

y and z, possibly at z.

Consider a sequence of points zi in the interior of the arc p that converge to y, and

the associated arcs ai as discussed in the previous paragraph. We may choose zi such that

zi+1 separates y from xi. Thus we get a sequence of arcs from points xi on p to ∂K.

These arcs must be disjoint since K is simply connected and one-dimensional. Then in a

small neighborhood of y, this gives infinitely many disjoint arcs connecting p to ∂K which

contradicts Lemma A.4.4.

Thus the result of the lemma is true: there is an arc from y to ∂K that does not intersect
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the interior of p.

Lemma A.4.6. In a rank 0 one-dimensional Peano continuum, every component C of B is

a Peano continuum.

Proof. Components are always connected and closed. Since B is compact, then C is compact

also. It remains to show that C is locally path connected. Assume that X is arc-reduced

(recall that homotopy equivalences fix B homeomorphically).

Suppose that C is not locally path connected at x. Then there is some open set U ⊂ C

containing x such that no open set V with x ∈ V ⊂ U is path connected. Now U corresponds

to some open set U ′ in X (i.e. U = U ′ ∩ C). Since X is locally path connected, x has a

neighborhood V ′ ⊂ U ′ that is path connected. However, V = V ′ ∩C is not path connected,

since x ∈ V ⊂ U . Let a, b be points in different path components of V . Then we get a path

α : I → V ′ ⊂ X connecting a, b in X, and α must hit some arc ` in G(X), since V is not

path connected, and C is a component of B. Then this arc ` does not separate X, which

contradicts the fact that X is rank 0. (X − ` is still connected and locally path connected,

so we can homotop the endpoints of ` to a single point in X.)

Lemma A.4.7. In a rank 0 one-dimensional Peano continuum, the non-degenerate compo-

nents of B form a null sequence.

Proof. Suppose there is a sequence of components Ci of B, each of diameter ≥ δ. Choose

xi, yi ∈ Ci such that d(xi, yi) ≥ δ. By passing to subsequences, we may assume that xi → x

and yi → y in X, and then d(x, y) ≥ δ. There are path connected neighborhoods of

x, y of radius < δ/2, and for j, k � 0 we have paths connecting xj, xk and yj, yk in the

respective neighborhoods. These paths must contain some arc in G, since they connect

different components Cj, Ck of B. But then we have an arc (at least one, but actually lots)

that doesn’t separate, contradicting rank 0.
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linearly ordered spaces. Houston J. Math., 17(1):39–53, 1991.
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