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abstract

Unknotting Tunnels of Hyperbolic Tunnel Number n Manifolds

Stephan D. Burton
Department of Mathematics, BYU

Master of Science

Adams conjectured that unknotting tunnels of tunnel number 1 manifolds are always isotopic
to a geodesic. We generalize this question to tunnel number n manifolds. We find that there
exist complete hyperbolic structures and a choice of spine of a compression body with genus
1 negative boundary and genus n ≥ 3 outer boundary for which (n − 2) edges of the spine
self-intersect. We use this to show that there exist finite volume one-cusped hyperbolic
manifolds with a system of n tunnels for which (n − 1) of the tunnels are homotopic to
geodesics arbitrarily close to self-intersecting. This gives evidence that the generalization of
Adams’s conjecture to tunnel number n ≥ 2 manifolds may be false.

Keywords: Hyperbolic Geometry, Hyperbolic 3-manifolds, Unknotting Tunnel, Ford Domain,
Knot Theory
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Chapter 1. Introduction

A major task in the study of 3-manifolds is using geometry to understand topological spaces.

One specific question that has arisen is how to identify arcs that are isotopic to a geodesic

given only a topological description of a manifold. This work focuses on the special case

where the arcs in question are unknotting tunnels. An unknotting tunnel τ of a 3-manifold

M with torus boundary components is an embedded arc with endpoints on ∂M such that

M\N(τ) is a handlebody. A system of unknotting tunnels is a collection of arcs τ1, . . . , τn

such that M\N(
⋃n
i=1 τi) is a handlebody. Manifolds that admit a tunnel system consisting

of n arcs are called tunnel number n manifolds, provided there is not a system of unknotting

tunnels for M consisting of fewer than n tunnels.

Adams asked the question of whether an unknotting tunnel is always isotopic to a

geodesic, and proved that in the case of tunnel number 1 manifolds, an unknotting tun-

nels with endpoints on different boundary components will be isotopic to a geodesic [1].

Adams and Reid showed that an unknotting tunnel in a two-bridg knots is always isotopic

to a geodesic [2]. Cooper, Futer, and Purcell [6] recently showed that unknotting tunnels in

tunnel number 1 manifolds are generically isotopic to geodesics, for a correct sense of the

word “generic.”

A natural generalization of Adams’s question is to determine if unknotting tunnels of

a tunnel number n manifold will always be isotopic to geodesics. While there is mounting

evidence that when n = 1, the tunnel will be isotopic to a geodesic, we will show that the

generalization for n > 1 may be false. Specifically, we find a system of n unknotting tunnels

where (n−1) tunnels are homotopic to geodesics arbitrarily close to having self-intersections,

so these tunnels may not be isotopic to geodesics.

In order to understand the geometry of tunnel number nmanifolds, we study the geometry

of (1, n + 1)-compression bodies, i.e. compression bodies with genus 1 inner boundary and

genus (n + 1) outer boundary. Cooper, Lackenby, and Purcell used the Ford domain of

a (1, 2)-compression body to construct unknotting tunnels in finite volume manifolds with
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arbitrarily long length [7]. Viewing the (1, 2)-compression body C as T 2 × [0, 1] with a

1-handle attached, the core tunnel τ of C is the core of the 1-handle. The core tunnel

τ corresponds to an unknotting tunnel in the manifold obtained by attaching a genus 2

handlebody to the outer boundary of C. Lackenby and Purcell used the Ford domain to

study core tunnels of (1, 2)-compression bodies, and showed that in many cases the core

tunnel τ of a (1, 2)-compression body C is isotopic to a geodesic. They conjectured that the

core tunnel will always be isotopic to a geodesic if C is given a complete hyperbolic struture

[13]. Their work is similar to previous work of Jørgensen who studied Ford domains of once

punctured torus groups [12] and cyclic groups [17]. Akiyoshi, Sakuma, Wada, and Yamashita

extended Jørgensen’s work [3], and Wada [20] developed an algorithm to determine Ford

domains of these manifolds. Lackenby and Purcell developed an algorithm for visualizing

the Ford domain of a (1, 2)-compression body [13].

We generalize the notion of a core tunnel of a compression body to the spine of a com-

pression body. We show that in the case of (1, n)-compression bodies with n ≥ 3, (n − 2)

edges of the spine are not isotopic to geodesics. This shows that the generalization of Lack-

enby and Purcell’s conjecture that the core tunnel will be isotopic to a geodesic is false for

(1, n)-compression bodies when n ≥ 3. The hyperbolic structures given in the proof give

rise to cases where the generalization of Lackenby and Purcell’s algorithm to visualize Ford

domains fails. We then follow an argument similar to that of Cooper, Lackenby, and Purcell

[7], to show the following theorem:

Theorem 1.1. There exist finite volume one-cusped hyperbolic manifolds with a system of

n tunnels for which (n − 1) of the tunnels are homotopic to geodesics which are arbitrarily

close to self-intersecting.

The proof of this theorem does not guarantee that the geodesics will self-intersect, but

shows that it is likely that there are finite volume tunnel number n manifolds for which

(n− 1) of the tunnels are not isotopic to a geodesic. The proof of this theorem relies upon a

specific choice of the spine of a compression body C. By applying a topological move called
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a disk slide to the compression body C obtained in the proof of theorem 1.1, we can obtain

a new spine for C whose edges are all isotopic to geodesics. This, and numerous computer

examples lead us to the following conjecture:

Conjecture 1.2. Given a (1, n)-compression body C and a complete hyperbolic structure on

C, there exists a spine for which all the edges are isotopic to a geodesic.

Chapter 2. Compression Bodies

In this section we give the definition of a compression body, and show how to describe a

compression body in terms of boundary components. We will later consider geometrically

finite hyperbolic structures of compression bodies and use these to construct unknotting

tunnels. This section gives an overview of the basic topology of compression bodies. Much

of this material is similar to Notes on Heegaard splittings by Johnson [11].

Definition 2.1. Let C be the disjoint union of balls and manifolds of the form S × [0, 1]

where S is a closed surface. Let D1, D2, . . . , Dn, D
′
1, D

′
2, . . . , D

′
n be a collection of disks in

∂C ′ with each disk either in S × {1} for some closed surface S, or in the boundary of some

ball component. For each i ≤ n let ϕi : Di → D′i be a homeomorphism. The result of gluing

C by the maps ϕ1, . . . , ϕn is a compression body.

Essentially, a compression body is the result of taking a surface S cross [0, 1] and attaching

1-handles. The boundary of the compression body C consists of the negative boundary

∂−C = S × {0}, and the positive boundary ∂+C = ∂C\∂−C. We will consider the specific

case when the surface S is a connected genus m surface. In this case ∂−C will be a genus m

surface and ∂+C will be a genus n surface for some n ≥ m. An (m,n)-compression body is

one where ∂−C is a connected genus m surface, and ∂+C is a genus n surface.
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Lemma 2.2. Let F be a compact surface, let D1, . . . , Dk be a collection of pairwise-disjoint

disks embedded in F and let D′1, . . . , D
′
k be a second collection of disjoint embedded disks.

There is a homeomorphism, ϕ : F → F , isotopic to the identity, such that ϕ sends each disk

Di onto the disk D′i.

Proof. See C. P. Rourke and B. J. Sanderson [18].

Proposition 2.3. Any two (m,n)-compression bodies are homeomorphic.

Proof. Suppose C1 and C2 are (m,n)-compression bodies. Then there is a a genus m surface

S1 such that C1 is constructed by taking S1×[0, 1] and attaching 1-handles. Similarly there is

a genus m surface S2 such that C2 is constructed by taking S2×[0, 1] and attaching 1-handles.

Now there is a homeomorphism ψ : S1 × [0, 1]→ S2 × [0, 1]. Let D1, . . . , Dn, D
′
1, . . . , D

′
n be

disks in S1 × {1} so that attaching Di to D′i yields C1. Let E1, . . . , En, E
′
1, . . . , E

′
n be disks

in S2 × {1} so that attaching Ei to E ′i yields C2. By lemma 2.2 there is a homeomorphism

ϕ : S1 × {1} → S2 × {1} such that ϕ sends ψ(Di) to Ei and ψ(D′i) to E ′i. This map extends

to a homeomorphism ϕ̂ : S1 × [0, 1] → S2 × [0, 1] by taking ϕ on each level set S1 × {t}.

Composing ϕ̂◦ψ gives a homeomorphism taking each Di to Ei and each D′i to E ′i. Composing

this with the quotients identifying each Di to D′i and each Ei to E ′i gives a homeomorphism

from C1 to C2.

Chapter 3. The Topology of Compression Bodies

We now develop machinery that helps understand the topology of compression bodies. Many

of the proofs are generalizations of Johnson’s notes on Heegaard splittings, which proved the

results in the case of handlebodies [11]. We develop the notion of a system of disks, and disk

slides. We show that any two minimal systems of disks are slide equivalent. We also develop

the notion of a spine, and show how a spine of a compression body relates to a system of

disks.
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3.1 Systems of Disks and Disk Slides

Definition 3.1. If C is a compression body, a system of disks for C is a collection {D1, . . . , Dn}

of properly embedded essential disks such that the complement of a regular neighborhood

of
⋃n
i=1Di in C is a collection of balls and the manifold ∂−C × [0, 1].

Proposition 3.2. Given an (m,n)-compression body C, there is a system of disks D for C.

Proof. Let C be an (m,n)-compression body, S be a closed genus m surface, and

D1, . . . , Dn, D
′
1, . . . , D

′
n disks in S × {1} ⊆ S × [0, 1] so that gluing each Di to D′i yields C.

We show that D1, . . . , Dn forms a system of disks for C. Let N be a regular neighborhood of⋃n
i=1Di. Then by the construction of C, it is clear that C\N is homeomorphic to S × [0, 1].

All that remains to be shown is that each Di is essential. If Di is not essential, then Di and a

disk on ∂C bound a ball in C. Thus C\N contains a ball component, yet it is homeomorphic

to S × [0, 1], a contradiction. Therefore {D1, . . . , Dn} forms a system of disks for C.

Definition 3.3. A system D of disks is minimal if the complement of a regular neighborhood

of
⋃n
i=1Di in C is homeomorphic to ∂−C × [0, 1].

Lemma 3.4. If C is an (m,n)-compression body with connected negative boundary, then a

system of disks {D1, . . . , Dk} for C is minimal if and only if k = n−m.

Proof. Suppose D = {D1, . . . , Dk} is a minimal system of disks. Then C\N , where N is

a regular neighborhood of D, is homeomorphic to S × [0, 1] for some genus m surface S.

Note that S × {1} (which we identify with S) is a genus m surface. This surface contains

disks Ei, E
′
i parallel to each Di ∈ D. Becuase S has genus m, we can take a collection of m

nontrivial simple closed curves α1, . . . , αm such that S\(
⋃m
i=1 αi) is a planar surface. Since

∂Ei and ∂E ′i bound disks in S, we can isotope the curves α1, . . . , αm so that they are disjoint

from each Ei, E
′
i.

Suppose k > n−m. Then the collection of curves ∂D1, . . . , ∂Dk, α1, . . . , αm cut ∂+C into

a connected planar surface. However, this collection consists of k + m > n − m + m = n
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simple closed curves. Since ∂+C has genus n, cutting along any collection of (n+ 1) or more

curves must yield a disconnected surface, a contradiction.

Suppose k < n −m. Since C\N is homeomorphic to S × [0, 1], which is connected, the

result of removing a regular neighborhood of the curves ∂D1, . . . , ∂Dk in ∂+C is a connected

genus n− k surface with 2k punctures. Note that n− k > n− n+m = m, so the resulting

surface has genus strictly greater than m. However, the result of removing a regular neigh-

borhood of ∂D1, . . . , ∂Dk in ∂+C is homeomorphic to a punctured S × {1} which has genus

m, a contradiction. Therefore k = n−m.

Conversely, suppose that D = {D1, . . . , Dn−m} is a system of disks for C, and that N

is a regular neighborhood of D. If the complement C\N is connected, then D is a minimal

system of disks. Assume by way of contradiction that C\N is not connected. Then C\N is

homeomorphic to the disjoint union of S× [0, 1] and a collection of balls B1, . . . , Bk, where S

is a genus m surface and k ≥ 1. Let Ei and E ′i be disks in the boundary of C\N parallel to

Di for i = 1, . . . , n−m. Without loss of generality, E1 ⊆ B1 and E ′1 is contained in S× [0, 1]

or Bi, where i 6= 1. Otherwise the result of identifying each pair Ei, E
′
i in C\N , which is

homeomorphic to C, contains a ball component and a component homeomorphic to S×[0, 1],

contradicting the fact that C is connected. If E ′1 ⊆ Bi, i 6= 1, then the result of gluing B1 to

Bi along D1 results in a ball. If E ′1 ⊆ S× [0, 1] then the result of gluing B1 to S× [0, 1] along

D1 is homeomorphic to S × [0, 1]. Therefore the complement of a regular neighborhood of

the disks D2, . . . , Dn−m in C is homeomorphic to the disjoint union of S × [0, 1] and balls

B2, . . . , Bk. Repeating this process we see that the complement of the disks Dk+1, . . . , Dn−m

in C is homeomorphic to S × [0, 1]. Therefore removing a regular neighborhood in ∂+C of

∂Dk+1, . . . , ∂Dn−m results in a punctured genus m surface. However, removing a regular

neighborhood in ∂+C of n −m − k nontrivial simple closed curves in such a way that the

result is connected must be a genus n− (n−m− k) = m+ k surface with punctures. Since

k ≥ 1, this is a contradiction. Therefore D is minimal.

Let C be an (m,n)-compression body and D = {D1, . . . , Dn} be a system of disks for
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C. Let N be a regular neighborhood of D. Then C\N is ∂−C × [0, 1] and a collection of

balls. The boundary of C\N contains disks Ei, E
′
i parallel to Di. Assume that two disks, Ei

and Ej (i 6= j), are in the same component of C\N . Let α be an arc from Ei to Ej whose

interior is disjoint from Ei ∪ Ej. Let N ′ be a regular neighborhood in C of Ei ∪ α ∪ Ej.

Then N
′
is a closed ball which intersects ∂+C in a three-punctured sphere. The set ∂N ′\∂C

consists of three disks: one parallel to Di, one parallel to Dj, and another disk Di ∗αDj. Let

D′ = {D1, . . . , D̂i, . . . , Dn, Di∗αDj}, where as usual D̂i means remove Di from the collection.

See figure 3.1.

We will show in lemma 3.6 that D′ is a system of disks. This enables us to make the

following definitions.

Definition 3.5. Two systems of disks are isotopic if there is an isotopy of C (not necessarily

fixing the boundary pointwise) that takes one system of disks to the other. If D and D′ are

as constructed above, then a system of disks isotopic to D′ is said to be a disk slide of D.

Two systems of disks D and D′ are said to be slide equivalent if there is a sequence of disk

slides taking D to a system of disks isotopic to D′.

It is not hard to see that slide equivalence is an equivalence relation, justifying the name.

Lemma 3.6. If C is an (m,n)-compression body, D is a system of disks and D′ is the system

of disks constructed as above, then D′ is also a system of disks.

Proof. The set ∂N ′\∂C constructed in the definition of the disk slide above consists of three

disks: one parallel to Di, one parallel to Dj and the disk Di ∗α Dj. Let M be the result

of removing a regular neighborhood of Di ∗α Dj from C\N . Then M is also the result

of cutting off N ′ from one of the components of C\N . Since N ′ is a ball, and C\N is a

collection of balls and the manifold S × [0, 1], the manifold M is a collection of balls and

the manifold S × [0, 1]. Since M is also the result of removing a regular neighborhood of

D′′ = D′ ∪ {Di ∗α Dj} from C, we have that D′′ is a system of disks.

7



α
D1

D 2

DD 1 2

D1 D 2*α

DD1
2

D 2*α

Figure 3.1: A disk slide in a (1, 3)-compression body.
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Since D′ is the result of removing the disk Di ∗α Dj from D′′, removing a regular neigh-

borhood of D′ from C is also the result of attaching N ′ to one of the components of M along

the disks Ei, E
′
i. Since N ′ is a ball and Ei and E ′i are in different components, this results

in a collection of balls and S × I. Therefore D′ is a system of disks.

Lemma 3.7. If two minimal systems of disks are disjoint, they are slide equivalent.

Proof. Let D = {D1, . . . , Dn} and D′ = {D′1, . . . , D′n} be disjoint minimal systems of disks

for a compression body C. Because D is minimal, the complement of a neighborhood of D in

C is a manifold M homeomorphic to ∂−C × [0, 1]. The closure of a regular neighborhood of

Di intersects M in two disks Ei, E
′
i in the boundary of M . Since each disk of D′ is properly

embedded, we may assume that its boundary is disjoint from each Ei and E ′i.

The disks of D′ cut M into n + 1 components: n balls and one component M ′ homeo-

morphic to M . If one of the ball components does not contain some Ei or E ′i, then a disk

of D′ is boundary parallel, which is impossible since the disks of D′ are essential. Suppose

M ′ contains none of the disks Ei or E ′i. Then the disks of D′ cutting off M ′ from M cut off

at least two components of C: a component containing E1 and the component M ′. There-

fore the complement of a regular neighborhood of D′ in C is not connected, hence is not

∂−C × [0, 1], contradicting the fact that D′ is minimal.

Because there are n+ 1 components of M\D′ and 2n disks E1, . . . , En, E
′
1, . . . , E

′
n in the

boundary of M\D′, and every component contains at least one such disk, there are at least

two components of M\D′ that contain exactly one disk Ei or E ′i. Let B be one of these

components. Since there are two choices for B, we may assume that B does not contain

the negative boundary, and is therefore a ball. Without loss of generality, assume that B

contains the disk E1. If B is cut off by a single disk D′k of D′, then D′k is isotopic to E1

which is isotopic to D1. Otherwise assume that D′1, D
′
2, . . . , D

′
k are the disks of D′ which cut

off B. Because ∂B\(D1 ∪D′1 ∪D′2 ∪ . . . ∪D′k) is connected, there is an arc αk from ∂D′1 to

∂D′k that is disjoint from the other disks. Replace D′1 with the disk D′1 ∗αk
D′k. This new

disk and the disks D′2, . . . , D
′
k−1 now cut off a component containing E1, and none of the

9



other disks Ei, E
′
i. Continuing by finding an arc αk−1 connecting D′1∗αk

D′k to D′k−1, et cetera

we see that we can replace the disk D′1 with the disk D′1 ∗αk
D′k ∗αk−1

D′k−1 ∗αk−2
. . . ∗α2 D

′
2

which cuts off a component of M containing E1, and none of the other disks Ei, E
′
i. This

new disk is therefore isotopic to E1 which is isotopic to D1. Therefore D′ is slide equivalent

to the system of disks {D1, D
′
2, . . . , D

′
n}. The disks D′2, . . . , D

′
n cut M into n components

and there are 2(n− 1) disks E2, . . . , En, E
′
2, . . . , E

′
n in the boundary. Thus we may continue

in the same manner as above to show that D′ is slide equivalent to {D1, D2, D
′
3, . . . , D

′
n}.

Repeating the process n times shows that D is slide equivalent to D′.

Theorem 3.8. Any two minimal systems of disks for an (m,n)-compression body are slide

equivalent.

Proof. By lemma 3.7, it suffices to show that any two minimal systems of disks can be

made disjoint by disk slides. We may assume that the disks are transverse, so Di ∩D′j is a

(possibly empty) collection of embedded arcs and simple closed curves. If a component of

Di ∩D′j is a closed loop, then this loop bounds a disk in D′j. An innermost loop in D′j is a

loop ` in Di ∩D′j such that the interior of the disk in D′j bounded by ` is disjoint from the

disks of D. If D′j intersects a disk of D in a closed loop, then D′j contains an innermost loop

` ⊂ (Di∩D′j) for some i. Let E be the disk in D′j bounded by `. Now C\D is homeomorphic

to S × [0, 1] and ` is a simple closed curve in S × {1}. The disk E is properly embedded in

C\D, so (C\D)\E consists of S × [0, 1] and a ball B. The boundary of B consists of E and

a portion of Di, so we can isotope E across B into Di. This induces an isotopy of D′j that

removes the loop `.

Assume Di ∩D′j consists of properly embedded arcs for each i, j. Define I(D,D′) to be

the number of arcs of intersection over all disks in D and D′. We show that there is some

minimal system of disks D′′ that is slide equivalent to D and I(D′,D′′) = 0.

Let D′′ = {D′′1 , . . . , D′′m} be a minimal system of disks slide equivalent to D such that

I(D′,D′′) is minimal. We show that I(D′,D′′) = 0. Suppose, by way of contradiction, that

I(D′,D′′) 6= 0. Then for some j the intersection D′j ∩ (
⋃
D′′i ) is nonempty, so we can assume
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it consists of a collection of arcs. Each of these arcs separates D′j into two disks. We say

that an arc is outermost when the interior of one of these disks is disjoint from D′′. Note

that D′j ∩ (
⋃
D′′i ) contains an outermost arc α. Let E ⊆ D′j be the disk disjoint from D′′,

and let D′′i ∈ D′′ be the disk such that α ⊆ D′j ∩D′′i .

Because D′′ is minimal, its complement in C is homeomorphic to S × [0, 1]. Each disk

D′′i is parallel to two closed disks Fi, F
′
i in S × {1}. The disk E ∩ (S × [0, 1]) is properly

embedded, and its boundary consists of an arc in a disk Fi and an arc disjoint from all other

Fk, F
′
k.

Let N be a regular neighborhood of E ∪ Fi. The set ∂N\(S × {1}) consists of two disks

E1 and E2, see figure 3.2. Every arc of intersection in E1 ∩ D′ will be an arc parallel to

D′′i ∩D′. Since there is no arc of intersection parallel to α, the number of arcs in E1 is strictly

less than the number of arks in D′′i . Similarly the number of arcs in E2 is strictly less than

the number of arcs in D′′i . We reduce the number I(D′,D′′) by showing there is a sequence

of disk slides that replaces D′′i with E1 or E2.

The complement (C\D′′)\(E1 ∪E2) consists of three components: two homeomorphic to

balls B1, B2 and one homeomorphic to S × [0, 1]. Without loss of generality we will assume

that Fi ⊆ B1. Now F ′i lies in either B2 or S × [0, 1]. If F ′i ⊆ B2 then let B′ = B2. Otherwise

let B′ be the result of gluing B1 to B2 along the disk E1 or E2, where Ek with k = 1 or 2

lies in the boundary of B1 and B2, viewing B1, B2 ⊆ (S × [0, 1]). Then the boundary of B′

contains exactly one of Fi, F
′
i . Assume without loss of generality that ∂B′ contains the disk

E1. The boundary of B′ also contains other disks Fk, F
′
k. Let G1, . . . , Gm be all such disks

in the boundary of B′, with G1 = Fi.

Now B′\(E1∪ (
⋃
Gk)) is path connected, so we can take an arc β1 from G1 to G2 disjoint

from E1, G3, . . . , Gm. Let N1 be a regular neighborhood of G1 ∪G2 ∪ β1. We then obtain a

disk slide by replacing Fi with G1 ∗β1 G2. Now G1 ∗β1 G2 separates B′ into two components:

B′′1 containing G1, G2 and B′′2 containing G3, . . . , Gm. Since ∂B′′2\(G1∗β1G2∪E1∪(
⋃m
k=3Gk))

is path connected, we can find an arc β2 in ∂B′′2 from G1 ∗β1 G2 to ∂G3 disjoint from all

11



the other Gk and E1. By replacing G1 ∗β1 G2 with the boundary of a regular neighborhood

of G1 ∗β1 G2 ∪ β2 ∪ G3 will again define a disk slide, and cut B′′2 into two components: one

containing G1 ∗β1 G2 and G3 and one containing G4, . . . , Gm. Repeat this process until the

second component does not contain any Gk. Then G1 ∗β1 G2 ∗β2 ∗ . . . ∗ Gm cuts off a ball

from B′ separating all the Gk from E1. Therefore G1 ∗β1 G2 ∗β2 ∗ . . . ∗Gm is isotopic to E1.

We have therefore created a sequence of disk slides that replaces D′′i with E1.

The above construction shows that if I(D′,D′′) > 0, we can construct a system of

disks D′′′ with I(D′,D′′′) < I(D′,D′′). It follows by the minimality of I(D′,D′′) that

I(D′,D′′) = 0. Now lemma 3.7 implies that D′′ is slide equivalent to D′. Since D′′ is also

slide equivalent to D then D is slide equivalent to D′.

3.1.1 Spines and Edge Slides. Throughout this subsection we will consider C to be

an (m,n)-compression body. Recall that ∂−C is a connected genus m surface.

Definition 3.9. Let K be a graph embedded in C with some valence-one vertices possibly

embedded in ∂−C. Let N be a regular neighborhood of K ∪ ∂−C. If C\N is homeomorphic

to ∂+C × [0, 1] then K is a spine for C. (See figure 3.3.)

Definition 3.10. A spine K is dual to a system of disks D if each edge of K intersects a

single disk of D exactly once, each disk in D intersects an edge of K, each ball component of

C\D contains exactly one vertex of K, and all vertices of K in the ∂−C × [0, 1] component

of C\D are contained in ∂−C. (See figure 3.3.)

Proposition 3.11. Given a system of disks D for a compression body C, there is a spine

dual to D. This spine is unique up to isotopy.

Proof. Let D = {D1, . . . , Dn} and let N be a regular neighborhood of D. Then C\N is

homeomorphic to (S × [0, 1])
⋃m
i=1Bi where S is the interior boundary, and

⋃m
i=1Bi is a

disjoint union of balls. Let E1, . . . , E2n be the disks in the boundary of C\N parallel to

some Dk. For i = 1, . . . ,m let vi be a point in the interior of ∂Bi, and let vi,k be a point

12



Fk

F’k
E1
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D’j

Figure 3.2: The disks E1, E2 in S × [0, 1].
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Figure 3.3: Two examples of spines dual to systems of disks in a (1, 3)-compression body.
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on ∂Ek for each Ek ⊆ Bi. Let Gi be the graph consisting of one edge ei,k connecting vi to

vi,k for each k. Isotope each Gi so that vi lies in the interior of Bi and each vi,k lies in the

interior of Ek. Extend each Gi in C so that the endpoints vi,k lie in some Dj and so that

each edge intersects exactly one Dj exactly once.

Assume without loss of generality that E1, . . . , E` lie in S × [0, 1]. Choose points (wi, 1)

in the interior of each Ei. Let G0 be the graph consisting of the vertices (wi, 0), (wi, 1) for

each i and the edges ei, where ei is the straight line between (wi, 0) and (wi, 1). Extend G0

in C so that the endpoints of each ei not lying in S lie in the disk Dj parallel to Ei.

Isotope each Gi slightly so that if Gi and Gj have vertices in the same Dk then the

vertices agree. Let K =
⋃m
i=0Gi. Then K is dual to the system Dk and forms a spine of C.

Suppose that K and K ′ are spines dual to the system of disks D. Let Bi for 1 ≤ i ≤ m

be defined as above. The graph K ∩Bi consists of a single vertex vi in the interior of B and

vertices vi,j ∈ Ej for each Ej ⊆ Bi, and edges ei,j between vi and vi,j. The graph K ′ ∩ B

consists of similar vertices v′i and v′i,j and edges e′i,j. Let Ni and N ′i be regular neighborhoods

of Bi∩K and Bi∩K ′ respectively. Then for each Ej ⊆ Bi we have that Ej\Ni is an annulus

embedded in the closure of a regular neighborhood of ∂+C homeomorphic to ∂+C×[0, 1]. This

annulus can be isotoped so that it intersects each level surface ∂+C × {t} once. Therefore

Bi\Ni is homeomorphic to R × [0, 1] where R is a punctured sphere. Similarly Bi\N ′i is

homeomorphic to R × [0, 1]. Let f : Bi\Ni → R × [0, 1] and g : R × [0, 1] → Bi\N ′i be

homeomorphisms. Then g ◦ f : Bi\Ni → Bi\N ′ is a homeomorphism. Because Bi ∩K and

Bi ∩ K ′ are trees, the neighborhoods Ni and N ′i are balls. Therefore the homeomorphism

g ◦ f extends to a homeomorphism hi of Bi. Because Ni and N ′i are regular neighborhoods,

this map can be chosen to send K to K ′.

We now consider the component S × [0, 1] of C\N . By doing a small isotopy, we may

assume that the edges of K ′ and K meet at the same points on S × {1}, since the spines K

and K ′ are dual to the system of disks D. We will now construct an isotopy Ht of S × [0, 1]

fixing the outer boundary. Let E be the collection of the disks in S× [0, 1] which are parallel
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to some Di ∈ D. Since the endpoints of K on the outer boundary of S× [0, 1] are the same as

the endpoints of K ′, then for some ε > 0 we have that K∩(S×[1−ε, 1]) and K ′∩S×[1−ε, 1]

are contained in E × [1 − ε, 1]. Since E × [1 − ε, 1] is a collection of balls, we may isotope

E× [1−ε, 1] so that K is sent to K ′. This induces an isotopy Gt in S× [1−ε, 1]. We will now

shrink S × [0, 1] to S × [1− ε, 1] in a way that will send K homeomorphically to the portion

of K in S× [1− ε, 1] as follows. By applying an isotopy if necessary, we can assume that the

spine K consists of vertical lines in S × [0, 1]. Define the map s : S × [0, 1]→ S × [1− ε, 1]

by s(x, t) = (x, 1 − ε + εt). Define a similar map s′ shrinking S × [0, 1] to S × [1 − ε] and

sending K ′ homeomorphically to the portion of K ′ in S × [1 − ε, 1]. Consider the ambient

isotopy Ht = (s′)−1 ◦Gt ◦ s of S × [0, 1]. It sends K to K ′ and fixes the endpoints of K and

K ′.

Let e1 and e2 be edges of a spine K of a compression body C. Suppose each edge is

parametrized by the closed interval [0, 1]. Let α be a loop consisting of three smaller arcs:

α1 the segment of e1 from 1/3 to 0, α2 the edge e2, and α3 some arc in the interior of C

connecting the final point of α2 to the initial point of α1 such that the loop α bounds a disk

D in C. Let e′ be the arc α3 followed by the segment of e1 from 1/3 to 1. An example of an

edge slide is shown in figure 3.4.

Definition 3.12. The graph K ′ formed by replacing the edge e1 in K with e′ in the con-

struction above is called an edge slide of K. We write e′ = e1 ∗D e2.

Lemma 3.13. Let K be a spine for a compression body C and K ′ an edge slide of K. Then

K ′ is a spine of C.

Proof. Let K be a spine and K ′ an edge slide of K defined by a disk D. Then the boundary

of D consists of three subarcs: α1 ⊆ e1, α2 = e2, and an arc α3 ⊂ C, where e1 and e2

are edges of K. Let K ′′ = K ∪ D, let N be a regular neighborhood of K and let N ′′ be

a neighborhood of K ′′. The closure of K ′′\N is a disk which intersects N in a single arc.
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Figure 3.4: An edge slide of a spine.
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Therefore N ′′\N is a ball whose closure intersects N in a disk. This ball may be isotoped

into N which then induces an isotopy of C sending N ′′ into N . Since C\N is homeomorphic

to ∂+C × [0, 1], we have that C\N ′′ is homeomorphic to ∂+C × [0, 1]. Let N ′ be a regular

neighborhood of K ′. In a similar manner as above, N ′′\N ′ is a ball whose closure intersects

N ′ in a single disk, hence N ′′ is ambient isotopic to N ′. Therefore C\N ′ is homeomorphic

to ∂+C × [0, 1] implying K ′ is a spine.

Chapter 4. The Geometry of Compression Bodies

In this and the remaining chapters, we will consider C to be a (1, n)-compression body. We

will consider hyperbolic structures on the compression body C. Throughout we will use the

upper halfspace model of hyperbolic geometry. The geodesics consist of Euclidean semicircles

orthogonal to the plane z = 0. We identify the plane z = 0 with C. Geodesic planes in H3 are

Euclidean hemispheres and vertical planes. A horosphere is a Euclidean hemisphere tangent

to a point on the extended complex plane C∪{∞}. The orientation preserving isometries of

H3 correspond to elements of PSL(2,C) via Möbius transformations. A hyperbolic structure

on C is obtained by taking a discrete faithful representation ρ : π1(C) → PSL(2,C) and

forming the quotient M = H3/ρ(π1(C)). Much of the terminology we use in this chapter

comes from [13].

4.1 Isometric Spheres and the Ford Domain

Definition 4.1. A discrete subgroup Γ ≤ PSL(2,C) is geometrically finite if H3/Γ admits

a convex, finite sided fundamental domain. If Γ is geometrically finite, we say the manifold

H3/Γ is geometrically finite.

Definition 4.2. A discrete subgroup Γ < PSL(2,C) is minimally parabolic if it has no rank

one parabolic subgroups.
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For a discrete, faithful representation ρ : π1(C)→ PSL(2,C) of a (1, n)-compression body

C, the image ρ(π1(C)) will be minimally parabolic if for all g ∈ π1(C) we have the following

property: ρ(g) is parabolic if and only if g is conjugate to an element of the fundamental

group of the torus boundary component of C.

Definition 4.3. A discrete, faithful representation ρ : π1(C) → PSL(2,C) is a minimally

parabolic geometrically finite uniformization of C if ρ(π1(C)) is minimally parabolic and

geometrically finite, and if H3/ρ(π1(C)) is homeomorphic to C.

4.1.1 Ford Domains. Throughout this subsection, we will assume that C = H3/Γ is a

hyperbolic manifold with a single rank 2 cusp. We are particularly interested in the case

that C is a (1, n)-compression body. We will view H3 with the upper half space model. We

assume that the point at infinity projects to the cusp. If H is a horosphere about infinity, we

define the subgroup Γ∞ ≤ Γ to be the subgroup fixing H. Since Γ is minimally parabolic,

we have Γ∞ ∼= Z× Z.

Definition 4.4. Let g ∈ Γ\Γ∞. Then g−1(H) is a horosphere centered at a point of C,

viewing ∂H3 as the extended complex plane. The isometric sphere of g is the set Sg of

points in H3 equidistant from H and g−1(H).

Isometric spheres in H3 are Euclidean hemispheres orthogonal to C. The isometric sphere

Sg is well-defined, even if H and g−1(H) intersect.

Definition 4.5. A vertical fundamental domain for Γ∞ is a fundamental domain for the

action of Γ∞ which is cut out by finitely many vertical geodesic planes in H3.

Definition 4.6. Let g ∈ Γ\Γ∞. The closure of the isometric sphere Sg in H3 ∪ C divides

H3∪C into two components. Let Bg be the interior of the ball component containing g−1(∞).

Define F to be

F = H3\
⋃

g∈Γ\Γ∞

Bg
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We call F the equivariant Ford domain. The intersection of F with a vertical fundamental

domain for Γ∞ is called a Ford domain.

The Ford domain of a manifold is not canonical because the choice of vertical fundamental

domain is not canonical. However, the equivariant Ford domain is canonical.

Lemma 4.7. Suppose that

g =

a b

c d

 ∈ PSL(2,C).

Then Sg−1 is a Euclidean hemisphere centered at g(∞) = a/c, and Sg−1 has Euclidean radius

|c|−1.

This lemma is well known and follows from a straightforward computation, so we will

omit the proof. The lemma will help us to concretely visualize the Ford domain of a manifold.

It is well known (Proposition 5.7 [4]) that if Γ < PSL(2,C) is geometrically finite, then

every convex fundamental domain for H3/Γ has finitely many faces. Since Ford domains are

convex fundamental domains, it follows that C = H3/Γ is geometrically finite if and only if

a Ford domain for C has a finite number of faces.

Example 4.8. Let C be a (1, 3)-compression body. Then π1(C) ∼= (Z×Z) ∗Z ∗Z. We will

choose generators α, β for Z × Z and let γ, δ be the generators of the other Z terms of the

free product. Consider the representation

ρ(α) =

1 100

0 1

 ρ(β) =

1 100i

0 1


ρ(γ) =

 0 1

−1 −5i

 ρ(δ) =

−5− 5i −26− 25i

1 5


Set Γ = ρ(π1(C)) and let Γ∞ ≤ Γ be the subgroup of parabolics fixing ∞. Here we

have chosen ρ(α) and ρ(β) somewhat arbitrarily so that they give a very large parabolic

translation length. Drawing the isometric spheres Sγ±1 , Sδ±1 gives us the picture in figure
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Figure 4.1: Part of one translate of the Ford Domain

4.1. If we draw other isometric spheres that are not parabolic translates of Sγ±1 , Sδ±1 , these

spheres will be hidden underneath other isomeetric spheres. We will make this notion more

precise in definition 4.9. For example, if we draw Sγδ−1 and Sδγ−1 and look at the intersection

of the isometric spheres with C, we obtain the picture in figure 4.2. In fact, we will later

show that if we drew every isometric sphere Sg, where g ∈ Γ\Γ∞, the only isometric spheres

that are“visible from ∞” will be Sγ±1 , Sδ±1 and their translates by elements of Γ∞.

We make precise the notion of visible isometric spheres.

Definition 4.9. Let g ∈ Γ\Γ∞. The isometric sphere Sg is visible if there exists an open

set U ⊆ H3 such that U ∩ Sg 6= ∅, and the hyperbolic distances satisfy

d(x, h−1(H)) ≥ d(x,H) = d(x, g−1H)

for every x ∈ U ∩ Sg and h ∈ Γ\Γ∞, where H is some horosphere about infinity.
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Figure 4.2: The intersection of part the isometric spheres Sγ±1 , Sδ±1 , S(γδ−1)±1 with C

We say that the intersection Sg ∩Sh of isometric spheres is visible if there exists an open

U ⊆ H3 such that

d(x, f−1H) ≥ d(x,H) = d(x, g−1H) = d(x, h−1H)

for every x ∈ U ∩ Sg ∩ Sh and f ∈ Γ\Γ∞.

Intuitively, this definition means that for each x ∈ U ∩ Sg and each h ∈ Γ\Γ∞, the point

x is not contained in the hemisphere bounded by Sh and containing h−1H.

The following fact may be found in [13].

Lemma 4.10. For Γ discrete, the following are equivalent.

(i) The isometric sphere Sg is visible.

(ii) There exists a two dimensional cell of the sell structure on F contained in Sg. Addi-

tionally, if Γ is geometrically finite, Sg is visible if and only if Sg 6⊆
⋃
h∈Γ\(Γ∞∪Γ∞g)

B̄h.
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To visualize Ford domains, we will draw isometric spheres one by one. Because we are

examining geometrically finite structures, we will only need to draw finitely many isometric

spheres. Therefore we need a tool that will tell us when we have drawn all the isometric

spheres in the Ford domain. To do this we use the Poincaré Polyhedron Theorem.

Theorem 4.11 (Poincaré Polyhedron Theorem). Let g1, . . . , gn ∈ PSL(2,C) and Γ∞ ∼=

Z× Z be a subgroup of PSL(2,C) consisting of parabolics fixing the point at infinity. Let P

be the polyhedron cut out by the isometric spheres corresponding to the g±1
i and a vertical

fundamental domain. Let M be the object obtained from P by gluing the isometric spheres

corresponding to g±1
i by the face pairing isometries gi for each i, and then gluing the faces of

the vertical fundamental domain by elements of Γ∞. Assume that for each edge e of M (that

is, for each equivalence class of intersections of isometric spheres under the equivalence given

by gluing), the sum of the dihedral angles about e is 2π. Assume that the monodromy about

e is the identity. Then M is a smooth hyperbolic manifold with π1(M) ∼= Γ = 〈g1, . . . , gn〉

and Γ is discrete.

The proof of this theorem can be found in (Theorem 2.21, [13]) as a result of Epstein

and Petronio [10].

Lemma 4.12. Let Γ be a subgroup of PSL(2,C) with rank 2 parabolic subgroup Γ∞ fixing

the point at infinity. Suppose the isometric spheres corresponding to a finite set of elements

of Γ, as well as a vertical fundamental domain for Γ∞, cut out a polyhedron P , so that face

pairings given by the isometries corresponding to isometric spheres and to elements of Γ∞

yield a manifold with fundamental group Γ. Then Γ is discrete and geometrically finite, and

P must be a Ford domain of H3/Γ.

The proof of this result can be found in (Theorem 2.22, [13]).

Throughout this paper, we will draw numerous examples of Ford domains. In all cases,

we may apply lemma 4.12 to show that the finite number of isometric spheres we draw cut

out the entire Ford domain. As an example of how this lemma is applied, we show that the

isometric spheres drawn in example 4.8 form a complete Ford domain.
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Proposition 4.13. The representation given in example 4.8 is a discrete, geometrically fi-

nite uniformization of a (1, 3)-compression body, and its Ford domain is given by intersecting

a vertical fundamental domain with the exterior of Sγ±1 , Sδ±1.

Proof. Select a vertical fundamental domain containing the isometric spheres Sγ±1 and Sδ±1 .

This is possible because ρ(α) and ρ(β) have sufficiently large translation lengths. Let P

be the intersection of this fundamental domain with the exterior of the isometric spheres

Sγ±1 and Sδ±1 . Identify the vertical sides of P by elements of Γ∞. Then glue Sγ to Sγ−1

and Sδ to Sδ−1 by the maps ρ(γ−1) and ρ(δ−1) respectively. Since P has no edges, the

Poincare polyhedron theorem implies that the result of applying these gluings to P is a

smooth manifold M . Then lemma 4.12 implies that M is homeomorphic to H3/Γ.

Now viewing the manifold topologically, we see that the result of gluing together the

faces of the vertical fundamental is T 2× [0, 1]. The isometric spheres Sγ±1 and Sδ±1 are then

identified, which is equivalent to attaching one-handles. The result is then homeomorphic

to the interior of a (1, 3)-compression body. Therefore ρ is a discrete geometrically finite

uniformization of a (1, 3)-compression body.

Throughout this paper we will consider smooth paths of Ford domains. A smooth path

of a Ford domain is a family of representations ρt : π1(C) → PSL(2,C) such that ρt(x)

varies smoothly for each generator of ρt. By taking a suitable path, we can cause isometric

spheres to intersect. When isometric spheres intersect, new isometric spheres become visible

as proved in the lemma below.

Lemma 4.14. Let Γ be a discrete torsion free subgroup of PSL(2,C), with Γ∞ ≤ Γ a rank

two parabolic subgroup fixing ∞. Let γ, δ ∈ Γ\Γ∞, and assume Sγ, Sδ and Sγ ∩Sδ are visible.

Then Sγδ−1 ∩ Sδ−1 is visible and δ maps the visible portion of Sγ ∩ Sδ isometrically to the

visible portion of Sγδ−1∩Sδ−1. Additionally there exists some visible isometric sphere Sη with

Sη 6= Sδ−1 such that Sη ∩ Sδ−1 = Sγδ−1 ∩ Sδ−1.

Proof. Choose a horosphere H about ∞ such that the horoball bounded by H projects to

an embedded neighborhood of the cusp in M . Since Sγ ∩ Sδ is visible, there is an open set
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U ⊆ H3 such that

d(x, ϕ−1H) ≥ d(x,H) = d(d, γ−1H) = d(x, δ−1H) (4.1.1)

for every x ∈ U ∩ Sγ ∩ Sδ and ϕ ∈ Γ\Γ∞. Apply the isometry δ to H3. We then obtain

d(δ(x), δϕ−1H) ≥ d(δ(x), δH) = d(δ(x), δγ−1H) = d(δ(x), H)

for every ϕ ∈ Γ\Γ∞. Therefore each y = δ(x) ∈ δ(u)∩Sγδ−1 ∩Sδ−1 satisfies the inequality of

definition 4.9, hence Sγδ−1 ∩ Sδ−1 is visible.

Cover the 1-cell of the Ford domain containing Sγ ∩ Sδ by open sets satisfying equation

4.1.1. Since the above argument applies for each Uα, we see that δ maps the visible portion

of Sγ ∩ Sδ isometrically to the visible portion of Sγδ−1 ∩ Sδ−1 .

Since Sγδ−1 ∩Sδ−1 is visible, it contains a one dimensional cell of the Ford domain, hence

there is some two dimensional cell of the Ford domain adjacent to Sγδ−1 ∩ Sδ−1 . Since Sδ

is visible, so is Sδ−1 . Therefore one of these 2-cells is contained in Sδ−1 . The other 2-cell is

contained in some Sη, hence Sη is visible for some η.

Note that in lemma 4.14, the isometric sphere Sη may equal Sγδ−1 , but this is not always

the case, as shown in the following example.

Example 4.15. Consider the family of representations ρt : π1(C) → PSL(2,C) where C is

a (1, 3)-compression body

ρt(α) =

1 100

0 1

 ρt(β) =

1 100i

0 1


ρt(γ) =

0 −1

1 it

 ρt(δ) =

1.05 + 2.5i 6.3525

1 1.05− 2.5i


Here have chosen ρ(α) and ρ(β) so that it is easy to choose a vertical fundamental domain.
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Figure 4.3: When t = 2.5 the isometric spheres do not intersect.

We will consider the representations where t ∈ [1, 2.5]. When t = 2.5 the Ford domain

consists of the four visible isometric spheres in figure 4.3. When t = 2.0, the isometric

spheres Sγ and Sγ−1 intersect and the isometric spheres Sγ±2 become visible, as predicted

by lemma 4.14. Figure 4.4 below shows the Ford domain when t = 1.9 to give the picture

of what happens when Sγ and Sγ−1 intersect. When t = 400/363 the isometric sphere Sγ2

intersects the isometric spheres Sδ±1 simultaneously, see figure 4.5. Lemma 4.14 tells us

that the intersections Sγ−2δ ∩Sγ2 , Sγ−2δ−1 ∩Sγ2 , Sγ−2 ∩Sδ−1γ2 , and Sγ−2 ∩Sδγ2 will be visible.

However, the isometric spheres S(γ−2δ)±1 and S(δγ2)±1 are not visible as they are hidden behind

the isometric spheres Sδ±1 and S(γ−2δγ2)±1 . These last two spheres became visible as a result

of the intersection of Sγ2 intersecting Sγ−2δ and Sγ−2δ−1 . This becomes more apparent as we

continue to decrease t to 400/363− .2, as in figure 4.6.

While lemma 4.14 does not specify which isometric sphere becomes visible, it does

guarantee that if isometric spheres begin to intersect along a path of Ford domains, then

new isometric spheres will become visible. The work of Lackenby and Purcell [13] shows that

this is the only way that an isometric sphere may become visible. In other words, if a path
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Figure 4.4: When t = 1.9, Sγ and Sγ−1 intersect and Sγ±2 become visible.

Figure 4.5: When t = 400/363, Sγ2 intersects the isometric spheres Sδ±1 simultaneously

27



Figure 4.6: The isometric spheres S(γ−2δ)±1 and S(δγ2)±1 remain invisible as t decreases.

of Ford domains introduces no new intersections of isometric spheres, then no new isometric

spheres will become visible.

By considering the intersection of visible isometric spheres, Lackenby and Purcell devel-

oped an algorithm to draw Ford domains [13].

Algorithm 4.16 (Lackenby-Purcell Algorithm). Begin with a choice of loxodromic gener-

ators γ1, . . . , γn for Γ. Let L0 and L1 be lists. The list L0 will consist of drawn isometric

spheres, while the list L1 will consist of isometric spheres to be drawn. Then perform the

following steps:

(i) Draw the isometric spheres Sγ±1
1
, Sγ±1

2
, . . . , Sγ±1

n
and add these isometric spheres to the

list L0.

(ii) For each pair of isometric spheres Sγ and Sδ drawn in step (i) that intersect, add Sγδ−1

and Sδγ−1 to the list L1.

(iii) Draw the first isometric sphere Sξ in the list L1.

(iv) Add Sξ to L0, and remove Sξ from L1.
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(v) If Sξ intersects an isometric sphere Sγ, add each Sγξ−1 , Sξγ−1 not in L0 or L1 to the list

L1.

(vi) Repeat steps (iii) through (v) until the list L1 is empty.

Lackenby and Purcell conjectured that this algorithm would eventually terminate when

drawing Ford domains of (1, 2)-compression bodies. In the case of (1, n)-compression bodies

with n ≥ 3, the algorithm does not always draw the Ford domain. In fact, algorithm 4.16

fails to draw the Ford domain in the final step of example 5.7, and the Ford domains in the

proof of theorem 6.2. In all of these examples, an isometric sphere corresponding to one

of the generators is not visible in the Ford domain. However, in these examples, there is a

choice of generators such that the isometric spheres corresponding to these generators are

visible in the Ford domain, and algorithm 4.16 draws the complete Ford domain. It is still

open whether algorithm 4.16 will draw the Ford domain for some choice of generators.

We are interested in studying a tunnel system for a manifold. We can often identify the

tunnel system with geometric duals of the Ford spine, which we now describe. The dual

as described here is similar to the canonical polyhedral decompositions for finite volume

manifolds described by Epstein and Penner [9]. Let C be a (1, n)-compression body and

assume π1(C) ∼= Γ ≤ PSL(2,C). For each Sγ where γ ∈ Γ\Γ∞, there is an edge eγ which

runs from the center of Sγ to the point at infinity in H3. The edge eγ is called the dual to Sγ.

Suppose that γ1, . . . , γn−1 are the loxodromic generators of Γ. In the next chapter we will

show that in some cases collection of duals to the isometric spheres Sγ1 , . . . , Sγn correspond

to a spine of the compression body C. In all cases, the collection of duals is homotopic to a

spine of C.

Chapter 5. A Geometric View of the Topology

In this chapter we discuss how we can use the geometric tools of chapter 4 to understand

the topological tools of chapter 3 for (1, n)-compression bodies.
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Definition 5.1. Let C be a (1, n)-compression body, and let γ1, . . . , γn−1 be a minimal set of

loxodromic generators of Γ = ρ(π1(C)), where as usual ρ : π1(C)→ PSL(2,C) is a discrete,

faithful representation. A Ford domain F is called simple if {Sγi , Sγ−1
i

: 1 ≤ i ≤ n − 1} is

the set of visible isometric spheres in F , and none of the visible isometric spheres intersect.

If F is a simple Ford domain, then F is easy to understand. In particular, we show that

in this case, the pairs of visible isometric spheres correspond to disks in a minimal system

of disks for C.

Theorem 5.2. If F is a simple Ford domain of a (1, n)-compression body C, with visible

faces {Sγi , Sγ−1
i

: 1 ≤ i ≤ n − 1}, then the closure of the image of the disks Sγ1 , . . . , Sγn−1

under the action of Γ forms a minimal system of disks for C.

Proof. The action of the parabolic generators of Γ glues up F to form a manifold homeomor-

phic to T 2 × (0, 1). Since the disks Sγi , Sγ−1
i

are disjoint, the action of γi identifies Sγi and

Sγ−1
i

, which is topologically equivalent to attaching a 1-handle. Similarly, the complement

of a regular neighborhood of the Sγi , Sγ−1
i

in F glues up to form a manifold homeomorphic

to T 2× (0, 1). Therefore closure of the images of the isometric spheres Sγ1 , . . . , Sγn−1 form a

system of disks for C. The fact that the system is minimal follows from lemma 3.4.

Theorem 5.3. Let ρ : π1(C) → PSL(2,C) be a minimally parabolic geometrically finite

uniformization of the (1, n + 1)-compression body C. Suppose γ1, . . . , γn are loxodromic

generators of ρ(πi(C)) = Γ. Let d̃i be the geodesic dual to Sγ−1
i

. Then under the quotient

action of Γ, the dual edges d̃i are homotopic to a spine of C. If the Ford domain is simple

and each Sγi is visible, the edges d̃i form a spine of C.

Proof. Take the closure a regular neighborhood N of ∂−C so that the closure N is homeo-

morphic to ∂−C × [0, 1]. Choose p = (p′, 1) ∈ ∂−C × {1} and let q = (p′, 0) ∈ ∂−C × {0}.

Let f : [0, 1]→ C be the straight line from p to q.
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In the universal cover H3, choose a vertical fundamental domain D for Γ. We may take

D to contain γi(∞) for all i = 1, 2, . . . , n. The lift p̃ of p into D is a point on a horoball

H about ∞. For each loxodromic generator γi define p̃i = γi(p̃). The point p̃i lies on a

horosphere centered at γi(∞). For each i = 1, 2, . . . , n, let g̃i be a geodesic arc in D from p̃

to p̃i. Under the action of Γ, the arc g̃i becomes a loop in the homotopy class of γi.

Let f̃i be a geodesic arc in D from p̃i to γi(∞), and let f̃ ′i be a geodesic arc from ∞ to

p̃. Under the action of Γ, the closure of the quotient of the arcs f̃i and f̃ ′i in C become an

arcs from p to points on ∂−C, which are homotopic to f rel p, and the homotopy may be

taken to keep an endpoint of each of the arcs on ∂−C. Set h̃i to be the arc f̃ ′i followed by g̃i

followed byf̃i. Then h̃i runs from ∞ to γi(∞). Therefore d̃i ' h̃i. Since under the action of

Γ, the arcs h̃i together with ∂−C form a spine of C, the edges d̃i form a spine of C.

We now consider the case where the Ford domain F is simple. We follow an argument

similar to the proof of lemma 3.11 in [13] to show that F deformation retracts to the union

of the geodesic duals to the visible isometric spheres, and a horoball H about infinity disjoint

from the isometric spheres of the Ford domain. We will construct this deformation retractso

that it descends to a deformation retract of C, hence the dual edges of the Ford domain glue

up to form a spine for C.

Since there are finitely many visible faces in F , we may choose some ε > 0 such that

the Euclidean cylinders Ci, C
′
i of radius ε centered at γ−1

i (∞) and γi(∞) respectively, do not

intersect the geodesic duals. We may also take ε to be strictly less than the minimal radius

of any visible face of the Ford domain. For i = 1, . . . , n, let Di be the disk in Sγi bounded

by Sγi ∩ Ci, and let D′i be the disk in Sγ−1
i

bounded by Sγ−1
i
∩ C ′i. Let H1 be the boundary

of the horoball H, and define

H ′1 = {p ∈ H1 : the vertical line through p does not intersect any isometric sphere of F}.

The set (H1\H ′1)∩F consists of disks Ei, E
′
i corresponding to the isometric spheres Sγi and

Sγ−1
i

respectively. Let S be the result of isotoping H1 in F so that H ′1 remains fixed, and so
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that each Ei and E ′i is isotoped to Di and D′i respectively.

Let x ∈ H3 ∩ F . The nearest point on H1 to x lies on a vertical line through x to ∞.

These vertical lines give a foliation of F . We may construct S above so that it meets each

vertical line of this foliation exactly once. Let f1 be the retraction of F to the union of H and

the region R1 bounded by H1 and S, by mapping each x ∈ F\R1 to the intersection of S with

the vertical line through x. By constructing S carefully, we may ensure that f1 is equivariant

with respect to the action of Γ on F . The horosphere H1 can be given by the equation z = c

for some c > 0. For t > 0, let Ht be the plane z = ct. To each xH ∈ Ht there corresponds a

point xS ∈ S such that xH and xS lie on a vertical line. Let π3 be the projection of H3 onto

the z-coordinate. Let St = {xH ∈ Ht : π3(xH) ≤ π3(xS)}
⋃
{xS ∈ S : π3(xS) ≤ π3(xH)}. Let

Rt be the union of H and the region bounded by H1 and St.

We are now ready to define the deformation retraction of F to S. Let f0 be the identity,

and f1 be as above. For t ∈ (0, 1), define ft to be the retraction keeping Rt fixed, and for

each x ∈ F\Rt let ft(x) be the intersection of St with the vertical line through x. Note that

the geodesic duals remain fixed for all maps ft, therefore ft is a deformation retract of F

to a regular neighborhood of the goedesic duals and the horoball H. We can extend this

to a deformation retract of F to the union of the geodesic duals and H. Since each ft is

equivariant with respect to the action of Γ, this descends to a deformation retract of C to a

neighborhood of ∂−C and the image of the geodesic duals under the quotient.

Given a minimal system of disks D for a compression body C and a spine K, we can

associate each edge ei of K to a generator γi of the fundamental group π1(C). After per-

forming a disk slide, we obtain a new system of disks D′ for C and a spine K ′ dual to D′.

We would like to understand how the edges of K ′ relate to the edges of K in terms of the

fundamental group.

Lemma 5.4. Let D = {D1, D2, . . . , Dn−m} be a system of disks for an (m,n)-compression

body. Let K be the spine dual to D consisting of the edges e1, . . . , em−n where each ei is dual
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to the disk Di. For each ei, let γi be the corresponding generator in π1(C). Let S × [0, 1]

be the result of removing a regular neighborhood of D from C. Let Ek, E
′
k be the disks in

S × [0, 1] which are parallel to Dk. For each edge ek of K, ek ∩ (S × [0, 1]) consists of arcs

dk and d′k running from a vertex of the spine to Ek and E ′k respectively. Fix i, j with i 6= j.

Let ω be a loop in S × [0, 1] consisting of the following six subarcs:

• ω1 = dj

• ω2 in Ej from the endpoint of ω1 to ∂+C

• ω3 in ∂+C from the endpoint of ω2 to Ei, disjoint from all Ek, E
′
k except Ei and Ej.

• ω4 in Ei from the endpoint of ω3 to the endpoint of di

• ω5 = di

• ω6 in ∂−C connecting the endpoints of dj and di in such a way that ω will be homo-

topically trivial in S × [0, 1].

Let e′ be the loop in C consisting of the following subarcs:

• e′1 = d′j

• e′2 = ω2

• e′3 = ω3

• e′4 = ω4

• e′5 = d′i

• e′6 = ω6
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Figure 5.1: Disks and edges in the construction of lemma 5.4

Set D′ = Di∗ω3Dj and D′ = {D1, D2, . . . , D̂i, . . . , Dn−m, D
′} (where D̂i means omission).

Then the graph K ′ consisting of the edges e1, . . . , êj, . . . , em−n, e
′ forms a spine dual to D′.

Here e′ is dual to Dj and ei is dual to D′, and ek is dual to Dk for all k 6= i, j. Moreover,

e′ ' γ−1
j ωγi rel ∂−C. See figure 5.1

Proof. We need to show that e′ ' γ−1
j ωγi, that each edge of K ′ intersects exactly one disk

of D′ exactly once, that each edge of K ′ does not intersect any other edge of K ′, and that

K ′ is isotopic to a spine.

Step 1 : e′ ' γ−1
j ωγi

We will consider the arcs dk, d
′
k to be oriented so that they run from a point on S × [0, 1] to
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Ek, E
′
k. Then

e′ ' d′j ∗ ω2 ∗ ω3 ∗ ω4 ∗ d′i

' d′j ∗ dj ∗ dj ∗ ω2 ∗ ω3 ∗ ω4 ∗ di ∗ di ∗ d′i

' d′j ∗ dj ∗ ω ∗ di ∗ d′i

' γ−1
j ∗ ω ∗ γi

where ∗ denotes concatination of paths as in the study of aglebraic topology, and as in the

definition of the product in π1(C).

Step 2 : Each edge intersects exactly one disk exactly once.

The edges ek intersect the disk Dk exactly once, and if k 6= i, j they remain disjoint from

any D` for ` 6= k. We need to show that ek is disjoint from D′ if k 6= i, j. Suppose ek

intersects D′. If the intersection is not transverse, then a small isotopy of ek will make ek

disjoint from D′. Suppose the intersection is transverse, so ek intersects D′ at a point p. Let

B be the ball in C bounded by Ei, Ej, D
′ and ∂+C. Then a portion of ek lies in B. Since

ek must intersect the negative boundary and Ei, Ej and D′ cut out a ball from S × [0, 1], ek

must intersect Ei, Ej, or D′. However, ek cannot intersect Ei or Ej because it is dual to Dk.

Therefore there must be some other point of intersection of D′ and ek. Let q be the point of

intersection such that the portion of ek from p to q lies entirely in B. This defines an arc in

B with endpoints on D′, which may be isotoped to lie in D′, and then isotoped off of D′.

We show that the edge ei intersects D′ exactly once. Consider the ball B constructed

above. The edge ei must intersect Di exactly once, at the point p1. Therefore a portion of

ei must lie in B. Since ei has endpoints on the negative boundary and cannot intersect Dj

or ∂+C, there is some point p2 where ei and D′ intersect, and the portion of ei between p1

and p2 lies entirely inside B. Suppose that ei∩D′ 6= {p2}. We may assume that ei intersects

D′ transversely, so the intersection consists of a finite, discrete set of points. Suppose q1 is a
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point in ei ∩D′ and q1 6= p2. Then a portion β of ei (besides the arc between p1 and p2) lies

inside B. Now β cannot intersect Dj, ∂+C or Di, so since the endpoints of di lie on ∂−C, β

must intersect D′ at some other point q2. We can then isotope di so that we eliminate the

points q1 and q2 from the intersection.

The edge e′ does not intersect Dk for k 6= i, j since it is the concatenation of arcs

d′j ∗ω2 ∗ω3 ∗ω4 ∗d′i ∗ω6, all of which are disjoint from any Dk with k 6= i, j. Because e′ meets

Ej and E ′j, it must intersect Dj. By isotoping e′ within the ball in C bounded by Ej and

E ′j, we can ensure that e′ meets Dj exactly once.

Step 3 : None of the edges of K ′ intersect, except possibly at the vertex on S×{0} ∼= ∂−C.

If there are any intersections, since C is a 3-manifold and the edges are embedded 1-manifolds,

a small isotopy will make the edges disjoint.

Step 4 : We show that K ′ is isotopic to a spine.

Let N be the union of a regular neighborhood of K and ∂−C in C. Then C\N is homeo-

morphic to ∂+C × [0, 1]. Therefore there is a retraction of C\N onto ∂+(C)× {1} which we

identify with ∂+(C). Let Nk be a regular neighborhood of Dk in C. Then ∂Nk\∂+C consists

of disks Ek and E ′k parallel to Dk. The intersections Ak = Ek∩(C\N) and A′k = E ′k∩(C\N)

are annuli, each with one boundary component on ∂+C ×{1} and the other boundary com-

ponent on ∂+C × {0}. We may isotope these annuli so that each level surface ∂+C × {t}

intersects each Ak and A′k in a single essential loop. Thus the result of removing
⋃n−m
k=1 Nk

from C\N is S × [0, 1] where S is a genus n surface with 2(n − m) punctures. By taking

N sufficiently small, we can ensure that S ∩ ∂−C is path connected. Now we may isotope

ω through N to lie in the boundary of S × [0, 1], with its endpoints on ∂−C. Since ω is

homotopically trivial in S × [0, 1], a homotopy of ω to a point bounds an immersed disk in

S × [0, 1]. Since ω lies in the boundary of S × [0, 1], Dehn’s lemma guarantees the existence

of an embedded disk D in S× [0, 1] bounded by ω. Extend D in C so that it includes a disk
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between d′i, an arc parallel to d′i and an arc in Ei. Then D defines an edge slide of K, and

the resulting spine is isotopic to K ′.

5.1 Geometric Disk Slides

We now consider paths of Ford domains. Let ρ : π1(C) → PSL(2,C) be a geometrically

finite minimally parabolic representation of a (1, n)-compression body. Let α, β be parabolic

generators and γ1, . . . , γn−1 loxodromic generators. By changing the images of the generators

continuously, while keeping α, β parabolic and the γi loxodromic, we may obtain a continuous

path of Ford domains.

Let C be a (1, n)-compression body. We now describe a way to smoothly transition from

one simple Ford domain to another called a geometric disk slide. We do this by taking a path

of representations ρt : π1(C)→ PSL(2,C) where t ∈ [0, 1], and the representations ρ0 and ρ1

have simple Ford domains. Let γ1(t), . . . , γn−1(t) be loxodromic generators of ρt(π1(C)). Let

α(t) and β(t) be parabolic generators of ρt(π1(C)). By varying the matrices γi(t), α(t) and

β(t) smoothly, we may obtain a smooth path of representations. If these representations are

geometrically finite uniformizations of C, we obtain a smooth path of Ford domains.

Definition 5.5. A geometric disk slide is a smooth path of Ford domains consisting of the

following steps:

(i) Fix i 6= j.

(ii) For t ∈ [0, 1], vary γi(t) smoothly in a way that Sγi(t) moves along a path so that it

becomes visibly tangent to Sγj(t) and no other isometric sphere. We require that for

t ∈ [0, 1) the isometric spheres Sγ±1
k (t) remain disjoint, and that when t = 1 only the

isometric spheres Sγi(t) and Sγj(t) intersect.

(iii) For t ∈ [0, 2], push Sγi(t) toward the center of Sγj(t) in such a way that only the

isometric spheres Sγ±1
1 (t), . . . , Sγ±1

n−1(t), S(γjγ
−1
i )±1(t) are visible. Throughout this portion

37



of the path, we require all of that these isometric spheres all remain disjoint, except

the following pairs of isometric spheres may intersect:

• Sγi(t) and Sγj(t)

• Sγiγ−1
j (t) and Sγ−1

j (t)

• Sγjγ−1
i (t) and Sγ−1

i (t)

(iv) Choose the path in step (iii) so that when t = 2, the isometric spheres S(γjγ
−1
i )±1 have

radius 1.

(v) When t = 2, write A(t) = γiγ
−1
j (t) and γi(t) = Aγj(t). We now consider the group

ρt(π1(C)) to be generated by α(t), β(t), γ1(t), . . . , ˆγi(t), . . . , γn−1(t), A(t) where ˆ indi-

cates omission.

(vi) For t ∈ [2, 3], move SA(t) away from the center of Sγj until the Ford domain is simple.

Throughout this process we require that only the isometric spheres Sγ±1
1 (t), . . . , Sγ±1

n−1(t), SA±1(t)

are visible, and that all of these isometric spheres remain disjoint, except the following

pairs of isometric spheres may intersect:

• Sγi(t) and Sγj(t)

• Sγiγ−1
j (t) and Sγ−1

j (t)

• Sγjγ−1
i (t) and Sγ−1

i (t)

Note that during a geometric disk slide, the isometric spheres Sγi(t) and Sγj(t) will inter-

sect, hence lemma 4.14 indicates that Sγi(t)γ−1
j (t)∩Sγ−1

j
and Sγi(t)γ−1

j (t)∩Sγ−1
i (t) will be visible.

There is no guarantee that S(γi(t)γj(t))±1 will be visible, but in many cases this will be true.

A possible way to ensure that step (iv) of the disk slide is satisfied, is make Sγi(t) and

Sγj(t) have radius 1, and push the centers of these two isometric spheres toward each other

until the centers of these isometric spheres are separated by a Euclidean distance of 1. This

is shown by the following lemma.
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Lemma 5.6. Suppose the isometric spheres Sγ1 and Sγ2 have radius 1. Then the radius of

Sγ1γ−1
2

is the inverse of the distance in C between the center of Sγ1 and Sγ2.

Proof. Let

γ1 =

a1 b1

c1 d1

 , γ2 =

a2 b2

c2 d2


be elements of PSL(2,C). Then the (2, 1) entry of γ2γ

−1
1 is c2d1−d2c1, so lemma 4.7 implies

that Sγ1γ−1
2

has radius |c2d1 − d2c1|−1. On the other hand, lemma 4.7 indicates that the

distance between the centers of the isometric spheres Sγ1 and Sγ2 is given by

∣∣∣∣d1

c1

− d2

c2

∣∣∣∣ =

∣∣∣∣c2d1 − d2c1

c1c2

∣∣∣∣ = |c2d1 − d2c1|

The last step follows because Sγ1 and Sγ2 have radius 1, implying |c1| = |c2| = 1.

A possible way to satisfy the final step of the geometric disk slide, is ensure that all the

isometric spheres Sγ±1
1 (3), . . . ,

ˆSγi(3)±1 , . . . , Sγ±1
n−1(3), SA±1(3) (where ˆ indicates omission) have

radius 1, and that no two centers of these isometric spheres are separated by Euclidean

distance ≤ 2. In this case, the Poincaré Polyhedron theorem may be applied in a similar

manner to the proof of proposition 4.13 to show that the only visible isometric spheres are

Sγ±1
1 (3), . . . ,

ˆSγi(3)±1 , . . . , Sγ±1
n−1(3), SA±1(3).

The following example shows that there exists a geometric disk slide.

Example 5.7. Let C be a (1, 3)-compression body. Then π1(C) ∼= (Z × Z) ∗ Z ∗ Z. Let α

and β be generators of Z×Z and let γ and δ generate the other Z factors of π1(C). Consider

the family of representations ρt(π1(C)) given by:

ρt(α) =

1 100

0 1

 ρt(β) =

1 100i

0 1


ρt(γ) =

 0 1

−1 −5i+ (−1 + i)t

 ρt(δ) =

−5− 5i −26− 25i

1 5


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Figure 5.2: The Ford domain for the representation ρ0

When t = 0 we obtain the simple Ford domain in figure 5.2. The parabolic elements

were chosen so that the translation lengths would be large, thus preventing intersections of

isometric spheres corresponding to the loxodromic generators and the parabolic subgroup

Γ∞. When t = 5−
√

2 the isometric spheres Sγ and Sδ intersect, and the isometric spheres

Sγδ−1 and Sδγ−1 begin to emerge (see figure 5.3).

When t = 5 −
√

2

2
the radius of the spheres Sγδ−1 , Sδγ−1 is 1 (see figure 5.4). Now we

begin to change the representation of π1(C) in a different way. We will vary the image of

γδ−1 while fixing the image of δ. Let t0 = 5−
√

2/2. Let a1,1 and a2,1 be the (1, 1) and (2, 1)

entries of ρt0(γ) respectively. Define m = −a1,1

a2,1

and

M =

1 −m

0 1

 , Z(s) =

0 0

0 −(1 + i)s


We now define the representation ρ′s : π1(C)→ PSL(2,C) by:
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Figure 5.3: At t = 5−
√

2 the isometric spheres intersect

Figure 5.4: The radius of the new sphere is 1
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Figure 5.5: The isometric spheres Sγ and Sγ−1 begin to disappear

ρ′s(γδ
−1) = M−1(Mρt0(γδ

−1)−1M−1 + Z(s))−1M

ρ′s(δ) = ρt0(δ)

ρ′s(α) = ρt0(α)

ρ′s(β) = ρt0(β)

One may easily check that this actually defines a representation into PSL(2,C), i.e. that

ρ′s(γδ
−1) ∈ PSL(2,C). When s = 0, ρ′s = ρt0 . As s increases, the isometric sphere Sγδ−1 pulls

away from Sδ−1 . On the other hand, the radius of Sγ−1 decreases, and this isometric sphere

begins to hide behind Sδγ−1 . The radius of Sγ−1 also decreases, and the isometric sphere

begins to hide behind Sδ (see figure 5.5). After increasing s even more, we eventually obtain

a simple Ford domain, where the isometric sphere Sδ±1 and S(γδ−1)±1 are visible (see figure

5.6).

Recall that Lackenby and Purcell developed algorithm 4.16 to visualize the Ford domain

42



Figure 5.6: The final result of a geometric disk slide

of a (1, 2)-compression body. The generalization of this algorithm to (1, n)-compression bod-

ies fails to draw the Ford domain of the endpoint of the path ρ′s if we choose the loxodromic

generators γ and δ. This is because Sγ±1 and Sδ±1 are all disjoint, so the algorithm will tell

us only to draw these isometric spheres and then stop. The algorithm would not instruct

us to draw the visible isometric spheres S(γδ−1)±1 . When the algorithm terminates, Sγ−1 is

visible while Sγ is not visible, hence the resulting picture cannot be the Ford domain. This

proves the following proposition.

Proposition 5.8. There exist hyperbolic structures on the (1, n)-compression body with n ≥

3, and a choice of generators of the fundamental group Γ of C such that algorithm 4.16 fails

to draw the Ford domain.

Notice that the geometric disk slide gives a way of transitioning from one simple Ford

domain to another. Since a simple Ford domain corresponds to a minimal system of disks for

a compression body C, and all minimal systems of disks are slide equivalent, the geometric

disk slide must correspond to some sequence of disk slides.

Theorem 5.9. Suppose F is a simple Ford domain of a (1, n + 1)-compression body con-
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taining the isometric spheres Sγ±1
1
, . . . , Sγ±1

n
. Let D = {D1, . . . , Dn} be a minimal system of

disks for C, where each Dk is the image of Sγk under the quotient. Let D′ be the system

of disks in C corresponding to a geometric disk slide F ′ of F sending Sγi underneath Sγj .

Then D′ is isotopic to {D1, . . . , D̂i, . . . , Dn, Di ∗α Dj} for an appropriate choice of α. If ω

is constructed as in theorem 5.4 with ω3 = α, then ω is trivial in C.

Proof. Let K be the spine dual to D consisting of the edges ek where each ek is the image

(under the quotient map) of the geodesic dual to Sγ±1
k

. We may identify each ek with a lox-

odromic generator γk of Γ = ρ(π1(C)). Let Ek, E
′
k be the disks constructed in the statement

of lemma 5.4. Let α be an arc in ∂+C running from E ′i to E ′j, remaining disjoint from the

other disks Ek, E
′
k. Construct α in such a way that if ω is constructed as in lemma 5.4 with

ω3 = α then ω is trivial. Let K ′ be the spine dual to D′, constructed in a similar manner

as K. The visible isometric spheres of F ′ are Sγ±1
1
, . . . , Ŝγ±1

i
, . . . , Sγ±1

n
, S(γiγ

−1
j )±1 . Since the

Ford domain is simple, the edges of K ′ are isotopic to the image of the duals corresponding

to the loxodromic generators γ1, . . . , γ̂i, . . . , γn, γiγ
−1
j . Let K ′′ be the spine dual to the disk

slide D′′ = {D1, . . . , D̂i, . . . , Dn, Di ∗α Dj}. By lemma 5.4, edges of K ′′ are also isotopic to

the image of the duals corresponding to the loxodromic generators γ1, . . . , γ̂i, . . . , γn, γiγ
−1
j .

Therefore K ′ and K ′′ are isotopic. Since the system of disks dual to a spine is unique up to

isotopy, this implies D′ is isotopic to D′′, hence D′ is given by the disk slide D′′ of D.

Chapter 6. Tunnel Systems with Intersecting Geodesic

Representatives

In this section we show that the geodesic duals in the Ford domain may be made to intersect

while retaining a geometrically finite structure. We then prove that there exist finite volume

one-cusped hyperbolic manifolds with a system of n tunnels for which the geodesic repre-

sentative of (n − 1) of the tunnels are arbitrarily close to self-intersecting. Since a tunnel
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homotopic to a self-intersecting geodesic cannot be isotopic to a geodesic, this gives evidence

that tunnels may not always be isotopic to geodesics.

Suppose we are given a (1, 3)-compression body C with the representation ρ : π1(C) →

PSL(2,C) giving a simple Ford domain, for example the representation of example 4.8. The

geodesic dual to this picture consists of four arcs which are each vertical lines running from

the center of one of the isometric spheres Sγ±1 , Sδ±1 to the point at infinity.

Now consider what happens to the geometric dual when we perform a geometric disk

slide sending Sγ underneath Sδ as in example 5.7. At some point in time, as we pull apart

the isometric spheres Sγδ−1 and Sδ−1 , the center of Sγ intersects Sδ at a point p. Under the

image of the quotient, this point is identified with the point q corresponding the intersection

of the center of Sγ−1 and the isometric sphere Sδγ−1 .

Lemma 6.1. Let γ and δ be loxodromic generators of a (1, n)-compression body C. Suppose

that the faces Sδ±1 , S(δγ−1)±1 of the Ford domain of C are visible. Assume that the center of

the isometric sphere Sγ is contained in the interior of the Euclidean half-ball bounded by Sδ.

Then the geometric dual d̃ to Sγ is mapped to a geodesic d under the action of Γ that lifts to

three visible arcs in the Ford domain:

(i) A geodesic arc α1 from ∞ to a point on Sδ

(ii) A geodesic arc α2 from a point on Sδ−1 to a point on Sγδ−1 (provided that this arc does

not intersect any other visible isometric spheres)

(iii) A geodesic arc α3 from ∞ to a point on Sδγ−1

See figure 6.1.

Proof. Choose a horosphere H about ∞. Let S be the set of points in H3 equidistant from

δ−1(H) and γ−1(H). Let p1 be the intersection of Sδ and d̃, and let p2 be the intersection

of S and d̃. Note that p2 is contained inside the Euclidean half-ball bounded by Sδ and

containing δ−1(H). By applying δ to H3, δ−1(H) is mapped to H, and H is mapped to
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Figure 6.1: Lift of d in the Ford domain consists of the arcs α1, α2, and α3.

δ(H). Therefore the isometric sphere Sδ maps to Sδ−1 isometrically. Likewise S gets mapped

isometrically to Sγδ−1 . The geodesic dual d̃ gets mapped to the geodesic running from δ(∞)

to δγ−1(∞). Now δ(d̃) is a geodesic which passes through δ(p1) ∈ Sδ−1 and δ(p2) ∈ Sγδ−1 .

In a similar manner as above, apply γ to H3. The isometric sphere Sγ is mapped isomet-

rically to Sγ−1 , and S is mapped to Sδγ−1 . The geodesic dual d̃ gets mapped to the geodesic

dual to Sγ−1 . Therefore d̃ gets mapped to an arc containing vertical line from a point on

Sγ−1 to ∞.

Now γ(d̃), δ(d̃), and d̃ are mapped to a geodesic d in the quotient H3/Γ. Therefore the

portions of these arcs which are in the Ford domain are lifts of d to the Ford domain. Note

that d̃, δ(d̃), and γ(d̃) contain the arcs α1, α2 and α3 respectively.

Theorem 6.2. There exists a geometrically finite, minimally parabolic uniformization Γ of

a (1, 3)-compression body, and a loxodromic generator γ ∈ Γ such that the image of the

geometric dual to Sγ−1 under the action of Γ has a self-intersection.

46



Proof. We prove this by giving a specific example. Consider the family of representations

ρt(α) =

1 20

0 1

 ρt(β) =

20i 1

0 1


ρt(γ) =

−49 + 20i− 10it 700− 400i+ (20 + 151i)t

−10 151− 20i

 ρt(δ) =

−10 151− 20i

−1 15− 2i


Notice that whenever t ∈ [0, 4], the isometric spheres Sγ±1 are invisible, with Sγ covered by

Sδ−1 and Sγ−1 covered by Sδγ−1 . By lemma 6.1, under the action of ρ(π1(M)), a portion of

the dual to Sγ is mapped to a geodesic running from a point pγδ−1(t) on Sγδ−1 to a point

pδ−1(t) on Sδ−1 . Define pγ−1(t) to be the intersection of the geodesic dual to Sγ−1 with

Sδγ−1 . For each t define a Euclidean triangle Tt with the edges e1(t), e2(t) and e3(t) being the

projections of the geodesic segments [pγ−1(t), pγδ−1(t)], [pδ−1(t), pγ−1(t)] and [pδ−1(t), pγδ−1(t)]

onto C respectively. For i = 1, 2, 3, let mi(t) be the slope of ei(t). Define a function

f : [0, 4]→ R by

f(t) =

 −Area(Tt) if m1 < m2

Area(Tt) if m1 ≥ m2

Intuitively, f(t) is negative when pγ−1(t) is below e2(t), positive when pγ−1(t) is above

e2(t), and zero when the points pγ−1(t), pδ−1(t), pγδ−1(t) are colinear. Because the points

pγ−1(t), pδ−1(t) and pγδ−1(t) vary continuously with t, and f(t) = 0 when these points are

colinear, f(t) defines a continuous function. As can be seen in figure 6.2, when t = 0 we

have f(t) < 0 since pγ−1(t) must be below the line segment e1(t). Similarly, when t = 4 we

obtain f(t) > 0 (see figure 6.2). The intermediate value theorem guarantees that there is

some t0 ∈ [0, 4] for which f(t0) = 0, i.e. pγ−1(t0), pδ−1(t0) and pγδ−1(t0) are colinear. Hence

when t = t0 the image of the geodesic dual to Sγ−1 under the action of Γ self-intersects.

Theorem 6.3. There exists a geometrically finite, minimally parabolic uniformization Γ of
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Figure 6.2: When t = 0, the Ford domain is as pictured on the left, and f(0) < 0. When
t = 4, the Ford domain is as pictured on the right and f(4) > 0.

.

a (1, n+ 1)-compression body and a choice of loxodromic generators δ1, . . . , δn of Γ for which

the image of the geometric dual to the isometric spheres Sδ1 , . . . , Sδn−1 under the action of Γ

each self-intersect.

Proof. Set

A =

1 10

0 1


Consider the n-parameter family of representations

γk(tk) = Ak−1

 0 1

−1 5 + (tk − 2)i

A−(k−1), 1 ≤ k ≤ n

α =

1 11n

0 1


β =

1 10i

0 1


The elements α, β, γ1, . . . , γn generate a discrete subgroup Γ of PSL(2,C), and the resulting
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Ford domain is simple. The result of gluing the faces of the Ford domain is a (1, n + 1)-

compression body. By applying a change of generators corresponding to a disk slide, we

maintain a similar geometric picture, but make n − 1 of the pairs of isometric spheres

corresponding to generators invisible as follows. Set δk = γ−1
k γn for 1 ≤ k < n and δn = γn.

The elements δ1, . . . , δn, α, β still generate Γ, but Sδ±1
k

are invisible for k < n. Part of the

geometric dual to δk when k 6= n is mapped to a geodesic running from Sδk to Sδn . By

applying a similar argument to that in 6.2 we see that by varying tk for k < n we can

obtain a structure where the geodesic dual to Sδk self intersects. Since varying tk has no

effect on the elements δi, i 6= k, varying tk only affects the image of the geodesic dual to the

isometric sphere Sδk . Therefore by performing the above procedure for each k = 1, . . . , n−1,

one at a time, we obtain a geometric structure where the geodesic duals to Sδ1 , . . . , Sδn−1

self-intersect.

The following lemma can be found in [7] and is useful for obtaining an indiscrete repre-

sentation ρ : π1(C)→ PSL(2,C) of a compression body from a discrete representation.

Lemma 6.4. Let Γ be a discrete torsion free subgroup of PSL(2,C) such that M = H3/Γ has

a rank two cusp. Suppose the point at ∞ projects to the cusp, and Γ∞ ≤ Γ is the subgroup

of parabolics fixing ∞. Then for every γ ∈ Γ\Γ∞ the isometric sphere Sγ has radius at most

T , where T is the minimal Euclidean translation length of all elements of Γ∞.

Proof. Choose an embedded horoball H about ∞ which bounds a horoball neighborhood of

the rank-two cusp. Such a choice of H is possible by the Margulis lemma. Let α ∈ Γ∞ be an

element whose translation length is T . Suppose Sγ has radius R0 > T . If Sγ is not visible,

we can replace it with an isometric sphere Sγ′ which covers the highest point of Sγ, so we

may assume Sγ is visible and has radius greater than R0.

Since α has translation length T , the isometric sphere Sγα−1 will have its center a Eu-

clidean length of T away from the center of Sγ. Up to conjugation of Γ, we may assume

that Sγ is centered at 0 and that the center of Sαγ−1 is real. Since γ−1(H) and αγ−1(H) are
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horoballs of equal Euclidean radius, the set of points P equidistant from these horoballs is

a vertical plane perpendicular to the real axis.

Apply the isometry γ to H3. We will compute the radius R1 of Sγα−1γ−1 . Note that

Sγα−1γ−1 = γ(P ). The isometry γ is the same as applying an inversion of Sγ followed by

a Euclidean isometry. The Euclidean isometry will not affect the radius of Sγα−1γ−1 . Since

Sγ is centered at 0, the inversion will send the point T ∈ C ∩ R to R2
0/T . The inversion

also sends the point T/2 ∈ C ∩ P to (2R2
0)/T . Therefore the inversion induced by γ sends

P to a hemisphere of radius R1 = |R2
0/T − (2R2

0)/T | = R2
0/T . Since R0 > T we have that

R1 = R2
0/T > R0.

We can now apply the same argument as above, replacing γ with γα−1γ−1 to find another

isometric sphere of radius R2 > R1, and so on, and continue this process infinitely many

times to obtain isometric spheres of radius R0 < R1 < R2 < . . .. This gives an infinite

collection of distinct isometric spheres of increasing radii, all of which must fit inside a

vertical fundamental domain for Γ∞, which is impossible since Γ is discrete.

Before we prove the main theorem, we need to introduce two more definitions.

Definition 6.5. The representation variety V (C) of a compression body C is the space

of conjugacy classes of representations ρ : π1(C) → PSL(2,C), where ρ sends elements

of π1(∂−C) to parabolics. This definition is similar to one given by Marden in [15], and

is more restrictive than one found in [8]. Convergence in V (C) is defined by algebraic

convergence. We denote the subset of conjugacy classes of minimally parabolic geometrically

finite uniformizations of C by GF0(C) ⊆ V (C). We will give GF0(C) the algebraic topology.

Marden [14] showed that GF0(C) is open in V (C).

Definition 6.6. A maximally cusped structure for C is a geometrically finite uniformization

ρ : π1(C)→ PSL(2,C) of C such that every component of the boundary of the convex core

of H3/ρ(π1(C)) is a 3-punctured sphere.

In a maximally cusped structure for C, a full pants decomposition of ∂+C is pinched

to parabolic elements. A theorem of Canary, Culler, Hersonsky, and Shalen [5] shows that
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the conjugacy classes of maximally cusped structures for C are dense on the boundary of

GF0(C) in V (C). This theorem is an extension of work by McMullen [16], and plays an

important role in proving theorem 6.7.

Recall that Cooper, Lackenby, and Purcell used the Ford domain of compression bodies

to show that unknotting tunnels may have arbitrarily long length [7]. We will follow their

work to prove that there are systems of unknotting tunnels that are homotopic to geodesics

which are arbitrarily close to self-intersecting. The method of this proof does not guarantee

that the geodesics will self-intersect, but it does show that we can find structures for which

the geodesics are arbitrarily close to self-intersecting.

Theorem 6.7. There exists a hyperbolic manifold with a tunnel system consisting of n

tunnels for which (n− 1) of the tunnels are homotopic to geodesics that are arbitrarily close

to self-intersecting.

Proof. We begin with the geometrically finite representation ρ0of the (1, n+ 1)-compression

body constructed in theorem 6.3, with generators α, β, δ1, . . . , δn, and where the geodesic

duals to Sδ1 , . . . , Sδn−1 glue up to self-intersect. The translation lengths of ρ0(α) and ρ0(β)

are bounded by some number L. We can consider ρ0 as an element of V (C). Recall that

π1(C) ∼= (Z× Z) ∗ Fn−1 where Fn−1 is free on (n− 1) generators. Let α, β be generators of

Z × Z and γ1, . . . , γn−1 be generators of Fn−1. Let R be the set of all representations ρ of

π1(C) where ρ(α), ρ(β) are parabolics fixing infinity with translation length bounded by L,

and ρ(γi) = ρ0(δi). By suitably normalizing ρ(α), ρ(β) to avoid conjugation, we can view R

as a subset of V (C). Note that ρ0 ∈ R.

If by shrinking the parabolic translation lengths any intersection found in the proof of

theorem 6.3 becomes invisible, the fact that the Ford domain is a fundamental domain

for the action of ρ(π1(C)) guarantees that the intersection will occur elsewhere in the Ford

domain. Since the representation ρ0 has self-intersecting geodesic duals, this implies that all

representations in R will have self-intersecting geodesic duals.

Consider a path in R from ρ0 to some indiscrete representation. Such a path is obtained
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by decreasing the minimal translation length of ρ(α) or ρ(β) so that it becomes smaller than

the radius of some isometric sphere. Such structures are indiscrete by lemma 6.4. This

path intersects ∂GF0(C) at some point, ρ∞. Since maximally cusped structures are dense

in ∂GF0(C), we can construct a sequence of geometrically finite representations ρk of π1(C)

such that the conformal boundaries of the manifolds Ck = H3/ρk(π1(C)) are maximally

cusped genus (n+ 1) surfaces, Ck are homeomorphic to the interior of C, and the algebraic

limit of the manifolds Ck is M = H3/ρ∞(π1(C)). For any ε > 0, when k is sufficiently large,

(n− 1) tunnels will be within ε of self-intersecting.

The work of Canary, Culler, Hersonsky, and Shalen [5] shows that maximally cusped

hyperbolic structures on the genus (n + 1) handlebody are dense in the boundary of geo-

metrically finite structures on handlebodies. Therefore there is some hyperbolic manifold

H3/Γ1 homeomorphic to the interior of a genus (n + 1) handlebody Htop, such that every

component of the boundary of the convex core of H3/Γ1 is a 3-punctured sphere. We will

denote the hyperbolic manifold H3/Γ1 by Hhyp.

The boundary of the convex core C(Ck) of Ck consists of three-punctured spheres, as

does ∂C(Hhyp). Since there is only one hyperbolic structure on three-punctured spheres, we

can obtain an isometry ϕk gluing C(Ck) to C(Hhyp) to obtain a manifold Mk with 3n + 1

rank two cusps. One of these cusps comes from ∂−Ck. The other 3n cusps come from the

boundary curves corresponding to some pants decomposition of Ck. Now we can glue C to

Htop by extending the isometry ϕk to a homeomorphism from ∂+C to Htop to obtain the

manifold M ′
k. By drilling out 3n boundary curves corresponding to a pants decomposition

of the Heegaard surface of M ′
k we obtain the manifold Mk.

Select Dehn filling slopes s1, s2, . . . s3n for the torus boundary components of Mk corre-

sponding to a pants decomposition of the Heegaard surface. These slopes must be taken so

that the Heegaard surface of M ′
k is preserved. This can be done by taking slopes of the form

1/m, since these will act the same as gluing ∂H to ∂+C by a high power Dehn twist. The

result is a manifold with a tunnel system consisting of n unknotting tunnels. By taking the
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slopes si = 1/mi to have mi sufficiently large, the work of Thurston [19] shows that the Dehn

filled manifold Mfilled
k approaches Mk in the geometric topology. Therefore given ε > 0 we

can take the mi sufficiently large to ensure that (n− 1) of the unknotting tunnels of Mfilled
k

are within ε of self-intersecting.
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