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ABSTRACT 

Making Sense of the Equal Sign in Middle School Mathematics 

Chelsea Lynn Dickson 
Department of Mathematics Education, BYU 

Master of Arts 

One of the main reasons that students struggle as they transition from arithmetic to 
algebra in the middle grades is that they fail to develop the appropriate understanding of the 
equal sign. Previous research has suggested that students need to move past an operational 
understanding and develop a relational understanding of the equal sign in order to work with 
algebraic equations successfully. Other research has suggested that the way that we interpret and 
utilize the equal sign is based on three main factors: multiple meanings of the equal sign, 
equation types, and structural conventions. This study extends both areas of research by 
analyzing two middle grade curricula and looking for what meanings, equation types, and 
structural conventions appear in both teacher and student materials. The study confirms that 
students are exposed to three main meanings of the equal sign in the middle grades. The study 
also describes which meanings of the equal sign are associated with particular equation types and 
the frequency with which these equation types appear throughout the 7th and 8th grade curricula. 
Study findings can be used to inform instruction, as they delineate the factors that are attended to 
while making sense of the equal sign in the middle grades.   

Keywords: equal sign, equation types, structural conventions, algebra, middle school 
mathematics, interpretations of the equal sign  
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CHAPTER 1: INTRODUCTION 

Algebra has been a focus of mathematics education research for years as algebra is 

considered the “gatekeeper” to higher education and future career opportunities (Knuth, Alibali, 

McNeil, Weinberg, & Stephens, 2005; Moses & Cobb, 2001). Although developing and 

mastering algebraic concepts is vital for many future opportunities, students continue to fail to 

make the connections and develop the necessary conceptual understandings that would facilitate 

such mastery. Much of the research that has been done on student failure in algebra shows that 

most students begin to struggle in their first year, as they transition from arithmetic to algebra 

(National Research Council, 1998).  

 As students begin learning algebra, they are introduced to new ways of thinking about 

some key mathematical concepts as they transition from arithmetic. One example of a key 

concept that students think about differently in algebra than they do in arithmetic is the equal 

sign (Carpenter, Franke, & Levi, 2003). Throughout arithmetic, students primarily see the equal 

sign used in many different iterations of the same problem type, e.g., 3 + 5 = [ ], or 8 × 2 =

[ ]. As students see the equal sign used exclusively in this way, they develop an understanding 

that the equal sign means to perform the given operation and then put the answer to the right of 

the equal sign symbol. This understanding is commonly referred to as an operational 

understanding of the equal sign. Once students begin learning algebra, they can no longer rely 

solely on an operational understanding of the equal sign. In algebra, students are required to 

understand the equal sign as a symbol that relates the two expressions on either side of the equal 

sign as having the same value, e.g., 3𝑥𝑥 + 5𝑥𝑥 = 2𝑥𝑥 + 6𝑥𝑥, or 2𝑥𝑥 + 4 = 8. In order to solve 

equations or make sense of algebraic situations, students must understand the equal sign as a 

symbol that indicates that the left side is the same value as the right. This understanding is 
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referred to as a relational understanding of the equal sign. With a relational understanding of the 

equal sign, students can then understand why they are able to perform the same operations on 

both sides of the equal sign while maintaining an equivalent relationship.  

Research shows that students often only have an operational understanding of the equal 

sign when they begin learning algebra.  (Alibali,Knuth, Hattikudur, McNeil, & Stephens, 2007; 

Asquith, Stephens, Knuth, & Alibali, 2007; Byrd, & Matthews, 2015; Falkner, Levi, & 

Carpenter, 1999; Kieran, 1981; Knuth, et al., 2005; Molina & Ambrose, 2006). In a study done 

by Falkner et al. (1999), 145 sixth-grade mathematics students were asked to fill in the box of the 

statement: 8 + 4 = [ ] + 5, and every one of the 145 students responded with either 12 or 17. 

When thinking of the equal sign as an operational symbol, the students automatically thought 

that since 8 + 4 = 12, 12 must be the number that belongs in the box. Some students then 

extended the equality strand and performed the next operation, which resulted in 8 + 4 = [12] +

5 = 17. Some students just thought that they should perform all operations and then put their 

answer after the given equal sign resulting in 8 + 4 = [17] + 5.  Understanding the equal sign as 

a relational symbol is required for students to see that what goes in the box is the number that 

when added to five will give the same sum as 8 + 4. This example from Falkner et al. shows 

how understanding the equal sign only as an operational symbol can be a major stumbling block 

for students transitioning into algebra.  

Research also shows that a student’s performance on problems involving equations is 

associated with how that student interprets the meaning of the equal sign. Knuth et al. (2005) 

interviewed 373 6th through 8th grade students to determine if there was a correlation between 

their understanding of the equal sign and their performance on an equivalent equations problem.  

They began the study by determining if the students understood the equal sign as an operational 
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symbol or a relational symbol or both. They then compared the students’ understanding of the 

equal sign to their ability to solve an equivalent equations problem that asked the students if the 

value that goes in the box for 2 × [ ] + 15 = 31 is the same as the value that goes in the box 

for 2 × [ ] + 15 − 9 = 31 − 9.  From this study they found that the majority of middle school 

students interpreted the equal sign as an operational symbol rather than a relational symbol. They 

also found that the students’ understanding of the meaning of the equal sign affected their 

success and approach to solving the equivalent equations problem. Students with an operational 

understanding were either unable to solve the problem correctly or used strategies that did not 

require them to recognize equivalence to solve it. Strategies that did not require a recognition of 

equivalence included the following: the “solve and compare” strategy where either the students 

would determine a solution for the first equation and then substitute that solution into the second 

equation and see if that value satisfied both equations, or they would determine a solution for 

each equation and then compare solutions; and the “after the equal sign” strategy where the 

students would determine that the two equations are the same because they both have 31 after the 

equal sign. Students with a relational understanding of the equal sign, however, were more likely 

to solve the problem correctly by simply recognizing equivalence—that by performing the same 

operation to both sides of the equation the second equation maintains the same relationship as the 

first.   

From the studies by Falkner et al. (1999) and Knuth et al. (2005) we learn three important 

commonalities about students’ understanding of the equal sign as they are introduced to algebra. 

First, we learn that when students begin learning algebra, their understanding of the equal sign is 

predominantly operational. Second, we learn that students will often adhere to an operational 

understanding of the equal sign in contexts that require a relational understanding to solve 



4 

correctly. And lastly, we learn that there seems to be a connection between the students’ ability 

to reason about the equal sign relationally and their success on an equivalence equation problem. 

These three commonalities suggest that student failure in learning algebra is caused, at least in 

part, by their lack of a relational understanding of the equal sign.  

While many researchers recognize the operational and relational meanings of the equal 

sign as well as the importance of developing a relational understanding (Carpenter, Franke, & 

Levi, 2003; Falkner et al., 1999; Kieran, 1981; Knuth et al., 2005; Knuth et al., 2006), other 

researchers have suggested that how we interpret the equal sign is affected by more than just 

these two meanings (Matz, 1982; Prediger, 2010). While studying student errors in algebra, Matz 

recognized that there are multiple types of equations as well as structural conventions that affect 

the way a student reads and solves particular equations. Prediger also recognized that there are 

multiple possible meanings of the equal sign, not only throughout different contexts in algebra, 

but within a single problem. She recognized that the equal sign can be understood operationally, 

relationally (with four different relational interpretations of equality), and as a specification. I 

will go into more detail of Matz’ and Prediger’s findings in Chapter 2.   

It is likely that proficient users of algebra use multiple meanings for the equal sign. The 

problem that Prediger (2010) recognizes is that many proficient users are able to navigate 

through the different meanings of the equal sign as needed completely unaware that they are 

doing so. The ambiguous change of meanings of the equal sign, especially in instruction, is likely 

the cause of many students’ difficulties in grasping algebraic concepts. Prediger illustrates this 

problem with a girl named Emily who was being taught how to calculate 24 × 7 by 

decomposition. When shown 24 × 7 = 20 × 7 + 4 × 7 = 140 + 28 = 168, Emily, who had 

only seen the equal sign as an operational symbol, remarked that this was wrong because 24 × 7 
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does not equal 20. In this case, the teacher began using the equal sign in a way that Emily had 

never seen before yet was expected to understand its new meaning. To help students transition 

from arithmetic to algebra and develop the ability to switch the way they interpret the equal sign 

in different contexts, “it is crucial for teachers to be able to communicate explicitly on 

differences between meanings whenever the situation demands” (Prediger, 2010, pg. 84).  

Previous research has elucidated the importance of understanding the equal sign 

correctly. It has shown us that for students to recognize equivalent equations, they need to have a 

relational understanding of the equal sign (Knuth et al., 2005). It has also shown us that there are 

likely more than one meaning of the equal sign that get used in algebra (Matz, 1982; Prediger, 

2010). While we know that there are possible multiple meanings of the equal sign, research has 

not yet been done on which specific meanings get used in middle school mathematics courses 

where algebra is introduced. If teachers are to be explicit about the different meanings of the 

equal sign that they use in instruction, then they must first become overtly aware of these 

different meanings. For this reason, more research needs to be done on which meanings of the 

equal sign are used in middle school mathematics courses.  
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CHAPTER 2: BACKGROUND 

Literature Review 

The majority of research that has been done on the equal sign has been focused on the 

dichotomy of operational and relational interpretations, finding that students are more likely to 

be successful in algebra when they interpret the equal sign as a relational symbol (Carpenter, et 

al., 2003; Falkner, et al., 1999; Kieran, 1981; Knuth et al, 2005; Knuth et al., 2006).  However, 

research also shows that it is not only the meaning of the equal sign that affects how one 

interprets how to use it. In this section, I argue that the way mathematicians interpret and utilize 

the equal sign appropriately in a given situation is affected by multiple factors  To make this 

argument, I draw upon the contributions of Matz (1982), Prediger (2010), and Zwetzschler and 

Prediger (2013) to develop a framework for recognizing which meaning of the equal sign is 

being used in a given situation, as well as the other possible factors that affect the interpretation 

of the equal sign that are not limited to the operational and relational meanings.  

From the literature on the equal sign, I identified three main categories of findings related 

to how we interpret and utilize the equal sign. These categories include meanings for the equal 

sign, equation types, and structural conventions. Determining how the equal sign is used is 

complex, and it is likely that people with a strong background in algebra unconsciously consider 

these three factors to determine how to interpret and utilize the equal sign in any given situation. 

I now discuss these three factors and illustrate how a sophisticated user of the equal sign might 

use them to determine how to correctly solve an algebra problem. 

Meanings 

The first factor that determines how the equal sign is utilized is the meaning which the 

reader assigns to the equal sign symbol. The three main meanings for the equal sign are 
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operational, relational, and assignment. The operational meaning of the equal sign is well 

documented in the literature (Carpenter, et al., 2003; Falkner, et al., 1999; Kieran, 1981; Knuth et 

al, 2005, Prediger 2010). When reading the equal sign with an operational meaning, the reader is 

prompted to complete the given process or operation in order to transform the original expression 

and then to record the result immediately to the right of the equal sign. The language often 

associated with using the operational meaning for the equal sign is that the expression on the left, 

“goes to,” “makes,” “becomes,” or “gives us” the expression on the right (Kieran, 1981; Matz 

1982). For example, while working through the problem 3(𝑥𝑥 − 2) = ___ with an operational 

meaning, the user will think that by distributing the 3 among (𝑥𝑥 − 2), the expression on the left 

“becomes” 3𝑥𝑥 − 6, which will be written immediately to the right of the equal sign.  

The second meaning of the equal sign is relational (Carpenter, et al., 2003; Falkner et al, 

1999; Kieran, 1981; Knuth et al, 2005, Prediger 2010). When reading the equal sign with a 

relational meaning, the reader recognizes that the left and right expressions share the same 

numeric value or are equivalent in the sense that they could be transformed into each other using 

appropriate transformation rules. The language often associated with using a relational meaning 

for the equal sign is that the expression on the left “is the same as” the expression on the right 

(e.g. Kieran, 1981; Knuth et al., 2005). For example, if readers give the equal sign a relational 

meaning, then they would recognize that if 4 + 𝑥𝑥 = 9, then 4 + 𝑥𝑥 − 2 = 9 − 2. Because the 

value of the left expression is interpreted as being the same as the value of the right expression, 

subtracting 2 from both sides of the equal sign will result in the same value on both sides (Knuth 

et al, 2005).  

Note that the relational meaning differs from the operational meaning in that relational 

reasoning focuses on the sameness of the two expressions rather than performing an operation to 
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produce an answer. Thus, for example, when viewing the expression (𝑥𝑥 + 3)(𝑥𝑥 − 3) = 𝑥𝑥2 − 9 

from a relational perspective, the reader interprets the equation as a claim of “sameness” between 

the left and right expressions rather than a record of having applied a transformation or operation 

to the left expression to produce the right expression. If asked, the reader may nonetheless justify 

the sameness of the two expressions by reasoning operationally and identifying the 

transformations that could be performed on one of the expressions to produce the other; 

however, this operational reasoning about the equal sign is done to justify the sameness of the 

two expressions, and is different from the initial, relational meaning of the equation constructed 

by the reader.  

The third meaning of the equal sign is specification (Cortes, Vergnaud, & Kavafian, 

1990; Prediger, 2010), which I refer to as assignment. In the literature, researchers have used the 

term specification to indicate a particular meaning for the equal sign as well as a specific type of 

equation. To avoid confusion, I have chosen to distinguish between the two uses of specification 

by using the term assignment to refer to the specification meaning of the equal sign, and the term 

specification to refer only to a particular type of equation. When reading the equal sign as an 

assignment, the reader sees a value assigned to the unknown or a rule assigned to a function that 

is only true in this specific situation. The equal sign indicates that one of the expressions 

“means” or “is” the other expression. An assignment meaning is different from an operational 

meaning in that the reader is not trying to transform an expression. It is also different from a 

relational meaning in that the equal sign is interpreted as signifying the process of defining an 

object (e.g., variable, function) rather than presenting a claim of sameness (e.g., 2𝑥𝑥 − 5 = 13) 

that might be manipulated, for example, to find the value for x. The reader recognizes that an 

assignment equation is to be used (e.g., to make a substitution) rather than to be worked on (e.g., 
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to solve for a variable). For example, when read with an assignment meaning, the function 𝑦𝑦 =

2𝑥𝑥 + 52, would be recognized as “letting” 𝑦𝑦 be 2𝑥𝑥 + 52, which would allow for substitution of 

the expression 2𝑥𝑥 + 52 for the unknown 𝑦𝑦 in a second equation, or for entering the expression 

2𝑥𝑥 + 52 as input for creating a graph on a graphing calculator. In contrast, the reader would need 

to interpret this equation relationally to manipulate the equation to solve for x in terms of y, or to 

determine the set of values that make the equation true.  

Equation Types 

Knowing the different possible meanings of the equal sign is an important step in 

interpreting and utilizing the equal sign correctly; however, which meaning one should use 

depends at least partially on the type of equation that is being considered. Therefore, the second 

factor that affects how we interpret and utilize the equal sign is equation types. In the literature, 

researchers have used two criteria to classify equations: the “domain over which they are true” 

(Matz, 1982, p. 40), and the way they are to be used by the reader. Based on these criteria, there 

are three main equation types that show up in the research, namely tautologies, constraint 

equations, and specifications. 

Tautologies. Tautologies are common in both arithmetic and algebra. In arithmetic, 

tautologies are equations for which both sides of the equal sign have the same numeric value. In 

algebra, tautologies are equations with variables that are true for all values of those variables; 

often the expressions on each side can be transformed into the other using the transformation 

rules deemed valid by the mathematics community (Matz, 1982; Prediger, 2010; Zwetzschler & 

Prediger, 2013). It is important to recognize the different types of tautologies that are used in 

algebra because they can elicit different meanings of the equal sign. Three common tautologies 

are transformations, formal identities, and contextual identities.  
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Transformations, which Matz (1982) calls process-result actions, are tautologies in which 

an operation or procedure is performed on the expression on one side of the equal sign and the 

resulting expression is written on the other side. Transformation equations may consist of either 

a single transformation or a series of transformations, as seen in Figure 1. In each of these 

examples, it is possible for readers to think about the equal sign operationally or relationally. The 

operational meaning might first be used if the reader views an expression on one side of the 

equation as a procedure call and the expression on the other side as the result. Learners of 

mathematics may stop here, seeing the equal sign only as an indication of where to put the result 

of the procedure. Experienced mathematicians, however, might simultaneously see the equal sign 

as a prompt to perform a procedure as well as a symbol relating two expressions that represent 

the same value because of the mathematical properties involved in that procedure. The equation 

itself does not determine which meaning of the equal sign the reader may use to make sense of it. 

Another type of tautology that is common in algebra is a formal identity (Prediger, 2010). 

A formal identity is an equation that uses the equal sign to connect two symbolic expressions that 

are the same numeric value regardless of what values are assigned to the variable(s), as in the 

equation (𝑎𝑎 − 𝑏𝑏)(𝑎𝑎 + 𝑏𝑏) = 𝑎𝑎2 − 𝑏𝑏2. A formal identity differs from a transformation in terms of 

purpose. The purpose of a transformation is to show a record of a procedure call while an 

identity is meant by the author to express a mathematical property in terms of a relationship 

between expressions that always yield the same numeric value. For example, when reading the 

5𝑥𝑥 + 2𝑥𝑥 = 7𝑥𝑥 

4(𝑥𝑥 + 3) = 4𝑥𝑥 + 12 

(𝑥𝑥 − 3)(𝑥𝑥 + 4) = 𝑥𝑥2 + 4𝑥𝑥 − 3𝑥𝑥 − 12 = 𝑥𝑥2 + 𝑥𝑥 − 12 

Figure 1. Examples of transformation equations. 
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difference of squares equation (𝑎𝑎 − 𝑏𝑏)(𝑎𝑎 + 𝑏𝑏) = 𝑎𝑎2 − 𝑏𝑏2 as a formal identity, the solver 

recognizes the relationship between the two expressions as yielding the same numeric value and 

does not need to perform a transformation on the first expression (𝑎𝑎 − 𝑏𝑏)(𝑎𝑎 + 𝑏𝑏) to result in 

𝑎𝑎2 − 𝑏𝑏2. Note that the distinction between identities and transformation is determined by the 

(inferred) purpose the author intended the equation to serve. 

The third type of tautology is contextual identities (Prediger, 2010). Contextual identities 

are similar to formal identities in that they are used to express a mathematical property rather 

than a record of a completed procedure; however, contextual identities are formulae in which the 

equality statement is true for all values of unknowns only when certain mathematical conditions 

are first met. For example, while working with a right triangle, it is true that the sum of the two 

side lengths squared is equal to the length of the hypotenuse squared, or 𝑎𝑎2 + 𝑏𝑏2 = 𝑐𝑐2. This 

theorem is not true for oblique triangles, however, so the user must be careful to check that a 

triangle has a 90° angle before using this identity. Other examples of contextual identities 

include formulae for the volume of a cone or area of a triangle.  

Constraint equation. The second equation type is a constraint equation (Matz, 1982; 

Prediger, 2010). Constraint equations differ from tautologies in terms of the domain of values 

that make them true. In a constraint equation, the left expression and the right expression are not 

equivalent for all values of the unknown; instead, the value of the unknown is constrained to the 

1. 3𝑥𝑥 + 3 = 2𝑥𝑥 + 7

2. 3𝑥𝑥 + 3 − 3 = 2𝑥𝑥 + 7 − 3

3. 3𝑥𝑥 = 2𝑥𝑥 + 4

4. 3𝑥𝑥 − 2𝑥𝑥 = 2𝑥𝑥 − 2𝑥𝑥 + 4

5. 𝑥𝑥 = 4

Figure 2. Deductions and reductions in a constraint equation. 
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set of numbers for which both expressions, when evaluated using a number from the set, yield 

the same numeric value (Matz, 1982). When solving a constraint equation, the solution, or the 

values of x which make the two expressions equivalent, is found by performing a series of 

deductions and reductions. Deductions are defined by Matz as the operations that are applied to 

both sides of the equations and reductions are defined as the transformations that are performed 

to simplify each side of the equation, often after deductions have been made. Deductions are 

followed by reductions on each side, resulting in a new constraint equation where the value of 

the unknown is maintained. This pattern continues until the unknown is isolated and the value 

becomes known, as is illustrated in Figure 2. 

The deductions and reductions are made explicit in the example in figure 2. Line 1 is the 

original constraint equation, setting two non-equivalent expressions equal to each other. Line 2 

illustrates a deduction that involves subtracting 3 from each side, which, while changing the 

values of the expressions from line 1, maintains the value of x. Line 3 is the result of reductions 

performed on each expression in line 2. From here, the cycle begins again, and in line 4, another 

deduction is performed by subtracting 2𝑥𝑥 from each side. Line 5 is the result of reductions 

performed on line 4 and is the end result. While solving a constraint equation, the user of the 

equal sign must go back and forth between different ways of thinking about equality, so it is 

important to make the distinction between a deduction and a reduction. Deductions do not 

preserve the equivalence of the two expressions on the same side of equal sign; for example, the 

expression 3x + 3 on the left of the equal sign in line 1 is not equivalent to 3x + 3 – 3 on the left 

of the equal sign in line 2. Reductions, however, do preserve equivalence between the 

expressions on the same side of the equal sign; for example, 3x + 3 – 3 on the left of the equal 

sign in line 2 is equivalent to 3x on the left of the equal sign in line 3.  
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Specifications. The third equation type is a specification (Cortes et al., 1990; Prediger, 

2010). A specification is a statement that defines the value of a variable or the rule for a function 

in a specific situation. Unlike an identity, a specification is only true for the context or problem 

for which the assignment was made. Examples of specifications include 𝑥𝑥 = 3, 𝑦𝑦 = 𝑥𝑥2 − 2𝑥𝑥 +

1, or 𝑓𝑓(𝑥𝑥) = −𝑥𝑥 − 3. Specifications are different from tautologies because they neither describe 

a transformation of one expression into another nor present a general mathematical claim. They 

differ from constraints in that the value of the variable or rule for a function is explicitly given 

without any need for solving the equation. Specifications are also unique because they are 

directly tied to the assignment meaning of the equal sign. In contrast, tautologies and constraints 

can possibly be thought of relationally or operationally, and therefore are not specifically tied to 

one specific meaning.  For example, 𝑥𝑥 = 3 is a specification equation only if we think of 

assigning the value 3 to the unknown 𝑥𝑥. While the relational meaning can be used to interpret the 

equation to mean x and 3 are the same number, the use of this alternate meaning results in 𝑥𝑥 = 3 

being classified as a constraint equation, not a specification. 

The preceding discussion of 𝑥𝑥 = 3 suggests that the classification of equation types 

depends on which meaning the reader chooses to use to interpret the equal sign. However, the 

research on equality has not explicitly addressed the connection between the inferred meaning of 

the equal sign and the classification given to equations. Thus, it is unknown whether there is a 

clear relationship between equation type and meaning of the equal sign. For example, while we 

have argued that a specification equation always involves the assignment meaning of the equal 

sign, this relationship is only tacitly addressed in the literature through the common practice of 

using the term specification to refer to both a meaning for the equal sign and an equation type. 
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More work needs to be done to explore the relationship between equation types and meanings of 

the equal sign and identify patterns.   

Structural Conventions 

The third factor that determines how we interpret the equal sign is structural conventions 

(Matz, 1982). The way that we read and write equations is an integral part in the way we 

interpret the equal sign. In arithmetic, problems are typically written and read one of two ways: 

from left to right (Figure 3a) or vertically top to bottom (Figure 3b). Because different types of 

equations abide by different reading and writing conventions (Matz, 1982), correct 

interpretations of the equal sign require familiarity with these conventions.  

a) 1 + 2 = 3 b)     
 1
+2

 3

Figure 3. Structural conventions in arithmetic: (a) vertical arithmetic problem, (b) horizontal 
arithmetic problem. 

One of the main conventions is that of reading and writing from left to right (LTR). The 

LTR convention can be found in tautologies and specifications. For example, in a transformation 

the original expression is usually presented on the left side of the equal sign and the result of the 

transformation follows the equal sign on the right. This is extended to a chain of transformations 

when we begin with an algebraic object and operate on it, completing a series of transformations 

until we successfully arrive at the “simplest” form of the expression as in Figure 4. (Matz, 1982). 

Although not as common, there are situations in which a tautology or specification might 

(𝑥𝑥 − 2)(𝑥𝑥 + 4) = 𝑥𝑥(𝑥𝑥 + 4) + (−2)(𝑥𝑥 + 4) = 𝑥𝑥2 + 4𝑥𝑥 − 2𝑥𝑥 − 8 = 𝑥𝑥2 + 2𝑥𝑥 − 8. 

Figure 4. Example of a chain of transformations. 
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be written from right to left (RTL), e.g. 2 = 𝑥𝑥 or ___ = 2𝑥𝑥 + 3, or in arithmetic, __= 5 + 3. It is 

possible that because of habit and experience many people who see an equality that is written 

with the RTL convention simply switch the order of the expressions in their head and read it 

from LTR. On the other hand, it is also possible that after a reader has read a string of 

transformations from LTR, he or she may read those transformations from RTL as a description 

of how the last expression on the right can be transformed back into the first expression on the 

left.  

Transformation chains can be written using the LTR convention, but they can also be 

written top to bottom in a single column (Matz, 1982). I will refer to this convention as the single 

column down (SCD) convention. In Figure 5a, the SCD convention begins with an algebraic 

object followed by subsequent reductions on each line forming one column. The SCD 

convention can also begin with an algebraic object on the left with one reduction to the right of 

the equal sign followed by each subsequent reduction that is written directly below the previous 

one continuing down the right column until arriving at the simplest form of the expression as in 

Figure 5b.  

a) (𝑥𝑥 − 2)(𝑥𝑥 + 4) =
𝑥𝑥(𝑥𝑥 + 4) + (−2)(𝑥𝑥 + 4) =
𝑥𝑥2 + 4𝑥𝑥 − 2𝑥𝑥 − 8 =
𝑥𝑥2 + 2𝑥𝑥 − 8

b) (𝑥𝑥 − 2)(𝑥𝑥 + 4) = 𝑥𝑥(𝑥𝑥 + 4) + (−2)(𝑥𝑥 + 4)
  = 𝑥𝑥2 + 4𝑥𝑥 − 2𝑥𝑥 − 8 
  = 𝑥𝑥2 + 2𝑥𝑥 − 8 

Figure 5. Single Column Down (SCD) convention: (a) SCD with reduction expression on left, 
(b) SCD with reduction expression on right.

The third main convention for reading and writing equalities is both columns down 

(BCD). The BCD convention occurs in the solving of constraint equations as we apply 

deductions and reductions to each column separately (Matz, 1982). There are two common ways 

of writing the deduction step in a BCD while solving a constraint equation which are illustrated 
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in figure 6. One way is to write the BCD with a horizontal deduction (BCD-HD) alongside the 

equation that the operation is being applied to (Figure 6a). The other way is to write the BCD 

with a vertical deduction (BCD-VD) written underneath the terms that the operation is being 

applied to, sometimes followed by a straight-line denoting that an operation has taken place and 

the resulting reduction is written on the next line (Figure 6b).  Instead of reducing the constraint 

equation to its simplest form as we often do with tautologies, the BCD creates a new equation 

while maintaining the value of the unknown until we have isolated the unknown and determined 

its value.  

a) 3𝑥𝑥 + 3 = 2𝑥𝑥 + 7

3𝑥𝑥 + 3 − 3 = 2𝑥𝑥 + 7 − 3

        3𝑥𝑥 = 2𝑥𝑥 + 4 

 3𝑥𝑥 − 2𝑥𝑥 = 2𝑥𝑥 − 2𝑥𝑥 + 4 

        𝑥𝑥 = 4 

b) 3𝑥𝑥 + 3 = 2𝑥𝑥 + 7

−3 = −3

 3𝑥𝑥 = 2𝑥𝑥 + 4 

−2𝑥𝑥 = −2𝑥𝑥

        𝑥𝑥 = 4 

Figure 6. Both Columns Down (BCD) convention: (a) with horizontal deduction (BCD-HD), 
(b) with vertical deduction (BCD-VD).

Research on the Use of the Equal Sign in Algebra Classrooms 

The meanings, equation types, and structural conventions that I have discussed have 

surfaced through research that has been focused on student understanding of the equal sign. 

Whether inferred through student interviews (Falkner et al, 1999; Knuth et al, 2005), while 

analyzing student errors (Matz, 1982), or determining what student teachers need to understand 

so they can mitigate student misconceptions (Prediger, 2010), the information that we have 

gathered about the equal sign has been student centric. By looking at the research that has been 

done on student understanding of the equal sign, we are left only to infer that the above 

meanings, equation types, and conventions are likely used in middle grades mathematics 

classrooms where algebra is often first introduced. We do not have empirical research to confirm 
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if all of the previously mentioned meanings, equation types, and structural conventions are used 

in instruction and curricula in middle grades mathematics, if they are an exhaustive list or if there 

are others that have not been discussed. To test the above framework for completeness and 

relevance while reasoning with the equal sign in middle school mathematics, we can examine the 

curricula used. Therefore, I ask the research question: Which meanings for the equal sign, 

equation types, and structural conventions are used in middle grades mathematics curricula?  

Theoretical Framework 

Students struggle with the equal sign because the meaning of the equal sign in a 

particular instance is not inherent in the symbol itself; instead, students must choose a meaning 

for the equal sign. From a constructivist point of view, meaning is constructed through the 

experiences of the reader (Simon, 1995; von Glasersfeld, 1983) and therefore each reader may 

give a different meaning to the same written material. For example, in the equation 𝑎𝑎(𝑏𝑏 + 𝑐𝑐) =

𝑎𝑎𝑏𝑏 + 𝑎𝑎𝑐𝑐, readers might read it operationally if they interpret the equation as indicating that the 

operation of distributing the 𝑎𝑎 among (𝑏𝑏 + 𝑐𝑐) to produce 𝑎𝑎𝑏𝑏 + 𝑎𝑎𝑐𝑐 is being performed, or they 

could read it relationally as an identity if they interpret the equation as a claim that 𝑎𝑎(𝑏𝑏 + 𝑐𝑐) will 

yield the same value as 𝑎𝑎𝑏𝑏 + 𝑎𝑎𝑐𝑐 for all choices of a, b, and c. Although it would probably be 

considered problematic, it is also possible that a reader might read the equal sign as an 

assignment and think that 𝑎𝑎(𝑏𝑏 + 𝑐𝑐) means 𝑎𝑎𝑏𝑏 + 𝑎𝑎𝑐𝑐. In short, there are multiple ways to interpret 

the equal sign when reading a given equation. The decision of which meaning to use is decided 

upon by the reader, and not intrinsic to the symbol itself.  

Determining whether a meaning for the equal sign is appropriate in a particular instance 

is complex because the validity or correctness of an interpretation is based upon the taken-as-

shared norms and practices of the mathematical community in which the equal sign is being used 
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(Cobb, Wood, & Yackel, 1993). With the idea that each individual constructs his or her own 

meaning, there are going to be times when a reader does not draw upon the correct meanings, 

where correctness is determined by taken-as-shared norms and practices. There are also times 

when a certain practice might be considered valid in one community and invalid in another. For 

example, in many communities it is unproblematic to use the equal sign in an equality chain 

where the user completes an operation and writes the result directly after the equal sign and then 

continues on the same chain with a new operation, e.g., 3 + 2 = 5 × 3 = 15 + 5 = 20 ÷ 2 =

10. The community of mathematics educators objects to this particular use of the equal sign

because it does not conform to the norms and practices of the community concerning the use of 

the equal sign. However, among shop keepers, for example, this way of using the equal sign 

might be considered acceptable and even desirable when making quick calculations. This 

example shows that not all uses of the equal sign are equally valid, and that validity in use may 

depend heavily upon the mathematics community in which one is engaging in the practice.   

The complexity of determining the meaning of the equal sign in a given equation does 

create a challenge to interpreting the meanings of the equal sign used in middle grades 

mathematics curricula.  Because meanings are constructed by the individuals reading the 

equation, and not inherent in the symbols themselves, we cannot just look at an equation or 

someone’s work and know which meaning of the equal sign was intended by the author. In order 

to determine the meaning of the equal sign that an author is using, it is necessary to look at the 

larger context for clues about what meaning and type of equation are being used. Furthermore, 

we can use our knowledge of the taken-as-shared norms and practices of teachers of mathematics 

to narrow down some of the possible interpretations—we can rule out some of them because 

they violate community norms and practices. Therefore, in order to interpret what meaning is 
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being assigned to the equal sign in middle school mathematics curricula, I will be looking at the 

context in which the equal sign is used and considering the taken-as-shared norms and practices 

of the school mathematics community.  
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CHAPTER 3: METHODS 

In this chapter I discuss the methods I used to answer the research question of which 

meanings for the equal sign, equation types, and structural conventions are used in middle grades 

mathematics curricula. In order to access a year’s worth of teaching material in a shorter amount 

of time, I chose to analyze middle grades mathematics curricula rather than observe instruction in 

middle grades mathematics classrooms. I first discuss the two curricula I chose to analyze and 

why, followed by the chapters that I analyzed and why. I then discuss the analysis process, 

which includes my coding process as well as how I collected and organized the data.  

Curricula

I analyzed two different curricula in this study. As the majority of the United States have 

chosen to adopt the common core as well as integrated mathematics for middle school 

mathematics, I chose curricula based on alignment to the Common Core State Standards for 

Mathematics (CCSSM) as ranked by edreports.org, as well as what curricula are commonly being 

used in the US as surveyed by a 2017 RAND report (Opfer, Kaufman, & Thompson, 2017). 

From the RAND report, the three most used curricula are Glencoe Math (McGraw Hill) (44%), 

Connected Math (34%), and Eureka Math (Engage NY) (34%). Of these three highly used 

curricula, Ed reports ranked Eureka Math the highest, with Connected Math Project 3 and 

Glencoe Math following behind respectively. Based on these rankings, the two curricula I chose 

to analyze were Connected Mathematics 3 (CMP3) and Eureka Math.  

Even though there were many curricula from which I could choose, CMP3 and Eureka 

Math both stood out as reputable, effective, and widely used.  The Connected Mathematics 

Project from Michigan State University has been in use for approximately 27 years. It was 

funded by the National Science Foundation and was developed by professors of mathematics 
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education. It is used in all 50 United States as well as China and England. The CMP3 is the latest 

edition from the project and has been revised to align with the CCSSM. In a study of top 

instructional materials used for mathematics classroom lessons among teachers in states who 

have decided to use the common core, 34% of secondary mathematics teachers use CMP3. In the 

same study, 44% of teachers said that they use materials from Eureka Math/Engage New York 

(Opfer, et al., 2017). Eureka Math is an online curriculum developed by Engage NY through a 

collaboration of school teachers and scholars in the field of mathematics.  

My goal for this study was to identify the different meanings of the equal sign, equation 

types, and structural conventions that appear throughout an entire 7th and 8th grade curriculum. In 

order to get a sufficient sample size of each curriculum, I analyzed three sections or modules 

from each year. The sections I analyzed include topics that cover three different CCSSM 

standards from each year. These standards are representative of at least two different branches of 

mathematics (algebra and geometry) that are integrated into 7th and 8th grade math. For 7th grade 

I analyzed the sections that predominantly cover the CCSSM standards of ratios and proportions 

(7.RP), expressions and equations (7.EE), and geometry (7.G). For 8th grade I analyzed the 

sections that predominantly cover the expressions and equations (8.EE), functions (8.F), and 

geometry (8.G) CCSSM standards. By choosing chapters that are representative of different 

branches of mathematics, I hoped to be able to find a more diverse representation of meanings, 

equation types and structural conventions that teachers encounter throughout the whole 

curriculum as well as investigate how the uses of the equal sign progress or mature through 

related ideas in the same year. Along with a broader picture of how the equal sign is used 

throughout the year, by continuing to investigate expressions and equations and geometry into 
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the 8th grade year, I was able to explore the development of the use of the equal sign from one 

year to the next.  

Each curriculum is set up differently, so I describe below exactly which chapters and 

lessons I analyzed from each year of each curriculum. I do this because both curricula use an 

integrated approach, so many chapters cover multiple standards from the CCSSM. The chapters I 

chose to analyze align most closely to the specific standards I wanted to look at. The CMP3 

curriculum titles their chapters differently than the CCSSM, so I will give the title but also which 

standards from the CCSSM that chapter primarily covers. For 7th grade, I analyzed Stretching 

and Shrinking (7.RP), Moving Straight Ahead (7.EE), and Filling and Wrapping (7.G). For 8th 

grade, CMP3 split up the 8.EE standards among three different sections so I analyzed all three of 

those sections so that it would more closely match that of Eureka Math. The three sections for 

8.EE were Growing, Growing, Growing, Say it With Symbols, and It’s in the System. The other

chapters I analyzed were Thinking with Mathematical Models (8.F), Looking for Pythagoras 

(8.G) and Butterflies, Pinwheels, and Wallpaper (8.G). A few lessons from Thinking with 

Mathematical Models were excluded as they cover other standards entirely (see Appendix A for 

a complete list of the lessons from each section and their corresponding CCSSM standards).  

The chapters I analyzed from Eureka Math for 7th grade were Module 1: Ratios and 

Proportions, Module 3: Expressions and Equations, and Module 6: Geometry. Because these 

chapters address the same standards as their titles, I looked at them in their entirety. For 8th 

grade, I analyzed all of Module 4: Linear Equations, all of Module 5: Examples of Functions 

from Geometry, the first 5 lessons from Module 6: Linear Functions, and lessons 1-5 and 15-23 

of Module 7: Introduction to Irrational Numbers Using Geometry.  
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For the analysis of these aforementioned sections, I looked at each instance of the equal 

sign as it appeared in explanations and examples in the teacher instructional material, and 

explanations, examples, and problem sets from the student material. It is likely that teachers 

develop their examples and language used for instruction from the instructional materials that 

they use. I also looked at the meanings, equation types, and structural conventions used by the 

authors in the explanations, examples, and problem sets in the student manuals because these 

also reflect how teachers might teach and use the equal sign. By combining the context observed 

from the teacher instructional material as well as the student manual I was better able to infer 

which meanings, and equation types show up in middle school mathematics. I also looked at 

which structural conventions were used throughout the curricula in instructional materials as 

well as explanations and examples in the student material. I did recognize, though, that structural 

conventions used in written curricula may be what is expected that the teachers will use in 

instruction, or it may be chosen because of ease in typing it up. Since I was looking at how the 

equal sign was used in instruction and in curricular materials in 7th and 8th grade mathematics 

and not how students use the equal sign, I did not look at the solutions for the problem sets, nor 

try to imagine how the students would work out their solutions.  

Analysis 

In the initial phase of data analysis, another researcher and myself referred to a 

preliminary coding chart I had created that included the different meanings, equation types, and 

structural conventions that were discussed in Chapter 2. We began by coding three lessons from 

each curriculum individually. Because we looked at each individual equation (two expressions 

connected by an equal sign) as the unit of analysis, we first went through each section and 

highlighted each equation, then went back and coded each equation directly on the page where 
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the equation occurred. We used the definitions from the coding sheet along with our expert 

fluency with mathematical texts to make sense of each equation based upon its context, and then 

decided what meaning of the equal sign we used, what equation type we read it as, and what 

direction it was read. Then we would consider whether there were other viable interpretations of 

the equation that also fit the context. Interpretations that were not viable were ruled out. We then 

looked at situations where two or more subsequent equations were written horizontally or 

vertically without any words between them and coded each arrangement for the type of structure 

it represented. Situations where only one equation was involved were recognized as stand-alone 

equations that did not follow the listed structural conventions; therefore, only the direction in 

which the equation was read was coded.  

Sometimes we encountered equations with which we struggled to determine the meaning, 

equation type, and/or structural conventions. After coding the lessons individually, we would 

meet to discuss these difficult equations as well as the equations on which our coding did not 

agree. We were able to resolve these conflicts by developing more detailed descriptions of our 

codes and if we felt like a certain equation could not be categorized by one of the codes already 

listed, we worked together to come up with a new equation type and definition under which it 

could fit. Through this process, we determined that there were multiple equation types and 

different structural conventions that were not listed in the original framework, so those equation 

types and conventions were added to the coding list.  

Perhaps the most significant changes were made to the codes for structural conventions. 

After a few attempts to code sections and compare codes, we realized that we often disagreed 

about or could not determine the direction of reading. We found that for some equations, we 

were not sure in which direction we had actually read it. For example, with the equation 
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2(2𝑙𝑙 + 2𝑤𝑤) = 2 × 2(𝑙𝑙 + 𝑤𝑤) (CMP3-7, Stretching and Shrinking, p.103), we realized that at 

times we read it LTR and at other times RTL, each time going back and forth between right and 

left to make sense of the procedure that took place.  In this situation it was difficult for us to 

determine which direction we initially read the equation, let alone determine the direction 

intended by the author. We determined that the actual direction in which we read particular 

equations may not be consciously accessible to us and may require eye movement tracking 

equipment to accurately judge. Because of this difficulty, we decided not to code direction as we 

could not make a valid determination and therefore it would not add anything to the study.   

Along with direction, we revised both the BCD and SCD conventions. Throughout 

multiple phases of coding we encountered situations where equations were arranged according to 

the BCD convention but were not constraint equations, so to include situations beyond constraint 

equations we redefined the structural convention as lists of equations (LOE). This change also 

led us to track if and which equation operations were being used between subsequent equations 

in the list, which caused us to create a set of codes for equation operations. As we identified 

SCDs, defined as expressions or equations that continued vertically with multiple subsequent 

expressions each connected by an equal sign written on the right or left, we realized that there 

were many instances where the same process occurred, but in one long horizontal string rather 

than in an SCD. Because both vertical and horizontal instances represented the same situation of 

subsequent expressions being connected by an equal sign, we decided to rename the actual object 

or process as a string of equalities (SOE). After identifying an SOE, we then noted whether it 

was vertical or horizontal. We then unpacked each string into a set of single equations. For 

example, we unpacked the SOE  75% 𝑜𝑜𝑓𝑓 𝑑𝑑2 = 3
4

(2𝑟𝑟)2 = 3
4

(4𝑟𝑟2) = 3𝑟𝑟2 into three different 

equations, the first being 75% 𝑜𝑜𝑓𝑓 𝑑𝑑2 = 3
4

(2𝑟𝑟)2, the second equation would be 3
4

(2𝑟𝑟)2 = 3
4

(4𝑟𝑟2), 
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and then the last equation would be 3
4

(4𝑟𝑟2) = 3𝑟𝑟2. Unpacking each SOE into individual 

equations allowed us to track whether or not the meaning of the equal sign or the equation type 

changed as the string continued. These structural revisions not only better fit the data that we 

analyzed, but also allowed us to gain further insight into how structural conventions affect the 

way the equal sign is utilized. 

We iterated the process of coding the same material separately then comparing and 

refining our codes multiple times until we began to get rates of interrater reliability of 80% or 

higher. After the 4th phase of data analysis, we reached an interrater reliability of 93% for the 

Eureka Math lessons that were analyzed but needed to complete one more set of revisions of the 

codes and one more phase of data analysis to reach an interrater reliability of 88%  for the CMP3 

curriculum. To maintain a high level of consistency, after reaching a high level of agreement, we 

continued to share and compare our analysis for most of the remaining chapters, completing 

about 90% of the analysis together.  

After completing the analysis of each grade and curriculum, I organized the data in a way 

that allowed me to answer the research questions, as well as find any other interesting patterns. I 

first organized the data by structural convention for a couple of reasons. First, it allowed me to 

group the equations included in the structure together to help me recognize patterns between 

equations within a structure. I also chose to organize it this way because I had already recognized 

that, on multiple occasions, equation types and meanings of the equal sign changed within the 

same structure, and by organizing the data by structure first, it was easier to keep track of this 

phenomenon. I then recorded each equation with the meaning of the equal sign followed by the 

equation type. This was helpful in that it allowed me to sort through the data by meanings and 

notice which equation types were connected with each meaning. I was then able to complete a 
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count of the different types, meanings and conventions that showed up in each grade, curriculum, 

and unit. After completing counts and finding connections between meanings of the equal sign, 

equation types, and structural conventions, I then identified typical and atypical examples, of 

each code. This allowed me to identify characteristics of each code that we had only tacitly 

attended to in our coding, resulting in descriptions that more clearly and accurately reflected the 

characteristics of the codes we used in our analysis. These examples also help set the bounds for 

each equation type, which we use in the results section to give the reader a better understanding 

of the categories we have developed.  By completing this process of analysis, I was able to 

determine which meanings, equation types, and structural conventions occurred in three 

standards of the CCSSM in the CMP3 and Eureka Math 7th and 8th grade curricula.  Results of 

the counts as well as the refined definitions and examples are discussed in the results section of 

chapter 4. 
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CHAPTER 4: RESULTS 

In this section I discuss three main results that were found from analyzing the Eureka 

Math and Connected Math Project 3 (CMP3) curricula. The first main result is the types of 

equations that occurred in the 7th and 8th grade curricula as well as the meanings of the equal sign 

that are associated with them. In this result I include refined definitions of the equation types as 

well as typical and atypical examples of each type. The second main result is which structural 

conventions occurred in the curricula as well the equation types they more commonly were 

associated with. The final main result that I discuss is the frequency in which equations with the 

different meanings of the equal sign appear throughout the two curricula in both 7th and 8th grade. 

Equation Types 

After analyzing the two curricula I was able to organize the equation types and their 

purpose based on the meanings that are associated with each equation type as seen in Table 1. I 

was able to organize the equation types this way because when each equation type appeared, it 

was consistently associated with one specific meaning every time, with one exception that shared 

two different meanings. The three meanings that appeared in the research include the operational 

meaning, assignment meaning, and relational meaning as discussed in the literature review. I 

discuss each meaning of the equal sign and the equation types that are associated with them 

below.  
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Table 1 

Summary of equation types and their purpose organized by the meanings that they are 
associated with.  

Meanings of the Equal 
Sign 

Equation Types Purpose 

Operational Transformation Equations to perform an operation and record 
the result after the equal sign 

Assignment Specification equations to specify or assign a specific value 
to a variable or unknown so that the 
reader can use that value as an input 
later in the problem 

Restriction specification 
equations 

to restrict the values that can be 
assigned to a variable in a problem 

Relational Constraint equations with 
parameters 

to serve as a general form for a 
family of functions or to provide a 
template 

Constraint equations with 
variables 

to find one or more corresponding 
pairs from the solution set of the 
equation 

Constraint equations with 
one unknown 

to determine which value(s) of the 
unknown would make the situation 
true 

Formal Identity to express a general mathematical 
property or principle 

Contextual Identity to model the relationship between 
quantities in a specific context 

Numeric Identity to justify why a result is correct 

Numeric Non-identity to justify that a number was in fact 
not a solution 

Transformation Equations to prove or justify rather than 
produce a result 

Unit Identity to set one unit equal to a different 
unit and provide information 

Result Equations to declare a resulting value or 
solution that has been found by 
completing a computation or 
measurement 
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Equation Types with Operational Meanings 

The first equation type I discuss is that which is associated with the operational meaning 

of the equal sign. As a reminder, the operational meaning is assigned when the intent of the equal 

sign is to prompt the reader to find the result of an operation or procedure and then record the 

answer to the right of the equal sign. Consequently, all equations associated with the operational 

meaning shared this particular structure: an expression on the left that was transformed via a 

procedure to yield the expression on the right. Because of the focus on transforming one 

expression into the other, I refer to this type of an equation as a transformation equation. An 

equation was coded as a transformation when the main purpose of the equation appeared to be to 

perform a given procedure. Some transformations contained only one equal sign, while others 

contained a string of equalities. However, regardless of how many equal signs were used in the 

equation, the focus was the same: performing operations and recording the results.  

Two examples of a transformation equation are illustrated in Figure 7. The first example 

is the most common type of transformation equation that occurred in the two curricula. It is 

purely arithmetic and requires the reader to perform the stated operation in the expression on the 

left and record the answer to the right of the equal sign. In this specific example the equation 

comes from trying to find Sam’s time in a relay race with Fred. The second example is also a 

very common type of transformation equation that occurred in the two curricula. This one is 

algebraic and is used to transform the left equation into a more simplified expression. The reader 

is still required to perform the given operation of distributing the 2 across the expression in 

parenthesis, but rather than finding the solution as a single value, as in the first example, the 

resulting expression is considered the final solution. During the analysis of the curricula, we 
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found that no other equation types shared the focus on the operation and resulting transformation 

which is why there is only one equation type in the operational meaning category. 

Equation Types with an Assignment Meaning 

The next equation type I discuss is that which uses the assignment meaning. As a 

reminder, the assignment meaning is given to the equal sign when the equal sign is used to label 

or assign a value to a variable or object. Consequently, all equations associated with the 

assignment meaning achieved one of the following two purposes: to specify or assign a specific 

value to a variable or unknown so that it can be used as an input later in the problem, or to 

restrict the values that can be assigned to a variable in a problem. These two purposes gave rise 

to two different equation types: specification equations and restriction specification equations.  

Specification equations achieved the first purpose, namely, to assign specific values or 

expressions to mathematical objects. There were three common uses for specification equations 

that appeared in the curricula. The most common use for specification equations was to state the 

value of one unknown so that the corresponding value of a second unknown could be 

determined. The following prompt illustrates this purpose: “If 𝑦𝑦 = 2𝑥𝑥2 + 8𝑥𝑥 find the values of 𝑥𝑥 

a) 

Total Time (hours) 

18.35 

Fred’s Time (hours) 

8 

Sam’s Time (hours) 

18.35-8=10.35 

b) 𝟐𝟐(𝟑𝟑𝟑𝟑 + 𝟐𝟐) = 6𝑥𝑥 + 4 

Figure 7. Transformation equations with operational meaning: (a) Arithmetic example 
(Eureka Math 7, Module 3, pg. 134), (b) Algebraic example (Eureka Math 8, Module 4, pg. 
45)
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when 𝑦𝑦 = 0” (CMP3-8, Say It with Symbols, pg. 25). In this example, the specification equation 

𝑦𝑦 = 0 is used to assign a value to 𝑦𝑦 in the given equation so that the corresponding value of x, 

the second unknown, can be found.  

A second common use for specification equations that appeared in the curricula was to 

provide a numeric value that the reader should substitute in for an unknown to test if that value 

could be a solution to the given constraint equation. The following example illustrates this use: 

“Is the equation a true statement when 𝑥𝑥 = − 3? In other words, is −3 a solution to the equation 

6𝑥𝑥 + 5 = 5𝑥𝑥 + 8 + 2𝑥𝑥? Explain” (Eureka Math 8, Module 4, pg.33). In this example, the 

specification equation 𝑥𝑥 = −3 is used to assign the value −3 to the variable 𝑥𝑥 in the given 

equation and substitute it in to determine if −3 is a solution or not.  

A third common use for specification equations, especially in the geometry chapters, was 

to assign values to the measures of line segments, sides, or an angle so that the reader could 

either create a shape with those measures or determine values for the measures of other parts of 

the shape. For example, students were prompted to do the following: “Use your tools to draw 

∆𝐴𝐴𝐴𝐴𝐴𝐴 in the space below, provided 𝐴𝐴𝐴𝐴 = 5𝑐𝑐𝑐𝑐,𝐴𝐴𝐴𝐴 = 3 𝑐𝑐𝑐𝑐, 𝑎𝑎𝑎𝑎𝑑𝑑 ∠𝐴𝐴 = 30°” (Eureka Math 7, 

Module 6, pg.128). In this example, and the many like it in the curricula, each specification 

equation is used to specify or assign a specific value for the measure of an unknown side or angle 

for the purpose of drawing the shape or calculating the shape's other lengths and angle measures.  

While the first three examples that I mentioned were the most common uses of 

specification equations, there was one less common use that is worth mentioning. This use 

consisted of specifying the rule for a function so that the function could be entered into the 

graphing calculator and graphed. For example, the text stated that “ 𝑦𝑦1 = 3(2𝑥𝑥 − 5) and 𝑦𝑦2 =

2(3𝑥𝑥 − 1) + 𝑥𝑥” (CMP3-8, Say It With Symbols, pg. 23), which was followed by the instructions 
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to enter these functions into the graphing calculator along with a screen shot of the plot 1 screen 

and then the resulting graph.  I considered these two function examples as specification 

equations because the reader is expected to take what has been assigned to 𝑦𝑦1 and 𝑦𝑦2 and type 

that assignment as an input into their corresponding place on the calculator. Because these 

equations were explicitly meant to be used as calculator inputs, I decided to code them as 

specification equations. However, if there was no expectation to use the function equation as an 

input in either the calculator or another function then I did not consider it as a specification but 

rather a different equation type that I will discuss in the next category.  

The second equation type associated with the specification meaning of the equal sign is 

the restriction specification equation. A restriction specification equation restricts the values that 

can be assigned to a mathematical object without specifying an exact value. An example of 

restriction specification equations is given in the following excerpt: “Let 𝑎𝑎
𝑏𝑏

 and 𝑐𝑐
𝑑𝑑

 be rational

numbers, where 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑑𝑑 are integers, 𝑏𝑏 ≠ 0,𝑎𝑎𝑎𝑎𝑑𝑑 𝑑𝑑 ≠ 0” (CMP3-8, Say It With Symbols, 

pg. 273). In this example, the equations 𝑏𝑏 ≠ 0, and d ≠ 0 are specifying what values must be 

restricted from being substituted in for the variables 𝑏𝑏 and 𝑑𝑑. Because the equations 𝑏𝑏 ≠

0 and d ≠ 0  specify which values cannot be assigned to the variables 𝑏𝑏 and 𝑑𝑑, they are 

restriction specifications equations. However, because the purpose of these equations is to 

provide information about the values of the variables, they fall under the assignment meaning of 

the equal sign.  

Equation Types with a Relational Meaning 

The final set of equation types I discuss are those associated with the relational meaning 

of the equal sign. As a reminder, the relational meaning is assigned when the equal sign is used 

to relate the expressions on both sides as sharing the same numeric value or being equivalent 
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expressions in the sense that they could be transformed into each other using appropriate 

transformation rules. The remainder of equation types that occurred in the research seemed to 

require the use of the relational meaning and therefore fell into this set.  Below, I describe each 

equation type in this set, and like I have done previously, provide one or two examples from the 

curricula to explain these equation types coincide with the relational meaning of the equal sign.  

Constraint Equations.  A constraint equation comprises two expressions, set equal to 

each other, that are not equivalent for every value of the unknown(s). Instead, the value of the 

unknown is constrained to the set of numbers for which both expressions, when evaluated using 

a number from the set, yield the same numeric value. As I coded the data, I found it useful to 

organize constraint equations into three different categories: constraint equations with 

parameters, constraint equations with variables, and constraint equations with one unknown. 

These three equation types differ in number of unknowns, uses, and strategies for solving for the 

unknown variables. Consequently, students need to be able to distinguish between these three 

types of equations.  

Constraint equations with parameters are equations where both variables and parameters 

are unspecified within the context of the equation. Parameters are constant quantities in a model 

on which the varying quantities depend. They do not vary within a specific model or setting but 

can vary across a general family of functions they help to define. Variables are the varying 

quantities in the model that can assume multiple values dependent on the conditions set by the 

parameters. Equations that we coded as constraint equations with parameters most often served 

as a general form for a family of functions or relations such as 𝑦𝑦 = 𝑐𝑐𝑥𝑥 + 𝑏𝑏, 𝑥𝑥𝑛𝑛 = 𝑝𝑝, or 𝑥𝑥2 +

𝑦𝑦2 = 𝑟𝑟2 where the numeric values of the parameters are unspecified. As in the example of the y-
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intercept form of a linear equation, 𝑦𝑦 = 𝑐𝑐𝑥𝑥 + 𝑏𝑏, 𝑐𝑐 and 𝑏𝑏 are the parameters that determine the 

set of (𝑥𝑥,𝑦𝑦) ordered pairs that makes the linear equation true.  

There are two common uses for a constraint equation with parameters in the curricula as 

illustrated in Figure 8. One use is to give a general description of a family of equations as 

illustrated in Figure 8a, and the other is to present a template for inserting information and 

generating a particular equation or result as illustrated in Figure 8b.  In both examples the 

equation 𝑦𝑦 = 𝑘𝑘𝑥𝑥 is shown as it is used in the student material. In Figure 8a, the equation is used 

to help students know how to identify a proportional relationship and recognize the 

multiplicative relationship between two quantities. Students are not yet asked to use it to find 

specific values for 𝑥𝑥 and 𝑦𝑦, but to understand that 𝑦𝑦 = 𝑘𝑘𝑥𝑥 means that the value of 𝑦𝑦 will always 

be 𝑘𝑘 times the value of 𝑥𝑥. Once students are familiar with the general forms of equations, then 

they can identify what type of function they are working with, (e.g., whether it be a linear or 

exponential function). In Figure 8b, the equation 𝑦𝑦 = 𝑘𝑘𝑥𝑥 is used as a template for finding either 

the constant of proportionality, or corresponding values for 𝑥𝑥 and 𝑦𝑦.  The example specifically 

states that the reader should use this equation and then substitute in the value for 𝑘𝑘 if it is known. 

Then the reader is told how to find the values for the variables 𝑥𝑥 and 𝑦𝑦 through substitution into 

the given equation. 

Constraint equations with variables are equations that involve two or more variables (i.e., 

two or more quantities that covary) but no parameters. Constraint equations with variables 

describe a particular function or relation. An example of a constraint equation is “2x + 3y = 9” 

(Eureka Math 8, Module 4, pg. 308). Note that this constraint equation can be generated by 

replacing the parameters a, b, and c in the constraint equation ax + by = c with 2, 3, and 9, 
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respectively. This example illustrates that constraint equations with variables can be created from 

constraint equations with parameters by replacing the parameters with specific numbers.  

There are a few different purposes for constraint equations with variables. The most 

common purpose in the curricula was to find one or more corresponding pairs from the solution 

set of the equation. An example of this use is illustrated in Figure 9. In this example from the 

student materials, the authors demonstrate how the points of intercept are found by replacing 𝑥𝑥 

and 𝑦𝑦 with zero and then calculating the corresponding value of the ordered pair. In this specific 

example, these ordered pair solutions are used to graph the linear relation, but in many examples, 

the end goal was just to find one or more ordered pair. 

a) Vocabulary

If a proportional relationship is described by the set of ordered pairs (𝑥𝑥, 𝑦𝑦) that satisfies the 
equation 𝑦𝑦 = 𝑘𝑘𝑥𝑥 for some number 𝑘𝑘, then 𝑘𝑘 is called the constant of proportionality. It is the 
number that describes the multiplicative relationship between measures, 𝑥𝑥 𝑎𝑎and 𝑦𝑦, of two 
types of quantities. The (𝑥𝑥, 𝑦𝑦) pairs represent all the pairs of numbers that make the equation 
true.  

b) Lesson Summary

How do you find the constant of proportionality? Divide to find the unit rate, 𝑦𝑦
𝑥𝑥

= 𝑘𝑘. 

How do you write an equation for a proportional relationship? 𝑦𝑦 = 𝑘𝑘𝑥𝑥, substituting the value 
of the constant of proportionality in place of 𝑘𝑘. 

What is the structure of proportional relationship equations, and how do we use them? 𝑥𝑥 and 
𝑦𝑦 values are always left as variables, and when one of them is known, they are substituted into 
𝑦𝑦 = 𝑘𝑘𝑥𝑥 to find the unknown using algebra.  

Figure 8. Constraint equation with parameters: (a) as a general description (Eureka Math 7, 
Module 1, pg. 62), (b) as a template (Eureka Math 7, Module 1, pg. 81) 
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Another way the authors often used this equation type was to check if a known property 

held true. Sometimes this property could be tested by substituting values into a constraint 

equation with variables to see if the resultant statement was true. For example, in a chapter on 

the Pythagorean Theorem, the text noted, “The converse of the Pythagorean Theorem states that 

if a triangle with side lengths 𝑎𝑎, 𝑏𝑏 𝑎𝑎𝑎𝑎𝑑𝑑 𝑐𝑐 satisfies 𝑎𝑎2 + 𝑏𝑏2 = 𝑐𝑐2, then the triangle is a right 

triangle”, (Eureka Math 8, Module 7, pg. 224). In this case, the equation 𝑎𝑎2 + 𝑏𝑏2 = 𝑐𝑐2 is used as 

Lesson Summary 

The graph of a linear equation is a line. A linear equation can by graphed using two points: 
the x-intercept point and the y-intercept point.  

Example: 

 Graph the equation: 2𝑥𝑥 + 3𝑦𝑦 = 9 

 Replace 𝑥𝑥 with zero and solve for 𝑦𝑦 to determine the 𝑦𝑦-intercept point. 

2(0) + 3𝑦𝑦 = 9 

        3𝑦𝑦 = 9 

        𝑦𝑦 = 3 

 The 𝑦𝑦-intercept point is at (0,3). 

 Replace 𝑦𝑦 with zero and solve for 𝑥𝑥 to determine the 𝑥𝑥-intercept point. 

2𝑥𝑥 + 3(0) = 9 

        2𝑥𝑥 = 9 

 𝑥𝑥 =
9
2

The 𝑥𝑥-intercept point is at �9
2

, 0�.

Figure 9. Finding 𝑥𝑥 and 𝑦𝑦 intercepts of constraint equation with variables. (Eureka Math 8, 
Module 4, pg. 308) 
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a constraint equation that must be met for a triangle to be right and becomes a test for the 

existence of a relationship between the sides that is necessary for the triangle to be right. 

Whereas, if we already know that the triangle is right, then we can use this equation as a 

contextual identity that allows us to determine an unknown side length of a right triangle. 

Constraint equations with one unknown are equations with only one letter whose value is 

unspecified. Generally, this type of equation can be used to check if a particular value of the 

unknown is a solution and can often be manipulated to find solutions to the equation by applying 

a set of operations to both sides of the equation until the value of the unknown is found. There 

may be zero, one, or multiple solutions for these constraint equations. The main difference 

between constraint equations with variables and those with one unknown is that in the later, the 

value of the unknown quantity is not influenced or determined by the value of another varying 

quantity in the equation. 

One of the main uses for constraint equations with one unknown is to model a situation 

so that one can determine which value(s) of the unknown would make the situation true. One 

example from the text that illustrates this use is given in Figure 10. In this example, the 

expression on the left is a result of adding the expression of Bonnie’s age in 5 years to Shelby’s 

age in 5 years. Since the question is asking to find Bonnie’s age, her age is represented by the 

letter 𝑥𝑥, which is the unknown. These combined expressions are set equal to the sum of their 

ages, which is 98. The reader is now able to find the value of 𝑥𝑥 that makes this equation true by 

completing a set of operations on both sides of the equation. Note that there is no other quantity 

in the equation that varies besides x, which enables the reader to determine which values of x 

make the equation true.   
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Formal identity. A formal identity is an equation that is intended to express a general 

mathematical property or principle. The equal sign in the equation is used to indicate that the two 

algebraic expressions on either side of the equal sign will produce the same numeric value 

regardless of what values are assigned to the variable(s).  One example of a formal identity 

would be the distributive property 𝑎𝑎(𝑏𝑏 + 𝑐𝑐) = 𝑎𝑎𝑏𝑏 + 𝑎𝑎𝑐𝑐, where the two symbolic expressions on 

opposite sides of the equal sign produce the same numeric value regardless of the values of 𝑎𝑎, 𝑏𝑏, 

and 𝑐𝑐. Another example includes “−�𝑝𝑝
𝑞𝑞
� = −𝑝𝑝

𝑞𝑞
= 𝑝𝑝

−𝑞𝑞
” (Eureka Math 7, Module 3, p.8) where, 

again, each symbolic expression produces the same numeric value regardless of the values 

substituted into the variables. In the curricula that I analyzed, formal identities were often used to 

describe a general mathematical property, and then illustrated immediately afterward using a 

numeric example. For example, after the rules  𝑎𝑎𝑚𝑚 × 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑚𝑚+𝑛𝑛 and 𝑎𝑎
𝑚𝑚

𝑎𝑎𝑛𝑛
= 𝑎𝑎𝑚𝑚−𝑛𝑛 for

multiplying and dividing exponents were presented, students were asked to simplify 2
5×26

29
 to 

check their understanding of the rules (CMP3-8, Growing, Growing, Growing, pg.232). 

Contextual identity. A contextual identity is an equation that models the relationship 

between quantities in a specific context. Contextual identities typically involve letters that are 

used as variables and parameters and are usually formulaic in nature. Contextual identities are 

true for all values of the variable(s) as long as the equation is used in the specific context. Like 

formal identities, contextual identities are usually presented as a mathematical property within a 

specific context and then illustrated using numerical examples.  For example, both curricula 

Shelby is seven times as old as Bonnie. If in 5 years, the sum of Bonnie’s and Shelby’s ages 
is 98, find Bonnie’s present age. Use an algebraic approach.  

𝑥𝑥 + 5 + 7𝑥𝑥 + 5 = 98 

Figure 10. Constraint equation with one unknown (Eureka Math 7, Module 3, pg. 135) 
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offered a list of formulae for finding the area or volume of multiple shapes (e.g., 𝑉𝑉𝑐𝑐𝑐𝑐𝑛𝑛𝑐𝑐 = 1
3
𝜋𝜋𝑟𝑟2ℎ, 

𝐴𝐴𝑠𝑠𝑞𝑞𝑠𝑠𝑎𝑎𝑠𝑠𝑐𝑐 = 𝑙𝑙𝑤𝑤) and then followed with numerical examples that required the use of one or more 

of these formulae.  

Numeric identity. A numeric identity is an equation of equivalent numeric expressions 

that is used to justify why a result is correct. The following is an example of a numeric identity: 

“7 1
2

is a solution to 2𝑎𝑎 = 15 because 2 �7 1
2
� = 15” (Eureka Math 7, Module 3, pg. 106). In this 

example, the author is using 2 �7 1
2
� = 15 as a numerical fact to justify why 7 1

2
 must be the 

solution. This is different than an equation transformation where the purpose of the equation is to 

find the answer to 2 times 7 ½; instead, the purpose of this equation is to justify the claim that 7 

½ is a solution to the equation. The authors’ use of the word “because” suggests that they are 

engaged in justification and not computation. I coded equations as numeric identities if they were 

used to justify a result rather than to produce a result. Often these justifications were marked 

with words such as “since” or “because.”  

In contrast, if the equation was not given as a justification for the result, but rather was 

just to produce the result, than it was coded as an equation transformation. For example, “if the 

sponsor pledges to donate $4 for each kilometer walked, and the student plans to walk 5 

kilometers, then you can estimate that the student will collect 4 × 5 = $20 from each sponsor” 

(CMP3-7, Moving Straight Ahead, pg. 61). In this case, I coded the equation as an equation 

transformation because 4 × 5 was used to compute the result. However, if the authors had 

written, “the answer is $20 since 4 × 5 = 20,” then this equation would have been coded as a 

numeric identity because it was being used to justify the correctness of the result ($20). 

Occasionally, equations were used similarly to numeric identities but rather than 

justifying that a number was a solution, they were used to justify that a number was in fact not a 
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solution. I chose to code this type of equation as a numeric non-identity. For example, students 

were asked to come up with different solution sets for the equation 10𝑎𝑎 + 5𝑠𝑠 = 400 and after 

determining that two possible solutions were (10,60) and  (15,50) they were then asked if the 

solutions in part (1) could be a solution to the equation 𝑎𝑎 + 𝑠𝑠 = 50 in a later part of the same 

problem, the response was, “No, because 10 + 60 ≠ 50 and 15 + 50 ≠ 50” (CMP3-8, It’s in 

the System, pg. 51). In this example, the author substituted the supposed solutions into the 

equation, and justified why these numbers were not solutions by showing that the expressions on 

either side of the equal sign were not equivalent.  

One of the most common cases of numeric non-identities was found when working 

through a solution to test if it was correct or not. The example in Figure 11 illustrates this use of 

a numeric non-identity. In this example, the first equation was set up to assume that the 

expressions on both sides of the equal sign share the same value. However, as the author worked 

through reducing both sides of the equation, the last line resulted in a numeric non-identity 

because the two sides were not of the same value. This practice of using the equal sign when the 

authors did not yet know if two expressions are in fact the same value may actually be 

considered inappropriate in some mathematics communities, and thus may be problematic for 

students’ development of the meaning of the equal sign. Sometimes the authors avoided this 

practice by placing a question mark on top of the equal signs of all but the final equation as they 

tested a potential solution.  
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Transformation equations. Transformation equations were the only type of equation 

that was used with more than one meaning of the equal sign. As noted above, transformation 

equations were used with the operational meaning of the equal sign to record the results of 

performing procedures. However, transformation equations were also used with a relational 

meaning, usually occurring in a proof or justification of a solution. This different use is 

illustrated in the example in Figure 12. In this example, the author's purpose was to use the 

distributive property to explain and justify why increasing a figure by 25% is the same as 

multiplying the original number by 125%. In cases like this one, the authors seemed to be more 

focused on the truthfulness of the transformations applied than on the results of the 

transformations, because they were trying to show why the end expression was equivalent to the 

original expression in the string of equalities. While the resulting expression was important 

because that was what they were trying to prove, the purpose of these transformation equations 

was to justify rather than produce the end result. 

Is the triangle with leg lengths of 9 in. and 9 in. and hypotenuse of length √175 in. a right 
triangle? Show your work, and answer in a complete sentence.  

92 + 92 = (√175
2

)

81 + 81 = 175 

162 ≠ 175   

Figure 11. Example of numeric non-identity. (Eureka Math 8, Module 7, pg. 223). 

“To increase a figure by 25% means you multiply the original number by 25% and then add it 
to the original number. This is the same as multiplying the original number by 125% because 
𝑥𝑥 + 0.25𝑥𝑥 = 1𝑥𝑥 + 0.25𝑥𝑥 = (1 + 0.25)𝑥𝑥 = 1.25𝑥𝑥. "  

Figure 12. Equation transformation with relational meaning. (CMP3-7 Stretching and 
Shrinking, p.58) 
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Subsequent expressions in transformation equations that used a relational meaning of the 

equal sign were not always a simplification of the previous expression. Because the purpose was 

not only to produce a result, but to justify the final result, sometimes, subsequent expressions 

actually added complexity or length to the previous expression. However, this added complexity 

was strategically inserted to enable the authors to create a string of transformations that yielded 

and justified the desired result. The examples in Figure 13 illustrate these “strategic” 

transformations. In Figure 13a, the authors’ purpose was to justify the numeric equivalency of 

√8 and 2√2 by creatively rewriting the previous expression into an equivalent expression that

would help the reader understand how to arrive at the given solution. Each subsequent 

expression is not necessarily a direct result of an operation from the previous expression. In 

Figure 13b, the authors’ purpose was to prove why 𝐴𝐴 = 𝜋𝜋𝑟𝑟2  is the area of a circle. This example 

used a combination of transformations to give a step by step explanation of how the formula for 

the area of a circle was derived. By using “creative” transformations to help justify the final 

result, both of these examples help illustrate why a relational meaning is required to make sense 

of the transformation equation.  

Unit identity.  A unit identity is an equation that sets one unit equal to a different unit.  

Some examples from the text include equations like 1𝑓𝑓𝑓𝑓 = 12𝑖𝑖𝑎𝑎, or 1𝑦𝑦𝑑𝑑 = 3𝑓𝑓𝑓𝑓. Unit identities, 

like numeric identities, state a known fact and do not provide an explanation or show the 

a) “[Students] will see that the length of √8 units is twice the length of √2 units and may
generalize the algebraic method they learned in Problem 2.2 to find that √8 = √4 × 2 =
√4 × √2 = 2√2”

b) “𝐴𝐴𝑟𝑟𝐴𝐴𝑎𝑎 (𝑐𝑐𝑖𝑖𝑟𝑟𝑐𝑐𝑙𝑙𝐴𝐴) = 1
2
∙ 𝑐𝑐𝑖𝑖𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑓𝑓𝐴𝐴𝑟𝑟𝐴𝐴𝑎𝑎𝑐𝑐𝐴𝐴 ∙ 𝑟𝑟 = 1

2
(2𝜋𝜋𝑟𝑟) ∙ 𝑟𝑟 = 𝜋𝜋 ∙ 𝑟𝑟 ∙ 𝑟𝑟 = 𝜋𝜋𝑟𝑟2” 

Figure 13. Equation transformations with a relational meaning: (a) as justification for result. 
(CMP3-7 Looking for Pythagoras p.89), (b) used to prove a formula. (Eureka Math 7, Module 
3, p.258).  
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operation of how the author arrived at the conclusion that these expressions are equivalent. 

However, unlike numeric identities, unit identities were not commonly used as a justification for 

the conclusion, but as information that was needed to perform unit conversions.  

Result equations. The last equation type that falls under the relational meaning category 

is the result equation. A result equation is a declaration of a resulting value or solution that has 

been found by completing a computation or measurement and is usually written in the form of an 

unknown set equal to the resulting value. Some common examples found in the texts were 

equations like “𝑝𝑝 = 90”, which the authors used to state the result of having added up the sides 

of a rectangle to find the perimeter, or  “𝐴𝐴𝐴𝐴 = 4,” which was the result of having counted the 

squares on a grid to measure the length of 𝐴𝐴𝐴𝐴. Another example includes “40 = 1” (CMP3-8, 

Growing, Growing, Growing, pg. 72) where 40 is treated as an unknown in the question, “In the 

last problem, you saw that 20 = 1. Do 30 and 40 also equal 1?” After completing some 

operations, using the equation 𝑟𝑟 = 3𝑛𝑛−1 and finding that 30 does, in fact, equal 1, the authors 

conclude that it must be that 40 = 1, because similar computations would lead to this conclusion. 

Note that the result equation does not report the operations that took place to find the result, so 

therefore the purpose of the equation is to declare the result rather than to compute or justify the 

result.  In each of these examples, a key characteristic of the results equations was that they were 

not written as part of the transformations or measurements that took place to compute the results. 

While most of the result equations were easy to recognize and code, one particular use of 

result-like equations caused difficulty in the coding. An example of this context—a result 

reported at the end of a series of equations used to solve an equation--is shown in Figure 14. In 

this example, 𝑥𝑥 = 4 could be interpreted three ways: as the result of a transformation applied to 

the equation above it (and thus as a constraint equation with one unknown, just like the equation 
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above it); a declaration that x must have the value of 4 because of all of the computations 

performed on this equation (making 𝑥𝑥 = 4 a result equation); or an assignment of 4 for the 

variable x, allowing 4 to be substituted for any occurrence of x (making 𝑥𝑥 = 4 a specification 

equation). It is likely that the authors, as sophisticated users of the equal sign, read this equation 

all three ways. My own experience with students, however, suggests that these three ways of 

reading 𝑥𝑥 = 4 must be learned and are neither automatic nor simultaneous. Because the first 

reading of this equation by experts is likely to be as a result of a transformation performed on the 

preceding constraint equation with one unknown, I chose to code this instance of 𝑥𝑥 = 4 as a 

constraint equation with one unknown. I coded other cases of solving equations similarly. 

A second, less confusing difficulty in coding result-like equations consisted of contexts 

where a numeric value was both assigned to a variable and treated as if it might be the result of 

an equation solving process. An example of this type of equation is found in the following: 

“Angel transformed the following equation from 6𝑥𝑥 + 4 − 𝑥𝑥 = 2(𝑥𝑥 + 1) to 10 = 2(𝑥𝑥 + 1). He 

then stated that the solution to the equation is 𝟑𝟑 = 𝟒𝟒. Is he correct? Explain” (Eureka Math 8, 

Module 4, pg. 35).  In this example, the reader might interpret the equation 𝑥𝑥 = 4 as either an 

7𝑥𝑥 − 3 = 5𝑥𝑥 + 5 

7𝑥𝑥 − 3 + 3 = 5𝑥𝑥 + 5 + 3 

        7𝑥𝑥 = 5𝑥𝑥 + 8 

 7𝑥𝑥 − 5𝑥𝑥 = 5𝑥𝑥 − 5𝑥𝑥 + 8 

 2𝑥𝑥 = 8 

2𝑥𝑥
2

=
8
2

    𝑥𝑥 = 4  

Figure 14.  Solution embedded in the computations (Eureka Math 8, Module 7, pg. 77). 
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assignment of the value 4 to x (so that it could be substituted into the equation), or as a claim that 

if the equation were solved, the computations would yield that x must be 4. In these contexts, I 

coded the equation as a specification equation because it seemed that the authors intended that it 

be read as an assignment and not as a result of solving an equation. 

Frequency of Equations with Different Meanings of the Equal Sign in the Curricula 

In this section I discuss how frequently the different meanings of the equal sign appeared 

throughout the equations analyzed in the two curricula and in the two grades. I first discuss the 

frequency of the different meanings of the equal sign as they occurred throughout all equations 

that were analyzed regardless of grade or curriculum. I then discuss the distribution of equations 

with the different meanings as they occurred, not only in each grade and curriculum, but also 

between teacher and student materials. Finally, I discuss how the use of the equal sign develops 

over units and from 7th to 8th grade.   

Table 2 

Table of number of equations analyzed and the percentage equations with each meaning of the 
equal sign. (Eureka Math 7th and 8th grade, CMP3 7 and 8)  

Total number of equations analyzed 11,149 

Total percentage of equations with assignment meaning 6.7% 

Total percentage of equations with operational meaning 14% 

Total percentage of equations with relational meaning. 79.3% 

By looking at Table 2, we can see the overall percentage of the different meanings of the 

equal sign as they appeared in all the equations that were analyzed. From this table, the relational 

meaning is the predominant meaning given to the equal sign in both 7th and 8th grade and in both 

curricula. As was mentioned in Chapter 2, the literature indicates that students in 7th and 8th 
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grades should be using the equal sign as a relational symbol, so it is significant that the majority 

of equations that were analyzed in the 7th and 8th grade curricula used the equal sign as a 

relational symbol. While this supports the idea that students in grades 7-8 should be using the 

equal sign with a relational meaning (Carpenter, Franke, & Levi, 2003; Falkner et al., 1999), the 

equal sign as an operational symbol still plays an important role in these curricula, because 14% 

of the equations used the operational meaning of the equal sign. The same could also be said 

about the assignment meaning of the equal sign, as it occurred in 6.7% of the equations analyzed. 

While the assignment and operational meanings are used less frequently than the relational 

meaning, they are both used often enough that students need to be aware of them and know how 

to read and use equations that use any of these three meanings of the equal sign. 

By looking at the distribution of equations across grade level, curriculum, and teacher-

student materials (see Table 3), we can get a sense of how the meanings of the equal sign 

progress from 7th to 8th grade. One important trend to note is that the frequency of the use of the 

relational meaning of the equal sign did go up across each column in the Eureka Math 

curriculum from 7th (65.7%) to 8th grade (83.8%). As for the CMP3 curriculum, the frequency of 

equations that used the relational meaning of the equal sign remained consistently high from 7th 

to 8th grade, occurring over 80% of the time in both grades. 
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Another trend that is important to note is that in each grade and curriculum, the frequency 

of equations that use the operational meaning of the equal sign is higher in the teacher material 

than the student material. This is most likely the case because in the teacher material, 

explanations and solutions were included with all problems and examples. In contrast, student 

material, with a few exceptions in each curriculum, did not provide explanations and solutions, 

but only problems for students to solve. It is important to note the lack of explanations and 

solutions provided in the analyzed student material, because recognizing this lack helps us 

understand that a low frequency of the operational meaning of the equal sign in the student 

materials is likely an inaccurate estimation of the prevalence with which the students might be 

using the operational meaning of the equal sign.   

The last important datum to note from Table 3 is the high frequency (54.5.%) of 

equations that use the assignment meaning of the equal sign in the Eureka Math 7 student 

material. This is especially interesting since the frequency of the same type of equation in the 

teacher material is only 2.9%. A look at the distribution of different meanings of the equal sign 

Table 3 

Breakdown of frequency of equal sign meanings among grade, and teacher and student 
material. (Eureka Math 7, Eureka Math 8, CMP3-7, and CMP3-8) 

Meaning of the 
equal sign 

Eureka 
Math 7 

Eureka 
Math 7 
Teacher 

Eureka 
Math 7 
Student 

CMP3-7 CMP3-7 
Teacher 

CMP3-7 
Students 

Assignment 7.5% 2.9% 54.5% 8.6% 9.3% 5.3% 
Operational 26.8% 28.9% 5.2% 8.2% 9.6% 2% 
Relational 65.7% 68.2% 40.3% 83.2% 81.1% 92.7% 

Meaning of the 
equal sign 

Eureka 
Math 8 

Eureka 
Math 8 
Teacher 

Eureka 
Math 8 
Student 

CMP3-8 CMP3-8 
Teacher 

CMP3-8 
Students 

Assignment 5% 4.1% 12.2% 9.1% 10.3% 3.9% 
Operational 11.2% 12.3% 2.5% 8.4% 9.1% 5.6% 
Relational 83.8% 83.6% 85.3% 82.5% 80.6% 90.5% 
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over units within the year can bring further understanding to this piece of data. Because of its 

size, I have included the table that illustrates the breakdown of different meanings of the equal 

sign and distribution of equation types over grade, curriculum, teacher material, student material, 

and unit in Appendix B. The data in this table explains that 80.4% of the equations in the student 

material of Eureka Math 7 Module 6, the Geometry module, were specification equations that 

were used to assign values to measures of objects. In the Eureka Math 7 student material, 187 

equations were analyzed, 22 (12%) of which came from the Ratios and Proportions module, 81 

(43%) came from the Expressions and Equations module, and 84 (45%) came from the 

Geometry module. In the student material from the other Eureka Math 7 modules, equations that 

used the assignment meaning occurred with a frequency of 3.8% in the Ratios and Proportions 

unit, and 39.8% in the Expressions and Equations unit. Because the small amount of equations 

from the student material does not represent each module proportionally, we cannot conclude 

that the assignment meaning of the equal sign is actually a predominant use of the equal sign in 

the Eureka Math 7 curriculum.   

To gain a better understanding of how the meaning of the equal sign progresses 

throughout the year we can look at Tables 4 and 5. Because understanding the relational meaning 

of the equal sign is an important goal in 7th and 8th grades, we might expect to see the 

occurrence of the relational meaning to increase proportionally as the students progress through 

the curriculum. In the table below, I have listed the modules in the suggested order that they 

should appear throughout the school year.  These tables illustrate a breakdown of the frequency 

of meanings of the equal sign across units in each grade and curriculum. By looking at these two 

tables we can see that there is not a steady increase in the use of any of the meanings of the equal 
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sign across a year of instruction. It seems, rather, that the frequency of meanings of the equal 

sign depends on the unit that is being taught and not on the time of the school year.  

Table 5 

Frequency of each meaning of the equal sign in the modules covering Expressions and 
Equations (EE), Functions (F), and Geometry (G) (in CPM3-8, two books covered both EE 
and F modules which makes up the 8.EE&F column) in the order that they appear throughout 
the school year. (Eureka Math 8 and CMP3-8) 

Eureka 
Math 

 (8.EE) 

Eureka 
Math 
 (8.F) 

Eureka 
Math 
 (8.G) 

CMP3-8 
 (8.EE) 

CMP3-8 
(8.EE&F) 

CMP3-8 
(8.F) 

CMP3-8 
(8.G) 

Assignment 5.4% 6% 3.2% 11.6% 10.1% 5.6% 5.8% 
Operational 7% 26% 14.6% 0.6% 8.5% 16.8% 12% 
Relational 87.6% 68% 82.2% 87.9% 81.3% 77.5% 82.2% 

Another conclusion that we can make from this data is that all three meanings of the 

equal sign are used significantly throughout the three units that were analyzed. Even though the 

most frequent meaning applied to the equal sign in every unit, curricula, and grade was the 

relational meaning, there was not one unit in either curriculum or grade where the relational 

meaning was exclusively used. While it seems that by the time students are in 7th grade, the 

relational meaning is important regardless of unit content, we cannot conclude that it is the only 

meaning of the equal sign that students should develop. If we look at any of the columns from 

Table 4 

Frequency of each meaning of the equal sign in the modules covering Ratio and Proportions 
(RP), Expressions and Equations (EE), and Geometry (G) in the order that they appear 
throughout the school year. (Eureka Math 7, and CMP3 7) 

Eureka 
Math 
(7.RP) 

Eureka 
Math 

 (7.EE) 

Eureka 
Math 
 (7.G) 

CMP3 
 (7.RP) 

CMP3 
 (7.EE)  

CMP3 
 (7.G)  

Assignment 1.9% 6.7% 11.8% 0% 8.7% 11.2% 
Operational 46.8% 15% 32.4% 40% 2.9% 22.4% 
Relational 51.4% 78.3% 55.7% 60% 88.4% 66.4% 
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either Table 4 or Table 5, we can see that the relational meaning of the equal sign, while being 

used the majority of the time, is not the only meaning that is used. With the exception of the 

CMP3 7.RP unit, which uses only two meanings of the equal sign, each unit in both grades and 

curricula uses all three meanings of the equal sign. For example, in the CMP3, 7.G unit, the 

assignment meaning is used in 11.2% of equations, the operational meaning is used in 22.4% of 

equations, and the relational meaning is used in 66.4% of the equations. Since this data is not 

unique to this unit, it gives us reason to believe that students are likely being exposed to and 

required to use all three meanings of the equal sign in every content area, and therefore all three 

meanings need to be developed by students in the 7th and 8th grade.   

By looking at how frequently the different equations that require the relational meaning 

of the equal sign appeared in the two curricula, we can gain a better understanding of what 

students are most frequently presented with and how teachers can help them be more successful. 

Table 6 lays out the different equation types and their frequency across each grade and 

curriculum. The main points of data that are worth discussing include the frequency of the 

different types of constraint equations, the different purposes of equations and their frequencies, 

and simply which equation types appear with the most and least frequencies.  
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Table 6 

Frequency of equation types with the relational meaning across grade and curriculum (Eureka 
Math 7, Eureka Math 8, CMP3-7, & CMP3-8) 

Equation Type Eureka Math 7 CMP3-7 Eureka Math 8 CMP3-8 
Constraint Equation with Parameters 2.9% 14.9% 6.8% 17.2% 
Constraint Equation with Variables 10.1% 29.7% 29.2% 40.9% 
Constraint Equation with One 
Unknown 63.3% 26.7% 45.3% 12.8% 
Formal Identity 0.4% 0.3% 0.4% 2.5% 
Contextual Identity 9.5% 10.6% 3.0% 5.4% 
Numeric Identity 3.4% 6.3% 5.2% 7.0% 
Numeric Non-Identity 0.0% 0.1% 0.6% 0.2% 
Transformation Equation 4.1% 2.7% 3.1% 5.3% 
Unit Identity 0.7% 0.3% 0.2% 0.0% 
Result Equations 4.8% 4.2% 3.5% 5.9% 

Looking at the top three rows of Table 6, we can see which types of constraint equations 

were more common among grades and curricula. Eureka Math 7 had a high frequency of 

constraint equations with one unknown (63.3%) which went down to 45.3% in 8th grade. While 

Eureka Math 8 increased the amount of more generalized constraint equations with an increase 

of constraint equations with parameters (from 2.9% to 6.8%) and those with variables (from 

10.1% to 29.2%) the majority of constraint equations contained only one unknown. In both 

grades, Eureka Math used more constraint equations with one unknown than any other equation 

type. However, in the CMP3 curricula, this was not the case. In 7th grade, with the frequency of 

constraint equation with variables at 29.7%, it was only 3% higher than the frequency of those 

with one unknown. CMP3-7 had a more equal frequency of constraint equations with one 

unknown and with variables than either grade of Eureka Math. From the rise in frequency of 

constraint equations with variables from 29.7% in 7th grade to 40.9% in 8th grade, we can see that 
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CMP3 used more generality in its presentation of constraint equations. This is not a judgement of 

which curriculum had a better frequency, but rather we can use this data to inform us of what 

types of constraint equations we should expect students to see in the 7th and 8th grades. We 

cannot assume that one type of constraint equation will appear more frequently in every 

curriculum; therefore, it is good for us to be aware of different possible mixtures of constraint 

equations to better prepare our students. Even though we cannot predict the frequency of each 

type of constraint equation in a given curriculum, the data suggests that in the 7th and 8th grade, 

constraint equations, regardless of type, will be the main types of equations that will appear.  

If we divide the equation types into purposes, after constraint equations with the purpose 

of finding a solution set, the next two most common equation types are those with the purpose to 

define a formula with which to find another value, and those with the purpose to justify a result. 

In both curricula for the 7th grade, the second most frequent equation types are formal and 

contextual identities. Combining them, the Eureka Math 7 curricula uses these types of equations 

with 9.9% frequency and CMP3-7 uses them with a 10.9% frequency. The third most frequent 

equation types in both 7th grade curricula include numeric identities and transformation equations 

which are both used for justification. Eureka Math 7 uses justification equation types 7.5% of the 

time and CMP3-7 uses them 9% of the time.  However, in 8th grade, there is a shift in 

frequencies and the second most frequent equation types are those that are used for justification, 

with Eureka Math 8 using the justification equation types 8.3% of the time and CMP3-8 using 

them 12.3% of the time. This is in contrast to the frequency of identities that are used for 

formulas to determine new values which occurred 3.4% in Eureka Math 8 and 7.9% of the time 

in CMP3-8. This gives us insight into the possible progression of equation types from 7th to 8th 



54 

grade and the increase in complexity from using equations as formulas to follow to using 

equations to justify results and even justify the validity of the formulas that we use.  

Lastly, we can look at Table 6, to identify what equation types students are less likely to 

encounter in 7th and 8th grade. We can see that students were less likely to encounter numeric 

non-identities as well as unit identities in 7th and 8th grade. Using the data from this table helps us 

to identify which equation types are most common and therefore imperative for students to 

develop the ability to recognize and work with.  

Structural Conventions 

While many of the equations in the data were written as single, stand-alone equations, 

others were grouped together using one or more structural conventions, often to indicate a 

relationship between the equations. The two structural conventions used by the authors in both 

texts was lists of equations (LOEs) and strings of equalities (SOEs). I include an analysis here of 

the specific equation types associated with the use of each structural convention, because a 

knowledge of how types of equations and structural conventions are related seemed to be 

important in making sense of the equal signs in the grouped equations.  

Lists of Equations  

The first structural convention I discuss is lists of equations (LOEs). LOEs are sequences 

of equations that appear vertically or horizontally right after each other, not separated by words 

or space; horizontal LOEs are separated, however, by commas or semicolons. We found that 

LOEs were almost exclusively associated with equation types that involve a relational meaning. 

Usually, the equations in both vertical and horizontal LOEs were connected through equation 

operations on each equation, and when they were, the LOEs were comprised solely of equations 

that used the relational meaning of the equal sign. Occasionally, LOEs contained equations that 
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were not connected by equation operations, and in these cases, the equations in the LOEs used 

either the operational or assignment meaning of the equal sign. I decided to code these cases as 

LOEs even though the equations in them were not all connected by equation operations (EOs) 

because they used the same structure as defined in the beginning of this section: a series of 

equations listed right after one another not separated by words or space. I discovered that while 

some of these LOEs with unconnected equations involved the relational meaning of the equal 

sign, many did not. Furthermore, I noticed that in all cases of LOEs that consisted solely of 

equations that used the operational and/or specification meanings of the equal sign, these 

equations were not connected by EOs.  

The examples in Figure 15 illustrate some unconnected LOEs. These LOEs have the 

same structure as the LOEs in Figures 16 and 17, but they are actually quite different. In all three 

examples, the second equation in the list is not a result of an EO applied to the previous equation. 

In Figure 15a, the first equation in the list is a transformation equation with an operational 

meaning of the equal sign, because the author simply performed the given operation and wrote 

the result to the right of the equal sign. The second equation in the list uses the result of the first 

equation to calculate a new result and is also a transformation equation that applies the 

operational meaning to the equal sign. Figure 15b  is similar to Figure 15a in that the first 

equation is a transformation equation that applies an operational meaning to the equal sign, with 

the result written to the right of the equal sign; however, the second equation is a constraint 

equation with variables that applies a relational meaning and is created by using the result of the 

first equation. Figure 15c is simply a short list of specification equations that apply the 

assignment meaning to the equal sign and are not created by moves or operations performed on 

the previous equation in the list.  
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To have a better understanding of how often students might encounter equations in LOEs, 

we can look at how frequently LOEs appeared in the two curricula in the 7th and 8th grade as 

shown in Table 7. In the Eureka Math curricula, 41.5% of the equations from the 7th grade 

curriculum and 42.3% of the equations from the 8th grade curriculum were contained in an LOE. 

This is very different from the CMP3 curricula in which 11.1% of equations from 7th grade and 

5.9% of equations in 8th grade were contained in an LOE. We can see that Eureka Math tended to 

organize equations much more frequently in LOEs than CMP3 did. While it is important to note 

how frequently LOEs occurred in a curriculum, it is also helpful to look at what percentage of 

those LOEs were connected by EOs or not. From the table below, we can see that while the 

CMP3 curriculum did not organize a large number of equations into LOEs, of the small amount 

a) 

0.16
3

𝜋𝜋 ≈ 0.167 

0.167
6

≈ 0.028 

b) “The average swimming pool holds about 17,300 gallons of water. Suppose such a pool
has already been filled one quarter of its volume. Write an equation that describes the volume
of water in the pool if, at time 0 minutes, we use the hose described above to start filling the
pool.

1
4

(17300) = 4325 

𝑦𝑦 = 4.4𝑥𝑥 + 4325 

c) Graph the linear equation 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 = 𝑐𝑐, where 𝑎𝑎 = 0, 𝑏𝑏 = 1, and 𝑐𝑐 = 1.5.

Figure 15. Three examples of LOEs: (a) Vertical LOE using the result of previous equation 
to find the result of a new equation. (Eureka Math 8, Module 7, p.307), (b) Vertical LOE 
using  the result of the first equation to write the second equation. (Eureka Math 8, Module 5, 
p. 43), (c) Horizontal LOE with no connection between equations. (Eureka Math 8, Module
4, pg. 185).
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of LOEs that were found, a larger portion of LOEs were either unconnected, or only partially 

connected (where a connected LOE might follow a list of unconnected LOEs without a space in 

between, making it look like one LOE) by EOs than the Eureka Math LOEs (45.7% and 29.5% 

compared to 20% and 5.6% respectively). It is important to note that even though the majority of 

LOEs in both curricula and in both grades were connected by at least one EO, each grade in each 

curriculum had a significant amount of their LOEs either unconnected or partially connected.  

It is important to note that all cases of LOEs in the analyzed curricula that were 

unconnected or partially connected occurred only in the teacher instruction materials. While the 

authors can probably assume that teachers are able to notice the different types of LOEs without 

too much work, using these examples in instruction could still be problematic. Because these 

LOEs that are not connected by EOs are treated as unproblematic in the text, they may not draw 

teachers’ attention to the difficulties that students might face if teachers use this type of LOE 

when teaching. If students have been learning to solve equations, it is likely that they will read 

Table 7 

Total number of LOEs, percentage of LOEs combined with SOEs, total number of Equations 
found in LOEs, and percent of connected LOEs vs. unconnected or partial LOEs (Eureka 
Math 7, CMP3-7, Eureka Math 8, & CMP3-8) 

Eureka Math 7 CMP3-7 Eureka Math 8 CMP3-8 
Total number of Equations 2566 838 5283 2462 
% of Equations in LOEs 41.5% 11.1% 42.3% 5.9% 
Total number of LOEs 304 35 595 44 
% of LOE/SOE Combinations 2.0% 5.7% 0.7% 0.0% 
% of Connected LOEs 80% 54.3% 94.4% 70.5% 
% of unconnected/ partial 
LOEs 20% 45.7% 5.6% 29.5% 
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LOEs with the intent of identifying the equation operations that connect one equation to the next; 

consequently, they will be confused by LOEs whose equations are not connected by EOs. 

Operations on Equations 

There were six different equation operations (EO) that were used to connect the equations 

in a LOE: deductions and reductions as mentioned by Matz (1982), substitutions, cross-

multiplication, reflections, and equation combinations. Table 8 provides definitions and 

examples of each equation operation. I discuss each EO in more detail below.  

Deductions and reductions were the most common EOs that connected equations in an 

LOE and were used mainly to solve equations. A deduction is an operation or procedure applied 

to both sides of the equation. In contrast, a reduction is the simplification of one or more sides of 

the equation. This simplification was often necessary because of the operation or procedure that 

had been applied to the equation through a deduction. Note that one of the major differences 

between deductions and reductions is the relationship between the expressions on each side of 

the equal sign with the corresponding expressions in the previous equation. Corresponding 

expressions in the two equations are unequal if a deduction has been applied, and equal if a 

reduction has been applied.  
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Table 8 

Equation operations, definitions, and examples (Eureka Math 7, CMP3-7, Eureka Math 8, 
CMP3-8) 

Equation Operation Definition Example from Curricula 

Deduction The operations applied to both sides of 
the equation 

𝑥𝑥 + 132 = 180 
𝑥𝑥 + 132 − 132 = 180 − 132 

(Eureka Math 7, Module 3, p. 152). 

Reduction Applying the operations from the 
deduction or simplifying the previous 
equation in the list by performing 
written procedures. 

𝑥𝑥 + 132 − 132 = 180 − 132 
 𝑥𝑥 = 48 

(Eureka Math 7, Module 3, p. 152). 

Substitution Replacing one or more unknowns in an 
equation with a number or expression 
to create a new equation. 

 𝑆𝑆 = 0.11𝐻𝐻 + 𝑏𝑏 
 85 = 0.11(225) + 𝑏𝑏 

(Eureka Math 8, Module 6, pg. 114) 

Cross-Multiplication Multiplying each numerator by the 
other fraction’s denominator. 

𝑥𝑥
5

=
6

12
12𝑥𝑥 = 6(5) 

(Eureka Math 8, Module 4, pg. 85) 

Reflection Flipping the expressions so that they 
are on the opposite side of the equal 
sign than the original equation. 

𝑐𝑐𝑠𝑠1 + 𝑏𝑏 = 𝑠𝑠2 
𝑠𝑠2 = 𝑐𝑐𝑠𝑠1 + 𝑏𝑏 

(Eureka Math 8, Module 4, pg. 299) 

Equation 
Combination 

Adding or subtracting multiples of two 
whole equations to create a new 
equation. 

 100𝑥𝑥 = 12.121212 … 
− 𝑥𝑥 = 0.121212 …

99𝑥𝑥 =
(CMP3-8, Looking for Pythagoras, 
pg. 201) 

Often, the authors made it clear what deduction was applied to the equation by writing 

out the specific procedure on both sides of the equation, as in the deduction example in Table 8, 

where the authors specified that 132 should be subtracted from both sides of the equal sign. By 

recording the deduction within the equation, it is clear to the reader what arithmetic operations 
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were performed in the deduction. However, in both curricula, there were many times when the 

authors did not specify in an equation what deduction was applied to arrive at the resulting, 

simplified equation; rather, the deduction and the subsequent reduction were applied to the 

equation mentally by the author before the next equation was written. In these cases, I chose to 

code the EO as a deduction/reduction combination because it was obvious that the subsequent 

equation was more than just the result of a reduction of the previous equation, i.e., the 

expressions on either side of the equation were not equal to the expressions on the same side of 

the previous equation. An example of a deduction/reduction combination EO is illustrated in 

Figure 16. In this example, because the expressions in the second equation in the LOE are not 

equivalent to the expressions on the same side in the first equation, it was clear that some 

deduction operation must have taken place to arrive at the resulting equation. Because I was able 

to determine one possible way to arrive at the second equation using only one deduction of 

subtracting 45 from both sides of the original equation and one reduction, I assumed that the 

author probably only used one deduction/reduction combination EO between the first and second 

equations in the LOE. We can assume the same when going from the second to the third equation 

as well, since it is possible to arrive at the third equation by performing one deduction/reduction 

of dividing both sides by 0.1. 

In some cases, to get from one equation to the next in an LOE required more than one 

deduction/reduction combination, yet none were specifically written in the equations. While it is 

75 = 0.1𝑥𝑥 + 45 

30 = 0.1𝑥𝑥 

300 = 𝑥𝑥       

Figure 16. Vertical LOE with deduction/reduction combination. Eureka Math 8, Module 5, 
pg. 92) 
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possible to create a series of deduction/reduction combinations to arrive at the same resulting 

equation, one might do so using a different series of EOs than the author did; therefore, I coded 

EOs as unspecified transformations when there seemed to be multiple deduction/reduction 

combinations that had been applied to an equation to yield the next equation. An example of an 

unspecified transformation is illustrated in Figure 17. In this example, the second and third 

equations in the LOE are results of a reduction only since the expressions on each side of the 

equation are equivalent to the expressions on the same side of each previous equation. However, 

to get from the third equation in the LOE to the fourth, multiple EOs are required and it is 

unclear what series of EOs the authors applied to arrive at the final equation. Note that I chose to 

code these EOs consisting of multiple deduction/reduction operations as unspecified 

transformations rather than as deduction/reduction combinations because I anticipated that these 

complex EOs would be more difficult for novices to read, and I wanted to keep track of how 

often they appeared in the curricula. 

The other four EOs were coded as such as long as they seemed to be the only EO 

performed from one equation to the next (and thus did not become one of several EOs applied to 

a single equation, yielding an unspecified transformation). Of these additional four EOs, only 

one of them was shared among both grades and curricula: substitutions. Substitutions were 

identified when one equation that contained one or more letters resulted in a subsequent equation 

 3(2𝑥𝑥 − 5) = 2(3𝑥𝑥 − 1) + 𝑥𝑥 

 6𝑥𝑥 − 15 = 6𝑥𝑥 − 2 + 𝑥𝑥 

 6𝑥𝑥 − 15 = 7𝑥𝑥 − 2        

−13 = 𝑥𝑥

Figure 17. Vertical LOE with unspecified transformations. (CMP3-8, Say It with Symbols, 
pg. 23). 
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that remained the same as the first equation but with one or more letters having been changed to 

either numbers or expressions. The EO cross multiplication was unique to Eureka Math and was 

introduced as a single EO that was identified when the original equation consisted of a fraction 

expression on both sides of the equal sign and the resulting equation contained no fractions and 

consisted of the denominator of each fraction being multiplied by the opposite numerator. As 

long as the reduction had not been performed before the subsequent equation was written, then it 

was easy to identify when cross-multiplication had been used. Reflections were also unique to 

Eureka Math and were identified when the expression on the right of the equal sign was replaced 

with the expression on the left of the equal sign, and vice versa. Equation combinations were 

unique to CMP3 and were identified when multiples of two equations were added or subtracted 

to create a new equation. Equation combinations were the least common EO that I saw in the 

chapters I chose to analyze. As can be seen in the equation combination example in Table 8, the 

LOE looks like a normal arithmetic subtraction problem but with equations instead of just 

numbers. The EO consists of the act of writing the second equation directly below the first, and 

then subtracting corresponding sides to yield the third equation. Equation combinations differ 

from the other types of EOs in that they yield LOEs where the second equation in the LOE is not 

connected to the first equation by an EO.  

Note that LOEs involving EOs present a unique challenge to readers, because readers are 

required to think relationally and operationally simultaneously. When reading a constraint 

equation by itself, the reader needs to be reading it with a relational meaning of the equal sign. 

However, when the author performs the equation operations, there is a transformation taking 

place that requires an operational understanding, where the author performs the written operation 

and writes the resulting equation after performing a reduction. To read the LOE, the reader must 
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identify how equations in the LOE have been modified and infer the equation operations that 

were used to yield these modifications. Thus, as readers make sense of LOEs, they must reason 

both relationally and operationally; they must continue to keep in mind that each equation 

expresses a relation, often a constraint, between the two expressions, but also interpret the 

changes from one equation to another as a result of performing equation operations.  

To better understand which EOs are more likely to be used in 7th and 8th grade, we can 

look at the data in Table 9. From this table we can see that the most frequently used EO in each 

grade and curriculum is either a reduction or a combination of a deduction and a reduction. This 

is not surprising since reductions can occur following a deduction, or simply while simplifying 

an expression in a previous equation. In the Eureka Math curriculum, it seems as if there is an 

increased expectation of sophistication from 7th grade to 8th grade because of the increase in 

frequency of deduction/reduction combinations going from 5.5% to 19.5%. Because of the lower 

amount of LOEs used in CMP3, we would expect a lower amount of EOs; however, in both 7th 

and 8th grade, the most frequent EO was the deduction/reduction combination, and while the 

frequency does decrease from 50% to 36.3%, the amount of EOs increased from 30 to 80  from 

7th to 8th grade. Even though the frequency of deduction/reduction combinations decreases, the 

amount of LOEs increased, which could also imply an increase in sophistication expected in 8th 

grade. Substitutions occurred more frequently in both 7th grade curricula than in 8th grade, which 

could imply an increase in sophistication of solving equations by algebraic manipulation rather 

than substituting in values to check if they could be a solution. As for the remaining EO types, all 

three occurred significantly less than any series of deductions or reductions. From this data, we 

can see that while the less significant EOs are useful for working with LOEs, the deduction and 

reduction EOs are essential for success in working with LOEs.  
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Table 9  

Frequency of different EOs found in LOEs (Eureka Math 7, CMP3-7, Eureka Math 8, CMP3-8) 

Eureka Math 7 CMP3-7 Eureka Math 8 CMP3-8 

Total # of EOs 694 30 1606 80 

Deductions 18.3% 3.3% 15.9% 11.3% 

Reductions 56.3% 23.3% 59.6% 35.0% 

Deduction/Reduction Combo 5.5% 50.0% 19.5% 36.3% 

Unspecified Transformations 3.7% 6.7% 1.1% 12.5% 

Substitutions 16.1% 16.7% 2.1% 2.5% 

Cross-Multiplication 0.0% 0.0% 1.6% 0.0% 

Reflections 0.0% 0.0% 0.2% 0.0% 

Equation Combinations 0.0% 0.0% 0.0% 2.5% 

Strings of Equalities 

Another type of structure that often occurred in the data was strings of equalities (SOEs). 

We defined SOEs as a series of expressions that are connected by two or more equal signs. 

SOEs, like LOEs, appear frequently as either vertical or horizontal strings. This is most 

commonly seen in examples like the ones in Figure 18.  
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I chose to use the examples in Figure 18 to illustrate the different levels of complexity 

that occur in SOEs. As one works through an SOE, there may be different equation types, and 

therefore, there could also be changes of meaning of the equal sign throughout. SOEs can be 

thought of as a simplified form, or shorthand version, of an LOE as each equal sign and the 

expressions on either side form an equation. If these equations were written out, we would notice 

that the expression on the right side of each equation would be the same as the expression on the 

left side of each subsequent equation. SOEs save time and space by recording the equations in a 

continuous string rather than rewriting each equation separately. For example, in Figure 18a, the 

first equation is created by the first equal sign: 75% 𝑜𝑜𝑓𝑓 𝑑𝑑2 = 3
4

(2𝑟𝑟)2. If this were a stand-alone 

equation, it would be coded as a transformation equation with an operational meaning of the 

a) 

75% 𝑜𝑜𝑓𝑓 𝑑𝑑2 =
3
4

(2𝑟𝑟)2 =
3
4

(4𝑟𝑟2) = 3𝑟𝑟2 

b) 

𝑉𝑉 =
4
3
𝜋𝜋𝑟𝑟3 

 =
4
3
𝜋𝜋(73) 

 =
4
3
𝜋𝜋(343) 

 =
1372

3
𝜋𝜋 

 = 457
1
3
𝜋𝜋 

Figure 18. Examples of SOEs: (a) Horizontal SOE with one meaning of the equal sign. 
(CMP3-7, Filling and Wrapping, p.159), (b) Vertical SOE with multiple meanings of the 
equal sign. (Eureka Math 8, Module 5, p.146) 
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equal sign. The equal sign in this example is prompting the user to put the transformed and 

simplified expression to the right of it. If the author had not used a SOE, the next equation would 

be  3
4

(2𝑟𝑟)2 = 3
4

(4𝑟𝑟2) , which is a transformation equation with an operational meaning of the 

equal sign. The final equation would then be 3
4

(4𝑟𝑟2) = 3𝑟𝑟2, which maintains the same equation 

type and meaning as the previous equations. Note that this SOE contains 3 equations—one for 

each equal sign—but only requires the author to write four expressions rather than the six 

expressions she would need to write if she wrote the equations separately. This example 

illustrates how SOEs save space and time and reduce redundancy.  While SOEs make it so that 

the user does not have to rewrite multiple equations, we decided to analyze them by the 

equations that were made by each single equal sign.  

The example in Figure 18b is much more complex as it uses multiple different equation 

types requiring switches between meanings of the equal sign. The first equation, made by the 

first equal sign, is a contextual identity, and the second equation that is linked by the second 

equal sign would be considered a constraint equation with one unknown as it would look like 

4
3
𝜋𝜋𝑟𝑟3 = 4

3
𝜋𝜋(73) if it were a stand-alone equation. Each expression after 4

3
𝜋𝜋(73) is a result of 

completing an operation on the previous expression, so therefore, the last three equations in the 

string, using the last three equal signs, would be considered equation transformations. This 

example is complex as it not only works through three different equation types, but it requires a 

meaning shift from relational to operational within the same SOE. Occasionally, I encountered 

SOEs that would start horizontally and end vertically or vice versa, as in Figure 19. Because of 

their rarity, occurring in 2.4% of the SOEs, it is likely that the combining of horizontal and 

vertical SOEs was simply because of space limits in the text and not a preferred structural 

representation. 
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To better understand how often SOEs are likely to occur in 7th and 8th grade, as well as 

which meanings of the equal sign are likely to be given in SOEs, we can look at Table 10 below. 

From the data in this table, we can see that the majority of SOEs in either grade or curriculum are 

constructed of two or three strings. Any SOEs that are longer than five strings only occur in 

Eureka Math 8, suggesting an expectation of higher sophistication in 8th grade compared to 7th 

grade. From this data we also find that the majority of SOEs that do not require a change in 

meaning of the equal sign in the Eureka Math curriculum for both grades use the operational 

meaning (22.9% and 33.5% respectively). We find that in the CMP3 curriculum for 7th and 8th 

grade, the majority of SOEs that do not require a change in meaning are equations that use the 

relational meaning (47.4% and 57.3% respectively). We also find that while not every grade and 

curriculum use SOEs that require a change between meanings, the amount that do is significant 

in each grade and curriculum. For example, 67.7% of SOEs in Eureka Math 7 require a change in 

meaning of the equal sign, 36.8% of SOEs in CMP3-7, 46.1% of SOEs in Eureka Math 8, and 

18.8% of SOEs in CMP3-8 require a change in meaning of the equal sign. If students are to fully 

understand the steps that were taken to get to the final expression in the SOE, they need to be 

aware of the flexibility needed to make sense of the equal sign while reading a SOE. 

(365) × (1.28 × 1011) = (3.65 × 102)(1.28 × 1011)

= 3.65 × 1.28 × 102 × 1011 = 4.672 × 10^13

Figure 19. SOE that is horizontal and vertical. (CMP3-8, Growing, Growing, Growing, 
p.240)



68 

Table 10 

Number of SOEs, the number of equations in a string, and the meanings of the equal sign that 
are used in each equation found in an SOE (Eureka Math 7, CMP3-7, Eureka Math 8, CMP3-
8) 

Eureka Math 7 CMP3-7 Eureka Math 8 CMP3-8 
# of SOEs 266 19 284 96 
% of SOE/LOE 0 0 2.1% 0 
Strings of 2 80.1% 36.8% 60.9% 72.9% 
Strings of 3 16.2% 52.6% 23.9% 20.8% 
Strings of 4 3.0% 5.3% 13.7% 5.2% 
Strings of 5-8 0.8% 5.3% 4.2% 1.0% 
Assignment Only 0.8% 0.0% 0.0% 3.1% 
Operational Only 22.9% 15.8% 33.5% 20.8% 
Relational Only 8.6% 47.4% 23.2% 57.3% 
Switch between relational and 
assignment  42.1% 10.5% 0.7% 2.1% 
Switch between relational and 
operational 25.6% 26.3% 45.4% 16.7% 

Lists of Equations Mixed with Strings of Equalities 

Though not extremely common, there were a few instances where a LOE would end in a 

SOE or vice versa. Figure 20 illustrates examples of this combination of LOE and SOE. Like the 

horizontal/vertical SOE hybrids, instances of a combined LOE/SOE were very rare, occurring in 

less than 2% of LOEs, and were therefore likely written that way because of space limitation in 

printing the text and not as preferred structural choice. The example found in Figure 20 begins 

with a constraint equation with one unknown, which requires a relational meaning to solve, and 

continues the LOE until the last line. Then the author switches to a horizontal SOE beginning 

with a constraint equation switching to a string of equation transformations. This switch from 

LOE to SOE requires a switch from relational to operational thinking in the same problem. If the 
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authors of the curricula seamlessly switch meanings while working one problem, we can assume 

that teachers are also likely to do so. This could cause confusion to students if teachers do not 

call attention to when they are switching between meanings of the equal sign. 

Discussion 

In this section I discuss the findings from this study and compare these findings to 

previous research as discussed in chapter 2. I first discuss the meanings that were given to the 

equal sign and the equation types that were found during the analysis and compare them to 

previous research discussed in chapter 2. I then discuss and compare the structural conventions 

that were found in the data to those found in previous research. Lastly, I discuss other items that 

were found in the data that have not been discussed in previous research.   

Meanings Given to the Equal Sign as Found in the Analysis 

As discussed in chapter 2, the three main aspects that affect how one interprets and works 

with the equal sign are meaning, equation type and spatial conventions. Previous research 

informed us about the meanings that are given to the equal sign: operational, relational and 

assignment. After analyzing the two curricula in both the 7th and 8th grades, all three meanings of 

the equal sign were found. We did not discover any meanings that had not already been 

𝑦𝑦

5 1
3

=
1
4

 4𝑦𝑦 = 5
1
3

 𝑦𝑦 =
5 1

3
4

=
16
3
∙

1
4

=
4
3

Figure 20. Vertical LOE that switches to horizontal SOE. (Eureka Math 7, Module 1, p.124) 



70 

mentioned in previous research. the data suggests that the meanings for the equal sign in grades 

7th and 8th are limited to these three meanings. 

 In previous research, there has been a claim that in arithmetic, students learn that the 

equal sign is an operational symbol, and that in order for them to successfully transition into 

algebra they need to leave that meaning behind while adopting the relational meaning of the 

equal sign (Carraher, Schliemann, Brizuela, & Earnest, 2006). The results from this study show 

that rather than dropping the operational meaning of the equal sign from their understanding, 

students need to add to it. Students need to add the relational meaning as well as the assignment 

meaning to their understanding of the equal sign. Teachers need to help students develop all 

three meanings of the equal sign well enough that they are able to switch back and forth between 

the three, sometimes within the same problem.  

Equation Types as Found in the Analysis 

In chapter 2, three equation types were mentioned: tautologies, constraint equations, and 

specifications. Tautologies are equations that are true for any value substituted in for the 

unknowns or variables. Equation types that were considered tautologies included 

transformations, identities, and contextual identities. Constraint equations were described as an 

equation with two expressions on either side of the equal sign that is only true for specific values 

of the unknown that are constrained to the set of numbers for which both expressions, when 

evaluated using a number from the set, yield the same numeric value. And specifications were 

described as an equation that defines the value of a variable or the rule for a function in a specific 

situation. 

In this study, multiple equation types were found that extend the list that was 

accumulated from previous research. In addition to the equation types already listed under 
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tautologies, three new equation types were included from this study: formal identity, numeric 

identity, and unit identity. While these equations could be considered tautologies because of the 

domain over which they are true, I chose not to code them as tautologies but to recognize them 

as individual equation types. I chose to do this because the equation types listed above do not all 

share the same purpose, and the purpose of each equation type is not determined by the domain 

over which they are true. For example, numeric identities and transformation equation when 

using the relational meaning of the equal sign primarily share the purpose of justification, 

whereas formal identities and contextual identities are primarily formulas with the purpose of 

finding a new value. Transformation equations that use the operational meaning of the equal sign 

are also used to complete some operation or procedure to find a result. And lastly, unit identities 

primarily are used to prompt the reader to substitute one value in for another. Knowing the 

purpose of an equation greatly affects the reader’s ability to successfully use and work with it. 

By organizing equations by meaning for the equal sign and purpose, rather than by domain over 

which they are true, I make explicit the purpose of each equation type.  

Extensions were also added to the constraint equation category. As mentioned in chapter 

2, constraint equations as a whole were discussed, but through this study, three different types of 

constraint equations were found: constraint equations with parameters, constraint equations with 

variables, and constraint equations with one unknown. Because these different types of constraint 

equations are worked through differently, and have different types of solutions, as discussed in 

the last chapter, they merit individual notice. For example, constraint equations with parameters 

are primarily used to describe a general form or family of an equation as in the general slope-

intercept equation of a line, 𝑦𝑦 = 𝑐𝑐𝑥𝑥 + 𝑏𝑏. In contrast, constraint equations with variables are used 

to describe a specific situation, and the purpose of this type of constraint equation is to determine 
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at least one solution set that makes the equation true where one of the values in the set is 

dependent on the other value. And the purpose of a constraint equation with one unknown is to 

find the value(s) for the unknown that makes the equation true. Each type of constraint equation 

has a unique purpose and being able to recognize the different types of constraint equations and 

their purpose is valuable as that ability will allow the reader to know what their goal is, how to 

use the equation or which strategies to use to solve it. 

Specification equations, as discussed in chapter 2, also appeared in the data from this 

study and were also added onto. Originally, specification equations were in a category by 

themselves, but through this study, restriction specifications were added to the list. As discussed 

above, restriction specifications are used to restrict the values that can be assigned to an 

unknown without specifying the values that can be assigned. The addition of restriction 

specifications increases our awareness of the different understandings that students need to 

develop, namely, that the assignment meaning of the equal sign can be used two ways: to 

identify values that can be given to a mathematical object (i.e., through specification equations), 

and values that cannot (i.e., through restriction specification equations).  

Connecting Meanings of the Equal Sign to Equation Types 

Previous research delineated the different meanings associated with the equal sign as well 

as many of the different equation types; however, it did not make a connection between the two. 

While the previous research made it possible to organize equation types by the domain of their 

solutions, this study makes it possible to organize equation types by the meaning that is assigned 

to the equal sign. Recognizing which meaning is associated with each equation type allows the 

reader to have a better idea of how to proceed with using or solving the equation. Initially, when 

coding each equation, I defined each one by its purpose—how it was meant to be used or solved. 
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This separation by purpose led to each individual equation type, and then eventually to the 

finding that all but one equation type (transformation equations) was associated with a single 

meaning of the equal sign. The reason that transformation equations match up with more than 

one meaning of the equal sign is because these equations can have two different purposes: to 

determine a result, or to justify a result. By identifying the purpose of the equation, I was able to 

determine which meaning was being assigned to the equal sign. Knowing which equation types 

use which meanings of the equal sign will allow teachers to be more aware and explicit of what 

meanings students need to be applying when working with certain equations. And as students 

make the connection between equation type and meaning, they will develop the understandings 

and flexibility needed to successfully work through the many different equations they will face in 

the 7th and 8th grade. 

Structural Conventions as Found in the Analysis 

When discussing structural conventions, previous researchers discussed them in terms of 

the direction in which the structures should be read and suggested which equation types might be 

used with each structural convention. They claimed that transformation chains were worked 

through uniformly and read either in a single line from left to right, or from top to bottom in a 

single column down, with each reduction usually following the equal sign. In contrast, the 

execution of constraint equations consists of applying operations to both sides of the equal sign, 

requiring the reader to notice both columns down, or both sides of the equal sign from top to 

bottom (Matz, 1982). In this study, I found that it was impossible to consistently determine 

whether an equation was intended to be read left-to-right or right-to-left. Because of this 

difficulty, I decided not to analyze in this study the direction in which equations should be read.  
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The two main structural conventions that were found in this study were lists of equations 

and strings of equalities. While these structural conventions are not too different from 

conventions discussed in chapter 2, they are more inclusive of the structures that were found in 

the analyzed data. Lists of equations (LOEs) are sequences of equations that appear vertically or 

horizontally right after each other. LOEs resemble the structure of both columns down but are 

not limited to constraint equations with one unknown, as Matz (1982) suggested. LOEs can also 

include equations of any type as long as they appear vertically or horizontally right after each 

other. Recognizing that other types of equations can be found in LOEs is important, so that 

teachers can draw attention to the fact that just because some equations are listed in an LOE does 

not imply that they are connected by equation operations. By being aware of this, teachers can 

help mitigate some possible confusion for 7th and 8th grade students who might be looking for 

equation operations in LOEs that are not, in fact, connected by any equation operations. 

The second structural convention that appeared in this study is strings of equalities 

(SOEs). SOEs are expressions connected by two or more equal signs and appear vertically, 

horizontally, or as a combination of both. While SOEs resemble the transformation chains (as 

discussed in chapter 2), we gained new information from the analysis of these two curricula. We 

learned that SOEs are not limited to transformation equations, even though transformation 

equations are the primary equation type that utilizes the SOE structure. And because SOEs are 

not limited to one type of equation, we learn that they are also not limited to one meaning of the 

equal sign. As a reader works through an SOE, she is often required to switch between meanings 

of the equal sign as she progresses through each individual equation. While, the idea of SOEs is 

not completely new, the fact that we are often required to switch between meanings of the equal 
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sign within one SOE is. Again, being aware of the possibility as well as when we do, in fact, 

switch between meanings is important so that teachers can help students develop this ability. 

Equation Operations as Found in the Analysis 

One of the findings from this study that was not discussed in previous research is the 

equation operations (EOs) that take place within an LOE. Previously, the only EOs that were 

mentioned were deductions and reductions (Matz, 1982); however, there are several more EOs 

that were used in the curricula. In addition to deductions and reductions, the EOs that surfaced 

through this study include substitutions, cross-multiplication, reflections, and equation 

combinations. I also found that many LOEs were simply lists of equations that were not 

connected by any EO. The appearance of additional EOs, as well as recognizing the absence of 

EOs in some LOEs helps us realize the complexity of reading LOEs, suggesting that they may be 

more difficult to read than previously thought. By recognizing this complexity, teachers can be 

more aware of how they present LOEs to their students as well as be more explicit when using 

EOs during instruction  

In summary, this study shows that users of algebra interact with multiple types of 

equations that use all three meanings of the equal sign and are often required to switch between 

meanings while working through one problem. With the addition of more equation types, 

delineation of structural conventions, and equation operations, we gain insight into the 

complexity of reading and working with algebraic equations. By being aware of all of the 

complex aspects that affect how we interpret and determine how to proceed with an equation, 

teachers can be explicit in their instruction and help students develop these understandings in a 

much deeper way and likely be more successful as they transition into algebra.  
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CHAPTER 5: CONCLUSION 

As students transition from arithmetic to algebra, many struggle to interpret and, 

therefore, utilize the equal sign appropriately, which would allow them to work with algebraic 

equations more successfully. Previous research has focused on the need for students to move 

beyond an operational understanding and develop a relational and assignment understanding of 

the equal sign. Because the meaning of the equal sign is not inherent in the symbol alone, to gain 

a better understanding of how we interpret and utilize the equal sign in middle school 

mathematics, I analyzed the meanings of the equal sign, equation types, and structural 

conventions used in instructor and student materials of two middle school curricula. As a result 

of this analysis, I was able to identify which meanings, equation types, and structural 

conventions students are likely to be exposed to. I was also able to identify which meanings of 

the equal sign are associated with each equation type and reveal the complexity of reasoning 

associated with the use of structural conventions in introductory algebra and geometry topics in 

the 7th and 8th grade.    

Contributions 

The results of this study provide at least three main contributions to research on our 

understanding of how we interpret and utilize the equal sign. The first contribution deals with the 

meanings that we assign to the equal sign. Research on this subject has already identified three 

meanings of the equal sign: operational, relational, and assignment. Based on the data provided 

from two middle school curricula, these three meanings seem to create an exhaustive list of the 

meanings that appear in the 7th and 8th grade mathematics material. Not only does the data show 

that students are exposed to only three meanings of the equal sign, but it also confirms that all 

three of these meanings are significantly present in 7th and 8th grade mathematics across multiple 



77 

topics, and not just those typically associated with algebra. This contribution helps us to taper 

future research to these three different meanings, as well as to recognize that it is not enough to 

focus on a relational understanding of the equal sign. Students need to be able to understand the 

equal sign as an operational symbol, as well as a relational and assignment symbol if they are to 

be successful in 7th and 8th grade mathematics. This contribution also informs teachers on what 

meanings of the equal sign need to be more explicitly modeled and discussed during instruction. 

The second main contribution that comes from this study is the extension of our 

understanding of different equation types. Not only were more equation types identified from 

this study than previous research had discussed, but the data from this study suggests that 

equation types can be grouped or organized by meaning and purpose. Earlier research previously 

organized equation types by the domain over which they are true. However, after looking at the 

data, it seems as though the previous organization was overly simplified. By taking into account 

the purpose of the equation type we were able to identify which meanings of the equal sign are 

associated with each equation type. These data shows that how a specific equation affects the 

way we interpret and utilize the equal sign is far more complex than simply looking at the 

domain of the solution sets.  Being able to group equation types by their purpose and their 

associated meanings will allow teachers to be more aware of opportunities in which they can be 

explicit in their discussions of how they determine how to make sense of different equations and 

why.  

The last main set of contributions that comes from this study is related to the data on 

structural conventions, including lists of equations and strings of equalities. By extending the 

both columns down structure to the list of equations, the data showed that there are times when 

the list of equations structure is used, but the subsequent equations in a given list are not 
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connected by an equation operation.  This is significant because now teachers can be aware of 

possible points of confusion for students if these examples are not discussed and explicitly talked 

about differently than a list of equations that consist solely of constraint equations that are 

connected by equation operations. Also, a major part of this contribution is the equation 

operations that were identified throughout the curricula.  By knowing that different equation 

operations occur specifically with list of equations containing constraint equations, teachers can 

again be more explicit in their instruction and teach students how to read the changes in 

equations to infer the equation operations that have been performed. 

The data from this study also contributes much to our understanding of strings of 

equalities. The main contribution about this structure is the realization that when equations are 

strung together, a level of complexity is added to how we interpret and utilize the equal sign. 

While advanced users of the equal sign are able to read through a string of equalities and make 

sense of the processes that occur from one expression to the next, they are likely unaware of how 

the equation types and meanings of each equal sign in the string may differ from those that 

preceded it. The data from this analysis informs us that as we move from one expression to the 

next in a string of equalities, often the equation type can change from one equation to the next, 

sometimes resulting in a change in the meaning that is assigned to subsequent equal signs. This 

helps us recognize yet another area where students might be getting confused if these changes in 

equation type and meaning of the equal sign are not being made explicit. All of the data on how 

different equation types and structures affect the way that we utilize the equal sign shows us that 

interpretation of the equal sign is a much more complex task than previous research has 

suggested. 
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Implications 

The results of this study leave us with two types of implications: implications for 

teaching, and implications for research. This study has shown that reading the equal sign is a 

complex practice, which leaves implications for teachers if they are to help students develop the 

ability to read and use the equal sign appropriately in the middle grades. The first implication is 

that teachers must become aware of the different complexities of making sense of the equal sign. 

The awareness of how equation types are related to specific meanings of the equal sign, and 

especially of how equation types can change throughout an SOE can be very valuable for a 

mathematics teacher. Not only does this awareness allow the teacher to see how complicated it is 

working with equations, it also helps teachers in recognizing reasons for student 

misunderstandings and errors. Teachers who are aware of these complexities can be more helpful 

in identifying reasons for student mistakes as well as be more proactive in helping students avoid 

these mistakes.  

One area where teachers can be more proactive in preventing student mistakes is working 

with LOEs. From this study we have learned that not all LOEs are connected by equation 

operations, yet appear in the same way as LOEs that do. For students who are just being 

introduced to LOEs, seeing some that are not connected by EOs can be confusing as they may 

interpret the equation type incorrectly, thinking that it must be a constraint equation because of 

how it is written. Teachers who are aware of the possibility of seeing LOEs that are not 

connected by EOs can anticipate some of these confusions and discuss the EOs or lack of EOs 

with their students and help them see that without EOs, the LOE is not likely an example of a 

constraint equation. Although, if teachers want to prevent the possible confusions of deciphering 
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between connected and unconnected LOEs, I suggest that teachers try to avoid using LOEs that 

do not use EOs in middle school mathematics.  

 After becoming aware of the different complexities of making sense of the equal sign, 

teachers then need to recognize how they use these factors to make sense of the equal sign. It is 

likely that teachers unknowingly use equation types and structural conventions as “context clues” 

as they switch back and forth between meanings of the equal sign unconsciously. Once teachers 

recognize how they makes sense of the equal sign, they can then begin to model different 

equation types, structural conventions and equation operations to their students. This will allow 

the students to discover different ways of thinking about the equal sign as well as make 

connections between the different factors of making sense of the equal sign.   

Lastly, once teachers recognize the roles that meanings of the equal sign, equation types, 

and structural conventions play in determining how they read and use the equal sign, teachers 

may want to be explicit during instruction about how each part affects how to proceed with each 

equation. For example, after working through a problem or series of problems that involve 

solving equations, a teacher could talk about the individual parts of each equation that led them 

to select the appropriate equation transformation. By incorporating discussion about how the 

teacher makes sense of equations, teachers should have many opportunities to bring explicit 

attention to the meanings of the equal sign, the different types of equations, and the structural 

conventions that are used when working with equations, and to model how their interpretations 

of these elements support their work with equations. 

The results of this study also have at least one implication for research, and that is that to 

understand the real meaning of a symbol, such as the equal sign, we need to look into actual data 

to see how it is used in practice. By reflecting on their own understandings and analyzing student 
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errors, mathematics education researchers have been able to suggest lists of meanings, equation 

types, and structural conventions. However, the question remains as to whether this list is 

complete. This can only be confirmed by gathering data from contexts in which the equal sign is 

being used. The resulting data from this study extends the previous findings that were based 

upon thought experiments and students’ errors, not only by adding new components, but also 

suggesting that expert accounts are not always complete. Previous expert accounts left out 

important factors, such as interpreting equations based on purpose and meaning for the equal 

sign instead of solely on domain. By looking at the data on how the equal sign is used in middle 

school curricula, we can make better sense of the equal sign and its complexity. This suggests 

that research on the sense making of other algebraic symbols may benefit from collecting and 

analyzing data from contexts in which the symbols are used.  

Limitations and Directions for Future Research 

I recognize that no study is perfect and therefore each has its limitations, as is the case 

with this study. This study was limited by the restriction of data collection and analysis to written 

texts from two curricula for grades 7-8. Analyzing only written texts was limiting because the 

lack of explicit verbal instruction for many examples left us to infer the authors’ intended use of 

the equal sign, and because we could not be completely sure if a structural convention was used 

because of preference or ease of printing. Studying only two curricula was limiting because we 

cannot assume that the frequency of certain equation types, or meanings of the equal sign 

reported in this study is an actual representation of all middle school curricula. And lastly, 

focusing on only two grades was limiting because we cannot assume that every equation type, 

meaning, or structural convention possibly used in other grades or branches of mathematics was 
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observed. It is possible that there might be additional meanings, equation types, and structural 

conventions in mathematics for the equal sign. 

Although this study has its limitations, these limitations suggest directions for future 

research. To better understand how the equal sign is used in instruction, future research could 

look at how the equal sign, equation types, and structural conventions are used and discussed in 

live classroom discourse. To address the limitations put on the study by only analyzing two 

curricula for two grades, future research could extend to more curricula covering different areas 

or levels of mathematics, such as arithmetic, secondary math, or even upper level college math. 

Doing so would allow us to gain greater insight into what equation types, structural conventions, 

and possibly meanings were not observable in the middle grades as well as gain a broader 

understanding of how the equal sign is utilized in each level of mathematics. These extensions 

would allow us to see more explicitly how the equal sign is used in practice as well as be aware 

of any new meanings, equation types or structural conventions that we need to prepare students 

for. Another way this study could be extended is by having teachers’ explicitly model and 

discuss their use of the equal sign, and then examine how this instruction influences students’ use 

of the equal sign.  

Another direction for future research is to develop a learning trajectory to scaffold 

student thinking. It is clear from the data that students are expected to understand the equal sign 

in three different ways. Future research could focus on developing a learning trajectory to help 

students in elementary school simultaneously develop these three meanings. Rather than 

exclusively developing an operational understanding for many years and then leaving that 

understanding behind for a relational one, researchers could focus on how to develop the 

relational understanding and introduce the assignment understanding, all while continuing to use 
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the operational understanding. Researchers could look into what order these meanings should be 

developed in and when. By developing an effective way to scaffold student understanding of the 

equal sign in elementary mathematics, students could make the transition from arithmetic to 

algebra much more successfully.  

One last direction where we can further this research is in observing the direction in 

which experts read equations. After a short while of coding, we realized that it was impossible to 

determine the authors’ intended direction or order in which an equation should be read; we also 

realize that as readers we may not be aware of the order in which we, ourselves, read things. 

Eye-tracking software could be used to determine the order in which equations are read by 

experts. This type of study could inform us on how experts piece together information to make 

sense of equations, which could be very helpful in instruction.  

Conclusion 

The ability to make sense of the equal sign is imperative for student success in middle 

school mathematics. Unfortunately, the complexity of the equal sign makes it difficult for 

students to develop the correct understandings of the equal sign to do so. This study was done 

primarily to find what types of equations, meanings of the equal sign, and structural conventions 

appear in 7th and 8th grade curricula to gain a better sense of what uses of the equal sign students 

are likely to encounter in the middle grades.  Not only did we find what types of equations, 

meanings of the equal sign, and structural conventions appear in 7th and 8th grade, but this study 

demonstrates that there are complex patterns in the way these three elements are related in the 

equations found in middle grades mathematics textbooks. This study implies that it is imperative 

that teachers recognize this complexity and teach more explicitly the role these three components 

play in making sense of how the equal sign is used in the middle grades. With the finding from 
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this study, we have greater direction in how to more effectively help students develop the skills 

to interpret and utilize the equal sign successfully.  
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 Appendix A 

Table 11 

List of lessons that were analyzed from each year and curriculum. 

Connected Math 3 7th Grade Eureka Math 7th Grade 

• Stretching and Shrinking: Understanding
Similarity (7.RP)
• Enlarging and Reducing Shapes
• Similar Figures
• Scaling Perimeter and Area
• Similarity and Ratios

• Moving Straight Ahead: Linear Relationships
(7.EE)
• Walking Rates
• Exploring Linear Relationships with

Graphs and Tables
• Solving Equations
• Exploring Slope: Connecting Rates and

Ratios
• Filling and Wrapping: Three-Dimensional

Measurement
• Building Smart Boxes: Rectangular Prisms
• Polygonal Prisms
• Area and Circumference of Circles
• Cylinders, Cones, and Spheres

• Ratios and Proportions (7.RP)
• Topic A: Proportional Relationships

Lessons 1-5
• Topic B: Unit Rate and Constant of

Proportionality
Lessons 6-10

• Topic C: Ratios and Rates Involving
Fractions
Lessons 11-15

• Topic D: Ratios of Scale Drawings
Lessons 16-22

• Expressions and Equations (7.EE)
• Topic A: Use Properties of Operations to

Generate Equivalent Expressions Lessons
1-6

• Topic B: Solve Problems Using
Expressions, Equations, and Inequalities
Lessons 7-15

• Topic C: Use Equations and Inequalities to
Solve Geometry Problems
Lessons 16-26

• Geometry (7.G)
• Topic A: Unknown Angles

Lessons 1-4
• Topic B: Constructing Triangles

Lessons 5-15
• Topic C: Slicing Solids

Lessons 16-19
• Topic D: Problems Involving Area and

Surface Area
Lessons 20-24

• Topic E: Problems Involving Volume
Lessons 25-27
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Connected Mathematics 3 8th Grade Eureka Math 8th Grade 

• Growing, Growing, Growing: Exponential
Functions (8.EE, and 8.F)
• Exponential Growth Patterns: Non-linear

Functions
• Examining Growth Patterns: Exponential

Functions
• Growth Factors and Growth Rates
• Exponential Decay Functions
• Patterns with Exponents

• Say It With Symbols: Making Sense of
Symbols (8.EE and 8.F)

• Equivalent Expressions
• Combining Expressions
• Solving Equations
• Looking Back at Functions
• Reasoning with Symbols
• It’s In the System: Systems of Linear

Equations and Inequalities (8.EE)
• Linear Equations With Two Variables
• Solving Linear Systems Algebraically

• Thinking With Mathematical Models: Linear
and Inverse Variation (8.F)
• Exploring Data Patterns
• Linear Models and Equations
• Inverse Variation

• Looking for Pythagoras: The Pythagorean
Theorem (8.G)
• Coordinate Grids
• Squaring Off
• The Pythagorean Theorem
• Using the Pythagorean Theorem:

Analyzing Triangles and Circles
• Butterflies, Pinwheels, and Wallpaper:

Symmetry and Transformations (8.G)
• Symmetry and Transformations
• Transformations and Congruence
• Transforming Coordinates
• Dilations and Similar Figures

• Linear Equations (8.EE)
• Topic A: Writing and Solving Linear

Equations
Lessons 1-9

• Topic B: Linear Equations in Two
Variables and Their Graphs
Lessons 10-14

• Topic C: Slope and Equations of Lines
Lessons 15-23

• Topic D: Systems of Linear Equations and
Their Solutions
Lessons 24-30

• Topic E: Pythagorean Theorem
Lesson 31

• Examples of Functions from Geometry (8.F)
• Topic A: Functions

Lessons 1-8
• Topic B: Volume

Lessons 9-11
• Linear Functions (8.F)

• Topic A: Linear Functions
Lessons 1-5

• Introduction to Irrational Numbers Using
Geometry (8.G)
• Topic A: Square and Cube Roots

Lessons 1-5
• Topic C: The Pythagorean Theorem

Lessons 15-18
• Topic D: Applications of Radicals and

Roots
Lessons 19-23
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Appendix B 

Table 12 

Breakdown of frequency of each equation type and its corresponding meaning of the equal sign 
as found in each module, separated by teacher and student material (Eureka Math 7) 

EM7-1 
(7.RP) 
Teacher 

EM7-1 
(7.RP) 
Student 

EM7-3 
(7.EE) 
Teacher 

EM7-3 
(7.EE) 
Student 

EM7-6 
(7.G) 
Teacher 

EM7-6 
(7.G) 
Student 

Operational 48.1% 23.0% 15.8% 5.1% 36.9% 0.9% 
    Transform. Equations 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
Assignment 1.7% 3.8% 3.8% 39.8% 2.1% 80.4% 
   Specification 100.0% 0.0% 95.3% 100.0% 100.0% 100.0% 
   Restriction Specification 0.0% 0.0% 4.7% 0.0% 0.0% 0.0% 
Relational 50.1% 73% 80.4% 55.1% 61.0% 18.7% 

Constraint w/ Parameters 11.5% 31.6% 1.9% 0.0% 0.0% 0.0% 
Constraint w/ Variables 25.1% 21.1% 5.7% 0.0% 10.8% 40.0% 
Constraint w/ Unknown 45.4% 0.0% 64.8% 61.1% 74.6% 10.0% 
Formal Identity 0.0% 0.0% 0.6% 1.9% 0.0% 0.0% 
Contextual Identity 7.0% 15.8% 10.8% 11.1% 7.2% 20.0% 
Numeric Identity 4.8% 0.0% 4.9% 5.6% 0.0% 0.0% 
Numeric Non-Identity 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
Transform. Equations 0.0% 0.0% 5.3% 5.6% 2.6% 30.0% 
Unit Identity 0.1% 0.0% 0.7% 7.4% 0.0% 0.0% 
Equation Result 5.3% 31.6% 4.5% 1.9% 4.6% 0.0% 
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Table 13 

Breakdown of frequency of each equation type and its corresponding meaning of the equal sign 
as found in each module, separated by teacher and student material (CMP3-7) 

CMP3 
(7.RP) 

Teacher 

CMP3 
(7.RP) 

Student 

CMP3 
(7.EE) 

Teacher 

CMP3 
(7.EE) 

Student 

CMP3 
(7.G) 

Teacher 

CMP3 
(7.G) 

Student 
Operational 43.9% 22.2% 3.5% 0.7% 23.4% 0.0% 
    Transform. Equations 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
Assignment 0.0% 0.0% 9.5% 5.9% 11.7% 0.0% 
   Specification 0.0% 0.0% 100.0% 88.9% 100.0% 0.0% 
   Restriction Specification 0.0% 0.0% 0.0% 11.1% 0.0% 0.0% 
Relational 56.1% 77.3% 87.0% 93.4% 64.8% 100.0% 

Constraint w/ Parameters 8.7% 0.0% 21.1% 5.5% 0.0% 0.0% 
Constraint w/ Variables 0.0% 0.0% 32.6% 43.3% 3.6% 33.3% 
Constraint w/ Unknown 8.7% 0.0% 30.4% 35.4% 2.4% 0.0% 
Formal Identity 8.7% 0.0% 0.0% 0.0% 0.0% 0.0% 
Contextual Identity 8.7% 0.0% 2.9% 0.8% 66.3% 50.0% 
Numeric Identity 39.1% 71.4% 5.5% 1.6% 2.4% 16.7% 
Numeric Non-Identity 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 
Transform. Equations 17.4% 0.0% 0.2% 0.8% 15.7% 0.0% 
Unit Identity 0.0% 28.6% 0.0% 0.0% 0.0% 0.0% 
Equation Result 8.7% 0.0% 4.9% 0.0% 6.0% 0.0% 
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Table 14 

Breakdown of frequency of each equation type and its corresponding meaning of the equal 
sign as found in each module, separated by teacher and student material (Eureka Math 8) 

EM8 
(8.EE) 

Teacher 

EM8 
(8.EE) 

Student 

EM8  
(8.F) 

Teacher 

EM8  
(8.F) 

Student 

EM8 
(8.G) 

Teacher 

EM8 
(8.G) 

Student 
Operational 7.9% 1.1% 27.7% 10.1% 15.1% 5.1% 

Transform. Equations 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 
Assignment 4.2% 12.7% 5.0% 16.0% 3.2% 3.4% 

Specification 91.2% 98.3% 100.0% 100.0% 100.0% 100.0% 
Restriction Specification 8.8% 1.7% 0.0% 0.0% 0.0% 0.0% 

Relational 87.8% 86.2% 67.3% 73.9% 81.7% 91.5% 
Constraint w/ Parameters 8.2% 12.3% 7.2% 15.7% 0.0% 0.0% 
Constraint w/ Variables 46.8% 19.3% 32.2% 35.3% 54.3% 55.6% 
Constraint w/ Unknown 30.1% 63.8% 41.7% 35.3% 10.3% 11.1% 
Formal Identity 0.2% 0.0% 0.0% 0.0% 1.0% 3.7% 
Contextual Identity 1.9% 2.3% 7.4% 13.7% 3.7% 1.9% 
Numeric Identity 4.8% 1.3% 2.3% 0.0% 10.1% 1.9% 
Numeric Non-Identity 0.9% 0.3% 0.0% 0.0% 0.4% 0.0% 
Transform. Equations 1.5% 0.0% 0.0% 0.0% 10.4% 9.3% 
Unit Identity 0.2% 0.0% 0.9% 0.0% 0.0% 0.0% 
Equation Result 3.7% 0.5% 8.3% 0.0% 2.0% 0.0% 
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Table 15 

Breakdown of frequency of each equation type and its corresponding meaning of the equal sign 
as found in each module, separated by teacher and student material (CMP3-8) 

CMP3-
(8.EE&F) 
Teacher 

CMP3 
(8.EE&F) 
Student 

CMP3 
(8.EE) 

Teacher 

CMP3 
(8.EE) 

Student 
Operational 8.5% 8.8% 0.8% 0.0% 

Transform. Equations 100.0% 100.0% 100.0% 100.0% 
Assignment 11.1% 6.0% 15.4% 0.0% 

Specification 91.6% 69.2% 98.4% 0.0% 
Restriction Specification 8.4% 30.8% 1.6% 0.0% 

Relational 80.5% 85.3% 83.8% 100.0% 
Constraint w/ Parameters 13.2% 8.6% 37.2% 16.7% 
Constraint w/ Variables 41.3% 38.9% 15.4% 3.8% 
Constraint w/ Unknown 12.3% 17.3% 36.3% 78.0% 
Formal Identity 3.5% 11.9% 0.0% 0.0% 
Contextual Identity 4.1% 5.4% 0.0% 0.0% 
Numeric Identity 6.2% 5.4% 1.2% 0.0% 
Numeric Non-Identity 0.0% 0.0% 0.9% 0.0% 
Transform. Equations 8.0% 11.4% 0.0% 0.0% 
Unit Identity 0.0% 0.0% 0.0% 0.0% 
Equation Result 6.0% 1.0% 6.6% 0.0% 
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Breakdown of frequency of each equation type and its corresponding meaning of the equal sign 
as found in each module, separated by teacher and student material (CMP3-8) (continued) 

CMP3 
(8.F) 

Teacher 

CMP3 
(8.F) 

Student 

CMP3 
(8.G) 

Teacher 

CMP3 
(8.G) 

Student 
Operational 18.9% 4.9% 12.9% 7.0% 

Transform. Equations 100.0% 100.0% 100.0% 100.0% 
Assignment 6.1% 2.4% 5.8% 5.6% 

Specification 93.3% 100.0% 91.3% 100.0% 
Restriction Specification 6.7% 0.0% 8.7% 0.0% 

Relational 75.0% 92.7% 81.3% 87.3% 
Constraint w/ Parameters 34.4% 23.7% 3.4% 3.2% 
Constraint w/ Variables 7.7% 26.3% 35.8% 27.4% 
Constraint w/ Unknown 36.6% 42.1% 10.9% 25.8% 
Formal Identity 0.0% 0.0% 0.3% 0.0% 
Contextual Identity 10.4% 2.6% 11.2% 17.7% 
Numeric Identity 4.9% 0.0% 18.1% 22.6% 
Numeric Non-Identity 0.0% 0.0% 0.6% 0.0% 
Transform. Equations 1.6% 0.0% 6.5% 0.0% 
Unit Identity 0.0% 0.0% 0.0% 0.0% 
Equation Result 3.8% 5.3% 11.8% 3.2% 
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