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ABSTRACT

Four-body Problem with Collision Singularity

Duokui Yan

Department of Mathematics

Doctor of Philosophy

In this dissertation, regularization of simultaneous binary collision, existence of a Schubart-like periodic

orbit, existence of a planar symmetric periodic orbit with multiple simultaneous binary collisions, and their

linear stabilities are studied. The detailed background of those problems is introduced in chapter 1.

The singularities of simultaneous binary collision in the collinear four-body problem is regularized in

chapter 2. We use canonical transformations to collectively analytically continue the singularities of the

simultaneous binary collision solutions in both the decoupled case and the coupled case. All the solutions

are found and more importantly, we find a crucial first integral which describes the relationship between the

decoupled solutions and the coupled solutions.

In chapter 3, we show the existence of a Schubart-like orbit, a periodic orbit with singularities in the

symmetric collinear four-body problem. In each period of the orbit, there is a binary collision (BC) between

the inner two bodies and a simultaneous binary collision (SBC) of the two clusters on both sides of the

origin. The system is regularized and the existence is proven by using a “turning point” technique and a

continuity argument on differential equations of the regularized Hamiltonian.

Analytical methods are used in chapter 4 to prove the existence of a periodic, symmetric solution with

singularities in the planar 4-body problem. A numerical calculation and simulation are used to generate the

orbit. The analytical method can be extended to any even number of bodies. Multiple simultaneous binary

collisions are a key feature of the orbits generated.



In chapter 5, we apply the analytic-numerical method of Roberts to determine the linear stability of

time-reversible periodic simultaneous binary collision orbits in the symmetric collinear four body problem

with masses 1, m, m , 1, and also in a symmetric planar four-body problem with equal masses. For the

collinear problem, this verifies the earlier numerical results of Sweatman for linear stability.
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CHAPTER 1. INTRODUCTION

The N-body problem of celestial mechanics considers the motion of a system of N points with masses m1,

m2, ..., mN governed by a Newtonian gravitational force. The familiar differential equation

miρ̈i = ∑
j 6=i
−

mim j(ρi−ρ j)

|ρi−ρ j|3
(1.1)

gives a mathematical description of the problem, where ρi ∈ R3 denotes the position of the ith body with

mass mi. All derivatives are taken with respect to time. In particular, the potential energy of the system is

given by

U = ∑
1≤i< j≤n

mim j

|ρi−ρ j|
(1.2)

and the kinetic energy is

T =
1
2

n

∑
i=1

mi|ρ̇i|2 (1.3)

“The N-body problem consists of describing the complete behavior of all solutions to these equations

of motion for arbitrary preassigned initial conditions. Despite efforts by outstanding mathematicians for

over 200 years, the problem for N > 2 remains unsolved to this day.” [25]

To understand the dynamics of the N-body problem, singularity is one of the most important topics to

investigate. From the equations of motions for the N-body problem, it is clear that if some mutual distance

ρi−ρ j tends to zero, the differential equation 1.1 describing the dynamics of the system becomes singular.

This type of singularity is called collision singularity. Collision singularity contains binary collisions,

simultaneous binary collisions, total collapse, etc. A binary collision occurs when only two bodies collide.

A simultaneous binary collision (SBC) occurs when two or more pairs of binary collisions happen at the

same time. A total collapse occurs when three or more bodies collide. However, collisions are not the only

source of singularities. A noncollision singularity (or pseudocollision) happens at time t = tc if the position

vector ρi is unbounded as t tends to tc. Actually, a well-know example in Xia’s dissertation [31] tells us that

noncollision singularity exists for N ≥ 5.

In this dissertation, we mainly focus on the collinear and planar four-body problem with collision sin-
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gularity. The occurrence of a collision is a very difficult subject to handle, since the equations of motion

cease to be valid at the singularity. As a consequence of the conservation of the energy, since the potential

function is infinite at collision, the velocity becomes itself infinite. The description of the motion fails at

the singularity, but what is even worse, it is rather difficult to investigate the dynamics in a neighborhood of

the singularity.

A way to overcome these difficulties has been explored by several mathematicians at the end of the 19th

century and at the beginning of the 20th century. Among others, T. Levi-Civita, G.D. Birkhoff, P. Kus-

taanheimo, E.L. Stiefel, K.F. Sundman, C.L. Siegel, J.K. Moser, and J. Waldvogel contributed to develop

a theory of regularization for the study of the motion at a collision. Binary collisions and total collapse of

planar and spatial three-body problems have been investigated.

From the theory of regularization, one knows that the solution of a binary collision can be written as a

convergent power series in terms of (t− tc)1/3. It is impossible to holomorphically extend the solution up

to tc, but Sundman found a real analytic continuation for t > tc, using complex analytic continuation around

tc. A general definition of regularization was given by R. Easton [6], who developed the so-called block

regularization in order to investigate whether nearby orbits provide an extension for an orbit ending into a

collision. This procedure of pasting orbits is denoted as Easton′s method.

Another important regularization we have to mention is the LeviCivita regularization, which is based

upon three main steps:

(i) A suitable change of coordinates, usually called the Levi-Civita transformation;

(ii) A new time scale, to remove the singularity, namely the introduction of a so-called fictitious time;

(iii) the conservation of the energy, to transform the singular differential equations into regular ones, i.e.

the study of the Hamiltonian system in the extended phase space.

Comparing with binary collisions, SBC is much harder to analyze. The differential equations 1.1 have

at least two zero denominators which gives us a big challenge when we try to apply the Levi-Civita regular-

ization. Although many results ([22],[27], [7], [8], [12]) have been obtained, the study of the simultaneous

binary collision is far from complete.

The degree of difficulty in dealing with more complicated models increases immediately as soon as we

are concerned with triple collisions. Indeed, one finds an extremely chaotic behavior, such that a small
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variation of the initial conditions leads to large effects on the successive dynamics. While regularization

always works for binary collisions, triple collisions cannot be regularized, except for a very small set of

masses [25]. In 1974, McGehee [13] showed that there is no regularization for the triple collision in the

collinear three-body problem. Instead, he devised a system of coordinates and a change of time scale under

which motions that previously ended in triple collision at some finite time, now approach an equilibrium

point as the rescaled time tends to infinity.

1.1 REGULARIZATION OF SBC

A binary collision occurs when two bodies collide. Simultaneous binary collision means two or more pairs

of bodies collide at the same time. In 1984, D.Saari [22] showed that a solution of the N-body problem

which ends in several simultaneous binary collisions is branch regularizable with time s = t1/3.

Simó and Lacomba [27] have proved that SBC for the N-body problem and in any dimension are C0-

block regularizable in the sense of Eastons Ck-block regularization: near a SBC orbit there exists a Ck

diffeomorphism connecting collision and near collision orbits with ejection and near ejection orbits and the

motion can be continued beyond the SBC maintaining continuity with respect to initial conditions.

El Bialy [7], [8] has shown that SBC in one dimension are C1-block regularizable and that the series

expansion of the SBC singularity has coefficients which depends analytically on SBC initial conditions.

Martı́nez and Simó [12] have used a geometric approach to get more insight into the problem and

numerical evidence that the degree of differentiability, in the planar four-body SBC problem, of the block

regularization is exactly 8/3.

In chapter 2, we introduce a Levi-Civita type canonical transformation near SBC singularity and study

the asymptotic behavior of SBC orbits. The regularization starts from the simplified, decoupled case,

which assumes that the distance of the two collision pairs is infinity and the masses are all equal to 1.

An important first integral C is discovered. It helps us prove that SBC is a regular singular point of the

differential equations by introducing an extended implicit function theorem. Also, all the solutions of the

decoupled case are found which is a one-parameter class, where the first integral C is the parameter. The

nearby motion of SBC on the same energy surface is only C0 by introducing C into the equations for the

decoupled case.

The approach used in the decoupled case can also be applied to the coupled case, which is exactly the
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SBC collinear four-body problem. The regularization in the coupled case is given by introducing a different

singular transformation and a majorant method argument. For any initial condition leading to SBC, there

is only one way to extend the solution analytically to the ejection solution. On the other hand, there exist

other extensions which are C1/3. Two constants are discovered in the solutions for the collinear four-body

SBC problem: one is C, the first integral found in the decoupled case; the other is related to the distance

and total momentum of the two colliding clusters.

1.2 EXISTENCE OF A SCHURBART-LIKE PERIODIC ORBIT

In chapter 3, we study a special symmetric periodic orbit with masses 1, m, m, 1, which is called Schubart-

like orbit. In each period of this Schubart-like orbit, there is a binary collision (or BC for short) between

the inner two bodies and then a simultaneous binary collision (or SBC for short) of the two clusters on both

sides of the origin. This research is motivated by some important work on a remarkable periodic orbit in

the collinear three-body problem, which is named as Schubart orbit.

Numerically in 1956, Schubart [24] found this orbit with singularities in the equal mass collinear three-

body problem. The Schubart orbit has during each period two binary collisions where the inner body

alternatively collides with the two outer bodies. In 1977, Hénon [10] extended the Schubart orbit to the

case of unequal masses. Later, Mikkola and Hietarinta [14] and [11] numerically investigated the linear

stability of the Schubart orbit when the masses are unequal. Only recently in 2008, did Moeckel [15] and

Venturelli [30] give two different proofs of the existence of a Schubart orbit when the outer masses are the

same. Moeckel’s proof is topological and uses an idea developed by Conley [5] for the restricted three-body

problem. Venturelli’s proof is variational wherein he minimizes the Lagrangian action over a well chosen

class of paths.

Numerically in 2001, Sweatman [28] found that the Schubart-like orbit exists in the symmetric collinear

four-body problem. In this chapter, we give a theoretical proof of existence of this Schubart-like orbit. The

author is not aware of any previously published existence proof by this time. The regularized Hamiltonian

is analyzed where we use a continuity argument to prove the existence of a periodic orbit for any m. In

order to show that the periodic orbit is exactly the Schubart-like orbit, we give an important estimate of

the maximum distance of the outer bodies which guarantees that there is no extra collisions between each

BC and SBC in the periodic orbit. This estimate corresponds to what we call a “turning point” for the
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inner bodies. More importantly, this “turning point” technique can help us prove the existence of periodic

solutions other than the Schubart orbit in the collinear three-body problem, such as the ones mentioned by

Saito and Tanikawa [23].

1.3 EXISTENCE OF 2D PERIODIC SOLUTIONS WITH SINGULARITIES

Searching for periodic, linearly stable solutions is significant in the study of N-body problem. The most

noteworthy result is that of Moore [16], who numerically developed the figure-eight choreography for three

equal masses. His work was continued by Chenciner and Montgomery [4] who proved the existence of

Moore’s orbit. This work was further extended by Roberts [21], who developed an innovative method for

studying linear stability of orbits, and used it to prove the linear stability of the figure-eight orbit. Each of

these make use of the symmetries present in the orbit.

Schubart [24] was the first to combine these two concepts (singularities and periodic, stable solutions.)

He produced a periodic orbit in the three-body collinear problem with binary collision singularities in which

the center body regularly alternates between binary collisions with each of the outer two masses. His work

was subsequently extended to the unequal mass case by both Hénon [9] and Hietarinta and Mikkola [11].

Sweatman [28] later extended this work to a four-body periodic solution in one dimension, with bodies

alternating between SBC of the outer mass pairs and binary collision of the inner two masses.

The orbit that is presented in chapter 4 is another combination of these ideas in two dimensions. We

present a family of configurations that are symmetric in both initial positions and velocities. These initial

conditions will lead to arbitrarily many simultaneous binary collisions, with each body alternating between

collisions with its two nearest neighbors. Due to the abundance of symmetries present in the configurations,

we can reduce the number of variables that need to be studied to four–two representing position and two

representing momentum. In contrast to its one-dimensional counterparts, the proof for existence of this

orbit is surprisingly simple.

After precisely defining the symmetries that are present in the regularized coordinates, it is shown that

the group of symmetries in the orbit is isomorphic to the dihedral group D4. Further, as a consequence of

Robert’s technique, we [2] show that the four-body orbit presented in this work is linearly stable.

In this chapter, we first present a technique for generating a periodic orbit in the two-dimensional four-

body problem with singularities. We begin in section 4.1.1 by giving a description of the proposed orbit and
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prove its existence. Section 4.1.2 will present the numerical methods used to produce the initial conditions

that will lead to this orbit. Following this, in section 4.2, we consider variants on the orbit we generate,

giving a family of orbits with singularities with an even number of masses.

Further work has also been done on orbits in this family with alternating un-equal masses. Rather than

a single mass parameter, the bodies have masses m1, m2, m1, m2 as numbered moving counterclockwise

through the plane. Since some symmetry has been lost by this change in masses, it is necessary to choose

two initial condition parameters as well as two initial velocities. Although numerically this is not a difficult

problem, an analytical technique will require much more work.

1.4 LINEAR STABILITY ANALYSIS

Recently, Roberts [21] described an analytic-numerical method for determining the linear stability of a

symmetric periodic orbit of a Hamiltonian system. He applied this method to the time-reversible collision-

free figure-eight orbit in the equal mass three body problem numerically discovered by Moore [16] and

whose existence was proven by Chenciner and Montgomery [4]. (Other such choreographic solutions were

found numerically by Simó [26]). Roberts’ method shows that the figure eight orbit is linearly stable. The

method uses the symmetries to factor a matrix similar to the monodromy matrix for the periodic orbit into

an integer power of the product of two involutions. One of the two involutions depends on the linearized

dynamics along only a part of the periodic orbit. For the figure eight this part is one-twelfth of the full orbit

since it has a symmetry group isomorphic to the group D3×Z2 of order 12. (Here the dihedral group Dk

is the group of symmetries of the regular k-gon.) The eigenvalues of the product of the two involutions are

then reduced to the numerical computation of a few real numbers.

Schubart [24] numerically discovered a singular periodic orbit in the collinear equal mass three-body

problem. The orbit alternates between binary collisions. Hénon [9] extended Schubart’s numerical inves-

tigations to the case of unequal masses. Only recently did Venturelli [30] and Moeckel [15] prove the

existence of the Schubart orbit when the outer masses are equal and the inner mass is arbitrary. The linear

stability of the Schubart orbit was determined numerically by Hietarinta and Mikkola [11] revealing that

linear stability occurs for some but not all of the choices of the three masses. Sweatman ([28] and [29])

numerically found and determined the linear stability of a Schubart-like orbit in the symmetric collinear

four body problem with masses 1, m, m, and 1. This Schubart-like periodic orbit alternates between simul-
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taneous binary collisions (SBC) and inner binary collisions. Ouyang and Yan [18] proved the existence of

this orbit. In the regularized setting, this periodic orbit has a symmetry group isomorphic to D2, of which

both of the generators are time-reversing symmetries. Ouyang, Yan, and Simmons [17] numerically found

and then proved the existence of a singular periodic orbit in a symmetric planar four-body problem with

equal masses in which the four bodies alternate between different simultaneous binary collisions. In the

regularized setting, this periodic orbit has a symmetry group isomorphic to D4, of which one of the gen-

erators is a time-reversing symmetry. The regularization of these singular periodic orbits is achieved by a

generalized Levi-Civita type transformation and an appropriate scaling of time, as adapted from Aarseth

and Zare [1].

In chapter 5, we apply the method of Roberts to prove the linear stability of the Schubart-like orbit in

the symmetric collinear four body 1, m, m, 1 problem for certain values of m, and of the singular periodic

orbit in the symmetric planar equal mass problem. In both settings, the linear stability is determined for the

regularized equations only and is reduced to the rigorous numerical computation of a single real number.

Our linear stability analysis determines values of m in the interval [0,50] in the collinear problem for which

the singular periodic orbit is linear stable, and also shows that the 2D singular periodic orbit is linear

stable. These examples support and extend the conjecture made by Roberts [21] that the only linearly

stable periodic orbits in the equal mass n-body problem are those that exhibit a time-reversing symmetry.

Our linear stability analysis confirms Sweatman’s linear stability analysis [29] for the singular periodic

orbit in the collinear four-body problem. Sweatman used a numerical perturbation technique to assess

the stability of the singular periodic orbit when the masses are arranged from left to right as m1, m2, m2,

and m1 with the condition that m1 + m2 = 2. Our mass parameter m is related to his mass parameter

m1 by m = (2−m1)/m1. In terms of our mass parameter m, Sweatman’s numerical results indicate that

linear stability occurs when the value of m is smaller than approximately 2.83 and when it is larger than

approximately 35.4, and does not occur otherwise.

7



CHAPTER 2. SIMULTANEOUS BINARY COLLISIONS FOR THE

COLLINEAR FOUR-BODY PROBLEM

The question of the regularization for a simultaneous binary collision (SBC) solution is not completely

understood although many results about it have been obtained. In 1984, Saari [22] showed that a SBC

solution can be analytically continued by rescaling the time s = t
1
3 . In 1992, Lacomba and Simo [27]

gave a different approach and also they showed that “simultaneous binary collisions in the classical n-body

problem are C0 block-regularizable”. In 1996, Elbialy [8] proved that “collision and ejection orbits can be

collectively analytically continued, i.e. each collision-ejection orbit can be written as a convergent power

series in t
1
3 , with coefficients that depend real analytically on the initial conditions”. In 2000, Martı́nez

and Simó [12] also discussed the block regularization and the result is “this regularization is differentiable

but the map passing from initial to final conditions is exactly C8/3”. In 2005, Punosevac and Wang [20]

constructed coordinate transforms that removed the singularities of simultaneous binary collisions in a pair

of decoupled Kepler problems and in a restricted collinear four-body problem. In 2009, Ouyang and Xie

[19] introduced a new transformation which regularizes the SBC solution up to C2.

2.1 PRELIMINARIES

In Chapter 2, we study the collinear four-body problem. Let the four bodies lie on a line and the positions

of body 1 to body 4 are q1,q2,q3,q4 respectively. Assume that q1 < q2 < q3 < q4 at time t = τ. we assume

that the two pairs: body 1 and 2, body 3 and 4 will have a collision at the same time t = t1, which is called

Simultaneous Binary Collision (SBC for short). For t ∈ (τ, t1), no collision happens.

2.1.1 Simplified Hamiltonian form. We will use the center of mass and total momentum first integrals

to eliminate one pair of variables pk, qk from these 8 differential equations, and we will achieve this by

taking all the pk, qk into new variables xk, yk via a suitable canonical transformation. We set

pk = Wqk , xk = Wyk (k = 1,2,3,4) (2.1)
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where W (q,y) is a generating function whose Jacobian determinant |Wykql | is not 0. We wish to set up

the canonical transformation so that x1 becomes the distance between P1 and P2, x2 becomes the distance

between P3 and P4 and x3 becomes the distance between P2 and P3, while x4 remains to be the coordinate

of P4, i.e.

x1 = q2−q1, x2 = q4−q3, x3 = q3−q2, x4 = q4 (2.2)

and set the generating function as

W (q,y) = (q2−q1)y1 +(q4−q3)y2 +(q3−q2)y3 +q4y4.

Then |Wykql |= 1, and it defines a canonical transformation. From the generating function, we have

p1 =−y1, p2 = y1− y3, p3 = y3− y2, p4 = y2 + y4.

Therefore,

y1 =−p1, y2 =−p1− p2− p3, y3 =−p1− p2, y4 = p1 + p2 + p3 + p4 (2.3)

Note that if p1 + p2 + p3 + p4 = 0, then y4 = 0 , y2 = p4. For t ∈ (0, t1), x1,x2,x3,x4 are nonnegative

but y1 and y2 are negative.

In (2.2), (2.3) we have the desired transformation, which we see is linear. Since, in addition, it does not

depend on t, the new Hamiltonian system is

ẋk = Eyk , ẏk =−Exk (k = 1,2,3,4) (2.4)

where E = T −U is regarded as a function of the xk and yk. Then

T =
1
2

4

∑
k=1

p2
k

mk
=

1
2
[

y2
1

m1
+

(y1− y3)2

m2
+

(y3− y2)2

m3
+

(y2 + y4)2

m4
],

U =
m1m2

q2−q1
+

m1m3

q3−q1
+

m1m4

q4−q1
+

m2m3

q3−q2
+

m2m4

q4−q2
+

m3m4

q4−q3

=
m1m2

x1
+

m1m3

x1 + x3
+

m1m4

x1 + x2 + x3
+

m2m3

x3
+

m2m4

x2 + x3
+

m3m4

x2
.
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We know y4 = 0 and

0 = m1q1 +m2q2 +m3q3 +m4q4

= m1(x4− x3− x2− x1)+m2(x4− x3− x2)+m3(x4− x2)+m4x4,

so that

x4 =
x1m1 + x3(m1 +m2)+ x2(m1 +m2 +m3)

m1 +m2 +m3 +m4
.

Therefore, we only have to consider the system

ẋk = Eyk , ẏk =−Exk (k = 1,2,3) (2.5)

with

E = T −U,

T =
1
2
[

y2
1

m1
+

(y1− y3)2

m2
+

(y3− y2)2

m3
+

y2
2

m4
],

U =
m1m2

x1
+

m1m3

x1 + x3
+

m1m4

x1 + x2 + x3
+

m2m3

x3
+

m2m4

x2 + x3
+

m3m4

x2
.

2.1.2 Binary Collision. Let t = t1 be the time of SBC. Then, x1 → 0 and x2 → 0 simultaneously as

t→ t1.

The following result is from the work of Belbruno([3]).

Lemma 2.1.

lim
t→t1

x1

x2
= α, where α = (

m1 +m2

m3 +m4
)

1
3 (2.6)

and

lim
t→t1

(q2−q1)(q̇2− q̇1)2 = 2(m1 +m2) (2.7)

lim
t→t1

(q4−q3)(q̇4− q̇3)2 = 2(m3 +m4) (2.8)

Lemma 2.2. x1y2
1 and x2y2

2 both are finite when t → t1. Furthermore, limt→t1 x1y2
1 and limt→t1 x2y2

2 exist,
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and also

lim
t→t1

x1y2
1 = lim

t→t1
x1 p2

1 =
2(m1m2)2

m1 +m2
,

lim
t→t1

x2y2
2 = lim

t→t1
x2 p2

4 =
2(m3m4)2

m3 +m4
.

Proof. First, we will show both x1y2
1 and x2y2

2 are finite.

By the formula of U ,

x1U = m1m2 + x1
m1m3

x1 + x3
+ x1

m1m4

x1 + x2 + x3
+ x1

m2m3

x3
+ x1

m2m4

x2 + x3
+ x1

m3m4

x2
.

As t→ t1, x1→ 0, x2→ 0, x1 + x3, x1 + x2 + x3, x3, x2 + x3, are all positive and finite.

∴ lim
t→t1

x1U = lim
t→t1

[m1m2 + x1
m3m4

x2
] = m1m2 +αm3m4.

Note that on the phase space of Hamiltonian system, E = T −U = h, where h is the Hamiltonian

constant.

Therefore, when t→ t1,

x1T = x1(U +h)→ m1m2 +αm3m4,

that is,

1
2

x1[
y2

1
m1

+
(y1− y3)2

m2
+

(y3− y2)2

m3
+

y2
2

m4
]→ m1m2 +αm3m4 (2.9)

In particular, x1y2
1 and x1y2

2 are bounded at SBC. Then, by Lemma 2.1, x1y2
1 and x2y2

2 are bounded at

SBC.

Next, we will use the boundedness of x1y2
1 and x2y2

2 and Lemma 2.1 to show the existence of the limits

of them.

Note that from (2.7),(2.8),(2.9):

lim
t→t1

x1(
p1

m1
− p2

m2
)2 = 2(m1 +m2) (2.10)
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lim
t→t1

x2(
p3

m3
− p4

m4
)2 = 2(m3 +m4) (2.11)

lim
t→t1

x1[
y2

1
m1

+
(y1− y3)2

m2
+

(y3− y2)2

m3
+

y2
2

m4
] = 2(m1m2 +αm3m4) (2.12)

and

p1 + p2 + p3 + p4 = 0 (2.13)

By the boundedness, we know that x1 p2
1, x1 p2

2, x1 p2
3, x1 p2

4 are all finite when t→ t1.

Because, p1 + p2 =−y3, and by the Hamiltonian,

y′3 =−Ex3 =
m1m3

(x1 + x3)2 +
m1m4

(x1 + x2 + x3)2 +
m2m3

(x3)2 +
m2m4

(x2 + x3)2

For τ < t < t1, since x3 is strictly positive, there exists a positive constant B, such that x3 > B > 0. Integrate

the above identity from τ to t1,

y3(t1)− y3(τ) <
1

B2 (t1− τ) · (m1m3 +m1m4 +m2m3 +m2m4).

Since the right hand side of the inequality is finite, y3(t1) is bounded above.That is, p1 + p2 is finite as t

approaches t1.

Then

lim
t→t1

x1(p1 + p2)2 = 0, lim
t→t1

x1 p1(p1 + p2) = 0.

Consider 2.10:

2(m1 +m2) = lim
t→t1

x1(
p1

m1
− p2

m2
)2 = lim

t→t1
x1(

p1

m1
+

p1

m2
− p1

m2
− p2

m2
)2

= lim
t→t1

x1 p2
1(

1
m1

+
1

m2
)2 +

1
m2

2
lim
t→t1

x1(p1 + p2)2− 2
m2

(
1

m1
+

1
m2

) lim
t→t1

x1 p1(p1 + p2)

= lim
t→t1

x1 p2
1(

1
m1

+
1

m2
)2
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Therefore, limt→t1 x1 p2
1 exists and the value is 2(m1m2)2

m1+m2
.

Similarly, by considering 2.11, we can get the existence of limt→t1 x2 p2
4 and also

lim
t→t1

x2y2
2 = lim

t→t1
x2 p2

4 =
2(m3m4)2

m3 +m4
.

2.2 DECOUPLED CASE WITH ALL MASSES EQUAL TO 1

Define a new independent time variable

s =
∫ t

τ

(
m1m2

x1
+

m3m4

x2
)dt, (τ≤ t < t1).

Let s = s1 be the corresponding collision time in the new time variable. Siegel and Moser([25]) have

shown that
∫ t1

τ
Udt is finite, so s1 =

∫ t1
τ

(m1m2
x1

+ m3m4
x2

)dt is also finite.

Denote dxk
ds by x′k and dyk

ds by y′k.Then the Hamiltonian system 2.5 becomes

x′k =
1

m1m2
x1

+ m3m4
x2

Eyk , y′k =− 1
m1m2

x1
+ m3m4

x2

Exk (k = 1,2,3) (2.14)

Set F = 1
m1m2

x1
+ m3m4

x2

(E−h) = 1
m1m2

x1
+ m3m4

x2

(T −U −h), where E = T −U = h. Then for the solution of

Hamiltonian system 2.5 on the energy surface E = h, we have

Fxk =
1

m1m2
x1

+ m3m4
x2

Exk , Fyk =
1

m1m2
x1

+ m3m4
x2

Eyk .

Consequently, for the solution of Hamiltonian system 2.5 on the energy surface E = h, (2.14) can be written

as

x′k = Fyk , y′k =−Fxk k = 1,2,3

with F = 1
m1m2

x1
+ m3m4

x2

(T −U−h).

If xk and yk are solutions of 2.5 on the energy surface E = h, F is a constant with respect to s because

F ′ =
3

∑
k=1

(Fxk x′k +Fyk y′k) = 0.
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For the decoupled case, assume y3 = 0, x3 = ∞, h = 0, and m1 = m2 = m3 = m4 = 1.

We choose

F =
y2

1 + y2
2

1
x1

+ 1
x2

(2.15)

To solve the new Hamiltonian system,

x′k = Fyk , y′k =−Fxk (k = 1,2) (2.16)

with the Hamiltonian F = y2
1+y2

2
1

x1
+ 1

x2

= 1, we are going to introduce a canonical transformation.

2.2.1 Relationship between xk and yk. First, let’s write (2.16) into explicit forms:

x′1 =
2y1

1
x1

+ 1
x2

=
2y1x1x2

x1 + x2
, (2.17)

y′1 =− y2
1 + y2

2

( 1
x1

+ 1
x2

)2

1
x2

1
=− x2

x1(x1 + x2)
F, (2.18)

x′2 =
2y2

1
x1

+ 1
x2

=
2y2x1x2

x1 + x2
, (2.19)

y′2 =− y2
1 + y2

2

( 1
x1

+ 1
x2

)2

1
x2

2
=− x1

x2(x1 + x2)
F. (2.20)

Lemma 2.3. If {x1,x2,y1,y2} is the solution for the above system 2.17 to 2.20, there exists a constant C

such that

y2
1 =

F
x1

+C, and y2
2 =

F
x2
−C,

or C =
x1y2

1− x2y2
2

x1 + x2
.

Proof. By equations 2.17 and 2.18:
dy1

dx1
=

y′1
x′1

=− F
2y1x2

1

14



Then separate the variables: ∫
2y1dy1 =

∫ −F
x2

1
dx1

Therefore,

y2
1 =

F
x1

+C, or x1y2
1−Cx1 = F (2.21)

where C is a constant, which depends on the initial conditions.

By a similar process, we have

y2
2 =

F
x2

+C1, or x2y2
2−C1x2 = F (2.22)

where C1 is another constant, which depends on the initial conditions, too.

Add 2.21 and 2.22 together, by using :

y2
1 + y2

2 =
F
x1

+
F
x2

+C +C1

= y2
1 + y2

2 +C +C1

Therefore, C1 =−C. Then we can rewrite (22) as

y2
2 =

F
x2
−C, or x2y2

2 +Cx2 = F. (2.23)

2.21-2.23:

x1y2
1− x2y2

2−C(x1 + x2) = 0,

C =
x1y2

1− x2y2
2

x1 + x2
.

2.2.2 Canonical Transformation. As we know, at the collision time t1, y1→ ∞ and y2→ ∞. It would

be nice if we can introduce a canonical transformation and remove the singularity at t = t1.

From the two-body problem, we have a transformation as ηk = 1
yk

. Similarly, we want to use this part to

generate our new canonical transformation.
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y1 =
1

η1
, y2 =

1
η2

.

Let y = (y1,y2)T , b(η) = ( 1
η1

, 1
η2

)T and x = (x1,x2)T . Assume the generating function V =V (x,η). The

canonical transformation is given by

y = Vx(x,η), ξ = Vη(x,η).

Hence,

y = Vx(x,η) = b(η)

Therefore,

V (x,η) =< b(η),x > +g(η)

Then

ξ = Vη(x,η) = bT
η(η) · x+gη(η)

So

x = [bT
η(η)]−1 · (ξ−gη(η)).

In particular, let g(η) = 0.

Since

bη(η) =

 − 1
η2

1
0

0 − 1
η2

2

= bT
η(η),

we can write down the canonical transformation as

ξ1 =−x1y2
1, ξ2 =−x2y2

2, η1 =
1
y1

, η2 =
1
y2

;

x1 =−ξ1η
2
1, x2 =−ξ2η

2
2, y1 =

1
η1

, y2 =
1

η2
.

And the new hamiltonian system is going to be

ξ
′
k = Fηk , η

′
k =−Fξk

k = 1,2 (2.24)
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with

F =−ξ1ξ2(η2
1 +η2

2)
ξ1η2

1 +ξ2η2
2

=−η2
1 +η2

2
η2

1
ξ2

+ η2
2

ξ1

. (2.25)

2.2.3 Meaning of C. Since we only know the behavior at time t = t1 or s = s1, we may think s = s1

as the initial time for the Hamiltonian system2.16. Without loss of generality, let s1 = 0. We consider the

following two differential equations

η1 =−Fξ1 , η2 =−Fξ2

with initial conditions:

η1(0) = η2(0) = 0, ξ1(0) = ξ2(0) =−F.

2.21 and 2.23 can be rewritten in terms of ξk and ηk:

−ξ1 +Cξ1η
2
1 =−ξ2−Cξ2η

2
2 = F,

then

ξ1 =
F

−1+Cη2
1
, ξ2 =

F
−1−Cη2

2
.

Differentiate ,

Fξ1 =
−ξ2(η2

1 +η2
2)

ξ1η2
1 +ξ2η2

2
+

ξ1ξ2(η2
1 +η2

2)η
2
1

(ξ1η2
1 +ξ2η2

2)2

=
F
ξ1

+
F2

ξ1ξ2
· η2

1

η2
1 +η2

2
=−F2

ξ2
1
· η2

2

η2
1 +η2

2

=−(−1+Cη
2
1)

2 · η2
2

η2
1 +η2

2
,

and similarly,

Fξ2 =
−ξ1(η2

1 +η2
2)

ξ1η2
1 +ξ2η2

2
+

ξ1ξ2(η2
1 +η2

2)η
2
2

(ξ1η2
1 +ξ2η2

2)2

=
F
ξ2

+
F2

ξ1ξ2
· η2

2

η2
1 +η2

2
=−F2

ξ2
2
· η2

1

η2
1 +η2

2
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=−(−1−Cη
2
2)

2 · η2
1

η2
1 +η2

2
.

Therefore,

η
′
1 = (−1+Cη

2
1)

2 · η2
2

η2
1 +η2

2
, (2.26)

η
′
2 = (−1−Cη

2
2)

2 · η2
1

η2
1 +η2

2
, (2.27)

where C is an arbitrary constant.

When C = 0, it is the most special case. The solution for the equations (2.26) and (2.27) with initial

conditions η1(0) = η2(0) = 0 is

η1 = η2 =
s
2
.

Then

ξ1 =
F

−1+Cη2
1

=−F, ξ2 =
F

−1−Cη2
2

=−F.

Therefore, x1 = x2 and y1 = y2.

So when C = 0, the motions of these two decoupled pairs are exactly the same.

When C > 0, that is C = x1y2
1−x2y2

2
x1+x2

> 0, hence x1y2
1 > x2y2

2.

Consider the initial conditions. Assume x1, x2, y1 and y2 are the initial values for the decoupled system.

If x1 < x2, which means the distance between the two object P1 and P2 is less than the distance between the

two object P3 and P4, then y1 > y2 because x1y2
1 > x2y2

2. That is, the initial velocity of P1 is also greater

than the initial velocity of P2. Note that for each collision system, the force between the objects only

depends on the relative distance, and then by Newton’s second law, the acceleration for P1 or P2 is greater

than the acceleration for P3 or P4. So it is impossible for these two collisions to happen at the same time.

Contradiction!

Therefore, when C > 0, we can get

x1 > x2 and y1 > y2.

By a similar argument, when C < 0, we have
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x1 < x2 and y1 < y2.

2.2.4 Apply C to the decoupled system. First, we want to show that the constant C can also be derived

directly from the following initial value problem:

ξ
′
1 =−

2η1η2
2(

1
ξ1
− 1

ξ2
)

(η2
1

ξ2
+ η2

2
ξ1

)2
=

2ξ1ξ2η1η2
2(ξ1−ξ2)

(ξ1η2
1 +ξ2η2

2)2
,

ξ
′
2 =−

2η2η2
1(

1
ξ2
− 1

ξ1
)

(η2
1

ξ2
+ η2

2
ξ1

)2
=−2ξ1ξ2η2η2

1(ξ1−ξ2)
(ξ1η2

1 +ξ2η2
2)2

,

η
′
1 =

F2

ξ2
1
· η2

2

η2
1 +η2

2
,

η
′
2 =

F2

ξ2
2
· η2

1

η2
1 +η2

2
,

ξ1(0) = ξ2(0) =−F, η1(0) = η2(0) = 0.

Let f (s) =
F
ξ1
− F

ξ2
η2

1+η2
1

, because F =− η2
1+η2

2
η2

1
ξ2

+
η2

2
ξ1

,

f (s) =−η2
1 +η2

2
η2

1
ξ2

+ η2
2

ξ1

·
1
ξ1
− 1

ξ2

η2
1 +η2

1
=

ξ1−ξ2

ξ1η2
1 +ξ2η2

2
.

Lemma 2.4. If {ξ1,ξ2,η1,η2} is the solution for the above system with the initial conditions, then f (s) is

a constant with respect to s.

Proof.
d f
ds

=
∂ f
∂ξ1
·ξ′1 +

∂ f
∂ξ2
·ξ′2 +

∂ f
∂η1
·η′1 +

∂ f
∂η2
·η′2

=
ξ2(η2

1 +η2
2)

(ξ1η2
1 +ξ2η2

2)2
· 2ξ1ξ2η1η2

2(ξ1−ξ2)
(ξ1η2

1 +ξ2η2
2)2

+
−ξ1(η2

1 +η2
2)

(ξ1η2
1 +ξ2η2

2)2
· −2ξ1ξ2η2η2

1(ξ1−ξ2)
(ξ1η2

1 +ξ2η2
2)2

+
−2ξ1η1(ξ1−ξ2)
(ξ1η2

1 +ξ2η2
2)2
· ξ2

2η2
2(η

2
1 +η2

2)
(ξ1η2

1 +ξ2η2
2)2

+
−2ξ2η2(ξ1−ξ2)
(ξ1η2

1 +ξ2η2
2)2
· ξ2

1η2
1(η

2
1 +η2

2)
(ξ1η2

1 +ξ2η2
2)2

= 0.
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Therefore, f (s) is a constant.

Lemma 2.5. Let f (s) = C2, then C2 = C, where C is the constant in Lemma 2.3.

Proof. From the initial value problem,

dξ1

dη1
=

ξ′1
η′1

=
2ξ1ξ2η1η2

2(ξ1−ξ2)
(ξ1η2

1 +ξ2η2
2)2

· (ξ1η2
1 +ξ2η2

2)
2

ξ2
2η2

2(η
2
1 +η2

2)
=

2ξ1η1(ξ1−ξ2)
ξ2(η2

1 +η2
2)

Note that F =− η2
1+η2

2
η2

1
ξ2

+
η2

2
ξ1

, then η2
1 +η2

2 =−F · (η2
1

ξ2
+ η2

2
ξ1

), so

dξ1

dη1
=

2ξ1η1(ξ1−ξ2)
ξ2(η2

1 +η2
2)

=− 1
F
· 2ξ1η1(ξ1−ξ2)

ξ2(
η2

1
ξ2

+ η2
2

ξ1
)

=− 1
F
·2ξ

2
1η1 ·

ξ1−ξ2

ξ1η2
1 +ξ2η2

2
=−C2

F
·2ξ

2
1η1

Separate the variable,
dξ1

−ξ2
1

=
C2

F
·2η1dη1

integrate both sides,
1
ξ1

=
C2

F
η

2
1 +C3,

where C3 is a constant.

By the initial condition,

− 1
F

= C3.

Therefore,
1
ξ1

=
C2

F
η

2
1−

1
F

that is

F =−ξ1 +C2ξ1η
2
1.
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But from the definition of transformation, we have

F =−ξ1 +Cξ1η
2
1,

then

C = C2.

Therefore, we can use the constant C in the new hamiltonian system. And note that C acts as a first

integral in the new hamiltonian system, which does not depend on the constant F . Rewrite the system:

ξ
′
1 =−

2η1η2
2(

1
ξ1
− 1

ξ2
)

(η2
1

ξ2
+ η2

2
ξ1

)2
=−2CF

η1η2
2

η2
1 +η2

2
,

ξ
′
2 =−

2η2η2
1(

1
ξ2
− 1

ξ1
)

(η2
1

ξ2
+ η2

2
ξ1

)2
= 2CF

η2
1η2

η2
1 +η2

2
,

η
′
1 =

F2

ξ2
1
· η2

2

η2
1 +η2

2
,

η
′
2 =

F2

ξ2
2
· η2

1

η2
1 +η2

2
.

By observation, we have

η
′
1ξ1 +η

′
2ξ2 =−F, (2.28)

η1ξ
′
1 +η2ξ

′
2 = 0, (2.29)

η
′
1ξ

2
1 +η

′
2ξ

2
2 = F2, (2.30)

η
′
1η

2
1ξ

2
1−η

′
2η

2
2ξ

2
2 = 0, (2.31)

ξ′1
η1
− ξ′2

η2
=−2CF. (2.32)

By (2.28) and (2.29),

(η1ξ1 +η2ξ2)′ =−F
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Since when s = 0, η1 = η2 = 0, therefore by integrating both sides,

η1ξ1 +η2ξ2 =−Fs

By the identities −ξ1 +Cξ1η2
1 =−ξ2−Cξ2η2

2 = F ,

η1

1−Cη2
1

+
η2

1+Cη2
2

= s, (2.33)

and also the differential equations of η1 and η2 will be

η
′
1 = (−1+Cη

2
1)

2 · η2
2

η2
1 +η2

2

η
′
2 = (−1−Cη

2
2)

2 · η2
1

η2
1 +η2

2

For C < 0, the equations are

η
′
1 = (−1− |C | η2

1)
2 · η2

2

η2
1 +η2

2

η
′
2 = (−1+ |C | η2

2)
2 · η2

1

η2
1 +η2

2

Note that the solutions {η1,η2} of the above two equations are the same as the solutions {η2,η1} of (2.26)

and (2.27) with positive C.

Without loss of generality, we can assume that C > 0.

Lemma 2.6. Let {η1,η2} be the solution for

η
′
1 = (−1+Cη

2
1)

2 · η2
2

η2
1 +η2

2
,

η
′
2 = (−1−Cη

2
2)

2 · η2
1

η2
1 +η2

2
.

Define N1(s) = C
1
2 η1( s

C
1
2
) and N2(s) = C

1
2 η2( s

C
1
2
). Then

tanh−1(N1)+ tan−1(N2) = s,
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N1

1−N2
1

+
N2

1+N2
2

= s.

Proof. Consider the ratio between the above the differential equations for η1 and η2:

η′1
η′2

=
(−1+Cη2

1)
2

(−1−Cη2
2)2
· η

2
2

η2
1

Separating the variables and integrating both sides:

η2
1

(−1+Cη2
1)2

dη1 =
η2

2

(1+Cη2
2)2

dη2

− 1
2C

η1

−1+Cη2
1
− 1

2
tanh−1(C

1
2 η1)

C
3
2

=− 1
2C

η2

1+Cη2
2

+
1
2

tan−1(C
1
2 η2)

C
3
2

+D

where D is a constant.

By the initial condition η1(0) = η2(0) = 0,

D = 0.

Simplify the above identity of η1 and η2:

C
1
2 η1

−1+Cη2
1

+ tanh−1(C
1
2 η1) =

C
1
2 η2

1+Cη2
2
− tan−1(C

1
2 η2) (2.34)

Therefore, combine (2.33) and (2.34),

tanh−1(C
1
2 η1)+ tan−1(C

1
2 η2) =

C
1
2 η2

1+Cη2
2

+
C

1
2 η1

1−Cη2
1

= C
1
2 s. (2.35)

Then it is easy to express η2 in terms of η1:

η2 = C−
1
2 tan[C

1
2 s− tanh−1(C

1
2 η1)].

Let N1(s) = C
1
2 η1( s

C
1
2
), N2(s) = C

1
2 η2( s

C
1
2
).

Then the equations of η1 and η2 can be changed to equations of N1 and N2:
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N′1 = (1−N2
1 )2 · N2

2

N2
1 +N2

2

N′2 = (1+N2
2 )2 · N2

1

N2
1 +N2

2

Therefore, by (2.35),

tanh−1(N1)+ tan−1(N2) = s, (2.36)

and

N1

1−N2
1

+
N2

1+N2
2

= s. (2.37)

2.2.5 Existence, Uniqueness and Analytic Properties. Consider the equations

N′1 = (1−N2
1 )2 · N2

2

N2
1 +N2

2
,

N′2 = (1+N2
2 )2 · N2

1

N2
1 +N2

2
,

with the initial conditions

N1(0) = N2(0) = 0.

Theorem 2.7. The above system has analytic solutions (N1(s),N2(s)) as s approaches 0.

Consider the ratio of the differential equations of N1 and N2, we can get the following equation:

tanh−1(N1)+ tan−1(N2) =
N1

1−N2
1

+
N2

1+N2
2
,

or

− tanh−1(N1)− tan−1(N2)+
N1

1−N2
1

+
N2

1+N2
2

= 0.

To prove the above theorem, we need to introduce several propositions.
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Proposition 2.8. Assume N1 and N2 satisfy

tanh−1(N1)+ tan−1(N2) =
N1

1−N2
1

+
N2

1+N2
2
.

Then N1 is a real analytic function of N2 in a small neighborhood of N2 = 0.

Basically, we will apply the implicit function theorem.

Let G(N1,N2) =− tanh−1(N1)− tan−1(N2)+ N1
1−N2

1
+ N2

1+N2
2

. Of course there exists a small neighborhood

V of (0,0), such that G(N1,N2) is analytic in V with respect to (N1,N2). The Taylor series of G(N1,N2) at

(0,0) is
∞

∑
n=1

2n
2n+1

N2n+1
1 +

∞

∑
n=1

2n(−1)n

2n+1
N2n+1

2

We know N1 and N2 satisfy G(N1,N2) = 0. When applying the implicit theorem, we will see that ∂G
∂N1

(0,0) =

0. So we introduce an extended implicit function theorem.

Proposition 2.9. (Extended Implicit Function Theorem)

Denote ∂G
∂N1

by G′N1
, the second partial derivative ∂2G

∂N2
1

by G′′N1
, and the third partial derivative ∂3G

∂N3
1

by G′′′N1
.

Then there exist intervals I = (−δ1,δ1) and J = (−δ2,δ2) and a unique function g, such that

g : J −→ I, N2 7→ N1 = g(N2).

Proof. Differentiating the Taylor series of G(N1,N2) with respect to N1 three times, we can find some good

properties of the partial derivatives of G(N1,N2) :

G(0,0) = 0,

G′N1
(0,N2) = 0,

G′′N1
(0,N2) = 0,

G′′′N1
(0,N2) = 4 6= 0.

Because G′′′N1
(0,N2) = 4 > 0 and G′′′N1

is continuous, there exist a rectangular area R: | N1 |< δ1, | N2 |<
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δ′2, such that the closure R⊂V and

m = min
(N1,N2)∈R

G′′′N1
(N1,N2) > 0.

Since G′′N1
(0,N2) = 0 and G′′N1

(N1,N2) is continuous and strictly increasing with respect to N1,

G′′N1
(N1,N2) > 0 f or 0 < N1 < δ1

and

G′′N1
(N1,N2) < 0 f or −δ1 < N1 < 0.

By the above result, G′N1
(N1,N2) is strictly increasing with respect to N1 when 0 < N1 < δ1 and G′N1

(N1,N2)

is strictly decreasing with respect to N1 in (−δ1,0). Note that G′N1
(0,N2) = 0,

G′N1
(N1,N2) > 0 f or 0 < N1 < δ1

G′N1
(N1,N2) > 0 f or −δ1 < N1 < 0

that is

G′N1
(N1,N2) > 0 f or −δ1 < N1 < δ1, N1 6= 0.

Because G(0,0) = 0, G′N1
(N1,N2) > 0 when N1 6= 0, so

G(−δ1,0) < 0, G(δ1,0) > 0.

By the continuity of G(N1,N2), there exists 0 < δ2 < δ′2, such that when | N2 |< δ2,

G(−δ1,N2) < 0, G(δ1,N2) > 0.

Consider the intervals I = (−δ1,δ1) and J = (−δ2,δ2). For any point N2 in J, the function G(N1,N2) is

strictly increasing in I, so by the intermediate value theorem for continuous function, there exists exactly

one N1 ∈ I such that G(N1,N2) = 0. That means, for any given N2 ∈ J, according to G(N1,N2) = 0, we

can always find exactly one N1 ∈ I corresponds to N2. By the definition of function, there exist a unique
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function g such that

g : J −→ I, N2 7→ N1 = g(N2).

Hence, so far we have proven the existence and uniqueness of N1 as a function of N2 which satisfy

G(N1,N2) = 0.

Proof of Proposition 2.8: By Proposition 2.9, the existence and uniqueness are guaranteed. If we can

show N1 is an analytic function of N2, then we are done.

Consider

− tanh−1(N1)− tan−1(N2)+
N1

1−N2
1

+
N2

1+N2
2

= 0

Since each function on the left hand side of the equality is analytic close to 0, we can find their Taylor

expansions for (N1,N2) in a small interval of (0,0):

∞

∑
n=1

2n
2n+1

N2n+1
1 +

∞

∑
n=1

2n(−1)n

2n+1
N2n+1

2 = 0,

that is
∞

∑
n=1

2n
2n+1

N2n+1
1 =

∞

∑
n=1

2n(−1)n+1

2n+1
N2n+1

2

N1
3(

2
3

+
∞

∑
n=2

2n
2n+1

N2n−2
1 ) = N2

3(
2
3

+
∞

∑
n=2

2n(−1)n+1

2n+1
N2n−2

2 ).

For simplicity, let

h1(N1) =
2
3

+
∞

∑
n=2

2n
2n+1

N2n−2
1

and

h2(N2) =
2
3

+
∞

∑
n=2

2n(−1)n+1

2n+1
N2n−2

2 ,

By the ratio test, we can see that h1(N1) and h2(N2) both are analytic in a neighborhood of 0 and the

radius of convergence is 1.

In calculus, we know that when r 6= 0, (1+ x)r is analytic for x ∈ (−1,1) and the Taylor series at 0 is

(1+ x)r =
∞

∑
k=0

r[r−1][r−2]...[r− (k−1)]
k!

xk.
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Denote 3
2 ∑

∞
n=2

2n
2n+1 N2n−2

1 by u1(N1) and note that 3
2 ∑

∞
n=2

2n(−1)n+1

2n+1 N2n−2
1 by u2(N2),

[
3
2

h1(N1)]
1
3 = [1+u1]

1
3

is an analytic function of u1. Because the composition of two analytic functions is still analytic, then

[ 3
2 h1(N1)]

1
3 is analytic for N1 in a small neighborhood of 0, and so is [h1(N1)]

1
3 .

Similarly, [h2(N2)]
1
3 is analytic for N2 in a small neighborhood of 0.

Because

N3
1 ·h1(N1) = N3

2 ·h2(N2),

take the cube roots of both sides,

N1 · [h1(N1)]
1
3 = N2 · [h2(N2)]

1
3 .

By the above argument, both sides are analytic. Let

Γ(N1,N2) = N1 · [h1(N1)]
1
3 −N2 · [h2(N2)]

1
3 ,

then Γ(N1,N2) is analytic with respect to (N1,N2) in a small neighborhood of (0,0).

In order to apply the analytic implicit function theorem, we need to check the conditions:

Γ(0,0) = 0,

∂Γ

∂N1
(0,0) = [h1(N1)]

1
3 +N1 ·

1
3
[h1(N1)]−

2
3 ·h′1(N1) |N1=0

= (
2
3
)

1
3 +0 · 1

3
· (2

3
)−

2
3 ·0

= (
2
3
)

1
3 6= 0,

by Cauchy’s analytic implicit function theorem, there exists r0 > 0,and a power series

N1(N2) =
∞

∑
i=0

aiNi
2
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such that N1(N2) = ∑
∞
i=0 aiNi

2 is absolutely convergent for | N2 |< r0 and Γ(N1(N2),N2) = 0. That is, N1 is

an analytic function of N2 when | N2 |< r0.

Proof of the Theorem 2.7: Since (2.36) and (2.37) are true if N1 and N2 satisfy the system, by Prop.

2.8 and Prop. 2.9, N1 is an analytic function of N2 for N2 close to 0.

By setting,

N1(N2) = a0 +a1N1 +a2N2
2 + ...

we will show that a0 = 0, a1 = 1.

a0 = 0 since N1(0) = 0.

Because
∞

∑
n=1

2n
2n+1

N2n+1
1 =

∞

∑
n=1

2n(−1)n+1

2n+1
N2n+1

2 ,

2
3

N3
1 +

4
5

N5
1 + ... =

2
3

N3
2 −

4
5

N5
2 + ....

Substitute N1 by ∑
∞
i=0 aiNi

2 and compare the coefficient of N3
2 on both sides:

2
3

a3
1 =

2
3

then

a1 = 1.

Comments: Since a1 = 1, and when s→ 0, N2→ 0,

lim
s→0

N1

N2
= lim

N2→0

N1

N2
= 1.

At the end of this part, we will use the analytic property of N1 with respect to N2 to show that both N1

and N2 are analytic functions of s.

Rewrite the differential equation corresponding to N′2:

N′2 = (1+N2
2 )2 · N2

1

N2
1 +N2

2
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= (1+N2
2 )2(1− N2

2

N2
1 +N2

2
)

= (1+N2
2 )2(1− 1

1+(N1
N2

)2
)

Set N1 = ∑
∞
n=0 bnNn

2 . By the claim N1
N2

approaches to 1 as s get close to zero, and when s→ 0, N2 also

approaches to 0, so
N1

N2
=

b0

N2
+b1 +

∞

∑
n=2

bnNn−1
2

1 = lim
s→0

N1

N2
= lim

s→0
(

b0

N2
+b1)

thus, b0 = 0, b1 = 1 and N1
N2

= 1+∑
∞
n=2 bnNn−1

2 .

Set

(
N1

N2
)2 = 1+

∞

∑
n=1

dnNn
2 ≡ 1+φ(N2),

where φ(N2) = ∑
∞
n=1 dnNn

2 is an analytic function of N2 in a small neighborhood of 0.

1
1+(N1

N2
)2

=
1

2+φ(N2)

=
1
2
· 1

1+ φ(N2)
2

=
1
2

∞

∑
n=0

(−1)n(
φ(N2)

2
)n

which is obviously an analytic function of N2 in a neighborhood of 0 with radius of convergence 1.

Therefore, the right hand side of the above differential equation

(1+N2
2 )2(1− 1

1+(N1
N2

)2
)

is also analytic with respect to N2 in a small neighborhood of 0.

By Cauchy’s theorem, N′2 = (1 + N2
2 )2 · N2

1
N2

1 +N2
2

, N2(0) = 0 has a unique analytic solution N2 = N2(s) in a

small neighborhood of 0.

And because N1 is an analytic function of N2, then N1 = N1(s) is also analytic when s is close to zero.

Because ηi(s) = C−
1
2 Ni(C

1
2 s) for i = 1,2, then η1 and η2 both are analytic in a neighborhood of 0.
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Since ξ1 = F
−1+Cη2

1
is a analytic function of η1 in a neighborhood of 0 and η1 is also analytic in a neigh-

borhood of 0, then ξ1 is analytic in a neighborhood of 0. And by the same argument, ξ2 is also analytic in

a neighborhood of 0.

In fact, we can write down the first few terms of the power series solutions of N1 and N2 for the differ-

ential system:

N′1 = (1−N2
1 )2 · N2

2

N2
1 +N2

2
,

N′2 = (1+N2
2 )2 · N2

1

N2
1 +N2

2
,

with the initial conditions

N1(0) = N2(0) = 0.

By an easy calculation, we can get

N1(s) =
1
2

s− 1
20

s3 +
1

160
s5− 29

36000
s7 + ...

N2(s) =
1
2

s+
1
20

s3 +
1

160
s5 +

29
36000

s7 + ...

Then we can write down the solutions {ξ1,ξ2,η1,η2} for the decoupled system on the energy surface E = 0

or F = 1:

ξ1(s,C) =−1− 1
4

Cs2− 1
80

C2s4 +
1

1600
C3s6 +

7
288000

C4s8 + ...

ξ2(s,C) =−1+
1
4

Cs2− 1
80

C2s4− 1
1600

C3s6 +
7

288000
C4s8 + ...

η1(s,C) =
1
2

s− C
20

s3 +
C2

160
s5− 29C3

36000
s7 + ...

η2(s,C) =
1
2

s+
C
20

s3 +
C2

160
s5 +

29C3

36000
s7 + ...

2.2.6 Solution on the energy surface E = h . To consider the solution on the energy surface E = h,

define the new Hamiltonian

F =
y2

1 + y2
2−h

1
x1

+ 1
x2
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The differential equations become:

x′1 =
2y1

1
x1

+ 1
x2

, x′2 =
2y2

1
x1

+ 1
x2

,

y′1 =− y2
1 + y2

2−h
( 1

x1
+ 1

x2
)2x2

1
=− x2

x1(x1 + x2)
F,

y′2 =− y2
1 + y2

2−h
( 1

x1
+ 1

x2
)2x2

2
=− x1

x2(x1 + x2)
F.

By a similar argument, we have

y2
1 =

F
x1

+C, y2
2 =

F
x2

+C1.

Then C +C1 = h and

C =
x1y2

1− x2y2
2 + x2h

x1 + x2
,

C1 =
x1y2

1− x2y2
2 + x1h

x1 + x2
.

After the same canonical transformation,the new Hamiltonian is F = − ξ1ξ2(η2
1+η2

2)−hξ1ξ2η2
1η2

2
ξ1η2

1+ξ2η2
2

and the

equations become:

η
′
1 = (Cη

2
1−1)2 η2

2

η2
1 +η2

2−hη2
1η2

2

η
′
2 = [(h−C)η2

2−1]2
η2

1

η2
1 +η2

2−hη2
1η2

2

Let D = C− 1
2 h, then the equations become

η
′
1 = [(D+

1
2

h)η2
1−1]2

η2
2

η2
1 +η2

2−hη2
1η2

2

η
′
2 = [(−D+

1
2

h)η2
2−1]2

η2
1

η2
1 +η2

2−hη2
1η2

2
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with initial conditions

η1(0) = η2(0) = 0.

Also ξ1 = F
(D+ h

2 )η2
1−1

, ξ2 = F
(−D+ h

2 )η2
2−1

.

By a similar argument, we can see that η1 and η2 have analytic solutions.

Then at s = 0, there are power series expansions for η1 and η2. From the differential equations, we can see

both η1 and η2 are even functions. By using MATLAB, we can get the first few terms:

η1(s,D) =
1
2

s+(− 1
48

h− 1
20

D)s3 +(
1

960
h2 +

1
160

D2 +
3

560
hD)s5+

+(− 17
322560

h3− 19
44800

h2D− 139
134400

hD2− 29
36000

D3)s7...

η2(s,D) =
1
2

s+(− 1
48

h+
1

20
D)s3 +(

1
960

h2 +
1

160
D2− 3

560
hD)s5+

+(− 17
322560

h3 +
19

44800
h2D− 139

134400
hD2 +

29
36000

D3)s7...

ξ1(s,D) =−1+
(
−1

8
h− 1

4
D
)

s2 +
(
− 1

192
h2− 1

60
hD− 1

80
D2
)

s4+

+
(
− 1

11520
h3− 1

4032
Dh2 +

11
67200

D2h+
1

1600
D3
)

s6...

ξ2(s,D) =−1+
(
−1

8
h+

1
4

D
)

s2 +
(
− 1

192
h2 +

1
60

hD− 1
80

D2
)

s4+

+
(
− 1

11520
h3 +

1
4032

Dh2 +
11

67200
D2h− 1

1600
D3
)

s6...

Recall the Hamiltonian F = − ξ1ξ2(η2
1+η2

2)−hξ1ξ2η2
1η2

2
ξ1η2

1+ξ2η2
2

is a constant along the solution. By plugging into

the power series forms, we can get: lims→0−
ξ1ξ2(η2

1+η2
2)−hξ1ξ2η2

1η2
2

ξ1η2
1+ξ2η2

2
= 1, which has nothing to do with

the choice of D. So F is always 1 no matter what D is. And then the above one parameter solution

family{ξ1(s,D),ξ2(s,D),η1(s,D),η2(s,D)} are always on the same energy surface.

2.2.7 The initial conditions leading to SBC in the decoupled case. Consider the system:

η
′
1 = (−1+Cη

2
1)

2 · η2
2

η2
1 +η2

2
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η
′
2 = (1+Cη

2
2)

2 · η2
1

η2
1 +η2

2

with initial conditions η1(0) = ε1 < 0,η2(0) = ε2 < 0.

For the above initial value problem, we know the solution {η1(s,C),η2(s,C)} exists and it is unique. And

also η1(s,C) and η2(s,C) are analytic with respect to s.

Actually, we only need to consider two cases since the case |ε1| < |ε2| and the case |ε1| > |ε2| are exactly

the same argument.

If ε1 = ε2, from the physical sense, we know that SBC happens if and only if x1 = x2, that is C = 0.

If |ε1|< |ε2|, We will show there exists some C0 = C0(ε1,ε2) such that SBC occurs.

Lemma 2.10. Assume |ε1|< |ε2|, C ≥ 0 and −1+Cε2
1 < 0. There exist unique s1 and s2, such that

η1(s1,C) = η2(s2,C) = 0.

Proof. Assume C ≥ 0, −1+Cε2
1 < 0. From the equations, we can see that η′1(0) > 0, η′2(0) > 0.

As time s increases, −1+Cη2
1 <−1+Cε2

1 < 0. Then η′1 > 0 and η′2 > 0 whenever η1 6= 0 and η2 6= 0.

First, we will show the existence of s1.

If the claim is not true, then for any s, η1(s,C) < 0, and

lim
s→∞

η
′
1(s,C) = lim

s→∞
η1(s,C) = 0.

On the other hand, from the equations,

lim
s→∞

η′1(s,C)
η′2(s,C)

= lim
s→∞

(−1+Cη2
1)

2

(1+Cη2
2)2

lim
s→∞

η2
2(s,C)

η2
1(s,C)

= lim
s→∞

η2
2(s,C)

η2
1(s,C)

lim
s→∞

[η′1(s,C)+η
′
2(s,C)] = lim

s→∞

η2
2

η2
1 +η2

2
+ lim

s→∞

η2
1

η2
1 +η2

2
= 1.

Then lims→∞ η′1(s,C) = 0, lims→∞ η′2(s,C) = 1 and lims→∞

η′1(s,C)
η′2(s,C) = 0. Therefore

lim
s→∞

η2
2(s,C)

η2
1(s,C)

= 0,

34



and

lim
s→∞

η
2
2(s,C) = 0.

By L’Hospital’s rule,

lim
s→∞

η3
1(s,C)

η3
2(s,C)

= lim
s→∞

η2
1(s,C)η′1(s,C)

η2
2(s,C)η′2(s,C)

= lim
s→∞

η′1(s,C)
η′2(s,C)

/
lim
s→∞

η2
2(s,C)

η2
1(s,C)

= 1.

So

1 = lim
s→∞

η1(s,C)
η2(s,C)

= lim
s→∞

η′1(s,C)
η′2(s,C)

= 0.

Contradiction!

Therefore, there exists some s1 such that η1(s1,C) = 0.

By the same argument, we can show that there also exists another s2 such that η2(s2,C) = 0.

Uniqueness can be seen from the equations. Since η1 and η2 are nondecreasing, and also if s1 6= s2,

η
′
1(s1,C) = 1 > 0, η

′
2(s2,C) = 1 > 0;

if s1 = s2, by the L’Hospital’s rule,

lim
s→s1

η3
1

η3
2

= lim
s→s1

η2
1η′1

η2
2η′2

= lim
s→s1

η2
1

η2
2
· (−1+Cη2

1)
2

(1+Cη2
2)2
· η

2
2

η2
1

= 1

Then

lim
s→s1

η1

η2
= lim

s→s1

η′1
η′2

= 1.

Because lims→s1 η′1(s1,C)+η′2(s1,C) = 1, therefore

η
′
1(s1,C) = η

′
2(s1,C) =

1
2

> 0.

In both cases, η′1(s1,C) > 0 and η′2(s2,C) > 0, which means η1 > 0, η2 > 0 for s big enough. Thus, there

exist unique s1 and s2 such that η1(s1,C) = η2(s2,C) = 0.

Lemma 2.11. With the same assumption as the previous lemma, there exists a unique constant C0 =
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C0(ε1,ε2), such that s1 = s2.

Proof. From Lemma 2.10, we know that there exist s1(C f ,ε1,ε2) and s2(C f ,ε1,ε2) for any fixed C f such

that

η1(s1,C f ,ε1,ε2) = 0

η2(s2,C f ,ε1,ε2) = 0.

And

η
′
1(s1,C) > 0

η
′
2(s2,C) > 0.

By the implicit function theorem, s1 = s1(C,ε1,ε2) and s2 = s2(C,ε1,ε2) exists and also s1, s2 are continu-

ously differentiable with respect to C in a small neighborhood of C f .

Consider s1(C,ε1,ε2)− s2(C,ε1,ε2), which is a continuous function of C if we fix ε1 and ε2.

We know |ε1|< |ε2|, which means the momentum of the 1st body |y1| is greater than the momentum of the

4th body |y2|.

Note that at the initial time, C = x1y2
1−x2y2

2
x1+x2

= x10ε
−2
1 −x20ε

−2
2

x10+x20
, where x10 represents the distance between the

1st and 2nd bodies at the initial time and x20 represents the distance between the 3rd and 4th bodies at the

initial time. If it is a SBC, x10 > x20.

If C = 0, that is x10ε
−2
1 = x20ε

−2
2 , then x10 < x20. So for C = 0, the time s1 must be less than s2.

∴ s1(C,ε1,ε2)− s2(C,ε1,ε2) < 0, when C = 0.

On the other hand, we can choose x10 � x20 and they satisfy 1
x10

+ 1
x20

= ε
−2
1 + ε

−2
2 , such that the

collision time for the first two bodies s1 is greater than the collision time for the last two bodies s2. In that

situation, C = x10ε
−2
1 −x20ε

−2
2

x10+x20
will be big enough. So we can choose some C big enough so that s1(C,ε1,ε2)−

s2(C,ε1,ε2) > 0.

By the continuity of the function s1(C,ε1,ε2)− s2(C,ε1,ε2), there exists some C0, such that s1(C,ε1,ε2) =

s2(C,ε1,ε2) = s0.
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To prove the uniqueness, let’s consider

C1−C0 =
x11ε

−2
1 − x21ε

−2
2

x11 + x21
−

x10ε
−2
1 − x20ε

−2
2

x10 + x20
,

where {x11,x21,ε
−1
1 ,ε−1

2 }= {x1,x2,y1,y2} is another set of initial conditions.

C1−C0 =
(x11ε

−2
1 − x21ε

−2
2 )(x10 + x20)− (x10ε

−2
1 − x20ε

−2
2 )(x11 + x21)

(x11 + x21)(x10 + x20)

=
(ε−2

1 + ε
−2
2 )(x11x20− x10x21)

(x11 + x21)(x10 + x20)
.

Note that 1
x11

+ 1
x21

= 1
x10

+ 1
x20

= ε
−2
1 + ε

−2
2 , so

if x21 = x20, then x11 = x10, which means C1 = C0;

if x21 > x20, then x11 < x10, which means C1 < C0;

if x21 < x20, then x11 > x10, which means C1 > C0.

These are the only three possible cases for the relationship between the two sets of initial conditions. So

when C1 > C0, we have x21 < x20 and x11 > x10, hence s1 > s2. Similarly, when C1 < C0, s1 < s2.

Therefore, given |ε1|< |ε2|, there exists only one C0 leading to a SBC.

So far, we have proven that for any given ε1 < 0, ε2 < 0, there always exist a unique C0 = C0(ε1,ε2)

and s0 = s0(C0), such that

η1(s0) = η2(s0) = 0.

Lemma 2.12. If C0 > 0,

s0 =
ε1

−1+C0ε2
1

+
ε2

−1−C0ε2
2
,

C1/2
0 s0 =− tanh−1(C1/2

0 ε1)− tan−1(C1/2
0 ε2).

Proof. From section 4(d), we have

ξ1 =
1

−1+Cη2
1
, ξ2 =

1
−1−Cη2

2

(η1ξ1 +η2ξ2)′ =−1
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Choose C = C0 and integrate the above equation from 0 to s0:

(η1ξ1 +η2ξ2) |s0
0 =−s0

Therefore,
ε1

−1+C0ε2
1

+
ε2

−1−C0ε2
2

= s0

On the other hand,

tanh−1(C1/2
η1)+ tan−1(C1/2

η2) = C1/2s+DD

where DD is a constant determined by the initial conditions.

Let s = 0 and C = C0,

tanh−1(C1/2
η1)+ tan−1(C1/2

η2) = C1/2
0 s+ tanh−1(C1/2

ε1)+ tan−1(C1/2
ε2)

When s = s0, η1(s0) = η2(s0) = 0, then

0 = C1/2
0 s0 + tanh−1(C1/2

ε1)+ tan−1(C1/2
ε2)

Therefore,

C1/2
0 s0 =− tanh−1(C1/2

0 ε1)− tan−1(C1/2
0 ε2).

In fact, from Lemma 2.12, we can solve for C0 and s0 in terms of ε1 and ε2.

C1/2
0 [
−C0ε1ε2(ε1− ε2)+(ε1 + ε2)

C2
0ε1ε2 +C0(ε1− ε2)−1

] =− tanh−1(C1/2
0 ε1)− tan−1(C1/2

0 ε2).

Let C1/2
0 ε1 = d1, C1/2

0 ε2 = d2, and S0 = C1/2
0 s0, then Lemma 2.12 becomes

S0 =
d1

−1+d2
1

+
d2

−1−d2
2
,

38



S0 =− tanh−1 d1− tan−1 d2.

Recall that the solution for

N′1 = (−1+N2
1 )2 N2

2

N2
1 +N2

2
,

N′2 = (1+N2
2 )2 N2

1

N2
1 +N2

2

with N1(0) = N2(0) = 0 is

N1(s) =
1
2

s− 1
20

s3 +
1

160
s5− 29

36000
s7 + ...

N2(s) =
1
2

s+
1
20

s3 +
1

160
s5 +

29
36000

s7 + ...

So if the initial conditions are changed to N1(0) = d1, N2(0) = d2 such that N1(S0) = N2(S0) = 0, the

new solution will be {N1(s−S0),N2(s−S0)}. Then when s = 0,

d1 = N1(−S0), d2 = N2(−S0).

Perturb the initial condition in the following way: N1(0) = d1, N2(0) = d2 + ε , where ε is small enough.

Assume the solution under this perturbed initial condition is {Ñ1(s,ε), Ñ2(s,ε)}.

When ε = 0, the solution for the initial value problem is

Ñ1(s,0) = N1(s−S0), Ñ2(s,0) = N2(s−S0).

Consider the two identities under the new initial condition:

Ñ1

1− Ñ2
1

+
Ñ2

1+ Ñ2
2

= s+
d1

1−d2
1

+
d2 + ε

1+(d2 + ε)2

tanh−1 Ñ1 + tan−1 Ñ2 = s+ tanh−1 d1 + tan−1(d2 + ε)

Without loss of generality, let ε > 0. Then the collision of the second pair happens first, which means the

path of (η1,η2) intersects with the η1 axis first at (−a1,0) as in the picture.
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Therefore,
−a1

1−a2
1

= s1 +
d1

1−d2
1

+
d2 + ε

1+(d2 + ε)2

− tanh−1 a1 = s1 + tanh−1 d1 + tan−1(d2 + ε),

so
−a1

1−a2
1

+ tanh−1 a1 =
d1

1−d2
1

+
d2 + ε

1+(d2 + ε)2 − tanh−1 d1− tan−1(d2 + ε).

On the other hand,

d1

1−d2
1

+
d2

1+d2
2
− tanh−1 d1− tan−1 d2 = 0,

so
−a1

1−a2
1

+ tanh−1 a1 =
d2 + ε

1+(d2 + ε)2 − tan−1(d2 + ε)− d2

1+d2
2

+ tan−1 d2

Expand both sides in Taylor series:

−2
3

a3
1 +O(a5

1) =−ε
2d2

2

(1+d2
2)2

+O(ε2)

Hence for small enough ε close to 0,

a1 = O(ε1/3).

Actually, for any time s, Ñ1 and Ñ2 always satisfy the following identities:

Ñ1

1− Ñ2
1

+
Ñ2

1+ Ñ2
2

− tanh−1 Ñ1− tan−1 Ñ2 =
d2 + ε

1+(d2 + ε)2 − tan−1(d2 + ε)− d2

1+d2
2

+ tan−1 d2

when ε = 0:

Ñ1(s,0)
1− Ñ2

1 (s,0)
+

Ñ2(s,0)
1+ Ñ2

2 (s,0)
− tanh−1 Ñ1(s,0)− tan−1 Ñ2(s,0) = 0

For any s1, choose s2, such that Ñ1(s1,0) = Ñ1(s2,ε). Consider the difference of the above identities:

Ñ2(s2,ε)
1+ Ñ2

2 (s2,ε)
− tan−1 Ñ2(s2,ε)−

Ñ2(s,0)
1+ Ñ2

2 (s,0)
+ tan−1 Ñ2(s,0)
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=
d2 + ε

1+(d2 + ε)2 − tan−1(d2 + ε)− d2

1+d2
2

+ tan−1 d2

Let f (x) = x
1+x2 − tan−1 x and Ñ2(s2,ε) = Ñ2(s1,0)+∆s, then

f (Ñ2(s1,0)+∆s)− f (Ñ2(s1,0)) = f (d2 + ε)− f (d2)

or

f (N2(s1−S0)+∆s)− f (N2(s1−S0)) = f (d2 + ε)− f (d2)

If Ñ1(s1,0) = N1(s1−S0) 6= 0, then N2(s1−S0) 6= 0 and

f (N2(s1−S0)+∆s)− f (N2(s1−S0)) =−∆s
2N2(s1−S0)2

[1+N2(s1−S0)2]2
+O(∆2

s )

f (d2 + ε)− f (d2) =−ε
2d2

2

(1+d2
2)2

+O(ε2)

where 2N2(s1−S0)2

[1+N2(s1−S0)2]2 6= 0 and 2d2
2

(1+d2
2 )2 6= 0. By the implicit function theorem, ∆s is an analytic function of ε

for s1 6= S0, and ∆s = O(ε).

But when s1 = S0, denote ∆s by ∆,

f (N2(0)+∆)− f (N2(0)) =−4
3

∆
3 +O(∆5)

∴ −4
3

∆
3 +O(∆5) =−ε

2d2
2

(1+d2
2)2

+O(ε2)

Therefore when s1 = S0, ∆ = O(ε1/3) for ε close to 0 and small enough.

From the above argument, we can see that only at the two points (−a1,0) and (0,∆), the solution Ñ1 =

Ñ1(Ñ2) does not approach N1 = N1(N2) analytically.

Consider the initial value problem

N′1 = (−1+N2
1 )2 N2

2

N2
1 +N2

2

N′2 = (1+N2
2 )2 N2

1

N2
1 +N2

2
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N1(0) = 0, N2(0) = ∆.

By the uniqueness of the solution of the initial value problem, we may denote the solution of the above

system as {Ñ1(s,∆), Ñ2(s,∆)}.

Proposition 2.13. For any given s,

lim
∆→0

Ñ1(s,∆) = Ñ1(s,0),

lim
∆→0

Ñ2(s,∆) = Ñ2(s,0).

Proof. We will show lim∆→0 Ñ1(s,∆) = Ñ1(s,0), and the limit for Ñ2(s,∆) follows exactly the same argu-

ment.

Consider the two identities
Ñ1(s,∆)

1− Ñ2
1 (s,∆)

+
Ñ2(s,∆)

1+ Ñ2
2 (s,∆)

= s+
∆

1+∆2

tanh−1 Ñ1(s,∆)+ tan−1 Ñ2(s,∆) = s+ tan−1
∆

Let g(x,∆) = x
1−x2 + tan(s+tan−1 ∆−tanh−1 x)

1+tan2(s+tan−1 ∆−tanh−1 x)
, so lim∆→0 g(x,∆) = g(x,0), and g(x,∆) is analytic for −1 <

x < 1, −1 < ∆ < 1. Also, the derivative

dg(x,0)
dx

= 2
x2

(1− x2)2 +2
tan2(s− tanh−1x)

(1+ tan2(s− tanh−1x)2)(1− x2)

dg(x,0)
dx

|x=0=
2tan2 s

1+ tan2 s

then for any given s 6= 0, dg(x,0)
dx |x=0> 0.

Therefore,when s 6= 0, by the inverse function theorem, g(x,0) has a uniquely analytic inverse g−1(x)

for x close to 0, such that g−1(g(x,0)) = x.

From the above two identities, for fixed s 6= 0, since g is continuous,

s = lim
∆→0

g(Ñ1(s,∆),∆) = g( lim
∆→0

Ñ1(s,∆),0)

On the other hand,

s = g(Ñ1(s,0),0)

42



Then

g( lim
∆→0

Ñ1(s,∆),0) = g(Ñ1(s,0),0)

Applying g−1 to both sides:

g−1(g( lim
∆→0

Ñ1(s,∆),0)) = lim
∆→0

Ñ1(s,∆) = g−1(g(Ñ1(s,0),0)) = Ñ1(s,0).

Therefore, lim∆→0 Ñ1(s,∆) = Ñ1(s,0) for any fixed s 6= 0.

If s = 0, Ñ1(0,∆) = 0 = Ñ1(0,0), so

lim
∆→0

Ñ1(s,∆) = Ñ1(s,0)

is true for any given s.

Proposition 2.14. For s ∈ [−1,1], Ñi(s,∆) approaches Ñi(s,0)(i = 1,2) uniformly as ∆ goes to 0.

Proof. Consider the derivative of g(x,s,∆) = x
1−x2 + tan(s+tan−1 ∆−tanh−1 x)

1+tan2(s+tan−1 ∆−tanh−1 x)
.

From the previous argument, for s 6= 0, g has a unique inverse. At (x,s,∆) = (0,0,0),

∂g
∂x

(0,0,0) =
∂2g
∂x2 (0,0,0) = 0, but

∂3g
∂x3 (0,0,0) = 8 6= 0.

By the extended implicit theorem, y = g(x,s,∆) has a unique inverse g−1 on a small neighborhood of

(0,0,0). So for s ∈ [−1,1], and ∆ close to 0, the inverse g−1 always exists.

On the other hand,

lim
∆→0

g(Ñi(s,∆),s,∆) = g(Ñ1(s,0),0) uniformly.

Then since g−1 is analytic, there exists M, such that

| Ñi(s,∆)− Ñi(s,0) |=| g−1(g(Ñi(s,∆),s,∆))−g−1(g(Ñ1(s,0),0)) |

≤M | g(Ñi(s,∆),s,∆)−g(Ñ1(s,0),0) | .

Therefore, lim∆→0 Ñi(s,∆) = Ñi(s,0)(i = 1,2) uniformly.
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Proposition 2.15. For any fixed s ∈ [−1,1] and s 6= 0,

lim
∆→0

Ñ′i (s,∆) = Ñ′i (s,0),

but the above limit is not uniform with respect to s.

Proof. We will show the proof for Ñ′1(s,∆), and Ñ′2(s,∆) follows the same argument. Consider the differ-

ential equation

Ñ′1(s,∆) = (−1+ Ñ2
1 (s,∆))2 Ñ2

2 (s,∆)
Ñ2

1 (s,∆)+ Ñ2
2 (s,∆)

For any fixed s 6= 0, Ñ2
1 (s,0)+ Ñ2

2 (s,0) 6= 0. Then

lim
∆→0

Ñ′1(s,∆) = lim
∆→0

(−1+ Ñ2
1 (s,∆))2 Ñ2

2 (s,∆)
Ñ2

1 (s,∆)+ Ñ2
2 (s,∆)

= (−1+ Ñ2
1 (s,0))2 Ñ2

2 (s,0)
Ñ2

1 (s,0)+ Ñ2
2 (s,0)

= Ñ′1(s,0).

On the other hand, choose a nonzero sequence {∆n} such that limn→∞ ∆n = 0 and ∆n 6= 0 for any n. And

choose a sequence of s: {sn} such that sn = ∆2
n.

Since limn→∞ Ñ′1(sn,0) = lims→0 Ñ′1(s,0) = 1
2 , there exists M1, such that

| Ñ′1(sn,0) |< 2
3

for any n > M1.

On the other hand, we consider the initial value problem

N′1 = (−1+N2
1 )2 N2

2

N2
1 +N2

2

N′2 = (1+N2
2 )2 N2

1

N2
1 +N2

2

N1(0) = 0, N2(0) = ∆.

Let N̂1(s,∆) = 1
∆

Ñ1(∆s,∆), N̂2(s,∆) = 1
∆

Ñ2(∆s,∆), then the initial value problem becomes

N̂′1 = (−1+∆
2N̂2

1 )2 N̂2
2

N̂2
1 + N̂2

2
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N̂′2 = (1+∆
2N̂2

2 )2 N̂2
1

N̂2
1 + N̂2

2

,

N̂1(0) = 0, N̂2(0) = 1.

Since the right hand side of the equations are analytic for (N̂1, N̂2) close to (0,1), the above initial value

problem has an analytic solution for s close to 0.The series solutions are as following:

N̂1(s,∆) = s− s3

3
(2∆

2 +1)+
s5

15
(11∆

4 +14∆
2 +5)+ ...

N̂2(s,∆) = 1+
s3

3
(∆2 +1)2− s5

15
(∆2 +1)2(4∆

2 +5)+ ...

Since sn = ∆2
n,

Ñ′1(sn,∆n) = N̂′1(
sn

∆n
,∆n) = N̂′1(∆n,∆n),

lim
n→∞

N̂′1(∆n,∆n) = 1,

there exist another constant M2, such that

Ñ′1(sn,∆n) = N̂′1(∆n,∆n) >
5
6

for any n > M2.

Let M = max(M1,M2), then

| Ñ′1(sn,∆n)− Ñ′1(sn,0) |≥| Ñ′1(sn,∆n) | − | Ñ′1(sn,0) |> 5
6
− 2

3
=

1
6

for any n > M.

Therefore, lim∆→0 Ñ′i (s,∆) = Ñ′i (s,0) is not uniform with respect to s.

Proposition 2.16. For any 1 > a > 0, Ñi(∆,s) converges to Ñi(0,s) analytically as ∆ approach 0 and

uniformly for s ∈ [−1,−a]∪ [a,1].

Proof. From the equation, we see that when s∈ [−1,−a]∪ [a,1], Ñ2
1 (∆,s)+ Ñ2

2 (∆,s) 6= 0(i = 1,2) is always

true for any ∆. Then the left right hand side of the differential equations are analytic with respect to both

s and ∆, thus the solution {Ñ1(∆,s), Ñ2(∆,s)} is analytic with respect to both s and ∆. Therefore, Ñi(∆,s)

converges to Ñi(0,s) analytically as ∆ approaches 0 and uniformly for s ∈ [−1,−a]∪ [a,1].
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Remarks:

1. Fixing s, Ñi(s,∆)(i = 1,2) is a continuous function with respect to ∆.

2. The first derivative at s = 0: Ñ′i (0,∆)(i = 1,2) is not continuous with respect to ∆. Actually, from the

differential equations,

Ñ′1(0,∆) = (−1+ Ñ2
1 )2 Ñ2

2

Ñ2
1 + Ñ2

2

|s=0= 1,

Ñ′2(0,∆) = (1+ Ñ2
2 )2 Ñ2

1

Ñ2
1 + Ñ2

2

|s=0= 0.

But when ∆ = 0, we know Ñ′1(0,0) = Ñ′2(0,0) = 1
2 .

3. ∂Ñi
∂∆

(i = 1,2) is not continuous at (0,0).

Differentiate the two identities with respect to ∆ and evaluate at ∆ = 0:

1+ Ñ2
1

(1− Ñ2
1 )2
· ∂Ñ1

∂∆
+

1− Ñ2
2

(1+ Ñ2
2 )2
· ∂Ñ2

∂∆
= 1

1

1− Ñ2
1

· ∂Ñ1

∂∆
+

1

1− Ñ2
2

· ∂Ñ2

∂∆
= 1

Then

∂Ñ1

∂∆
=

1

1− Ñ2
1

·
1− 1−Ñ2

2
1+Ñ2

2

1+Ñ2
1

1−Ñ2
1
− 1−Ñ2

2
1+Ñ2

2

When ∆ = s = 0, Ñ1 = s
2 −

s3

20 + ... and Ñ2 = s
2 + s3

20 + ...,so

lim
s→0

∂Ñ1

∂∆
=

1
2
.

But at s = 0, Ñ1 = 0, which has nothing to do with ∆. So ∂Ñ1
∂∆

= 0. Therefore, it is not continuous at (0,0).

Similarly, we can see that lims→0
∂Ñ2
∂∆

= 1
2 , but at s = 0, ∂Ñ2

∂∆
= 1. So ∂Ñ2

∂∆
is not continuous at (0,0),

either.

4. Another view of this problem is to think about the time difference of the two collisions. Assume

(N1,N2) = (d1,d2) would lead to simultaneous binary collision. Then at the initial condition (N1,N2) =

(d1,d2 +ε), there will be a time difference between the two collisions as we can see from the picture below.
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The intersection with N1 axis (−a1,0) represents the collision of the second pair and the intersection with

N2 axis (0,∆) represents the collision of the first pair. And the time difference is a1
1−a2

1
+ ∆

1+∆2 = O(ε
1
3 ).

When (N1,N2) = (−a1,0), (N′1,N
′
2) = (0,1); when (N1,N2) = (0,∆), (N′1,N

′
2) = (1,0).

As ∆→ 0, a1 will go to 0, too. Then those two points become one and the two derivatives will change

to the average: (N′1,N
′
2) = 1

2 [(0,1)+(1,0)] = ( 1
2 , 1

2 ), which matches the result of the SBC solution.

The picture is as the following:

−0.5 0 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

N
1

N
2

Figure 2.1: Picture of (N1, N2).

2.3 COUPLED SYSTEM WITH ALL MASSES EQUAL TO 1

Consider the Hamiltonian F in the coupled case:

F =
1

m1m2
x1

+ m3m4
x2

· (T −U−h)

=
1

m1m2
x1

+ m3m4
x2

(
1
2
[

y2
1

m1
+

(y1− y3)2

m2
+

(y3− y2)2

m3
+

y2
2

m4
]

−[
m1m2

x1
+

m1m3

x1 + x3
+

m1m4

x1 + x2 + x3
+

m2m3

x3
+

m2m4

x2 + x3
+

m3m4

x2
]−h)
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For simplicity, assume m1 = m2 = m3 = m4 = 1, then

F =
1

1
x1

+ 1
x2

(y2
1 + y2

2 + y2
3− y1y3− y2y3)

− 1
1
x1

+ 1
x2

(
1
x1

+
1
x2

+
1
x3

+
1

x1 + x3
+

1
x2 + x3

+
1

x1 + x2 + x3
+h)

=
y2

1 + y2
2

1
x1

+ 1
x2

− y1 + y2
1
x1

+ 1
x2

· y3−
1

1
x1

+ 1
x2

[
1
x3

+
1

x1 + x3
+

1
x2 + x3

+
1

x1 + x2 + x3
+h− y2

3]−1

We introduce a canonical transformation such that y1+y2
1

x1
+ 1

x2

· y3 can be absorbed into y2
1+y2

2
1

x1
+ 1

x2

.

Let

Y1 = y1−
1
2

y3, Y2 = y2−
1
2

y3, Y3 = y3

and the generating function

W (x1,x2,x3,Y1,Y2,Y3) = x1(Y1 +
1
2

Y3)+ x2(Y2 +
1
2

Y3)+ x3Y3,

satisfying
∂W
∂xi

= yi, and
∂W
∂Yi

= Xi;

then

X1 =
∂W
∂Y1

= x1

X2 =
∂W
∂Y2

= x2

X3 =
∂W
∂Y3

=
1
2

x1 +
1
2

x2 + x3.

Under the above transformation, the new hamiltonian is

F =
Y 2

1 +Y 2
2

1
X1

+ 1
X2

− 1
1

X1
+ 1

X2

[
1

X3− 1
2 X1− 1

2 X2

+
1

X3 + 1
2 X1− 1

2 X2
+

1
X3 + 1

2 X2− 1
2 X1

+
1

X3 + 1
2 X1 + 1

2 X2
+h− 1

2
Y 2

3 ]−1

Let
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A = A(Xi,Y3)

= [
1

X3− 1
2 X1− 1

2 X2
+

1
X3 + 1

2 X1− 1
2 X2

+
1

X3 + 1
2 X2− 1

2 X1
+

1
X3 + 1

2 X1 + 1
2 X2

+h− 1
2

Y 2
3 ];

then

F =
Y 2

1 +Y 2
2

1
X1

+ 1
X2

− 1
1

X1
+ 1

X2

A(Xi,Y3)−1.

From the above Hamiltonian, we can get 6 differential equations:

X ′1 = FY1 =
2Y1X1X2

X1 +X2

X ′2 = FY2 =
2Y2X1X2

X1 +X2

X ′3 = FY3 =
Y3X1X2

X1 +X2

Y ′1 =−FX1 =− Y 2
1 +Y 2

2

( 1
X1

+ 1
X2

)2
· 1

X2
1

+
1

( 1
X1

+ 1
X2

)2
· 1

X2
1

A+
1

1
X1

+ 1
X2

AX1

= (−F−1) · 1
1

X1
+ 1

X2

· 1
X2

1
+

1
1

X1
+ 1

X2

AX1

Y ′2 =−FX2 = (−F−1) · 1
1

X2
+ 1

X2

· 1
X2

1
+

1
1

X1
+ 1

X2

AX2

Y ′3 =−FX3 =
AX3X1X2

X1 +X2
.

Following the idea in 2.2.1, we have

dY1

dX1
=

Y ′1
X ′1

=
(−F−1) · 1

1
X1

+ 1
X2

· 1
X2

1
+ 1

1
X1

+ 1
X2

AX1

2Y1X1X2
X1+X2

=
−F−1

X2
1

+AX1

2Y1

Therefore, by separating the variables, and integrating on the solution surface F = 0,

∫
2Y1dY1 =

∫
(
−F−1

X2
1

+AX1)dX1
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Y 2
1 =

F +1
X1

+
∫

AX1dX1 +C1 =
1

X1
+

∫
AX1dX1 +C1

where C1 is a constant with respect to X1.

By a similar process,

Y 2
2 =

F +1
X2

+
∫

AX2dX2 +C2 =
1

X2
+

∫
AX2dX2 +C2

where C2 is a constant with respect to X2.

2.3.1 New transformation. By a canonical transformation similar to that we defined in section 2.2.2:

ξ1 =−X1Y 2
1 , ξ2 =−X2Y 2

2 , ξ3 = X3, η1 =
1
Y1

, η2 =
1
Y2

, η3 = Y3

X1 =−ξ1η
2
1, X2 =−ξ2η

2
2, X3 = ξ3, Y1 =

1
η1

, Y2 =
1

η2
, Y3 = η3

therefore,

F =−ξ1ξ2(η2
1 +η2

2)
ξ1η2

1 +ξ2η2
2
−1

+
ξ1ξ2η2

1η2
2

ξ1η2
1 +ξ2η2

2
[h− 1

2
η

2
3 +

1
− 1

2 ξ1η2
1−

1
2 ξ2η2

2 +ξ3
+

1
1
2 ξ1η2

1−
1
2 ξ2η2

2 +ξ3

+
1

− 1
2 ξ1η2

1 + 1
2 ξ2η2

2 +ξ3
+

1
1
2 ξ1η2

1 + 1
2 ξ2η2

2 +ξ3
]

and the differential equations are

ξ
′
1 =

2ξ1ξ2η1η2
2(ξ1−ξ2)

(ξ1η2
1 +ξ2η2

2)2
+M1

ξ
′
2 =
−2ξ1ξ2η2η2

1(ξ1−ξ2)
(ξ1η2

1 +ξ2η2
2)2

+M2

η
′
1 =−Fξ1 =

ξ2
2η2

2(η
2
1 +η2

2)
(ξ1η2

1 +ξ2η2
2)2

+ G1

η
′
2 =−Fξ2 =

ξ2
1η2

1(η
2
1 +η2

2)
(ξ1η2

1 +ξ2η2
2)2

+ G2
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ξ
′
3 = N1

η
′
3 = N2.

Since we know, when s→ 0, ξ3, η3, ξ1 and ξ2 approach nonzero constants, in the above equations, we

can see M1, M2 , N1 and N2 are O(s); G1, G2 are O(s2).

Introduce a new transformation

ξi +1
s

= ui,
ηi

s
− 1

2
= vi, i = 1,2

ξ3 = ξ̂3 +u3, η3 = η̂3 + v3,

and

s = e−τ, ds =−sdτ,

where ξ̂3 and η̂3 are the limits of ξ3 and η3 at s = 0.

Then we can get a differential system for ui and vi:

du1

dτ
=−Fη1 +u1,

dv1

dτ
= Fξ1 + v1 +

1
2
,

du2

dτ
=−Fη2 +u2,

dv2

dτ
= Fξ2 + v2 +

1
2
,

du3

dτ
=−e−τFη3 ,

dv3

dτ
= e−τFξ3 ,

and
ds
dτ

=−s.

2.3.2 Limits of ui and vi at s = 0 (i = 1,2).

Lemma 2.17.

lim
s→0

u1 = lim
s→0

u2 = lim
s→0

v1 = lim
s→0

v2 = 0
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Proof. According to the discussion in section 2.1.2, we know

lim
s→0

η2
2

η2
1

= lim
t→t1

Y 2
1

Y 2
2

= lim
t→t1

y2
1

y2
2

= lim
t→t1

x1 p2
1

x1 p2
4

=
2(m1m2)2

(m1 +m2)
· (m3 +m4)

2α(m3m4)2 .

Since in our case m1 = m2 = m3 = m4,

lim
s→0

η2
2

η2
1

= 1.

On the other hand, we know when t is very close to t1, y1 and y2 are the same sign. Then lims→0
η2
η1

is

positive. Therefore,

lim
s→0

η2

η1
= 1.

By L’Hospital rule,

lim
s→0

η1

s
= lim

s→0
η
′
1 = lim

s→0

ξ2
2η2

2(η
2
1 +η2

2)
(ξ1η2

1 +ξ2η2
2)2

+ lim
s→0

G1.

If the limit on the right hand side is finite, then the limit on the left hand side also exists and equals to the

same value.

According to section 2.1.2, we have

lim
s→0

η1 = lim
s→0

η2 = 0,

and

lim
s→0

ξ1 = lim
s→0

ξ2 =−1.

So

lim
s→0

ξ2
2η2

2(η
2
1 +η2

2)
(ξ1η2

1 +ξ2η2
2)2

= lim
s→0

ξ2
2

η2
1

η2
2
(1+ η2

1
η2

2
)

(ξ1 +ξ2
η2

1
η2

2
)2

=
1 ·1 ·2

(−1−1)2 =
1
2
.

And it is obvious that

lim
s→0

G1 = 0.

Therefore,

lim
s→0

η1

s
=

1
2
,
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and

lim
s→0

η2

s
= lim

s→0

η2

η1
· lim

s→0

η1

s
=

1
2
.

Here we can say

lim
s→0

v1 = lim
s→0

v2 = 0.

To consider the limit of ui, we need to go back to Xi and Yi.

Because lims→0 X1Y 2
1 = 1, and Y−1

1 = η1 = O(s), then X1 = O(s2).

Since A is analytic and finite at s = 0, AX1 is also analytic at s = 0. Consider the integral on the interval [0,s0],

where s0 is a small positive number. It is obvious that X ′1 = O(s) which is bounded on the interval [0,s0].

And also AX1 is also bounded because it is analytic at s = 0. Hence
∫ s0

0 AX1X ′1ds = limε→0
∫ s0

ε
AX1X ′1ds is

bounded by some constant M0.

On the other hand, we have

Y 2
1 =

1
X1

+
∫

AX1dX1 +C1

X1Y 2
1 −1 = X1

∫
AX1dX1 +C1X1

that is

−(ξ1 +1) = X1

∫
AX1dX1 +C1X1

− (ξ1 +1)
s

=
X1

s

∫
AX1dX1 +C1

X1

s
.

Integrate on [0,s0], and we can see that

− lim
s→0

(ξ1 +1)
s

= lim
s→0

X1

s
[lim
ε→0

∫ s0

ε

AX1X ′1ds+C2]

Here the constant C2 depends on the choice of s0. Then limε→0
∫ s0

ε
AX1X ′1ds +C2 =

∫ s0
0 AX1X ′1ds +C2 is

bounded. Note that X1 = O(s2), therefore,

lim
s→0

ξ1 +1
s

= 0, or lim
s→0

u1 = 0.

From the equations, we can see

lim
s→0

ξ′2
ξ′1

=− lim
s→0

η1

η2
=−1,
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and

lim
s→0

(ξ1 +1) = lim
s→0

(ξ2 +1) = 0,

so by L’Hospital’s rule,

lim
s→0

ξ2 +1
ξ1 +1

= lim
s→0

ξ′2
ξ′1

=−1.

Therefore,

lim
s→0

u2 = lim
s→0

ξ2 +1
s

= lim
s→0

ξ2 +1
ξ1 +1

· lim
s→0

ξ1 +1
s

= (−1) ·0 = 0.

2.3.3 Analytic solutions of ui and vi at s = 0. So far, we’ve got a system of 6 differential equations

with initial conditions ui(0) = vi(0) = 0.

s
du1

ds
= Fη1 −u1, s

dv1

ds
=−Fξ1 − v1−

1
2
,

s
du2

ds
= Fη2 −u2, s

dv2

ds
=−Fξ2 − v2−

1
2
,

du3

ds
= Fη3 ,

dv3

ds
=−Fξ3 .

Let s = e−τ, this system can be rewritten as an autonomous system with seven variable ui, vi and s:

du1

dτ
=−Fη1 +u1,

dv1

dτ
= Fξ1 + v1 +

1
2
,

du2

dτ
=−Fη2 +u2,

dv2

dτ
= Fξ2 + v2 +

1
2
,

du3

dτ
=−sFη3 ,

dv3

dτ
= sFξ3 ,

and
ds
dτ

=−s.

54



For simplification, we may use different notations:

dσk

dτ
= Σ

7
l=1bklσl +ϕk, (k = 1, ...,7)

where σ = (σ1, ...,σ7)T = (u1,u2,v1,v2,u3,v3,s)T .

The initial value is σk = 0 (k=1,...,7) and ϕk are power series in σ1, ...,σ7 beginning with quadratic terms,

and the bkl are real constants.

The seven-by-seven matrix (bkl) has the structure

B =



0 1 0 0 0 0 ω

1 0 0 0 0 0 ω

0 0 2 −1 0 0 0

0 0 −1 2 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −1



,

where ω = 1
4 h− 1

8 η̂2
3 + 1

ξ̂3
.

Theorem 2.18. The system

−s
dσ

ds
= Bσ+ϕ, ϕ = (ϕ1, ...,ϕ7)T

has the initial condition σ = (σ1, ...,σ7)T = 0 and

B =



0 1 0 0 0 0 ω

1 0 0 0 0 0 ω

0 0 2 −1 0 0 0

0 0 −1 2 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −1



,
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where ω = 1
4 h− 1

8 η̂2
3 + 1

ξ̂3
. And also ϕk(k=1,2...,7) are power series in σ1, ...,σ7 beginning with quadratic

terms.

Then this system has analytic solution σ for s close to 0.

The eigenvalues of B are −1, −1,0, 0, 1, 1, 3 and B can be diagonalized as

R = (rkl) =



−1 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 3 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


so by a linear transformation

T =



−1 −ω 0 0 0 1 0

1 0 0 0 0 1 0

0 0 −1 0 0 0 1

0 0 1 0 0 0 1

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 1 0 0 0 0 0


which satisfies T−1BT = R, σ = T (ρ1, ...,ρ7)T ≡ T ρ and (χk) = T−1(ϕk), the system can be changed

to be
dρk

dτ
= rkkρk +χk, (k = 1, ...,7)

where χk are also power series in ρ1, ... ρ7 beginning with quadratic terms.

Next, we will show that the above differential system

dρk

dτ
= fk(ρ) = rkkρk +χk, (k = 1, ...,7) (2.38)
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has analytic solutions, where ρ = (ρ1, ...,ρ7).

To find the solution, we will carry out substitutions of the special form

µk = ρk−φk(ρ1,ρ2) (k = 1, ...,7) (2.39)

where φk are formal series in the first two variables ρ1, ρ2 only and begin with quadratic terms. If one

sets

jk(µ) = jk(µ1, ...,µ7) = χk + rkkφk−φkρ1 f1−φkρ2 f2, (k = 1, ...,7) (2.40)

where on the right ρ can be expressed as a function of µ by means of the substitution inverse to 2.39,

then 2.38 becomes
dµk

dτ
= rkkµk + jk(µ), (k = 1, ...,7) (2.41)

with the power series jk beginning again with quadratic terms. We will now determine the coefficients

of the φk so that none of the series j1, ..., j7 contain product of powers of ρ1, ρ2 alone. In other words, the

equations

jk(ρ1,ρ2,0,0,0,0,0) = 0, (k = 1, ...,7) (2.42)

are to hold identically.

By 2.39 the ρ1, ρ2 are invertible power series in the two indeterminate variables µ1, µ2 only, and more-

over, for µ3 = 0, ...,µ7 = 0 we have

ρk = φk(ρ1,ρ2), (k = 3, ...,7). (2.43)

Consequently, 2.42 reduces to the requirement that the equations

χk + rkkφk−φkρ1 f1−φkρ2 f2 = 0 (k = 1, ...,7)

or

− rkkφk +φkρ1r11ρ1 +φkρ2r22ρ2 = χk−φkρ1χ1−φkρ2 χ2, (k = 1, ...,7) (2.44)

be satisfied identically in ρ1, ρ2, where ρ3,..., ρ7 are defined by 2.43. Conversely, from 2.39, 2.43, 2.44
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we again obtain 2.42. We now undertake comparison of coefficients in 2.44. If αρ
g1
1 ρ

g2
2 is a term of φk with

g1 +g2 = m > 1, the comparison gives

(−rkk +g1r11 +g2r22)α = γ

where γ is got from a polynomial in the coefficients of the terms in φ1, ... ,φ7 of degree less than m. Since

r11 = r22 =−1 and m > 1,

−rkk +g1r11 +g2r22 =−rkk−m = 1−m 6= 0, k = 1,2

For k = 3, ...,7, rkk ≥ 0, then of course −rkk−m 6= 0. So

− rkk +g1r11 +g2r22 =−rkk−m 6= 0, (k = 1, ...,7). (2.45)

Therefore,induction shows that 2.42 has exactly one solution in power series φ1, ... , φ7.

Next, we need to show the convergence of φk(k=1,...,7).

2.3.4 Method of majorants. Convergence is proved by the method of majorants.

If

f = ∑
l

al1...lmxl1
1 ...xlm

m , g = ∑
l

bl1...lmxl1
1 ...xlm

m

are two power series, which need not converge, then g is said to be a majorant of f , symbolically f ≺ g, if

| al1...lm |≤ bl1...lm

for all the coefficients.

Let

ρ1 +ρ2 + ...+ρ7 = Γ, χk ≺
c1Γ2

1− c1Γ
, (k = 1, ...7).

Since r11 = r22 =−1 and (7) is satisfied, it follows that
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g1 +g2 < c2 | −rkk +g1r11 +g2r22 | (k = 1, ...7). (2.46)

Consequently for the uniquely determined solution ψ1, ... ,ψ7 of

ψkρ1ρ1 +ψkρ2ρ2 = c2(1+ψkρ1 +ψkρ2)
c1Γ2

1− c1Γ
(k = 1, ...7) (2.47)

ρk = ψk(ρ1,ρ2) (k = 3, ...7)

we have the relation φk ≺ ψk. The reason is the following:

By the previous argument,we have

−rkkφk +φkρ1r11ρ1 +φkρ2r22ρ2 = χk−φkρ1χ1−φkρ2χ2, (k = 1, ...,7).

If αρ
g1
1 ρ

g2
2 is a term of φk with g1 +g2 = m > 1, the comparison gives

(−rkk +g1r11 +g2r22)α = γ

so

| α |= | γ |
| (−rkk +g1r11 +g2r22) |

where γ comes from the right hand side of 2.44.

In the equations of ψk, if βρ
g1
1 ρ

g2
2 is a term of φk with g1 +g2 = m > 1, the comparison gives

(g1 +g2)β = c2γ1

where γ1 comes from the right hand side of 2.47.

Since χk ≺ c1Γ2

1−c1Γ
(k = 1, ...7), it is easy to see that γ1 >| γ |. Then from 2.46,

β =
c2γ1

g1 +g2
>

c2γ1

c2 | −rkk +g1r11 +g2r22 |
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=
γ1

| −rkk +g1r11 +g2r22 |

>
| γ |

| −rkk +g1r11 +g2r22 |
=| α | .

By 2.46, however, ψ1 = ... = ψ7 = ψ, and if in addition one sets x1 = x2 = x, it is evidently enough to

prove the convergence for the solution ψ(x) of

xψx = (1+ψx)
c3(x+ψ)2

1− c4(x+ψ)
.

On the other hand, let ψ(x)/x = ψ(x), so

(ψ+ xψx) = (1+ψ+ xψx)
c3x(1+ψ)2

1− c4x(1+ψ)

or

(ψ+ xψx)[1− c4x(1+ψ)] = (1+ψ+ xψx)c3x(1+ψ)2

or

(ψ+ xψx) = c4xψ+ c4xψ
2 + c3x(1+ψ)3 + x2

ψx(1+ψ)(c4 + c3 + c3ψ) (2.48)

Let ψ = ∑
∞
n=1 anxn, from 2.48 we can get the recursion formulas for ak( k ≥ 2):

ak(1+ k)

= c4ak−1 + c4 ∑
m1+m2=k−1

am1am2 +3c3ak−1 +3c3 ∑
m1+m2=k−1

am1am2

+c3 ∑
m1+m2+m3=k−1

am1 am2am3 +(c4 + c3)(k−1)ak−1

+(c4 +2c3) ∑
m1+m2=k−1

m1am1am2 + c3 ∑
m1+m2+m3=k−1

m1am1am2am3

= [kc4 +(k +2)c3]ak−1 +(c4 +3c3) ∑
m1+m2=k−1

am1am2

+(c4 +2c3) ∑
m1+m2=k−1

m1am1am2

+c3 ∑
m1+m2+m3=k−1

am1am2am3 + c3 ∑
m1+m2+m3=k−1

m1am1 am2am3 . (2.49)
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Consider the equation

Ψ[1− c4x(1+Ψ)] = c3x(1+Ψ)3

or

Ψ = c4xΨ+ c4xΨ
2 + c3x(1+Ψ)3. (2.50)

Let Ψ = ∑
∞
n=1 bnxn. From 2.49 we can get some other recursion formulas for bk( k ≥ 2):

bk = c4bk−1 + c4 ∑
m1+m2=k−1

bm1bm2 +3c3bk−1 +3c3 ∑
m1+m2=k−1

bm1bm2

+c3 ∑
m1+m2+m3=k−1

bm1bm2 bm3

= (c4 +3c3)bk−1 +(c4 +3c3) ∑
m1+m2=k−1

bm1bm2 + c3 ∑
m1+m2+m3=k−1

bm1bm2bm3 .

Then

bk(k +1) = (k +1)(c4 +3c3)bk−1 +(k +1)(c4 +3c3) ∑
m1+m2=k−1

bm1bm2

+(k +1)c3 ∑
m1+m2+m3=k−1

bm1bm2bm3 . (2.51)

It is easy to see a1 = c3
2 and b1 = c3, so a1 < b1.

Assume ai < bi for i < k, compare the terms on the right hand sides of (11) and (13):

(k +1)(c4 +3c3)bk−1 > kc4 +(k +2)c3ak−1

(k +1)(c4 +3c3) ∑
m1+m2=k−1

bm1bm2 > (c4 +3c3) ∑
m1+m2=k−1

am1am2+

(c4 +2c3) ∑
m1+m2=k−1

m1am1am2

(k +1)c3 ∑
m1+m2+m3=k−1

bm1bm2bm3 > c3 ∑
m1+m2+m3=k−1

am1am2am3

+c3 ∑
m1+m2+m3=k−1

m1am1am2 am3 .
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Therefore,

bk(k +1) > ak(k +1)

or

bk > ak.

By induction, ak < bk is true for all k. So Ψ is a majorant of ψ.

From 2.50,we can see Ψ satisfies a cubic equation. Of course, it has a convergent solution.

Therefore, all the φk are convergent series. �

By 2.41 and 2.42, one obtains for the given differential equation the particular solutions

µk =


dkerkkτ, (k = 1,2)

0, (k = 3, ...,7).

Since r11 = r22 =−1 and s = e−τ,

µk =


d1e−τ,

e−τ,

0, (k = 3, ...,7)

where d1 is an arbitrary constant.

Therefore, the solution for ρk is

ρk = ωk(µ1,µ2) = ωk(d1e−τ) = ωk(d1s) (k = 1, ...,7),

where ωk are convergent power series in the variables µ1 and µ2 without a constant term, and d1 is an

arbitrary constant.

That is, ρk are convergent series of s in a sufficiently small neighborhood of s = 0.

Then σk are also convergent power series of s in a sufficiently small neighborhood of s = 0 for k = 1, ...,7.
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2.4 PROPERTIES OF THE POWER SERIES SOLUTIONS

ξ1 =−1+u1s =−1+ds2 +(
1

15
dω− 1

5
d2)s4+

(− 23
6300

dω
2− 26

525
d2

ω− 1
25

d3)s6 +O(s8)

ξ2 =−1+u2s =−1+(−ω−d)s2 +(−1
5

d2− 7
15

dω− 4
15

ω
2)s4+

(− 37
6300

ω
3 +

31
1260

dω
2 +

37
525

d2
ω+

1
25

d3)s6 +O(s8)

η1 =
s
2

+ v1s =
s
2

+
3d + 1

4 ω

15
s3 +(

1
10

d2 +
1

70
dω− 1

840
ω

2)s5+

(
1

10500
ω

3− 1
2625

dω
2 +

39
3500

d2
ω+

58
1125

d3)s7 +O(s9)

η2 =
s
2

+ v2s =
s
2

+
− 11

4 ω−3d
15

s3 +(
1
10

d2 +
13
70

dω+
71
840

ω
2)s5+

(− 629
15750

ω
3− 33

250
dω

2− 1507
10500

d2
ω− 58

1125
d3)s7 +O(s9)

ξ3 = ξ̂3 +u3 = ξ̂3 +
1

24
η̂3s3 +

1
240

ωη̂3s5− 1

288ξ̂2
3

s6 +
η̂3

7
(− 1

900
ω

2− 1
100

dω− 1
100

d2)s7 + ...

η3 = η̂3 + v3 = η̂3−
1

6ξ̂2
3

s3− ω

60ξ̂2
3

s5 +
η̂3

144ξ̂3
3

s6 +
1

7ξ̂2
3

(− 611
14400

ω
2 +

1
25

dω+
1

25
d2)s7...

where

ω =
1
4

h− 1
8

η̂
2
3 +

1

ξ̂3
=

1
4

lim
s→0

A,

and d is an arbitrary constant.

If we set d̃ = d + ω

2 , then the first four power series solutions can be rewritten as:

ξ1 =−1+(d̃− ω

2
)s2 +(−1

5
d̃2 +

4
15

d̃ω− 1
12

ω
2)s4+

(− 1
180

ω
3 +

1
63

d̃ω
2 +

11
1050

d̃2
ω− 1

25
d̃3)s6 +O(s8)
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ξ2 =−1+(−d̃− ω

2
)s2 +(−1

5
d̃2− 4

15
d̃ω− 1

12
ω

2)s4+

(− 1
180

ω
3− 1

63
d̃ω

2 +
11

1050
d̃2

ω+
1
25

d̃3)s6 +O(s8)

η1 =
s
2

+(
1
5

d̃− ω

12
)s3 +(

1
10

d̃2− 3
35

d̃ω+
1

60
ω

2)s5+

(− 17
5040

ω
3 +

19
700

d̃ω
2− 139

2100
d̃2

ω+
58

1125
d̃3)s7 +O(s9)

η2 =
s
2

+(−1
5

d̃− ω

12
)s3 +(

1
10

d̃2 +
3

35
d̃ω+

1
60

ω
2)s5+

(− 17
5040

ω
3− 19

700
d̃ω

2− 139
2100

d̃2
ω− 58

1125
d̃3)s7 +O(s9).

This tells us that each pair ξ1 = ξ2, η1 = η2 when d̃ = 0 or d =−ω

2 .

In fact, by the symmetry of the equation, if (ξ1,ξ2,ξ3,η1,η2,η3) is a solution of the differential system,

then (ξ2,ξ1,ξ3,η2,η1,η3) is also a solution of the same system.

Basically, in the solutions, the coefficients of ξ3 and η3 have nothing to do with d up to the power s6.

And ξ1, ξ2, η1, η2 has no mixed term dω for the first two nonzero terms in the power series solutions.

Compare this solution with the solution for the decoupled case,

ξ
0
1(s,C) =−1− 1

4
Cs2− 1

80
C2s4 +

1
1600

C3s6 +
7

288000
C4s8 + ...

ξ
0
2(s,C) =−1+

1
4

Cs2− 1
80

C2s4− 1
1600

C3s6 +
7

288000
C4s8 + ...

η
0
1(s,C) =

1
2

s− C
20

s3 +
C2

160
s5− 29C3

36000
s7 + ...

η
0
2(s,C) =

1
2

s+
C
20

s3 +
C2

160
s5 +

29C3

36000
s7 + ...

where η0
1 and η0

2 are odd functions of s, and η0
1(0,C) = η0

2(0,−C);

ξ0
1 and ξ0

2 are even functions of s, and ξ0
1(0,C) = ξ0

2(0,−C);

and F approaches 1 as s approaches 0, which means that F = 1 on the phase space of the solutions for the

decoupled case.
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If we let C =−4d̃, then

ξ
0
1 =−1+ d̃s2− 1

5
d̃2s4− 1

25
d̃3s6 +

7
1125

d̃4s8 + ...

ξ
0
2 =−1− d̃s2− 1

5
d̃2s4 +

1
25

d̃3s6 +
7

1125
d̃4s8 + ...

η
0
1 =

1
2

s+
d̃
5

s3 +
d̃2

10
s5 +

58d̃3

1125
s7 + ...

η
0
2 =

1
2

s− d̃
5

s3 +
d̃2

10
s5− 58d̃3

1125
s7 + ....

Therefore,

ξ1 = ξ
0
1−

ω

2
s2 +O(s4)

ξ2 = ξ
0
2−

ω

2
s2 +O(s4)

η1 = η
0
1−

1
12

ωs3 +O(s5)

η2 = η
0
2−

1
12

ωs3 +O(s5).

The above results tell us that

1. In each of the decoupled case and the coupled case, there is a parameter d̃, which is an arbitrary constant.

From the comparison, we can see those two constants are the same. Recall the meaning of C in section

2.2.3,

d̃ =−C
4

=−1
4

lim
s→0

ξ1−ξ2

ξ1η2
1 +ξ2η2

2
;

2.The motion of the decoupled case and the coupled case are very similar. Up to the power s4, the

coupled case can be considered as a decoupled case adding another motion which is related to the initial

conditions: h, ξ̂3 and η̂3;

3. Because of the mixed term dω, the coupled solution can NOT be considered exactly as the sum of a

decoupled solution and a special solution which has nothing to do with d;

4. Up to the power s7, the solution ξ1, ξ2, η1, and η2 is still symmetric with respect to the new constant

d̃: ξ1(d̃) = ξ2(−d̃) and η1(d̃) = η2(−d̃);

5. In the solution of the coupled case, basically there are two constants: d̃ = − 1
4C, where C is the
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constant in the decoupled case; another one ω is given by the initial conditions and it shows the effect of

the coupling terms to the solutions, and also the coupling term d̃ω will start appearing from the term s6 in

the power series form of X1 and X2;

6. ω is fixed for given initial values, but d̃ will make the solution to be a one-parameter family which is

similar to the decoupled case. And the analytic solution can ONLY happen if we choose the same common

constant d̃ on both negative and positive sides of s.

2.5 THE SYSTEM WITH GENERAL MASSES

By definition the new Hamiltonian F is

F =
1

m1m2
x1

+ m3m4
x2

· (T −U−h)

=
1

m1m2
x1

+ m3m4
x2

(
1
2
[

y2
1

m1
+

(y1− y3)2

m2
+

(y3− y2)2

m3
+

y2
2

m4
]

−[
m1m2

x1
+

m1m3

x1 + x3
+

m1m4

x1 + x2 + x3
+

m2m3

x3
+

m2m4

x2 + x3
+

m3m4

x2
]−h)

=
1

m1m2
x1

+ m3m4
x2

{( 1
2m1

+
1

2m2
)y2

1 +(
1

2m3
+

1
2m4

)y2
2− (

y1

m2
+

y2

m3
)y3

+(
1

2m2
+

1
2m3

)y2
3− [

m1m2

x1
+

m1m3

x1 + x3
+

m1m4

x1 + x2 + x3
+

m2m3

x3
+

m2m4

x2 + x3
+

m3m4

x2
]−h}.

Let

Y1 = y1−
m1

m1 +m2
y3, Y2 = y2−

m4

m3 +m4
y3, Y3 = y3.

Let the generating function be

W (xi,Yi) = x1(Y1 +
m1

m1 +m2
Y3)+ x2(Y2 +

m4

m3 +m4
Y3)+ x3Y3.

So

X1 = WY1 = x1, X2 = WY2 = x2, X3 = WY3 =
m1

m1 +m2
x1 +

m4

m3 +m4
x2 + x3.
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And the new Hamiltonian is

F =
1

m1m2
X1

+ m3m4
X2

{m1 +m2

2m1m2
Y 2

1 +
m3 +m4

2m3m4
Y 2

2

+[
m2 +m3

2m2m3
− m1

2m2(m1 +m2)
− m4

2m3(m3 +m4)
]Y 2

3

−[
m1m2

X1
+

m1m3

X3 + m2
m1+m2

X1− m4
m3+m4

X2
+

m1m4

X3 + m2
m1+m2

X1 + m3
m3+m4

X2

+
m2m3

X3− m1
m1+m2

X1− m4
m3+m4

X2
+

m2m4

X3− m1
m1+m2

X1 + m3
m3+m4

X2
+

m3m4

X2
]−h}

=
1

m1m2
X1

+ m3m4
X2

(
m1 +m2

2m1m2
Y 2

1 +
m3 +m4

2m3m4
Y 2

2 )

+
1

m1m2
X1

+ m3m4
X2

{[m2 +m3

2m2m3
− m1

2m2(m1 +m2)
− m4

2m3(m3 +m4)
]Y 2

3

−[
m1m3

X3 + m2
m1+m2

X1− m4
m3+m4

X2
+

m1m4

X3 + m2
m1+m2

X1 + m3
m3+m4

X2

+
m2m3

X3− m1
m1+m2

X1− m4
m3+m4

X2
+

m2m4

X3− m1
m1+m2

X1 + m3
m3+m4

X2
]−h}−1

Follow the canonical transformation similar to that in section 2.2.3:

ξ1 =−X1Y 2
1 , ξ2 =−X1Y 2

1 , ξ3 = X3, η1 =
1
Y1

, η2 =
1
Y2

, η3 = Y3

X1 =−ξ1η
2
1, X2 =−ξ1η

2
1, X3 = ξ3, Y1 =

1
η1

, Y2 =
1

η2
, Y3 = η3

and the new Hamiltonian is

F =−
ξ1ξ2(m1+m2

2m1m2
η2

2 + m3+m4
2m3m4

η2
1)

m3m4ξ1η2
1 +m1m2ξ2η2

2

+
ξ1ξ2η2

1η2
2

m3m4ξ1η2
1 +m1m2ξ2η2

2
{[−m2 +m3

2m2m3
+

m1

2m2(m1 +m2)
+

m4

2m3(m3 +m4)
]η2

3 +h

+
m1m3

ξ3− m2
m1+m2

ξ1η2
1 + m4

m3+m4
ξ2η2

2
+

m1m4

ξ3− m2
m1+m2

ξ1η2
1−

m3
m3+m4

ξ2η2
2

+
m2m3

ξ3 + m1
m1+m2

ξ1η2
1 + m4

m3+m4
ξ2η2

2

+
m2m4

ξ3 + m1
m1+m2

ξ1η2
1−

m3
m3+m4

ξ2η2
2
}−1
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The equations corresponding to ξ1, ξ2, η1 and η2 are

ξ
′
1 = Fη1 =

2ξ1ξ2η1η2
2(

m3m4(m1+m2)
2m1m2

ξ1− m1m2(m3+m4)
2m3m4

ξ2)

(m3m4ξ1η2
1 +m1m2ξ2η2

2)2
+ ...

ξ
′
2 = Fη2 =

−2ξ1ξ2η2
1η2(

m3m4(m1+m2)
2m1m2

ξ1− m1m2(m3+m4)
2m3m4

ξ2)

(m3m4ξ1η2
1 +m1m2ξ2η2

2)2
+ ...

η
′
1 =−Fξ1 =

m1m2ξ2
2η2

2(
m1+m2
2m1m2

η2
2 + m3+m4

2m3m4
η2

1)

(m3m4ξ1η2
1 +m1m2ξ2η2

2)2
+ ...

η
′
2 =−Fξ2 =

m3m4ξ2
1η2

1(
m1+m2
2m1m2

η2
2 + m3+m4

2m3m4
η2

1)

(m3m4ξ1η2
1 +m1m2ξ2η2

2)2
+ ....

Consider the limit of ξi and ηi at s = 0: Similar to the previous argument, we can see

lim
s→0

η2
2

η2
1

=
2m2

1m2
2

m1 +m2
· m3 +m4

2m2
3m2

4
· (m3 +m4

m1 +m2
)

1
3 ,

lim
s→0

ξ1 =− 2m2
1m2

2
m1 +m2

,

lim
s→0

ξ2 =−
2m2

3m2
4

m3 +m4
,

lim
s→0

η1 = lim
s→0

η2 = 0,

lim
s→0

ξ1 + 2m2
1m2

2
m1+m2

s
= lim

s→0
ξ
′
1 = 0, lim

s→0

ξ2 + 2m2
3m2

4
m3+m4

s
= lim

s→0
ξ
′
2 = 0,

lim
s→0

η1

s
= lim

s→0
η
′
1 =

(m1 +m2)(m3 +m4)
1
3

2m1m2[m1m2(m3 +m4)
1
3 +m3m4(m1 +m2)

1
3 ]

,

lim
s→0

η1

s
= lim

s→0
η
′
1 =

(m1 +m2)
1
3 (m3 +m4)

2m3m4[m1m2(m3 +m4)
1
3 +m3m4(m1 +m2)

1
3 ]

.

Denote lims→0
η1
s = v̂1 and lims→0

η2
s = v̂2. Do the change of variable

u1 =
ξ1 + 2m2

1m2
2

m1+m2

s
, u2 =

ξ2 + 2m2
3m2

4
m3+m4

s
,

v1 =
η1

s
− v̂1, v2 =

η2

s
− v̂2,
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u3 = ξ3− ξ̂3, v3 = η3− η̂3

where ξ̂3 and η̂3 are the limits of ξ3 and η3 at s = 0.

Then the new equations become:

su′1 = Fη1 −u1, su′2 = Fη2 −u2,

sv′1 =−Fξ1 − v1− v̂1, sv′2 =−Fξ2 − v2− v̂2,

u′3 = Fη3 , v′3 =−Fξ3 ,

with the initial conditions at s = 0:

ui(0) = vi(0) = 0 (i = 1,2,3)

Let s = e−τ; the above equations can be rewritten as an autonomous system:

du1

dτ
=−Fη1 +u1,

du2

dτ
=−Fη2 +u2,

dv1

dτ
= Fξ1 + v1 + v̂1,

dv2

dτ
= Fξ2 + v2 + v̂2,

du3

dτ
=−sFη3 , v′3 = sFξ3 ,

and
ds
dτ

=−s.

For simplification, we may use different notations:

dσk

dτ
= Σ

7
l=1bklσl +ϕk, (k = 1, ...,7). (2.52)

The initial value is σk = 0 (k=1,...,7) and ϕk are power series in σ1, ...,σ7 beginning with quadratic

terms, and the bkl are real constants.
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The seven-by-seven matrix (bkl) has the structure

B =



b11 b12 0 0 0 0 b17

b21 b22 0 0 0 0 b27

0 0 b33 b34 0 0 0

0 0 b43 b44 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −1


where

b11 = 1− 2m3m4
3
√

m1 +m2

m1m2
3
√

m3 +m4 +m3m4
3
√

m1 +m2
;

b12 =
2m2

1m2
2(m3 +m4)

m3m4(m1 +m2)
2
3
· 1

m1m2
3
√

m3 +m4 +m3m4
3
√

m1 +m2
;

b21 =
2m2

3m2
4(m1 +m2)

m1m2(m3 +m4)
2
3
· 1

m1m2
3
√

m3 +m4 +m3m4
3
√

m1 +m2
;

b22 = 1− 2m1m2
3
√

m3 +m4

m1m2
3
√

m3 +m4 +m3m4
3
√

m1 +m2
;

b33 = 1+
2m3m4

3
√

m1 +m2

m1m2
3
√

m3 +m4 +m3m4
3
√

m1 +m2
;

b34 =
−2m2

3m2
4(m1 +m2)

m1m2(m3 +m4)
2
3
· 1

m1m2
3
√

m3 +m4 +m3m4
3
√

m1 +m2
;

b43 =
−2m2

1m2
2(m3 +m4)

m3m4(m1 +m2)
2
3
· 1

m1m2
3
√

m3 +m4 +m3m4
3
√

m1 +m2
;
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b44 = 1+
2m1m2

3
√

m3 +m4

m1m2
3
√

m3 +m4 +m3m4
3
√

m1 +m2
;

b17 = [h− m1 +m2 +m3 +m4

2m2m3(m1 +m2)(m3 +m4)
η̂

2
3 +(m1m3 +m2m3 +m1m4 +m2m4)

1

ξ̂3
]

· 2m2
1m2

2(m3 +m4)
(m1m2

3
√

m3 +m4 +m3m4
3
√

m1 +m2)3 ;

b27 = [h− m1 +m2 +m3 +m4

2m2m3(m1 +m2)(m3 +m4)
η̂

2
3 +(m1m3 +m2m3 +m1m4 +m2m4)

1

ξ̂3
]

·
2m2

3m2
4(m1 +m2)

(m1m2
3
√

m3 +m4 +m3m4
3
√

m1 +m2)3 .

To find the eigenvalues of B, we only need to find the eigenvalues for the two different 2 by 2 matrices:

B1 =

 b11 b12

b21 b22

 , B2 =

 b33 b34

b43 b44

 .

By careful calculation, we find out that the eigenvalues for B1 are 1 and −1; the eigenvalues for B2 are 1

and 3. Fortunately, they are exactly the same as the case with equal masses. And also B is similar to the

same diagonal matrix R:

R = (rkl) =



−1 0 0 0 0 0 0

0 −1 0 0 0 0 0

0 0 3 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


Then the previous argument works. Therefore we have the analytic properties of the solutions of ui and

vi in a neighborhood of s = 0.
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CHAPTER 3. PERIODIC SOLUTIONS WITH ALTERNATING

SINGULARITIES IN THE COLLINEAR FOUR-BODY PROBLEM

The collinear four-body problem considers a system of four points with masses m1, m2, m3, m4 on a real line

attracting each other by newtonian gravitational law. In this chapter, we study a special symmetric periodic

orbit with masses 1, m, m, 1, which is called Schubart-like orbit later. In each period of this Schubart-like

orbit, there is a binary collision (or BC for short) between the inner two bodies and then a simultaneous

binary collision (or SBC for short) of the two clusters on both sides of the origin. This research is motivated

by some important work on a remarkable periodic orbit in the collinear three-body problem, which is named

as Schubart orbit.

3.1 THE SETTING AND THE ORBIT

Figure 3.1: Problem Setting.

3.1.1 The setting in Cartesian Coordinate System. From right to left, let’s number the four bodies

from 1 to 4. As in Figure 1, the masses for body 1 to 4 are 1, m, m,and 1 respectively. The system remains

symmetrically distributed about the center of mass. The coordinates for the four bodies are x1, x2, −x2 and

−x1, and the velocities are ẋ1, ẋ2,−ẋ2,−ẋ1 respectively.

The Netowanian equations are

ẍ1 =− 1
4x2

1
− m

(x1 + x2)2 −
m

(x1− x2)2 , (3.1)

ẍ2 =− m
4x2

2
− 1

(x1 + x2)2 +
1

(x1− x2)2 . (3.2)
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In this paper, we are interested in proving the existence of a special periodic orbit with singularities. The

orbit alternates between binary collision (BC) between the inner two bodies 2 and 3, and SBC between

bodies 1 and 2 and bodies 3 and 4. By introducing a new set of transformations, the singularities of BC and

SBC can be regularized in this case.

3.1.2 Regularization. We will adopt Sweatman’s[29] work to regularize the system. The system has

Hamiltonian

H =
1
4

w2
1 +

1
4m

w2
2−

1
2x1
− m2

2x2
− 2m

x1 + x2
− 2m

x1− x2
,

where w1 = 2ẋ1 and w2 = 2mẋ2 are the conjugate momenta to x1 and x2. In order to describe the behavior

at collision, we introduce a canonical transformation

q1 = x1− x2, q2 = 2x2, p1 = w1, p2 =
1
2
(w1 +w2).

This results in a new form for the Hamiltonian

H = (1+
1
m

)
p2

1
4
− p1 p2

m
+

p2
2

m
− 2m

q1
− m2

q2
− 2m

q1 +q2
− 1

2q1 +q2
.

To regularize the equations of motion, we introduce a Levi-Civita type of canonical transformation

Q2
i = qi, Pi = 2Qi pi (i = 1,2),

and we also replace time t by the new independent variable s which is given by dt
ds = q1q2. In the extended

phase space, this produces a regularized Hamiltonian

Γ =
dt
ds

(H−E)

=
1

16
Q2

2P2
1 +

Q2
2P2

1 −4Q1Q2P1P2 +4Q2
1P2

2
16m

−m2Q2
1−2mQ2

2−
2mQ2

1Q2
2

Q2
1 +Q2

2
− Q2

1Q2
2

2Q2
1 +Q2

2
−Q2

1Q2
2E,

where E is the total energy. Without loss of generality, let E =−1.

We start at BC with initial conditions

x1(0) = A, x2(0) = 0, ẋ1(0) = 0, ẋ2(0) = +∞
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which is a singular point. To analyze the motion, it is necessary to deal with the singularity in the regularized

coordinate system. The corresponding initial conditions at s = 0 in this new coordinate system are:

Q1(0) = R, Q2(0) = 0, P1(0) = 0, P2(0) = 2m
3
2 ,

where R =
√

A.

Note that this initial point turns out to be a regular point in the new Hamiltonian system.

3.1.3 Estimation of A. Intuitively, if A is sufficiently large, there will be multiple BCs before the first

SBC happens. In order to find the desired orbit, we will have to give an estimation of A such that there is

no BC for t ∈ (0, t1], where t1 is the time of first SBC.

Definition: Assume the velocity of a body is 0 at time t∗, i.e. v(t∗) = 0. If there exists a time interval

[tm, tn], such that tm < t∗ < tn, and v is positive for t ∈ [tm, t∗) and is negative for t ∈ (t∗, tn], or v is negative

for t ∈ [tm, t∗) and is positive for t ∈ (t∗, tn], then we call t∗ the turning time and the position of the body at

t∗ is called the turning point.

Figure 3.2: Turning Point

Theorem 3.1. There exists an A0, such that the second body has no turning point for t ∈ (0, t1) whenever

0 < A≤ A0, where t1 is the time when the first SBC happens. Further, at A = A0, there exists some t∗ such

that ẋ2(t∗) = ẍ2(t∗) = 0.

Proof. In order to get an upper bound of A, we consider a necessary condition for the second body having

a turning point. Assume t = t∗ < t1 is the time when ẋ2 = 0; then ẍ2 ≤ 0 for t ∈ (0, t∗].
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Let x1(t∗)/x2(t∗) = a with a > 1. Note that by the setting, ẋ1(t) < 0, ẋ2(t)≥ 0 for t ∈ (0, t∗]. Then

x1(t)
x2(t)

≥ x1(t∗)
x2(t∗)

= a, for t ∈ (0, t∗]. (3.3)

Also ẍ2(t∗)≤ 0, by equation 3.2,

ẍ2(t∗) =
[
−m

4
− 1

(a+1)2 +
1

(a−1)2

]
1

x2
2(t∗)

≤ 0

i.e.

16a≤ m(a2−1)2. (3.4)

Rewrite equation 3.1 as:

−ẍ1 =
1

4x2
1

+
m

(x1 + x2)2 +
m

(x1− x2)2

=
1
x2

1

1
4

+
2m(1+ x2

2
x2

1
)

(1− x2
2

x2
1
)2

 .

For t ∈ (0, t∗], by inequality 3.3,

1
x2

1

1
4

+
2m(1+ x2

2
x2

1
)

(1− x2
2

x2
1
)2

≤ 1
x2

1

[
1
4

+
2m(1+ 1

a2 )

(1− 1
a2 )2

]

=
1
x2

1

[
1
4

+
2ma2(a2 +1)

(a2−1)2

]
.

Therefore,

− ẍ1(t)≤
1

x2
1(t)

[
1
4

+
2ma2(a2 +1)

(a2−1)2

]
, for t ∈ (0, t∗]. (3.5)

Let x1(0) = A , x1(t∗) = A1 < A. Since ẋ1(t) < 0 for t ∈ [0, t∗], the following inequality is true for

t ∈ [0, t∗], multiplying both sides of inequality 3.5 by −ẋ1(t):

ẋ1(t)ẍ1(t)≤−ẋ1(t)
1

x1(t)2

[
1
4

+
2ma2(a2 +1)

(a2−1)2

]
,
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integrate this from t = 0 to t = t∗ to get:

∫ t∗

0
ẋ1(t)ẍ1(t)dt ≤

[
1
4

+
2ma2(a2 +1)

(a2−1)2

]∫ t∗

0

(
−ẋ1(t)

1
x1(t)2

)
dt,

1
2

ẋ2
1(t)|

t∗
0 ≤

[
1
4

+
2ma2(a2 +1)

(a2−1)2

]
1

x1(t)
|t
∗

0 .

Note that x1(0) = A, ẋ1(0) = 0, x1(t∗) = A1, then

1
2

ẋ2
1(t
∗)≤

(
1

A1
− 1

A

)[
1
4

+
2ma2(a2 +1)

(a2−1)2

]
. (3.6)

At t = t∗, ẋ2(t∗) = 0, x1(t∗) = A1, x2(t∗) = A1/a. As E =−1, consider the energy at t = t∗:

−1 = ẋ2
1(t
∗)−

[
1

2x1(t∗)
+

m2

2x2(t∗)
+

2m
x1(t∗)+ x2(t∗)

+
2m

x1(t∗)− x2(t∗)

]
= ẋ2

1(t
∗)− 1

A1

[
1
2

+
m2a

2
+

2m
1+ 1

a

+
2m

1− 1
a

]

= ẋ2
1(t
∗)− 1

A1

[
1
2

+
m2a

2
+

4ma2

a2−1

]
.

Applying inequality 3.6,

−1≤ 2(
1

A1
− 1

A
)
[

1
4

+
2ma2(a2 +1)

(a2−1)2

]
− 1

A1

[
1
2

+
m2a

2
+

4ma2

a2−1

]

=
1

A1

[
4ma2(a2 +1)

(a2−1)2 − m2a
2
− 4ma2

a2−1

]
− 1

A

[
1
2

+
4ma2(a2 +1)

(a2−1)2

]

=
1

A1

ma[16a−m(a2−1)2]
2(a2−1)2 − 1

A

[
1
2

+
4ma2(a2 +1)

(a2−1)2

]
.

Applying inequality 3.4 to this gives,

−1≤− 1
A

[
1
2

+
4ma2(a2 +1)

(a2−1)2

]
.
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Then

A≥ 1
2

+
4ma2(a2 +1)

(a2−1)2 . (3.7)

Hence, if body 2 has a turning point for t ∈ (0, t1), A≥ 1
2 + 4ma2(a2+1)

(a2−1)2 , where 16a≤m(a2−1)2, a > 1.

Define A0= inf { A | body 2 has at least one turning point for t ∈ (0, t1) }. Since the inequalities 3.7 and

3.4 hold, A0 ≥ 1
2 + 4ma2(a2+1)

(a2−1)2 > 1
2 . Also, by the definition of A0, body 2 has no turning point for t ∈ (0, t1)

whenever A < A0.

For each A ∈ { A | body 2 has at least one turning point for t ∈ (0, t1] }, there exists some t∗ such that

ẋ2(t∗) = 0, and ẍ2(t∗)≤ 0.

We are going to show that when A = A0, there exists some t∗ < t1 such that ẋ2(t∗) = ẍ2(t∗) = 0. Since

ẋ2(t) is continuous for t ∈ (0, t1), and limt→0+ ẋ2(t) = +∞, the proof can be ended by two cases:

(i) When A = A0, ẋ2(t) > 0, for any t ∈ (0, t1).

Define a such that 16a = m(a2−1)2, a > 1. Consider the function x1(t)−ax2(t). For any given A,

x1(t)−ax2(t) is a continuous function for t ∈ [0, t1] according to the regularization theory of BC and

SBC [22]. Note that x1(0)−ax2(0) = A > 0 and x1(t1)−ax2(t1) = (1−a)x2(t1) < 0. Then for any

A, there exists some time ta, such that

x1(ta)−ax2(ta) = 0. (3.8)

Further,

ẍ2(ta) =
1

x2
2(ta)

[
− 4

m
− 1

(a+1)2 +
1

(a−1)2

]
=

16a−m(a2−1)2

4(a2−1)2x2
2(ta)

= 0.

Note that ẋ1(ta) < 0 and ẋ2(ta) > 0, then ẋ1(ta)−aẋ2(ta) < 0. Applying the implicit function theorem

to 3.8, ta is continuous with respect to A. So is ẋ2(ta). Since ẋ2(ta) > 0 at A = A0, by continuity

there must exist an open interval [A0− ε0,A0 + ε0] such that ẋ2(ta) > 0. Because ẋ2(t) realizes the

minimum at some ta, ẋ2(t) > ẋ2(ta) > 0 for t ∈ (0, t1).

Therefore, for A ∈ [A0− ε0,A0 + ε0], the second body has no turning point. Contradiction to the

definition of A0!

(ii) When A = A0, there exists some time t∗ ∈ (0, t1) such that ẋ2(t∗) = 0.
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Assume at A = A0, there is no time t such that ẋ2(t) = ẍ2(t) = 0. So ẍ2(t∗) 6= 0, which implies that

ẋ2(t∗) is not the minimum of ẋ2(t) for t ∈ (0, t1). Then there exists some time t such that ẋ2(t) < 0,

i.e., at A = A0, body 2 has at least one turning point.

Case 1 tells us that when A = A0, there exists some ta, such that ẋ2(ta)≤ 0, ẍ2(ta) = 0. Note that ẋ2

is a continuous function of two variables t and A for t ∈ (0, t1) and A > 0.

If ẋ2(ta) < 0 at A = A0, by continuity there exists a δ, such that ẋ2(ta) < 0 for (t,A)∈ (ta−δ, ta +δ)×

(A0−δ,A0 +δ). Then for A ∈ (A0−δ,A0 +δ), body 2 has at least one turning point. Contradiction!

Therefore, when A = A0, there must exist some t∗ = ta < t1 such that ẋ2(t∗) = ẍ2(t∗) = 0.

Differentiate equation 3.2 with respect to t and evaluate at t∗:

...x 2(t∗) =
mẋ2(t∗)
2x3

2(t∗)
+

2(ẋ1(t∗)+ ẋ2(t∗))

[x1(t∗)+ x2(t∗)]
3 −

2(ẋ1(t∗)− ẋ2(t∗))

[x1(t∗)− x2(t∗)]
3 .

Since ẋ2(t∗) = 0, ẍ2(t∗) = 0, ẋ1(t∗) < 0, x1(t∗) > x2(t∗) > 0,

...x 2(t∗) = 2ẋ1(t∗)

[
1

[x1(t∗)+ x2(t∗)]
3 −

1

[x1(t∗)− x2(t∗)]
3

]
> 0,

which means body 2 will keep moving towards to body 1 when time passes t = t∗. Hence, when A = A0,

body 2 also has no turning point for t ∈ (0, t1).

Therefore, body 2 has no turning point for t ∈ (0, t1) whenever A≤ A0, where t1 is the time of the first

SBC.

Remark: When A = A0, 16a = m(a2−1)2, a > 1 and A0 ≥ 1
2 + 4ma2(a2+1)

(a2−1)2 . In the special case m = 1,

a satisfies 16a = (a2−1)2 with a > 1, a≈ 2.766. Then

A0 ≥
1
2

+
4a2(a2 +1)
(a2−1)2 ≈ 6.484.
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3.2 EXISTENCE OF THE PERIODIC ORBIT

Recall that in Section 3.1.2,

Γ =
dt
ds

(H−E)

=
1

16
Q2

2P2
1 +

Q2
2P2

1 −4Q1Q2P1P2 +4Q2
1P2

2
16m

−m2Q2
1−2mQ2

2−
2mQ2

1Q2
2

Q2
1 +Q2

2
− Q2

1Q2
2

2Q2
1 +Q2

2
−Q2

1Q2
2E,

where E =−1 is the total energy. The initial conditions at s = 0 are:

Q1(0) = R, Q2(0) = 0, P1(0) = 0, P2(0) = 2m
3
2 .

By Theorem 3.1, when 0 < R =
√

A≤
√

A0, Q2
2 = 2x2 increases from s = 0 to s = s1, where s1 is the time

when the first SBC happens.

The equations of motion from the regularized Hamiltonian Γ are:

Q′1 =
1+m

8m
Q2

2P1−
1

4m
Q1Q2P2, (3.9)

Q′2 =
1

2m
Q2

1P2−
1

4m
Q1Q2P1, (3.10)

P′1 =
1

4m
P1P2Q2−

1
2m

Q1P2
2 +2m2Q1 +

4mQ1Q4
2

(Q2
1 +Q2

2)2
+

2Q1Q4
2

(2Q2
1 +Q2

2)2
−2Q1Q2

2, (3.11)

P′2 =
1

4m
P1P2Q1−

1+m
8m

Q2P2
1 +4mQ2 +

4mQ4
1Q2

(Q2
1 +Q2

2)2
+

4Q4
1Q2

(2Q2
1 +Q2

2)2
−2Q2

1Q2. (3.12)

where ′ is the derivative with respect to s. The initial conditions are

Q1(0) = R, Q2(0) = 0, P1(0) = 0, P2(0) = 2m
3
2 .

At the time s1 when the first SBC happens,

Q1(s1) = 0, Q2(s1) = R1 > 0, P1(s1) =− 8m√
2m+2

.
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To prove the existence of the periodic orbit, we are going to find a value of R, such that P2(s1) = 0.

Theorem 3.2. For the differential equations 3.9 to 3.12, let the initial conditions be Q1(0) = R , Q2(0) = 0,

P1(0) = 0 and P2(0) = 2m
3
2 , where R ∈ (0,

√
A0]. Assume Q2(s1) > 0, Q1(s1) = 0, where s1 is the time of

first SBC. Also, assume Q2 > 0 for 0 < s≤ s1. Then P2(s1,R) is a continuous function of R.

Proof. Since the Hamiltonian Γ is regularized, the solution Pi = Pi(s,R) and Qi = Qi(s,R) are continuous

functions with respect to s and R. We are going to show s1 = s1(R) is a continuous function of R. In order

to apply the implicit function theorem for Q1 = Q1(s1,R) = 0, we need to show that (∂Q1/∂s)(s1,R) 6= 0.

By the regularized Hamiltonian Γ,

∂Q1

∂s
|(s1,R)= ΓP1 |(s1,R)=

[
1+m

8m
Q2

2P1−
1

4m
Q1Q2P2

]
|(s1,R)

Note that for fixed R, Γ = 0 at any time s. At s = s1, Q1 = Q1(s1,R) = 0, then P1 = P1(s1,R) = 4.

Therefore,
∂Q1

∂s
|(s1,R)=

[
1+m

8m
Q2

2P1−
1

4m
Q1Q2P2

]
|(s1,R)=−

√
m+1

2
Q2

2(s1,R) < 0.

By the implicit function theorem, s1 is a continuous function of R. Then P2(s1,R) is also a continuous

function of R.

Corollary 3.3. There exists R such that P2(s1) = P2(s1,R) = 0.

Proof. First, we show that there exists an R > 0 such that P2(s1) > 0.

From equations 3.9-3.12,

(P1Q1 +P2Q2)′ = P′1Q1 +P1Q′1 +P′2Q2 +P2Q′2

= 4mQ2
2 +2m2Q2

1 +2Q2
1Q2

2

[
2m

Q2
1 +Q2

2
+

1
2Q2

1 +Q2
2
−2
]

Note that for t ∈ [0, t1], x1(t) is decreasing, x2(t) is increasing and A ≥ x1(t) > x2(t) ≥ 0. Then 0 ≤

Q2
1 = x1− x2 ≤ A, 2x1(t1) = 2x2(t1) = Q2

2(s1) = R2
1 < 2A = 2R2 for s ∈ [0,s1]. Thus

2m
Q2

1 +Q2
2

+
1

2Q2
1 +Q2

2
≥ 2m

3R2 +
1

4R2 .
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Choose R =
√m

3 ,

2m
Q2

1 +Q2
2

+
1

2Q2
1 +Q2

2
−2≥ 3

4m
> 0,

so (P1Q1 +P2Q2)′ ≥ 0 for s ∈ [0,s1], or P1Q1 +P2Q2 is increasing for s ∈ [0,s1].

From the initial conditions,

(P1Q1 +P2Q2) |s=0= 0,

and (P1Q1 +P2Q2)′ is not identically equal to 0; hence

0 < (P1Q1 +P2Q2) |s=s1= R1P2(s1).

Therefore, when R =
√m

3 , P2(s1) > 0 .

Next, we show that P2(s1) < 0 when R2 = A0.

At A = A0, by the proof of theorem 3.1, there exists a time t∗ < t1, such that ẋ2(t∗) = 0 and ẋ1(t∗) < 0.

Then ẋ1(t∗)+mẋ2(t∗) < 0. Consider the sum of the Newtonian equations 3.1 and 3.2:

ẍ1 +mẍ2 =− 1
4x2

1
− m2

4x2
2
− 2m

(x1 + x2)2 < 0,

which means ẋ1(t)+mẋ2(t) is a decreasing function with respect to t. Hence,

lim
t→t1

[ẋ1(t)+mẋ2(t)] < ẋ1(ta)+mẋ2(ta) < 0.

Note that P2(s1)/[2Q2(s1)] = limt→t1 p2(t) = limt→t1 [ẋ1(t)+mẋ2(t)] < 0, and Q2(s1) > 0, then P2(s1) <

0.

By continuity, there must exist an R, such that P2(s1) = 0 where s1 is the time when the first SBC

happens.

Theorem 3.4. If R satisfies P2(s1) = P2(s1,R) = 0, then the orbit will be a Schubart-like periodic orbit.

Proof. At time s = 0, a BC happens between bodies 2 and 3. At time s = s1, a SBC occurs. Since the
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system is regularized, the solution {Pi,Qi} (i = 1,2) is continuous.

At time s = 0,

Q1(0) = R, Q2(0) = 0, P1(0) = 0, P2(0) = 2m
3
2 .

At time s = s1,

Q1(s1) = 0, Q2(s1) = R1, P1(s1) =− 8m√
2m+2

, P2(s1) = 0,

where R1 is a positive number.

From the Hamiltonian Γ, we can see that Q′1(s1) = 1
4 Q2(Q2P1−Q1P2) < 0, Q′2(s1) = 1

4 Q1(2Q1P2−

Q2P1) = 0, Q′′2(s1) < 0. This means that Q2(s1) is a relative maximum of Q2. In other words, when time

passes s1, Q2 will decrease. Similarly, Q1 will decrease when time passes s1.

Compare the motion for s ∈ [0,s1] and the motion for s ∈ [s1,s2]. By the uniqueness of the regularized

Hamiltonian system and symmetry, the orbit from s = s1 to s = s2 will be the same trajectory from s = s1

to s = 0 by reversing the direction of each velocity. Then at the time s = s2 when the second BC occurs,

Q1(s2) =−R, Q2(s2) = 0, P1(s2) = 0, P2(s2) =−2m
3
2 .

Further, s2 = 2s1.

By symmetry and uniqueness again, at time s = 3s1,

Q1(3s1) = 0, Q2(3s1) =−R1, P1(3s1) =
8m√

2m+2
, P2(3s1) = 0.

At time s = 4s1,

Q1(4s1) = R, Q2(4s1) = 0, P1(4s1) = 0, P2(4s1) = 2m
3
2 ,

which is exactly the same as the initial condition at s = 0. Then the orbit from s = 0 to s = 4s1 generates

one period.

The following figure is a picture of the periodic solution for m = 1 in terms of {Q1,Q2,P1,P2}. The
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initial conditions are

Q1(0) = 2.295, Q2(0) = 0, P1(0) = 0, P2(0) = 2.

The horizontal axis represents time s. At s = 0, it is a BC between the inner two bodies. As in the

picture, this Schubart-like periodic orbit in the regularized coordinate system has a D2 symmetry and a

time-reverse symmetry.

Figure 3.3: Schubart-like periodic orbit with equal masses.
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CHAPTER 4. PERIODIC SOLUTIONS WITH SINGULARITIES IN TWO

DIMENSIONS IN THE 2N-BODY PROBLEM

In this chapter, we first present a technique for generating a periodic orbit in the two-dimensional four-body

problem with singularities. We begin in section 4.1.1 by giving a description of the proposed orbit and

prove its existence. Section 4.1.2 will present the numerical methods used to produce the initial conditions

that will lead to this orbit. Following this, in section 4.2, we consider variants on the orbit we generate,

giving a family of orbits with singularities with an even number of masses.

We present a family of configurations that are symmetric in both initial positions and velocities. These

initial conditions will lead to arbitrarily many simultaneous binary collisions, with each body alternating

between collisions with its two nearest neighbors. Due to the abundance of symmetries present in the

configurations, we can reduce the number of variables that need to be studied to four–two representing

position and two representing momentum. In contrast to its one-dimensional counterparts, the proof for

existence of this orbit is surprisingly simple.

4.1 THE PROPOSED ORBIT

4.1.1 Analytical Description. Initially we focused on finding a symmetric, periodic SBC orbit for four

equal masses in two dimensions. Without loss of generality, we assume that the orbit begins with the four

bodies lying at (±1,0) and (0,±1) in the standard coordinate plane, numbered from 1 to 4 as in Figure 1.

The initial velocities for each body are given as (0,±v) and (∓v,0), respectively, where v ∈ (0,+∞).

The singularity of SBC in this problem is not essential. For a better understanding of the behavior of

the motion of the bodies in a neighborhood of a collision, the standard technique is to make a change of

coordinates and rescale time. In the new coordinates, the orbits which approach collision can be extended

across the collision in a smooth manner with respect to the new time variable. This technique is called

regularization. In our problem, the regularization describes the behavior of the bodies approaching and

escaping collisions, similar to the collisions of billiard balls.

Due to the symmetry of the initial conditions and the equations governing the motion of the bodies, the
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Figure 4.1: On the left, we illustrate the initial conditions leading to the four-body two-dimensional periodic
SBC orbit. On the right, the orbit is shown.

symmetry that is present in the initial conditions is maintained in the regularized sense.

Main Theorem. Let E = T −U be the total energy and m be the mass for each of the four bodies. For any

E < 0 and m > 0, there exists a symmetric, periodic, four-body orbit with SBC in R2.

Without loss of generality, we can assume m = 1 and the initial positions are as illustrated in Figure 1.

The proof will be given at the end of this section.

Let t0 be the time of first SBC. For t ∈ [0, t0), let the coordinate of body 1 be (x1,x2). By symmetry,

the coordinates of bodies 2, 3, and 4 are (x2,x1), (−x1,−x2) and (−x2,−x1), respectively. Using equation

(1.1), the acceleration of a body at point (x1,x2) is given by:

(ẍ1, ẍ2) =−
[
(x1− x2,x2− x1)

(2(x1− x2)2)
3
2

+
(2x1,2x2)

(4x2
1 +4x2

2)
3
2

+
(x1 + x2,x1 + x2)

(2(x1 + x2)2)
3
2

]
(4.1)

We now perform the regularization of the system. The system has the Hamiltonian:

H =
1
8
(w2

1 +w2
2)−

√
2

x1− x2
−
√

2
x1 + x2

− 1√
x2

1 + x2
2

(4.2)
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where w1 = 4ẋ1 and w2 = 4ẋ2 are the conjugate momenta to x1 and x2. Note that SBC happens when

x1 =±x2. We introduce a new set of coordinates:

q1 = x1− x2, q2 = x1 + x2.

Their conjugate momenta pi are given by using a generating function F = (x1− x2)p1 +(x1 + x2)p2:

w1 = p1 + p2, w2 = p2− p1.

The Hamiltonian corresponding to the new coordinate system is

H =
1
4
(p2

1 + p2
2)−
√

2
q1
−
√

2
q2
−

√
2√

q2
1 +q2

2

. (4.3)

Following the work of Sweatman [28], we introduce another canonical transformation:

qi = Q2
i , Pi = 2Qi pi (i = 1,2).

We also introduce a new time variable s, which satisfies dt
ds = q1q2. This produces a regularized Hamiltonian

in extended phase space:

Γ =
dt
ds

(H−E)

=
1
16

(P2
1 Q2

2 +P2
2 Q2

1)−
√

2(Q2
1 +Q2

2)−
√

2Q2
1Q2

2√
Q4

1 +Q4
2

−Q2
1Q2

2E (4.4)

where E is the total energy of the Hamiltonian H.

The regularized Hamiltonian gives the following differential equations of motion:

Q′1 =
1
8

P1Q2
2 (4.5)

Q′2 =
1
8

P2Q2
1 (4.6)

P′1 =−1
8

P2
2 Q1 +2

√
2Q1 +

2
√

2Q1Q2
2√

Q4
1 +Q4

2

−
2
√

2Q5
1Q2

2

(Q4
1 +Q4

2)
3
2

+2EQ1Q2
2 (4.7)
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P′2 =−1
8

P2
1 Q2 +2

√
2Q2 +

2
√

2Q2Q2
1√

Q4
1 +Q4

2

−
2
√

2Q5
2Q2

1

(Q4
1 +Q4

2)
3
2

+2EQ2Q2
1 (4.8)

with initial conditions

Q1(0) = 1, Q2(0) = 1, P1(0) =−4v, P2(0) = 4v (4.9)

where derivatives are with respect to s, and E is the total energy of the Hamiltonian H.

Theorem 4.1. Let s0 be the time of the first SBC in the regularized system. Then s0 is a continuous function

with respect to the initial velocity v. Furthermore,

p2(t0) =
P2(s0,v)

2Q2(s0,v)

is also continuous with respect to v.

Proof. At the first SBC, Q1(s0) = 0, and Q2(s0) =
√

q2 =
√

x1 + x2 > 0. Our goal is to show that p2(t0) is

a continuous function with respect to v.

Because Γ = 0 at s = s0, P1(s0) =−4 4√2 from 4.4. Since Γ is regularized, the solution Pi = Pi(s,v) and

Qi = Qi(s,v) are continuous functions with respect to the two variables s and v. At time s = s0,

0 = Q1(s0(v),v).

To apply the implicit function theorem, we need to show that

∂Q1

∂s
(s0,v) 6= 0.

From (4.5)
∂Q1

∂s
(s0,v) =

1
8

P1Q2
2 |(s0,v)=−

1
2

4√2Q2(s0)2 < 0.

So s0 = s0(v) is a continuous function of v. Therefore both P2(s0,v) and Q2(s0,v) are continuous functions

of v. Further, since Q2(s0,v) > 0, p2(t0) is also a continuous function of v.
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Theorem 4.2. There exists a v = v0 such that ẋ1(t0)+ ẋ2(t0) = 1
2 p2(t0) = 0, where t0 is the time of the first

SBC, i.e. the net momentum of bodies 1 and 2 at the first SBC is 0.

The outline of this proof is as follows: We will show that there exist v1 and v2 such that ẋ1 + ẋ2 is

negative at SBC for v = v1 and positive at SBC for v = v2. The result then follows by Theorem 4.1.

Proof. Consider Newton’s equation before the time of the first SBC:

ẍ1 =
x2− x1

2
√

2(x1− x2)3
− 2x1

8(x2
1 + x2

2)3/2 −
x1 + x2

2
√

2(x1 + x2)3
, (4.10)

ẍ2 =
x1− x2

2
√

2(x1− x2)3
− 2x2

8(x2
1 + x2

2)3/2 −
x1 + x2

2
√

2(x1 + x2)3
. (4.11)

Therefore,

ẍ1 + ẍ2 =− x1 + x2

4(x2
1 + x2

2)3/2 −
1√

2(x1 + x2)2
< 0, (4.12)

which means ẋ1 + ẋ2 is decreasing with respect to t.

At the initial time t = 0, x1 = 1, x2 = 0, ẋ1 = 0, and ẋ2 = v. Note that for v ∈ (0,∞), there is no triple

collision or total collision for t ∈ [0, t0], where t0 is the time of the first SBC. Also, from the initial time to

t0, 0≤ x2 ≤ x1 ≤ 1, 0 < x1 + x2 < 2, and x2
1 + x2

2 < 4.

Let y(t) = x1(t)+ x2(t). Then for any choice of v, ÿ(t) < 0 and 0 < y(t) < 2 hold for any t ∈ [0, t0]. In

other words, ẏ(t) is decreasing with respect to t.

First, we will show that there exists v1 such that ẏ(t0) < 0. When v = 0 the four bodies form a central

configuration and, as a consequence, the motion of the four bodies leads to total collapse. Consider the

time interval t ∈ [0, t0/2). In this interval, the differential equations (4.10) and (4.11) have no singularity,

and ÿ(t0/2) < 0. By continuous dependence on initial conditions, ẏ(t0/2) = ẋ1(t0/2)+ ẋ2(t0/2) is a con-

tinuous function with respect to the initial velocity v. When v = 0, ẋ1(t0/2) < 0, ẋ2(t0/2) < 0, which gives

ẏ(t0/2) < 0. Therefore, there exists a δ > 0, such that ẏ(t0/2) < 0 holds for any v ∈ (−δ,δ).

Choose v1 = δ/2, then ẏ(t0/2) < 0. Because ẏ(t) is decreasing with respect to t, ẏ(t0)≤ ẏ(t0/2) < 0.
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Next we will show that there exists v2 big enough, such that ẏ(t0) > 0. Note that as v→ ∞,

lim
v→∞

y(t0) = lim
v→∞

x1(t0)+ x2(t0) = 2

and

lim
v→∞

ẏ(t0) = ∞.

Therefore there exists some positive value v2, such that ẏ(t0) > 0.

Proof of the Main Theorem. From Theorem 4.2, we know there exists an initial velocity v = v0 such that

ẋ1(t0)+ ẋ2(t0)= 0. Let {P1,P2,Q1,Q2} for s∈ [0,s0] be the solution in the regularized system corresponding

to the orbit from t = 0 to t = t0. Following collision, consider the behavior of the first and second bodies.

Assume their velocity was reflected about the y = x line in the plane. In the new coordinate system, this

corresponds to a new set of functions

{−P1(2s0− s),−P2(2s0− s),−Q1(2s0− s),−Q2(2s0− s)}

for s ∈ [s0,2s0]. We can easily check that

{−P1(2s0− s),−P2(2s0− s),−Q1(2s0− s),−Q2(2s0− s)}

for s ∈ [s0,2s0] is also a set of solutions for equations (4.5) through (4.8) with initial conditions at s = s0.

Also, {P1(s),P2(s),Q1(s),Q2(s)} for s∈ [s0,2s0] satisfies equations (4.5) through (4.8) with the same initial

conditions at s = s0. Note that equations (4.5) through (4.8) with initial conditions at s = s0 have a unique

solution for any choice of v ∈ (0,∞). Then by uniqueness, the orbit for s ∈ [s0,2s0] must be the same as the

orbit for s ∈ [0,s0] in reverse, i.e.

Pi(s) =−Pi(2s0− s),Qi(s) =−Qi(2s0− s)

for s ∈ [0,s0]. Therefore at time s = 2s0, bodies 1 and 2 will have returned to their initial positions with

velocities (0,−v) and (−v,0) respectively. Similarly, at time s = 2s0, bodies 3 and 4 will have also returned

to their initial positions with velocities (0,v) and (v,0) respectively.
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Next, we use symmetry and uniqueness to show the orbit from s = 2s0 to s = 4s0 and the orbit from

s = 0 to s = 2s0 will be symmetric with respect to the y−axis. Compare the motion of body 2 and body

3 from s = 2s0 to s = 4s0 with the motion of body 2 and body 1 from time s = 0 to s = 2s0. The initial

conditions of body 3 at s = 2s0 and the initial conditions of body 1 at s = 0 are symmetric with respect to

the y−axis. Also the initial conditions of body 2 at s = 2s0 and the initial conditions of body 4 at s = 0 are

symmetric with respect to the x−axis. Therefore, by uniqueness, the orbit of bodies 2 and 3 from s = 2s0

to s = 4s0 and the orbit of bodies 1 and 2 from s = 0 to s = 2s0 must be symmetric with respect to y−axis.

Therefore, the orbit of bodies 1 and 4 from s = 2s0 to s = 4s0 and and the orbit of bodies 3 and 4 from s = 0

to s = 2s0 are symmetric with respect to the y−axis.

Hence, at s = 4s0, the positions and velocities of the four bodies are exactly the same as at s = 0.

Therefore, the orbit is periodic with period s = 4s0.

It is worth noting here that the previous proof implies a time-reversing symmetry for the periodic orbit.

This provides further evidence for the conjecture made by Roberts [21], stating that linearly stable periodic

orbits in the equal mass n-body problem must have a time-reversing symmetry.

4.1.2 Numerical Method. As is the case for all periodic orbits of the n-body problem, the value of the

Hamiltonian needs to be negative. Using the initial positions of the four bodies described earlier, it is not

hard to find the potential energy at t = 0:

U = 2
√

2+1.

Then, acting under the negative Hamiltonian assumption:

2
√

2+1≥
n

∑
i=1

mi|vi|2

2
.

Since all masses are equal, if we require that the velocities of each body are equal in magnitude, we obtain:

vmax =

√
2
√

2+1
2

(4.13)
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with vmax defined to be the value of v such that the value of the Hamiltonian is zero. Define v
vmax

= θ. This

parameter is used in the numerical algorithm.

At this point it becomes necessary to find out just how much kinetic energy is required to obtain the

periodic orbit. Since we know suitable bounds on the velocity parameter (θ ∈ (0,1)), we can search the

interval numerically. We use an n-body simulator with the initial positions previously described. The

simulation is run until one SBC occurs. For simplicity, we consider only the collision between the first

and second bodies in the first quadrant. Summing their velocities immediately before the collision gives a

vector running along the line y = x (due to symmetry), with both components having the same sign. The

magnitude of this vector is given in Figure 2. Negative magnitudes represent vectors with both components

less than zero.

Figure 4.2: The magnitude of the net velocity of the first two bodies (vertical axis) at the time of collision
for various values of θ (horizontal axis).

Next, a standard bisection method is used to find the amount of energy required to cause the net velocity
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at collision to be zero. Using the initial interval θ ∈ [0,1] and iterating to a tolerance of 10−7, the correct

value of θ was found to be θ≈ 0.4644954.

4.2 VARIANTS

This same technique can be adopted to find similar orbits for any arbitrary even number n. A key feature

of these orbits will be higher numbers of simultaneous binary collisions. For a given value of n, initial

positions are given by spacing the bodies evenly about the unit circle. The potential energy (and the value

of vmax) is found numerically by iterating over each pair of planets and summing the reciprocal of the

distances between them. (Recall that all mi = 1.) Velocities are then assigned to the bodies in alternating

counter-clockwise and clockwise directions, initially tangent to the circle. Again we consider the collision

between the first and the second bodies. Although the net velocity of the two at collision will not lie

along the y = x line, the components of this vector will both have the same sign. The magnitudes of the

net velocity between the first two bodies at initial collision are shown in Figure 3 for various values of n.

Lower curves in the graph correspond to higher values of n. Again, negative magnitudes correspond to both

components being negative.

Pictures of the orbit for n = 6 and n = 8 are shown in Figure 4. It is readily seen that as n increases, the

shape of the orbit more closely approximates a circle.
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Figure 4.3: Curves showing the magnitude of the net velocity of the first two bodies (vertical axis) at the
time of collision for various values of θ (horizontal axis) for n = 4,6,8,10,12.

Figure 4.4: The six- and eight-body two-dimensional periodic SBC orbits.
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CHAPTER 5. LINEAR STABILITY ANALYSIS FOR THE TWO PERIODIC

ORBITS

In this chapter we apply the method of Roberts to prove the linear stability of the Schubart-like orbit in

the symmetric collinear four body 1, m, m, 1 problem for certain values of m, and of the singular periodic

orbit in the symmetric planar equal mass problem. In both settings, the linear stability is determined for the

regularized equations only and is reduced to the rigorous numerical computation of a single real number.

Our linear stability analysis determines values of m in the interval [0,50] in the collinear problem for which

the singular periodic orbit is linearly stable, and also shows that the 2D singular periodic orbit is linearly

stable. These examples support and extend the conjecture made by Roberts [21] that the only linearly stable

periodic orbits in the equal mass n-body problem are those that exhibit a time-reversing symmetry.

5.1 LINEAR STABILITY OF PERIODIC ORBITS

For a smooth function Γ defined on an open subset of R2n, suppose that γ(s) is a T -periodic solution of a

Hamiltonian system z′ = JDΓ(z) where ′ = d/ds,

J =

 0 I

−I 0

 ,

and I is the appropriately sized identity matrix. The fundamental matrix solution X(s) of the linearized

equations along γ(s),

ξ
′ = JD2

Γ(γ(s))ξ, ξ(0) = I (5.1)

is symplectic and satisfies X(s + T ) = X(s)X(T ) for all s. The matrix X(T ) is commonly called the mon-

odromy matrix for γ, and it measures the non-periodicity of solutions to the linearized equations. The

eigenvalues of X(T ) are the characteristic multipliers of γ, and determine the linear stability of the periodic

solution γ. Linear stability therefore requires that all of the multipliers lie on the unit circle.

The characteristic multipliers may be obtained by solving (5.1) with different initial conditions. For an
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invertible matrix Y0, let Y (s) be the fundamental matrix solution to

ξ
′ = JD2

Γ(γ(s))ξ, ξ(0) = Y0. (5.2)

By definition of X(s), we know that Y (s) = X(s)Y0, and so X(T ) = Y (T )Y−1
0 . It follows that the matrix

Y−1
0 Y (T ) is similar to the monodromy matrix i.e.,

X(T ) = Y (T )Y−1
0 = Y0(Y−1

0 Y (T ))Y−1
0 .

Thus the eigenvalues of Y−1
0 Y (T ) are identical to the characteristic multipliers.

5.1.1 Stability reduction using symmetry. The monodromy matrix for a periodic solution with spe-

cial types of symmetry can be factored using some linear algebra and standard techniques in differential

equations. We begin by reviewing the relevant factorization and reduction theory that are applicable to a

wide range of symmetric periodic orbits commonly found in Hamiltonian systems. Proofs of the following

statements can be found in [21].

Lemma 5.1. Suppose that γ(s) is a symmetric T−periodic solution of a Hamiltonian system with Hamilto-

nian Γ and symmetry matrix S such that:

(i) for some positive integer N, γ(s+T/N) = Sγ(s) for all s;

(ii) Γ(Sz) = Γ(z);

(iii) SJ = JS;

(iv) S is orthogonal.

Then the fundamental matrix solution X(s) to the linearization problem in (5.1) satisfies

X (s+T/N) = SX(s)ST X(T/N).

Here of course, the notation ST means the transpose of S. We mention this because we are using the

letter T in two distinct ways.
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Corollary 5.2. Given the hypothesis of Lemma 5.1, the fundamental matrix solution X(s) satisfies

X(kT/N) = Sk(ST X(T/N)
)k

for any k ∈ N.

A remark here is that if Y (s) is the fundamental matrix solution to Equation (5.2), then for any k ∈ N,

the matrix Y (kT/N) factors as

Y (kT/N) = SkY0(Y−1
0 STY (T/N))k.

Lemma 5.3. Suppose that γ(s) is a T−periodic solution of a Hamiltonian system with Hamiltonian Γ and

time-reversing symmetry S such that:

(i) for some positive integer N, γ(−s+T/N) = Sγ(s) for all s;

(ii) Γ(Sz) = Γ(z);

(iii) SJ =−JS;

(iv) S is orthogonal.

Then the fundamental matrix solution X(s) to the linearization problem in (5.1) satisfies

X(−s+T/N) = SX(s)ST X(T/N).

Corollary 5.4. Given the hypothesis of Lemma 5.3,

X(T/N) = SB−1ST B where B = X(T/2N).

Several more remarks about these factorizations are needed here.

(i) In the case of time-reversing symmetry matrix, S is typically block diagonal with two blocks of

opposite sign, one for the position variable and one for the momenta, that is,

 F 0

0 −F


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where F is orthogonal. A matrix of this form is orthogonal and anti-commutes with J.

(ii) A matrix satisfying properties 3 and 4 of Lemma 5.3 is symplectic with a multiplier of −1 since

ST JS =−ST SJ =−J.

(iii) If Y (s) is the fundamental matrix solution to (5.2), then a similar argument shows that Y (−s+T/N) =

SY (s)Y−1
0 STY (T/N) and consequently

Y (T/N) = SY0B−1ST B, where B = Y (T/2N).

Applying this factorization theory results in expressing the matrix Y−1
0 Y (T ), which is similar to X(T ),

as W k for some positive integer k, where the symplectic matrix W is the product of two involutions. If an

eigenvalue of W lies on the unit circle, then so does its kth power. The symplectic matrix W is called stable

if all of its eigenvalues lie on the unit circle.

Lemma 5.5. For a symplectic matrix W, suppose there is a matrix K such that

1
2
(
W +W−1)=

 KT 0

0 K

 . (5.3)

Then W is stable if and only if all of the eigenvalues of K are real and have absolute value smaller than or

equal to 1.

We will show for each of the periodic orbits under consideration, there is a choice of Y0 such that W

satisfies Lemma 5.5. This reduces the linear stability to the computation of the eigenvalues of K. As one of

the eigenvalues of K is known to be real and have absolute value 1, the linear stability is determined by the

numerical computation of one real number and showing that, within error, it lies between −1 and 1.

5.2 LINEAR STABILITY FOR THE SCHUBART-LIKE PERIODIC ORBIT

The existence of the Schubart-like periodic orbit in the collinear four-body problem has been shown in [18].

We review it here. For x1 ≥ x2 ≥ 0, we assume that four masses are located at x1, x2, −x2 and −x1 with

masses 1, m, m, and 1 respectively with m > 0. We also assume that the system remains symmetrically

distributed about the center of mass located at the origin. The respective velocities of the four bodies are
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ẋ1, ẋ2,−ẋ2,−ẋ1 where ˙= d/dt. The Netowanian equations are

ẍ1 =− 1
4x2

1
− m

(x1 + x2)2 −
m

(x1− x2)2

ẍ2 =− m
4x2

2
− 1

(x1 + x2)2 +
1

(x1− x2)2 .

We recount Sweatman’s approach in [28] and [29] to regularize this system. The Hamiltonian for this

system is

H =
1
4

w2
1 +

1
4m

w2
2−

1
2x1
− m2

2x2
− 2m

x1 + x2
− 2m

x1− x2
,

where w1 = 2ẋ1 and w2 = 2mẋ2 are the conjugate momenta to x1 and x2. Introduce new canonical coordi-

nates q1,q2, p1, p2 by

q1 = x1− x2, q2 = 2x2, p1 = w1, p2 =
1
2
(w1 +w2).

The Hamiltonian in the new canonical coordinates is

H =
1
4

(
1+

1
m

)
p2

1−
p1 p2

m
+

p2
2

m
− 2m

q1
− m2

q2
− 2m

q1 +q2
− 1

2q1 +q2
.

To regularize the equations of motion, Sweatman introduced a Levi-Civita type of canonical transformation

Q2
i = qi, Pi = 2Qi pi (i = 1,2),

for the the canonical coordinates Q1,Q2,P1,P2, and then replaced time t by the new independent variable s

given by
dt
ds

= Q2
1Q2

2.

In the extended phase space, this produces the regularized Hamiltonian

Γ =
dt
ds

(H−E) =
1

16

(
1+

1
m

)
Q2

2P2
1 +
−Q1Q2P1P2 +Q2

1P2
2

4m

−m2Q2
1−2mQ2

2−
2mQ2

1Q2
2

Q2
1 +Q2

2
− Q2

1Q2
2

2Q2
1 +Q2

2
−EQ2

1Q2
2.
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We fix the energy E =−1. The Hamiltonian system in the new coordinate system is

Q′1 =
Q2

4

[
1
2

(
1+

1
m

)
Q2P1−

1
m

Q1P2

]
, (5.4)

Q′2 =
Q1

2m

[
Q1P2−

1
2

Q2P1

]
, (5.5)

P′1 =
P2

4m
(Q2P1−2Q1P2)+2m2Q1 +

4mQ1Q4
2

(Q2
1 +Q2

2)2
+

2Q1Q4
2

(2Q2
1 +Q2

2)2
−2Q1Q2

2, (5.6)

P′2 =
P1

4

[
Q1P2

m
− Q2P1

2

(
1+

1
m

)]
+4mQ2 +

4mQ4
1Q2

(Q2
1 +Q2

2)2
+

4Q4
1Q2

(2Q2
1 +Q2

2)2
−2Q2

1Q2, (5.7)

where ′ is the derivative with respect to s.

From the proof [18] of the existence of the Schubart-like periodic orbit Q1(s), Q2(s), P1(s), P2(s) of

periodic T , there is a positive constant R(m) such that

Q1(0) = R(m), Q2(0) = 0, P1(0) = 0, P2(0) = 2m3/2.

These initial conditions correspond to a binary collision of the two inner bodies. By the construction of the

periodic orbit, another binary collision of the two inner bodies occurs at s = T/2 where the conditions are

Q1(T/2) =−R(m), Q2(T/2) = 0, P1(T/2) = 0, P2(T/2) =−2m3/2.

Simultaneous binary collisions correspond to the conditions of the periodic solution when s = T/4 and

s = 3T/4, i.e., Q1(s) = 0 at these values of s. The value of R(1) is approximately 2.29559. Figure 5.1

contains a plot of the coordinates Q1,Q2,P1,P2 of the periodic orbit when m = 1.
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Figure 5.1: The periodic solution in the coordinate system Q1,Q2,P1,P2 when m = 1.

5.2.1 Stability Reductions using Symmetry. The Schubart-like periodic solution in the regularized

coordinate system γ(s) = (Q1(s),Q2(s),P1(s),P2(s)) with period T in the collinear problem has two time-

reversing symmetries. For

F =

 1 0

0 −1

 ,

the matrix

S =

 F 0

0 −F


is orthogonal and symmetric: S−1 = ST = S. It is also an involution, i.e., S2 = I. Since Sγ(−s + T ) is a

solution of (5.4) through (5.7), and since this solution shares the same initial conditions as γ(s) at s = 0 by

T -periodicity of γ, uniqueness of solutions implies that the matrix S satisfies

γ(−s+T ) = Sγ(s) for all s.
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Thus S is a time-reversing symmetry of γ(s). With N = 1, conditions (2), (3), and (4) in Lemma 5.3 are

satisfied, and so by Corollary 5.4, the monodromy matrix for γ satisfies

X(T ) = SX(T/2)−1ST X(T/2) = SX(T/2)−1SX(T/2). (5.8)

Consequently, from the above equation and S2 = I,

[SX(T )]2 =
[
X(T/2)−1SX(T/2)

][
X(T/2)−1SX(T/2)

]
= I.

Since −Sγ(−s+T/2) is a solution of (5.4) through (5.7), and as −Sγ(T/2) is the same as γ(0), uniqueness

of solutions implies that the matrix −S satisfies

γ(−s+T/2) =−Sγ(s) for all s.

Thus −S is another time-reversing symmetry of γ(s). For N = 2, conditions (2), (3), and (4) of Lemma 5.3

are satisfied, and so Corollary 5.4 implies that

X(T/2) = SX(T/4)−1SX(T/4). (5.9)

For

B = X(T/4),

combining equations (5.8) and (5.9) gives

X(T ) = (SB−1SB)2

With A = SB−1SB and D = B−1SB, then

X(T ) = A2 = (SD)2,

where S2 = I and D2 = I. The two time-reversing symmetries S and −S of γ are both involutions, and

together they generate a D2 symmetry group for γ.

101



5.2.2 A Good Basis. We have reduced the stability analysis to the first quarter of the periodic orbit. Let

Y (s) be the fundamental matrix solution to the linearized equations about Schubart-like periodic orbit γ(s)

with arbitrary initial conditions Y0. Let

B = Y (T/4).

By the third remark following Corollary 5.4, the matrix Y−1
0 Y (T ), which is similar to the monodromy

matrix X(T ) = Y (T )Y−1
0 , satisfies

Y−1
0 Y (T ) =

((
Y−1

0 SY0
)

B−1SB
)2

.

The question of stability reduces to showing that the eigenvalues of

W =
(
Y−1

0 SY0
)

B−1SB

are on the unit circle. An appropriate choice of Y0 will simplify the factor Y−1
0 SY0 in W . Set

Λ =

I 0

0 −I

 .

Lemma 5.6. There exists Y0 such that

(i) Y0 is orthogonal and symplectic, and

(ii) Y−1
0 SY0 = Λ.

Proof. Choose the third column of Y0 to be γ ′(0)/‖γ ′(0)‖= [0 1 0 0]T = e2. For e3 = [0 0 1 0]T , the matrix

Y0 = [Je2,Je3,e2,e3] =



0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0


is orthogonal and symplectic. Since S = diag{1,−1,−1,1}, it follows that Y−1

0 SY0 has the desired form.
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Setting D = B−1SB and choosing Y0 as constructed in Lemma 5.6 gives

W =
(
Y−1

0 SY0
)

B−1SB = ΛD.

The matrices Λ and D are both involutions, i.e., Λ2 = I, D2 = I. From these it follows that

W−1 = DΛ.

Because B is a symplectic matrix, a short computation using the formula for the inverse of a symplectic

matrix shows that D has the form  KT L1

−L2 −K


for 2×2 matrices K,L1,L2. It follows that

W =

 I 0

0 −I


 KT L1

−L2 −K

=

 KT L1

L2 K

 ,

and

W−1 =

 KT L1

−L2 −K


 I 0

0 −I

=

 KT −L1

−L2 K

 .

Hence,

1
2
(
W +W−1)=

 KT 0

0 K

 .

We show that the first column of K is [−1 0]T . Set v = Y−1
0 γ ′(0). By the choice of Y0,

v = Y T
0 γ
′(0) = ‖γ ′(0)‖e3.

Since S is symmetric and Y0 is orthogonal, then by the third remark after Corollary 5.4,

W = Y−1
0 SY0B−1SB = Y−1

0 SY0B−1ST B = Y T
0 Y (T/2).
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Now γ ′(s) is a solution of ξ̇ = JD2Γ(γ(s))ξ and γ ′(0)=Y (0)Y−1
0 γ ′(0)=Y (0)v, and so γ ′(s)=Y (s)Y−1

0 γ ′(0)=

Y (s)v. This implies that

Y−1
0 γ

′(T/2) = Y T
0 Y (T/2)v = Wv.

Since γ(s) satisfies γ(−s + T/2) = −Sγ(s) for all s, then γ ′(−s + T/2) = Sγ ′(s) for all s. Setting s = 0 in

this gives γ ′(T/2) = Sγ ′(0). Since γ ′(0) is a nonzero scalar multiple of e2 and since Se2 =−e2, then

Y−1
0 γ

′(T/2) = Y−1
0 Sγ

′(0) =−Y−1
0 γ

′(0) =−Y T
0 γ
′(0) =−v.

Thus Wv =−v, implying that−1 is an eigenvalue of W and e3 is an eigenvector of W corresponding to this

eigenvalue. Thus the first column of K is as claimed. The form of the rest of K comes from the formula for

the inverse of a symplectic matrix and the definition of D:

K =

 −1 ∗

0 cT
2 (SJc4)

 ,

where ci is the ith column of Y (T/4).

5.2.3 Numerical Calculations. With an absolute error tolerance of 1×10−12, our numerical results for

m = 1 showed that the initial condition

Q1(0) = R(1) = 2.295592258717, Q2(0) = 0, P1(0) = 0, P2(0) = 2

leads to a periodic simultaneous binary collision periodic orbit (as in Figure 1) whose period T satisfies

T/4 = 0.817348080989685. Using MATLAB and a Runge-Kutta-Fehlberg algorithm, we computed the

columns of the matrix Y (T/4) with an absolute error tolerance of 4×10−6. From this, we got

cT
2 (SJc4) = 0.598490.

For values of m between 0 and 50 at 0.01 increments, we numerically computed the value of R(m) in the

initial conditions and the value of the period T (with an absolute error tolerance of 4×10−6), and the values

of cT
2 (SJc4) (with an absolute error tolerance of 1×10−6). The results of these computations are contained
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in Figure 5.2.

A closer look at the numerical data in Figure 5.2 for where the value of cT
2 (SJc4) is close to 1 gives

estimates of the two values of m where the stability of the periodic orbit changes. The first critical value of

m is approximately m = 2.83, and the second critical value of m is approximately m = 35.4.

The eigenvalues of K are −1 and cT
2 (SJc4). The eigenvalues of K are distinct for most values of m

in [0,50] because of the rigorous numerical estimates we have for cT
2 (SJc4). Lemma 5.5 now implies the

following linear stability result.

Theorem 5.7. There exists small positive constants εi, i = 1,2,3,4 such that the periodic simultaneous

binary collision orbit in the collinear symmetric four body problem with masses 1, m, m, 1 is linearly stable

when m < 2.83− ε1 and 35.4+ ε2 < m≤ 50, and is linearly unstable when 2.83+ ε3 < m < 35.4− ε4.

This result confirms the linear stability analysis of Sweatman [29] for m between 0 and 50, asserting

that the periodic orbit is unstable when m is between 2.83 and 35.4. Simulations of the periodic orbit when

m is between 2.83 and 35.4 indicate that the linear instability is manifested slowly over time.

5.3 LINEAR STABILITY FOR THE 2D SYMMETRIC PERIODIC ORBIT

In [17], we proved the existence of a special type of planar periodic solution of 2n bodies with equal masses.

In this section, we are going to consider the linear stability of this periodic solution when n = 2. If (x1,x2)

is the position of the first body, then the positions of the remaining three bodies are (x2,x1), (−x1,−x2), and

(−x2,−x1). When each body has mass m = 1, the Newtonian equations for this planar four-body problem

are

(ẍ1, ẍ2) =−
[
(x1− x2,x2− x1)

23/2|x1− x2|3
+

(x1,x2)
4(x2

1 + x2
2)3/2 +

(x1 + x2,x1 + x2)
23/2|x1 + x2|3

]
.

The initial conditions for the periodic orbit, and the periodic orbit are illustrated in Figure 5.3.

We adapt Sweatman’s approach ([28], [29]) to regularize this system. The Hamiltonian for this system

is

H =
1
8
(
w2

1 +w2
2
)
−

√
2

|x1− x2|
−

√
2

|x1 + x2|
− 1√

x2
1 + x2

2

,

where w1 = 4ẋ1 and w2 = 4ẋ2 are the conjugate momentum. In terms of the canonical coordinates (q1,q2, p1, p2)
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Figure 5.2: The value of cT
2 (SJc4) for values of m between 0 and 50.
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Figure 5.3: On the left are the initial conditions leading to the four-body two-dimensional periodic SBC
orbit. On the right is the orbit.

defined by

q1 = x1− x2, q2 = x1 + x2, w1 = p1 + p2, w2 = p2− p1,

the Hamiltonian becomes

H =
1
4
(

p2
1 + p2

2
)
−
√

2
|q1|
−
√

2
|q2|
−

√
2√

q2
1 +q2

2

.

The Levi-Civita type of canonical transformation used to regularize the collinear problem now applies to

the four body equal mass 2D problem. In terms of the canonical coordinates (Q1,Q2,P1,P2) defined by

qi = Q2
i , Pi = 2Qi pi (i = 1,2),

and the new time variable s defined by
dt
ds

= Q2
1Q2

2,
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the Hamiltonian in extended phase space becomes

Γ =
dt
ds

(H−E) =
1

16
(P2

1 Q2
2 +P2

2 Q2
1)−
√

2(Q2
1 +Q2

2)−
√

2Q2
1Q2

2√
Q4

1 +Q4
2

−EQ2
1Q2

2 (5.10)

where E is the total energy of the Hamiltonian H. The differential equations in terms of the new coordinates

{Q1,Q2,P1,P2} are

Q′1 =
1
8

P1Q2
2 (5.11)

Q′2 =
1
8

P2Q2
1 (5.12)

P′1 =−1
8

P2
2 Q1 +2

√
2Q1 +

2
√

2Q1Q2
2√

Q4
1 +Q4

2

−
2
√

2Q5
1Q2

2

(Q4
1 +Q4

2)
3
2

+2EQ1Q2
2 (5.13)

P′2 =−1
8

P2
1 Q2 +2

√
2Q2 +

2
√

2Q2Q2
1√

Q4
1 +Q4

2

−
2
√

2Q5
2Q2

1

(Q4
1 +Q4

2)
3
2

+2EQ2Q2
1. (5.14)

Unlike the collinear problem, we do not fix the value of E here. As shown in [18], for each ζ > 0 there

exists v0 > 0 such that the initial conditions

Q1(0) = ζ, Q2(0) = ζ, P1(0) =−4v0, P2(0) = 4v0, (5.15)

lead to a periodic solution with a minimal period T . From Γ = 0, the value of E is determined by this choice

of ζ and v0. By its construction in [17], this periodic orbit satisfies

Q1(T/4) =−ζ, Q2(T/4) = ζ, P1(T/4) =−4v0, P2(T/4) =−4v0.

Simultaneous binary collisions correspond to s = T/8,5T/8 i.e., when Q1(s) = 0, and to s = 3T/8,7T/8,

i.e., when Q2(s) = 0. For ζ = 1, 4v0 = 2.57486992651942, and T/8 = 1.62047369909693. Figure 4

illustrates the coordinates (Q1,Q2,P1,P2) of this periodic solution.

5.3.1 Stability Reductions using Symmetry. We will reduce the stability analysis to the first eighth of

the periodic orbit. The symmetric periodic 2D orbit

γ(t) = (Q1(t),Q2(t),P1(t),P2(t))
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Figure 5.4: The periodic solution in the coordinate system Q1,Q2,P1,P2.

with period T has a time-reversing symmetry and a time-preserving symmetry. For

F =

0 −1

1 0

 , G =

−1 0

0 1

 ,

the matrices

SF =

F 0

0 F

 , SG =

G 0

0 −G


satisfy S−1

F = ST
F , S2

F 6= I, S3
F 6= I, S4

F = I, S2
G = I, ST

G = SG, and (SF SG)2 = I. Since γ(s + T/4) and

SF γ(s) = (−Q2(s),Q1(s),−P2(s),P1(s)) are solutions of (5.11) through (5.14) and share the same initial

conditions when s = 0, uniqueness of solutions implies that

γ(s+T/4) = SF γ(s) for all s.
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Thus SF is a time-preserving symmetry of γ(s). With N = 4, conditions (2), (3), and (4) of Lemma 5.1 are

satisfied, so that Corollary 5.2 (with k = 4) and S4
F = I imply that

X(T ) = S4
F
(
ST

F X(T/4)
)4 =

(
ST

F X(T/4)
)4

.

Since γ(−s + T/4) and SGγ(s) are solutions of (5.11) through (5.14) and share the same initial conditions

when s = 0, uniqueness of solutions implies that

γ(−s+T/4) = SGγ(s) for all s.

Thus SG is a time-reversing symmetry for γ(s). With N = 4, conditions (2), (3), and (4) of Lemma 5.3 are

satisfied, and so Corollary 5.4 implies that

X(T/4) = SG [X(T/8)]−1 ST
GX(T/8) = SG [X(T/8)]−1 SGX(T/8).

Let

B = X(T/8).

Combining the factorization of X(T ) that involves SF and the factorization of X(T/4) that involves SG gives

the factorization

X(T ) =
(
ST

F SGB−1SGB
)4

.

Setting

Q = ST
F SG =



0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0


and D = B−1SGB results in the factorization

X(T ) = (QD)4
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where Q and D are both involutions. The symmetries SF and SG generate a D4 symmetry group for the

periodic orbit γ(s).

5.3.2 A Good Basis. Let Y (s) be the fundamental matrix solution to the linearized equations about the

2D periodic orbit γ(s) with arbitrary initial conditions Y0. Let

B = Y (T/8).

By remarks following Corollaries 5.2 and 5.4, the matrix Y−1
0 Y (T ), which is similar to the monodromy

matrix X(T ) = Y (T )Y−1
0 , satisfies

Y−1
0 Y (T ) = (Y−1

0 ST
F SGY0B−1SGB)4 = (Y−1

0 QY0B−1SGB)4.

The question of linear stability reduces to showing that the eigenvalues of

W = Y−1
0 QY0B−1SGB

are on the unit circle. Recall that

Λ =

I 0

0 −I

 .

Lemma 5.8. There exists Y0 such that

(i) Y0 is orthogonal and symplectic, and

(ii) Y−1
0 QY0 = Λ.

Proof. Choose the third column of Y0 to be

γ ′(0)
‖γ ′(0)‖

=
1
c

[
−a a b b

]T

where a = v0ζ2/2, b = Eζ3 = (2v2
0−2
√

2−1)ζ and c =
√

2a2 +2b2. Let coli(Y0) denote the ith column of

Y0. Define
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col1(Y0) = J · col3(Y0) =
1
c

[
b b a −a

]T

.

We now choose col4(Y0) such that col4(Y0) is orthogonal to col3(Y0), and col4(Y0) is one of the eigen-

vectors of Q with respect to its eigenvalue of−1. Since the eigenspace of Q corresponding to its eigenvalue

of −1 is

span
{[

1 −1 0 0

]T

,

[
0 0 1 1

]T }
,

define

col4(Y0) =
1
c

[
b −b a a

]T

and

col2(Y0) = J · col4(Y0) =
1
c

[
a a −b b

]T

.

The matrix

Y0 =
1
c



b a −a b

b a a −b

a −b b a

−a b b a


,

is both symplectic and orthogonal and it satisfies Y−1
0 QY0 = Λ.

Setting D = B−1SGB and choosing Y0 to be the matrix constructed in Lemma 5.8 gives W = ΛD. The

matrices Λ and D are involutions (the latter because S2
G = I). As in Section 3.2, W−1 = DΛ, and there is a

2×2 matrix K such that

1
2
(
W +W−1)=

KT 0

0 K

 .

We show that the first column of K is [1 0]T . Since ST
G = SG, Y−1

0 = Y T
0 , it follows by the third remark

following Corollary 5.4 that

W = Y−1
0 ST

F SGY0B−1SGB = Y−1
0 ST

FY (T/4) = Y T
0 ST

FY (T/4).
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Set v = Y−1
0 γ ′(0). By the choice of the matrix Y0,

v = Y−1
0 γ

′(0) = Y T
0 γ
′(0) =



0

0

||γ ′(0)||

0


= ||γ ′(0)||e3.

Because γ ′(s) is a solution to the linearized equation ξ̇ = JD2Γ(γ(s))ξ and because γ ′(0) = Y (0)Y−1
0 γ ′(0),

then γ ′(s) = Y (s)Y−1
0 γ ′(0) for all s. Hence,

Wv = Y T
0 ST

FY (T/4)v = Y T
0 ST

F γ
′(T/4). (5.16)

Since γ satisfies γ(s+T/4) = SF γ(s) for all s and S−1
F = ST

F , it then follows that

γ
′(s) = S−1

F γ
′(s+T/4) = ST

F γ
′(s+T/4).

Setting s = 0 in this gives γ ′(0) = ST
F γ ′(T/4), and consequently that

Y T
0 ST

F γ
′(T/4) = Y T

0 γ
′(0) = Y−1

0 γ
′(0) = v. (5.17)

Equations (5.16) and (5.17) now combine to show that Wv = v, i.e, that 1 is an eigenvalue of W and e3 is

an eigenvector for W corresponding to this eigenvalue. The first column of K is as claimed. The rest of K

comes from the formula for the inverse of a symplectic matrix and the definition of D:

K =

 1 ∗

0 cT
2 (SGJc4)

 ,

where ci is the ith column of B = Y (T/8).

5.3.3 Numerical Calculations. Having not fixed E, we used an invariant scaling of the coordinates and

time in equations (5.11) through (5.14) to preselect a period T before numerically computing the initial

conditions for a periodic simultaneous binary collision orbit. For ε > 0, if Q1(s), Q2(s), P1(s), P2(s) is a
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periodic simultaneous collision orbit of equations (5.11) through (5.14), then replacing E with ε−2E shows

that εQ1(εs), εQ2(εs), P1(εs), P2(εs) is also a periodic simultaneous binary collision orbit with energy ε−2E

and period ε−1T . Furthermore, it is straight forward to show that monodromy matrices for the periodic

simultaneous binary collision orbits corresponding to values of ε 6= 1 are all similar to that for ε = 1. Thus

the linear stability of a periodic simultaneous binary collision orbit for one ε > 0 implies the linear stability

of the periodic simultaneous binary collision orbits for all ε > 0.

We rigorously computed the value of cT
2 (SGJc4) for the periodic simultaneous binary collision orbit

whose period is T = 8. This means that the first time of a simultaneous binary collision for this orbit is at

s = 1. We set Q1(0) = Q2(0) = ξ and −P1(0) = P2(0) = η, and defined a function F(ξ,η) to be equal to

the vector quantity (Q1(1),P2(1)). We used Newton’s method and a good initial guess to find a root (ξ,η)

of F . This involved computing the Jacobian of F which was done using the linearized equations. With an

absolute error tolerance of 6×10−11, this numerical method shows that the initial conditions

Q1(0) = Q2(0) = 1.62047369909693, −P1(0) = P2(0) = 2.57486992651942,

lead to a periodic solution with a period of T = 8, and a value of E ≈−1.142329388. Using MATLAB and

a Runge-Kutta-Fehlberg algorithm, we computed the columns of the matrix Y (T/8) with an absolute error

tolerance of 2.5×10−12. From this we got

cT
2 (SGJc4) =−0.68024151010592.

Using the scaling of coordinates and time described above, the initial conditions for the periodic simultane-

ous binary collision orbit shown in Figures 3 and 4 are

Q1(0) = Q2(0) = 1, −P1(0) = P2(0) = 2.57486992651942

with a period T satisfying T/8 = 1.62047369909693, and energy E ≈−2.999682732.

For the periodic simultaneous binary collision orbit, the rigorous estimate of the eigenvalue cT
2 (SGJc4)

of K and its distinctiveness from the eigenvalue 1 of K combine with Lemma 5.5 to give the following

stability result.
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Theorem 5.9. The periodic simultaneous binary collision orbit in the 2D-symmetric equal mass four-body

problem is linearly stable.

When cT
2 (SGJc4) is real and between−1 and 1, it is the real part of an eigenvalue with unit modulus for

W (see [21]). For the periodic simultaneous collision orbit, the real part of exp(3πi/4), that is −(1/2)
√

2,

is fairly close to the rigorously estimated value of cT
2 (SGJc4). Raising exp(3πi/4) to the fourth power

gives exp(3πi) =−1, and so two of the eigenvalues of the monodromy matrix of the periodic simultaneous

binary collision orbit are close to −1. The symmetry reductions used to compute the eigenvalues over just

one-eighth of the period and the rigorous estimate of cT
2 (SGJc4) showing that it is clearly between −1 and

1, assures the linear stability of the periodic simultaneous binary collision orbit.
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