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ABSTRACT

LYAPUNOV EXPONENTS AND INVARIANT MANIFOLD
FOR RANDOM DYNAMICAL SYSTEMS IN A BANACH SPACE

Zeng Lian

Department of Mathematics

Ph.D of Mathematics

Abstract

We study the Lyapunov exponents and their associated invariant subspaces

for infinite dimensional random dynamical systems in a Banach space, which are

generated by, for example, stochastic or random partial differential equations.

We prove a multiplicative ergodic theorem. Then, we use this theorem to

establish the stable and unstable manifold theorem for nonuniformly hyperbolic

random invariant sets.
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1 Introduction

Lyapunov exponents play an important role in the study of the behavior of dynamical

systems. They measure the average rate of separation of orbits starting from nearby

initial points. They are used to describe the local stability of orbits and chaotic

behavior of systems.

In this thesis, we study Lyapunov exponents and their associated random invariant

subspaces for infinite dimensional random dynamical systems in a Banach space and

establish the existence of stable and unstable manifolds of Pesin type for random

invariant sets.

Infinite dimensional random dynamical systems arise in applications when ran-

domness or noise is taken into account. They may be generated, for example, by

stochastic partial differential equations and random partial differential equations.

Let (Ω,F , P ) be a probability space and (θn)n∈Z be a measurable P -measure

preserving dynamical system on Ω. A discrete time linear random dynamical system

(or a cocycle) on a Banach space X over the dynamical system θn is a measurable

map

Φ(n, ·, ·) : Ω ×X → X, (ω, x) 7→ Φ(n, ω, x), for n ∈ Z+

such that the map Φ(n, ω) := Φ(n, ω, ·) ∈ L(X,X), the usual space of all bounded

linear operators, and forms a cocycle over θn:

Φ(0, ω) = Id, for all ω ∈ Ω,

Φ(n+m,ω) = Φ(n, θmω)Φ(m,ω), for all m,n ∈ Z+, ω ∈ Ω.

A typical example is the solution operator at time t = n for a stochastic linear

differential equation. The measurable dynamical system (θn)n∈Z is also called a metric
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dynamical system. The metric dynamical system models the noise of the system.

We write the time-one map Φ(1, ω) as S(ω) := Φ(1, ω). Then S(ω) is the so-

called random bounded linear operator in the sense that S(ω) is strongly measurable,

i.e., ω → S(ω)x is measurable from Ω to X for each x ∈ X. We note that a random

bounded linear operator S(ω) generates the linear random dynamical system Φ(n, ω):

Φ(n, ω) =















S(θn−1ω) · · ·S(ω), n > 0,

I, n = 0.

1.1 Lyapunov Exponents

In the following, we will see that the long term behavior of orbits of Φ(n, ω) can

be described by Lyapunov exponents and their associated random invariant linear

subspaces. In order to state our main results, we need to introduce the following two

quantities:

κ(Φ)(ω) = lim
n→+∞

1

n
log ‖Φ(n, ω)‖

and

lα(ω) = lim
n→+∞

1

n
log ‖Φ(n, ω)‖α.

The quantity κ(Φ)(ω) is the largest Lyapunov exponent and it describes the expo-

nential growth rate of the norm of Φ(n, ω) along forward orbits. ||Φ(n, ω)||α is the

Kuratowski measure of operator Φ(n, ω), and lα(ω) is the essential exponent. which

is the accumulation point of Lyapunov exponents when there are infinite many Lya-

punov exponents. lα(ω) = −∞ when S(ω) is compact. In the deterministic case that

Φ(n, ω) = Sn where S is a bounded linear operator, elα is the radius of the essential

spectrum of S. We will see that both limits exist almost surely under the assumption

that the positive part of logarithms of the norm of S(·) is integrable. We will also see
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that κ(Φ)(ω) ≥ lα(ω) and they are θ-invariant.

Our main results may be summarized as

Theorem A. Assume that S(·) : Ω → L(X,X) is strongly measurable, where X is

a separable Banach space, S(ω) is injective almost everywhere and

log+ ||S(·)|| ∈ L1(Ω,F , P ).

Then, there exists a θ-invariant subset Ω̃ ⊂ Ω of full measure such that for each ω ∈ Ω̃

only one of the following conditions holds

(I) κ(Φ)(ω) = lα(ω).

(II) There exist k(ω) numbers λ1(ω) > . . . > λk(ω)(ω) > lα(ω) and a splitting

X = E1(ω) ⊕ · · · ⊕ Ek(ω)(ω) ⊕ F (ω)

of finite dimensional linear subspaces Ej(ω) and infinite dimensional linear sub-

space F (ω) such that

1) Invariance: k(θω) = k(ω), λi(θω) = λi(ω), S(ω)Ej(ω) = Ej(θω) and

S(ω)F (ω) ⊂ F (θω). k(ω) and λi(ω) are constant when θ is ergodic;

2) Lyapunov Exponents:

lim
n→±∞

1

n
log ‖Φ(n, ω)v‖ = λj(ω) for all v(6= 0) ∈ Ej(ω), 1 ≤ j ≤ k;

3) Exponential Decay Rate on F (ω):

lim sup
n→+∞

1

n
log ‖Φ(n, ω)|F (ω)‖ ≤ lα(ω)
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and if v(6= 0) ∈ F (ω) and (Φ(n, θ−nω))−1v exists for all n ≥ 0, which is

denoted by Φ(−n, ω)v, then

lim inf
n→+∞

1

n
log ‖Φ(−n, ω)v‖ ≥ −lα(ω);

4) Measurability and Temperedness: k(ω), λi(ω), and Ej(ω) are measurable

and the projection operators associated with the decompositions

X =
(

j
⊕

i=1

Ei(ω)
)

⊕
(

(

k(ω)
⊕

i=j+1

Ei(ω)
)

⊕ F (ω)
)

=
(

k(ω)
⊕

i=1

Ei(ω)
)

⊕ F (ω)

are strongly measurable and tempered.

(III) There exist infinitely many finite dimensional subspaces Ej(ω), infinitely many

infinite dimensional subspaces Fj(ω), and infinitely many numbers

λ1(ω) > λ2(ω) > . . . > lα(ω) with lim
j→+∞

λj(ω) = lα(ω)

such that

1) Invariance: λi(θω) = λi(ω), S(ω)Ej(ω) = Ej(θω), S(ω)Fj(ω) ⊂ Fj(θω).

λi(ω) are constants when θ is ergodic;

2) Invariant Splitting:

X = E1(ω) ⊕ · · · ⊕ Ej(ω) ⊕ Fj(ω) and Fj(ω) = Ej+1(ω) ⊕ Fj+1(ω);

3) Lyapunov Exponents:

lim
n→±∞

1

n
log ‖Φ(n, ω)v‖ = λj(ω), for all v(6= 0) ∈ Ej(ω);

4



4) Exponential Decay Rate on Fj(ω):

lim
n→+∞

1

n
log ‖Φ(n, ω)

∣

∣

Fj(ω)
‖ = λj+1(ω)

and if for v(6= 0) ∈ Fj(ω) such that Φ(−n, ω)v exists for all n ≥ 0, then

lim inf
n→+∞

1

n
log ‖Φ(−n, ω)v‖ ≥ −λj+1(ω);

5) Measurability and Temperedness: λj(ω) and Ej(ω) are measurable and the

projection operators associated with the decomposition

X =

(

j
⊕

i=1

Ei(ω)

)

⊕ Fj(ω)

are strongly measurable and tempered.

Furthermore, the above statements hold for any continuous time random dynamical

system Φ(t, ω), t ∈ R+, which satisfies

sup
0≤s≤1

log+ ||Φ(s, ·)|| and sup
0≤s≤1

log+ ||Φ(1 − s, θs·)|| ∈ L1(Ω,F , P ).

Remark: (1) κ(Φ) = lα(ω) means that the largest Lyapunov exponent is the same

as the essential exponent. When Φ(n, ω) = Sn is a deterministic dynamical system,

it means that there are no eigenvalues outside of the circle with the radius, elα , of the

essential spectrum. (2) When case (II) holds, there are only finitely many Lyapunov

exponents larger than lα(ω). This is because the largest Lyapunov exponent of the

restriction Φ
∣

∣

F
equals to lα(ω). We note that the essential exponent of the restriction

Φ
∣

∣

F
is the same as lα(ω) since the codimension of F is finite. (3) In the case (III), we
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have that κ(Φ
∣

∣

Fj
) > lα(ω) for all j, thus there are infinitely many Lyapunov exponents

and lα(ω) is the limit point of these Lyapunov exponents. (4) When S(ω) is compact,

lα(ω) = −∞. In this case, as long as there is no trajectory decaying faster than any

exponential function, this theorem implies that there are infinitely many Lyapunov

exponents. We notice that the random dynamical system generated by a stochastic

parabolic partial differential equation is compact while the random dynamical system

generated by a stochastic wave equation is not compact.

The results we obtain here are the extension of fundamental results by Oseledets,

Ruelle, Mané, Thieullen, and Schaumlöffel to a general infinite dimensional random

dynamical system in a separable Banach space.

The study of Lyapunov exponents goes back to Lyapunov [19] and has a long

history. The fundamental results on the theory of Lyapunov exponents for finite di-

mensional systems were first obtained by Oseledets [34] in 1968, which is now called

the Oseledets multiplicative ergodic theorem. Alternative proofs of this truly remark-

able theorem can be found in [30], [35], [11], [24], [37], [38], [22], [6], [1], [16], [15],

[4], [9], and [2]. These proofs are based on either the triangularization of a linear

cocycle and the classical ergodic theorem for the triangular cocycle or the singular

value decomposition of matrices and Kingman’s subadditive ergodic theorem. This

theorem plays a crucial role in the celebrated Pesin’s theory for describing the dy-

namics of nonuniformly hyperbolic diffeomorphisms on compact manifolds. It is also

an important and indispensable tool for studying the dynamics of random dynamical

systems on compact manifolds, see [20], [21], [17], [13], and a recent survey [14].

In his remarkable paper [39], Ruelle extended the multiplicative ergodic theorem to

compact random linear operators in a separable Hilbert space with a base measurable

metric dynamical system in a probability space. A typical example of these maps

is the time-one map of the solution operator of a stochastic or random parabolic
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partial differential equation. In this case, one has to face the difficulties arising

from that the phase space is not locally compact and the dynamical system may

not be invertible over the phase space. Ruelle’s results have been applied to study

other stochastic partial differential equations and delay differential equations. See,

for example, [31]and [32].

Later, Mané [23], extended the multiplicative ergodic theorem to compact opera-

tors S(ω) in a Banach space, where the base metric dynamical system is a homeomor-

phism over a compact topological space and S(ω) is continuous in ω. A drawback of

Mané’s results is that they cannot be applied to random dynamical systems generated

by stochastic partial differential equations. Besides the obstacles Ruelle encountered

in a Hilbert space, one also needs to overcome the problem that there is no inner

product. Mané took a different approach from Ruelle’s.

Thieullen [42] further extended Mané’s results on Lyapunov exponents to bounded

linear operators S(ω) in a Banach space, where the base metric dynamical system θ

is a homeomorphism over a topological space Ω homeomorphic to a Borel subset of a

separable metric space and S(ω) is continuous in ω.

In [41], Flandoli and Schaumlöffel obtained a multiplicative ergodic theorem for

random isomorphisms on a separable Hilbert space with a measurable metric dynami-

cal system over a probability space. This result is used to study hyperbolic stochastic

partial differential equations. Schaumlöffel, in his thesis [40], extended the multi-

plicative ergodic theorem to a class of bounded random linear operators which map

a closed linear subspace onto a closed linear subspace in a Banach space with certain

convexity.

Recently, Mierczynski and Shen, in [25, 26, 27, 28, 29], have extensively studied the

principal Lyapunov exponents for random parabolic equations and obtained results

of Krein-Rutman type.
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1.2 Random Stable and Unstable Manifolds.

We consider a nonlinear random dynamical system φ(n, ω, x) in a Banach space X.

We assume that φ(n, ω, x) has a random invariant set A(ω). By invariance we mean

that

φ(n, ω,A(ω)) = A(θnω).

We will see in section 9 that if the conditions of Theorem A holds for the linearized

system along orbits in A(ω) and there is no zero Lyapunov exponent and lα < 0,

then the nonuniform hyperbolicity holds. Our results on the existence of stable and

unstable manifolds may be stated as

Theorem B. (Existence of Stable and Unstable Manifold) Let φ(ω, ·) be a Ck, k ≥

2, random map on Banach space X. Let A(ω) be invariant subset of X. Assume

that φ(ω, ·) is non-uniformly hyperbolic on A. Then there exist stable and unstable

manifolds of A.

The theorem we have here is an extension of Pesin’s stable manifold theorem to

infinite dimensional random dynamical systems in a Banach space. The stable man-

ifold theorem for nonuniformly hyperbolic diffeomorphisms on a compact manifold

was first established by Pesin in his celebrated paper [36]. The Pesin’s theorem was

later extended to Hilbert space by Ruelle [39] for not only deterministic dynamical

systems but also random dynamical systems. Mané extended it to deterministic dy-

namical systems with a compact invariant set in a Banach space. The proof of Pesin’s

stable manifold theorem for random dynamical systems on a compact manifolds can

be founded in [17]. The local theory of invariant manifolds for finite dimensional

random dynamical systems are given in [43] and Arnold [1].
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1.3 Nontechnical Overview.

Our proof of Theorem A is based on Mane’s approach and consists of seven main

steps. The most significant difference we have here is that the metric dynamical sys-

tem θ is only a measurable function on a probability space, the base space Ω has no

topology and the base flow θ is not continuous, and S(ω) is only strongly measurable.

Since the phase space X is a Banach space, there is no inner product, thus the ap-

proach used by Ruelle is not applicable. However, some of ideas from Ruelle will be

used. We will also use ideas from Thieullen. In order to overcome these difficulties,

new techniques are needed to establish the existence of Lyapunov exponents and their

associated random invariant subspaces.

Step 1. Volume Functions.

We first introduce a volume function in a Banach space and give its basic properties.

Then, we study the exponential growth rate of the volume function under a linear

transformation and its relationships with the Kuratowski measure of the transforma-

tion. These details are given in Section 4.

Step 2. Gap and Distance between Closed Subspaces.

In Section 5, we first review the properties of the gap and distance between two closed

subspaces of a Banach space X, which are taken from Kato [12]. Under this distance,

the set of closed linear subspaces of X is a complete metric space. We show that the

direct sum is a continuous function. As a consequence, we have that a measurable

base gives the measurability of the space.

Step 3. Exponential Growth Rates.

We study five exponential growth rates: (1) the exponential growth rate of the volume

9



function along pullback orbits of linear random dynamical systems; (2) the largest

Lyapunov exponent; (3) the essential exponent; (4) the essential growth rate along

pullback orbits; and (5) the exponential growth rate of the norm of the system along

the pullback orbits. Kingman’s subadditive ergodic theorem is used to establish the

existence of these rates. A key estimate is that the essential exponent is the upper

bound of the asymptotic limit of the exponential growth rate of the volume function

along pullback orbits. These details are given in Section 6.1.

Step 4. Random Invariant Unstable Subspace.

In Section 6.2, we consider a random invariant unstable subspace Eλ with the ex-

ponential growth rate λ between the largest Lyapunov exponent and the essential

exponent. In Section 6.1, we first show by using the volume function that it is a

finite dimensional space. Then, we prove that its dimension is bounded below by

an integer m which is completely determined by the exponential growth rate of the

volume function along pullback orbits and the dimension of Eλ is exact m when λ

equals to the largest Lyapunov exponent κ(Φ). Again, the main tool is the volume

function. We also use a lemma due to Pliss on the estimation of a partial sum and

the Birkhoff ergodic theorem.

Step 5. Measurability of Eκ(Φ)(ω).

We modify the theorem of measurable selection taken from [3]. By using this mod-

ified theorem and the volume function, we construct a sequence of measurable m-

dimensional spaces and show that this sequence converges to Eκ(Φ)(ω).

Step 6. Oseledets Spaces.

In Subsection 6.3, we show that Eκ(Φ)(ω) is the Oseledets space associated with the

10



largest Lyapunov exponent.

Step 7. Measurable Invariant Complementary Subspace.

It is well-known that any finite dimensional subspace of a Banach space has a com-

plementary subspace. Here, we show that the finite dimensional random invariant

subspace Eκ(Φ)(ω) has a measurable and invariant complementary subspace. We first

show that every finite dimensional measurable subspace has a measurable basis by us-

ing the modified measurable selection theorem. Then we prove a measurable version

of the Hahn-Banach theorem: every strongly measurable bounded linear functional

on a finite dimensional subspace of a separable Banach space X can be extended

to a measurable bounded linear functional on X with the same norm. To construct

the measurable and invariant complementary subspace, we first construct a strongly

measurable projection which gives an approximation of the complementary subspace.

Using this approximation as a coordinate axis and the construction of the stable man-

ifold, we construct the measurable and invariant complementary subspace. These

details are given in Section 7.

The proof of Theorem A is given in Section 8 based on induction. In Section 9,

we prove Theorem B by using the Lyapunov-Perron’s approach.

Acknowledgement. We would like to thank L. Arnold for his valuable suggestions

and B. Schmalfuss for sending us a copy of Schaumlöffel’s thesis.
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2 Notations and Preliminaries

The results and proofs represented in this thesis require a certain amount of technical

notations and lemmas which we collect in this section for future reference.

2.1 Random Dynamical Systems

In this section, we review some of the basic concepts on random dynamical systems

in a Banach Space that are taken from Arnold [1].

Let (Ω,F , P ) be a probability space and X be a Banach space. Let T = R or Z

and T+ = R+ or Z+. T and T+ are endowed with their Borel σ− algebra.

Definition 1. A family (θt)t∈T of mappings from Ω into itself is called a metric

dynamical system if

(1) (ω, t) → θtω is F ⊗ B(T) measurable;

(2) θ0 = idΩ, the identity on Ω , θt+s = θt ◦ θs for all t, s ∈ T;

(3) θt preserves the probability measure P .

Definition 2. A map

φ : T+ × Ω ×X → X, (t, ω, x) 7→ φ(t, ω, x),

is called a random dynamical system (or a cocycle) on the Banach space X over a

metric dynamical system (Ω,F , P, θt)t∈T if

(1) φ is B(T+) ⊗F ⊗ B(X)-measurable;

12



(2) The mappings φ(t, ω) := φ(t, ω, ·) : X → X form a cocycle over θt:

φ(0, ω) = Id, for all ω ∈ Ω,

φ(t+ s, ω) = φ(t, θsω) ◦ φ(s, ω), for all t, s ∈ T+, ω ∈ Ω.

A typical example of φ is the solution operator of a random or stochastic partial

differential equation. See, for example,[8], [7], [18], and [32].

Here we borrow an example from [1]

Example 1. (Linear and Affine RDS) (i) Linear RDS: Let the measurable func-

tion A : Ω → Rd×d satisfy A ∈ L1(Ω,F ,P). Then

ẋt = A(θtω)xt

generates a unique C∞ RDS Φ satisfying

Φ(t, ω) = I +

∫ t

0

A(θsω)Φ(s, ω)ds

and

det Φ(t, ω) = exp

∫ t

0

traceA(θsω)ds.

Also, differentiating Φ(t, ω)Φ(t, ω)−1 = I yields

Φ(t, ω)−1 = I −
∫ t

0

Φ(s, ω)−1A(θsω)ds.

Affine RDS: The equation

ẋt = A(θtω)xt + b(θtω), A, b ∈ L1(Ω,F ,P),

13



generates a unique C∞ RDS. The variation of constants formula yields

ϕ(t, ω)x = Φ(t, ω)x+

∫ t

0

Φ(t, ω)Φ(u, ω)−1du

= Φ(t, ω) +

∫ t

0

Φ(t− u, θuω)b(θuω)du,

where Φ is the matrix cocycle generated by ẋt = A(θtω)xt.

φ(t, ω, x) is said to be a CN random dynamical systems if φ is CN in x.

A map S : Ω → L(X,X) is called a linear random map in a separable Banach

space X if it is strongly measurable, i.e., S(·)x : Ω → X is measurable for each

x ∈ X, where L(X,X) is the usual Banach space of bounded linear operators from X

to X. A linear random map S(ω) generates a linear random dynamical system with

one-sided time over the metric dynamical system (Ω,F , P, (θn)n∈Z).

Φ(n, ω) =















S(θn−1ω) · · ·S(ω), n > 0

I, n = 0.

If S−1(ω) exists and is also a linear random map, then S(ω) generates a linear

random dynamical system with two-sided time over the metric dynamical system

(Ω,F , P, (θn)n∈Z).

Φ(n, ω) =































S(θn−1ω) · · ·S(ω), n > 0

I, n = 0

S−1(θnω) · · ·S−1(θ−1ω), n < 0.

The next concept is of fundamental importance in the study of random dynamical

systems.
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Definition 3. (i) A random variable R : Ω → (0,∞) is called tempered with respect

to a metric dynamical system θn if

lim
t→±∞

1

n
logR(θnω) = 0 P − a.s.

(ii) R : Ω → [0,∞) is called tempered from above if

lim
n→±∞

1

n
log+R(θnω) = 0 P − a.s.

(iii) R : Ω → (0,∞) is called tempered from below if 1/R is tempered from above.

2.2 Ergodic Theory

In this section we will state some fundamental results of ergodic theory which will be

a language in the proof.

Let (Ω,F ,P) be a probability space. T : Ω → Ω is called measure-preserving

transform if T satisfies:

(i) T is surjective,

(ii) T is measurable,

(iii) P(T−1A) = P(A) for any A ∈ F .

A set A ∈ F is called invariant if A = T−1A. T is called ergodic if Ω and ∅ are the

only invariant sets.

Theorem 1. (Birkhoff’s Ergodic Theorem) Let T : Ω → Ω be a measure-preserving

transform, f be a measurable function. Then there is a full measure set Ω̃ ⊂ Ω and a

measurable function f̄ such that for any ω ∈ Ω̃

lim
n→∞

1

n

n
∑

i=1

f ◦ T i(ω) = f̄(ω).
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If T is ergodic, then

lim
n→∞

1

n

n
∑

i=1

f ◦ T i(ω) =

∫

Ω

fdP.

By choosing special f such as characteristic functions, one have

Corollary 2. For any measurable set A and ergodic transform T

lim
N→∞

1

N
♯{T n(ω) ∈ A, 1 ≤ n ≤ N} = P(A) a.e..

The following theorem is taken from [1]

Theorem 3. (Subadditive Ergodic Theorem). (M,Σ, ρ) denotes a probability space,

and f : M → M a measurable map preserving ρ. Let {Fn}n>0 be a sequence of

measurable functions from M to R
⋃{−∞} satisfying the conditions:

(a) integrability : F+
1 ∈ L1(M,Σ, ρ),

(b) subadditivity : Fm+n ≤ Fm + Fn ◦ fmalmost everywhere.

Then there exists an f -invariant measurable function F : M → R
⋃{−∞} such that

F+ ∈ L1(M,Σ, ρ),

lim
n→∞

1

n
Fn = F a.s.

and

lim
n→∞

1

n

∫

Fn(x)ρ(dx) = inf
n∈N

1

n

∫

Fn(x)ρ(dx) =

∫

F (x)ρ(dx).

2.3 Measures of noncompactness

We now review the measures of noncompactness and their properties. Let B be a

subset of X. The Kuratowski measure of noncompactness, α, defined by

α(B) = inf{d : B has a finite cover of diameter < d}.
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The α-measure of the noncompactness satisfies

(i) α(B) = 0 for B ⊂ X if and only if B is precompact.

(ii) α(B ∪ C) = max{α(B), α(C)} for B,C ⊂ X.

(iii) α(B + C) ≤ α(B) + α(C).

(iv) α(closed convex hull of B) = α(B).

(v) If B1 ⊃ B2 ⊃ · · · are nonempty closed sets of X such that α(Bi) → 0 as i→ ∞,

then
⋂

i≥1Bi is nonempty and compact.

Let L be a map from X to X. We define

||L||α = inf
{

k > 0 : α
(

L(B)
)

≤ kα(B) for all bounded sets B ⊂ X
}

. (1)

If L is a bounded linear operator, then

||L||α = α
(

L(B(0, 1))
)

,

whereB(0, 1) is the unit ball ofX with center at 0. Furthermore, ||·||α is multiplicative

norm:

‖L1 + L2‖α ≤ ‖L1‖α + ‖L2‖α, ‖L1 ◦ L2‖α ≤ ‖L1‖α‖L2‖α

and ‖ · ‖α is a continuous function on L(X,X). The number ||L||α is related to the

radius of the essential spectrum of L. The limit limn→∞ ||Ln||1/n
α is equal to the radius

of the essential spectrum of L, see Nussbaum [33].

17



3 Main Results

In this section, we state our main results. We consider a linear random map S(ω)

in a separable Banach space X. We assume that S(ω) is injective almost surely. As

we have seen in Section 2, S(ω) generates a one-side time random dynamical system

Φ(n, ω) on X over the metric dynamical system (θn)n∈Z. We note that (Φ(n, ω))−1

may not be a bounded linear operator since the range of S(ω) may not be the whole

space.

Before we state our main results, introduce two important quantities

lα(ω) = lim
n→+∞

1

n
log ‖Φ(n, ω)‖α

and

κ(Φ)(ω) = lim
n→+∞

1

n
log ‖Φ(n, ω)‖,

where || · ||α is defined in (1), which is related to the essential spectrum and κ(Φ)(ω) is

the largest Lyapunov exponent. In the deterministic case when Φ(n, ω) = Sn where S

is a bounded linear operator, elα is the radium of the essential spectrum of S. We will

see that both limits exist almost surely under the assumptions of our main theorem.

We will also see that κ(Φ)(ω) ≥ lα(ω) and they are θ invariant.

Theorem 4. (Multiplicative Ergodic Theorem) Assume that S(·) : Ω → L(X,X) is

strongly measurable, S(ω) is injective almost everywhere and

log+ ||S(·)|| ∈ L1(Ω,F , P ).

Then there exists a θ-invariant subset Ω̃ ⊂ Ω of full measure such that for each ω ∈ Ω̃

only one of the following conditions holds
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(I) κ(Φ)(ω) = lα(ω).

(II) There exist k(ω) numbers λ1(ω) > . . . > λk(ω)(ω) > lα(ω) and a splitting

X = E1(ω) ⊕ · · · ⊕ Ek(ω)(ω) ⊕ F (ω)

of finite dimensional linear subspaces Ej(ω) and infinite dimensional linear sub-

space F (ω) such that

1) Invariance: k(θω) = k(ω), λi(θω) = λi(ω), S(ω)Ej(ω) = Ej(θω) and

S(ω)F (ω) ⊂ F (θω);

2) Lyapunov Exponents:

lim
n→±∞

1

n
log ‖Φ(n, ω)v‖ = λj(ω) for all v(6= 0) ∈ Ej(ω), 1 ≤ j ≤ k;

3) Exponential Decay Rate on F (ω):

lim sup
n→+∞

1

n
log ‖Φ(n, ω)|F (ω)‖ ≤ lα(ω)

and if v(6= 0) ∈ F (ω) and (Φ(n, θ−nω))−1v exists for all n ≥ 0, which is

denoted by Φ(−n, ω)v, then

lim inf
n→+∞

1

n
log ‖Φ(−n, ω)v‖ ≥ −lα(ω);

4) Measurability and Temperedness: k(ω), λi(ω), and Ej(ω) are measurable

and the projection operators associated with the decompositions

X =
(

j
⊕

i=1

Ei(ω)
)

⊕
(

(

k(ω)
⊕

i=j+1

Ei(ω)
)

⊕ F (ω)
)

=
(

k(ω)
⊕

i=1

Ei(ω)
)

⊕ F (ω)
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are strongly measurable and tempered.

(III) There exist infinitely many finite dimensional subspaces Ej(ω), infinitely many

infinite dimensional subspaces Fj(ω), and infinitely many numbers

λ1(ω) > λ2(ω) > . . . > lα(ω) with lim
j→+∞

λj(ω) = lα(ω)

such that

1) Invariance: λi(θω) = λi(ω), S(ω)Ej(ω) = Ej(θω), S(ω)Fj(ω) ⊂ Fj(θω);

2) Invariant Splitting:

E1(ω) ⊕ · · · ⊕ Ej(ω) ⊕ Fj(ω) = X and Fj(ω) = Ej+1(ω) ⊕ Fj+1(ω);

3) Lyapunov Exponents:

lim
n→±∞

1

n
log ‖Φ(n, ω)v‖ = λj(ω), for all v(6= 0) ∈ Ej(ω);

4) Exponential Decay Rate on Fj(ω):

lim
n→+∞

1

n
log ‖Φ(n, ω)

∣

∣

Fj(ω)
‖ = λj+1(ω)

and if for v(6= 0) ∈ Fj(ω) such that Φ(−n, ω)v exists for all n ≥ 0, then

lim inf
n→+∞

1

n
log ‖Φ(−n, ω)v‖ ≥ −λj+1(ω);

5) Measurability and Temperedness: λj(ω) and Ej(ω) are measurable and the
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projection operators associated with the decomposition

X =

(

j
⊕

i=1

Ei(ω)

)

⊕ Fj(ω)

are strongly measurable and tempered.

Here λi(ω) are the so-called Lyapunov exponents and Ei(ω), Fi(ω) and F (ω) are the

so-called Oseledets spaces.

As a corollary of Theorem 4, we have the following for compact linear random

dynamical systems.

Theorem 5. (Multiplicative Ergodic Theorem for Compact Linear Random Dynami-

cal Systems) Assume that S(·) : Ω → L(X,X) is strongly measurable, S(ω) is injective

and compact almost everywhere and

log+ ||S(·)|| ∈ L1(Ω,F , P ).

Then there exists a θ-invariant subset Ω̃ ⊂ Ω of full measure such that for each ω ∈ Ω̃

only one of the following conditions holds

(I) κ(Φ)(ω) = −∞;

(II) There exist k(ω) numbers λ1(ω) > . . . > λk(ω)(ω) > −∞ and a splitting

X = E1(ω) ⊕ · · · ⊕ Ek(ω)(ω) ⊕ F (ω)

of finite dimensional linear subspaces Ej(ω) and infinite dimensional linear sub-

space F (ω) such that
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1) Invariance: k(θω) = k(ω), λi(θω) = λi(ω), S(ω)Ej(ω) = Ej(θω) and

S(ω)F (ω) ⊂ F (θω);

2) Lyapunov Exponents:

lim
n→±∞

1

n
log ‖Φ(n, ω)v‖ = λj(ω) for all v(6= 0) ∈ Ej(ω), 1 ≤ j ≤ k;

3) Exponential Decay Rate on F (ω):

lim sup
n→+∞

1

n
log ‖Φ(n, ω)|F (ω)‖ = −∞

and if v(6= 0) ∈ F (ω) and (Φ(n, θ−nω))−1v exists for all n ≥ 0, which is

denoted by Φ(−n, ω)v, then

lim inf
n→+∞

1

n
log ‖Φ(−n, ω)v‖ = +∞;

4) Measurability and Temperedness: k(ω), λi(ω), and Ej(ω) are measurable

and the projection operators associated with the decompositions

X =
(

j
⊕

i=1

Ei(ω)
)

⊕
(

(

k(ω)
⊕

i=j+1

Ei(ω)
)

⊕ F (ω)
)

=
(

k(ω)
⊕

i=1

Ei(ω)
)

⊕ F (ω)

are strongly measurable and tempered.

(III) There exist infinitely many finite dimensional subspaces Ej(ω), infinitely many

infinite dimensional subspaces Fj(ω), and infinitely many numbers

λ1(ω) > λ2(ω) > . . . > −∞ with lim
j→+∞

λj(ω) = −∞

such that
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1) Invariance: λi(θω) = λi(ω), S(ω)Ej(ω) = Ej(θω), S(ω)Fj(ω) ⊂ Fj(θω);

2) Invariant Splitting:

E1(ω) ⊕ · · · ⊕ Ej(ω) ⊕ Fj(ω) = X and Fj(ω) = Ej+1(ω) ⊕ Fj+1(ω);

3) Lyapunov Exponents:

lim
n→±∞

1

n
log ‖Φ(n, ω)v‖ = λj(ω), for all v(6= 0) ∈ Ej(ω);

4) Exponential Decay Rate on Fj(ω):

lim
n→+∞

1

n
log ‖Φ(n, ω)

∣

∣

Fj(ω)
‖ = λj+1(ω)

and if for v(6= 0) ∈ Fj(ω) such that Φ(−n, ω)v exists for all n ≥ 0, then

lim inf
n→+∞

1

n
log ‖Φ(−n, ω)v‖ ≥ −λj+1(ω);

5) Measurability and Temperedness: λj(ω) and Ej(ω) are measurable and the

projection operators associated with the decomposition

X =

(

j
⊕

i=1

Ei(ω)

)

⊕ Fj(ω)

are strongly measurable and tempered.

The next theorem is the multiplicative ergodic theorem for continuous time linear

random dynamical systems.

Theorem 6. (Multiplicative Ergodic Theorem for Continuous Time Linear Random

Dynamical Systems) Let Φ(t, ω) : R+ × Ω → L(X,X) be a continuous time cocycle
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and X be a separable Banach space. Assume Φ(1, ·) : Ω → L(X,X) is strongly

measurable, Φ(1, ω) is injective almost everywhere, and

sup
0≤s≤1

log+ ||Φ(s, ·)|| and sup
0≤s≤1

log+ ||Φ(1 − s, θs·)|| ∈ L1(Ω,F , P ).

Let

lα(ω) = lim
s→+∞

1

s
log ‖Φ(s, ω)‖α

and

κ(Φ)(ω) = lim
s→+∞

1

s
log ‖Φ(s, ω)‖.

Then there exists a θt-invariant subset Ω̃ ⊂ Ω of full measure such that for each ω ∈ Ω̃

only one of the following conditions holds

(I) κ(Φ)(ω) = lα(ω).

(II) There exist k(ω) numbers λ1(ω) > . . . > λk(ω)(ω) > lα(ω) and a splitting

X = E1(ω) ⊕ · · · ⊕ Ek(ω)(ω) ⊕ F (ω)

of finite dimensional linear subspaces Ej(ω) and infinite dimensional linear sub-

space F (ω) such that

1) Invariance: k(θtω) = k(ω), λi(θ
tω) = λi(ω), Φ(t, ω)Ej(ω) = Ej(θ

tω) and

Φ(t, ω)F (ω) ⊂ F (θtω);

2) Lyapunov Exponents:

lim
t→±∞

1

t
log ‖Φ(t, ω)v‖ = λj(ω) for all v(6= 0) ∈ Ej(ω), 1 ≤ j ≤ k;
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3) Exponential Decay Rate on F (ω):

lim sup
t→+∞

1

t
log ‖Φ(t, ω)|F (ω)‖ ≤ lα(ω)

and if v(6= 0) ∈ F (ω) and (Φ(t, θ−tω))−1v exists for all t ≥ 0, which is

denoted by Φ(−t, ω)v, then

lim inf
t→+∞

1

t
log ‖Φ(−t, ω)v‖ ≥ −lα(ω);

4) Measurability and Temperedness: k(ω), λi(ω), and Ej(ω) are measurable

and the projection operators associated with the decompositions

X =
(

j
⊕

i=1

Ei(ω)
)

⊕
(

(

k(ω)
⊕

i=j+1

Ei(ω)
)

⊕ F (ω)
)

=
(

k(ω)
⊕

i=1

Ei(ω)
)

⊕ F (ω)

are strongly measurable and tempered.

(III) There exist infinitely many finite dimensional subspaces Ej(ω), infinitely many

infinite dimensional subspaces Fj(ω), and infinitely many numbers

λ1(ω) > λ2(ω) > . . . > lα(ω) with lim
j→+∞

λj(ω) = lα(ω)

such that

1) Invariance: λi(θ
tω) = λi(ω), Φ(t, ω)Ej(ω) = Ej(θ

tω), Φ(t, ω)Fj(ω) ⊂

Fj(θ
tω);

2) Invariant Splitting:

E1(ω) ⊕ · · · ⊕ Ej(ω) ⊕ Fj(ω) = X and Fj(ω) = Ej+1(ω) ⊕ Fj+1(ω);
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3) Lyapunov Exponents:

lim
t→±∞

1

t
log ‖Φ(t, ω)v‖ = λj(ω), for all v(6= 0) ∈ Ej(ω);

4) Exponential Decay Rate on Fj(ω):

lim
t→+∞

1

t
log ‖Φ(t, ω)

∣

∣

Fj(ω)
‖ = λj+1(ω)

and if for v(6= 0) ∈ Fj(ω) such that (Φ(t, θ−tω))−1v exists for all t ≥ 0,

which is denoted by Φ(−t, ω)v, then

lim inf
t→+∞

1

t
log ‖Φ(−t, ω)v‖ ≥ −λj+1(ω);

5) Measurability and Temperedness: λj(ω) and Ej(ω) are measurable and the

projection operators associated with the decomposition

X =

(

j
⊕

i=1

Ei(ω)

)

⊕ Fj(ω)

are strongly measurable and tempered.

The proof of Theorem 6 follows from Theorem 4 and the following facts.

Lemma 7. Under the assumptions of Theorem 6, it holds almost everywhere that for

every v ∈ X

lim inf
s→+∞

1

s
log ‖Φ(s, ω)v‖ ≥ lim inf

n→+∞

1

n
log ‖Φ(n, ω)v‖, (2)

lim sup
s→+∞

1

s
log ‖Φ(s, ω)v‖ ≤ lim sup

n→+∞

1

n
log ‖Φ(n, ω)v‖. (3)

The proof of this lemma follows from a standard argument. For completeness, we

provide the proof here.
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Proof. For s ∈ R+, let [s] := sup{n ∈ N ∪ {0} : n ≤ s} and {s} := s− [s]. By using

the cocycle property, we obtain that

‖Φ(s, ω)v‖ ≤ ‖Φ({s}, θ[s]ω)‖‖Φ([s], ω)v‖

and

‖Φ([s], ω)v‖ ≤ ‖Φ(1 − {s}, θs−1ω)‖‖Φ(s− 1, ω)v‖.

This implies

lim sup
s→+∞

1

s
log ‖Φ(s, ω)v‖ ≤ lim sup

s→+∞

1

[s]
log ‖Φ([s], ω)v‖+lim sup

s→+∞

1

[s]
log sup

0≤t≤1
‖Φ(t, θ[s]ω)‖.

Since log sup0≤t≤1 ‖Φ(t, ω)‖ ≤ sup0≤t≤1 log+ ‖Φ(t, ω)‖ ∈ L1(Ω,F , P ), we have that

lim sup
s→+∞

1

[s]
log sup

0≤t≤1
‖Φ(t, θ[s]ω)‖ ≤ 0.

Similarly, we have

lim inf
s→+∞

1

[s]
log ‖Φ([s], ω)v‖

≤ lim inf
s→+∞

1

s− 1
log ‖Φ(s− 1, ω)v‖ + lim sup

s→+∞

1

[s] − 1
log sup

0≤t≤1
‖Φ(1 − t, θ[s]−1θtω)‖.

We also have that log sup0≤t≤1 ‖Φ(1 − t, θtω)‖ ≤ sup0≤t≤1 log+ ‖Φ(1 − t, θtω)‖ ∈

L1(Ω,F , P ). Thus,

lim sup
s→+∞

1

[s] − 1
log sup

0≤t≤1
‖Φ(1 − t, θ[s]−1θtω)‖ ≤ 0 a.e..

The proof is complete.

From Theorem 4, we have the following. The details are given in Section 7.
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Theorem 8. (Nonuniformly Exponential Dichotomy) If λi(ω) 6= 0 and lα(ω) < 0 for

all 1 ≤ i, let Eu(ω) =
⊕

λi>0Ei(ω) and Es(ω) to be the invariant complementary

subspace of Eu(ω). Also denote Πs(ω), Πu(ω) to be projections onto Es(ω), Eu(ω)

respectively associate to the splitting E(ω) = Es(ω)⊕Eu(ω). Then there is a random

variable β : Ω → (0,∞) and a tempered random variable K(ω) : Ω → [1,∞) such

that β(θω) = β(ω) for all ω ∈ Ω, which are constant when θn is ergodic, and

||Φ(n, ω)Πs(ω)|| ≤ K(ω)e−β(ω)n for n ≥ 0 (4)

||Φ(n, ω)Πu(ω)|| ≤ K(ω)eβ(ω)n for n ≤ 0. (5)

Here β(ω) is chosen to be smaller than the absolute values of all Lyapunov exponents.

For example, one may choose

β(ω) =
1

2
min{‖λi(ω)‖}.

However, along each orbit θnω, β(ω) is a constant and K(ω) can increase only at a

subexponential rate, which together with conditions (101) and (102) imply that the

linear system Φ(n, ω) is nonuniformly hyperbolic in the sense of Pesin.
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4 Volume Function in Banach Spaces

In this section, we study a volume function defined in a Banach space. This func-

tion plays key roles in establishing Lyapunov exponents and measurable Oseledets

invariant subspaces.

4.1 Volume Function Vn(w1, w2, . . . , wn).

Let X be a Banach space with norm ‖ · ‖. For each positive integer n, we define a

function Vn from the product space Xn to R+ by

Vn(w1, w2, . . . , wn) =
(

n−1
∏

i=1

dist(wi, span{wi+1, . . . , wn})
)

‖wn‖, (6)

where wi ∈ X for i = 1, · · · , n− 1, and

dist(wi, span{wi+1, . . . , wn}) = inf{‖wi − v‖ | v ∈ span{wi+1, . . . , wn}}

for i = 1, . . . , n− 1.

For the sake of convenience, we define

dist(wi, span{wi+1, . . . , wn}) =















dist(wi, span{wi+1, . . . , wn}), 1 ≤ i < n,

||wn||, i = n.

(7)

Remark 1. In Euclidian Space Rn, with a given base (not necessary orthogonal),

each vector v can be represented by a n × 1 matrix, denoted by ṽ, and the inner

product satisfies that < u, v >= ũT G ṽ, where G is a positive symmetric matrix.

For vectors v1, v2, · · · , vn, by using Gram-Schmidt method, there is a lower triangular
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matrix T having 1s on its diagonal such that (ṽ1, · · · , ṽn)T is a G-orthogonal matrix.

Note that detT = 1 and

[(ṽ1, · · · , ṽn)T ]T G [(ṽ1, · · · , ṽn)T ] = diag(dist(vi, span{vi+1, . . . , vn})2)i=1,...,n.

Thus we have

V (v1, · · · , vn) =
√

detG| det(ṽ1, · · · , ṽn)|.

So this volume function we defined in Banach Spaces becomes an usual volume (with-

out direction) when goes back to Euclidian Spaces.

We first note that

0 ≤ Vn(w1, w2, . . . , wn) ≤
n
∏

i=1

‖wi‖.

It is also not hard to see that this volume function satisfies the usual property

Vn(k1w1, k2w2, . . . , knwn) =
(

n
∏

i=1

|ki|
)

Vn(w1, w2, . . . , wn) (8)

for ki ∈ R, i = 1, · · · , n.

The next lemma gives a uniform lower bound for the distance between a vector

and the span of other vectors.

Lemma 9. Assume that vectors vi ∈ X, 1 ≤ i ≤ n, satisfy that for some C > 0

dist(vj, span{vi}j<i≤n) > C, 1 ≤ j ≤ n.

Then

dist(vj, span{vi}1≤i≤n, i6=j) >

(

C

r + C

)n−1

C, 1 ≤ j ≤ n, (9)
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where r = max1≤i≤n ‖vi‖.

Proof. Let 1 ≤ m ≤ n. Then, there exist n real numbers am
i , 1 ≤ i ≤ n, such that

am
m = 1 and

dist(vm, span{vi}1≤i≤n, i6=m) =
∥

∥

∥

n
∑

i=1

am
i vi

∥

∥

∥
. (10)

Let

m′ = min
{

i
∣

∣

∣ |am
i | ≥

( C

r + C

)n−i}

.

Then m′ ≤ m since am
m = 1. Therefore, by (10), we have

dist(vm, span{vi}1≤i≤n, i6=m)

≥
∥

∥

∥

n
∑

i=m′

am
i vi

∥

∥

∥−
m′−1
∑

i=1

|am
i |‖vi‖

≥|am
m′ |dist(vm′ , span{vi}m′+1≤i≤n) − r

m′−1
∑

i=1

|am
i |

≥
(

C

r + C

)n−m′

C − r

(

(

C

r + C

)n−m′

C

r
− C

r

(

C

r + C

)n−1
)

≥
(

C

r + C

)n−1

C.

This completes the proof.

The norm we used in the product space is the maximum norm defined by

‖(w1, . . . , wn)‖ = max
1≤i≤n

‖wi‖.

Lemma 10. For each fixed n ∈ N, Vn is a uniformly continuous function on each

bounded subset of Xn.

Proof. The proof of the continuity of Vn is quite straightforward. However, since X is

an infinite dimensional space and there is no local compactness, the uniform continuity
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on a bounded set does not follows immediately. To see this, it is enough to show that

Vn is uniformly continuous on each ball B(0, r) of Xn. Let w = (w1, . . . , wn) ∈ B(0, r)

and ∆w = (∆w1, . . . ,∆wn) ∈ Xn. We will show that for fixed r > 0 and n and for

each ǫ > 0 there exists δ > 0 depending only on ǫ such that if ‖∆w‖ < δ, then

‖Vn(w + ∆w) − Vn(w)‖ ≤ ǫ.

Let

C(w) = min
{

dist(wi, span{wj}i<j≤n) | 1 ≤ i ≤ n
}

and R = 2n+1rn/ǫ. We consider two cases.

Case 1. We assume C(w) ≥ r
R
. Let δ = min

{

r, r
2nR(1+R)n−1 ,

r
n2R2(1+R)n−1

}

. We first

note that there exists {aij}1≤i≤j≤n ⊂ R such that

aii = 1 and dist(wi, span{wj}i<j) = ‖
n
∑

j=i

aijwj‖.

Since ‖∑n
j=i+1 aijwj‖ ≤ dist(wi, span{wj}i<j) + ‖wi‖ ≤ 2r, by using Lemma 9, we

have that

|aij| ≤
2r

dist(wj, span{wk}k 6=j)
≤ 2r
(

C(w)
r+C(w)

)n−1

C(w)
≤ 2R(1 +R)n−1.
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For any ∆w such that ‖∆w‖ < δ, we have w + ∆w ∈ B(0, 2r) and for 1 ≤ i ≤ n,

dist(wi + ∆wi, span{wj + ∆wj}i<j≤n) − dist(wi, span{wj}i<j≤n)

= dist(wi + ∆wi, span{wj + ∆wj}i<j≤n) − ‖
n
∑

j=i

aijwj‖

≤ ‖
n
∑

j=i

aij(wj + ∆wj) −
n
∑

j=i

aijwj‖ ≤ ‖
n
∑

j=i

aij∆wj‖

<
n
∑

j=i

‖aij‖δ ≤ 2(1 +R)n−1Rnδ.

(11)

Similarly, there exists {a′ij}1≤i≤j≤n ⊂ R such that

a′ii = 1 and dist(wi + ∆wi, span{wj + ∆wj}i<j≤n) = ‖
n
∑

j=i

a′ij(wj + ∆wj)‖.

Let

M ′
i = max{|a′ij|}i≤j≤n and M ′ = max{|a′ij|}1≤i,j≤n.

Then, by Lemma 9 and the choice of δ, we have

2r ≥dist(wi + ∆wi, span{wj + ∆wj}i<j≤n)

≥‖
n
∑

j=i

a′ijwj‖ − ‖
n
∑

j=i

a′ij∆wj‖

≥M ′
i min {dist(wj, span{wk}k 6=j)}1≤j≤n − nM ′

iδ

≥M ′
i

(

C(w)

r + C(w)

)n−1

C(w) − nM ′
iδ

≥ M ′
ir

2R(1 +R)n−1
,

which implies

M ′ = max{M ′
i}1≤i≤n ≤ 4R(1 +R)n−1.
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Thus, for 1 ≤ i ≤ n, we obtain

dist(wi, span{wj}i<j≤n) − dist(wi + ∆wi, span{wj + ∆wj}i<j≤n)

=dist(wi, span{wj}i<j≤n) − ‖
n
∑

j=i

a′ij(wj + ∆wj)‖

≤‖
n
∑

j=i

a′ijwj −
n
∑

j=i

a′ij(wj + ∆wj)‖

=‖
n
∑

j=i

a′ij∆wj‖

<
n
∑

j=i

M ′δ ≤ 4R(1 +R)n−1nδ.

(12)

Therefore, from (11) and (12), it follows that for any 1 ≤ i ≤ n

|dist(wi, span{wj}i<j≤n) − dist(wi + ∆wi, span{wj + ∆wj}i<j≤n)| < ǫ

n2n−1rn−1
.

So, we have that

‖Vn(w + ∆w) − Vn(w)‖

=
∥

∥

∥

n
∏

i=1

dist(wi + ∆wi, span{wj + ∆wj}i<j≤n) − Vn(w)
∥

∥

∥

≤
∥

∥

∥

n
∏

i=1

[dist(wi, span{wj}i<j≤n) +K] − Vn(w)
∥

∥

∥

≤n(2r)n−1K < ǫ,

whereK = max1≤i≤n ‖dist(wi, span{wj}i<j≤n)−dist(wi+∆wi, span{wj+∆wj}i<j≤n)‖.

Case 2. Assume that C(w) < r
R
. Choose δ = min

{

r, r
nR(1+R)n−1 ,

r
nR2(1+R)n−1

}

. We

claim that if ‖∆w‖ < δ, then

C(w + ∆w) ≤ ǫ

2nrn−1
.
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Using this claim, we obtain

‖Vn(w + ∆w) − Vn(w)‖ ≤ ‖Vn(w + ∆w)‖ + ‖Vn(w)‖

≤ C(w + ∆w)(2r)n−1 + C(w)rn−1 < ǫ.

We prove this claim by contradiction. Suppose that

C(w + ∆w) >
ǫ

2nrn−1
=

2r

R
.

As in Case 1, we choose {aij}1≤i≤j≤n ⊂ R such that

aii = 1 and dist(wi, span{wj}i<j≤n) = ‖
n
∑

j=i

aijwj‖.

Let

Mi = max{|aij|}i≤j≤n and M = max{|aij|}1≤i,j≤n.

Then, by Lemma 9, we have

r ≥dist(wi, span{wj}i<j≤n)

≥‖
n
∑

j=i

aij(wj + ∆wj)‖ − ‖
n
∑

j=i

aij∆wj‖

≥Mi min {dist(wj + ∆wj, span{wk + ∆wk}k 6=j)}1≤j≤n − nMiδ

≥Mi

(

C(w + ∆w)

2r + C(w + ∆w)

)n−1

C(w + ∆w) − nMiδ

≥ Mir

R(1 +R)n−1
,

which implies

M = max{Mi}1≤i≤n ≤ R(1 +R)n−1.
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Thus for 1 ≤ i ≤ n,

dist(wi + ∆wi, span{wj + ∆wj}i<j≤n) − dist(wi, span{wj}i<j≤n)

= dist(wi + ∆wi, span{wj + ∆wj}i<j≤n) − ‖
n
∑

j=i

aijwj‖

≤ ‖
n
∑

j=i

aij(wj + ∆wj) −
n
∑

j=i

aijwj‖

= ‖
n
∑

j=i

aij∆wj‖ ≤
n
∑

j=i

Mδ ≤ R(1 +R)n−1nδ ≤ r

R
.

Therefore C(w) ≥ C(w+∆w)− r
R
≥ r

R
, which contradicts to the assumption C(w) <

r/R. This completes the proof of the theorem.

From the proof of Lemma 10, we also obtain the following

Lemma 11. Let r > 0, n ∈ N, and 0 < C < r be fixed. For each {wi}1≤i≤n ∈ B(0, r)

satisfying

min

{

dist
(

wi, span{wj}i<j≤n

)

}

1≤i≤n

> C

and each ǫ > 0, there exists a δ > 0 depending only on r, n, C, and ǫ such that if

‖∆wi‖ < δ, then

∣

∣dist(wi, span{wj}i<j≤n) − dist(wi + ∆wi, span{wj + ∆wj}i<j≤n)
∣

∣ < ǫ, 1 ≤ i ≤ n.
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4.2 Change of Volume Under Linear Transformations.

Let T ∈ L(X,X), the space of all bounded linear operators from a Banach space X

to itself. We define

Vn(T ) = sup
‖wi‖=1
1≤i≤n

Vn(Tw1, Tw2, . . . , Twn). (13)

Lemma 12. The following holds

Vn(T ) = sup
Vn(w1,...,wn)=1

Vn(Tw1, . . . , Twn) = sup
Vn(w1,...,wn) 6=0

Vn(Tw1, . . . , Twn)

Vn(w1, . . . , wn)
. (14)

Proof. First, from (8) we have

sup
Vn(w1,...,wn)=1

Vn(Tw1, . . . , Twn) = sup
Vn(w1,...,wn) 6=0

Vn(Tw1, . . . , Twn)

Vn(w1, . . . , wn)
.

Let

V ′
n(T ) = sup

Vn(w1,...,wn)=1

Vn(Tw1, . . . , Twn).

We want to show Vn(T ) = V ′
n(T ). By the definition of V ′

n(T ), for any ǫ > 0, there

exists {wi}1≤i≤n such that

Vn(w1, . . . , wn) = 1

and

Vn(Tw1, Tw2, . . . , Twn) > V ′
n(T ) − ǫ.

Then for any 1 ≤ i ≤ n, we have w′
i ∈ span{wj}i≤j≤n such that ‖w′

i‖ = 1 and

wi − dist(wi, span{wj}i<j≤n)w′
i ∈ span{wj}i<j≤n.
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Therefore,

Vn(w′
1, . . . , w

′
n) = Vn(

w1

dist(w1, span{wj}1<j≤n)
, . . . ,

wn

‖wn‖
) =

Vn(w1, . . . , wn)

Vn(w1, . . . , wn)
= 1

and

Vn(Tw′
1, . . . , Tw

′
n)

= Vn(
Tw1

dist(w1, span{wj}1<j≤n)
, . . . ,

Twn

‖wn‖
)

=
Vn(Tw1, . . . , Twn)

Vn(w1, . . . , wn)

= Vn(Tw1, . . . , Twn)

> V ′
n(T ) − ǫ.

Hence,

Vn(T ) ≥ V ′
n(T ).

On the other hand, there exist linearly independent unit vectors {vi}1≤i≤n such that

Vn(Tv1, . . . , T vn) > Vn(T ) − ǫ.

Since 0 < Vn(v1, . . . , vn) ≤ 1, we have

Vn(Tv1, . . . , T vn)

Vn(v1, . . . , vn)
> Vn(T ) − ǫ.

Thus,

V ′
n(T ) ≥ Vn(T ).

So Vn(T ) = V ′
n(T ). This completes the proof of the lemma.

The next lemma is on the monotonicity of 1
n

log Vn(T ).
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Lemma 13. Let T ∈ L(X,X). Then,

1

n+ 1
log Vn+1(T ) ≤ 1

n
log Vn(T ).

Proof. From the definition of Vn(T ), for any ǫ > 0 there are w1, w2, . . . , wn+1 such

that

‖wi‖ = 1 , i = 1, . . . , n+ 1

and

Vn+1(Tw1, . . . , Twn+1) ≥ Vn+1(T ) − ǫ.

Let k ∈ {1, . . . , n+ 1} such that

dist
(

Twk, span{Twj}k<j≤n+1

)

= min
i=1,...,n+1

{

dist(Twi, span{Twj}i<j≤n+1)
}

,

which is denoted by aǫ
n+1. Thus,

Vn+1(T ) ≤ ǫ+ aǫ
n+1

n+1
∏

i=1
i6=k

dist(Twi, span{Twj}i<j≤n+1)

=ǫ+ aǫ
n+1

n+1
∏

i=k+1

dist
(

Twi, span{Twj}i<j≤n+1) ·
k−1
∏

i=1

dist(Twi, span{Twj}i<j≤n+1

)

≤ǫ+ aǫ
n+1

n+1
∏

i=k+1

dist
(

Twi, span{Twj}i<j≤n+1

)

·
k−1
∏

i=1

dist
(

Twi, span{Twj}i<j≤n+1, j 6=k

)

=ǫ+ aǫ
n+1Vn(Tw1, Tw3, . . . , Twk−1, Twk+1, . . . , Twn+1).

Since aǫ
n+1 ≤ (Vn+1(T ))

1
n+1 , we have

Vn+1(T ) ≤ ǫ+ (Vn+1(T ))
1

n+1Vn(T ),
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thus

Vn+1(T ) ≤ (Vn+1(T ))
1

n+1Vn(T ),

which yields that

1

n+ 1
log Vn+1(T ) ≤ 1

n
log Vn(T ).

The proof of the lemma is complete.

Lemma 13 implies that 1
n

log Vn(T ) has a limit. The following lemma gives a upper

bound for this limit in terms of the measure of noncompactness of operator T .

Lemma 14.

lim
n→+∞

1

n
log Vn(T ) ≤ log 2r(= −∞ when r = 0)

where r = ‖T‖α.

Proof. From Lemma 13, 1
n

log Vn(T ) is a non-increasing sequence. Thus, limn→+∞
1
n

log Vn(T )

exists, which is denoted by A.

We prove this lemma by a contradiction. Suppose A > log 2r. Then, for suffi-

ciently small ǫ > 0, A − 3ǫ > log(2 + ǫ)r. Note that there exists N > 0 such that if

n > N , then

A ≤ 1

n
log Vn(T ) ≤ A+ ǫ,

which means

enA ≤ Vn(T ) ≤ en(A+ǫ).

For any m > N , there exist unit vectors {wi}i=1,...,2m such that

1

2m
log V2m(Tw1, . . . , Tw2m) ≥ 1

2m
log V2m(T ) − ǫ ≥ A− ǫ.
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Let σ be a permutation on {1, . . . , 2m} such that for any 1 ≤ i < j ≤ 2m,

dist(Twσ−1(i), span{Twk}σ−1(i)<k≤2m) ≥ dist(Twσ−1(j), span{Twl}σ−1(j)<l≤2m).

Then,

A− ǫ ≤ 1

2m
log V2m(Tw1, . . . , Tw2m)

=
1

2m

[

2m
∑

i=1

log dist
(

Twσ−1(i), span{Twk}k>σ−1(i)

)

]

≤ 1

2

[ 1

m

m
∑

i=1

log dist
(

Twσ−1(i), span{Twk}k>σ−1(i)

)

+ log dist
(

Twσ−1(m+1), span{Twk}k>σ−1(m+1)

)

]

≤ 1

2

[ 1

m
log

m
∏

i=1

dist
(

Twσ−1(i), span{Twk} k>σ−1(i)
k∈σ−1{1,...,m}

)

+ log dist
(

Twσ−1(m+1), span{Twk}k>σ−1(m+1)

)

]

≤ 1

2

[ 1

m
log Vm(T ) + log dist

(

Twσ−1(m+1), span{Twk}k>σ−1(m+1)

)

]

≤ 1

2
[A+ ǫ+ log dist

(

Twσ−1(m+1), span{Twk}k>σ−1(m+1)

)

],

which implies that

dist
(

Twσ−1(m+1), span{Twk}k>σ−1(m+1)

)

≥ eA−3ǫ.

Thus, by the definition of σ we have

dist
(

Twσ−1(i), span{Twk}k>σ−1(i)

)

≥ eA−3ǫ

for 1 ≤ i ≤ m+ 1. Then, letting

Sm = {Twσ−1(i)}i=1,...,m+1,
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we have

Sm ∈ T [B(0, 1)].

Let D be a subset of Banach space X, define

N(D, ǫ) = inf{N |D can be covered by N balls whose radius are less than ǫ}.

Then

N(Sm,
1

2 + ǫ
eA−3ǫ) ≥ m+ 1,

which goes to infinite as m→ ∞. On the other hand, since ‖T‖α = r and 1
2+ǫ

eA−3ǫ >

r, we have

N

(

T [B(0, 1)],
1

2 + ǫ
eA−3ǫ

)

< +∞,

which gives a contradiction. Hence

lim
n→∞

1

n
log Vn(T ) ≤ log 2r.

This completes the proof of this lemma.

Lemma 15. For any n ∈ N and bounded operators T1, T2, we have

Vn(T2T1) ≤ Vn(T2)Vn(T1).

Proof. This directly follows from (14). In fact, we have that

Vn(T2T1) = sup
Vn(v1,...,vn) 6=0

Vn(T2T1v1, . . . , T2T1vn)

Vn(v1, . . . , vn)

≤ sup
Vn(v1,...,vn) 6=0

Vn(T1v1, . . . , T1vn)

Vn(v1, . . . , vn)
sup

Vn(T1v1,...,T1vn) 6=0

Vn(T2T1v1, . . . , T2T1vn)

Vn(T1v1, . . . , T1vn)

≤ Vn(T1)Vn(T2).
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From the definition of Vn(T ), we have

Lemma 16. Vn(T ) ≤ ‖T‖n.
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5 Gap and Distance Between Closed Linear Sub-

spaces

In this section, we introduce the gap and distance between two closed subspaces of

a Banach space X and give their basic properties. We first give the concepts of gap

and distance taken from Kato [12], pp 197.

Let M and N be the linear subspaces of the Banach space X. Let SM denote the

unit sphere of M . Set

δ(M,N) = sup
u∈SM

dist(u,N), (15)

δ̂(M,N) = max[δ(M,N), δ(N,M)]. (16)

Note that when M = 0, δ(M,N) is not defined by (15). In this case, we define

δ(0, N) = 0. Clearly, when dim(M) ≥ 1, δ(M, 0) = 1. δ̂ is called the gap between M

and N . Note that δ̂ is not a distance.

Define for linear subspaces M 6= 0, N 6= 0

d(M,N) = sup
u∈SM

dist(u, SN), (17)

d̂(M,N) = max[d(M,N), d(N,M)], (18)

and set d(0, N) = 0 for any N and d(M, 0) = 2 for M 6= 0.

Then, the set of closed linear subspaces of X is a complete metric space if the

distance between M,N is given by d̂(M,N), which is denoted by K. The following

estimates also hold

44



δ(M,N) ≤ d(M,N) ≤ 2δ(M,N), δ̂(M,N) ≤ d̂(M,N) ≤ 2δ̂(M,N), (19)

which follows from that for any unit vector u ∈ X,

dist(u, SM) ≤ 2dist(u,M). (20)

For details, see [12], pp 198.

We denote by Km the set of m-dimensional subspaces of X endowed with the

metric d̂. In addition to the above concepts from [12], we also define

d′(M,N) = inf
u∈SM

dist(u, SN), for M,N 6= 0,

d′(0, N) = d′(M, 0) = 0.

(21)

Lemma 17. Let M , N , and Z be finite-dimensional linear subspaces. Then, we have

d′(M,N) = d′(N,M), (22)

d′(M,N) ≥ d′(M,Z) − d(N,Z). (23)

Proof. We first prove that (22) holds. Since M is finite-dimensional, for each v ∈ SN ,

there exists a u ∈ SM such that dist(v, SM) = ‖v−u‖. On the other hand, ‖v−u‖ ≥

dist(u, SN) ≥ d′(M,N). Thus, d′(N,M) ≥ d′(M,N). Switching the positions of M

and N gives (22).

Next, we show (23). Since M , N , and Z are finite-dimensional, for each u ∈ SM ,

there exist v ∈ SN and w ∈ SZ such that dist(u, SN) = ‖u − v‖ and dist(v, SZ) =

‖v − w‖. So, dist(u, SN) ≥ ‖u − w‖ − ‖v − w‖. Using the definitions of d and d′,

we have ‖v − w‖ ≤ d(N,Z) and ‖u− w‖ ≥ dist(u, SZ) ≥ d′(M,Z), which yield (23).
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This completes the proof of this lemma.

Remark 2. Lemma 17 is also true for closed subspaces M,N,Z. The proof needs

only a minor modification.

If M and N are finite-dimensional subspaces, then d′(M,N) > 0 if and only if

M ∩N = {0}. For m,n ∈ N, set

K(m,n) = {(M,N)| M ∈ Km, N ∈ Kn}

endowed with the metric

d̂(m,n)((M1, N1), (M2, N2)) = d̂(M1,M2) + d̂(N1, N2).

Lemma 18. Let K+
(m,n) =

{

(M,N) ∈ K(m,n) | d′(M,N) > 0
}

and define Σ :

K+
(m,n) → Km+n as Σ(M,N) = M ⊕N , then Σ is continuous.

Proof. Let ǫ > 0 and (M,N) ∈ K+
(m,n). For a unit vector v in M ⊕N , we may write

v as v = v1 + v2 where v1 ∈ M and v2 ∈ N . Let C = d′(M,N) > 0. Using (20), we

have

1 ≥ dist(v1, N) ≥ 1

2
‖v1‖d′(M,N) (24)

and

1 ≥ dist(v2,M) ≥ 1

2
‖v2‖d′(N,M), (25)

which give

max{‖v1‖, ‖v2‖} ≤ 2

d′(N,M)
=

2

C
. (26)

Take δ = min{C
4
, Cǫ

16
}. Then for any (E,F ) ∈ K(m,n), if d̂(m,n)((M,N), (E,F )) < δ,
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by (17) we have

d′(F,M) = d′(M,F ) ≥ d′(M,N) − d(F,N) ≥ C − δ ≥ 3

4
C,

d′(E,N) = d′(N,E) ≥ d′(N,M) − d(E,M) ≥ C − δ ≥ 3

4
C.

Thus

d′(E,F ) ≥ d′(E,N) − d(F,N) ≥ 3

4
C − δ ≥ 1

2
C. (27)

For v1 and v2, using the definition of d and (26), there are v′1 ∈ E and v′2 ∈ F such

that

‖v1 − v′1‖ ≤ ‖v1‖d(M,E) ≤ 2δ

C
<
ǫ

4

and

‖v2 − v′2‖ ≤ ‖v2‖d(N,F ) ≤ 2δ

C
<
ǫ

4
.

Therefore,

dist(v1 + v2, E ⊕ F ) <
ǫ

2
.

Then, using (19), we obtain

d(M ⊕N,E ⊕ F ) ≤ 2δ(M ⊕N,E ⊕ F ) < ǫ.

Similarly, for a unit vector u ∈ E ⊕ F , there exist u1 ∈ E and u2 ∈ F such that

u = u1 + u2. In the same fashion as for v1 and v2, using (27), we have

max{‖u1‖, ‖u2‖} ≤ 2

d′(E,F )
≤ 4

C
.

Furthermore, there are u′1 ∈M and u′2 ∈ N such that

‖u1 − u′1‖ ≤ ‖u1‖d(E,M) ≤ 4δ

C
≤ ǫ

4
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and

‖u2 − u′2‖ ≤ ‖u2‖d(F,N) ≤ 4δ

C
≤ ǫ

4
.

Thus,

d(E ⊕ F,M ⊕N) ≤ 2δ(E ⊕ F,M ⊕N) ≤ ǫ.

Hence,

d̂(E ⊕ F,M ⊕N) ≤ ǫ.

This completes the proof of the lemma.

Remark 3. From the proof one can obtain that K+
(m,n) is an open set in K(m,n).

As a special case of Lemma 18, we have

Corollary 19. Let n ≥ 1 and

K+
1×n =

{

(E,F ) ∈ K1 ×Kn

∣

∣ d(E,F ) > 0
}

.

Then, the map Ψ : K+
1×n → K1+n defined by

Ψ(E,F ) = E ⊕ F

is a continuous map.

From the definition of d̂ it follows that if e(ω) 6= 0 is measurable from Ω to X,

then span{e(ω)} is measurable from Ω to K1. Thus, by using Corollary 19, we have

Lemma 20. Let e1(ω), · · · , en(ω) be linearly independent and measurable. Then

span
{

e1(ω), · · · , en(ω)
}

is measurable from Ω to Kn.
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6 Lyapunov Exponents and Oseledets Spaces

In this section we establish the principal Lyapunov exponent and its associated Os-

eledets space. For the sake of simplicity, we assume that the metric dynamical system

(Ω,F , P, {θn}n∈Z) is ergodic. The standard example of an ergodic metric dynamical

system is the one generated by a Wiener process. When Ω can be decomposed into

ergodic components (see Cornfeld, Fomin, and Sinai [5]), we simply restrict our study

to each component. For general non-ergodic metric dynamical systems, the results

can be proved in the same way with some modifications which are given in Appendix

B.

For the remainder of this thesis, we assume

log+ ||S(·)|| ∈ L1(Ω,F , P ). (28)

We will prove Theorem 4 by an induction procedure. We assume that there exists

an invariant splitting of the phase space

X = E(ω) ⊕G(ω),

where E(ω) is a finitely dimensional linear subspace of dimension d ≥ 0 and G(ω) is

a linear subspace of finite codimension, such that

(B1) S(ω)(E(ω)) = E(θω), S(ω)(G(ω)) ⊂ G(θω);

(B2) Mappings ω → E(ω) is measurable and ω → π(ω) is strongly measurable, where

π(ω) is the associated projection from X onto G(ω);

(B3) ‖π(ω)‖ is tempered.
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We consider the restriction of S(ω) onto G(ω). We denote

T (ω) = S(ω)π(ω).

Since S(ω) is injective, T (ω)|G(ω) is injective. For any v ∈ S(θ−1ω)G(θ−1ω), we denote

by T−1(ω)v the vector v′ ∈ G(θ−1ω) such that S(θ−1ω)v′ = v. Let

T n(ω) = T (θn−1ω) · · ·T (ω).

Note that T n(ω)u = Φ(n, ω)u for u ∈ G(ω). For any w ∈ T n(θ−nω)G(θ−nω) we

also denote by T−n(ω)w the vector w′ ∈ G(θ−nω) such that T n(θ−nω)w′ = w. We

summarize the properties of T (ω) as follows

(T1) T (ω) ∈ L(X,X) and T (ω)G(ω) ⊂ G(θω);

(T2) T (ω) is strongly measurable;

(T3) T (ω)x = 0, x ∈ E(ω);

(T4) T (ω)
∣

∣

G(ω)
is injective;

(T5) log+ ‖T (·)
∣

∣

G(·)
‖ ∈ L1(Ω,F , P ).

These properties are the conditions under which our results in this section and next

section hold.

For λ ∈ R, we let

Eλ(ω)

=

{

v ∈ G(ω)| T−n(ω)v exists for all n ≥ 0 and lim
n→+∞

sup
1

n
log ‖T−n(ω) · v‖ ≤ −λ

}

.

(29)
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Our main results of this section are the following.

Theorem 21. If λ > lα, then

dimEλ(ω) < +∞, a.s..

Theorem 22. If κ(T ) > lα, then

dimEκ(T )(ω) = m ≥ 1, a.s.,

where m is a constant. Furthermore, Eκ(T )(·) : Ω → Km is measurable.

Here the largest Lyapunov exponent κ(T ) and the essential exponent lα are given

in Lemma 25.

Remark 4. If we replace π(·) and G(·) by identity operator I and X respectively,

then κ(T ) becomes to be κ(Φ) and in lemma 25, for such T , we will obtain that

lα = lim
n→∞

1

n
log ‖T n(ω)‖α a.e..

Thus, the properties of Eκ(Φ)(ω) follows from these propositions.

Theorem 23. There exists a θ-invariant subset Ω̃ ⊂ Ω of full measure such that for

each ω ∈ Ω̃

lim
n→±∞

1

n
log ‖T n(ω)v‖ = κ(T )

for every v(6= 0) ∈ Eκ(T )(ω). Furthermore,

lim
n→∞

1

n
log ‖T−n(ω)

∣

∣

Eκ(T )(ω)
‖ = −κ(T )
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The proofs of these theorems are based on a number of lemmas and propositions,

which will be given in the following four subsections.

6.1 Exponential Growth Rates.

In this section, we study several exponential growth rates. The first lemma gives the

measurability of ‖T (·)‖α.

Lemma 24. If T : Ω → L(X,X) is strongly measurable, where X is a separable

Banach space, then ‖T (·)‖α is measurable.

Proof. For each r > 0, we denote

Ωr = {ω | ‖T (ω)‖α < r}.

We want to show that Ωr is measurable. Since X is separable, there exist countably

many vectors {xi}i≥1 and {yi}i≥1 such that {xi}i≥1 is dense in X and {yi}i≥1 is dense

in B(0, 1). Let U be the set of all finite subsets of {xi}i≥1. It is easy to see that U

contains countable many elements. So we can assume that U = {Ui}i≥1.

Let

Ω′
r =

+∞
⋃

n=2

+∞
⋃

i=1

+∞
⋂

j=1

{

ω

∣

∣

∣

∣

T (ω)yj ∈
⋃

x∈Ui

B(x, r − r

n
)

}

.

Since T (·) is strongly measurable, Ω′
r is measurable. We will show that Ω′

r = Ωr.

First, we show that Ω′
r ⊂ Ωr. For any ω ∈ Ω′

r, there exist n ≥ 2 and i ≥ 1 such

that

{T (ω)yj}j≥1 ⊂
⋃

x∈Ui

B(x, r − r

n
).

Since for any y ∈ B(0, 1), there exists yj such that ‖yj − y‖ < r
2n‖T (ω)‖

. Then there
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exists x ∈ Ui such that T (ω)y ∈ B(x, r − r
2n

). Thus

T (ω)B(0, 1) ⊂
⋃

x∈Ui

B(x, r − r

2n
).

So ‖T (ω)‖α < r, which implies ω ∈ Ωr.

Next, we prove that Ωr ⊂ Ω′
r. For any ω ∈ Ωr, we have ‖T (ω)‖α < r. Note that

‖T (ω)‖α = r′. Then, there exists n > 1 such that r − r
n
> r′. Thus, there exists a

finite set {x′i}1≤i≤N ⊂ X such that

T (ω)B(0, 1) ∈
N
⋃

i=1

B(x′i, r −
r

n
).

Since {xi}i≥1 is dense in X, for each x′i there exists xi′ such that ‖x′i − xi′‖ < r
2n

. So

B(x′i, r − r
n
) ⊂ B(xi′ , r − r

2n
), therefore

T (ω)B(0, 1) ⊂
N
⋃

i=1

B(xi′ , r −
r

2n
).

Thus ω ∈ Ω′
r. The proof is complete.

The next lemma is about the existence of the growth rates associated with the

norm of operator, the Kuratowski measure of operator, and the volume function.

Lemma 25. There exists a θ-invariant subset Ω̃ ⊂ Ω of full measure such for each
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ω ∈ Ω the following limits exist

lim
n→+∞

1

n
log Vk(T

n(θ−n(ω))) = lk(T ), (30)

lim
n→+∞

1

n
log ‖T n(ω)‖ = κ(T ), (31)

lim
n→+∞

1

n
log ‖T n(ω)‖α = lα, (32)

lim
n→+∞

1

n
log ‖T n(θ−nω)‖α = l′α, (33)

lim
n→+∞

1

n
log ‖T n(θ−nω)‖ = κ′(T ), (34)

where lk(T ), κ(T ), lα, l′α, and κ′(T ) are either constants or −∞.

Proof. We first prove (30). Since

Vk(T
n(θ−n(ω))|G(θ−nω)) ≤ Vk(T

n(θ−n(ω))) ≤ Vk(T
n(θ−n(ω))|G(θ−nω))||π(θ−nω)||k

and ||π(·)|| is tempered, it is sufficient to show that

lim
n→+∞

1

n
log Vk(T

n(θ−n(ω))|G(θ−nω)) = lk(T ) a.s..

Using Lemma 15 and the fact that X is separable, we have Vk(T
n(θ−n(ω))|G(θ−nω)) is

measurable in ω. In order to use Kingman’s subadditive ergodic theorem, we let

F k
n (ω) = log Vk(T

n(θ−n(ω))|G(θ−nω)).

From Lemma 16 it follows that

F k+
1 (ω) ≤ k log+ ‖T (θ−1(ω))

∣

∣

G(θ−1ω)
‖.
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Then, by property (T5) and 15 we have

F k+
1 ∈ L1(Ω,F , P )

and

F k
m+n(ω) = log Vk(T

m+n(θ−m−n(ω))|G(θ−m−n(ω)))

≤ log
(

Vk(T
m(θ−m−n(ω))|G(θ−m−n(ω))) · Vk(T

n(θ−n(ω))|G(θ−n(ω)))
)

= log Vk(T
m(θ−m−n(ω))|G(θ−m−n(ω))) + log Vk(T

n(θ−n(ω))|G(θ−n(ω)))

=F k
m

(

θ−n(ω)
)

+ F k
n (ω).

Then by Kingman’s subadditive ergodic theorem and ergodicity of θ, we have

lim
n→+∞

1

n
log Vk(T

n(θ−n(ω))|G(θ−nω)) = lk(T ) a.s.,

where lk(T ) is either a constant or −∞.

The proof of (31) is directly from Kingman’s subadditive ergodic theorem. To

show (32), we notice that

log ‖T (ω)‖α = log ‖S(ω)‖α ≤ log+ ‖S(ω)‖,

log ‖T n+m(ω)‖α ≤ log ‖T n(ω)‖α + log ‖Tm(θnω)‖α.

Thus, using Lemma 24 and Kingman’s subadditive ergodic theorem we have

lim
n→+∞

1

n
log ‖T n(ω)‖α = lα a.s.,

where lα is a constant or −∞. Similarly, we can show (33) and (34). This completes

the proof of this lemma.
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The next lemma is borrowed from Mane [23].

Lemma 26. Let (Λ,G, µ) be a probability space and ϑ : Λ → Λ be a µ-measure

preserving transformation. Then for any measurable function f : Λ → R we have

lim inf
n→+∞

1

n
f(ϑn(x)) ≤ 0 a.s..

Moreover, if there exists F ∈ L1(Λ,G, µ) such that

f(ϑ(x)) − f(x) ≤ F (x) a.s.,

or there exists G ∈ L1(Λ,G, µ) such that

f(ϑ(x)) − f(x) ≥ G(x) a.s.,

then

f ◦ ϑ− f ∈ L1(Λ,G, µ)

and

lim
n→+∞

1

n
f(ϑn(x)) = 0 a.s..

Moreover, if ϑ is invertible, then

lim
n→−∞

1

n
f(ϑn(x)) = 0 a.s..

In the next lemma, we show that the limits given by (32) and (33) are the same.

Lemma 27.

l′α = lα.

Proof. We first prove that l′α ≤ lα. We prove it by contradiction. Suppose it is not
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true. Then, for sufficiently small ǫ > 0, l′α − ǫ > lα. Let

Cǫ(ω) = sup

{

en(l′α−ǫ)

‖T n(θ−nω)‖α

}

n≥0

.

Then, Cǫ(ω) is measurable by using Lemma 24. Furthermore, we have

Cǫ(θω) = sup
{ en(l′α−ǫ)

‖T n(θ−nθω)‖α

}

n≥0

= max

{

sup
{ en(l′α−ǫ)

‖T (ω)T n−1(θ−(n−1)ω)‖α

}

n≥1
, 1

}

≥ sup
{ e(n−1)(l′α−ǫ)

‖T n−1(θ−(n−1)ω)‖α

el′α−ǫ

‖T (ω)‖α

}

n≥1

≥ el′α−ǫ

‖T (ω)‖α

Cǫ(ω),

which implies

logCǫ(θω) − logCǫ(ω) ≥ l′α − ǫ− log ‖T (ω)‖α

≥ l′α − ǫ− log+ ‖T (ω)
∣

∣

G(ω)
‖.

Since l′α − ǫ− log+ ‖T (ω)
∣

∣

G(ω)
‖ is a L1 function, by Lemma 26, we have

lim
n→+∞

1

n
logCǫ(θ

nω) = 0.

Hence,

lα = lim
n→+∞

1

n
log ‖T n(ω)‖α = lim

n→+∞

1

n
log ‖T n(θ−nθnω)‖α

≥ lim
n→+∞

1

n
log

en(l′α−ǫ)

Cǫ(θnω)
≥ l′α − ǫ− lim

n→+∞

1

n
logCǫ(θ

nω)

= l′α − ǫ > lα,
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which gives a contradiction. This also implies that if lα = −∞, then l′α = −∞. Next,

we show that lα ≤ l′α. Suppose this is not true. Then, for sufficiently small ǫ > 0, we

have lα − ǫ > l′α. Let

C ′
ǫ(ω) = sup

{‖T n(θ−nω)‖α

en(lα−ǫ)

}

n≥0

.

Then, using Lemma 24, we have C ′
ǫ(ω) is measurable and

C ′
ǫ(θω) = sup

{‖T n(θ−nθω)‖α

en(lα−ǫ)

}

n≥0

= max

{

sup
{‖T (ω)T n−1(θ−(n−1)ω)‖α

en(lα−ǫ)

}

n≥1
, 1

}

≤max

{

sup
{‖T n−1(θ−(n−1)ω)‖α

e(n−1)(lα−ǫ)

‖T (ω)‖α

elα−ǫ

}

n≥1
, 1

}

= max

{‖T (ω)‖α

elα−ǫ
C ′

ǫ(ω), 1

}

.

Therefore,

logC ′
ǫ(θω) − logC ′

ǫ(ω) ≤ max

{

log
‖T (ω)‖α

elα−ǫ
, log

1

C ′
ǫ(ω)

}

≤ max
{

log ‖T (ω)‖α − (lα − ǫ), 0
}

≤ max
{

log+ ‖T (ω)
∣

∣

G(ω)
‖ − (lα − ǫ), 0

}

,

which is a L1 function. Thus by Lemma 26, we have

lim
n→+∞

1

n
logC ′

ǫ(θ
nω) = 0.
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Hence,

lα = lim
n→+∞

1

n
log ‖T n(ω)‖α = lim

n→+∞

1

n
log ‖T n(θ−nθnω)‖α

≤ lim
n→+∞

1

n
log(en(lα−ǫ)C ′

ǫ(θ
nω)) ≤ lα − ǫ+ lim

n→+∞

1

n
logCǫ(θ

nω)

=lα − ǫ < lα,

which gives a contradiction. Therefore, l′α = lα. This completes the proof of this

lemma.

Lemma 28. κ(T ) = κ′(T ).

Proof. For each v ∈ Eκ(T )(ω), by the definition of Eκ(T )(ω), we have

lim sup
n→∞

1

n
log ‖T−n(ω)v‖ ≤ −κ(T ).

Then, using the cocycle property, we obtain

κ′(T ) = lim
n→+∞

1

n
log ‖T n(θ−nω)‖ ≥ κ(T ).

Next, we show κ′(T ) ≤ κ(T ). We prove this by contradiction. Suppose that this is

not true. Then, we can choose ǫ > 0 such that

κ′(T ) − 2ǫ > κ(T ).

Let

Cǫ(ω) = sup

{

en(κ′(T )−ǫ)

‖T n(θ−nω)|G(θ−nω)‖

}

n≥0

.
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Then Cǫ(ω) is measurable and by (34)

1 ≤ Cǫ(ω) < +∞ a.s. .

We estimate

Cǫ(θω) = sup

{

en(κ′(T )−ǫ)

‖T n(θ−n+1ω)|G(θ−n+1ω)‖

}

n≥0

= max

{

sup

{

en(κ′(T )−ǫ)

‖T (ω)T n−1(θ−(n−1)ω)|G(θ−n+1ω)‖

}

n≥1

, 1

}

≥ eκ′(T )−ǫ

‖T (ω)
∣

∣

G(ω)
‖ sup

{

e(n−1)(κ′(T )−ǫ)

‖T n−1(θ−(n−1)ω)|G(θ−n+1ω)‖

}

n≥1

≥ eκ′(T )−ǫ

‖T (ω)
∣

∣

G(ω)
‖Cǫ(ω).

Then,

logCǫ(θω) − logCǫ(ω)

≥ κ′(T ) − ǫ− log ‖T (ω)
∣

∣

G(ω)
‖

≥ κ′(T ) − ǫ− log+ ‖T (ω)
∣

∣

G(ω)
‖

Note that κ′(T ) − ǫ − log+ ‖T (ω)
∣

∣

G(ω)
‖ is a L1 function. Hence, by Lemma 26, we

obtain

lim
n→+∞

1

n
logCǫ(θ

nω) = 0, a.s..

We also notice that from the definition of Cǫ(ω), we have that for any n ∈ N

‖T n(ω)‖ ≥ ‖T n(θ−nθnω)|G(ω)‖

≥ C−1
ǫ (θnω)en(κ′(T )−ǫ)

≥ C−1
ǫ (θnω)en(κ(T )+ǫ).
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Hence,

κ(T ) = lim
n→+∞

1

n
log ‖T n(ω)‖

≥ κ(T ) + ǫ− lim
n→+∞

1

n
logCǫ(θ

nω)

= κ(T ) + ǫ,

which gives a contradiction. This completes the proof of the lemma.

Next we will prove that

Lemma 29.

lim
k→+∞

1

k
lk(T ) ≤ lα,

where lk(T ) and lα are given by (30) and (32).

Proof. By Lemma 13, we have that 1
k
lk is a decreasing sequence. Thus, limk→+∞

1
k
lk exists.

By Lemma 14, we have that for any bounded operator T ,

lim
n→+∞

1

n
log Vn(T ) ≤ log 2 + log ‖T‖α.

For n ≥ 1, m ≥ 1, and a small ǫ > 0, we set

An,m =

{

ω ∈ Ω| 1

n
log Vn(Tm(ω)|G(ω)) < log 2 +m(lα + ǫ)

}

and

Am =

{

ω ∈ Ω
∣

∣

1

m
log ‖Tm(ω)|G(ω)‖α < lα + ǫ

}

.

We notice that ‖Tm(ω)‖α = ‖Tm(ω)|G(ω)‖α. From the above definitions, we have

lim
n→+∞

An,m ⊃ Am
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and

1

k
lk = lim

n→+∞

1

k
· 1

n
log Vk(T

n(θ−nω)|G(θ−nω))

= lim
n→+∞

1

k
· 1

nm
log Vk(T

nm(θ−nmω)|G(θ−nmω))

≤ lim
n→+∞

1

k
· 1

nm
log

n
∏

i=1

Vk(T
m(θ−imω)|G(θ−imω))

= lim
n→+∞

1

km
· 1

n

n
∑

i=1

log Vk(T
m(θ−imω)|G(θ−imω)).

By the Birkhoff ergodic theorem, we have

∫

Ω

lim
n→+∞

1

km
· 1

n

n
∑

i=1

log Vk(T
m(θ−imω)|G(θ−imω)) =

1

km

∫

Ω

log Vk(T
m(ω)|G(ω))dP.

Hence,

1

k
lk ≤ 1

m

∫

Ω

1

k
log Vk(T

m(ω)|G(ω))dP.

Since

lim
n→+∞

1

n
log ‖T n(ω)‖α = lα a.s.,

for any fixed ǫ > 0, limm→+∞ P (Am) = 1. Thus, we can choose a sufficiently large m

such that 1
m

log 2 < ǫ and P (Am) > 1 − δ/2, where δ > 0 is chosen such that for any

measurable set F , if P (F ) < δ, then

∫

F

log+ ‖T (ω)
∣

∣

G(ω)
‖ < ǫ.
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Then for such m, we choose k large enough such that P (Ak,m) > 1 − δ. Thus,

1

mk

∫

Ω

log Vk(T
m(ω)

∣

∣

G(ω)
)dP

=

∫

Ω−Ak,m

1

km
log Vk(T

m(ω)
∣

∣

G(ω)
)dP +

∫

Ak,m

1

km
log Vk(T

m(ω)
∣

∣

G(ω)
)dP

≤
∫

Ω−Ak,m

1

mk
log+ ‖Tm(ω)

∣

∣

G(ω)
‖kdP +

1

m
log 2 + lα + ǫ

≤
∫

Ω−Ak,m

1

m

m−1
∑

i=0

log+ ‖T (θiω)
∣

∣

G(θiω)
‖dP +

1

m
log 2 + lα + ǫ

≤ 1

m

m−1
∑

i=0

∫

θi(Ω−Ak,m)

log+ ‖T (ω)
∣

∣

G(ω)
‖dP +

1

m
log 2 + lα + ǫ

≤ lα + 3ǫ.

Since ǫ can be arbitrary small, we have

lim
k→+∞

1

k
lk ≤ lα.

6.2 Oseledets Spaces.

We are now ready to prove Theorem 21.

Proof of Theorem 21.

We prove this proposition by contradiction. Suppose that

dimEλ(ω) = +∞.
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Then for any d > 0, there exists a set of unit vectors {v0
i }1≤i≤d ⊂ Eλ

ω such that

dist(v0
i+1, F

0
i ) = 1

where F 0
i = span(v0

1, . . . , v
0
i ). For each k ∈ N, let

F k
i = span(T−k(ω)v0

1, . . . , T
−k(ω)v0

i )

and choose unit vectors vk
i ∈ F k

i , 1 ≤ i ≤ d, such that

dist(vk
i+1, F

k
i ) = 1 for any 1 ≤ i ≤ d− 1.

We also define F k
0 = {0}. Then, there exist real numbers {λk

i }k∈N,1≤i≤d, such that

T (θ−kω)vk
i = λk

i v
k−1
i + w for some w ∈ F k−1

i−1 .

Hence, for each p ≥ 1

T p(θ−kω)vk
i = λk

i · · ·λk−p+1
i vk−p

i + w for some w ∈ F k−p
i−1 ,

which yields that

dist(T k(θ−kω)vk
i , span{T k(θ−kω)vj}j<i) =

k
∏

l=1

|λl
i|.

Therefore,

Vd(T
k(θ−kω)vk

d , T
k(θ−kω)vk

d−1, . . . , T
k(θ−kω)vk

1) =
k
∏

l=1

d
∏

i=1

|λl
i|,
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which implies that

1

k

k
∑

l=1

d
∑

i=1

log |λl
i| ≤

1

k
log Vd

(

T k(θ−kω)
∣

∣

G(θ−kω)

)

.

So,

d
∑

i=1

lim inf
k→+∞

1

k

k
∑

l=1

log |λl
i| ≤ lim

k→+∞

1

k
log Vd

(

T k(θ−kω)
∣

∣

G(θ−kω)

)

= ld(T ) a.s.. (35)

On the other hand, from the construction of {vk
i }1≤i≤d 1≤k, we have

T−n(ω)v0
i = (λ1

i , . . . , λ
n
i )−1 · vn

i + w, for some w ∈ F n
i−1, 1 ≤ i ≤ d.

Thus, by using the property dist(vn
i+1, F

n
i ) = 1, we have

‖T−n(ω)v0
i ‖ ≥ |λ1

i , . . . , λ
n
i |−1.

Using the fact v0
i ∈ Eλ(ω), namely,

lim sup
n→+∞

1

n
log ‖T−n(ω)v0

i ‖ ≤ −λ,

we obtain

lim inf
n→+∞

1

n

n
∑

l=1

log |λl
i| ≥ λ,

which together with (35) gives

1

d
ld(T ) ≥ 1

d

d
∑

i=1

lim inf
k→+∞

1

k

k
∑

l=1

log |λl
i| ≥

1

d

d
∑

i=1

λ = λ. (36)
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Thus, by Lemma 29, we have

λ ≤ lim
d→+∞

1

d
ld(T ) ≤ lα.

This contradicts to the assumption λ > lα. This completes the proof.

�.

In the next proposition, we will see that almost surely Eλ(ω) is not empty for

lα < λ < κ(T ). We first notice that from Lemma 25, lk(T ) is a constant almost surely

and that 1
k
lk(T ) is a nondecreasing sequence from Lemma 13. Thus, there exists a

positive integer m such that

1

k
lk(T ) = l1(T ), for 1 ≤ k ≤ m,

1

k
lk(T ) < l1(T ), for k > m.

(37)

Then, from (36), we have

dimEκ(T )(ω) ≤ m, a.s..

The following proposition gives that the space Eλ(ω) has at least dimension m.

Proposition 30. For lα < λ ≤ κ(T ), we have

dimEλ(ω) ≥ m, a.s..

Furthermore, dimEκ(T )(ω) = m.

The proof of this proposition is based on the following lemmas. We first borrow

a lemma from Pliss, see [22].

Lemma 31. For given H0 < λ0 and ǫ > 0, there exist N0 = N0(H0, λ0, ǫ) and
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δ = δ(H0, λ0, ǫ) such that if ai ∈ R, i = 0, . . . , N satisfy

N ≥ N0

an ≥ H0

N
∑

n=0

an ≤ (λ0 − ǫ)(N + 1),

then there exist 0 ≤ n1 < n2 < · · · < nj0 ≤ N such that

j0 ≥ δN

and
k
∑

n=nj+1

an ≤ (k − nj)λ0

for all nj < k ≤ N, 1 ≤ j ≤ j0.

Let λ be fixed such that lα < λ < κ(T ). For each positive integer n, we use Aλ
n to

denote the subset of Ω such that for each ω ∈ Aλ
n there exist m vectors {vi}1≤i≤m ⊂ X

such that

{π(ω)vi}1≤i≤m are independent;

(38)

T−k(ω)π(ω)vi exists for 1 ≤ i ≤ m, 1 ≤ k ≤ n; (39)

Vm(T−k(ω)π(ω)v1, . . . , T
−k(ω)π(ω)vm)

Vm(π(ω)v1, . . . , π(ω)vm)
≤ e−kmλ, 1 ≤ k ≤ n. (40)

Lemma 32. There exists a δ > 0 such that

Pin(Aλ
n) > δ, for all n,
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where Pin(Aλ
n) is the inner measure of Aλ

n and there exists a countable subset Sd of

(lα, κ(T )) such that for any λ ∈ (lα, κ(T )) − Sd, A
λ
n is measurable and

P (Aλ
n) ≥ δ.

Proof. We first show that if Aλ
n is measurable, then P (Aλ

n) > δ. We note that from

log+ ‖S(·)‖ ∈ L1(Ω,F , P ) it follows that for each ǫ > 0, there exists a H(ǫ) > 0 such

that
∫

E
(

H(ǫ)
)

log+ ‖S(ω)‖dP < ǫ,

where E
(

H(ǫ)
)

=
{

ω | log ‖S(ω)‖ > H(ǫ)
}

.

In order to apply Lemma 31, we choose ǫ, λ0, and H0 such that

0 < 2ǫ < κ(T ) − λ,

λ0 = −λ,

H0 = −H(
ǫ

2
) < λ0.

By using the Birkhoff ergodic theorem and Lemma 16, there exists a θ-invariant

subset set Ω̃ ⊂ Ω of full measure such that for each ω ∈ Ω̃

lim
n→+∞

1

mn

n−1
∑

k=0

χ
E
(

H( ǫ
2
)
)(θkω) log Vm(T (θkω)|G(θkω)) ≤

∫

E
(

H( ǫ
2
)
)

log+ ‖S(ω)‖dP <
ǫ

2
.

(41)

To save on notation, we use Ω to denote Ω̃. For ω ∈ Ω, from the definition of m, we

have

lim
n→+∞

1

mn
log Vm(T n(ω)) = κ(T ) > λ+ 2ǫ.

Thus, there exists N1(ω) > 0 such that for any n > N1(ω),
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Vm(T n(ω)) > enm(λ+2ǫ). (42)

Using (152), there exists N2(ω) > 0 such that for any n > N2(ω),

1

mn

n−1
∑

k=0

χ
E
(

H( ǫ
2
)
)(θkω) log Vm(T (θkω)|G(θkω)) < ǫ. (43)

Let N0(H0, λ0, ǫ) be the number given in Lemma 31.

Thus, for each N ≥ max{N1, N2, N0(H0, λ0, ǫ)} + 1, by using (154), there exist

vectors {vi}1≤i≤m ⊂ X such that {π(ω)vi}1≤i≤m are linearly independent and

Vm(TN+1(ω)π(ω)v1, . . . , T
N+1(ω)π(ω)vm) > e(N+1)m(λ+2ǫ)Vm(π(ω)v1, . . . , π(ω)vm).

(44)

Let

a′k =
1

m
log

Vm(TN−k(ω)π(ω)v1, . . . , T
N−k(ω)π(ω)vm)

Vm(TN−k+1π(ω)v1, . . . , TN−k+1π(ω)vm)
0 ≤ k ≤ N.

Then,

N
∑

k=0

a′k =
1

m
log

Vm(π(ω)v1, . . . , π(ω)vm)

Vm(TN+1(ω)π(ω)v1, . . . , TN+1(ω)π(ω)vm)
< −(N + 1)(λ+ 2ǫ).

Set

ak =











a′k if a′k ≥ H0

0 if a′k < H0

Since (14)

a′k ≥ − 1

m
log Vm(T (θN−kω)|G(θN−kω))).
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Hence, if a′k < H0, then θN−kω ∈ E
(

H( ǫ
2
)
)

. Thus, using (155), we have

0 ≥ 1

N + 1

(

N
∑

k=0

a′k −
N
∑

k=0

ak

)

≥ 1

m(N + 1)

N
∑

k=0

−χ
E
(

H( ǫ
2
)
)(θkω) log Vm(T (θkω)|G(θkω))

≥ −ǫ,

which implies that

N
∑

k=0

ak ≤
N
∑

k=0

a′k + (N + 1)ǫ

≤− (N + 1)(λ+ ǫ)

=(N + 1)(λ0 − ǫ),

here λ0 = −λ is used. By Lemma 31, there exist integers 0 < n1 < n2 < · · · < nj0 ≤ N

such that j0 ≥ δN and for all nj ≤ k ≤ N ,

(k − nj)λ0 ≥
k
∑

n=nj+1

an ≥
k
∑

n=nj+1

a′n

=
k
∑

n=nj+1

1

m
log

Vm(TN−n(ω)π(ω)v1, . . . , T
N−n(ω)π(ω)vm)

Vm(TN−n+1(ω)π(ω)v1, . . . , TN−n+1(ω)π(ω)vm)

=
1

m
log

Vm(TN−k(ω)π(ω)v1, . . . , T
N−k(ω)π(ω)vm)

Vm(TN−nj(ω)π(ω)v1, . . . , TN−nj(ω)π(ω)vm)
.

We note that N − nj ≥ n when j0 − j > n. From the definition of Aλ
n it follows that

for n+ j ≤ j0

θN−njω ∈ Aλ
n.
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Since j0 − n ≥ δN − n, we have

1

N
#{0 < i ≤ N | θiω ∈ Aλ

n}

≥ 1

N
#{0 < i ≤ N | i = N − nj, 1 ≤ j ≤ j0 − n}

≥ 1

N
(j0 − n) ≥ δ − n

N

in which the lower bound will go to δ as N goes to +∞. Thus, if Aλ
n is measurable,

then by the Birkhoff ergodic theorem we obtain

P (Aλ
n) = lim

N→+∞

1

N
#{0 < i ≤ N | θiω ∈ Aλ

n} ≥ δ. (45)

Next, we show that Aλ
n is measurable except for countably many λ. For each

n ≥ 1 and w1, · · ·wm ∈ X, We use Sk,λ(w1, . . . , wm) to denote the set of ω ∈ Ω such

that the following conditions hold

Vm(T n(θ−nω)w1, . . . , T
n(θ−nω)wm) 6= 0; (46)

Vm(T n−k(θ−nω)w1, . . . , T
n−k(θ−nω)wm)

Vm(T n(θ−nω)w1, . . . , T n(θ−nω)wm)
≤ e−mkλ, (47)

for 1 ≤ k ≤ n, lα < λ < κ(T ).

Since T (ω) is strongly measurable and Vm : Xm → R is continuous, Sk,λ(w1, . . . , wm)

is measurable. Let

Dλ(w1, . . . , wm) =
n
⋂

k=1

Sk,λ(w1 . . . , wm).

Then Dλ(w1, . . . , wm) is also measurable.

Since X is a separable Banach space, we have a countable dense set {vi(6= 0)}i≥1
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of X. We set

Kλ =
∞
⋂

j=1

⋃

(n1,...,nm)∈Nm

Dλ− 1
j
(vn1 , . . . , vnm

).

Then Kλ is measurable. By the definition of Sn,λ(w1, · · · , wm), we have that for each

small ǫ > 0

Sn,λ(w1, · · · , wm) ⊂ Sn,λ−ǫ(w1, · · · , wm),

which yields

Kλ ⊂ Kλ−ǫ

and

Kλ = lim
ǫ→0+

Kλ−ǫ decreasingly.

Since P (Kλ) ≤ 1, we have

P (Kλ) = lim
ǫ→0+

P (Kλ−ǫ).

Next, we show

Claim: The inner measure of Aλ
n, Pin(Aλ

n), is equal to its outer measure Pout(A
λ
n),

for each λ ∈ (lα, κ(T )) − Sd, where Sd is a countable set.

We first prove that for each small ǫ > 0,

Kλ ⊂ Aλ−ǫ
n ,

in other words

Kλ+ǫ ⊂ Aλ
n.

Let ω ∈ Kλ. Then, there exists (n1, . . . , nm) ∈ Nm such that ω ∈ Dλ−ǫ(vn1 , . . . , vnm
)
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which means that

Vm(T n(θ−nω)vn1 , . . . , T
n(θ−nω)vnm

) 6= 0

and

Vm(T n−k(θ−nω)vn1 , . . . , T
n−k(θ−nω)vnm

)

Vm(T n(θ−nω)vn1 , . . . , T
n(θ−nω)vnm

)
≤ e−mk(λ−ǫ), 1 ≤ k ≤ n.

By letting

v′i = T n(θ−nω)vni
,

we obtain that

ω ∈ Aλ−ǫ
n .

Next, we prove that

Aλ
n ⊂ Kλ.

Let ω ∈ Aλ
n. Then, there exist vectors {wi}1≤i≤m ⊂ X such that T−k(ω)π(ω)wi exists

for 1 ≤ i ≤ m, 1 ≤ k ≤ n,

Vm(π(ω)w1, . . . , π(ω)wm) 6= 0

and

Vm(T−k(ω)π(ω)w1, . . . , T
−k(ω)π(ω)wm)

Vm(π(ω)w1, . . . , π(ω)wm)
≤ e−kmλ, 1 ≤ k ≤ n.

For small ǫ > 0, since {vi}i≥1 is a countable dense subset ofX and Vm : X → R is con-

tinuous, we have that there exists (n1, . . . , nm) ∈ Nm such that (π(θ−nω)vn1 , . . . , π(θ−nω)vnm
)

is close enough to (T−n(ω)π(ω)w1, . . . , T
−n(ω)π(ω)wm) such that

Vm(T n−k(θ−nω)vn1 , . . . , T
n−k(θ−nω)vnm

)

Vm(T n(θ−nω)vn1 , . . . , T
n(θ−nω)vnm

)
≤ e−km(λ−ǫ), 1 ≤ k ≤ n.

So

ω ∈ Dλ−ǫ(vn1 , . . . , vnm
).
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Therefore,

ω ∈ Kλ−ǫ.

Since ǫ > 0 can be arbitrary small, and by the definition of Kλ, we have

ω ∈ Kλ,

hence

Aλ
n ⊂ Kλ.

Summarizing the above discussion, we have that for any ǫ > 0,

Kλ+ǫ ⊂ Aλ
n ⊂ Kλ.

Since P (Kλ) is a monotone function with respect to λ, it has at most countable many

discontinuous points. We use Sd to denote the set of these discontinuous points. Thus

for any λ ∈ (lα, κ(T )) − Sd, we have

lim
ǫ→0+

P (Kλ+ǫ) = P (Kλ),

which implies that

Pin(Aλ
n) = Pout(A

λ
n).

Therefore, Aλ
n is measurable. Then, by using (45), we have that for any λ /∈ Sd and

lα < λ < κ(T ),

P (Aλ
n) ≥ δ,

which implies for each lα < λ < κ(T ),

Pin(Aλ
n) ≥ δ.
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Then

Pin

(

+∞
⋂

n=1

Aλ
n

)

≥ δ.

This completes the proof of the lemma.

Lemma 33. There exists a constant C depends only on m such that for any small

number ǫ > 0 satisfying κ(T )−Cǫ > lα, if ω ∈ ⋂+∞
n=1A

κ(T )−ǫ
n , then dimEκ(T )−Cǫ(ω) ≥

m.

Proof. Let ǫ > 0 such that κ(T ) − ǫ > lα and ω ∈ ⋂+∞
n=1A

κ(T )−ǫ
n . Then, ω ∈ A

κ(T )−ǫ
j

for all j ≥ 1. Thus, there exists {wij}1≤i≤m,1≤j ∈ X such that for any j ≥ 1,

{π(ω)wij}1≤i≤m are linear independent and

Vm(T−k(ω)π(ω)w1j, . . . , T
−k(ω)π(ω)wmj)

Vm(π(ω)w1j, . . . , π(ω)wmj)
≤ e−km(κ(T )−ǫ), 1 ≤ k ≤ j.

Let

Cǫ(ω) = sup

{‖T n(ω)|G(ω)‖
en(κ(T )+ǫ)

}

n≥0

.

By the definition of κ(T ), we have that Cǫ(ω) is measurable and is finite almost surely.

We note that

Cǫ(ω) = sup

{‖T n(ω)|G(ω)‖
en(κ(T )+ǫ)

}

n≥0

= max

{

sup

{‖(T n−1(θω)|G(θω))(T (ω)|G(ω))‖
en(κ(T )+ǫ)

}

n≥1

, 1

}

≤ max

{

sup

{‖(T n−1(θω)|G(θω))‖‖T (ω)|G(ω)‖
en(κ(T )+ǫ)

}

n≥1

, 1

}

≤ max

{

1,
‖T (ω)|G(ω)‖
eκ(T )+ǫ

Cǫ(θω)

}

≤ Cǫ(θω) max

{

1,
‖T (ω)|G(ω)‖
eκ(T )+ǫ

}

.
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Then

logCǫ(ω) − logCǫ(θω) ≤ max{0, log+ ‖T (ω)|G(ω)‖ − κ(T ) − ǫ},

which is a L1 function. Thus, using Lemma 26, we obtain

lim
n→±∞

1

n
logCǫ(θ

nω) = 0.

Therefore, for a fixed ω, there exists a positive integer N1(ω) such that if n ≥ N1(ω),

then

Cǫ(θ
−nω) ≤ enǫ.

Thus

‖T n(θ−nω)|G(ω)‖ ≤ en(κ(T )+2ǫ), n ≥ N1(ω). (48)

For any j ≥ 1, let

vmj =
π(ω)wmj

‖π(ω)wmj‖

and choose unit vectors vij, 1 ≤ i ≤ m− 1 such that

π(ω)wij − dist(π(ω)wij, span{π(ω)wkj}i<k≤m)vij ∈ span{π(ω)wkj}i<k≤m.

Thus,

vij ∈ G(ω) and ‖vij‖ = dist(vij, span{vkj}i<k≤m) = 1, 1 ≤ i ≤ m. (49)

Therefore,

Vm(v1j, . . . , vmj) = 1 (50)
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and for any 1 ≤ k ≤ j,

Vm(T−k(ω)v1j, . . . , T
−k(ω)vmj)

= Vm

(

T−k(ω)
π(ω)w1j

dist(π(ω)w1j, span{π(ω)wlj}1<l≤m)
, . . . , T−k(ω)

π(ω)wmj

‖π(ω)wmj‖

)

=
Vm(T−k(ω)π(ω)w1j, . . . , T

−k(ω)π(ω)wmj)

Vm(π(ω)w1j, . . . , π(ω)wmj)

≤ e−mk(κ(T )−ǫ).

By modifying {T−k(ω)vij}1≤i≤m in the same way as above, we obtain unit vectors

{vk
ij}1≤i≤m ⊂ G(θ−kω) such that for 1 ≤ i ≤ m,

‖vk
ij‖ = dist(vk

ij, span{vk
lj}i<l≤m) = 1,

T−k(ω)vij−dist
(

T−k(ω)vij, span{T−k(ω)vlj}i<l≤m

)

vk
ij ∈ span{T−k(ω)vlj}i<l≤m. (51)

Hence,

Vm(T k(θ−kω)vk
1j, . . . , T

k(θ−kω)vk
mj)

= Vm

(

T k(θ−kω)
T−k(ω)v1j

dist(T−k(ω)v1j, span{T−k(ω)vij}1<i≤m)
, . . . , T k(θ−kω)

T−k(ω)vmj

‖T−k(ω)vmj‖

)

=
Vm(v1j, . . . , vmj)

Vm(T−k(ω)v1j, . . . , T−k(ω)vmj)

≥ emk(κ(T )−ǫ).

Using (48), we have that for 1 ≤ i ≤ m, N1(ω) < k ≤ j,

dist(T k(θ−kω)vk
ij, span{T k(θ−kω)vk

lj}i<l≤m)

≥ Vm(T k(θ−kω)vk
1j, . . . , T

k(θ−kω)vk
mj)

∏

1≤l≤m,l 6=i ‖T k(θ−kω)vk
lj‖

≥ emk(κ(T )−ǫ)

ek(m−1)(κ(T )+2ǫ)
= ek[κ(T )−(3m−2)ǫ].

(52)
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For each 1 ≤ i ≤ m, using (51), we write

T k(θ−kω)vk
ij = λk

i vij + π(ω)wk
i,j,

where π(ω)wk
i,j ∈ span{T k(θ−kω)vk

lj}i<l≤m. Using (49) and (51), we have that

|λk
i | = dist(T k(θ−kω)vk

ij, span{T k(θ−kω)vk
lj}i<l≤m).

Thus, from (52) and (48) we obtain

‖λk
i ‖ ≥ ek[κ(T )−(3m−2)ǫ]

and

‖π(ω)wk
i,j‖ ≤ ‖T k(θ−kω)vk

ij‖ + ‖λk
i vij‖

≤ ek(κ(T )+2ǫ) + |λk
i |

≤ 2ek(κ(T )+2ǫ).

Thus, for π(ω)wk
i,j 6= 0, we have

‖T−k(ω)vij‖ =

∥

∥

∥

∥

∥

vk
ij

λk
i

− ‖π(ω)wk
i,j‖

λk
i

T−k(ω)
π(ω)wk

i,j

‖π(ω)wk
i,j‖

∥

∥

∥

∥

∥

≤
∥

∥

∥

∥

∥

vk
ij

λk
i

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

‖π(ω)wk
i,j‖

λk
i

T−k(ω)
π(ω)wk

i,j

‖π(ω)wk
i,j‖

∥

∥

∥

∥

∥

≤ e−k[κ(T )−(3m−2)ǫ] + 2e3mkǫ

∥

∥

∥

∥

∥

T−k(ω)
π(ω)wk

i,j

‖π(ω)wk
i,j‖

∥

∥

∥

∥

∥

≤ e−k[κ(T )−(3m−2)ǫ] + 2me3mkǫ

m
∑

l=i+1

‖T−k(ω)vlj‖,

here we used the fact that if v =
∑n

i=1 aivi, ||v|| = ||vi|| = 1, and Vn(v1, · · · , vn) = 1,
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then |ai| ≤ 2n−1. For π(ω)wk
i,j = 0, we have

‖T−k(ω)vi,j‖ ≤ e−k[κ(T )−(3m−2)ǫ].

From (48) and (52), we also have that

‖T−k(ω)vmj‖ = ‖λk
m‖−1 ≤ e−k[κ(T )−(3m−2)ǫ].

Then by induction, there are two positive constants C,C ′ which depend only on m

such that for any 1 ≤ i ≤ m and N1(ω) < k ≤ j

‖T−k(ω)vij‖ ≤ Ce−k(κ(T )−C′ǫ). (53)

For example, we can take C ′ = 3m2 and C = 2m2
.

Thus we can choose ǫ > 0 small enough such that κ(T ) − C ′ǫ > lα and let

λ = κ(T ) − C ′ǫ.

Next, we claim that for each nonnegative integer n and for each sequence of unit

vectors {vj ∈ G(ω)}j>0 satisfying

‖T−k(ω)vj‖ ≤ Ce−kλ, N1(ω) < k ≤ j, (54)

{T−n(ω)vj}j>n has a convergence subsequence.

Before proving this claim, we show how to use it to prove

dim (Eλ(ω)) ≥ m

by applying it to the unit vectors vij. We first consider the case n = 0. Using (53)

and this claim, there exists a subsequence {j0
l }l≥1 in N such that for any 1 ≤ i ≤ m,
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T 0(ω)vij0
l

converges. We denote the limit by u0
i . Since vij are unit vectors, ‖u0

i ‖ = 1.

Furthermore, from (50), Vm(u0
1, . . . , u

0
m) = 1.

Next, we apply the claim to n = 1. Thus, by using (53), there exists a subsequence

{j1
l }l≥1 of {j0

l }l≥1 such that for each 1 ≤ i ≤ m, T−1(ω)vij1
l

converges to u1
i as l → ∞.

By the continuity of T (θ−1ω), we have

T (θ−1ω)u1
i = lim

l→+∞
T (θ−1ω)T−1(ω)vij1

l
= lim

l→+∞
vij1

l
= lim

l→+∞
vij0

l
= u0

i ,

which gives

T−1(ω)u0
i = u1

i .

By induction, for a positive integer n, there exists a subsequence {jn
l }l≥1 of {jn−1

l }l≥1

such that for any 1 ≤ i ≤ m, T−n(ω)vijn
l

converges to un
i . By the continuity of

T n(θ−nω) we have

T n(θ−nω)un
i = lim

l→+∞
T n(θ−nω)T−n(ω)vijn

l
= lim

l→+∞
vijn

l
= lim

l→+∞
vij0

l
= u0

i .

So

T−n(ω)u0
i = un

i .

Since for N1 < k ≤ jn
l

‖T−k(ω)vijn
l
‖ ≤ Ce−kλ,

we have

‖T−k(ω)u0
i ‖ = ‖uk

i ‖ ≤ Ce−kλ.

Hence, we have that T−n(ω)u0
i exists for all positive integer n and

‖T−n(ω)u0
i ‖ ≤ Ce−nλ when n > N1,
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which yields

u0
i ∈ Eλ(ω), 1 ≤ i ≤ m.

Since

Vm(u0
1, . . . , u

0
m) = 1,

we have

dimEλ(ω) ≥ m.

We now prove the claim. Let n be a nonnegative integer. Since λ > lα = l′α, we

have that for any ǫ > 0 such that l′α + 2ǫ < λ there exists a integer N > N1 such that

for l > N

‖T l(θ−(n+l)ω)‖α < el(l′α+ǫ). (55)

Let

Gl =
{

T−(l+n)(ω)vj| j > l + n
}

, for l ≥ 0.

Then,

T l(θ−(n+l)ω)Gl ⊂ G0

and G0 − T l(θ−(n+l)ω)Gl is a finite set.

Recall that α(B) is the smallest nonnegative real number such that for any r′ > α,

the set B ⊂ X can be covered by a finite number of balls of radius r′ (not necessarily

centered on B). Let

‖B‖ = sup{‖v‖| v ∈ B}

.
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Then for any l > N , using (54) and (55), we obtain

α(G0) =α
(

T l(θ−(n+l)ω)Gl ∪ [G0 − T l(θ−(n+l)ω)Gl]
)

≤max
{

α
(

T l(θ−(n+l)ω)Gl

)

, α
(

G0 − T l(θ−(n+l)ω)Gl

)}

=α
(

T l(θ−(n+l)ω)Gl

)

≤ ‖T l(θ−(n+l)ω)‖α‖Gl‖

≤el(l′α+ǫ)Ce−(n+l)λ = Ce−nλel(l′α+ǫ−λ) ≤ e−nλe−lǫ.

Since l can be arbitrarily large,

α(G0) = 0,

which impliesG0 is precompact, thus there exists a converging subsequence of {T−n(ω)vj| nj >

n}. This completes the proof of the lemma.

Proof of Proposition 30. It is sufficient to show that the lemma holds for lα <

λ < κ(T ). Since Eλ(ω) is a decreasing sequence of finite dimensional subspaces, we

have

dimEκ(T )(ω) = dim
⋂

λα<λ<κ(T )

Eλ(ω). (56)

Letting λ be fixed such that lα < λ < κ(T ), by Lemma 32, there exists a countable

set S of (lα, κ(T )) such that for each λ0 ∈ (lα, κ(T ))−S,
⋂∞

n=1A
λ0
n is measurable and

P (
∞
⋂

n=1

Aλ0
n ) ≥ δ.

Choose ǫ > 0 such that λ < κ(T ) − Cǫ and κ(T ) − ǫ ∈ (lα, κ(T )) − S. Then,
⋂∞

n=1A
κ(T )−ǫ
n is measurable and

P (
∞
⋂

n=1

Aκ(T )−ǫ
n ) ≥ δ.
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By Lemma 33, we have that for each ω ∈ ⋂∞
n=1A

κ(T )−ǫ
n ,

dim(Eκ(T )−Cǫ(ω)) ≥ m.

Since λ < κ(T ) − Cǫ, Eκ(T )−Cǫ(ω) ⊂ Eλ(ω). Thus,

dim(Eλ(ω)) ≥ m.

Since Eκ(T )−Cǫ(ω) is invariant and T (ω)|G(ω) is injective, dim(Eκ(T )−Cǫ(θnω)) ≥ m for

all n ∈ Z. Let

Aκ(T )−ǫ =
⋃

j∈Z

θj

(

+∞
⋂

n=1

Aκ(T )−ǫ
n

)

.

Then, Aκ(T )−ǫ is a θ-invariant measurable set of positive measure and dim(Eκ(T )−Cǫ(ω)) ≥

m for all ω ∈ Aκ(T )−ǫ. By the ergodicity of θ, we obtain

P
(

Aκ(T )−ǫ
)

= 1.

This completes the proof of the proposition.

�

6.3 Measurability of Oseledets Spaces.

In this subsection, we prove the measurability of Eκ(T )(ω). We will use a modified

version of the following theorem of measurable selection taken from [3]

Theorem 34. Let Y be a complete separable metric space, (T,L) be a measurable

space, and Γ be a multifunction from T to a closed non-empty subset of Y . If for

any open set U in Y , Γ−(U)(= {t| Γ(t) ∩ U 6= ∅}) belongs to L, then Γ admits a

measurable selection.
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The following is a modification of the above theorem.

Corollary 35. Let Y be a complete separable metric space, (T,L) be a measurable

space, and Γ be a multifunction from T to a non-empty subset of Y . If for any open

set U in Y , Γ−(U)(= {t| Γ(t) ∩ U 6= ∅}) belongs to L, then Γ admits a measurable

selection, where Γ is defined as Γ(t) = closure Γ(t) for any t ∈ T.

Proof. Since Γ(t) is closed for every t ∈ T and Γ(t) ⊂ Γ(t), then for any open set

U ⊂ Y ,

Γ−(U) ⊂ Γ
−
(U) = {t| Γ(t) ∩ U 6= ∅}.

For any t ∈ Γ
−
(U), there exists a x ∈ Γ(t)∩U . If x ∈ Γ(t), then t ∈ Γ−(U). Otherwise

there exists a real number r > 0 and x′ ∈ Γ(t) such that the ball B(x, r) ⊂ U and

x′ ∈ B(x, r). Thus, t ∈ Γ−(U). Therefore,

Γ
−
(U) ⊂ Γ−(U).

Hence

Γ
−
(U) = Γ−(U),

which is measurable. By the theorem of measurable selection, we have that Γ admits

a measurable selection. This completes the proof.

Now we are ready to prove that

Proposition 36. Eκ(T )(ω) : Ω → Km is a measurable function, where Km is the

metric space of all m-dimensional linear subspaces of X introduced in Section 5.

Proof. From (37), we have κ(T ) = l1 > lm+1/(m + 1) and κ(T ) = lm/m. Let ǫ > 0

satisfy (m+ 1)κ(T ) − (m2 + 3m+ 4)ǫ > lm+1(T ). Using (30), we have

lim
n→+∞

Vm(T n(θ−nω)|G(θ−nω))

emn(κ(T )−ǫ)
= +∞ a.s.. (57)
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We use Ω0 denote the exceptional set of zero measure on which (57)does not hold.

Let

Qn =
{

ω
∣

∣ Vm(T n(θ−nω)|G(θ−nω)) > emn(κ(T )−ǫ)
}

.

Since Vm(T n(θ−nω)|G(θ−nω)) is measurable as we have seen in the proof of Lemma 25,

Qn is measurable. Using (57) and Egoroff’s theorem, we obtain

lim
n→+∞

P (Qn) = 1.

Since X is separable, we let D = {(vi
1, . . . , v

i
m)}i≥1 be a countable dense subset of the

unit ball B(0, 1) ⊂ Xm. In order to apply Corollary 35, we define Γn(ω) : Qn → 2Xm

as

Γn(ω) =
{

u
∣

∣ Vm(T n(θ−nω)u) > emn(κ(T )−ǫ), u = (u1, . . . , um) ∈ D
}

,

where T n(θ−nω)u denotes (T n(θ−nω)u1, · · · , T n(θ−nω)um). Let (T,L) = (Qn,F|Qn
)

and Y = Xm, then for any open set U ⊂ Xm we have

Γ−
n (U) =

{

ω| Γn(ω) ∩ U 6= ∅
}

=
{

ω| ∃ u ∈ D
⋂

U such that Vm(T n(θ−nω)u) > emn(κ(T )−ǫ)
}

=
⋃

v∈D∩U

{

ω
∣

∣ Vm(T n(θ−nω)vi
1, . . . , T

n(θ−nω)vi
m) > emn(κ(T )−ǫ)

}

.

Thus using the facts that T (ω) is strongly measurable and Vm is continuous, we have

that Γ−
n (U) is measurable. Hence, by Corollary 35, Γn admits a measurable selection

σ̃n(ω) = (σ̃1
n(ω), · · · , σ̃m

n (ω)) such that

T n(θ−nω)σ̃1
n(ω), · · · , T̃ n(θ−nω)σm

n (ω)
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are linearly independent and for ω ∈ Qn

Vm

(

T n(θ−nω)σ̃1
n(ω), · · · , T n(θ−nω)σ̃m

n (ω))
)

≥ emn(κ(T )−ǫ). (58)

Let

σn = span
{

T n(θ−nω)σ̃1
n(·), · · · , T n(θ−nω)σ̃m

n (·)
}

.

By Lemma 20, σn is measurable from Qn to Km. Note that σn(ω) ⊂ G(ω) for ω ∈ Qn.

Furthermore, since Qn is measurable, we can extend σn to a measurable map from Ω

to Km with a constant extension on Ω −Qn.

Next we will prove that

d̂(σn(w), Eκ(T )(ω)) → 0 as n→ +∞ a.s.,

which yields that Eκ(T )(ω) is measurable.

For each fixed ω ∈ Ω − Ω0, from (57) there exists a N = N(ω) such that for

n ≥ N(ω), ω ∈ Qn. Let v be a unit vector in T−n(σn(ω)) and choose unit vectors

{ui}1≤i≤m ⊂ Eκ(T )(ω) such that

dist(ui, span{uj}i<j≤m) = 1, 1 ≤ i ≤ m. (59)

Since

lim sup
n→+∞

1

n
log ‖T−n(ω)ui‖ ≤ −κ(T ), 1 ≤ i ≤ m,

there exists a N0(ω) ≥ N(ω) such that if n > N0(ω), then

‖T−n(ω)ui‖ < en(−κ(T )+ ǫ
m

).
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Hence,

Vm

(

T n(θ−nω)
( T−n(ω)u1

‖T−n(ω)u1‖
)

, . . . , T n(θ−nω)
( T−n(ω)um

‖T−n(ω)um‖
)

)

= Vm(u1, . . . , um)

(

m
∏

i=1

‖T−n(ω)ui‖
)−1

≥ enmκ(T )−nǫ.

(60)

Since

lim
n→+∞

1

n
log Vm+1

(

T n(θ−nω)
)

= lm+1,

there exists a positive integer N1(ω) ≥ N0(ω) such that for n > N1(ω)

1

n
log Vm+1

(

T n(θ−nω)
)

< lm+1 + ǫ.

Thus, for n > N1(ω) we obtain

1

n
log Vm+1

(

Tn(θ−nω)v, Tn(θ−nω)

(

T−n(ω)u1

‖T−n(ω)u1‖

)

, · · · , Tn(θ−nω)

(

T−n(ω)um

‖T−n(ω)um‖

))

=
1

n
log dist

(

Tn(θ−nω)v, Eκ(T )(ω)
)

+
1

n
log Vm

(

Tn(θ−nω)

(

T−n(ω)ui

‖T−n(ω)u1‖

)

, · · · , Tn(θ−nω)

(

T−n(ω)ui

‖T−n(ω)um‖

))

≤ lm+1 + ǫ.

(61)

By Lemma 28, we have

lim
n→+∞

1

n
log ‖T n(θ−nω)‖ = κ(T ),

which implies that there exists a N2(ω) > N1(ω) such that for n > N2(ω)

1

n
log ‖T n(θ−nω)‖ < κ(T ) +

1

m
ǫ. (62)

87



By (58), there exist unit vectors {vn
i }1≤i≤m ⊂ T−n(σn(ω)) such that

Vm(T n(θ−nω)vn
1 , . . . , T

n(θ−nω)vn
m) ≥ enm(κ(T )−ǫ). (63)

From (62), we have

‖T n(θ−nω)vn
i ‖ < en(κ(T )+ 1

m
ǫ), 1 ≤ i ≤ m. (64)

Therefore, for any 1 ≤ i ≤ m,

dist
(

T n(θ−nω)vn
i , span{T n(θ−nω)vn

j }i<j≤m

)

≥ Vm(T n(θ−nω)vn
1 , . . . , T

n(θ−nω)vn
m)

∏

1≤j≤m,j 6=i ‖T n(θ−nω)vn
i ‖

≥ enm(κ(T )−ǫ)

en(m−1)(κ(T )+ 1
m

ǫ)
> en(κ(T )−(m+1)ǫ),

which together with (64) gives

en(κ(T )−(m+1)ǫ) < ‖T n(θ−nω)vn
i ‖ < en(κ(T )+ 1

m
ǫ). (65)

Let

wn
i =

T n(θ−nω)vn
i

‖T n(θ−nω)vn
i ‖
, 1 ≤ i ≤ m.

Then

dist(wn
i , span{wn

j }i<j≤m)

= dist

(

T n(θ−nω)vn
i

‖T n(θ−nω)vn
i ‖
, span{T n(θ−nω)vn

j }i<j≤m

)

>
en(κ(T )−(m+1)ǫ)

en(κ(T )+ 1
m

ǫ)
> e−n(m+2)ǫ.

(66)
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Then for any (a1, . . . , am) ∈ Rm satisfying ‖∑m
i=1 aiw

n
i ‖ = 1, using (66) we have

|a1| ≤ en(m+2)ǫ,

|ai| ≤ en(m+2)ǫ
(

1 +
i−1
∑

j=1

|aj|
)

, 1 < i ≤ m,

which implies that for 1 ≤ k ≤ m

|ak| ≤ k!ekn(m+2)ǫ.

For any 1 ≤ i ≤ m, using (60), (61), and (65), we have

1

n
log dist(wn

i , E
κ(T )(ω)) =

1

n
log dist

(

T n(θ−nω)vn
i

‖T n(θ−nω)vn
i ‖
, Eκ(T )(ω)

)

≤ lm+1 + ǫ− (lm − ǫ) −
(

κ(T ) − (m+ 1)ǫ
)

= lm+1 − (m+ 1)κ(T ) + (m+ 3)ǫ.

Thus, for any unit vector
∑m

i=1 aiw
n
i , we have

dist(
m
∑

i=1

aiw
n
i , E

κ(T )(ω)) ≤
m
∑

i=1

|ai|dist(wn
i , E

κ(T )(ω))

≤ en(lm+1−(m+1)κ(T )+(m+3)ǫ)

m
∑

i=1

|ai|

< en(lm+1−(m+1)κ(T )+(m+3)ǫ)m! memn(m+2)ǫ

≤ m! men
(

lm+1−(m+1)κ(T )+(m2+3m+3)ǫ
)

≤ m! me−nǫ,

here we used the fact (m+ 1)κ(T )− (m2 + 3m+ 4)ǫ > lm+1(T ). Thus, by using (20),

we obtain

d(σn(ω), Eκ(T )(ω)) ≤ 2m! me−nǫ, n > N2(ω). (67)

89



Similarly, for any 1 ≤ i ≤ m and n > N2(ω), we have

1

n
log Vm+1

(

T n(θ−nω)

(

T−n(ω)ui

‖T−n(ω)ui‖

)

, T n(θ−nω)vn
1 , · · · , T n(θ−nω)vn

m

)

≤ lm+1 + ǫ.

Recall that

Vm(T n(θ−nω)vn
1 , . . . , T

n(θ−nω)vn
m) ≥ enm(κ(T )−ǫ)

and

‖T−n(ω)ui‖ < en(−κ(T )+ ǫ
m

).

Therefore,

dist(ui, σn(ω)) ≤ en(lm+1+ǫ−m(κ(T )−ǫ)+(−κ(T )+ ǫ
m

))

≤ en(lm+1−(m+1)κ(T )+(m+2)ǫ).

Let (b1, . . . , bm) ∈ Rm such that ‖∑m
i=1 biui‖ = 1. Using (59) then

|b1| ≤ 1,

|bi| ≤ 1 +
i−1
∑

j=1

|bj|, 1 ≤ i ≤ m,

which implies that for 1 ≤ k ≤ m

|bk| ≤ 2k−1.

90



Hence, for any unit vector
∑m

i=1 biui, we have

dist(
m
∑

i=1

biui, σn(ω)) ≤
m
∑

i=1

|bi|dist(ui, σn(ω))

≤ 2men(lm+1−(m+1)κ(T )+(m+2)ǫ)

≤ 2me−nǫ.

So,

d(Eκ(T )(ω), σn(ω)) ≤ 2m+1e−nǫ, n > N2(ω).

Thus

d̂(σn(ω), Eκ(T )(ω)) ≤ 2m! me−nǫ, n > N2(ω),

which implies that

d̂(σn(ω), Eκ(T )(ω)) → 0, as n→ +∞.

This completes the proof of the proposition

Remark 5. In fact we can choose ǫ so small that the rating in which σn(ω) converging

to Eκ(T )(ω) as closed to en(lm+1−(m+1)κ(T )) as we need.

6.4 Principal Lyapunov Exponents.

In this subsection, we establish the principal Lyapunov exponent and prove Theorem

23.

Proof of Theorem 23.

We first prove that there exists a θ-invariant subset Ω̃ ⊂ Ω of full measure such

that for each ω ∈ Ω̃

lim inf
n→+∞

1

n
log ‖T n(ω)v‖ ≥ κ(T ) (68)
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for every v(6= 0) ∈ Eκ(T )(ω).

Let ǫ > 0 and define

Cǫ(ω) = sup

{‖T−n(ω)|Eκ(T )(ω)‖
en(−κ(T )+ǫ)

}

n≥0

.

Since Eκ(T )(ω) is a m-dimensional space, we can choose m unit vectors {ui}1≤i≤m of

Eκ(T )(ω) such that

dist(ui, span{uj}i<j≤m) = 1, 1 ≤ i ≤ m. (69)

Let Ω̃ be the θ-invariant set of full measure such that dim (Eκ(T )(ω)) = m for ω ∈ Ω̃.

For ui ∈ Eκ(T )(ω),

lim sup
n→+∞

1

n
log ‖T−n(ω)ui‖ ≤ −κ(T ).

Then,

sup

{‖T−n(ω)ui‖
en(−κ(T )+ǫ)

}

n≥0

< +∞.

For any (a1, . . . , am) ∈ Rm such that ‖∑m
i=1 aiui‖ = 1, since ui are unit vectors such

that dist(ui, span{uj}i<j≤m) = 1, 1 ≤ i ≤ m, we have

‖ai‖ < 2m, 1 ≤ i ≤ m.
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Thus

Cǫ(ω) = sup

{‖T−n(ω)|Eκ(T )(ω)‖
en(−κ(T )+ǫ)

}

n≥0

= sup
n≥0

sup
‖

Pm
i=1 aiui‖=1

{‖T−n(ω)
∑m

i=1 aiui‖
en(−κ(T )+ǫ)

}

≤ sup
n≥0

sup
‖

Pm
i=1 aiui‖=1

{∑m
i=1 |ai|‖T−n(ω)ui‖
en(−κ(T )+ǫ)

}

≤m2m sup
n≥0

max
1≤i≤m

{‖T−n(ω)ui‖
en(−κ(T )+ǫ)

}

<+ ∞.

Since Eκ(T )(ω) is measurable and finite dimensional, by using the theorem of mea-

surable selections, Eκ(T )(ω) has a measurable basis ui(ω), 1 ≤ i ≤ m, details will be

given in section 7. Thus, by using that T (ω) is strongly measurable, we have that

inf
(a1,··· ,am)∈Qm

‖T n(θ−nω)(a1u1 + · · · + amum)‖
‖(a1u1 + · · · + amum)‖ (70)

is measurable. This implies that ‖T−n(ω)
∣

∣

Ek(ω)
‖ is measurable. Thus, Cǫ(ω) is a

measurable. Then, for each ω ∈ Ω̃ and any v ∈ Eκ(T )(ω),

‖T n(ω)v‖ ≥ ‖T−n(θnω)|Eκ(T )(θnω)‖−1‖v‖ ≥ C−1
ǫ (θnω)en(κ(T )−ǫ)‖v‖.

Hence

lim inf
n→+∞

1

n
log ‖T n(ω)v‖ ≥ κ(T ) − ǫ− lim sup

n→+∞

1

n
logCǫ(θ

nω).

Since ǫ can be arbitrarily small, it is enough to show that for any ǫ > 0,

lim
n→+∞

1

n
logCǫ(θ

nω) = 0 a.s..
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We estimate

Cǫ(ω) = sup

{‖T−n(ω)|Eκ(T )(ω)‖
en(−κ(T )+ǫ)

}

n≥0

= sup

{

‖T−(n+1)(θω)T (ω)|Eκ(T )(ω)‖
en(−κ(T )+ǫ)

}

n≥0

≤ sup

{

‖T−(n+1)(θω)|Eκ(T )(θω)‖
e(n+1)(−κ(T )+ǫ)

‖T (ω)
∣

∣

G(ω)
‖

eκ(T )−ǫ

}

n≥0

≤
‖T (ω)

∣

∣

G(ω)
‖

eκ(T )−ǫ
Cǫ(θω).

(71)

Then,

logCǫ(ω) − logCǫ(θω) ≤ log+ ‖T (ω)
∣

∣

G(ω)
‖ − κ(T ) + ǫ

which is an L1 function. Thus by lemma 26, we have

lim
n→±∞

1

n
logCǫ(θ

nω) = 0 a.s.,

which together with (31) gives Theorem 23 for n→ +∞.

Next, we show that Theorem 23 holds for n→ −∞. By the definition of Eκ(T )(ω),

it is sufficient to prove that for almost every ω ∈ Ω and every v(6= 0) ∈ Eκ(T )(ω),

lim inf
n→+∞

1

n
log ‖T−n(ω)v‖ ≥ −κ(T ).

Given ǫ > 0, define

C ′
ǫ(ω) = sup

{‖T n(ω)|Eκ(T )(ω)‖
en(κ(T )+ǫ)

}

n≥0

.

By the definition of κ(T ), C ′
ǫ(ω) is a bounded measurable function since Eκ(T )(ω) is

measurable. Then, for v ∈ Eκ(T )(ω) we obtain

‖v‖ = ‖T n(θ−nω)T−n(ω)v‖ ≤ C ′
ǫ(θ

−nω)en(κ(T )+ǫ)‖T−n(ω)v‖,
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which gives

lim inf
n→+∞

1

n
log ‖T−n(ω)v‖ ≥ −κ(T ) − ǫ− lim sup

n→+∞

1

n
logC ′

ǫ(θ
−nω).

Therefore, the proof is completed if we can show for all ǫ > 0.

lim
n→+∞

1

n
logC ′

ǫ(θ
−nω) = 0 a.s..

For n ≥ 1, we have that

‖T n(θ−1ω)|Eκ(T )(θ−1ω)‖

≤ ‖T (θ−1ω)|Eκ(T )(θ−1ω)‖ · ‖T n−1(ω)|Ek(T )(ω)‖

≤ ‖T (θ−1ω)|Eκ(T )(θ−1ω)‖C ′
ǫ(ω)e(n−1)(κ(T )+ǫ)

=
[

‖T (θ−1ω)|Eκ(T )(θ−1ω)‖e−κ(T )−ǫ
] [

C ′
ǫ(ω)en(κ(T )+ǫ)

]

.

Therefore

C ′(θ−1ω) ≤max

{

1, sup

{‖T n(θ−1ω)|Eκ(T )(θ−1ω)‖
en(κ(T )+ǫ)

}

n≥1

}

≤max
{

1, ‖T (θ−1ω)|Eκ(T )(θ−1ω)‖e−κ(T )−ǫC ′
ǫ(ω)

}

( as C ′
ǫ(ω) ≥ 1 for all ω ∈ Ω)

≤C ′
ǫ(ω) sup

{

1, ‖T (θ−1ω)|Eκ(T )(θ−1ω)‖e−κ(T )−ǫ
}

.

Thus,

logC ′(θ−1ω) − logC ′
ǫ(ω)

≤ max
{

0, log ‖T (θ−1ω)|Eκ(T )(θ−1ω)‖ − κ(T ) − ǫ
}

≤ max{0, log+ ‖T (θ−1ω)
∣

∣

G(θ−1ω)
‖ − κ(T ) − ǫ}
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which is an L1 function. By Lemma 26, we have

lim
n→+∞

1

n
logC ′

ǫ(θ
−nω) = 0 a.s..

Therefore,

lim
n→−∞

1

n
log ‖T n(ω)v‖ = κ(T ), (72)

which together with (68) implies that

lim inf
n→∞

1

n
log ‖T−n(ω)

∣

∣

Eκ(T )(ω)
‖ ≥ −κ(T ).

For each unit vector v, we write v = a1u1 + · · · + amum, where ui ∈ Eκ(T )(ω) are unit

basis satisfying (69). Thus, we have

‖T−n(ω)
∣

∣

Eκ(T )(ω)
‖ = sup

‖a1u1+···+amum‖=1

‖T−n(ω)(a1u1 + · · · + amum)‖

≤ m2m max
1≤i≤m

‖T−n(ω)(ui)‖.

Then, by using (72) and (68), we obtain

lim sup
n→∞

1

n
log ‖T−n(ω)

∣

∣

Eκ(T )(ω)
‖ ≤ −κ(T ).

This completes the proof of this Theorem.

�
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7 Measurable Random Invariant Complementary

Subspaces

In this section, we establish the existence of measurable invariant subspaces. Our

main result is following.

Theorem 37. If κ(T ) > lα, then there exists a θ-invariant full measure subset Ω̃ in Ω

such that for any ω ∈ Ω̃ there exists a subspace F (ω) with codimension m+dimE(ω)

satisfying following properties:

(i) T (ω)(F (ω)) ⊂ F (θω);

(ii) Eκ(T )(ω) ⊕ F (ω) = G(ω) and the associated projection operator π1(ω) : X →

F (ω) is strongly measurable and ‖π1(ω)‖ is tempered;

(iii) κ(T |F ) := lim supn→+∞
1
n

log ‖T n(ω)
∣

∣

F (ω)
‖ < κ(T );

(iv) For every v(6= 0) ∈ F (ω) such that T−nv exists for all n ≥ 0, we have

lim inf
n→+∞

1

n
log ‖T−nv‖ > −κ(T );

(v) For any ǫ > 0, letting

K(ω) = sup

{‖T n(ω)π1(ω)‖
en(κ(T |F )+ǫ)

}

n≥0

,

then K(·) : Ω → [1,+∞) is a tempered function.

Before proving this theorem, we need the following lemmas and propositions.
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Let E : Ω → Km be a measurable map and ǫ be fixed such that 1
2
> ǫ > 0. Define

a multifunction Γ : Ω → K1 ×Km−1 as

Γ(ω) = {(E1, Em−1) ∈ K1×Km−1|E1 ⊂ E(ω), Em−1 ⊂ E(ω) and δ(E1, Em−1) > 1−ǫ}.

Lemma 38. Γ(ω) admits a measurable selection.

Proof. First we notice that Γ(ω) is not empty since there are m unit vectors ui ∈ E(ω)

such that

dist
(

u1, span{ui}1<i≤m

)

= 1

In order to apply Corollary 35, we need to show that for any open set U ⊂ K1 ×

Km−1, Γ−(U) = {ω| Γ(ω) ∩ U 6= ∅} is a measurable set. For ω ∈ Γ−(U), take

(E1(ω), Em−1(ω)) ∈ Γ(ω) ∩ U . Since U is open, there exists 0 < ǫ′(ω) < ǫ
2

such that

B(E1(ω),
1

2
ǫ′(ω)) ×B(Em−1(ω),

1

2
ǫ′(ω)) ⊂ U.

We choose unit vectors v1 ∈ E1(ω) and {vi}2≤i≤m ⊂ Em−1(ω) such that

dist(vi, span{vj}i<j≤m) = 1, 2 ≤ i ≤ m.

By Lemma 11, there exists a δ′(ω) > 0 such that for any set of vectors {wi}1≤i≤m

satisfying

‖wi − vi‖ < δ′(ω), 1 ≤ i ≤ m,

we have

dist(wi, span{wj}i<j≤m) > 1 − ǫ, 1 ≤ i ≤ m. (73)

Set

δ∗(ω) = min

{

δ′(ω)

2
,
ǫ′(ω)

2m3m

}
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and

G(U) =
⋃

ω∈Γ−(U)

B
(

E(ω), δ∗(ω)
)

.

Since G(U) is open, E−1(G(U)) is measurable. In order to prove that Γ−(U) is mea-

surable, it is sufficient to show E−1(G(U)) = Γ−(U).

We first notice that Γ−(U) ⊂ E−1(G(U)). Hence, we need only to showE−1(G(U)) ⊂

Γ−(U).

For any ω′ ∈ E−1(G(U)), there exists ω ∈ Γ−(U) such thatE(ω′) ∈ B(E(ω), δ∗(ω)).

Associated with ω ∈ Γ−(U), let (E1(ω), Em−1(ω)) ∈ Γ(ω) ∩ U , 0 < ǫ′(ω) < ǫ
2
,

{vi}1≤i≤m be given as the above. Thus, there exist m unit vectors {v′i}1≤i≤m ⊂ E(ω′)

such that

‖vi − v′i‖ ≤ δ∗(ω), 1 ≤ i ≤ m.

Then, by (73), we have

dist(v′i, span{v′j}i<j≤m) > 1 − ǫ, 1 ≤ i ≤ m. (74)

Let E1(ω
′) = span{v′1} and Em−1(ω

′) = span{v′i}2≤i≤m. For any unit vector v ∈

Em−1(ω
′), there exists {ai}2≤i≤m ⊂ R such that

v =
m
∑

i=2

aiv
′
i.

Since (74), by Lemma 9, we have

|ai| ≤
(2 − ǫ)m−2

(1 − ǫ)m−1
< 3m−1.
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Therefore

dist(v, Em−1(ω)) ≤ ‖
m
∑

i=2

ai(v
′
i − vi)‖ ≤ m3m−1δ∗(ω) <

ǫ′

2
.

Thus, by using (20), we have

d(Em−1(ω
′), Em−1(ω)) ≤ 2δ(Em−1(ω

′), Em−1(ω)) < ǫ′(ω).

Similarly, d(Em−1(ω), Em−1(ω
′)) < ǫ′(ω). So,

(E1(ω
′), Em−1(ω

′)) ∈ B(E1(ω), ǫ′(ω)) ×B(Em−1(ω), ǫ′(ω)) ⊂ U.

Thus ω′ ∈ Γ−(U). This completes the proof of this lemma.

Corollary 39. Let E(ω) be a measurable m-dimensional subspace of X. Then, E(ω)

has a measurable unit basis {e1(ω), · · · , em(ω)} which satisfies

dist(ei(ω), span{ej(ω)}i<j≤m) ≥ 1 − ǫ, 1 ≤ i ≤ m (75)

where 0 < ǫ < 1/2.

This corollary together with Lemma 20 gives that a m-dimensional space E(ω) is

measurable if and only if there exists a measurable basis.

Proof. We first show that for a measurable one-dimensional space Ê1(ω) there is

a measurable function e1(·) : Ω → X such that Ê1(ω) = span{e1(ω)}. Define a

multifunction Γ : Ω → SX as

Γ(ω) =
{

u ∈ SX

∣

∣ u ∈ E1(ω)
}

.
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Since Ê1(ω), Γ(ω) is not empty and closed. Let U be open set of SX , we want to

show Γ−(U)
(

= {ω| Γ(ω) ∩ U 6= ∅}
)

is a measurable set. For ω ∈ Γ−(U), take

u0(ω) ∈ Γ(ω) ∩ U . Since U is open, there exists 0 < r(ω) < 1/2 such that

B
(

u0(ω), r(ω)
)

⊂ U.

Set

G(U) =
⋃

ω∈Γ−(U)

B
(

u0(ω), r(ω)
)

.

For each u ∈ G(U), let E1,u denote the space spanned by u. Set

G̃(U) =
{

E1,u

∣

∣ u ∈ G(U)
}

Using the definition of the metric d, we have

G̃(U) =
⋃

ω∈Γ−(U)

B
(

E1,u0 , r(ω)
)

Since Ê1(ω) is measurable and G̃(U) is open, Ê−1
1

(

G̃(U)
)

measurable. Furthermore,

Ê−1
1

(

G̃(U)
)

= Γ−(U).

Thus, by Corollary 35, Γ admits a measurable selection e1(ω). Thus, using Lemma

38, we have a measurable basis for E(ω). This completes the proof of the Lemma.

The following result is an extension of the Hahn-Banach theorem to measurable

functionals.

Proposition 40. Let X be a separable Banach space and E : Ω → Kn be a n-

dimensional measurable space with measurable basis {e1(ω), · · · , en(ω)}. Let f(ω) be
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a bounded linear functional on E(ω) such that functions f(·)ei(·) : Ω → R, 1 ≤ i ≤ n,

and ‖f(·)‖ are measurable. Then f(ω) can be extend to a bounded linear functional

φ(ω) on X such that ‖φ(ω)‖ = ‖f(ω)‖ and the map φ(ω) is strongly measurable.

Proof. Let {xi}i≥1 be a dense set in X. We first construct the extension ψ(ω) of f(ω)

satisfying

(i) For any i ∈ N, ψ(ω)(xi) : Ω → R is a measurable function;

(ii) for any l ∈ N, ψ(ω) = fl(ω), where fl(ω) is a bounded linear functional on

span{x1, . . . , xl, E(ω)}, which satisfies ‖fl(ω)‖ = ‖f(ω)‖ and fl(ω) is an exten-

sion of fl−1(ω).

We will construct ψ(ω) by induction. For any integer l ≥ 0, we define a l+ 1-tuple sl

as following

(1) For l = 0, s0 = (∅);

(2) For l ≥ 1, sl = (∅, y1, . . . , yl) where yj = {xj} or ∅ for 1 ≤ j ≤ l.

We say sl < sk if and only if l < k and sk = (sl, yl+1, . . . , yk). We use s̆l to denote

∪l
i=1yi and denote the component yi by si

l, where sl = (∅, y1, . . . , yl). Set

s̃i
l =











0, when si
l = ∅,

xi, when si
l = {xi}.

We note that the set of all such l + 1-tuples, which we denote by Sl, contains 2l

elements only. We define a function Ω(·) on these tuples by induction.

(a) For 1-tuple, Ω((∅)) = Ω;
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(b) For 2-tuples:

Ω((∅, ∅)) = {ω | dist(x1, E(ω)) = 0},

Ω((∅, {x1})) = {ω | dist(x1, E(ω)) > 0}.

(c) Assume that Ω(sl) is defined for all l + 1 tuples. For sl+1, we write sl+1 =
(

sl, s
l+1
l+1

)

.

Ω(sl+1) = {ω ∈ Ωl(sl) | xl+1 ∈ span{s̆l, E(ω)}}, for sl+1
l+1 = ∅,

Ω(sl+1) = {ω ∈ Ωl(sl) | dist(xl+1, span{s̆l, E(ω)}) > 0}, for sl+1
l+1 = {xl+1}.

From this definition it follows that for any integers 0 ≤ i < j, si < sj if and only if

Ω(si) ⊃ Ω(sj).

To show (i) and (ii), we first prove the following claim by induction and denote

f(ω) by f0(ω).

Claim. For each integer l ≥ 1, we have

(C1) Ω(sl) is a measurable set for any sl ∈ Sl;

(C2) span{s̆l, E(ω)} is measurable on Ω(sl);

(C3) s̆l ∪ {ei(ω)}1≤i≤n is a measurable basis on Ω(sl);

(C4) There exists an extension fl(ω) of f(ω) to span
{

x1, · · · , xl, E(ω)
}

such that

‖fl(ω)‖ = ‖fl1(ω)‖ and fl(·)(xi) is measurable for 1 ≤ i ≤ l.

We first consider the case l = 1. Since E is measurable and dist(x1, E(ω)) depends

on E(ω) continuously for a fixed x1 ∈ X, dist(x1, E(ω)) is a measurable function.

Thus, both Ω((∅, ∅)) and Ω((∅, {x1})) are measurable sets. For each ω ∈ Ω((∅, {x1})),
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dim
(

span{x1, E(ω)}
)

= n+1. Hence, (C1)-(C3) hold. Next, we extend f(ω) to f1(ω)

on span{x1, E(ω)} by

f1(ω)(tx1 + y) = tβ1(ω) + f(ω)(y), t ∈ R, y ∈ E(ω),

where β1(ω) = sup{f(ω)(y) − ‖f(ω)‖‖ − x1 + y‖ | y ∈ E(ω)}.

Since {∑n
i=1 aiei(ω)| (a1, . . . , an) ∈ Qn} is a countable dense set of E(ω), we have

β1(ω)

= sup
{

f(ω)(y) − ‖f(ω)‖‖ − x1 + y‖
∣

∣ y ∈
{

n
∑

i=1

aiei(ω)| (a1, . . . , an) ∈ Qn
}}

= sup
{

n
∑

i=1

aif(ω)(ei(ω)) − ‖f(ω)‖‖ − x1 +
n
∑

i=1

aiei(ω)‖
∣

∣ {(a1, . . . , an) ∈ Qn}
}

,

which is measurable.

For ω ∈ Ω((∅, ∅)), we have x1 ∈ E(ω). Then,

f(ω)(x1)

= f(ω)(y) − f(ω)(y − x1)

= sup{f(ω)(y) − ‖f(ω)‖‖ − x1 + y‖ | y ∈ E(ω)}

= sup

{

f(ω)(y) − ‖f(ω)‖‖ − x1 + y‖
∣

∣

∣

∣

y ∈
{

n
∑

i=1

aiei(ω)| (a1, . . . , an) ∈ Qn

}}

= sup

{

n
∑

i=1

aif(ω)(ei(ω)) − ‖f(ω)‖‖ − x1 +
n
∑

i=1

aiei(ω)‖
∣

∣

∣

∣

{(a1, . . . , an) ∈ Qn}
}

,

which is β1(ω) and is measurable. We define f1(ω) = f(ω) on Ω((∅, ∅)). Thus, we have

that f1(ω)x1 is measurable, f1(ω) is a bounded linear functional on span
{

x1, E(ω)
}

.

The definition of β(ω) implies that ‖f1(ω)‖ = ‖f(ω)‖. By Corollary 19, we have that

span{x1, E(ω)} is measurable on Ω((∅, ∅)) and Ω((∅, {x1})) respectively. And we also

note that {x1}∪{ei(ω)}1≤i≤n and ∅∪{ei(ω)}1≤i≤n are measurable basis of Ω(∅, {x1}))
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and Ω((∅, ∅)), respectively.

Next, we assume that (C1)-(C4) hold for l = k − 1. We want to show that (C1)-

(C4) are true for l = k. It is easy to see that (C1)-(C3) are all true, which come from

Corollary 19 and induction hypothesis.

We consider sk and take sk−1 < sk. If sk
k = ∅, then xk ∈ span{s̆k−1, E(ω)} for

ω ∈ Ω(sk). Define

fk(ω) = fk−1(ω), for ω ∈ Ω(sk).

Thus ‖fk(ω)‖ = ‖f(ω)‖, for ω ∈ Ω(sk). Let

D(ω) =
{

n
∑

i=1

aiei(ω) +
k−1
∑

j=1

an+j s̃
j
k−1| (a1, . . . , an+k−1) ∈ Qn+k−1

}

be a countable dense set of span{s̆k−1, E(ω)}. We notice that

fk−1(ω)(xk) = fk−1(ω)(y) − fk−1(ω)(y − xk)

= sup
{

fk−1(ω)(y) − ‖fk−1(ω)‖‖ − xk + y‖ | y ∈ span{s̆k−1, E(ω)}
}

= sup
{

fk−1(ω)(y) − ‖fk−1(ω)‖‖ − xk + y‖
∣

∣ y ∈ D(ω)
}

= sup
{

n
∑

i=1

aifk−1(ω)(ei(ω)) +
k−1
∑

j=1

an+jfk−1(ω)(s̃j
k−1)

− ‖f(ω)‖
∥

∥

∥

n
∑

i=1

aiei(ω) +
k−1
∑

j=1

an+j s̃
j
k−1 − xk

∥

∥

∥

∣

∣

∣ {(a1, · · · , an+k−1) ∈ Qn+k−1}
}

.

(76)

The last term is measurable on Ω(sk−1) from the induction hypotheses, which implies

that fk(ω)xk is measurable on Ω(sk).

If sk
k = {xk}, then xk /∈ span{s̆k−1, E(ω)}. We extend fk−1(ω) to fk(ω) on Ω(sk)

from span{s̆k−1, E(ω)} to span{s̆k, E(ω)} by defining

fk(ω)(txk + y) = tβk(ω) + fk−1(ω)(y), t ∈ R, y ∈ span{s̆k−1, E(ω)},
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where βk(ω) = sup{fk−1(ω)(y)−‖fk−1(ω)‖‖−xk +y‖ | y ∈ span{s̆k−1, E(ω)}}. From

(76), we have

βk(ω)

= sup
{

n
∑

i=1

aifk−1(ω)(ei(ω)) +
k−1
∑

j=1

an+jfk−1(ω)(s̃j
k−1)

− ‖f(ω)‖
∥

∥

∥

n
∑

i=1

aiei(ω) +
k−1
∑

j=1

an+j s̃
j
k−1 − xk

∥

∥

∥

∣

∣

∣
{(a1, . . . , an+k−1) ∈ Qn+k−1}

}

,

which is measurable on Ω(sk−1). Thus fk(ω)(xl) is measurable on Ω(sk). The choice

of β(ω) gives ‖fk(ω)‖ = ‖fk−1(ω)‖ = ‖f(ω)‖, for ω ∈ Ω(sk). Since Ω is the union

of disjoint sets Ω(sk), sk ∈ Sk, we have that fk(ω) is a bounded linear functional

on span
{

x1, · · · , xk, E(ω)
}

, ‖fk(ω)‖ = ‖f(ω)‖, and fk(ω)xk is measurable. This

completes the proof of the claim.

Using this claim, we obtain a functional ψ(ω) defined on a dense set and ψ(ω) =

fl(ω) on span
{

x1, · · · , xl, E(ω)
}

for each l ≥ 0, which satisfies (i) and (ii) given at

the beginning of the proof. At the remaining points of X, the functional is defined

by continuity. For each x ∈ X, there exists a subsequence of {xi}i≥1, denoted by

{xni
}i≥1, such that

lim
i→+∞

xni
= x.

Since for i < j we have

‖ψ(ω)(xni
) − ψ(ω)(xnj

)‖ = ‖fnj
(ω)(xni

) − fnj
(ω)(xnj

)‖ ≤ ‖f(ω)‖‖xni
− xnj

‖,

ψ(ω)(xni
) is a Cauchy sequence. Thus, limi→+∞ ψ(ω)(xni

) exists. We define

φ(ω)(x) = lim
i→+∞

ψ(ω)(xni
).
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It is easy to see that φ(ω)(x) is well defined.

Next, we show that φ(ω) is a bounded linear functional with ‖φ(ω)‖ = ‖ψ(ω)‖.

For any x1, x2 ∈ X, there exist subsequences {xni
}i≥1 and {xmi

}i≥1 such that converge

to x1, x2, respectively. Thus, for a, b ∈ R

φ(ω)(ax1 + bx2) = lim
i→+∞

ψ(ω)(axni
+ bxmi

)

=a lim
i→+∞

ψ(ω)(xni
) + b lim

i→+∞
ψ(ω)(xmi

)

=aφ(x1) + bφ(x2),

which means that φ(ω) is linear. Furthermore,

‖φ(ω)‖ = sup
‖x‖=1

{‖φ(ω)(x)‖} = sup{‖φ(ω)(
xi

‖xi‖
)‖}i≥1

= sup{‖ψ(ω)(
xi

‖xi‖
)‖}i≥1 = ‖f(ω)‖.

Thus φ(ω) is a bounded linear functional on X with norm ‖f(ω)‖. Since φ(ω)xi =

fi(ω)xi is measurable and
{

xi

}

i≥1
is dense in X, φ(ω)x is measurable for all x ∈ X.

This completes the proof of the proposition

By using Corollary 39, Eκ(T )(ω) has a measurable unit basis {ei(ω)}1≤i≤m satis-

fying

dist(ei(ω), span{ej(ω)}i<j≤m) ≥ 1 − ǫ, 1 ≤ i ≤ m, (77)

for 0 < ǫ < 1/2. By lemma 9 we have that

dist(ei(ω), span{ej(ω)}1≤j≤m,j 6=i) ≥
1 − ǫ

(1 + 1
1−ǫ

)m−1
, 1 ≤ i ≤ m. (78)
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For each x ∈ Eκ(T )(ω), we write

x =
m
∑

i=1

xiei(ω),

where xi ∈ R, 1 ≤ i ≤ m.

Lemma 41. For each integer 1 ≤ i ≤ m, there exists a bounded functional φi(ω)

such that

(i) φi : Ω → X∗ is strongly measurable;

(ii) φi(ω)x = xi for all x ∈ Eκ(T )(ω);

(iii) The norm of φi(ω) is given by

‖φi(ω)‖ =
1

dist(ei(ω), span{ej(ω)}1≤j≤m,j 6=i)
.

Proof. For x ∈ Eκ(T )(ω) and 1 ≤ i ≤ m, we define a functional fi(ω) on Eκ(T )(ω)

by fi(ω)(x) = xi, where xi is given by x =
∑m

i=1 xiei(ω). Clearly, fi(ω) is a linear

functional. Next, we show that fi(ω) is bounded. For each unit vector x, using (78),

we have

‖xi‖ ≤ 1

dist(ei(ω), span{ej(ω)}1≤j≤m,j 6=i)
≤

(1 + 1
1−ǫ

)m−1

1 − ǫ
,

which implies that

‖fi(ω)‖ ≤ 1

dist(ei(ω), span{ej(ω)}1≤j≤m,j 6=i)
≤

(1 + 1
1−ǫ

)m−1

1 − ǫ
, 1 ≤ i ≤ m. (79)

Since Eκ(T )(ω) is finitely dimensional, there exists a unit vector e′i(ω) ∈ Eκ(T )(ω) such

that

ei(ω) − dist(ei(ω), span{ej(ω)}1≤j≤m,j 6=i)e
′
i(ω) ∈ span{ej(ω)}1≤j≤m,j 6=i, (80)
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which yields that

|fi(ω)e′i(ω)| =
1

dist(ei(ω), span{ej(ω)}1≤j≤m,j 6=i)
.

This together with (79) gives

‖fi(ω)‖ =
1

dist(ei(ω), span{ej(ω)}1≤j≤m,j 6=i)
.

Thus, ‖fi(ω)‖ is measurable. Since fi(ω)ej(ω) = δij, 1 ≤ i, j ≤ m, fi(·)ej(·) : Ω → R

are measurable. By using Proposition 40, we can extend fi(ω) to φi(ω) ∈ X∗ which

satisfies the conditions of Lemma 41. This completes the proof of the lemma.

To prove Theorem 37, we need following lemma.

Lemma 42. Let f : Ω → (0,+∞) be tempered and γ : Ω → (0,+∞) be a θ-invariant

random variable. Then, there is a tempered random variable R(ω) such that

i 1
R(ω)

≤ f(ω) ≤ R(ω)

ii e−γ(ω)|n|R(ω) ≤ R(θnω) ≤ eγ(ω)|n|R(ω).

This lemma is a consequence of Proposition 4.3.3([1],page 187).

Proof of Theorem 37 We prove this theorem in four steps.

Step 1. We construct complementary spaces.

We first define Π′′(ω) : X → Eκ(T )(ω) as

Π′′(ω)(x) =
m
∑

i=1

φi(ω)(x)ei(ω),
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for x ∈ X, where φi is given by Lemma 41. For each x ∈ Eκ(T )(ω), there exists

(a1, . . . , am) ∈ Rm such that x =
∑m

i=1 aiei(ω). Then

Π′′(ω)(x) =Π′′(ω)(
m
∑

i=1

aiei(ω)) =
m
∑

j=1

φj(ω)(
m
∑

i=1

aiei(ω))ej(ω)

=
m
∑

i=1

(
m
∑

i=1

aiδij)ej(ω) =
m
∑

i=1

aiei(ω) = x.

This implies that Π′′(ω) is a projection on Eκ(T )(ω). Furthermore, using (78), we

obtain

‖Π′′(ω)‖ ≤
m
∑

i=1

‖φi(ω)‖ ≤
(1 + 1

1−ǫ
)m−1m

1 − ǫ
.

Since X is a separable Banach space, Π′′(ω) is strongly measurable.

Let Π′(ω) = Π′′(ω)π(ω) and Π(ω) = π(ω) − Π′(ω). Then Π(ω) and Π′(ω) are

projection operators satisfying

‖Π′(ω)‖ ≤ ‖π(ω)‖
(1 + 1

1−ǫ
)m−1m

1 − ǫ
,

‖Π(ω)‖ ≤ ‖π(ω)‖
((1 + 1

1−ǫ
)m−1m

1 − ǫ
+ 1
)

.

Since π(ω) is tempered, ‖Π′(ω)‖ and ‖Π(ω)‖ are tempered. We also note that

‖Π′(ω)|G(ω)‖ ≤ ‖Π′′‖ and ‖Π(ω)|G(ω)‖ ≤ 1 + ‖Π′′‖, which are uniformly bounded

on Ω. Let G1(ω) = Π(ω)(X). Then G(ω) = Eκ(T ) ⊕ G1(ω). Hence, G1 is a com-

plementary space of E(ω) ⊕ Eκ(T )(ω). From the measurability of π(·) and Π′′(·) it

follows that both Π′(·) and Π(·) are strongly measurable.

Step 2. We study the properties of T on G1(ω).

Define T̃ (ω) = Π(θω)T (ω). Then T̃ (·) : Ω → L(X,X) is strongly measurable.

It is easy to see that T̃ (ω) is injective on G1(ω) because T (ω) is injective on G(ω).
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From the definition of Π(ω), we have that

T̃ (ω)G1(ω) ⊂ G1(θω) and T̃ (ω)x = 0 for x ∈ E(ω) ⊕ Eκ(T )(ω).

Since T (ω)G(ω) ⊂ G(θω) and ‖Π(ω)
∣

∣

G(ω)
‖ ≤ 1 + ‖Π′′‖ which is uniformly bounded,

‖T̃ (ω)
∣

∣

G1(ω)
‖ ≤ ‖Π(θω)

∣

∣

G(θω)
‖‖T (ω)

∣

∣

G(ω)
‖,

which implies that log+ ‖T̃ (·)
∣

∣

G1(·)
‖ ∈ L1(Ω,F , P ). Thus, the results obtained in

Section 6 can be applied to T̃ .

By using Lemma 21,22 and 23, we have κ(T̃ ), a measurable subspace Eκ(T̃ )(ω),

and a positive integer m′ such that

dimEκ(T̃ )(ω) = m′; (81)

Eκ(T̃ )(ω) ⊂ G1(ω); (82)

T̃ (Eκ(T̃ )(ω)) = Eκ(T̃ )(θω); (83)

lim
n→±∞

1

n
log ‖T̃ n(ω)|Eκ(T̃ )(ω)‖ = κ(T̃ ). (84)

We claim that κ(T̃ ) < κ(T ).

We prove it by a contradiction. Suppose that κ(T̃ ) ≥ κ(T ). Let E ′(ω) =

Eκ(T )(ω) ⊕ Eκ(T̃ )(ω). Then, using (83), we have that T (ω)E ′(ω) = E ′(θω). We

will show that for any v(6= 0) ∈ Eκ(T̃ )(ω)

lim sup
n→+∞

1

n
log ‖T−n(ω)v‖ ≤ −κ(T ), (85)

which implies that v ∈ Eκ(T )(ω), thus v = 0, a contradiction.

For the sake of simplicity, for a bounded linear operator L from a Banach space
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Y to a Banach space Z, we denote

‖L‖− = inf
‖v‖=1

{‖Lv‖}.

It is easy to see that

‖L‖− ≤ ‖L‖

and if L−1 exists, then ‖L‖− = ‖L−1‖−1.

First we have that

lim
n→+∞

1

n
log ‖T̃ n(θ−n)|Eκ(T̃ )(θ−nω)‖− = κ(T̃ ), (86)

which follows

lim
n→+∞

1

n
log ‖T̃ n(θ−n)ω)|Eκ(T̃ )(θ−nω)‖− = lim

n→+∞

1

n
log

1

‖T̃−n(ω)|Eκ(T̃ )(ω)‖
= κ(T̃ ).

For any v(6= 0) ∈ Eκ(T̃ )(ω), we have

v =T n(θ−nω)T−n(ω)v

=T n(θ−nω)Π′(θ−nω)T−n(ω)v

+T n(θ−nω)Π(θ−nω)T−n(ω)v

=T n(θ−nω)Π′(θ−nω)T−n(ω)v (1)

+Π′(ω)T n(θ−nω)Π(θ−nω)T−n(ω)v (2)

+Π(ω)T n(θ−nω)Π(θ−nω)T−n(ω)v (3).
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Note that (1) + (2) = 0, because v ∈ Eκ(T̃ )(ω). So

‖v‖ = ‖Π(ω)T n(θ−nω)Π(θ−nω)T−n(ω)v‖,

which implies that

‖v‖ ≥ ‖T̃ n(θ−n)|Eκ(T̃ )(θ−nω)‖−‖Π(θ−nω)T−n(ω)v‖.

Thus

lim sup
n→+∞

1

n
log ‖Π(θ−nω)T−n(ω)v‖ ≤ −κ(T̃ ). (87)

Since ‖Π′(ω)|G(ω)‖ is bounded and

lim
n→+∞

1

n
log ‖T n(θ−nω)‖ = κ(T ) ≤ κ(T̃ ),

then

lim sup
n→+∞

1

n
log ‖Π′(ω)T n(θ−nω)Π(θ−nω)T−n(ω)v‖

≤ lim sup
n→+∞

1

n
log
(

‖Π′(ω)T n(θ−nω)‖‖Π(θ−nω)T−n(ω)v‖
)

≤ lim sup
n→+∞

1

n
log ‖Π′(ω)T n(θ−nω)‖ + lim sup

n→+∞

1

n
log ‖Π(θ−nω)T−n(ω)v‖

≤κ(T ) − κ(T̃ ) ≤ 0.

Therefore,

lim sup
n→+∞

1

n
log ‖Π′(ω)T n(θ−nω)Π′(θ−nω)T−n(ω)v‖ ≤ 0.

Note that

lim
n→+∞

1

n
log ‖T n(θ−nω)|Eκ(T )(θ−nω)‖− = lim

n→+∞

1

n
log

1

‖T−n(ω)|Ek(T )(ω)‖
= κ(T ). (88)
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Since

‖T n(θ−nω)Π′(θ−nω)T−n(ω)v‖ ≥ ‖T n(θ−nω)|Eκ(T )(θ−nω)‖−‖Π′(θ−nω)T−n(ω)v‖,

we have that

lim sup
n→+∞

1

n
log ‖Π′(θ−nω)T−n(ω)v‖

≤ lim sup
n→+∞

1

n
log ‖Π′(ω)T n(θ−nω)Π′(θ−nω)T−n(ω)v‖

− lim
n→+∞

1

n
log ‖T n(θ−nω)|Eκ(T )(θ−nω)‖−

≤0 − κ(T ) = −κ(T ).

Combining (87), we can obtain that

lim sup
n→+∞

1

n
log ‖T−n(ω)v‖

= lim sup
n→+∞

1

n
log ‖Π′(θ−nω)T−n(ω)v + Π(θ−nω)T−n(ω)v‖

≤ lim sup
n→+∞

1

n
log
(

‖Π′(θ−nω)T−n(ω)v‖ + ‖Π(θ−nω)T−n(ω)v‖
)

≤− κ(T ),

which gives (85).

Step 3. We construct an invariant complementary space.

We now construct an invariant complementary space F (ω) of E(ω) ⊕ Eκ(T )(ω),

which is given by the graph of a strongly measurable map Ψ(·) : Ω → L(X,X) such

114



that

Ψ(ω) = Ψ(ω)Π(ω), (89)

Ψ(ω)G1(ω) ⊂ Eκ(T )(ω), (90)

T (ω)G(Ψ(ω)) = G(Ψ(θω)), (91)

where G(Ψ(ω))
(

=
{

v + Ψ(ω)(v)
∣

∣ v ∈ G1(ω)
})

is the graph of Ψ(ω) over G1(ω).

We first observe that the following statements are equivalent

T (ω)
(

v + Ψ(ω)v
)

= v′ + Ψ(θω)v′, where v ∈ G1(ω), v′ ∈ G1(θω), (92)

Π′(θω)T (ω)v + T (ω)Ψ(ω)v = Ψ(θω)v′, T̃ (ω)v = v′, (93)

Π′(θω)T (ω)v + T (ω)Ψ(ω)v = Ψ(θω)T̃ (ω)v, (94)

(

T (θω)|Eκ(T )(ω)

)−1
Ψ(θω)

(

T̃ (ω)|G1(ω)

)

− Ψ(ω)

=
(

T (θω)|Eκ(T )(ω)

)−1
Π′(θω)(T (ω)|G1(ω)).

(95)

Thus, we define

Ψ(ω) = −
+∞
∑

n=0

T−(n+1)(θ(n+1)ω)Π′(θn+1ω)T (θnω)Π(θnω)T n(ω)Π(ω). (96)

We will show that the above infinite series converges absolutely and is strongly mea-

surable.

Since κ(T ) > κ(T̃ ), we let ǫ satisfy 0 < 3ǫ < κ(T ) − κ(T̃ ). Set

C(ω) = sup

{‖T−n(ω)|Eκ(T )(ω)‖
en(−κ(T )+ǫ)

}

n≥0

,

and

C1(ω) = sup

{

‖T̃ n(ω)|G(ω)‖
en(κ(T̃ )+ǫ)

}

n≥0

.
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By the definitions of κ(T ) and κ(T̃ ), we have that 1 ≤ C(ω) < +∞ and 1 ≤ C1(ω) <

+∞. Using the same argument as before, we have that C(ω) and C1(ω) are tempered

random variables. Then, for each x ∈ X, we have

‖Ψ(ω)x‖

≤
+∞
∑

n=0

‖T−(n+1)(θn+1ω)|Eκ(T )(θn+1ω)‖ ‖Π′(θn+1ω)‖ ‖T (θnω)
∣

∣

G(θnω)
‖ ‖T̃ n(ω)‖ ‖Π(ω)x‖

≤
+∞
∑

n=0

C(θn+1ω)e(n+1)(−κ(T )+ǫ)C1(ω)en(κ(T̃ )+ǫ)‖Π′(θn+1ω)‖ ‖T (θnω)
∣

∣

G(θnω)
‖ ‖Π(ω)x‖

≤e−κ(T )+ǫC1(ω)
+∞
∑

n=0

C(θn+1ω)en(−κ(T )+ǫ+κ(T̃ )+ǫ)‖Π′(θn+1ω)‖ ‖T (θnω)
∣

∣

G(θnω)
‖ ‖Π(ω)x‖

≤e−κ(T )+ǫC1(ω)
+∞
∑

n=0

C(θn+1)e−nǫ‖Π′(θn+1ω)‖ ‖T (θnω)
∣

∣

G(θnω)
‖ ‖Π(ω)x‖.

Since C(ω), ‖Π′(ω)‖, and ‖T (ω)
∣

∣

G(ω)
‖ are tempered, by Lemma 42, there exists a

tempered random variable R(ω) such that

1

R(ω)
≤ max{‖Π′(ω)‖, C(ω), ‖T (ω)

∣

∣

G(ω)
‖} ≤ R(ω)

and

e−|n| ǫ
4R(ω) ≤ R(θnω) ≤ e|n|

ǫ
4R(ω).

Hence,

‖Ψ(ω)x‖

≤‖Π(ω)‖ ‖x‖e−κ(T )+ǫC1(ω)
+∞
∑

n=0

C(θn+1)e−nǫ‖Π′(θn+1ω)‖‖T (θnω)
∣

∣

G(θnω)
‖

≤‖Π(ω)‖ ‖x‖C1(ω)e−κ(T )+ 3
2
ǫ

+∞
∑

n=0

R3(ω)e−
n
4

ǫ

=‖Π(ω)‖ ‖x‖C1(ω)R3(ω)
e−κ(T )+ 3

2
ǫ

1 − e−
ǫ
4

,

(97)
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which yields that (96) is absolutely convergence. To show that Ψ(ω) is strongly

measurable, it is enough to prove that T−1(θω)Π′(θω) is strongly measurable. Let

e1(ω), · · · em(ω) be the measurable basis of Eκ(T )(ω). Then T (ω)e1(ω), · · ·T (ω)em(ω)

is also a basis of Eκ(T )(θω). For each x ∈ X, since Π′(ω)x ∈ Eκ(T )(ω), there are

a1(ω), · · · , am(ω) ∈ R such that

Π′(θω)x = a1(ω)T (ω)e1(ω) + · · · + am(ω)T (ω)em(ω).

Since Π′(ω)x and T (ω)ei(ω) are measurable, by using Proposition 40, we have that

ai(ω), 1 ≤ i ≤ m, are measurable. Thus, T−1(θω)Π′(θω)x = a1(ω)e1(ω) + · · · +

am(ω)em(ω) is measurable.

Let

π1(ω) = Π(ω) + Ψ(ω), π′
1(ω) = I − π1(ω), (98)

and

F (ω) = G(Ψ(ω)) (99)

Then, we have F (ω) = π1(ω)X and

T (ω)F (ω) ⊂ F (θω)

which gives (i) in Theorem 37. We also have that π1 and π′
1 are strongly measurable.

For any u ∈ F (ω), by the definition, there exists u′ ∈ G1(ω) such that

u = u′ + Ψ(ω)u′.

117



Then

π1(ω)u = (Π(ω) + Ψ(ω)) (u′ + Ψ(ω)u′)

= (Π(ω) + Ψ(ω))u′ + (Π(ω) + Ψ(ω)) Ψ(ω)u′

=u′ + Ψ(ω)u′ + 0 = u.

Hence, π1(ω) is a projection on F (ω). And for any v ∈ E(ω) ⊕ Eκ(T )(ω), we have

π′
1(ω)v = (I − Π(ω))v − Ψ(ω)v = (I − Π(ω))v = v.

Therefore, we have an invariant splitting of X

X =
(

E(ω) ⊕ Eκ(T )(ω)
)

⊕ F (ω).

Since C1(ω) and R(ω) are tempered, using the estimate (97), we have that Ψ(ω) is

tempered from above. Since

1 ≤ π1(ω) ≤ ‖Π(ω)‖ + ‖Ψ(ω)‖,

‖π1(ω)‖ is tempered. Hence, the property (ii) in Theorem 37 holds.

Step 4. We establish the exponential rate of T (ω) in F (ω).

We first show that π1(ω)|G1(ω) is an isomorphism from G1(ω) to F (ω). From

the definition of F (ω) we have π1(ω)G1(ω) = F (ω), which means that π1(ω)|G1(ω) is

surjective. For any v1, v2 ∈ G1(ω), if π1(ω)v1 = π1(ω)v2, then v1 − v2 = Ψ(ω)v2 −

Ψ(ω)v1. Since v1 − v2 ∈ G1(ω),Ψ(ω)v2 −Ψ(ω)v1 ∈ Eκ(T )(ω) and G1(ω)∩Eκ(T )(ω) =

{0}. So v1 = v2, which implies that π1(ω)|G1(ω) is injective. Thus π1(ω)|G1(ω) is a

one-to-one map between F (ω) and G1(ω). We also note that π1(ω) is a bounded

linear operator. Furthermore, ‖
(

π1(ω)|G1(ω)

)−1 ‖ = ‖Π(ω)|F (ω)‖. Hence, π1(ω)|G1(ω)
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is an isomorphism. We notice that

T n(ω)|F (ω) = π1(θ
n+1ω)T̃ n(ω)Π(ω)|F (ω).

Since both ‖π1(θ
n+1ω)‖ and ‖Π(ω)‖ are tempered, we obtain

lim sup
n→+∞

1

n
log ‖T n(ω)|F (ω)‖ ≤ lim

n→+∞

1

n
log ‖T̃ n(ω)‖ < κ(T ),

which gives the property (iii) in Theorem 37 .

For any v(6= 0) ∈ F (ω) such that T−n(ω)v exists for all n ≥ 0, we have

‖v‖ = ‖T n(θ−nω)T−n(ω)v‖ = ‖π1(ω)T̃ n(θ−nω)Π(θ−nω)T−n(ω)v‖

≤ ‖Π(θ−nω)‖(1 + ‖Ψ(ω)‖)‖T̃ n(θ−nω)
∣

∣

G(θ−nω)
‖ ‖T−n(ω)v‖.

Then, as long as ‖Π(·)‖ and ‖Ψ(·)‖ are tempered, we have that

lim inf
n→+∞

1

n
log ‖T−n(ω)v‖

≥ lim inf
n→+∞

1

n
log

‖v‖
‖Π(θ−nω)‖(1 + ‖Ψ(ω)‖)‖T̃ n(θ−nω)

∣

∣

G(θ−nω)
‖

= − lim sup
n→+∞

1

n
log ‖T̃ n(θ−nω)

∣

∣

G(θ−nω)
‖

= − κ(T̃ ) > −κ(T ),

which gives the property (iv).

For any ǫ > 0, let

K ′(ω) = sup

{‖T n(ω)|F (ω)‖
en(κ(T |F )+ǫ)

}

n≥0

.
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Then, we have

1 ≤ K(ω) ≤ K ′(ω)‖π1(ω)‖. (100)

Since for n ≥ 1,

‖T n(ω)|F (ω)‖ =
∥

∥

(

T n−1(θω)|F (θω)

) (

T (ω)|F (ω)

)∥

∥ ≤ ‖T n−1(θω)|F (θω)‖‖S(ω)‖,

we have

logK ′(ω) − logK ′(θω) ≤ max{log+ ‖S(ω)‖ − κ(T |F ) − ǫ, 0}.

By Lemma 26, we have

lim
n→±∞

1

n
logK ′(θnω) = 0.

Therefore, combining with (100), we have

lim sup
n→±∞

1

n
logK(θnω) ≤ lim sup

n→±∞

1

n
logK ′(θnω) + lim sup

n→±∞

1

n
log ‖π1(θ

nω)‖ = 0.

Hence

lim
n→±∞

1

n
logK(θnω) = 0.

The proof of Theorem 37 is complete. �
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8 Proof of Multiplicative Ergodic Theorem

We prove Theorem 4 by using Theorems 21, 22, 23, 37 and prove it by induction.

First, we let E(ω) = 0. We assume that κ(Φ) > l(Φ). It is clear that the conditions

(B1)-(B3) in Section 6 are satisfied and T = Φ. By Theorems 21, 22, 23, and 37, we

obtain λ1 = κ(T ), E1(ω) = Eκ(T )(ω), F1(ω) = F (ω) and Π1(ω) = Π(ω) which satisfy

all the conditions of Theorem 4.

Next, we introduce the induction assumption: There exist k(ω) numbers λ1(ω) >

. . . > λk(ω)(ω) > lα(ω) and a splitting

X = E1(ω) ⊕ · · · ⊕ Ek(ω)(ω) ⊕ Fk(ω)

of finite dimensional linear subspaces Ej(ω) and finite codimension linear subspace

Fk(ω) such that

1) Invariance: k(θω) = k(ω), λi(θω) = λi(ω), S(ω)Ej(ω) = Ej(θω) and S(ω)Fk(ω) ⊂

Fk(θω);

2) Lyapunov Exponents:

lim
n→+∞

1

n
log ‖Φ(n, ω)v‖ = λj(ω) for all v(6= 0) ∈ Ej(ω), 1 ≤ j ≤ k;

3) Exponential Decay Rate on F (ω):

lim sup
n→+∞

1

n
log ‖Φ(n, ω)|Fk(ω)‖ < λk(ω)(ω)

and if v(6= 0) ∈ Fk(ω) and (Φ(n, θ−nω))−1v exists for all n ≥ 0, which is de-
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noted by Φ(−n, ω)v, then

lim inf
n→+∞

1

n
log ‖Φ(−n, ω)v‖ > −λk(ω)(ω);

4) Tempered Projections: The projection operators associated with the decompo-

sitions

X =
(

j
⊕

i=1

Ei(ω)
)

⊕
(

(

k(ω)
⊕

i=j+1

Ei(ω)
)

⊕ Fk(ω)
)

=
(

k(ω)
⊕

i=1

Ei(ω)
)

⊕ Fk(ω)

are tempered;

5) Measurability: k(ω), λi(ω), and Ej(ω) are measurable and the projection oper-

ators are strongly measurable.

We have two cases. If κ
(

Φ
∣

∣

Fk(ω)

)

= lα, then we have (II) in Theorem 4. Note that

κ
(

Φ
∣

∣

Fk(ω)

)

≥ lα. If κ
(

Φ
∣

∣

Fk(ω)

)

> lα, we let

E(ω) = E1(ω) ⊕ · · · ⊕ Ek(ω)(ω),

G(ω) = Fk(ω), and π(ω) = Πk(ω)(ω).

Then, by applying Theorems 21, 22, 23, and 37 to T (ω) = S(ω)π(ω), we can obtain

that λk+1 = κ(T ), Ek+1(ω) = Eκ(T )(ω), Fk(ω)+1(ω) = F (ω) and Πk+1(ω) = π1(ω)

which satisfy all the above conditions by replacing k by k + 1. If κ
(

Φ
∣

∣

Fk(ω)

)

> lα for

all positive integer k, then (III) holds. Otherwise, (II) holds. limk→∞ λk = lα follows

from Theorem 21. The proof is complete.

�
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9 Stable and Unstable Manifolds

In this section, we establish random stable and unstable manifolds of a nonuniformly

hyperbolic random invariant set A(ω) for infinite dimensional random dynamical

systems in a Banach space X.

9.1 Nonuniformly Hyperbolic Linear RDS.

We consider a linear random dynamical system Φ(n, ω) in a Banach space X.

Definition 4. Φ(n, ω) is said to be nonuniformly hyperbolic if for almost every ω ∈ Ω,

there exists a splitting

X = Eu(ω) ⊕ Es(ω)

of closed subspaces with associated projections Πu(ω) and Πs(ω) such that

(i) The splitting is invariant: Φ(n, ω)Eu(ω) = Eu(θnω) and Φ(n, ω)Es(ω) ⊂ Es(θnω).

(ii) Φ(1, ω)
∣

∣

Eu(ω)
: Eu(ω) → Eu(θω) is an isomorphism.

(iii) There is a θ-invariant random variable β : Ω → (0,∞), a tempered random

variable K(ω) : Ω → [1,∞) such that

||Φ(n, ω)Πs(ω)|| ≤ K(ω)e−β(ω)n for n ≥ 0 (101)

||Φ(n, ω)Πu(ω)|| ≤ K(ω)eβ(ω)n for n ≤ 0 (102)

Remark 6. If K(ω) is uniformly bounded, then we call this dynamical system uni-

formly hyperbolic.

Remark 7. When Φ(n, ω) satisfies the conditions of Theorem A and has no zero

Lyapunov exponents in which lα(ω) < 0, we may divide all the Lyapunov exponents
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into two group based on their signs. Let

σu(ω) := {λi(ω) > 0} and σs(ω) := {λi(ω) < 0}

and denote

Eu(ω) :=
⊕

λi(ω)∈σu(ω)

Ei(ω) and Es(ω) :=
⊕

λi(ω)∈σs(ω)

Ei(ω).

Then

X = Eu(ω) ⊕ Es(ω).

We call Eu(ω) the unstable Oseledets subspace and Es(ω) the stable Oseledets sub-

space. β(ω) may be chosen as

β(ω) =
1

2
min{|λi(ω)|}.

As ω varies, β(ω) may be arbitrarily small and K(ω) may be arbitrarily large. How-

ever, along each orbit θnω, β(ω) is a constant and K(ω) can increase only at a

subexponential rate, which together with conditions (101) and (102) imply that the

linear system Φ(n, ω) is nonuniformly hyperbolic in the sense of Pesin.

9.2 Nonuniformly Hyperbolic Random Sets.

Let (Ω,F , P ) be a probability space, X be a separable Banach space, (θn)n∈Z be a

metric dynamical system, and φ be a random dynamical system (or a cocycle) on X

over θn. For A ∈ F ⊗ B(X), we call A(ω) := {x ∈ X | (ω, x) ∈ A} ∈ B(X) is the

ω-section of A.

Definition 5. Let A ⊂ Ω ×X be a measurable set.
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(a) A is called forward invariant if for any n > 0

φ(n, ω)A(ω) ⊂ (A(θnω)) P − a.s.,

(b) A is called invariant if for each x0 ∈ A(ω) and each n > 0 there exists a unique

x ∈ A(ω−n) such that φ(n, θ−nω)(x) = x0 and for all n ∈ Z

φ(n, ω)A(ω) = (A(θnω)) P − a.s.,

where φ(−n, ω)(x) denotes φ−1(n, θ−nω)(x) for n > 0.

We now define the nonuniform hyperbolicity of a nonlinear dynamical system φ

on an invariant set A.

Definition 6. φ is said to be nonuniformly hyperbolic on A if for almost every ω ∈ Ω

and x ∈ A(ω), there exists a splitting

X = Eu(ω, x) ⊕ Es(ω, x)

of closed subspaces with associated projections Πu(ω, x) and Πs(ω, x) such that

(i) The splitting is invariant:

Dxφ(n, ω)(x)Eu(ω, x) = Eu(θnω, φ(n, ω)(x))

and

Dxφ(n, ω)(x)Es(ω, x) ⊂ Es(θnω, φ(n, ω)(x)).

(ii) Dxφ(1, ω)(x)
∣

∣

Eu(ω,x)
: Eu(ω, x) → Eu(θω, φ(1, ω)(x)) is an isomorphism.

(iii) There is a (θ, φ)-invariant random variable β : A → (0,∞), a tempered random
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variable K(ω, x) : A → [1,∞) such that

||Dxφ(n, ω)(x)Πs(ω, x)|| ≤ K(ω, x)e−β(ω,x)n for n ≥ 0 (103)

||Dxφ(n, ω)(x)Πu(ω, x)|| ≤ K(ω, x)eβ(ω,x)n for n ≤ 0 (104)

Another definition is about pseudo-hyperbolicity,

Definition 7. φ is said to be nonuniformly pseudo-hyperbolic on A if for almost

every ω ∈ Ω and x ∈ A(ω), there exists a splitting

X = Eu(ω, x) ⊕ Es(ω, x)

of closed subspaces with associated projections Πu(ω, x) and Πs(ω, x) such that

(i) The splitting is invariant:

Dxφ(n, ω)(x)Eu(ω, x) = Eu(θnω, φ(n, ω)(x))

and

Dxφ(n, ω)(x)Es(ω, x) ⊂ Es(θnω, φ(n, ω)(x)).

(ii) Dxφ(1, ω)(x)
∣

∣

Eu(ω,x)
: Eu(ω, x) → Eu(θω, φ(1, ω)(x)) is an isomorphism.

(iii) There are (θ, φ)-invariant random variables α < β, a tempered random variable

K(ω, x) : A → [1,∞) such that

||Dxφ(n, ω)(x)Πs(ω, x)|| ≤ K(ω, x)e−β(ω,x)n for n ≥ 0 (105)

||Dxφ(n, ω)(x)Πu(ω, x)|| ≤ K(ω, x)e−α(ω,x)n for n ≤ 0 (106)
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Remark 8. Assume that there is an invariant set A of φ. Define map Θt : A → A

by

Θt(ω, x) = (θtω, φ(t, ω)(x)) t ∈ T.

Also assume that there is a Θt-invariant probability measure µ on (A,F ⊗ B(X)|A)

such that µ(∪ω∈F{ω ×A(ω)}) = P (F ) for any F ∈ F . Denote the metric dynamical

system (A,F ⊗ B(X)|A, µ,Θ) by (Ω̃, F̃ , P̃ ,Θ) and let

S(ω̃) = Dxφ(1, ω)(x)

where ω̃ = (ω, x) ∈ Ω̃. Then S(·) generates a linear random dynamical system Φ on

(Ω̃, F̃ , P̃ ). If we assume that S(·) satisfies the conditions of Theorem 4, then we have

the nonuniform pseudo-hyperbolicity of the invariant set A.

Remark 9. If β(ω) > 0, then Es(ω) is a stable random invariant subspace of Dxφ.

If α(ω) < 0, then Eu(ω) is an unstable random invariant subspace of Dxφ.

For the remainder of this thesis, we will assume that A is invariant and φ is nonuni-

formly pseudo-hyperbolic on A, We will consider two cases: α(ω) < β(ω), β(ω) > 0

and β(ω) > α(ω), α(ω) < 0.

9.3 Stable and Unstable Manifolds.

We first write φ as

φ(1, ω, x) = φ(1, ω)(x) = Dxφ(1, ω)(x) + f(1, ω, x).

We assume that the nonlinear term f satisfies
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Hypothesis H1: φ is a CN , N > 1, random dynamical system and there are tempered

functions ρ0, Bk : A → (0,+∞), 0 ≤ k ≤ N such that for almost every (ω, x) ∈ A,

sup
y∈U(ω,x)

||Dkf(1, ω, y)|| ≤ Bk(ω, x), for all 0 ≤ k ≤ N,

where U(ω, x) = B(x, ρ0(ω, x)) = {y ∈ X| ‖y − x‖ < ρ0(ω, x)}, which is called a

tempered ball.

Our main result is following:

Theorem 43. (Stable and Unstable Manifolds) Assume that φ is nonuniformly pseudo-

hyperbolic on A and Hypothesis H1 holds.

(i) If α(ω) < β(ω), β(ω) > 0, then for almost every point (ω, x) ∈ A, there exists a

CN local stable manifold for φ given by

W s
loc(ω, x) = {y ∈ B(x, ρ(ω, x))|‖φ(n, ω, y)−φ(n, ω, x)‖eγ(ω)n → 0, as n→ +∞},

where γ(ω) > 0, α(ω) < γ(ω) < β(ω), B(x, ρ(ω, x)) is a tempered ball.

(ii) If β(ω) > α(ω), α(ω) < 0, then for almost every point (ω, x) ∈ A, there exists

a CN local unstable manifold for φ given by

W u
loc(ω, x) = {y ∈ B(x, ρ(ω, x))|‖φ(n, ω, y)−φ(n, ω, x)‖e−γ(ω)n → 0, as n→ −∞},

where γ(ω) > 0, α(ω) < −γ(ω) < β(ω), B(x, ρ(ω, x)) is a tempered ball.

Remark 10. We note that this theorem holds for a Ck,α random dynamical system

for k ≥ 1 and 0 < α ≤ 1.
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9.4 Proof of Theorem 43.

We will prove this theorem by using the standard Lyapunov and Perron approach.

It is sufficient to show the existence of the stable or unstable manifold along a fixed

orbit of φ in A. Let

Θn(ω̃) = (θnω, φ(n, ω, x)), where ω̃ = (ω, x) ∈ A.

For (ω, y0) ∈ A, we also write Θi(ω, y0) = (θiω, yi), where {yi}i∈Z ⊂ X. By the

invariance of A, (θiω, yi) ∈ A, for all i ∈ Z. Note that {yn}n∈Z is an orbit given by

φ(n, ω, y0). Let {zn}n∈Z be another orbit φ and xn = zn − yn. Then for any n ∈ Z

zn+1 = φ(1, θnω)(zn) = Dφ(1, θnω, yn)xn + φ(1, θnω, yn) + f(1, θnω, yn, xn)

where f(1, θnω, yn, xn) = φ(1, θnω, zn) − φ(1, θnω, yn) −Dφ(1, θnω, yn)xn satisfying

f(1, θnω, yn, 0) = 0 and Df(1, θnω, yn, 0) = 0.

Thus, by using the fact yn+1 = φ(n, ω, yn), we have that xn satisfy that for all n ∈ Z

xn+1 = Dφ(1,Θnω̃)xn + F (Θnω̃, xn), (107)

where F (Θnω̃, xn) = f(1,Θnω̃, xn) and ω̃ = (ω, y0). We denote the linear random

dynamical system generated by Dφ(1, ω̃) by

Φ(i, ω̃) =















Dφ(1,Θi−1ω̃) ◦ · · · ◦Dφ(1, ω̃) when i > 0,

I when i = 0.
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By the assumptions of Theorem 43, Φ(i, ω̃) is nonuniformly pseudo-hyperbolic.

For any number γ ≥ 0, define the following Banach space

C−
γ = {x = {xn}n≤0|xn ∈ X, sup

n≤0
‖xn‖e−nγ < +∞}

with the norm

‖x‖C−

γ
= sup

n≤0
‖xn‖e−nγ

and

C+
γ = {x = {xn}n≥0|xn ∈ X, sup

n≥0
‖xn‖enγ < +∞}

with the norm

‖x‖C+
γ

= sup
n≥0

‖xn‖enγ.

Similarly, for any integer j > 0, we also define Banach space

Cj−
γ = {x = {xn}n≤0|xn ∈ Lj(X,X), sup

n≤0
‖xn‖e−nγ < +∞}

with the norm

‖x‖Cj−
γ

= sup
n≤0

‖xn‖e−nγ

and

Cj+
γ = {x = {xn}n≥0|xn ∈ Lj(X,X), sup

n≥0
‖xn‖enγ < +∞}

with the norm

‖x‖Cj+
γ

= sup
n≥0

‖xn‖enγ,

where Lj(X,X) is the regular j-form.
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Let {xn}n≥0 satisfies equation (107), then we have that

xn = Φ(n− k,Θkω̃)xk +
n−1
∑

i=k

Φ(n− 1 − i,Θi+1ω̃)F (Θiω̃, xi). (108)

We first consider the stable manifold. Here we assume that α(ω) < β(ω), β(ω) > 0.

Lemma 44. Let γ(ω̃) ∈ (α(ω̃), β(ω̃)) be positive and Θ-invariant. Then x = {xn}n≥0 ∈

C+
γ satisfies equation (108) if and only if {xn}n≥0 ∈ C+

γ satisfies the following equa-

tions

xn = Φs(n, ω̃)xs
0 +

n−1
∑

i=0

Φs(n− 1 − i,Θi+1ω̃)Fs(Θ
iω̃, xi)

−
+∞
∑

i=n

Φu(n− 1 − i,Θi+1ω̃)Fu(Θ
iω̃, xi), for n ≥ 1;

x0 = xs
0 −

+∞
∑

i=0

Φu(−1 − i,Θi+1ω̃)Fu(Θ
iω̃, xi),

(109)

where Φu = Φ|Eu, Φs = Φ|Es, Fu = ΠuF , and Fs = ΠsF .

Proof. Consider x ∈ C+
γ . Suppose that {xn}n≥0 satisfies equation 108, then we have

xn = Φ(n− k,Θkω̃)xk +
n−1
∑

i=k

Φ(n− 1 − i,Θi+1ω̃)F (Θiω̃, xi).

By setting k=0, we have that its stable part satisfies

xs
n = Φs(n, ω̃)xs

0 +
n−1
∑

i=0

Φs(n− 1 − i,Θi+1ω̃)Fs(Θ
iω̃, xi). (110)

Applying the unstable projection Πu on equation (108) and switching k and n,we

have

xu
n = Φ−1

u (k − n,Θnω̃)xu
k −

k−1
∑

i=n

Φu(n− 1 − i,Θi+1ω̃)Fu(Θ
iω̃, xi). (111)
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Since {xn}n≥0 ∈ C+
γ , then

‖Φ−1
u (k − n,Θnω̃)xu

k‖ ≤ K(Θkω̃)e(k−n)α(ω̃)−kγ‖x‖C+
γ
→ 0, as k → +∞,

where limk→+∞
1
k

logK(Θkω̃) = 0 was used. Let k → +∞ in equation (111). Then

we can obtain that

xu
n =

+∞
∑

i=n

Φu(n− 1 − i,Θi+1ω̃)Fu(Θ
iω̃, xi). (112)

Adding equation (110) and (112) together, we get equation (109). The converse

follows from a straightforward computation. This complete the proof.

Proposition 45. Assume that φ is nonuniformly pseudo-hyperbolic on A and Hy-

pothesis H1 holds, and α(ω) < β(ω), β(ω) > 0 . Then for each positive invariant

random variable γ(·) ∈ (α(·), β(·)), equation (109) has a unique solution x(η, ω̃) =

{xn(η, ω̃)} ∈ C+
γ(ω̃) with xs

0 = η for each η ∈ Es(ω̃) ∩ B(0, ρ(ω̃)), where ρ(ω̃) is a

tempered function. Furthermore,

(i) For each ω̃ ∈ Ω, x(·, ω̃) is CN from Es(ω̃) ∩ B(0, ρ(ω̃)) to C+
γ(ω̃), x(0, ω̃) = 0,

and Dx(0, ω̃) = 0;

(ii) There are random variables tempered from above, Ki(ω̃), 1 ≤ i ≤ N when

N <∞ and i ≥ 1 when N = ∞, such that

||Dix(η, ω̃)|| ≤ Ki(ω̃).

(iii) There are random variables tempered from above, Ki(ω̃), 1 ≤ i < N when
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N <∞ and i ≥ 1 when N = ∞, such that for any η, η0 ∈ Es(ω̃) ∩B(0, 1
2
ρ(ω̃))

||Dix(η, ω̃) −Dix(η0, ω̃)|| ≤ Ki(ω̃)|η − η0|.

Proof. Step 1. The Existence of a Lipschitz Continuous Solution.

Fix positive Θ-invariant random variables {γi(·)}1≤i≤N such that α(ω̃) < γN(ω̃) <

. . . < γ1(ω̃) < β(ω̃). Let η ∈ Es(ω̃). For each x = {xn}n≤0 ∈ C+
γ1(ω̃) with xs

0 = η, we

define a map y = {yn}n≤0 = J s(x, η, ω̃) by

yn = Φs(n, ω̃)η +
n−1
∑

i=0

Φs(n− 1 − i,Θi+1ω̃)Fs(Θ
iω̃, xi)

−
+∞
∑

i=n

Φu(n− 1 − i,Θi+1ω̃)Fu(Θ
iω̃, xi), for n ≥ 1;

y0 = η −
+∞
∑

i=0

Φu(−1 − i,Θi+1ω̃)Fu(Θ
iω̃, xi).

Let ρ(ω̃) = min
{

ρ0(ω̃), L(ω̃)
B2(ω̃)K(Θω̃)

}

, i ≥ 0, where

L(ω̃) = min

{

1

3

(

eγi(ω̃)

1 − eγi(ω̃)−β(ω̃)
+

eα(ω̃)

1 − e−(γi(ω̃)−α(ω̃))

)−1
}

1≤i≤N

is a Θ-invariant function. Thus ρ(ω̃) is tempered. By Lemma 42, there exists a

positive tempered function R(ω̃) such that ρ(Θnω̃) ≥ 2R(ω̃)e−nγN (ω̃), n ≥ 0. Let

A(ω̃) =

{

x ∈ C+
γ1(ω̃) | ‖xs

0‖ ≤ min

{

R(ω̃)

3K(ω̃)
,
R(ω̃)

3

}

, ‖x‖C+
γ1(ω̃)

≤ R(ω̃)

}

.

Thus x ∈ A(ω̃) implies that for any n ≥ 0, xn ∈ B(0, 1
2
ρ(Θnω̃)). We first show that
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J s(·, η, ω̃) maps A(ω̃) into itself as long as η < R(ω̃)
3K(ω̃)

. When n > 1, we have that

‖J s(x, η, ω̃)ne
nγ1(ω̃)‖

≤‖Φs(n, ω̃)ηenγ1(ω̃)‖ +
n−1
∑

i=0

‖Φs(n− 1 − i,Θi+1ω̃)Fs(Θ
iω̃, xi)‖enγ1(ω̃)

+
+∞
∑

i=n

‖Φu(n− 1 − i,Θi+1ω̃)Fu(Θ
iω̃, xi)‖enγ1(ω̃)

(by pseudo-hyperbolicity and H1, we have)

≤ K(ω̃)‖η‖en(γ1(ω̃)−β(ω̃)) +
n−1
∑

i=0

B2(Θ
iω̃)enγ1(ω̃)‖xi‖K(Θi+1)e−(n−1−i)β(ω̃)ρ(Θiω̃)

+
+∞
∑

i=n

B2(Θ
iω̃)enγ1(ω̃)‖xi‖e−(n−1−i)α(ω̃)K(Θi+1ω̃)ρ(Θiω̃)

(by the definition of L, we have)

≤ K(ω̃)‖η‖en(γ1(ω̃)−β(ω̃)) +
n−1
∑

i=0

L(ω̃)‖x‖C+
γ1(ω̃)

e(n−i)γ1(ω̃)e−(n−1−i)β(ω̃)

+
+∞
∑

i=n

L(ω̃)‖x‖C+
γ1(ω̃)

e(n−i)γ1(ω̃)e−(n−1−i)α(ω̃)

= K(ω̃)‖η‖en(γ1(ω̃)−β(ω̃)) + L(ω̃)‖x‖C+
γ1(ω)

eγ1(ω̃) 1 − en(γ1(ω̃)−β(ω̃))

1 − e(γ1(ω̃)−β(ω))

+ L(ω̃)‖x‖C+
γ1(ω̃)

eα(ω̃)

1 − e−(γ1(ω)−α(ω̃))

≤ K(ω̃)‖η‖ + L(ω̃)

(

eγ1(ω̃)

1 − e(γ1(ω̃)−β(ω̃))
+

eα(ω̃)

1 − e−(γ1(ω̃)+λk(ω̃))

)

‖x‖C+
γ1(ω̃)

≤ 2

3
R(ω̃).
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Similarly, when n = 0 we have

‖J s(x, η, ω̃)0‖ ≤ ‖η‖ +
L(ω̃)eα(ω̃)

1 − e−(γ1(ω̃)−α(ω̃))
‖x‖C+

γ1(ω̃)
≤ 2

3
R(ω̃),

and Πs(ω̃)J s(x, η, ω̃)0 = η. Hence, J s(·, η, ω̃) maps A(ω̃) into itself when η < R(ω̃)
3K(ω̃)

.

Next, we show that J s(x, η, ω̃) is a uniform contraction in x respect to η on A(ω̃).

For each x, x′ ∈ A(ω̃), when n > 1, by straightforward computations, we have that

‖J s(x, η, ω̃)n − J s(x′, η, ω̃)n‖enγ1(ω̃)

≤
n−1
∑

i=0

L(ω̃)‖x − x′‖C+
γ1(ω̃)

e(n−i)γ1(ω̃)e−(n−1−i)β(ω̃)

+
+∞
∑

i=n

L(ω̃)‖x − x′‖C+
γ1(ω̃)

e(n−i)γ1(ω̃)e−(n−1−i)α(ω̃)

= L(ω̃)‖x − x′‖C+
γ1(ω̃)

eγ
1(ω̃)

1 − en(γ1(ω̃)−β(ω̃))

1 − eγ1(ω̃)−β(ω̃)

+ L(ω̃)‖x − x′‖C+
γ1(ω̃)

eα(ω̃)

1 − e−(γ1(ω̃)−α(ω̃))

≤ L(ω̃)

(

eγ1(ω̃)

1 − eγ1(ω̃)−β(ω̃)
+

eα(ω̃)

1 − e−(γ1(ω̃)−α(ω̃))

)

‖x − x′‖C+
γ1(ω̃)

=
1

3
‖x − x′‖C+

γ1(ω̃)
.

Similarly, when n = 0 we have

‖J s(x, η, ω̃)0 − J s(x′, η, ω̃)0‖

≤ L(ω̃)

(

eγ1(ω̃)

1 − eγ1(ω̃)−β(ω̃)
+

eα(ω̃)

1 − e−(γ1(ω̃)−α(ω̃))

)

‖x − x′‖C+
γ1(ω̃)

≤ 1

3
‖x − x′‖C+

γ1(ω̃)
.
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Hence, we obtain that

‖J s(x, η, ω̃) − J s(x′, η, ω̃)‖C+
γ1(ω̃)

≤ 1

3
‖x − x′‖C+

γ1(ω̃)
.

Thus J s(x, η, ω̃) is a uniform contraction in x respect to η on A(ω̃). So there exists

a unique solution of equation (109) for fixed xs
0 = η. Let x(η1, ω̃) and x(η2, ω̃) be two

solutions in A(ω̃). By the definition of A(ω̃), we have that for n ≥ 1

‖x(η1, ω̃)n − x(η2, ω̃)n‖ ≤ ρ(Θnω̃).

For sake of convenience, we use xi and x′i to represent x(η1, ω̃)i and x(η2, ω̃)i respec-

tively. Then, for n ≥ 1, by simple computations, we have

‖x(η1, ω̃)n − x(η2, ω̃)n‖enγ1(ω̃)

≤ K(ω̃)‖η1 − η2‖

+ L(ω̃)

(

eγ1(ω̃)

1 − eγ1(ω̃)−β(ω̃)
+

eα(ω̃)

1 − e−(γ1(ω̃)−α(ω̃))

)

‖x(η1, ω̃) − x(η2, ω̃)‖C+
γ1(ω̃)

= K(ω̃)‖η1 − η2‖ +
1

3
‖x(η1, ω̃) − x(η2, ω̃)‖C+

γ1(ω̃)
.

Similar computation gives that

‖x(η1, ω̃)0 − x(η2, ω̃)0‖ ≤ K(ω̃)‖η1 − η2‖ +
1

3
‖x(η1, ω̃) − x(η2, ω̃)‖C+

γ1(ω̃)
.

Thus, we have that

‖x(η1, ω̃) − x(η2, ω̃)‖C+
γ1(ω̃)

≤ K(ω̃)‖η1 − η2‖ +
1

3
‖x(η1, ω̃) − x(η2, ω̃)‖C+

γ1(ω̃)
.

So

‖x(η1, ω̃) − x(η2, ω̃)‖C+
γ1(ω̃)

≤ 3

2
K(ω̃)‖η1 − η2‖, (113)
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which implies that the solutions are Lipschitz continuous on η.

Step 2. x(·, ω̃) is C1.

In order to show that x(η, ω̃) is CN , we show that x(·, ω̃) is Ci from Es(ω̃) ∩

B(0, ρ(ω̃)) to C+
γi(ω̃) for any 1 ≤ i ≤ N by induction.

For each η ∈ Es(ω̃) ∩B(0, R(ω̃)
3K(ω̃)

), define a linear operator

Gη : C+
γ1(ω̃) → C+

γ1(ω̃)

by

(Gηv)n =
n−1
∑

i=0

Φs(n− 1 − i,Θi+1ω̃)DFs(Θ
iω̃, xi(η, ω̃))vi

−
+∞
∑

i=n

Φu(n− 1 − i,Θi+1ω̃)DFu(Θ
iω̃, xi(η, ω̃))vi, for n ≥ 1;

(Gηv)0 = −
+∞
∑

i=0

Φu(−1 − i,Θi+1ω̃)DFu(Θ
iω̃, xi(η, ω̃))vi,

(114)

where v = {vn}n≥0 ∈ C+
γ1(ω̃). We also define a bounded linear operator S from Es(ω̃)

to C+
γ1(ω̃) by

S(η) = {Φ(n, ω̃)}n≥0.
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Note that for n > 0

‖(Gηv)n‖enγ1(ω̃)

=
n−1
∑

i=0

‖Φs(n− 1 − i,Θi+1ω̃)‖‖DFs(Θ
iω̃, xi(η, ω̃))‖‖vi‖enγ1(ω̃)

+
+∞
∑

i=n

‖Φu(n− 1 − i,Θi+1ω̃)‖‖DFu(Θ
iω̃, xi(η, ω̃))‖‖vi‖enγ1(ω̃)

≤
n−1
∑

i=0

K(Θi+1ω̃)e−(n−1−i)β(ω̃)B2(Θ
iω̃)ρ(Θiω̃)‖v‖C+

γ(ω̃)
e(n−i)γ1(ω̃)

+
+∞
∑

i=n

K(Θi+1ω̃)e−(n−1−i)α(ω̃)B2(Θ
iω̃)ρ(Θiω̃)‖v‖C+

γ1(ω̃)
e(n−i)γ1(ω̃)

≤ L(ω̃)

(

eγ1(ω̃)

1 − eγ1(ω̃)−β(ω̃)
+

eα(ω̃)

1 − e−(γ1(ω̃)−α(ω̃))

)

‖v‖C+
γ1(ω̃)

≤ 1

3
‖v‖C+

γ1(ω̃)
.

Similarly, we have that

‖(Gηv)0‖ ≤ 1

3
‖v‖C+

γ1(ω̃)
.

Thus, Gη is a bounded linear operator from C+
γ1(ω̃) into itself and its norm is bounded

by 1
3
, which implies that (Id− Gη) has a bounded inverse in L(C+

γ1(ω̃), C
+
γ1(ω̃)).

For η, η0 ∈ Es(ω̃) ∩B
(

0, R(ω̃)
6K(ω̃)

)

, we set

In =
n−1−i
∑

i=0

Φs(n − 1, Θi+1ω̃)

(

Fs(Θ
iω̃, xi(η, ω̃)) − Fs(Θ

iω̃, xi(η0, ω̃)) − DFs(Θ
iω̃, xi(η0, ω̃))(xi(η, ω̃) − xi(η0, ω̃))

)

−
+∞
∑

i=n

Φu(n − 1 − i,Θi+1ω̃)
(

Fu(Θiω̃, xi(η, ω̃))

− Fu(Θiω̃, xi(η0, ω̃)) − DFu(Θiω̃, xi(η0, ω̃))(xi(η, ω̃) − xi(η0, ω̃))
)

, for n ≥ 1;

I0 = −
+∞
∑

i=0

Φu(−1 − i,Θi+1ω̃)
(

Fu(Θiω̃, xi(η, ω̃)) − Fu(Θiω̃, xi(η0, ω̃))

− DFu(Θiω̃, xi(η0, ω̃))(xi(η, ω̃) − xi(η0, ω̃))
)

.
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By using (113), we have

‖Fu(Θ
iω̃, xi(η, ω̃)) − Fu(Θ

iω̃, xi(η0, ω̃)) −DFu(Θ
iω̃, xi(η0, ω̃))(xi(η, ω̃) − xi(η0, ω̃))‖

≤ 1

2
B2(Θ

iω̃)‖xi(η, ω̃) − xi(η0, ω̃)‖2

≤ 9

8
K2(ω̃)e−2iγ1(ω̃)‖η − η0‖2,

and

‖Fs(Θ
iω̃, xi(η, ω̃)) − Fs(Θ

iω̃, xi(η0, ω̃)) −DFs(Θ
iω̃, xi(η0, ω̃))(xi(η, ω̃) − xi(η0, ω̃))‖

≤ 1

2
B2(Θ

iω̃)‖xi(η, ω̃) − xi(η0, ω̃)‖2

≤ 9

8
K2(ω̃)e−2iγ1(ω̃)‖η − η0‖2.

Then ‖I‖C+
γ1(ω̃)

= o(‖η − η0‖) as η → η0. Thus,

x(η, ω̃) − x(η0, ω̃) − Gη0(x(η, ω̃) − x(η0, ω̃))

= S(η − η0) + I

= S(η − η0) + o(‖η − η0‖), as η → η0,

(115)

which yields

x(η, ω̃) − x(η0, ω̃) = (Id− Gη0)
−1S(η − η0) + o(‖η − η0‖).

Hence, x(η, ω̃) is differentiable in η and its derivative satisfies

Dx(η, ω̃) ∈ L(Es(ω̃), C+
γ1(ω̃))
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and

‖Dx(η, ω̃)‖L(Es(ω̃),C+
γ1(ω̃)

) ≤ ‖(Id− Gη0)
−1‖L(C+

γ(ω̃)
,C+

γ(ω̃)
)‖S‖L(Es(ω̃),C+

γ(ω̃)
) ≤

3

2
K(ω̃).

(116)

Furthermore, we can obtain

Dxn(η, ω̃) =
n−1
∑

i=0

Φs(n− 1 − i,Θi+1ω̃)DFs(Θ
iω̃, xi(η, ω̃))Dxi(η, ω̃)

−
+∞
∑

i=n

Φu(n− 1 − i,Θi+1ω̃)DFu(Θ
iω̃, xi(η, ω̃))Dxi(η, ω̃), for n ≥ 1;

Dx0(η, ω̃) = −
+∞
∑

i=0

Φu(−1 − i,Θi+1ω̃)DFu(Θ
iω̃, xi(η, ω̃))Dxi(η, ω̃).

(117)

By using (116), we have that for any v ∈ Es(ω̃) and n > 0

‖Dxn(η, ω̃)v‖enγ1(ω̃)

≤
n−1
∑

i=0

‖Φs(n− 1 − i,Θi+1ω̃)‖‖DFs(Θ
iω̃, xi(η, ω̃))‖‖Dxi(η, ω̃)v‖enγ1(ω̃)

+
+∞
∑

i=n

‖Φu(n− 1 − i,Θi+1ω̃)‖‖DFu(Θ
iω̃, xi(η, ω̃))‖‖Dxi(η, ω̃)v‖enγ1(ω̃)

≤
n−1
∑

i=0

K(Θi+1ω̃)e−(n−1−i)β(ω̃)B2(Θ
iω̃)ρ(Θiω̃)‖Dx(η, ω̃)‖L(Es(ω̃),C+

γ1(ω̃)
)‖v‖e(n−i)γ1(ω̃)

+
+∞
∑

i=n

K(Θi+1ω̃)e−(n−1−i)α(ω̃)B2(Θ
iω̃)ρ(Θiω̃)‖Dx(η, ω̃)‖L(Es(ω̃),C+

γ1(ω̃)
)‖v‖e(n−i)γ1(ω̃)

≤ L(ω̃)

(

eγ1(ω̃)

1 − eγ1(ω̃)−β(ω̃)
+

eα(ω̃)

1 − e−(γ1(ω̃)−α(ω̃))

)

‖Dx(η, ω̃)‖L(Es(ω̃),C+
γ1(ω̃)

)‖v‖

≤ 1

2
K(ω̃)‖v‖.

Similarly,

‖Dx0(η, ω̃)v‖ ≤ 1

2
K(ω̃)‖v‖.
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Thus for η ∈ Es(ω̃) ∩B(0, R(ω̃)
3K(ω̃)

)

‖Dx(η, ω̃)‖C+
γ1(ω̃)

≤ 1

2
K(ω̃). (118)

Using (113), we obtain that for η1, η2 ∈ Es(ω̃) ∩B(0, R(ω̃)
6K(ω̃)

) and i ≥ 0

‖DFs(Θ
iω̃, xi(η1, ω̃))Dxi(η1, ω̃) −DFs(Θ

iω̃, xi(η2, ω̃))Dxi(η2, ω̃)‖

≤ ‖(DFs(Θ
iω̃, xi(η1, ω̃)) −DFs(Θ

iω̃, xi(η2, ω̃)))Dxi(η1, ω̃)‖

+ ‖DFs(Θ
iω̃, xi(η2, ω̃)))(Dxi(η1, ω̃) −Dxi(η2, ω̃)‖

≤ B2(Θ
iω̃)‖xi(η1, ω̃) − xi(η2, ω̃)‖‖Dxi(η1, ω̃)‖

+B2(Θ
iω̃)ρ(Θiω̃)‖(Dxi(η1, ω̃) −Dxi(η2, ω̃)‖

≤ 3

4
K2(ω̃)B2(Θ

iω̃)e−2iγ1(ω̃)‖η1 − η2‖

+B2(Θ
iω̃)ρ(Θiω̃)e−iγ(ω̃)‖Dx(η1, ω̃) −Dx(η2, ω̃)‖C+

γ1(ω̃)
.
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Thus, for any n ≥ 0

‖Dxn(η1, ω̃) −Dxn(η2, ω̃)‖enγ1(ω̃)

≤
n−1
∑

n=0

‖Φs(n− 1 − i,Θi+1ω̃)‖·

‖DFs(Θ
iω̃, xi(η1, ω̃))Dxi(η1, ω̃) −DFs(Θ

iω̃, xi(η2, ω̃))Dxi(η2, ω̃)‖enγ1(ω̃)

+
+∞
∑

i=n

‖Φu(n− 1 − i,Θi+1ω̃)‖·

‖DFs(Θ
iω̃, xi(η1, ω̃))Dxi(η1, ω̃) −DFs(Θ

iω̃, xi(η2, ω̃))Dxi(η2, ω̃)‖enγ1(ω̃)

≤
n−1
∑

n=0

K(Θi+1)e−(n−i−1)β(ω̃) 3

4
K2(ω̃)B2(Θ

iω̃)e−2iγ1(ω̃)‖η1 − η2‖enγ1(ω̃)

+
n−1
∑

n=0

K(Θi+1)e−(n−i−1)β(ω̃)·

B2(Θ
iω̃)ρ(Θiω̃)e−iγ1(ω̃)‖Dx(η1, ω̃) −Dx(η2, ω̃)‖C+

γ1(ω̃)
enγ1(ω̃)

+
+∞
∑

i=n

K(Θi+1)e−(n−i−1)α(ω̃) 3

4
K2(ω̃)B2(Θ

iω̃)e−2iγ1(ω̃)‖η1 − η2‖enγ1(ω̃)

+
+∞
∑

i=n

K(Θi+1)e−(n−i−1)α(ω̃)·

B2(Θ
iω̃)ρ(Θiω̃)e−iγ1(ω̃)‖Dx(η1, ω̃) −Dx(η2, ω̃)‖C+

γ1(ω̃)
enγ1(ω̃)

≤ 1

3
‖Dx(η1, ω̃) −Dx(η2, ω̃)‖C+

γ1(ω̃)
+K ′

1(ω̃)‖η1 − η2‖,

where

K ′
1(ω̃) =

n−1
∑

i=0

3

4
K2(ω̃)K(Θi+1)B2(Θ

iω̃)e−(n−i−1)β(ω̃)e(n−2i)γ1(ω̃)

+
+∞
∑

i=n

3

4
K2(ω̃)K(Θi+1)B2(Θ

iω̃)e−(n−i−1)α(ω̃)e(n−2i)γ1(ω̃).

Then

‖Dx(η1, ω̃) −Dx(η2, ω̃)‖C+
γ1(ω̃)

≤ 3

2
K ′

1(ω̃)‖η1 − η2‖, (119)
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where η, η0 ∈ Es(ω̃)∩B(0, R(ω̃)
6K(ω̃)

). By the definition of ρ(ω̃), L(ω̃) and R(ω̃), we have

that

B2(Θ
iω̃)K(Θi+1ω̃) ≤ L(ω̃)

ρ(Θiω̃)
≤ L(ω̃)eiγ1(ω̃)

2R(ω̃)
.

Then

1 ≤ K ′(ω̃) ≤ K2(ω̃)

8R(ω̃)
.

Thus K ′(ω̃) is tempered.

Step 3. x(η, ω̃) is CN .

Let 2 ≤ m ≤ N . By the induction hypothesis, we have that x(·, ω̃) is Cj from

Es(ω̃)∩B(0, R(ω̃))
3K(ω̃)

) to C+
γj(ω̃) for all 1 ≤ j ≤ m−1 and there exists tempered functions

Kj(ω̃) such that

‖Djx(η, ω̃)‖Cj+
γj(ω̃)

≤ Kj(ω̃), (120)

‖Djx(η, ω̃)‖L(Es(ω̃),Cj−1+
γj(ω̃)

) ≤ Kj(ω̃), (121)

‖Djx(η, ω̃) −Djx(η0, ω̃)‖Cj+
γj(ω̃)

≤ Kj(ω̃)‖η − η0‖, (122)

where η, η0 ∈ Es(ω̃)∩B(0, R(ω̃)
6K(ω̃)

). Here L(Es(ω̃), Cj−1+
γj(ω̃) ) is Banach space of bounded

linear operators from Es(ω̃) to Cj−1+
γj(ω̃) . We want to show that x(·, ω̃) is Cm and

Dmx(·, ω̃) is Lipschitz continuous from Es(ω̃) ∩ B(0, R(ω̃)
6K(ω̃)

) to Cm+
γm(ω̃) when m < N .
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Note that Dm−1x(·, ω̃) satisfies the following equations

Dm−1xn(η, ω̃)

=
n−1
∑

i=0

Φs(n− 1 − i,Θi+1ω̃)DFs(Θ
iω̃, xi(η, ω̃))Dm−1xi(η, ω̃)

−
+∞
∑

i=n

Φu(n− 1 − i,Θi+1ω̃)DFu(Θ
iω̃, xi(η, ω̃))Dm−1xi(η, ω̃)

+
n−1
∑

i=0

Φs(n− 1 − i,Θi+1ω̃)Rs
m−1,i(η, ω̃)

−
+∞
∑

i=n

Φu(n− 1 − i,Θi+1ω̃)Ru
m−1,i(η, ω̃), for n ≥ 1;

(123)

Dm−1x0(η, ω̃)

= −
+∞
∑

i=n

Φu(−1 − i,Θi+1ω̃)DFu(Θ
iω̃, xi(η, ω̃))Dm−1xi(η, ω̃)

−
+∞
∑

i=n

Φu(−1 − i,Θi+1ω̃)Ru
m−1,i(η, ω̃)

(124)

where

Rτ
m−1,i(η, ω̃) =

m−3
∑

l=0







m− 2

l






Dm−2−l

η

(

DxFτ (Θ
iω̃, xi(η, ω̃))

)

Dl+1xi(η, ω̃),

for τ = u, s. Applying the chain rule to

Dm−2−l
η

(

DxFτ (Θ
iω̃, xi(η, ω̃))

)

.

Then each term in Rτ
m−1,i(η, ω̃) contains factors: Dl1

x Fτ (Θ
iω̃, xi(η, ω̃)) for some 2 ≤

l1 ≤ m − 2 and at least two derivatives Dl2
η xi(η, ω̃) and Dl3

η xi(η, ω̃) for some l2, l3 ∈

{1, · · · ,m − 2}. Since Dl
ηx(η, ω̃) ∈ C l+

γl(ω̃) for l = 1, · · · ,m − 1 and F is CN ,
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Rs
m−1,i(·, ω̃) : Es(ω̃)∩B(0, R(ω̃)

3K(ω̃)
) → Lm−1

(

Es(ω̃), Es(Θiω̃)
)

and Ru
m−1,i(·, ω̃) : Es(ω̃)∩

B(0, R(ω̃)
3K(ω̃)

) → Lm−1
(

Es(ω̃), Eu(Θiω̃)
)

are C1. Furthermore, by using (120) and (122),

we have that for τ = u, s

||Rτ
m−1,i(η, ω̃)|| ≤ B̃m−1(Θ

iω̃)K̃m−2(ω̃)e−2iγm−2(ω̃) (125)

||Rτ
m−1,i(η, ω̃) −Rτ

m−1,i(η0, ω̃)|| ≤ B̃m(Θiω̃)K̃m−2(ω̃)e−2iγm−2(ω̃)‖η − η0‖ (126)

||DηR
τ
m−1,i(η, ω̃)|| ≤ B̃m(Θiω̃)K̃m−1(ω̃)e−2iγm−1(ω̃) (127)

where B̃m(ω̃) = max1≤i≤mBi(ω̃) and K̃m(ω̃) is m-th order polynomial of K1(ω̃), · · · ,

Km(ω̃) with positive integer coefficients. Thus, B̃m(Θiω̃)K̃m−1(ω̃) is tempered. If

m < N , we have that for τ = u, s

||DηR
τ
m−1,i(η, ω̃) −DηR

τ
m−1,i(η0, ω̃)|| ≤ B̃m+1(Θ

iω̃)K̃m(ω̃)e−2iγm−1(ω̃)‖η − η0‖. (128)

Set J(η, ω̃) = {Jn(η, ω̃)}n≥0 with

Jn(η, ω̃) =
n−1
∑

i=0

Φs(n− 1 − i,Θi+1ω̃)Rs
m−1,i(η, ω̃)

−
+∞
∑

i=n

Φu(n− 1 − i,Θi+1ω̃)Ru
m−1,i(η, ω̃), for n ≥ 1,

J0(η, ω̃) = −
+∞
∑

i=n

Φu(−1 − i,Θi+1ω̃)Ru
m−1,i(η, ω̃).
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Note that for 0 ≤ i ≤ n− 1

||Φs(n− 1 − i,Θi+1ω̃)DηR
s
m−1,i(η, ω̃)||

≤ K(Θi+1ω̃)B̃m+1(Θ
iω̃)K̃m+1(ω̃)e−β(ω̃)(n−1−i)e−2iγm−1(ω̃)

=
(

K(Θi+1ω̃)B̃m+1(Θ
iω̃)e−iγm−1(ω̃)

)

K̃m+1(ω̃)eβ(ω̃)(n−1−i)e−iγm−1(ω̃),

(129)

where K(Θi+1ω̃)B̃m+1(Θ
iω̃)}e−iγm−1(ω̃) is bounded by a tempered function K∗(ω̃).

Similarly, for i ≥ n

||Φu(n−1−i,Θi+1ω̃)DηR
u
m−1,i(η, ω̃)|| ≤ K∗(ω̃)K̃m+1(ω̃)e−α(ω̃)(n−1−i)e−iγm−1(ω̃). (130)

Estimates (125),(126),(127), (130), (129) yield that for all n ≥ 0 Jn(η, ω̃) in η is C1

and

‖DηJn(η, ω̃)‖enγm−1(ω̃) ≤ K̂(ω̃), (131)

where K̂(ω̃) is tempered.

We consider a linear operator Gη from Cm−1+
γm−1(ω̃) into itself that is given by (114)

with v ∈ Lm−1(Es(ω̃), C+
γm−1(ω̃)) and set Im = {Im

n }n≥0 with

Im
n

=
n−1
∑

i=0

Φs(n− 1 − i,Θi+1ω̃)
(

DFs(Θ
iω̃, xi(η, ω̃)) −DFs(Θ

iω̃, xi(η0, ω̃))
)

Dm−1xi(η, ω̃)

−
+∞
∑

i=n

Φu(n− 1 − i,Θi+1ω̃)
(

DFu(Θ
iω̃, xi(η, ω̃)) −DFu(Θ

iω̃, xi(η0, ω̃))
)

Dm−1xi(η, ω̃)

Im
0

= −
+∞
∑

i=n

Φu(−1 − i,Θi+1ω̃)
(

DFu(Θ
iω̃, xi(η, ω̃)) −DFu(Θ

iω̃, xi(η0, ω̃))
)

Dm−1xi(η, ω̃).
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We also set Hm(η − η0) = {Hm
n (η − η0)}n≥0 with

Hm
n (η − η0)

=
n−1
∑

i=0

Φs(n− 1 − i,Θi+1ω̃)D2Fs(Θ
iω̃, xi(η0, ω̃))Dxi(η0, ω̃)(η − η0)D

m−1xi(η0, ω̃)

−
+∞
∑

i=n

Φu(n− 1 − i,Θi+1ω̃)D2Fu(Θ
iω̃, xi(η0, ω̃))Dxi(η0, ω̃)(η − η0)D

m−1xi(η0, ω̃)

Hm
0 (η − η0)

= −
+∞
∑

i=n

Φu(−1 − i,Θi+1ω̃)D2Fu(Θ
iω̃, xi(η0, ω̃))Dxi(η0, ω̃)(η − η0)D

m−1xi(η0, ω̃).

Obviously, Hm depends on ω̃ and is a bounded linear operator from Es(ω̃) to

Lm−1(Es(ω̃), C+
γm−1(ω̃)) with the norm bounded by a tempered function, denoted by

K̂ ′(ω̃). Then, equation (143) can be written as

(

Dm−1x(η, ω̃) −Dm−1x(η0, ω̃)
)

− Gη0

(

Dm−1x(η, ω̃) −Dm−1x(η0, ω̃)
)

= J(η, ω̃) − J(η0, ω̃) + Im.

(132)

We note that for n > 0

‖(Gηv)n‖enγm−1(ω̃)

≤
n−1
∑

i=0

K(Θi+1ω̃)e−(n−1−i)β(ω̃)B2(Θ
iω̃)ρ(Θiω̃)‖v‖Cm−1+

γm−1(ω̃)
e(n−i)γm−1(ω̃)

+
+∞
∑

i=n

K(Θi+1ω̃)e−(n−1−i)α(ω̃)B2(Θ
iω̃)ρ(Θiω̃)‖v‖Cm−1+

γm−1(ω̃)
e(n−i)γm−1(ω̃)

≤ L(ω̃)

(

eγm−1(ω̃)

1 − eγm−1(ω̃)−β(ω̃)
+

eα(ω̃)

1 − e−(γm−1(ω̃)−α(ω̃))

)

‖v‖Cm−1+
γm−1(ω̃)

≤ 1

3
‖v‖Cm−1+

γm−1(ω̃)
.
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Similarly, we have that

‖(Gηv)0‖ ≤ 1

3
‖v‖Cm−1+

γm−1(ω̃)
.

Thus, Gη is a bounded linear operator from Cm−1+
γm−1(ω̃) into itself and its norm is bounded

by 1
3
, which implies that (Id − Gη) has a bounded inverse in L(Cm−1+

γm−1(ω̃), C
m−1+
γm−1(ω̃)).

Thus,

Dm−1x(η, ω̃) −Dm−1x(η0, ω̃)

=
(

Id− G
)−1

(DJ(η0, ω̃) +Hm)(η − η0)

+
(

Id− G
)−1(

J(η, ω̃) − J(η0, ω̃) −DJ(η0, ω̃)(η − η0)
)

+
(

Id− G
)−1(

Im −Hm(η − η0)
)

.

(133)

First, we will show that

‖Im −Hm(η − η0)‖Cm+
γm(ω̃)

= o(‖η − η0‖), as η → η0. (134)

For n ≥ 1, by using (122), (120) and straight forward computations, we have that

‖Im
n −Hm

n (η − η0)‖enγm(ω̃)

≤
n−1
∑

i=0

K(Θi+1ω̃)e−(n−1−i)β(ω̃)Km−1(ω̃)e−iγm−1(ω̃)enγm(ω̃)‖∆2DFs(η0, η,Θ
iω̃)‖

+
+∞
∑

i=n

K(Θi+1ω̃)e−(n−1−i)α(ω̃)Km−1(ω̃)e−iγm−1(ω̃)enγm(ω̃)‖∆2DFu(η0, η,Θ
iω̃)‖

+D(ω̃)‖η − η0‖2,

(135)

where

∆2DFs(η0, η,Θ
iω̃)

= DFs(Θ
iω̃, xi(η, ω̃)) −DFs(Θ

iω̃, xi(η0, ω̃)) −D2Fs(Θ
iω̃, xi(η0, ω̃))Dxi(η0, ω̃)(η − η0),
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∆2DFu(η0, η,Θ
iω̃)

= DFu(Θ
iω̃, xi(η, ω̃)) −DFu(Θ

iω̃, xi(η0, ω̃)) −D2Fu(Θ
iω̃, xi(η0, ω̃))Dxi(η0, ω̃)(η − η0),

and

D(ω̃)

= sup

{

n−1
∑

i=0

K(Θi+1ω̃)e−(n−1−i)β(ω̃)Km−1(ω̃)e−iγm−1(ω̃)enγm(ω̃)B2(Θ
iω̃)K1(ω̃)e−iγ1(ω̃)

+
+∞
∑

i=n

K(Θi+1ω̃)e−(n−1−i)α(ω̃)Km−1(ω̃)e−iγm−1(ω̃)enγm(ω̃)B2(Θ
iω̃)K1(ω̃)e−iγ1(ω̃)

}

n≥0

≤ sup

{

Km−1(ω̃)K1(ω̃)e−iγi(ω̃)

3ρ(Θiω̃)

}

i≥0

.

Furthermore, D(ω̃) is tempered and does not depend on n.

Also we have that for i ≥ 0

‖∆2DFs(η0, η,Θ
iω̃)‖

≤ max
0≤t≤1

‖D2Fs(Θ
iω̃, txi(η, ω̃) + (1 − t)xi(η0, ω̃)) −D2Fs(Θ

iω̃, xi(η0, ω̃))‖

‖xi(η, ω̃) − xi(η0, ω̃)‖ + ‖D2Fs(Θ
iω̃, xi(η0, ω̃))‖K1(ω̃)e−iγ1(ω̃)‖η − η0‖2

≤ max
0≤t≤1

‖D2Fs(Θ
iω̃, txi(η, ω̃) + (1 − t)xi(η0, ω̃)) −D2Fs(Θ

iω̃, xi(η0, ω̃))‖

K1(ω̃)e−iγ1(ω̃)‖η − η0‖ + ‖D2Fs(Θ
iω̃, xi(η0, ω̃))‖K1(ω̃)e−iγ1(ω̃)‖η − η0‖2,

(136)
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and

‖∆2DFu(η0, η,Θ
iω̃)‖

≤ max
0≤t≤1

‖D2Fu(Θ
iω̃, txi(η, ω̃) + (1 − t)xi(η0, ω̃)) −D2Fu(Θ

iω̃, xi(η0, ω̃))‖

‖xi(η, ω̃) − xi(η0, ω̃)‖ + ‖D2Fu(Θ
iω̃, xi(η0, ω̃))‖K1(ω̃)e−iγ1(ω̃)‖η − η0‖2

≤ max
0≤t≤1

‖D2Fu(Θ
iω̃, txi(η, ω̃) + (1 − t)xi(η0, ω̃)) −D2Fu(Θ

iω̃, xi(η0, ω̃))

‖K1(ω̃)e−iγ1(ω̃)‖η − η0‖ + ‖D2Fu(Θ
iω̃, xi(η0, ω̃))‖K1(ω̃)e−iγ1(ω̃)‖η − η0‖2.

(137)

Note that for any n− 1 ≥ N

n−1
∑

i=N

2B2(Θ
iω̃)K(Θi+1ω̃)e−(n−1−i)β(ω̃)Km−1(ω̃)e−iγm−1(ω̃)enγm(ω̃)K1(ω̃)e−iγ1(ω̃)

≤ sup

{

2Km−1(ω̃)K1(ω̃)e−iγi(ω̃)

3ρ(Θiω̃)

}

i≥N

,

and for any n ≤ N

+∞
∑

i=N

2B2(Θ
iω̃)K(Θi+1ω̃)e−(n−1−i)α(ω̃)Km−1(ω̃)e−iγm−1(ω̃)enγm(ω̃)K1(ω̃)e−iγ1(ω̃)

≤ sup

{

2Km−1(ω̃)K1(ω̃)e−iγi(ω̃)

3ρ(Θiω̃)

}

i≥N

.

As long as ρ(ω̃) is tempered, we have that for any ǫ > 0 , there exists a N(ǫ, ω̃) > 0

such that for any n− 1 ≥ N(ǫ, ω̃)

n−1
∑

i=N(ǫ,ω̃)

2B2(Θ
iω̃)K(Θi+1ω̃)e−(n−1−i)β(ω̃)Km−1(ω̃)e−iγm−1(ω̃)enγm(ω̃)K1(ω̃)e−iγ1(ω̃) ≤ 1

2
ǫ

(138)

and for any n ≤ N(ǫ, ω̃)

+∞
∑

i=N(ǫ,ω̃)

2B2(Θ
iω̃)K(Θi+1ω̃)e−(n−1−i)α(ω̃)Km−1(ω̃)e−iγm−1(ω̃)enγm(ω̃)K1(ω̃)e−iγ1(ω̃) ≤ 1

2
ǫ.

(139)
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So for a fixed N and τ = s, u

lim
η→η0

max
0≤i≤N

max
0≤t≤1

‖D2Fτ (Θ
iω̃, txi(η, ω̃) + (1 − t)xi(η0, ω̃)) −D2Fτ (Θ

iω̃, xi(η0, ω̃))‖ = 0.

Combining inequalities (135), (136) and (137), we have that

‖Im
n − Hm

n (η − η0)‖enγm(ω̃)

≤
n−1
∑

i=0

K(Θi+1ω̃)e−(n−1−i)β(ω̃)Km−1(ω̃)e−iγm−1(ω̃)enγm(ω̃)K1(ω̃)e−iγ1(ω̃)‖η − η0‖

max
0≤t≤1

‖D2Fs(Θ
iω̃, txi(η, ω̃) + (1 − t)xi(η0, ω̃)) − D2Fs(Θ

iω̃, xi(η0, ω̃))‖

+
+∞
∑

i=n

K(Θi+1ω̃)e−(n−1−i)α(ω̃)Km−1(ω̃)e−iγm−1(ω̃)enγm(ω̃)K1(ω̃)e−iγ1(ω̃)‖η − η0‖

max
0≤t≤1

‖D2Fu(Θiω̃, txi(η, ω̃) + (1 − t)xi(η0, ω̃)) − D2Fu(Θiω̃, xi(η0, ω̃))‖

+ 2D(ω̃)‖η − η0‖2

(140)

Then, by using inequalities (138), (139) and (140), we can obtain that for any n ≥ 1

lim
η→η0

max
n≥1

‖Im
n −Hm

n (η − η0)‖enγm(ω̃) ≤ ǫ.

Since ǫ can be arbitrarily small, we have

lim
η→η0

max
n≥1

‖Im
n −Hm

n (η − η0)‖enγm(ω̃) = 0.

Similarly we have that

lim
η→η0

‖Im
0 −Hm

0 (η − η0)‖ = 0.

Therefore, (134) holds.

On the other hand, since J(η, ω̃) is C1 and (131) holds, by using the similar argument
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as in proving (134), we have that

‖J(η, ω̃) − J(η0, ω̃) −DJ(η0, ω̃)(η − η0)‖Cm−1+
γm−1(ω̃)

= o(‖η − η0‖), as η → η0. (141)

With (134) and (141), one can obtain that Dmx(η, ω̃) exists and

‖Dmx(η, ω̃)‖L(Es,Cm+
γm(ω̃)

) ≤
3

2
(K̂(ω̃) + K̂ ′(ω̃)). (142)

Furthermore, we also have that Dmx(·, ω̃) satisfies the following equation

Dmxn(η, ω̃) =
n−1
∑

i=0

Φs(n− 1 − i,Θi+1ω̃)DFs(Θ
iω̃, xi(η, ω̃))Dmxi(η, ω̃)

−
+∞
∑

i=n

Φu(n− 1 − i,Θi+1ω̃)DFu(Θ
iω̃, xi(η, ω̃))Dmxi(η, ω̃)

+
n−1
∑

i=0

Φs(n− 1 − i,Θi+1ω̃)Rs
m,i(η, ω̃)

−
+∞
∑

i=n

Φu(n− 1 − i,Θi+1ω̃)Ru
m,i(η, ω̃), for n ≥ 1;

Dmx0(η, ω̃) = −
+∞
∑

i=n

Φu(−1 − i,Θi+1ω̃)DFu(Θ
iω̃, xi(η, ω̃))Dmxi(η, ω̃)

−
+∞
∑

i=n

Φu(−1 − i,Θi+1ω̃)Ru
m,i(η, ω̃)

(143)

where

Rτ
m,i(η, ω̃) =

m−2
∑

l=0







m− 1

l






Dm−1−l

η

(

DxFτ (Θ
iω̃, xi(η, ω̃))

)

Dl+1xi(η, ω̃),

for τ = u, s. Applying the chain rule to

Dm−1−l
η

(

DxFτ (Θ
iω̃, xi(η, ω̃))

)

,
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we have that each term in Rτ
m−1,i(η, ω̃) contains factors: Dl1

x Fτ (Θ
iω̃, xi(η, ω̃)) for

some 2 ≤ l1 ≤ m − 1 and at least two derivatives Dl2
η xi(η, ω̃) and Dl3

η xi(η, ω̃) for

some l2, l3 ∈ {1, · · · ,m − 1}. Since Dl
ηx(η, ω̃) ∈ C l+

γl(ω̃) for l = 1, · · · ,m and F is

CN , Rs
m,i(·, ω̃) : Es(ω̃) ∩B(0, R(ω̃)

3K(ω̃)
) → Lm

(

Es(ω̃), Es(Θiω̃)
)

and Ru
m,i(·, ω̃) : Es(ω̃) ∩

B(0, R(ω̃)
3K(ω̃)

) → Lm
(

Es(ω̃), Eu(Θiω̃)
)

are C1.

Furthermore, by using (120) and (122), we have that for τ = u, s

||Rτ
m,i(η, ω̃)|| ≤ B̃m(Θiω̃)K̃m−1(ω̃)e−2iγm−1(ω̃) (144)

and when m < N

||Rτ
m,i(η, ω̃) −Rτ

m,i(η0, ω̃)|| ≤ B̃m+1(Θ
iω̃)K̃m−1(ω̃)e−2iγm−1(ω̃)‖η − η0‖. (145)

By using (144), (145) and the similar proof of (118), (119), one can obtain that

when m < N (120),(121),(122) holds for j = m. When m = N < +∞, (122)

may be not true. But since Rs
m,i(·, ω̃) : Es(ω̃) ∩ B(0, R(ω̃)

3K(ω̃)
) → Lm

(

Es(ω̃), Es(Θiω̃)
)

and Ru
m,i(·, ω̃) : Es(ω̃) ∩ B(0, R(ω̃)

3K(ω̃)
) → Lm

(

Es(ω̃), Eu(Θiω̃)
)

are C1, by using (144)

and the similar argument as in the proof of (134), one can obtain that Dmx(η, ω̃) is

continuous in η. The proof is done.

Now we are ready to prove the existence of the local stable manifold.

Theorem 46. (Local Stable Manifold Theorem) Assume that φ is nonuniformly

pseudo-hyperbolic on A and Hypothesis H1 holds, and α(ω) < β(ω), β(ω) > 0. Then,

the local stable set W s
loc(ω̃) is a CN manifold given by

W s
loc(ω̃) = {y0 + η + hs(η, ω̃)|η ∈ B(0, ρ̃(ω̃)) ∩ Es(ω̃)}
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where ρ̃(·) is tempered and

hs(·, ω̃) : B(0, ρ̃(ω̃)) ∩ Es(ω̃) → Eu(ω̃)

satisfies the following:

(i) hs(η, ω̃) is CN in η with

Liphs(·, ω̃) < 1, hs(0, ω̃) = 0, Dhs(0, ω̃) = 0.

(ii) ‖Dihs(η, ω̃)‖ ≤ Ki(ω̃) for each 0 ≤ i ≤ N when N <∞ and for all i ≥ 0 when

N = ∞, where Ki(ω̃) are random variables tempered from above.

Proof. We define hs(·, ω̃) : B(0, ρ̃(ω̃)) ∩ Es(ω̃) → Eu(ω̃) by

hs(η, ω̃) = xu
0(η, ω̃) = −

+∞
∑

i=0

Φu(−1 − i,Θi+1ω̃)Fu(Θ
iω̃, xi).

Set

ρ̃(ω̃) = min

{

1

2
ρ(ω̃),

ρ(ω̃)

3K(ω̃)

}

where ρ(ω̃) is the one in the proof of Proposition 45. So ρ̃(·) is tempered. Part (i) and

(ii) in Proposition 45 imply that part (i) and (ii) in Theorem 46 except the estimate

of the Liptchitz constant of hs.
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For each η, η0 ∈ B(0, ρ̃(ω̃)) ∩ Es(ω̃)}, we have

‖hs(η, ω̃) − hs(η0, ω̃)‖

≤
+∞
∑

i=0

K(Θi+1)e(1+i)α(ω̃)B2(Θ
iω̃)ρ̃(Θiω̃)

3

2
K(ω̃)e−iγ1(ω̃)‖η − η0‖

≤
+∞
∑

i=0

K(Θi+1)e(1+i)α(ω̃)B2(Θ
iω̃)ρ(Θiω̃)e−iγ1(ω̃)‖η − η0‖

≤ 1

3
‖η − η0‖.

In above estimate we used the definition of ρ(ω̃) and inequality (113).

Finally, for each x ∈W s
loc, since there exists η ∈ Es(ω̃) such that x0 = η+hs(η, ω̃).

By Proposition 45 we have that the orbit x satisfies

x(η, ω̃) = {xn}n≥0 ∈ C+
γ1(ω̃),

which means that xn → 0 exponentially as n→ +∞. This completes the proof.

Theorem 47. (Local unstable Manifold Theorem) Assume that φ is nonuni-

formly pseudo-hyperbolic on A and Hypothesis H1 holds, and α(ω) < β(ω), α(ω) < 0

. Then, the local unstable set W u
loc(ω̃) is a CN manifold given by

W u
loc(ω̃) = {y0 + η + hu(η, ω̃)|η ∈ B(0, ρ̃(ω̃)) ∩ Eu(ω̃)}

where ρ̃(·) is tempered and

hu(·, ω̃) : B(0, ρ̃(ω̃)) ∩ Eu(ω̃) → Es(ω̃)

satisfies the following:

155



(i) hu(η, ω̃) is CN in η with

Liphu(·, ω̃) < 1, hu(0, ω̃) = 0, Dhu(0, ω̃) = 0.

(ii) ‖Dihu(η, ω̃)‖ ≤ Ki(ω̃) for each 0 ≤ i ≤ N when N <∞ and for all i ≥ 0 when

N = ∞, where Ki(ω̃) are random variables tempered from above.

This theorem can be proved in the same fashion as the stable manifold theorem

with some modifications. Corresponding to C+
γi(ω̃), 1 ≤ i ≤ N , we consider space

C−
γi(ω̃) and the unstable set

W u
loc(ω̃) = {x0 ∈ B(0, ρ̃(ω̃)) | |xn|e−γn → 0, as n→ −∞}

where ρ̃(ω̃) is a tempered function and γ > 0, −β < γ < −α. In order to show that

W u
loc(ω̃) is given by the graph of CN function, we first show that x = {xn}n≤0 ∈ C−

γ(ω̃)

satisfies equation (107) if and only if {xn}n≤0 ∈ C−
γ(ω̃) and satisfies the following

equations:

xn = Φu(n, ω̃)xu
0 −

−1
∑

i=n

Φu(n− 1 − i,Θi+1ω̃)Fu(Θ
iω̃, xi)

+
n−1
∑

i=−∞

Φs(n− 1 − i,Θi+1ω̃)Fs(Θ
iω̃, xi), for n ≤ −1;

x0 = xu
0 +

−1
∑

i=−∞

Φs(−1 − i,Θi+1ω̃)Fs(Θ
iω̃, xi),

(146)

where Φu = Φ|Eu , Φs = Φ|Es , Fu = ΠuF , and Fs = ΠsF . Then by the same argu-

ments as in the proofs of Theorem 45 and 46, we obtain this theorem.

Combining Theorem 46 and Theorem 47 gives Theorem 43.
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Remark 11. Since Eu(ω̃) are finite dimensional and measurable, by corollary 39, we

can find a measurable basis {e1(ω̃), e2(ω̃), . . . , emu(ω̃)(ω̃)} spanning Eu(ω̃). For any

η ∈ B(0, ρ̃(ω̃)) ∩ Eu(ω̃), we can write

η =

mu(ω̃)
∑

i=1

ηiei(ω̃)

where (η1, . . . , ηmu(ω̃)) ∈ Rmu(ω̃). The usual norm of Rmu(ω̃) induces a norm on Eu(ω̃).

By using (75), we have that the induced norm is equivalent to the norm ofX restricted

on Eu(ω̃) with a uniform controlling constant. By restricting our argument on a

proper subset, mu(ω̃) becomes a constant. By using (146) and the same arguments

as in the proofs of Theorem 45 and 46, one can verify that the assumptions of lemma

7.3.4 of [1] are satisfied. Thus we obtain that hu(
∑mu(ω̃)

i=1 ηiei(ω̃), ω̃) is measurable for

fixed (η1, . . . , ηmu(ω̃)) ∈ Rmu(ω̃) on the set ‖η‖ < ρ(ω̃).
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A Non-ergodic Case

The multiplicative ergodic theorem in non-ergodic case can be proved in the same

way with the following modifications. In this case, lk(T ), κ(T ), lα, l′α, κ′(T ) are all

measurable functions.

We first notice that 1
k
lk(T )(ω) is a nondecreasing sequence from Lemma 13. Thus,

there exists a positive integer function m(ω) such that

1

k
lk(T )(ω) = l1(T )(ω), for 1 ≤ k ≤ m(ω),

1

k
lk(T )(ω) < l1(T )(ω), for k > m(ω).

(147)

Then, from (36), we have

dimEκ(T )(ω)(ω) ≤ m(ω), a.s..

We modify Proposition 30 as

Proposition 48. For lα(ω) < λ(ω) ≤ κ(T )(ω), we have

dimEλ(ω)(ω) ≥ m(ω), a.s..

Furthermore, dimEκ(T )(ω)(ω) = m(ω).

Let

Ωm = {ω | m(ω) = m}.

Note that Ωm is a θ-invariant measurable set on which m(ω) is a constant m and

la(ω) 6= κ(T )(ω). In the following, we will restrict our discussion on Ωm and assume

that P (Ωm) = 1.
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Let

λt(ω) = (1 − t) max{lα(ω), κ(T )(ω) − 1} + tκ(T )(ω), t ∈ (0, 1), ω ∈ Ωm,

which is measurable for fixed t. Note that on Ωm, λt < κ(T ). Let

Un = {ω ∈ Ωm|λt(ω) < n}, n ≥ 1.

Then

lim
n→∞

P (Ωm − Un) = 0.

We also note that for fixed t and small ǫ0 > 0, there exist λ0 > −∞, ǫ > 0 and a

subset Ω′ ∈ Ωm such that P (Ω′) > 1 − ǫ0 and for any ω ∈ Ω′,

0 < 2ǫ < κ(T )(ω) − λt(ω),

λt(ω) < −λ0.

(148)

For each positive integer n, we use Aλt

n to denote the subset of Ωm such that for

each ω ∈ Aλt

n there exist m vectors {vi}1≤i≤m ⊂ X such that

{π(ω)vi}1≤i≤m are independent;

(149)

T−k(ω)π(ω)vi exists for 1 ≤ i ≤ m, 1 ≤ k ≤ n; (150)

Vm(T−k(ω)π(ω)v1, . . . , T
−k(ω)π(ω)vm)

Vm(π(ω)v1, . . . , π(ω)vm)
≤ e−kmλt(ω), 1 ≤ k ≤ n. (151)

Lemma 49. There exists a δt > 0 such that

Pin(Aλt

n ) > δt, for all n and fixed t,
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where Pin(Aλt

n ) is the inner measure of Aλt

n and there exists a countable subset Sd of

(0, 1) such that for any t ∈ (0, 1) − Sd, A
λt

n is measurable and

P (Aλt

n ) ≥ δt.

Proof. We first show that if Aλt

n is measurable, then P (Aλt

n ) > δt. We note that from

log+ ‖S(·)‖ ∈ L1(Ωm,F , P ) it follows that for each ǫ > 0, there exists a H(ǫ) > 0

such that
∫

E
(

H(ǫ)
)

log+ ‖S(ω)‖dP < ǫ,

where E
(

H(ǫ)
)

=
{

ω | log ‖S(ω)‖ > H(ǫ)
}

.

Thus,by using (148), we have ǫ0, H( ǫǫ0
4

), H0, λ0, ǫ, and Ω′ such that P (Ω′) > 1− 1
2
ǫ0

and for any ω ∈ Ω′,

0 < 2ǫ < κ(T )(ω) − λt(ω),

λt(ω) < −λ0,

H0 = −H(
ǫǫ0
4

) < λ0 < −λt(ω).

By using the Birkhoff ergodic theorem and Lemma 16, we have that

lim
n→+∞

1

mn

n−1
∑

k=0

χ
E
(

H(
ǫǫ0
4

)
)(θkω) log Vm(T (θkω)|G(θkω)) exists a.s.,

and

∫

lim
n→+∞

1

mn

n−1
∑

k=0

χ
E
(

H(
ǫǫ0
4

)
)(θkω) log Vm(T (θkω)|G(θkω))dP

≤
∫

E
(

H(
ǫǫ0
4

)
)

log+ ‖S(ω)‖dP <
ǫǫ0
4
.

(152)
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Let

Ω′′ =

{

ω ∈ Ω′
∣

∣

∣
lim

n→+∞

1

mn

n−1
∑

k=0

χ
E
(

H(
ǫǫ0
4

)
)(θkω) log Vm(T (θkω)|G(θkω)) <

ǫ

2

}

.

By (152) we have that

P (Ω′′) > 1 − ǫ0. (153)

For ω ∈ Ω′′, from the definition of m, we have

lim
n→+∞

1

mn
log Vm(T n(ω)) = κ(T )(ω) > λt(ω) + 2ǫ.

Thus, there exists N1(ω) > 0 such that for any n > N1(ω),

Vm(T n(ω)) > enm(λt(ω)+2ǫ). (154)

Using (152), there exists N2(ω) > 0 such that for any n > N2(ω),

1

mn

n−1
∑

k=0

χ
E
(

H(
ǫǫ0
4

)
)(θkω) log Vm(T (θkω)|G(θkω)) < ǫ. (155)

Let N0(H0, λ
t(ω), ǫ) be the number given in Lemma 31.Thus, for each

N ≥ max{N1, N2, N0(H0, λ
t(ω), ǫ)} + 1,

by using (154), there exist vectors {vi}1≤i≤m ⊂ X such that {π(ω)vi}1≤i≤m are linearly

independent and

Vm(TN+1(ω)π(ω)v1, . . . , T
N+1(ω)π(ω)vm) > e(N+1)m(λt(ω)+2ǫ)Vm(π(ω)v1, . . . , π(ω)vm).

(156)
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Let

a′k =
1

m
log

Vm(TN−k(ω)π(ω)v1, . . . , T
N−k(ω)π(ω)vm)

Vm(TN−k+1π(ω)v1, . . . , TN−k+1π(ω)vm)
0 ≤ k ≤ N.

Then,

N
∑

k=0

a′k =
1

m
log

Vm(π(ω)v1, . . . , π(ω)vm)

Vm(TN+1(ω)π(ω)v1, . . . , TN+1(ω)π(ω)vm)
< −(N + 1)(λt(ω) + 2ǫ).

Set

ak =











a′k if a′k ≥ H0,

0 if a′k < H0.

By(14), we have

a′k ≥ − 1

m
log Vm(T (θN−kω)|G(θN−kω))).

Hence, if a′k < H0, then θN−kω ∈ E
(

H( ǫǫ0
4

)
)

. Thus, using (154), we have

0 ≥ 1

N + 1

(

N
∑

k=0

a′k −
N
∑

k=0

ak

)

≥ 1

m(N + 1)

N
∑

k=0

−χ
E
(

H(
ǫǫ0
4

)
)(θkω) log Vm(T (θkω)|G(θkω))

≥ −ǫ,

which implies that

N
∑

k=0

ak ≤
N
∑

k=0

a′k + (N + 1)ǫ ≤ −(N + 1)(λt(ω) + ǫ). (157)

By Lemma 31, there exist integers 0 < n1 < n2 < · · · < nj0 ≤ N such that j0 ≥

162



δ′t(ω)N and for all nj ≤ k ≤ N ,

(k − nj)λ
t(ω) ≥

k
∑

n=nj+1

an ≥
k
∑

n=nj+1

a′n

=
k
∑

n=nj+1

1

m
log

Vm(TN−n(ω)π(ω)v1, . . . , T
N−n(ω)π(ω)vm)

Vm(TN−n+1(ω)π(ω)v1, . . . , TN−n+1(ω)π(ω)vm)

=
1

m
log

Vm(TN−k(ω)π(ω)v1, . . . , T
N−k(ω)π(ω)vm)

Vm(TN−nj(ω)π(ω)v1, . . . , TN−nj(ω)π(ω)vm)
.

We note that N − nj ≥ n when j0 − j > n. From the definition of Aλt

n it follows that

for n+ j ≤ j0

θN−njω ∈ Aλt

n .

Since l − n ≥ δ′t(ω)N − n, we have

1

N
#{0 < i ≤ N | θiω ∈ Aλt

n }

≥ 1

N
#{0 < i ≤ N | i = N − nj, 1 ≤ j ≤ j0 − n}

≥ 1

N
(j0 − n) ≥ δ′t(ω) − n

N

in which the lower bound will go to δ′t(ω) as N goes to +∞. Note that δ′t(·) does

not depends on n. Thus, if Aλt

n is measurable, then by the Birkhoff ergodic theorem

we obtain

P (Aλt

n ) ≥
∫

Ω′′

lim
N→+∞

1

N
#{0 < i ≤ N | θiω ∈ Aλt

n } ≥
∫

Ω′′

δ′tdP (:= δt) > 0. (158)

Next, we show that Aλt

n is measurable except for countably many t. For each

n ≥ 1 and w1, · · ·wm ∈ X, we use Sn,t(w1, . . . , wm) to denote the set of ω ∈ Ωm such
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that the following conditions hold

Vm(T n(θ−nω)w1, . . . , T
n(θ−nω)wm) 6= 0; (159)

Vm(T n−k(θ−nω)w1, . . . , T
n−k(θ−nω)wm)

Vm(T n(θ−nω)w1, . . . , T n(θ−nω)wm)
≤ e−mkλt

, (160)

for 1 ≤ k ≤ n, 0 < t < 1.

Since T (ω) is strongly measurable and Vm : Xm → R is continuous, Sk,t(w1, . . . , wm)

is measurable. Let

Dt(w1, . . . , wm) =
n
⋂

k=1

Sk,t(w1 . . . , wm).

Then Dt(w1, . . . , wm) is also measurable.

Since X is a separable Banach space, we have a countable dense set {vi(6= 0)}i≥1

of X. Set

Kt =
∞
⋂

j=[1/t]+1

⋃

(n1,...,nm)∈Nm

Dt− 1
j
(vn1 , . . . , vnm

).

Then Kt is measurable. By the definition of Sn,t(w1, · · · , wm), we have that for each

small ǫ > 0

Sn,t(w1, · · · , wm) ⊂ Sn,t−ǫ(w1, · · · , wm),

which yields

Kt ⊂ Kt−ǫ

and

Kt = lim
ǫ→0+

Kt−ǫ decreasingly.

Since P (Kt) ≤ 1, we have

P (Kt) = lim
ǫ→0+

P (Kt−ǫ).

Next, we show
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Claim: The inner measure of Aλt

n , Pin(Aλt

n ), is equal to its outer measure Pout(A
λt

n )

for each t ∈ (0, 1) − Sd, where Sd is a countable set.

We first prove that for each small ǫ > 0,

Kt ⊂ Aλt−ǫ

n ,

in other words

Kt+ǫ ⊂ Aλt

n .

Let ω ∈ Kt. Then, there exists (n1, . . . , nm) ∈ Nm such that ω ∈ Dt−ǫ(vn1 , . . . , vnm
),

which means that

Vm(T n(θ−nω)vn1 , . . . , T
n(θ−nω)vnm

) 6= 0

and

Vm(T n−k(θ−nω)vn1 , . . . , T
n−k(θ−nω)vnm

)

Vm(T n(θ−nω)vn1 , . . . , T
n(θ−nω)vnm

)
≤ e−mkλt−ǫ

, 1 ≤ k ≤ n.

Set

v′i = T n(θ−nω)vni
.

Then

ω ∈ Aλt−ǫ

n .

Now, we prove that

Aλt

n ⊂ Kt.

Let ω ∈ Aλt

n . Then, there exist vectors {wi}1≤i≤m ⊂ X such that T−k(ω)π(ω)wi exists

for 1 ≤ i ≤ m, 1 ≤ k ≤ n,

Vm(π(ω)w1, . . . , π(ω)wm) 6= 0
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and

Vm(T−k(ω)π(ω)w1, . . . , T
−k(ω)π(ω)wm)

Vm(π(ω)w1, . . . , π(ω)wm)
≤ e−kmλt

, 1 ≤ k ≤ n.

For small ǫ > 0, since {vi}i≥1 is a countable dense subset ofX and Vm : X → R is con-

tinuous, we have that there exists (n1, . . . , nm) ∈ N such that (π(θ−nω)vn1 , . . . , π(θ−nω)vnm
)

is close enough to (T−n(ω)π(ω)w1, . . . , T
−n(ω)π(ω)wm) and

Vm(T n−k(θ−nω)vn1 , . . . , T
n−k(θ−nω)vnm

)

Vm(T n(θ−nω)vn1 , . . . , T
n(θ−nω)vnm

)
≤ e−kmλt−ǫ

, 1 ≤ k ≤ n.

So

ω ∈ Dt−ǫ(vn1 , . . . , vnm
).

Therefore,

ω ∈ Kt−ǫ.

Since ǫ > 0 can be arbitrary small, and by the definition of Kt, we have

ω ∈ Kt,

hence

Aλt

n ⊂ Kt.

Summarizing the above discussion, we have that for any ǫ > 0,

Kt+ǫ ⊂ Aλt

n ⊂ Kt.

Since P (Kt) is a monotone function with respect to t, it has at most countable many

discontinuous points. We use Sd to denote the set of these discontinuous points. Thus
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for any t ∈ (0, 1) − Sd, we have

lim
ǫ→0+

P (Kt+ǫ) = P (Kt),

which implies that

Pin(Aλt

n ) = Pout(A
λt

n ).

Therefore, Aλt

n is measurable. Then, by using (158), we have that for any t ∈ (0, 1)−

Sd,

P (Aλt

n ) ≥ δt.

Then

Pin

(

+∞
⋂

n=1

Aλt

n

)

≥ δt > 0.

This completes the proof of the lemma.

Remark 12. In the proof we have that for any ω ∈ Ω′′, δ′t(ω)(> 0) does not depends

on n, so the frequency of which {θnω}n≥1 enters ∩+∞
n=1A

λt

n is positive, which implies

that

Ω′′ ⊂
⋃

n∈Z

θn
(

∩+∞
n=1A

λt

n

)

.

Note that ǫ0 can be arbitrary small and is independent of P (Aλt

n ), although δt depends

on ǫ0. So we can obtain that

P

(

⋃

n∈Z

θn
(

∩+∞
n=1A

λt

n

)

)

= 1.

Lemma 50. There exists a constant C depends only on m such that for any small

number ǫ > 0 satisfying Cǫ < 1, if ω ∈ ⋂+∞
n=1A

λ1−ǫ

n , then dimEλ1−Cǫ

(ω) ≥ m.

The proof will be exactly same as Lemma 33 if we restrict our discussion on
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invariant subsets Ωm ∩ {ω|κ(T )(ω) > −n}, n ≥ 1. Note that

lim
n→+∞

P (Ωm ∩ {ω|κ(T )(ω) > −n}) = 1.

Proof of Proposition 48. It is sufficient to show the proposition holds for t ∈ (0, 1).

Since Eλt

(ω) is a decreasing sequence of finite dimensional subspaces, we have

dimEκ(T )(ω) = dim
⋂

0<t<1

Eλt

(ω). (161)

Let t0 be a fixed number in (0, 1). By Lemma 49, there exists a countable set S of

(0, 1) such that for each t ∈ (0, 1) − S,
⋂∞

n=1A
λt

n is measurable and

P (
∞
⋂

n=1

Aλt

n ) ≥ δt.

Choose 1 > ǫ > 0 such that t0 < 1 − Cǫ. Then,
⋂∞

n=1A
λ1−ǫ

n is measurable and

P (
∞
⋂

n=1

Aλ1−ǫ

n ) ≥ δ1−ǫ.

By Lemma 50, we have that for each ω ∈ ⋂∞
n=1A

λ1−ǫ

n ,

dim(Eλ1−Cǫ

(ω)) ≥ m.

Since t0 < 1 − Cǫ, Eλ1−Cǫ

(ω) ⊂ Eλt0 (ω). Thus,

dim(Eλt0 (ω)) ≥ m.

Since Eλ1−Cǫ

(ω) is invariant and T (ω)|G(ω) is injective, dim(Eλ1−Cǫ

(θnω)) ≥ m for all
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n ∈ Z. Let

Aλ1−ǫ

=
⋃

j∈Z

θj

(

+∞
⋂

n=1

Aλ1−ǫ

n

)

.

Then, by Remark 12, we have that Aλ1−ǫ

is a θ-invariant measurable set with full

measure. This completes the proof of the proposition.

�
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[22] R. Mañé. Ergodic theory and differentiable dynamics. Translated from the Por-

tuguese by Silvio Levy. Springer-Verlag, Berlin, 1987.
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97, 1987.

[43] Wanner, T. Linearization of random dynamical systems. In C. Jones, U.

Kirchgraber and H. O. Walther, editors, Dynamics Reported, Vol. 4, 203-269,

Springer-Verlag, New York, 1995.

Department of Mathematics

Brigham Young University

Provo, UT 84602

E −mail: zenglian@math.byu.edu

174


	Brigham Young University
	BYU ScholarsArchive
	2008-07-16

	Lyapunov Exponents and Invariant Manifold for Random Dynamical Systems in a Banach Space
	Zeng Lian
	BYU ScholarsArchive Citation


	Front Matter
	Title Page
	Copyright Page
	Graduate Committee Approval
	Final Reading Approval and Acceptance
	Abstract
	Acknowledgments
	Table of Contents

	Introduction
	Lyapunov Exponents
	Random Stable and Unstable Manifolds.
	Nontechnical Overview.

	Notations and Preliminaries
	Random Dynamical Systems
	Ergodic Theory
	Measures of noncompactness

	Main Results
	Volume Function in Banach Spaces
	Volume Function Vn(w1, w2, …, wn).
	Change of Volume Under Linear Transformations.

	Gap and Distance Between Closed Linear Subspaces
	Lyapunov Exponents and Oseledets Spaces
	Exponential Growth Rates.
	Oseledets Spaces.
	Measurability of Oseledets Spaces.
	Principal Lyapunov Exponents.

	Measurable Random Invariant Complementary Subspaces
	Proof of Multiplicative Ergodic Theorem
	Stable and Unstable Manifolds
	Nonuniformly Hyperbolic Linear RDS.
	Nonuniformly Hyperbolic Random Sets.
	Stable and Unstable Manifolds. 
	Proof of Theorem 43.

	Non-ergodic Case
	References

