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ABSTRACT

Modeling the hydrolyzing action of secretory phospholipase A2

with ordinary differential equations and Monte Carlo Methods

Zijun Lan Dozier

Department of Mathematics

Master of Science

Although cell membranes normally resist the hydrolysis of secretory phospholi-

pase A2, a series of current investigations demonstrated that the changes in lipid

order caused by increased calcium has a relationship with the susceptibility to phos-

pholipase A2. To further explore this relationship, we setup ordinary differential

equations models, statistic models and stochastic models to compare the response of

human erythrocytes to the hydrolyzing action of secretory phospholipase A2 and the

relationship between the susceptibility of hydrolysis and the physical properties of

secretory phospholipase A2. Furthermore, we use models to determine the ability of

calcium ionophore to increased membrane susceptibility.
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1 Introduction of Biomathematics and Biology Back-

ground

1.1 Biomathematics

Biomathematics, or Mathematical Biology is an interdisciplinary field of academic

study which aims at modeling biological process using mathematical techniques and

tools [12]. Sophisticated mathematical results have been used in and have emerged

from the life sciences. Examples are given by the development of stochastic processes

and statistical methods to solve a variety of population problems in demography, ecol-

ogy, genetics, and epidemiology, and most joint work between biologists, physicists,

chemists and engineers involves synthesis and analysis of mathematical structures

[13]. Pythagoras, Aristotle, Fibonacci, Bernoulli, Euler, Fourier, Laplace, Gauss,

Riemann, Von Newmann, Einstein, Thompson, and Wiener are names associated

with both significant applications of mathematics to life science problems and signif-

icant developments in mathematics motivated by the life sciences.

Although mathematics has been applied to the field of biology since its conception,

the majority of major breakthroughs in Mathematical Biology have been achieved

within the last fifty years. Main reasons include: the development of computer science

makes it possible to analyze large data sets and perform more accurate simulations;

advances in mathematical tools have been beneficial for obtaining a further under-

standing of biology fields [15]. Due to developments in the aforementioned areas in

the past thirty years, dramatic results have been obtained by applying mathematics

to the following areas of research: population dynamics, modeling cell and molecular

biology, modeling physiological systems [15].
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Early mathematical models in the life sciences described phenomena over broad

ranges of parameter values and widely disparate time and space scales [13]. However,

the accuracy of a mathematical model is limited by its level of realism, the infor-

mation that is being sought, and the methods of analysis that might be available to

study it. Euler’s renewal theory in demography and Fisher and Kolmogorov’s model

of the formation of genetic clines are notable examples [12].

Over the past 30 years there has been a shift from mathematical analysis to com-

puter simulation due mostly to improvements in computer power and accessibility [15].

This shift has made it possible to include more information in models and still de-

rive useful insights from them. Moreover, bootstrapping and data mining procedures

have introduced new computer-based methodologies that work directly with observed

databases. Computers have freed investigators to explore more detailed mathematical

descriptions of life. In this thesis, computer simulations using MATLAB and C++

code are applied to mathematical models to help understand systematic behaviors of

an enzyme’s hydrolysation process, which will provide a basic example of why math-

ematics has been useful to understand life science.

In Mathematical Biology, a number of mathematical techniques have been applied

to model experimental processes. For example, ordinary differential equations (ODE)

and partial differential equations (PDE) are the two most important tools for analyz-

ing biological dynamic systems, such as molecule replication and cell reproduction;

probabilistic evolutionary models propose a probabilistic interaction between the en-

vironmental variations and the biological evolution; while Markov chains are widely

used to simulate the behavior of cellular [13]. In this paper, ODE models and Markov

models will be applied to study the behavior of enzyme sPLA2 on cell membranes.
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1.2 Biology Background

Secretory phospholipase A2 (sPLA2), an enzyme widely used in physiological and bi-

ological experimental testing, hydrolyzes susceptible phospholipid of cell membranes,

releasing fatty acids and lysophospholipids. By acting extracellularly, this enzyme can

be adsorbed by the membranes of blood cells and effectively destroy the apoptotic

cells’ membrane [1]. In physiology, it may participate in various functions including

digestion, clearing of dead or damaged cells, and membrane homeostasis, which is the

property of a living organism that regulates its internal environment so as to maintain

a stable, constant condition, such as defence against bacteria [8].

However, not all cell membranes are impressible to be hydrolyzed by sPLA2. Since

cell membranes ordinarily resist the hydrolysis of this enzyme, the action of hydrolyz-

ing can be fulfilled only when the resistance is relatively weak [5]. In other words, if

the cell membrane is under healthy physical condition, the enzyme will not be active

in the hydrolysation process. Properties that promote susceptibility include negative

charge in the membrane surface, high curvature of the lipid bilayer, and heterogeneity

of lipid components. Furthermore, the activity of sPLA2 is extremely sensitive to

the level of ordering of membrane lipids.

The differences between the physical and chemical properties of artificial bilayer

and human erythrocyte membranes need to be considered in applying the principles

above. To further explore this relationship, laboratory experiments using temperature

as an experimental means of manipulating membrane physical properties were done

to check the temperature dependence of membrane properties in the range of 20 to 50

degrees of centigrate. In the experiments, erythrocyte membranes were treated with

and without ionomycin (Ca++) at a variety of temperatures, and the level of lipid
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order was assessed by fluorescence spectroscopy using laurdan, which is a fluorescence

dye used to observe physical properties of membranes [17]. The experiments indicate

that erythrocyte membranes display significant temperature dependence of membrane

properties in the range of 28 to 45 degrees of centigrate. Therefore, for biological

systems, the variation of temperature changes the membrane order which will greatly

influence the susceptibility of erythrocyte membranes.

Furthermore, laboratory experiments also suggest that the susceptibility to the

enzyme can be induced by loading cells with calcium. In previous studies, it was

observed that erythrocytes are amenable to the property of resisting hydrolyzing ac-

tion of sPLA2, but that upon the addition of a calcium ionophore such as ionomycin,

they became susceptible [17] and [21]. In human erythrocytes, the ability of calcium

ionophore to cause susceptibility depends on temperature, occurring best at about 35

degrees. From 20 to 60 degrees, the lipid packing decreased gradually, but calcium

loading enhanced packing at temperatures around 20 degrees and greatly reduced

packing at higher temperature.

What’s more, a large number of studies conducted with sPLA2 suggest that the

hydrolysis of membrane lipids requires two steps. First, the enzyme adsorbs to the

membrane surface. Adsorption, different from absorption, is a process that occurs

when a liquid or solute (called adsorbate) accumulates on the surface of a solid or

more rarely a liquid (adsorbent), forming a molecular or atomic film (adsorbate);

however, the absorption process is when a substance diffuses into a liquid or solid

to form a ”solution”. Secondly, a phospholipid of the membrane diffuses from the

membrane into the active site of the adsorbed enzyme. The enzyme then takes hold

of the polar hydrophilic head of the molecule, removes the head from the hydrophobic

portion of the molecule, and carries the head into the solution, thus finishing the hy-

drolyzing action on the membrane [21]. However, the adsorption of sPLA2 is sensitive
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to neither temperature nor calcium ionophore treatment. Thus, when the absorption

process is considered, the affection of temperature and calcium can be ignored.

However, there are still a lot of questions in the hydrolyzing process that are unre-

solved; for example, how the rolling action of enzyme on the surface of the membrane

influences its absorption. Two independent mathematical models are ordinary differ-

ential equation model and a stochastic model will be applied to the analysis of this

system.

2 Ordinary Differential Equation Model

2.1 The Michaelis-Menten Mechanism

The most fundamental form governing enzymic reactions is the Michaelis Menten

(MM) mechanism [11] whereby a substrate molecule is converted to a product molecule

by first reacting with an enzyme to produce an enzyme-substrate complex. This com-

plex is unstable and so decays either back to the original enzyme-substrate pair or

to an enzyme-product pair. In either case, the enzyme is released and available once

again to bind with a new substrate molecule. Schematically, the reaction can be ex-

pressed as

S + E
k1�

k−1

C
k2→ E + P (1)

where S, E, C and P respectively represent the substrate, enzyme, complex and prod-

uct molecules and the ki are the rate constants controlling the speed of the reaction.

The enzyme is said to catalyse the reaction as it facilitates the overall transition
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S + E
k→ P

where k represents the rate of production of P and is in general dependent on a com-

bination of the rate constants in (1). There are very many examples in nature of the

occurrence of an enzymic reaction of the Michaelis Menten form. These include, for

example, the hydrolyzing process of enzyme sPLA2 on blood cell membrane, which

was introduced in Section 1.2. In the next chapter, two Ordinary Differential equa-

tion models of the hydrolysation of sPLA2 will be based on the Michaelis-Menten

mechanism, and it will be applied to establish the stochastic model in Chapter 3.

Therefore, an understanding of the kinetics of the Michaelis Menten mechanism is

crucial to understanding our models.

2.2 Simple Ordinary Differential Equation Model

The simple ordinary differential equation model is derived by modifying a previous

model [17]. The assumptions for the model are:

• The concentration of cells and therefore the total number of adsorption sites for

the enzyme sPLA2 is constant; however, in reality, the number of adsorption sites

are decreasing because of the hydrolysation process. Due to difficulty of modeling,

we will assume that the number is constant.

• The rolling process of sPLA2 on the cell membranes is ignored.

• Only a small fraction of added enzyme absorbs to the cell surface; thus the concen-

tration of sPLA2 in solution can be approximated by the total enzyme concentration.

According to these assumptions, the model describing the action of sPLA2 on the
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surface of the membrane can be explained as follows.

Let E be the total concentration of sPLA2 which is added to the erythrocyte

solution in the beginning of the experiment. The concentration of adsorbed enzyme

is denoted by EB. At a rate k1, the enzyme is adsorbed to the membrane surface.

This process can be expressed as

E
k1−→←−

k−1

EB.

However, not all of the adsorbed enzyme will successfully hydrolyze erythrocytes:

only the ones which are absorbed to the surface and have the phospholipid bound to

the active site will be able to be hydrolyzed. These kinds of enzymes are denoted by

ES
B and the rate from EB to ES

B is k2,

EB

k2−→←−
k−2

ES
B.

At the same time, there exist a small portion of enzyme which, at rate k0, are ab-

sorbed directly onto the active site (ES
B).

E
k0−→←−

k−0

ES
B.

A large number of experiments of physiology [21] show that these three processes are

actually physical hence they won’t influence the chemical properties of both sPLA2

and membranes.

Also, we assume that geometrically enzyme sPLA2 is cubic, with one active side

A, one top side T which is opposite to the active side, and four other sides S. Suppose
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the probabilities that sPLA2 lands on each of these 6 sides are equal, and let EA,

ET , ES, and ES
A denote the concentration of enzyme on side A, T, S, and side A with

bounded lipids, respectively.

From the reactions above, we can conclude a system of differential equations for

the concentration of each substance in terms of the concentrations of all others:

dE

dt
= 0

Esol = E − EA − ES − ET − ES
A

dEA

dt
= −k2EA + k−2E

S
A + k1Esol

dET

dt
= −k−3ET + k3Esol

dES

dt
= −k−4ES + k4Esol

dES
A

dt
= −k−2E

S
A + k2EA + k0Esol − k−0E

S
A

dP

dt
= kcatE

S
A(1 − P ).

All of the reactions above are actually preparations of the hydrolyzing action; thus,

after the enzyme is adsorbed by the surface with ordered lipid, the hydrolyzing pro-

cess can be continued. Let P be the product of hydrolyzing process, and kcat be the

rate constant of hydrolysis, thus the rate of hydrolysis (dP
dt

) is given by the following:

dP

dt
= kcatE

S
B(1 − P ).

According to the ODE model presented above, Figure 1 is obtained. This figure

illustrates the change in the concentration of product P as the length of time in-
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Figure 1: Simple ODE Model: In the graph, green curve represents the enzyme
which are absorbed to the membrane; yellow line shows the total amount of enzyme
on the membrane; while blue curve is the final product P of the hydrolyzing process.
All of the models in this chapter are processed by a MATLAB function ode15s (see
Appendix 5.1), and they all share the same legend.

creases. In the first 200 seconds of the simulation, a sharp increase in the value of P

indicates that a large amount of hydrolyzing processes occurred; while after that, the

gradual leveling off of the curve is approaching a steady state. From the non-rolling

assumption of this model, the previously stated equilibrium generally comes from the

fact that when all of the actively absorbed enzyme finished hydrolyzing the available

lipid, no more reactions can occur. The results of this simulation correlate with the

experimental results [17]. It is important to note that the enzyme sPLA2 remains

constant throughout the simulation.

From Figure 1 to Figure 3, it is easy to conclude that the amount of enzyme that

is added into the solution is related with the reaction speed and product amount.

More enzyme will result a higher reaction speed, but not an obvious increase in the

product amount. This is due to the limited amount of reactant.

According to the first assumption of this ordinary differential equation system,

the total number of absorption sites for the enzyme is constant. The equilibrium
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Figure 2: Simple ODE Model: The same initial amount of enzyme is added, and an
extra amount (same as the initial amount) of enzyme is added at 1000 seconds.
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Figure 3: Simple ODE Model: Twice the initial amount of enzyme as in the simulation
in Figure 1 is added in the beginning of this simulation.
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constants (K1 and K2) are defined as follows:

K1 =
EB

E
=

k1

km1

K2 =
ES

B

EB

=
k2

km2

The value of all reaction coefficients can be found in Appendix 5.1 [17].

From the second assumption, the total enzyme sPLA2 can be approximated by

the enzyme concentration ET . Combining equations above, an explicit description of

the initial hydrolysis rate can be obtained:

dP

dt
=

αET K1K2

1 + ET K1 + ET K1K2

where α is proportional to kcat [17], [4] and [21].

2.3 ODE Model with Rolling Process

In order to model the rolling process of sPLA2, we assume that geometrically enzyme

sPLA2 is cubic, with one active side A, one top side T which is opposite to the active

side, and four other sides S. Also, suppose the probabilities that sPLA2 lands on

each of these 6 sides are equal, and let EA, ET , and ES denote the event of enzyme’s

landing on side A, T, and S, respectively. We assume the enzyme always rolls and do

not stay on one side. The rolling rate of enzyme sPLA2 on the cell membrane is r.

The relationship between these three type of sides are as below:

EA

r−→←−
0.25r

ES,
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and

ET

r−→←−
0.25r

ES.

Remark: If the enzyme lands on A, it can only roll to side S by 1 rolling step, so the

rate from A to S is r; however, if it lands on side S it may roll to side A, side T, or

other two sides of S; thus, the rates from S to both T and A are 0.25r.

From the relationship above, we can derive the ODE system with rolling process:

dE

dt
= 0

Esol = E − EA − ES − ET − ES
A

dEA

dt
= −k2EA + k−2E

S
A + k1Esol + 0.25rES − rEA

dET

dt
= −k−3ET + k3Esol − rET + 0.25rES

dES
A

dt
= −k−2E

S
A + k2EA + k0Esol − k−0E

S
A

dP

dt
= kcatE

S
A(1 − P )

in which E is the total number of enzyme that we put in the culture, Esol is the enzyme

which dissolves in the solution, and ES
A represents the enzyme actively absorbed by

the cell membrane. From this system, we obtain Figure 4, which should be compared

with Figure 1.

In Bell’s experiment [4], there are a few very interesting results coming from the

following experiments: under the same condition,
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Figure 4: Rolling ODE

1. Twice the amount of enzyme solution is injected in the beginning of the experiment;

2. One amount of sPLA2 is added in the beginning and an extra amount is added in

the middle of the reaction.

Comparing with the experiment which starts with only one amount of initial enzyme

solution, the reaction of the experiment with initially double the amount of enzyme

went to the steady state faster. However, the concentration of product after the

reaction stopped is about the same [17]. The reaction speed of the second experiment

is not as fast as the first one, but still no optional artifact occurred upon the addition

of the enzyme [4], [17]. One possible explanation of these results are: due to the

crowding of enzyme on the membrane, the rolling process will be hard to occur; thus,

when more enzyme is added into the solution, there will not be a large amount of

enzyme in the solution that can land on the blood cell membrane. This explanation

will be addressed in the Stochastic Model.

In order to keep the same experimental condition, the relationship between the

variables were kept the same; however, the initial value of E was set up as 2 units

for the simulation shown in figure 5 and 1 unit for the simulation shown in figure 6.

In the simulation shown in figure 6, after 500 seconds (the middle of the simulation),

the value of E was increased by 1 unit, which was the same as its initial value. After

this alteration, the simulation was continued.
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Figure 5: Double initial amount of E: In this graph, the changes of product P is
shown when twice the amount of enzyme is added initially.
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Figure 6: Additional E added in the middle of the reaction: In the middle of the
reaction, the same amount of enzyme as the initially value is added.

Figure 5 and Figure 6 show the changes in the concentration of product P as the

increase of the length of time. In figure 6, the curve had a sharp increase at 1000,

when an additional 1 unit of enzyme was added; however, the increasing rate was not

as large as the beginning of the simulation. In the end, the Product P curve ended

to a steady state only about 1 unit. Thus, even though the amount of enzyme in the

solution is doubled in the middle of the experiment, the amount of product P does

not increase. This results comes from the property of the binding process of enzyme

to the blood cell membrane. Although there was twice as much enzyme in the solu-

tion that can bind to the membrane to hydrolyze the lipids, due to the prerequisite

of the reaction, not all of the hydrolysation process will be able to complete. The
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prerequisite of the reaction can be interpreted as the self-protection mechanism of

cell membrane. However, the exposure of erythrocytes to calcium at low levels, and

to nickel or manganese with ionomycin, amplified the maximum rate of hydrolysis of

the erythrocyte membrane by sPLA2 [21].

Rolling is an important property of enzyme sPLA2 [4]. This process allows more

lipids to be hydrolyzed and more product P be made. Also, because of this rolling

process, the time that the simulation needs to obtain equilibrium is longer than that

is needed in a simple ODE simulation. The time that is concluded in a rolling pro-

cess correlates with the experimental results. What’s more, the discrepancies that

occurred need to be illuminated to achieve a more precise understanding of the hy-

drolysation of enzyme sPLA2. Therefore, in the next chapter, Markov Chain and

Monte Carlo methods will be applied to perform further analysis in the hydrolysation

process of sPLA2.

3 Stochastic Model

3.1 Probability Theory and Stochastic Process

As a systematic mathematical study, probability emerged in the 17th cen-

tury. The traditional beginning of modern probability theory is the ex-

change of letters in July and October 1654 between Blaise Pascal (1623-

1662)and Pierre Fermat (1601-1665), two French mathematicians. The

letters were written in response to the following problem: Two players,

A and B, each stake 32 pistoles on a three-point game. When A has 2

points and B has 1 point, the game is interrupted and cannot continue.

How should the stakes of 64 pistoles be fairly distributed? Pascal divided
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the solution into two parts. Whatever the outcome of the game, A should

have at least one-half of the total 32 pistoles. Therefore, the uncertain ex-

pectation concerned only the other half and A had a 50 percent chance of

winning that. Therefore, the fair distribution would be that A received 48

pistoles (the 32 and one half the uncertain 32), and B received 16 pistoles.

[18]

Huygens tract remained the only text on probability for 50 years. The

early years of the 18th century witnessed a series of publications on prob-

ability by Montmort, Nicolaus Bernoulli, DeMoivre and posthumously

Jacob Bernoulli. This might have been stimulated by ’whispers’ and writ-

ings about that elusive piece Ars Conjectandi, on which Jacob Bernoulli

had been brooding for 20 years, and which was still not finished when

he died. After Montmort died, it was DeMoivre who reigned suppreme

with his Doctrine of Chance. From the middle of the 18th century the

combination of observations became an important topic that was studied

by Boscovich, Laplace and others. [20]

The basic notion of probability theory is that of the random experiment : outcomes

of an experiment (real or conceptual, but capable of being repeated,) are called events.

The collection of all events of an experiment is called the sample space Ω, the points

of which are the simple events. The relations between the events make new events

out of those given. An event A is said to occur if and only if the observed outcome

ω of the experiment is an element of the set A. Take the rolling process of enzyme

sPLA2 as an example; it is assumed that the shape of sPLA2 is a cube with one

top side (side T), one active side (side A) and four other sides (side S). When the

rolling procedure of sPLA2 on the blood cell membrane is considered as a random

experiment, the side that the enzyme rolls onto will determine the event; the sample
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space Ω is A, T, S, or the collection of all events.

Corresponding to our intuitive notion of the chances of an event occurring, we

first of all review a few definitions regarding basic stochastic simulations and Markov

chains [5].

Definition. Let Ω be a sample space and p a function which associates a number

with each event. Then p is called a probability measure provided that

(a) for any event A, 0 < p(A) < 1; (b) p(Ω)= 1; (c) for any sequence A1, A2,... of

disjoint events,

p(
⋃
i

Ai) =
∑

i

p(Ai)

By axiom (b), the probability assigned to Ω is 1. If a statement holds for all ω

in a set A with p(A)=1, then it is customary to say that the statement is true almost

surely or that the statement holds for almost all ω ∈ Ω.

Suppose we are given a sample space Ω and a probability measure p. Most often,

especially in applied problems, we are interested in functions of the outcomes rather

than the outcomes themselves, i.e. in our example, we are interested in the hydroly-

sation of the membrane, not the rolling process; however, by considering the rolling of

the enzyme, we can obtain a better understanding of the membrane’s hydrolysation.

Definition. A probability space (Ω,F , P ) is a measure space with a probability

measure P .
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Definition. A random variable X with values in the set E is a function which

assigns a value X(ω) in E to each outcome ω in Ω.

A stochastic process with state space E is a collection Xt; t ∈ T of random variables

Xt defined on the same probability space and taking values in E. The set T is called

its parameter set. If T is countable, especially if T = N = 0,1,..., the process is said to

be a discrete parameter process. Otherwise, if T is not countable, the process is said

to have a continuous parameter. It is customary to think of the index t as represent-

ing time, and then one thinks of Xt as the state or the position of the process at time t.

3.2 Markov Chain

In 1907, A. A. Markov started working on a chance process, in which the outcome

of next experiment is only influence by the outcome of the current experiment. This

process is called a Markov chain [2]. In this section, the rolling states of sPLA2

will be considered as a sequence of experiments and Markov chain will be applied to

imitate the hydrolyzing process.

Let X = X1, X2, ... be a random process in the discrete state space S. It is called a

Markov chain if the conditional probabilities between the outcomes at different times

satisfy the Markov property, which we now explain.

Definition. The sequence X1, X2, ... of S-valued random variables is said to have

the Markov property if

P(Xt+1 = xt+1 | Xt = xt, ..., X1 = x1) = P(Xt+1 = xt+1 | Xt = xt)

18



for every sequence x1, ..., xt, xt+1 of elements of S and for each time t ≥ 0

A sequence of random variables with the Markov property is called a Markov chain.

Definition If X1, X2, ... is a Markov chain, and i and j are states in S, the con-

ditional probability

pij(t) ≡ P(Xt+1 = j | Xt = i)

is called the transition probability from i to j at time t. If the transition probabilities

do not depend on time, we write them simply as pij, i, j ∈ S and we say that Markov

chain is time-homogeneous.

3.2.1 Transition Matrix

In all of the tools related to Markov chain, transition matrix is one of the most

important in analyzing discrete situation. Suppose that the state space S is finite

and let us write it as S ≡ 0, 1, ..., s. Given a set of transition probabilities, it is often

useful to collect them in a matrix,

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p00 p01 p02 ... p0s

p10 p11 p12 ... p1s

...

ps0 ps1 ps2 ... pss

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(2)

Notice that the row [pi0,pi1,...,pis] represents all the transition probabilities out of

state i. Therefore, the probabilities in the row must sum to 1. Such a square array is

called the matrix of transition probabilities, or the transition matrix.

It is easy to see that the rolling process of sPLA2 from one side to another de-
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pend only on the present state, not the previous one. Therefore, it is reasonable to

consider the rolling procedure as a Markov chain with 3 states. However, in order

to apply transition matrix on the the rolling process of sPLA2, several assumptions

should be made.

• In this paper, we assume that the shape of the enzyme is cubic with size

45Å × 45Å × 45Å, with one active side A, four other sides S and one top side T

which is opposite to the active side. The three dimensional structure of enzyme

sPLA2 resemble a flattened ellipsoid with approximate dimensions of 45Å×30Å×20Å

(1Å = 10−10m)[6]; however, due to the difficulties of modeling, a cube shape will be

applied.

• When sPLA2 lands on the cell membrane, the probabilities that it comes down

on each of these 6 sides are equal. Let S be the sample space of enzyme’s one-step

rolling process, containing S, A, T as outcomes; also, S, A, T can be used as the

notation of different states in the transition matrix. Therefore, pij, i, j, ∈ S shows

the transition probability from state i to j.

• The enzyme is restricted to an upward, downward, leftward, or rightward rolling

direction, or stays on its position.

• When all of the nearest spots are occupied, the rolling process will not be able

to continue; thus the enzyme will stay in its current state, which means

PAA = PSS = PT T = 1

PAS = PAT = 0

20



PSA = PST = 0

PT A = PT S = 0

Let θ be

θ =
Number of occupied spots

4
.

Let θ = 0 if all spots are available, while θ = 1 represents all surrounding spots

around are occupied.

Now consider the one-step rolling process of sPLA2 on the membrane surface.

First of all, assume that when the enzyme rolls to the active side (side A), the

hydrolysation process may not happen, which means that it is possible that after roll

to side A, the subjective enzyme may keep rolling to the other available sides.

A

S S S

T

In the graph above, the middle square represents the labeled enzyme (the alpha-

bet in it shows the current side on the membrane), and the four spots on up, down,

left, right denote the four spots that labeled enzyme will be able to roll to (the states

that it may achieve in one-step rolling).

CASE 1 Enzyme is on side A
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Since sPLA2 lands is on side A and only one-step rolling events are being considered,

it is easy to conclude that the transition probabilities from state A to the other states

are

PAT = 0

PAA + PAS = 1

Labeled enzyme stops rolling if and only if all of the four spots connected are occupied

by other enzymes. Therefore, the conditional transition probabilities given θ are

PAA|θ=1 = 1

PAS|θ=1 = 0

PAA|θ=0 =
1

5

PAS|θ=0 =
4

5

It is easy to conclude that the probabilities from A to A and A to S can be written
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as

PAA = PAA|θ=1 · p(θ = 1) + PAA|θ=0 · p(θ = 0)

= 1 · p(θ = 1) +
1

5
· p(θ = 0)

=
1

5
· p(θ = 1)

PAS = PAS|θ=1 · p(θ = 1) + PAS|θ=0 · p(θ = 0)

= 0 · p(θ = 1) +
4

5
· p(θ = 0)

=
4

5
· p(θ = 0)

S

S A S

S

CASE 2 Enzyme initially lands on side T

Since side T and side A are opposite in the cube, similarly, the following conclusions

can be made:

PTA = 0

PTT + PTS = 1

Therefore the conditional transition probabilities given θ are

PTT |θ=1 = 1

23



PTS|θ=1 = 0

PTT |θ=0 =
1

5

PTS|θ=0 =
4

5

From the same method of Case 1, it can be conclude that

PTT = PTT |θ=1 · p(θ = 1) + PTT |θ=0 · p(θ = 0)

= 1 · p(θ = 1) +
1

5
· p(θ = 0)

=
1

5
· p(θ = 1)

PTS = PTS|θ=1 · p(θ = 1) + PTS|θ=0 · p(θ = 0)

= 0 · p(θ = 1) +
4

5
· p(θ = 0)

=
4

5
· p(θ = 0)

CASE 3 Enzyme initially lands on side S

Due to the symmetry of side A and side T according to the position of side S, the

transition probabilities from side S to A and T are identical. Thus, the rolling prob-

ability from side S to S is what requires to be considered.

(1) θ = 1

When θ = 1, all of the spots around the subjective enzyme are occupied by other

enzymes, the rolling process of labeled enzyme is stopped. Thus, we have
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PSS|θ=1 = 1

PSA|θ=1 = PST |θ=1 = 0

(2)θ = 0

When the spots around are all available to the subjective enzyme, the probabili-

ties of rolling upward to side A, downward to side T, leftward, rightward to side S,

and stay on side S are equal. Therefore,

PSS|θ=0 =
3

5

PSA|θ=0 = PST |θ=0 =
1

5

From those three cases, it is easy to make the following conclusion:

• When θ = 0,

PAS =
4

5
,PAT = 0,PAA =

1

5
;
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PTS =
4

5
,PTT =

1

5
,PTA = 0;

PSS =
3

5
,PST =

1

5
,PSA =

1

5

According to the definition of transition matrix in the beginning of this subsection,

the transition matrix of the rolling process of enzyme sPLA2 under the circumstance

that θ = 0 is as following:

P =

⎛
⎜⎜⎜⎜⎝

1
5

4
5

0

1
5

3
5

1
5

0 4
5

1
5

⎞
⎟⎟⎟⎟⎠ (3)

where the rows of the above matrix represent the state of sPLA2, and the columns

represent the enzyme’s state after one-step rolling. From the matrix above, the prob-

ability that enzyme sPLA2 will end up with the active side (side A) after one-step

rolling is

P (A) = p(land on A) · pAA + p(land on S)·SA +p(land on T) · pTA

=
1

6
· 1

5
+

1

4
· 1

5
+

1

6
· 0

=
1

12

• When θ = 1,

PAS = 0,PAT = 0,PAA = 1;

PTS = 0,PTT = 1,PTA = 0;

PSS = 1,PST = 0,PSA = 0
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The transition matrix is then

P =

⎛
⎜⎜⎜⎜⎝

1 0 0

0 1 0

0 0 1

⎞
⎟⎟⎟⎟⎠

According to the matrix above,

P (A) = p(land on A) · pAA + p(land on S)·SA +p(land on T) · pTA

=
1

6
· 1 + 0

=
1

6

The conditions of θ = 0 and θ = 1 are the two extreme situations. In reality,

θ ∈ (0, 1) is a more common situation. If this is the case, a more complicated matrix

will be concluded having θ as a variable in the matrix. This situation is not included

in this paper.

In the next section, the classification of states will provide a long-term rolling

probability from three states to the active state.

Assume that when the subjective enzyme rolls to side A, then the hydrolysation

process will stop its rolling. Thus the probability that from side A to the other sides

are all zero. Therefore, when θ = 0, from the method that is introduced above, the

transition matrix of the rolling process will be

P =

⎛
⎜⎜⎜⎜⎝

1 0 0

1
5

3
5

1
5

0 4
5

1
5

⎞
⎟⎟⎟⎟⎠ (4)
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3.2.2 Classification of States

Let P be the transition probability matrix of a Markov chain as defined in the previous

sections. Let p
(n)
j be the probability that the process is in state j after n transition.

Denote by the row vector p(n), the vector of probabilities p
(n)
j , j ∈ S. The n-step

transition probabilities p
(n)
ij are determined by the following theorem:

Theorem 2.1

P(n) = Pn

and

P(n) = P(0)Pn.

In order to prove this theorem, we need to introduce the Chapman-Kolmogorov

equation as following.

When the stochastic process has a discrete state space and a discrete parameter

space, for n > n1 > n2 > ... > nk and n, ..., nk belonging to the parameter space,

P (Xn = j | Xn1 = i1, ..., Xnk
= ik)

= P (Xn = j | Xn1 = i1)

= P
(n1,n)
i1j

Using this property, from m < r < n, it is easy to conclude the Chapman-Kolmogorov

equation
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P
(m,n)
ij = P (Xn = j | Xm = i)

=
∑

P (Xn = j | Xr = k)P (Xr = k | Xm = i)

=
∑

P
(m,r)
ik P

(r,n)
kj

The following is the proof of Theorem 2.1.

Proof From the Chapman-Kolmogorov equation, we have

P
(r+s)
ij =

∑
P

(r)
ik P

(s)
kj for given r and s.

Set r = 1, s = 1, the above equation will be

P
(2)
ij =

∑
PikPkj

Clearly, P
(2)
ij is the (i, j)th element of the matrix product P · P = P 2. Based on this

result, assume that

P (r) = P r, r = 1, 2, ..., n − 1

Setting r = n-1, s = 1, then

P
(n)
ij =

∑
P n−1

ik Pkj

which again can be seen as the (i, j)th element of the matrix product P n−1 ·P = P n,

which proves the first result of the theorem. The second result is obtained by noting

that
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P (Xn = j) =
∑

P (Xn = j | X0 = i)P (X0 = i)

QED

From this theorem it is clear that when the size of the state space is small, and the

n-step transition probabilities can easily be obtained by simple matrix multiplication.

For large state spaces, efficient methods for the calculation of P n are needed.

For example, from the last section, when θ = 0, the transition matrix of the rolling

process of enzyme sPLA2 is

P =

⎛
⎜⎜⎜⎜⎝

1
5

4
5

0

1
5

3
5

1
5

0 4
5

1
5

⎞
⎟⎟⎟⎟⎠

Since it is proved that the powers of transition matrix give us interesting informa-

tion about the process as it evolves. The state of the subjective enzyme after a large

number of steps is very interesting. MATLAB is applied to compute the successive

powers of P. It is obvious that after seven steps our state predictions are, to four-

decimal-place accuracy, independent of the original state. The probabilities for the

three types of sides, A, S and T are 0.1667, 0.6667 and 0.1667 no matter where the

chain started. This is an example of a type of Markov chain called a regular Markov

chain. For this type of chain, it is true that long-range predictions are independent

of the starting state.

Definition A Markov chain is called a regular chain if some power of the transition

matrix has only positive elements.
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In other words, for some n, it is possible to go from any state to any state in

exactly n steps. Now with the theorem of n-step transition probabilities and the

definition of a regular Markov Chain, it is easier to define the classes of states.

There are two important theorems relating to regular chains. The following the-

orems and proofs can be easily found in [5].

Theorem 2.2 (Fundamental Limit Theorem for Regular Chains) Let P be

the transition matrix for a regular chain. Then, as n → ∞, the powers Pn approach

a limiting matrix W

limPn = W,

where W is a matrix with all rows the same vector w. The vector w is a strictly

positive probability vector (i.e., the components are all positive and they sum to one).

The proof of this theorem will be provided after the introduction of a few impor-

tant tools and definitions.

Theorem 2.3 Let P be a regular transition matrix, let

W = limPn,

let w be the common row of W, and let c be the column vector all of whose compo-

nents are 1. Then

(a) wP = w, and any row vector v such that vP = v is a constant multiple of w.
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(b) Pc = c, and any column vector x such that Px = x is a multiple of c.

Proof. To prove part (a), from theorem 2.2,

Pn → W.

Thus,

Pn+1 → Pn · P → WP.

But Pn+1 → W, and so W = WP, and w = wP.

Let v be any vector with vP = v. Then v = vPn, and passing to the limit,

v = vW. Let r be the sum of the components of v. Then it is easily checked that

vW = rW. So, v = rw.

To prove part (b), assume that x = Px. Then x = Pnx, and again passing to the

limit, x = Wx. Since all rows of W are the same, the components of Wx are all

equal, so x is a multiple of c.

QED

Note that an immediate consequence of Theorem 2.3 is the fact that there is only

one probability vector v such that vP = v.

Definition A row vector w with the property wP = w is called a fixed row vector

for P. Similarly, a column vector w such that Px = x is called a fixed column vector

for P.
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Here are some common methods for calculating the fixed row vector w for a reg-

ular Markov chain.

Take matrix P in (2) as an example. By the Fundamental Limit Theorem, there

is a limiting vector w of matrix P from the fact that

w1 + w2 + w3 = 1

and

(w1w2w3)

⎛
⎜⎜⎜⎜⎝

1
5

4
5

0

1
5

3
5

1
5

0 4
5

1
5

⎞
⎟⎟⎟⎟⎠ = (w1w2w3)

under the assumption that the rolling process is not stopped when the enzyme rolls

to side A.

These relations lead to the following four equations in three unknowns:

w1 + w2 + w3 = 1,

1

5
w1 +

1

5
w2 + 0w3 = w1,

4

5
w1 +

3

5
w2 +

4

5
w3 = w2,

0w1 +
1

5
w2 +

1

5
w3 = w3.

The theorem guarantees that these equations have a unique solution. If the equa-

tions are solved, the solution is
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w =

(
0.1667 0.6667 0.1667

)

in agreement with that predicted from P
15, given above.

To calculate the fixed vector, we can assume that the value at a particular state,

say state A, is 1, and then use all but one of the linear equations from wP = w. This

set of equations will have a unique solution and w will be obtained from the solution

by dividing each of its entries by their sum to give the probability vector w. Matrix

P will be applied to illustrate this idea.

Let w1 = 1, and then solve the first and second linear equations from wP = w.

We have

1

5
w1 +

1

5
w2 + 0w3 = w1,

4

5
w1 +

3

5
w2 +

4

5
w3 = w2.

From the equations above, it is easy to obtain

(
w1 w2 w3

)
=

(
1 4 1

)
.

Now divide this vector by the sum of the components, to obtain the final answer:

w =

(
0.1667 0.6667 0.1667

)
.

This method can be easily programmed to run on a computer.

Theorem 2.4 Let P be the transition matrix for a regular chain and v an arbi-
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trary probability vector. Then

limvPn = w,

where w is the unique fixed probability vector for P .

Proof By Theorem 2.2,

limPn = W.

Hence,

limvPn = vW.

But the entries in v sum to 1, and each row of W equals w. From these statements,

it is easy to check that

vW = w.

QED

If we start a Markov chain with initial probabilities given by v, then the proba-

bility vector vP n gives the probabilities of being in the various states after n steps.

Apply Theorem 2.4 to the rolling process of sPLA2. From the assumptions that

are made in the second chapter, since the shape of the enzyme is hypothesized to be

a cube with one side of A, four sides of S, and one side of T, the initial probabilities

that the enzyme will land on Side A, S and T will be
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v = (
1

6
,
4

6
,
1

6
).

Thus, the probabilities of being in state A (on side A), state S and state T after the

fifteenth step will be

vP 15 =

(
1/6 4/6 1/6

)
⎛
⎜⎜⎜⎜⎝

0.1667 0.6667 0.1667

0.1667 0.6667 0.1667

0.1667 0.6667 0.1667

⎞
⎟⎟⎟⎟⎠ = (0.16670.66670.1667)

which turns out to be the same result as was concluded from the definition of the

fixed row vector.

After analyzing the matrix P in (3), it becomes necessary to further examine ma-

trix

P =

⎛
⎜⎜⎜⎜⎝

1 0 0

1
5

3
5

1
5

0 4
5

1
5

⎞
⎟⎟⎟⎟⎠

which was conclude under the assumption that the rolling process stops when the

enzyme reach at state A.

Definition State j is said to be accessible from state i if j can be reaches from

i in a finite number of steps. If two states i and j are accessible to each other, then

they are said to communicate. Probabilistically these definitions imply:

• i → j (j accessible from i) if for some n ≥ 0, P
(n)
ij > 0

• j → i (i accessible from j) if for some n ≥ 0, P
(n)
ji > 0

• i ↔ j (i and j communicate) if for some n ≥ 0 and m ≥ 0, such that P
(n)
ij > 0 and

P
(n)
ij > 0
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As a consequence of the definition, the following properties of this communication

relation:

1. Reflexivity . i ↔ i for

P
(0)
ij =

⎧⎪⎨
⎪⎩

1 if i = j

0 if i 
= j.

2. Summetry . If i ↔ j, then j ↔ i.

3. Transitivity. If i ↔ j and j ↔ k, then i ↔ k.

Incidentally, it may be mentioned that the properties of communicate states define

an equivalence relation and hence the communication relation is an equivalence rela-

tion. The set of all states of Markov chain that communicate (with each other) can

therefore be grouped into a single equivalence class. A Markov chain may have more

than one such equivalence class. If there are more than one, then it is not possible to

have communicating states in different equivalence classes. However, it is possible to

have states in one class that are accessible for another class.

Definition A state i is said to be recurrent if and only if, starting from state i,

eventual return to this state is certain.

Take matrix P of (2) as an example. State A is a recurrence state, since from the

assumption that is made in the last section, as soon as the subjective enzyme rolls to

side A, the hydrolysation process will being initiated, and the rolling process will be

stopped immediately; thus it is impossible for the subjective enzyme to roll to other
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sides.

Definition A state i is said to be transient if and only if, starting from state i,

there is a positive probability that the process may not eventually return to this state.

In matrix P in (3), state T is an example of a transient state. It is because there

is a probability of 4
5

that the subject enzyme will roll from state T to state S, and a

probability of 1
5

from state S to state A. Since as soon as it rolls to state A, there is

no possibility that it will roll back to state T, the probability that the process may

not eventually return to state T is

P =
4

5
· 1

5
=

4

25
> 0.

From the similar method, it is easy to see that state S is also a transient state in

matrix P.

There are a lot of questions concerning these two different type of states: Given

that the process is in a transient state i initially (for example, side S), what is the

average number of visits it makes to anther transient state j (for example, side T)

before it eventually enters any one of the recurrent states? What is the variance of

the number of visits to j from i? In order to fully understand matrix P, the funda-

mental matrix M = (I − Q)−1 will be applied. This matrix plays a useful role in the

determination of the means and variance mentioned above, and it is a very important

tool to analyze the behavior of the Markov chain in the presence of the transient states.

Let the m−state Markov chain consist of r recurrent states and (m− r) transient

states with the latter belonging to a single equivalence class. Let T be the set of these
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transient states and T c the set of recurrent states. The transition probability matrix

Pcan now be put in the form

P =

⎛
⎜⎝ P1 0

R Q

⎞
⎟⎠

where P1 is an r×r submatrix with transition probabilities among the recurrent states

for its elements; Q is an (m − r) × (m − r) substochastic matrix (with at least one

row sum less than 1) with probabilities of transition only among the transient states

for its elements; and R is an (m − r) × r submatix whose elements are the proba-

bilities of the one-step transition from (m−r) transient states to the r recurrent states.

Let Nij(i, j ∈ T ) be the random variable denoting the number of times the process

visits j before it eventually enters a recurrent state, having initially started from state

i. Let (μij)i×j = Nij

Theorem 2.5 For i, j ∈ T

(μij)i×j = M.

Proof Initially, the Markov chain is in state i ∈ T . If in one step it enters a re-

current state (with probability
∑

Pik), the number of visits to j is zero unless j = i.

If δij is the Kronecker δ function such that δij = 1 if j = i and 0 if i 
= j, we can

write Nij = δij with probability
∑

Pik. On the other hand, suppose the Markov chain

moves to a state k ∈ T at the first step (with probability Pik). From that position

onward, the number of the visits to j is Nkj. However, if i = j, the total number of

visits to j would be Nkj + δij. Thus we have
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Nij =

⎧⎪⎨
⎪⎩

δij, with probability
∑

Pik

Nkj + δij, with probabilityPikk ∈ T

Taking expectations, we get

E(Nij =
∑

Pikδij +
∑

PikE(Nkj + δij))

which gives

μij = δij +
∑

Pikμkj

Using all the elements of the matrix

(μij)i×j = I + Q(μij)i×j

Hence

(I − Q)−1 = M

QED

Related to the matrix M , define the matrices that follow. Let M = (μij)i×j (i, j ∈ T

and i, j = r + 1, r + 2, ..., m);

MD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μr+1,r+1 0

μr+2,r+2

...

0 μm,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and
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M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

μ2
r+1,r+1 μ2

r+1,r+2 ... μ2
r+1,m

μ2
r+2,r+1 μ2

r+2,r+2 ... μ2
r+2,m

... ...

μ2
m,r+1 μ2

m,r+2 ... μ2
m,m

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Mρ = (
∑
j∈T

μij)

Mρ2 = (
∑
j∈T

μij)
2

Theorem 2.6

(E(Ni)) = Mρ, i ∈ T

(E(N2
i )) = Mρ2 , i ∈ T

where E(Ni) is the expected number steps from the transient states to the recurrent

states.

Let σ2
ij = V (Nij).

Theorem 2.7

σ2
ij = M(2MD − I) − M2, i, j ∈ T

where σ is the variance from the transient states to the recurrent states.

Therefore, in order to figure out the expected number and variance steps that an

enzyme will roll to side A eventually, the above two theorems can be applied to the
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matrix that was obtained when θ = 0 in (3)

P =

⎛
⎜⎜⎜⎜⎝

1 0 0

1
5

3
5

1
5

0 4
5

1
5

⎞
⎟⎟⎟⎟⎠

so that

Q =

⎛
⎜⎝

3
5

1
5

4
5

1
5

⎞
⎟⎠

and

M = (I − Q)−1 =

⎛
⎜⎝ 5 1.25

5 2.5

⎞
⎟⎠

From M we get

MD =

⎛
⎜⎝ 5 0

0 2.5

⎞
⎟⎠

M2 =

⎛
⎜⎝ 25 1.56

25 6.25

⎞
⎟⎠

Mρ =

⎛
⎜⎝ 6.25

7.5

⎞
⎟⎠

Mρ2 =

⎛
⎜⎝ 39.0625

56.25

⎞
⎟⎠

Using Theorem 2.6.3, we get
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σ2
ij = M(2MD − I) − M2 = MD =

⎛
⎜⎝ 20 3.44

20 3.75

⎞
⎟⎠ .

The following conclusions can be drawn from the above results: Suppose an en-

zyme is at side S. Before it is finally rolls to side A, the expected number of steps

that it will be on side S is 5, with a variance of 20; the expected number of steps

that it will be on side T is 1.25, with variance 3.44. Further, the total time before

the enzyme rolls to side A has an expected value of 6.25 steps, with variance 39.0625.

Similar interpretations can be given to the results regarding those enzyme that start

at side T: the expected time that it will be on side S is also 5, with a variance 20;

the expected number of steps that it will be on side T is 2.5, with variance 3.75; the

total time before it rolls to side A is 7.5 steps, with variance 56.25.

3.3 Lattice Gas Automata

3.3.1 Lattice Gas Automata and Monte Carlo Method

Suppose the joint distribution between two variables X and Y is f(X, Y ), but f has

a complicated mathematical form. If we wish to determine the expected value of a

function g(X, Y ) (E[g(X, Y )]), one way to accomplish this is through Monte Carlo

simulation. Such a simulation involves generating independent realization from the

density f and for each such realization calculating Z = g(X, Y ). Thus, after n real-

izations of f are simulated, we have the values Z1, Z2, ..., Zn,, where Zi = g(Xi, Yi)

and (Xi, Yi) is the ith simulated observation from f . A law of large numbers will then

allow us to conclude that

lim
n→∞

∑
i=1→n

Zi/n = E[g(X, Y )]
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Although Monte Carlo methods are used in a diverse number of ways, in the con-

text of molecular computations there are five types most commonly encountered. In

this paper, a simulation Monte Carlo or SMC will be applied. This Monte Carlo

method is a series of stochastic algorithms that are used to generate initial conditions

to actually simulate processes using scaling arguments to establish time scales or by

introducing stochastic effects into molecular dynamics.

Lattice gas automata, or LGA is a particular type of simulation that is used for the

viscous fluid flow. LGA research is a highly developed subculture of general cellular

automation research. This tool has been widely used in analyzing the dynamics of re-

actions in a variety of conditions. A microscopic image of the detailed reaction can be

obtained through the application of theoretical framework. This image is very useful

for helping us gain a more detailed understanding of the dynamics of biochemistry

reactions. Recently, it has been used to model the Michaelis-Menten mechanism on a

two-dimensional grid with a cyclic boundary. In this section a Monte Carlo algorithm

combined with LGA simulation will be applied for the hydrolysation process of en-

zyme sPLA2 to (i) understand the dynamics of the hydrolysation of rolling process,

(ii) establish a modification of the rolling ordinary differential model and (iii) verify

the other results that were obtained in the second chapter.

3.4 LGA Model using Monte Carlo algorithm

Following [1], we implement a lattice gas automata model in C++ using a Monte

Carlo algorithm on a two-dimensional square lattice with cyclic boundary conditions.

In the model, each molecule is mobile on the lattice through diffusion, modeled by

independent nearest-neighbor random walks of the individual molecule.
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In the LGA model, time is split into discrete steps and at each step enzyme are

selected at random. After that, randomly choose a grid site among the nearest po-

sitions of the subjective enzyme. If the chosen spot is empty, move the enzyme into

the vacancy; otherwise, keep the enzyme in its original position. In this method,

enzyme move through the volume via two-dimensional random walks known as blind

ant process [9].

Let the size of each sub-square of the grid be as the same as the size of an enzyme;

thus, after one step rolling, the enzyme will reach another site. According to the ini-

tial condition of the subjective enzyme, a parameter, which is devrived by Section 2

will be used to determine which side the enzyme will move onto. When an enzyme

moves to a site with a phospholipid, and the enzyme is on its active site, then a

hydrolysation process may happen. After the reaction, the lipid will be removed, the

enzyme will be released from the membrane to the solution and one product P will

be produced. The coordinates of the position of every enzyme and occupancy status

of each lattice site are stored and used for analysis. At any moment of the simulation,

one given lattice site cannot be occupied by more than one molecule.

Let γ be the number of product P and the rolling and reacting probabilities k1,

k2 and kcat are defined as following:

• k1 is the first entry of the fixed probability vector w in the previous chapter.

• k2 is the second entry of the fixed probability vector w in the previous chapter.

• kcat is the reaction coefficient that is applied in the ODE model.

At the beginning of the LGA model, the enzyme and the lipid are placed on the

lattice by randomly choosing the co-ordinates for each of them. At each Monte Carlo

simulation, a subjective enzyme is chosen at random and the rolling of the enzyme
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is according to the following rules:

1. Randomly choose one from all of the occupied spots. If this spot is occupied, keep

the subjective enzyme on its original spot.

2. Otherwise move the subjective enzyme into the vacancy according to the following

rules:

• If the enzyme is on side S, randomly generate a number between 0 and 1. If this

number is smaller than probability k1 , move the enzyme to the vacancy and roll it to

side A; if the random number is between k1 and k2, move the enzyme to the vacancy

and roll it to side S; otherwise roll it to side T. This is the end of the first step rolling

process.

• If the enzyme is originally on its top side or active side, replace the enzyme from

its original spot, move it to the vacancy and roll it to side S.

After the rolling process, the hydrolysation occurs according to the following rules:

1. If the enzyme on the grid spot is not on its active side or no available lipid on that

spot, no reaction happens.

2. Otherwise generate a random number from 0 to 1. Compare this number with

reaction coefficient kcat. If the number is smaller than kcat, reaction happens, which

means the lipid and the enzyme will be removed from the grid spot and set γ = γ +1.

Otherwise, keep the enzyme and the lipid on the membrane.

The reaction is not the end of the simulation. Since enzyme’s density in the so-

lution is very high [2], as soon as the reaction happens, an enzyme in the solution

will land on an available spot; therefore, the number of enzyme on the membrane is

always constant. Now we need to figure out this constant. The dimension of sPLA2

is 45Å × 30Å × 20Å (1Å = 10−10m)[6], and since it is assumed that the geometry

shape of an enzyme is a cube, a size of 45Å × 45Å × 45Å is what we applied in our

model. Thus the area of our grid is

46



0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Seconds

P
ro

du
ct

 P

Figure 7: Low Density of Enzyme with a High Level of Lipid: This plot shows the
changes of product P as the increase of length of time. The red curve represents the
experiment when 306 of enzyme are added as an initial value; the blue line represents
the reaction when 306 enzyme are added in the beginning and then the same amount
is added in the middle of the reaction; the black line shows the changes when twice
amount of enzyme are added in the beginning of the experiment. Fig. 7-10 all follows
this label notation. Also, these four graphs all come from the C++ code in the
Appendix 5.2.

(45Å × 99)2 = 1.98 × 10−13m2

The average surface area of a single blood cell is about 129.9μM2 (1μM = 10−6m)[4].

The average number of enzyme that absorbed in all Bell’s experiments was 2.0±0.3×
105. Therefore, the number of enzyme that we should keep on our grid is

ntotal =
2 × 105 × 1.98 × 1013

129 × 10−12
≈ 306

Figure 7 to 10 are the results of this LGA Monte Carlo simulation. Those graphs

show the changes of product P within the first 104 seconds. Figure 7 is obtained when

the number of enzyme is 306 (a low density) and the number of available lipids is 30

percent of the total number of grid spots. The red curve represents the experiment

when 306 of enzyme are added as an initial value; the blue line represents the reaction

when 306 enzyme is added in the beginning and then the same amount is added in

the middle of the reaction; the black line shows the changes when twice amount of
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Figure 8: High Density of Enzyme with a High Level of Lipid: This plot shows the
changes of product P as the increase of length of time with an initially 3000 unit of
enzyme and a relatively large amount of lipids (assume 30% of the total grid spots
have lipids available). The red curve shows the experiment when 3000 enzyme are
added as initial value of enzyme; blue line shows the reaction when 3000 are added
in the beginning and another 3000 is added in the middle; black curve shows the
changes when 6000 initial enzyme are added in the beginning of the experiment.
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Figure 9: Low Density of Enzyme with a low Level of Lipid: This plot shows the
changes of product P as the increase of length of time with an initially low amount
(306) of enzyme and small amount of lipids (assume only 3% of the total grid spots
have available lipids).
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Figure 10: High Density of Enzyme with a low Level of Lipid: This plot shows the
changes of product P as the increase of length of time with an initially large amount
of enzyme (3000) and limited lipids (3%).

enzyme is added in the beginning of the experiment.

From this graph, it is easy to see that, when the initial amount of enzyme is twice

as much (black curve), the speed of the reaction will be faster comparing with the

red line. Also, when an extra amount of enzyme is added in the middle of the exper-

iment, there is a very evident increase in the rate of production of P. However, when

the same amount of enzyme is added, no obvious increase of product P is observed

[17]. One possible explanation of this result is that a crowding on the membrane

surface may stopped the enzyme from rolling; however, the amount of enzyme in our

simulation is too small to establish crowding (only 0.3% of sites are occupied); thus,

when more enzyme is added in the middle, more enzyme are absorbed. In order to

verify the relationship between crowding and the amount of product P, we need to

compare Figure 8 and 7.

Figure 8 shows the changes of product P with a high density of enzyme on the

membrane. Initially, 3000 enzyme are put on the membrane. Apparently, the reaction

speed is much faster than Figure 5, which gives us the same result that we obtained

above: more enzyme will lead a faster reaction speed. In Figure 8, the red line shows
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that when an extra amount of enzyme is added in the middle of the experiment, the

changes in the amount of product is not as much as in Figure 7, but it is still quite

obvious. It shows that the crowding on the membrane surface is not the main reason

to the halt of the reaction. When there is a crowding on the membrane, the number

of reactions is still increased a lot. Therefore, there must be some other reasons that

cause the halt of the reaction [17].

Figure 9 is obtained when the available lipids are really limited (3% of the total

number of grid spots) and the initial enzyme amount is relatively low. From Figure

9, the total amount of product in the first 104 seconds is about 10% of Figure 7; also,

the reaction is slowed down–the time to achieve a steady state is much longer than a

higher density lipid membrane. An interesting observation is when an extra amount

of enzyme is added on the membrane in the middle of the reaction (blue line), the

amount of product that is increased is also smaller than Figure 7. This may due to

the fact that the limitation of available lipids slows down the reaction speed, and

decrease the total amount of product that we may obtain.

Figure 10 indicates the changes of product under a high enzyme density but low

lipid level. Comparing it with Figure 8, it is easy to see that the reaction is slowed

down because of the low density of lipids; also, when an extra amount of enzyme is

added in the middle, quite an observable increase of the amount of product can be

viewed.

Therefore, this LGA Monte Carlo simulation shows us that the density of enzyme

determines the speed of the reaction. Under the same level of lipids, more enzyme

will have more lipids hydrolyzed, which will end up with a relatively high amount of

product for each time step; therefore the reaction speed will be increased, and the
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time that the reaction needs to go to a steady state will be shorten. Under a high

density enzyme circumstance, extra enzyme will still result an obvious increase in

the amount of product. Even though the membrane is already packed with enzyme,

and the density of enzyme in the solution is very high, there is still a relatively large

amount of extra product will be observed in the simulation. Thus, more enzyme

in the solution is actually helpful with the hydrolyzing, and the result in Bell’s ex-

periment must come from other reasons than the halt of rolling process. The lipid

density is also very important in determining the reaction speed and product amount.

When the amount of available lipid on the membrane is limited, the enzyme on the

membrane will need to roll more steps to reach an available lipid, which is why the

reaction speed is slowed down.

4 Conclusions

In the ODE model, we concluded that the hydrolyzing speed of of enzyme sPLA2

will increase with a high density of initial amount of enzyme. Also, more product will

be observed when an extra amount of enzyme is added in the middle of the experi-

ment. Applying Transition Matrix, we calculated the initial amounts of enzyme which

land on side A, side S and side T when it is bind on the blood cell membrane, which

cooperate with the amount that can be observed in the ODE graphs (Figure 2 and 3).

After that, we use LGA Monte Carlo simulation to establish a rolling grid to show

a microscopic image of the rolling process of enzyme. This LGA model indicates when

the density of the enzyme on the membrane is relatively low, more product will be

observed when an extra amount of enzyme is added in the middle of the experiment.

This result comes from the fact that when the enzyme density is low, there is a lot
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of area with available lipid that the enzyme is not able to reach; thus when a large

amount of enzyme is injected, a lot of them will be able to land on those areas to

hydrolyze the available lipid. Even though no extra product is observed in Bell’s

experiment, in our simulation when there is crowding on the membrane there still

is an increase in the amount of product due to the extra enzyme. Thus, the rolling

process is not the main reason.

Therefore, a lot of other conditions may be considered as the main reason. First

of all, our model assumed that the enzyme can roll freely on the cell membrane unless

another enzyme is on its rolling direction. However, is it possible that an enzyme will

be trapped in some spots and the rolling process will be stopped? If it is possible,

what is the percentage of this kind of trapping spots on the membrane surface? How

are these spots distributed on the membrane? How large is its influence to the hy-

drolyzing process? Or is it possible that enzyme can only go through binding spots to

binding spots? How do these binding spots distribute? Will its distribution influence

the reaction? Also, are there any relationship between the distribution of binding

spots and the distribution of lipids? When an enzyme is rolling through the binding

spots, what is the availability of lipids that the enzyme may hydrolyze?

There are few new methods and tools that a number of authors are applying

to the reaction kinetics to study the macromolecular crowding. For example, Zipf-

Mandelbrot distribution and the probability density function of Gillespie. How do

these tools help us learn the rolling process and what are the advantage and disadvan-

tage of those models? All of these questions should be considered in further research.
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5 Appendix

5.1 MATLAB Code of ODE Model

5.1.1 MATLAB Code of Non-rolling ODE Model

% In this model, MATLAB package ’ode15s’ is applied:

[t,Y]=ode15s(’lan1’,[0 2000],[.1 0 0 0 0 0]);

plot(t,Y);

xlabel(’Seconds’);

ylabel(’Product P’);

function dE= lan1(t,E)

k1=68000;

%k1=.01;

km1=.0001;

km0=.0001;

k0=1.4;

km2=.1;

k2=.94*km2;

k3=1;

km3=.0001;

k4=1;

km4=.0001;

kcat=.027;

% 1 E 2 Ea 3 Eas 4 P 5 Et 6 Es

if (t>=1000) % add enzyme in the middle of the experiment
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E(1)=.2;

end

dE = zeros(6,1);

dE(1)=0;% total number of enzyme

Esol=E(1)-E(2)-E(3)-E(5)-E(6);% enzyme in the solution

dE(2)=-k2*E(2)+km2*E(3)+k1*Esol;

dE(5)=-km3*E(5)+k3*Esol;

dE(6)=-km4*E(6)+k4*Esol;

dE(3)=-km2*E(3)+k2*E(2)+k0*Esol-km0*E(3);

dE(4)=kcat*E(3)*(1-E(4));% Product

5.1.2 MATLAB Code of Rolling ODE Model

% Applied MATLAB ’ode15s’package

% Combined with rolling process

[t,Y]=ode15s(’rollingodefunction’,[0 10000],[1 0 0 0 0 0]);

plot(t,Y);

xlabel(’Seconds’);

ylabel(’Product P’);

function dE= rollingodefunction(t,E)

k1=68000/6; % divide by 6 since it is for all in solution to membrane

% (number from bell)

%k1=.01;

km1=.0001;

km0=.0001;

k0=1.4;
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km2=.1; % rate Ea to Eas

k2=.94*km2; % rate Eas to Ea

%k3=1;% rate E to Et

k3=k1;% rate E to Et

km3=.0001; % rate Et to E

%k4=1;% rate E to Es should be 4 times larger than k3=k2

k4=4*k1;% rate E to Es should be 4 times larger than k3=k2

km4=.0001;% rate Es to E

kcat=.027;

r=2.;% rolling rate

dE = zeros(6,1);

if (t>=5000)

E(1)=2.;

end

dE(1)=0;% Etotal

Esol=E(1)-E(2)-E(3)-E(5)-E(6);% enzyme in the solution

dE(2)=-k2*E(2)+km2*E(3)+k1*Esol+.25*r*E(6)-r*E(2);% enzyme on Side A

dE(5)=-km3*E(5)+k3*Esol-r*E(5)+.25*r*E(6);% enzyme on side T

dE(6)=-km4*E(6)+k4*Esol-.5*r*E(6)+r*E(5)+r*E(2);% enzyme on side S

dE(3)=-km2*E(3)+k2*E(2)+k0*Esol-km0*E(3);%actively absorbed enzyme

dE(4)=kcat*E(3)*(1-E(4));%product

5.2 C++ Code of LGA Monte Carlo Simulation

%In this section a C++ code for LGA Monte Carlo simulation is applied.

%The random number generation is the Mersenne Twister
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%random generater, which is attached after the LGA code.

C++ code for LGA simulation:

using namespace std;

#include <string>

using std::string;

#include "randomc.h"

#include <iostream>

#include <cfloat>

#include <fstream>

//Define size of the grid

static const int nx = 100;

static const int ny = 100;

static const int dim = 3;

int

main()

{

%Define A:

% A[.,.,0] = 1 indicates site is occupied by enzyme

% A[.,.,0] = 0 indicates site is not occupied by enzyme

% A[.,.,1] = 0,1,2 indicates active, side , top respectively

% A[.,.,2] = 0, 1 if no lipid is available, if lipid is available

int A[nx][ny][dim];

TRandomMersenne rg1(1283);
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int i[ny];

int j[nx];

int ntime = 100000;//number of loop times

int Gamma[ntime];//define the counting vector for product P

Gamma[0]=0;

int gamma=0;

%Define reaction coefficients

double k1 = 0.1667;

double k2 = 0.6667;

double kk1 = 1./6.;

double kk2 = 5./6.;

double kcat = 0.027;

double ht = 1; // seconds

double scale = 1; // scale factor

double kkk1 = 0.25;

double kkk2 = 0.75;

% total number of enzyme

int amtenzy = 306;

//int amtenzy = 3000;

ofstream *fout = new ofstream("product3.txt");%save result for graphing

int ilipidt = 10000;

%Use Matlab randomly generate two sequences from 1 to nx-1 (save in

%’randompoints’), then read them into i[] and j[] to reorder grid points;

%therefore, when we check whether there is an enzyme on the grid or not,

%the picking order of spots is random.
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i[0]=0;

j[0]=0;

i[nx-1]=nx-1;

j[ny-1]=ny-1;

ifstream reader;

string file1("randompoints.txt");

reader.open(file1.c_str());

for (int m =1; m<nx-1 ; m++){

reader >> i[m] >> j[m];

}

reader.close();

%Put enzyme on the grid, and control the number of lipid

for (int m =0; m<nx; m++)

for (int mm = 0; mm<ny; mm++){

for (int mmm = 0; mmm<2; mmm++){

A[m][mm][mmm]=0;

}

double check4 = rg1.Random();% decide whether there is a lipid

// if(check4<0.03){%keep the amount of lipid low

if(check4<.03){//keep the amount of lipid high

A[m][mm][2]=1;

ilipidt = ilipidt -1;}

else {A[m][mm][2]=0;}

}

% Decide the initial side of enzyme by Monte Carlo simulation
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for(int ii=0; ii<amtenzy; ii++){ //put the enzyme on the grid

int check2 = rg1.IRandom(0,nx-1);

int check3 = rg1.IRandom(0,ny-1);

int check9 = rg1.IRandom(0,1);

while(A[check2][check3][0]!=0){

check2 = rg1.IRandom(0,nx-1);

check3 = rg1.IRandom(0,ny-1);

}

A[check2][check3][0]=1;

double check1 = rg1.Random(); %generate a number from 0 to 1

% If the number is smaller than k1, set to active side

if(check1 < kk1){A[check2][check3][1] = 0;}

% If the number is between k1 and k2, set to side S

else if( check1 < kk2){A[check2][check3][1] = 1;}

else {A[check2][check3][1] = 2;}%otherwise, set to side T

}

int ncount =0;

for (int m =0; m<nx; m++)

for (int mm = 0; mm<ny; mm++)

if(A[m][mm][0]==0)

ncount = ncount +1;

% time loop

for(int k = 1; k<=ntime; k++){

int jj = 0;
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% The rolling process

% Do the left downer corner

int ii=0;

if( A[i[ii]][j[jj]][0] ==1 ){

% Determine the rolling directio 0-up 1-right 2-down 3-left

int arrow = rg1.IRandom(0,3);

double check1= rg1.Random();%determine which side to roll to

if(arrow == 0 && A[i[ii]][j[jj]+1][0]==0){

A[i[ii]][j[jj]+1][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){%if originally on side S

% If the number is smaller than k1, roll to active side

if(check1 < kkk1){A[i[ii]][j[jj]+1][1] = 0;}

% If the number is between k1 and k2, roll to side S

else if(check1 < kkk2){A[i[ii]][j[jj]+1][1] = 1;}

else {A[i[ii]][j[jj]+1][1] = 2;}%otherwise, roll to side T

}

% If enzyme lands originally on side T or A, then roll to s

else {A[i[ii]][j[jj]+1][1] = 1;}

}

% Arrow is a random pointer, which is used to decide the rolling direction.

if(arrow == 1 && A[i[ii]+1][j[jj]][0]==0){

A[i[ii]+1][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]+1][j[jj]][1] = 0;}

else if(check1 < kkk2){A[i[ii]+1][j[jj]][1] = 1;}
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else {A[i[ii]+1][j[jj]][1] = 2;}

}

else {A[i[ii]+1][j[jj]][1] = 1;}

}

if(arrow == 2 && A[i[ii]][ny-1][0]==0){

A[i[ii]][ny-1][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]][ny-1][1] = 0;}

else if(check1 < kkk2){A[i[ii]][ny-1][1] = 1;}

else {A[i[ii]][ny-1][1] = 2;}

}

else

A[i[ii]][j[jj]-1][1] = 1;

}

if(arrow == 3 && A[nx-1][j[jj]][0]==0){

A[nx-1][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[nx-1][j[jj]][1] = 0;}

else if(check1 < kkk2){A[nx-1][j[jj]][1] = 1;}

else {A[nx-1][j[jj]][1] = 2;}

}

else

A[nx-1][j[jj]][1] = 1;%if originall on side T or A, then roll to s

}

}
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% Do the periodic boundary bottom

for(int ii=1; ii<nx-1;ii++) {

if( A[i[ii]][j[jj]][0] ==1){

int arrow = rg1.IRandom(0,3);

double check1= rg1.Random();

if(arrow == 0 && A[i[ii]][j[jj]+1][0]==0){

A[i[ii]][j[jj]+1][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]][j[jj]+1][1] = 0;}

else if(check1 < kkk2){A[i[ii]][j[jj]+1][1] = 1;}

else {A[i[ii]][j[jj]+1][1] = 2;}

}

else

A[i[ii]][j[jj]+1][1] = 1;

}

if(arrow == 1 && A[i[ii]+1][j[jj]][0]==0){

A[i[ii]+1][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]+1][j[jj]][1] = 0;}

else if(check1 < kkk2){A[i[ii]+1][j[jj]][1] = 1;}

else {A[i[ii]+1][j[jj]][1] = 2;}

}

else

A[i[ii]+1][j[jj]][1] = 1;
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}

if(arrow == 2 && A[i[ii]][ny-1][0]==0){

A[i[ii]][ny-1][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]][ny-1][1] = 0;}

else if(check1 < kkk2){A[i[ii]][ny-1][1] = 1;}

else {A[i[ii]][ny-1][1] = 2;}

}

else

A[i[ii]][ny-1][1] = 1;

}

if(arrow == 3 && A[i[ii]-1][j[jj]][0]==0){

A[i[ii]-1][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]-1][j[jj]][1] = 0;}

else if(check1 < kkk2){A[i[ii]-1][j[jj]][1] = 1;}

else {A[i[ii]-1][j[jj]][1] = 2;}//otherwise, roll to side T

}

else

A[i[ii]-1][j[jj]][1] = 1;

}

}

}

% do the right downer corner

ii=nx-1;
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if( A[i[ii]][j[jj]][0] ==1){

int arrow = rg1.IRandom(0,3);

double check1= rg1.Random();

if(arrow == 0 && A[i[ii]][j[jj]+1][0]==0){

A[i[ii]][j[jj]+1][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]][j[jj]+1][1] = 0;}

else if(check1 < kkk2){A[i[ii]][j[jj]+1][1] = 1;}

else {A[i[ii]][j[jj]+1][1] = 2;}

}

else

A[i[ii]][j[jj]+1][1] = 1;

}

if(arrow == 1 && A[0][j[jj]][0]==0){

A[0][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[0][j[jj]][1] = 0;}

else if(check1 < kkk2){A[0][j[jj]][1] = 1;}

else {A[0][j[jj]][1] = 2;}

}

else

A[0][j[jj]][1] = 1;

}

if(arrow == 2 && A[i[ii]][ny-1][0]==0){

A[i[ii]][ny-1][0]=1;
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A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]][ny-1][1] = 0;}

else if(check1 < kkk2){A[i[ii]][ny-1][1] = 1;}

else {A[i[ii]][ny-1][1] = 2;}

}

else

A[i[ii]][ny-1][1] = 1;

}

if(arrow == 3 && A[i[ii]-1][j[jj]][0]==0){

A[i[ii]-1][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]-1][j[jj]][1] = 0;}

else if(check1 < kkk2){A[i[ii]-1][j[jj]][1] = 1;}

else {A[i[ii]-1][j[jj]][1] = 2;}

}

else

A[i[ii]-1][j[jj]][1] = 1;

}

}

for( int jj = 1; jj<ny-1; jj++){

% do left boundary

int ii = 0 ;

if( A[i[ii]][j[jj]][0] ==1){

int arrow = rg1.IRandom(0,3);
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double check1= rg1.Random();

if(arrow == 0 && A[i[ii]][j[jj]+1][0]==0){

A[i[ii]][j[jj]+1][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]][j[jj]+1][1] = 0;}

else if(check1 < kkk2){A[i[ii]][j[jj]+1][1] = 1;}

else {A[i[ii]][j[jj]+1][1] = 2;}

}

else

A[i[ii]][j[jj]+1][1] = 1;

}

if(arrow == 1 && A[i[ii]+1][j[jj]][0]==0){

A[i[ii]+1][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]+1][j[jj]][1] = 0;}

else if(check1 < kkk2){A[i[ii]+1][j[jj]][1] = 1;}

else {A[i[ii]+1][j[jj]][1] = 2;}

}

else

A[i[ii]+1][j[jj]][1] = 1;

}

if(arrow == 2 && A[i[ii]][j[jj]-1][0]==0){

A[i[ii]][j[jj]-1][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){
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if(check1 < kkk1){A[i[ii]][j[jj]-1][1] = 0;}

else if(check1 < kkk2){A[i[ii]][j[jj]-1][1] = 1;}

else {A[i[ii]][j[jj]-1][1] = 2;}

}

else

A[i[ii]][j[jj]-1][1] = 1;

}

if(arrow == 3 && A[nx-1][j[jj]][0]==0){

A[nx-1][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[nx-1][j[jj]][1] = 0;}

else if(check1 < kkk2){A[nx-1][j[jj]][1] = 1;}

else {A[nx-1][j[jj]][1] = 2;}

}

else

A[nx-1][j[jj]][1] = 1;

}

}

% do inner part

for( int ii = 1; ii<nx-1; ii++){

if( A[i[ii]][j[jj]][0] ==1 ){

int arrow = rg1.IRandom(0,3);

double check1= rg1.Random();

if(arrow == 0 && A[i[ii]][j[jj]+1][0]==0){

A[i[ii]][j[jj]+1][0]=1;
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A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]][j[jj]+1][1] = 0;}

else if(check1 < kkk2){A[i[ii]][j[jj]+1][1] = 1;}

else {A[i[ii]][j[jj]+1][1] = 2;}

}

else

A[i[ii]][j[jj]+1][1] = 1;

}

if(arrow == 1 && A[i[ii]+1][j[jj]][0]==0){

A[i[ii]+1][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]+1][j[jj]][1] = 0;}

else if(check1 < kkk2){A[i[ii]+1][j[jj]][1] = 1;}

else {A[i[ii]+1][j[jj]][1] = 2;}

}

else

A[i[ii]+1][j[jj]][1] = 1;

}

if(arrow == 2 && A[i[ii]][j[jj]-1][0]==0){

A[i[ii]][j[jj]-1][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]][j[jj]-1][1] = 0;}

else if(check1 < kkk2){A[i[ii]][j[jj]-1][1] = 1;}

else {A[i[ii]][j[jj]-1][1] = 2;}
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}

else

A[i[ii]][j[jj]-1][1] = 1;

}

if(arrow == 3 && A[i[ii]-1][j[jj]][0]==0){

A[i[ii]-1][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]-1][j[jj]][1] = 0;}

else if(check1 < kkk2){A[i[ii]-1][j[jj]][1] = 1;}

else {A[i[ii]-1][j[jj]][1] = 2;}

}

else

A[i[ii]-1][j[jj]][1] = 1;

}

}%end if1

}

% do the right boundary

ii = nx-1;

if( A[i[ii]][j[jj]][0] ==1 ){

int arrow = rg1.IRandom(0,3);

double check1= rg1.Random();

if(arrow == 0 && A[i[ii]][j[jj]+1][0]==0){

A[i[ii]][j[jj]+1][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]][j[jj]+1][1] = 0;}
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else if(check1 < kkk2){A[i[ii]][j[jj]+1][1] = 1;}

else {A[i[ii]][j[jj]+1][1] = 2;}

}

else

A[i[ii]][j[jj]+1][1] = 1;

}

if(arrow == 1 && A[0][j[jj]][0]==0){

A[0][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[0][j[jj]][1] = 0;}

else if(check1 < kkk2){A[0][j[jj]][1] = 1;}

else {A[0][j[jj]][1] = 2;}

}

else

A[0][j[jj]][1] = 1;

}

if(arrow == 2 && A[i[ii]][j[jj]-1][0]==0){

A[i[ii]][j[jj]-1][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]][j[jj]-1][1] = 0;}

else if(check1 < kkk2){A[i[ii]][j[jj]-1][1] = 1;}

else {A[i[ii]][j[jj]-1][1] = 2;}

}

else

A[i[ii]][j[jj]-1][1] = 1;
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}

if(arrow == 3 && A[i[ii]-1][j[jj]][0]==0){

A[i[ii]-1][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]-1][j[jj]][1] = 0;}

else if(check1 < kkk2){A[i[ii]-1][j[jj]][1] = 1;}

else {A[i[ii]-1][j[jj]][1] = 2;}

}

else

A[i[ii]-1][j[jj]][1] = 1;

}

}%end if

}%end for

% do the left upper corner

jj=ny-1;

ii=0;

if( A[i[ii]][j[jj]][0] == 1 ){

int arrow = rg1.IRandom(0,3);

double check1= rg1.Random();

if(arrow == 0 && A[i[ii]][0][0]==0){

A[i[ii]][0][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]][0][1] = 0;}
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else if(check1 < kkk2){A[i[ii]][0][1] = 1;}

else {A[i[ii]][0][1] = 2;}

}

else

A[i[ii]][j[jj]+1][1] = 1;

}

if(arrow == 1 && A[i[ii]+1][j[jj]][0]==0){

A[i[ii]+1][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]+1][j[jj]][1] = 0;}

else if(check1 < kkk2){A[i[ii]+1][j[jj]][1] = 1;}

else {A[i[ii]+1][j[jj]][1] = 2;}

}

else

A[i[ii]+1][j[jj]][1] = 1;

}

if(arrow == 2 && A[i[ii]][j[jj]-1][0]==0){

A[i[ii]][j[jj]-1][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]][j[jj]-1][1] = 0;}

else if(check1 < kkk2){A[i[ii]][j[jj]-1][1] = 1;}

else {A[i[ii]][j[jj]-1][1] = 2;}

}

else

A[i[ii]][j[jj]-1][1] = 1;
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}

if(arrow == 3 && A[nx-1][j[jj]][0]==0){

A[nx-1][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[nx-1][j[jj]][1] = 0;}

else if(check1 < kkk2){A[nx-1][j[jj]][1] = 1;}

else {A[nx-1][j[jj]][1] = 2;}

}

else

A[nx-1][j[jj]][1] = 1;//if originall on side T or A, then roll to s

}

}

% do the top boundary

jj = ny-1;

for(int ii=1; ii<nx-1;ii++) {

if( A[i[ii]][j[jj]][0] ==1 ){

int arrow = rg1.IRandom(0,3);

double check1= rg1.Random();

if(arrow == 0 && A[i[ii]][0][0]==0){

A[i[ii]][0][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]][0][1] = 0;}
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else if(check1 < kkk2){A[i[ii]][0][1] = 1;}

else {A[i[ii]][0][1] = 2;}

}

else

A[i[ii]][0][1] = 1;

}

if(arrow == 1 && A[i[ii]+1][j[jj]][0]==0){

A[i[ii]+1][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]+1][j[jj]][1] = 0;}

else if(check1 < kkk2){A[i[ii]+1][j[jj]][1] = 1;}

else {A[i[ii]+1][j[jj]][1] = 2;}

}

else

A[i[ii]+1][j[jj]][1] = 1;

}

if(arrow == 2 && A[i[ii]][j[jj]-1][0]==0){

A[i[ii]][j[jj]-1][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]][j[jj]-1][1] = 0;}

else if(check1 < kkk2){A[i[ii]][j[jj]-1][1] = 1;}

else {A[i[ii]][j[jj]-1][1] = 2;}

}

else

A[i[ii]][j[jj]-1][1] = 1;
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}

if(arrow == 3 && A[i[ii]-1][j[jj]][0]==0){

A[i[ii]-1][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]-1][j[jj]][1] = 0;}

else if(check1 < kkk2){A[i[ii]-1][j[jj]][1] = 1;}

else {A[i[ii]-1][j[jj]][1] = 2;}

}

else

A[i[ii]-1][j[jj]][1] = 1;

}

}//end if1

}//end for

% do the right upper corner

ii=nx-1;

if( A[i[ii]][j[jj]][0] ==1){

int arrow = rg1.IRandom(0,3);

double check1= rg1.Random();

if(arrow == 0 && A[i[ii]][0][0]==0){

A[i[ii]][0][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]][0][1] = 0;}

else if(check1 < kkk2){A[i[ii]][0][1] = 1;}
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else {A[i[ii]][0][1] = 2;}

}

else

A[i[ii]][0][1] = 1;

}

if(arrow == 1 && A[0][j[jj]][0]==0){

A[0][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[0][j[jj]][1] = 0;}

else if(check1 < kkk2){A[0][j[jj]][1] = 1;}

else {A[0][j[jj]][1] = 2;}

}

else

A[0][j[jj]][1] = 1;

}

if(arrow == 2 && A[i[ii]][j[jj]-1][0]==0){

A[i[ii]][j[jj]-1][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]][j[jj]-1][1] = 0;}

else if(check1 < kkk2){A[i[ii]][j[jj]-1][1] = 1;}

else {A[i[ii]][j[jj]-1][1] = 2;}

}

else

A[i[ii]][j[jj]-1][1] = 1;

}
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if(arrow == 3 && A[i[ii]-1][j[jj]][0]==0){

A[i[ii]-1][j[jj]][0]=1;

A[i[ii]][j[jj]][0]=0;

if(A[i[ii]][j[jj]][1]==1){

if(check1 < kkk1){A[i[ii]-1][j[jj]][1] = 0;}

else if(check1 < kkk2){A[i[ii]-1][j[jj]][1] = 1;}

else {A[i[ii]-1][j[jj]][1] = 2;}

}

else

A[i[ii]-1][j[jj]][1] = 1;

}

}//end if1

//}//end if

//}//end for s

% End of the rolling process

% Reaction Process:

ncount =0;

for (int m =0; m<nx; m++)

for (int mm = 0; mm<ny; mm++)

if(A[m][mm][0]==0)

ncount = ncount +1;

% n is applied to count the number of enzyme that we lost in reaction

int n = 0;

int itracker[nx*ny][2];
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int icounter = 0;

int nncount = 0;

for(int ii=0; ii<nx; ii++){

for(int jj=0; jj<ny; jj++){

if(A[i[ii]][j[jj]][0]==1){

if(A[i[ii]][j[jj]][1]==0){//grid occupied by enzyme with active side

// itracker[icounter][0]=i[ii];

// itracker[icounter][1]=j[jj];

// icounter=icounter+1;

double check =rg1.Random();

% If the grid is occupied by an enzyme with active side

and there is an available lipid on that spot

if(A[i[ii]][j[jj]][2]==1&& check < kcat){

A[i[ii]][j[jj]][2] = 0; // the lipid is consumed

if(ilipidt >0){

int itmpx =rg1.IRandom(0,nx-1);

int itmpy =rg1.IRandom(0,ny-1);

cout<<" what "<<ilipidt<<" "<<itmpx<<" "<<itmpy<<"\n";

while( A[itmpx][itmpy][2] == 1){

itmpx =rg1.IRandom(0,nx-1);

itmpy =rg1.IRandom(0,ny-1);

}

A[itmpx][itmpy][2] = 1; // add lipid

ilipidt = ilipidt -1;

}

n = n+1;
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A[i[ii]][j[jj]][0] = 0;//this spot becomes empty

itracker[icounter][0]=i[ii];

itracker[icounter][1]=j[jj];

icounter=icounter+1;

}

}

}

else{// no enzyme at grid

itracker[icounter][0]=i[ii];

itracker[icounter][1]=j[jj];

icounter=icounter+1;

}

}

}

int nn = n + nncount;

% The enzyme is added in the middle of the reaction

// if(k==50000)

// nn=nn+amtenzy;

for(int ii=0; ii<nn; ii++){ //keep the number of enzyme on the grid constant

// int check9 = rg1.IRandom(0,1);

int check2 = rg1.IRandom(ii,icounter-1);

// if(check9<refill){

A[itracker[check2][0]][itracker[check2][1]][0]=1;

double check1 = rg1.Random(); //generate a number from 0 to 1
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% If the number is smaller than k1, set to active side

if(check1 < kk1){A[itracker[check2][0]][itracker[check2][1]][1] = 0;}

% If the number is between k1 and k2, set to side S

else if( check1 < kk2){A[itracker[check2][0]][itracker[check2][1]][1] = 1;}

else {

A[itracker[check2][0]][itracker[check2][1]][1] = 2;

}//otherwise, set to side T

// now make sure we do not use the same site again

int jtmp0 = itracker[ii][0];

int jtmp1 = itracker[ii][1];

itracker[ii][0] = itracker[check2][0];

itracker[ii][1] = itracker[check2][1];

itracker[check2][0] = jtmp0;

itracker[check2][1] = jtmp1;

}

}

ncount =0;

for (int m =0; m<nx; m++)

for (int mm = 0; mm<ny; mm++)

if(A[m][mm][0]==0)

ncount = ncount +1;

% gamma is the total number of product P.

In order to graph the amount of product with time, we saved it in a vector

Gamma[K]

gamma = n + gamma;
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Gamma[k] = gamma;

*fout<<k*ht<<" "<<Gamma[k]/scale<<"\n";

}// end time loop

fout->close();

delete fout;

}
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