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Abstract

The Expectation of Transition Events on Finite-state Markov Chains

Jeremy M. West

Department of Mathematics

Master of Science

Markov chains are a fundamental subject of study in mathematical probability and have found

wide application in nearly every branch of science. Of particular interest are finite-state Markov

chains; the representation of finite-state Markov chains by a transition matrix facilitates detailed

analysis by linear algebraic methods.

Previous methods of analyzing finite-state Markov chains have emphasized state events. In

this thesis we develop the concept of a transition event and define two types of transition events:

cumulative events and time-average events. Transition events generalize state events and provide

a more flexible framework for analysis. We derive computable, closed-form expressions for the

expectation of these two events, characterize the conditioning of transition events, provide an

algorithm for computing the expectation of these events, and analyze the complexity and stability

of the algorithm. As an application, we derive a construction of composite Markov chains, which

we use to study competitive dynamics.
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Chapter 1. Introduction

Markov chains are a fundamental subject of study in mathematical probability and have found wide

application in nearly every branch of science. Of particular interest are finite-state Markov chains;

the representation of finite-state Markov chains by a transition matrix facilitates detailed analysis

by linear algebraic methods. The relatively recent development of the theory of generalized inverses

of linear transformations has led to the development of many new results on the asymptotic and

transient behavior of finite-state Markov chains.

1.1 Previous Work

Much of what is known about the application of generalized inverses to finite-state Markov chains

is due to the work of Decell and Odell [2, 13] and the work of Meyer [12]. Decell and Odell

introduced the notion of the fundamental matrix. This matrix, derived using the Moore-Penrose

inverse, contains many of the fundamental quantities of a finite-state Markov chain. For example,

using the fundamental matrix, the number of steps to absorption, the probability of absorption

into a particular state, and the mean first passage – or average number of steps until the first visit

to a state – can be determined.

Meyer improved upon the work of Decell and Odell by showing that the Drazin inverse, a

spectral generalized inverse, was a more natural fit for Markov chains. Using the Drazin inverse,

Meyer reproduced and extended the results of Decell and Odell and the development using the

Drazin inverse is more natural.

1.2 Contributions

Both of the aforementioned approaches emphasize state events: the number of visits to a state,

absorption into a specific state, and mean first passage. The identifying characteristic of a Markov

chain is that it is completely described by the transition probabilities. It seems natural that events

on Markov chains should be described in terms of transitions, rather than states.
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Chapters 2-4 provide the mathematical background for this thesis. In Chapter 5 we rigorously

define two types of transition events and give closed-form, computable expressions for the expecta-

tion of these events on the broadest possible class of finite-state Markov chains. The expressions for

these two types of transition events are nearly identical, differing mainly in the type of generalized

inverse used. This suggests that similar expressions may exist for other types of transition events

using different generalized inverses. In each section of Chapter 5 we give examples to show how

state events may be reproduced by transition events. Additionally, we provide several examples of

transition events that are not readily derived in terms of state events.

Our problem was originally motivated by an investigation of competitive stochastic systems.

In Chapter 6 we derive a method for constructing a composite system from multiple individual

systems. We show how this composite system may be used to analyze multi-agent competition.

In particular, we describe some transition events that can be used to study competition in these

composite systems.

In Chapter 7 we characterize the conditioning of the expectation of transition events. We give

an algorithm and the describe complexity and numerical stability of the algorithm. In Chapter 8,

we use this algorithm to perform calculations for a specific Markov chain and compare the results

to a Monte Carlo simulation.

1.3 Future Work

The work of Decell and Odell and of Meyer addresses variance in addition to expectation. This is

a limitation of our current work, as our results yield only the first moment. Furthermore, we have

described only two types of transition events: cumulative events and time-average events. It may

be possible to develop results similar to those presented in this thesis for other classes of transition

events. In particular, we envision events described in terms of stopping times as being particularly

relevant.
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Chapter 2. Linear Analysis

Linear algebra is a fundamental tool for analyzing finite state Markov chains. In this chapter we

develop some of the less-known results from linear algebra that are used in this thesis. We denote

by Rn the n-dimensional Euclidean space and by Rm×n the space of m × n matrices with real

entries. For a matrix, AT is the transpose and tr(A) is the trace, or sum of the diagonal entries.

The (i, j) entry of A is Ai,j or for a vector, xi is the ith entry. We also make use of the notation

|A| to denote the matrix whose (i, j) entry is |Ai,j |. Matrix inequalities are interpreted entry-wise,

that is, A ≤ B if Ai,j ≤ Bi,j for al i and j.

2.1 Special Products

We make use of two non-traditional matrix products: the Hadamard product and the Kronecker

product.

Definition 2.1. The Hadamard product of two m×n matrices A and B is the m×n matrix whose

(i, j) entry is

(2.1) [A�B]i,j = Ai,jBi,j .

It is immediate from the definition that the Hadamard product is both commutative and

associative. However, it does not necessarily commute, nor associate, with standard matrix multi-

plication. The following theorem, which may be found in [6, p. 305], relates the Hadamard product

to standard matrix-vector multiplication.

Theorem 2.2. Let x ∈ Rn and A,B ∈ Rm×n be given and let D = diag(x). Then

(2.2)
[
ADBT

]
i,i

= [(A�B)x]i .
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Proof. Since D is diagonal, the ith diagonal entry of ADBT is given by

(2.3)
[
ADBT

]
i,i

=
n∑
j=1

Ai,jxjB
T
j,i =

n∑
j=1

Ai,jxjBi,j =
n∑
j=1

[A�B]i,jxj = [(A�B)x]i .

Corollary 2.3. Let x ∈ Rn and A,B ∈ Rm×n be given and let D = diag(x). Then

(2.4)
m∑
i=1

[(A�B)x]i = tr(ADBT ).

Definition 2.4. The Kronecker product of A ∈ Rm×n and B ∈ Rp×q is the mp× nq matrix,

(2.5) A⊗B =


A1,1B . . . A1,nB

...
...

Am,1B . . . Am,nB

 .

Example 2.5. For the matrices

(2.6) A =

1 2

3 4

 , and B =

1 0

0 1

 ,
we have

(2.7) A⊗B =



1 0 2 0

0 1 0 2

3 0 4 0

0 3 0 4


, and B ⊗A =



1 2 0 0

3 4 0 0

0 0 1 2

0 0 3 4


.

This example illustrates that the Kronecker product is not commutative.

A convenient indexing scheme for a Kronecker product is using tuples. If A ∈ Rm×n and B ∈

Rp×q then A⊗B is an m×n block matrix, where each block is p×q. Denote by [A⊗B](i1,i2),(j1,j2)
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the (i2, j2) entry of the (i1, j1) block of A⊗B. Using this indexing scheme,

(2.8) [A⊗B]m(i1−1)+i2,n(j1−1)+j2 = [A⊗B](i1,i2),(j1,j2) = Ai1,j1Bi2,j2 .

For example, using A and B in Example 2.5,

(2.9) [A⊗B]1,3 = [A⊗B](1,1),(2,1) = A1,2B1,1 = 2.

It is easy to verify that Kronecker products are associative. Therefore, we need no parentheses

in the expression A = A1 ⊗ · · · ⊗Ap. Furthermore, this allows a definition of Kronecker powers:

(2.10) A⊗p = A⊗ · · · ⊗A.

When the Kronecer product of multiple matrices is formed, we use the same indexing scheme,

only a p-wise Kronecker product requires a p-tuple for the row and a p-tuple for the column. For

vectors x1 ∈ Rn1 , . . . , xp ∈ Rnp , the product x1 ⊗ · · · ⊗ xp ∈ Rn1...np is a vector whose entries may

be indexed by a p-tuple (i1, . . . , ip), in which case

(2.11) [x1 ⊗ · · · ⊗ xp](i1,...,ip) = [x1]i1 . . . [xp]ip .

2.2 Generalized Inverses

Any bijection f : X → Y has a unique inverse f−1 : Y → X satisfying

f(f−1(y)) = y

f−1(f(x)) = x,

(2.12)

that is, f−1 ◦ f is the identity on X and f ◦ f−1 is the identity on Y . If f is injective then it is

bijective onto f(X) so that f has a unique inverse f−1 : f(X)→ X. If f is not injective, there is

not a unique inverse. However, if we restrict f to S ⊂ X on which f is injective, we may obtain

an inverse.

Treating A ∈ Rm×n as a function from Rn to Rm, we encounter the same situation. If m = n

5



and A is full rank then A has a unique inverse A−1 satisfying AA−1 = A−1A = I. If m 6= n

then A cannot be both injective and surjective. If we restrict to subspaces of Rn on which A is

bijective, the restricted linear operator has an inverse, which we extend to a linear operator on

Rm → Rn, called a generalized inverse. If A is not injective, there are multiple possible definitions

for a generalized inverse, each arising from a different choice of subspaces.

2.2.1 The Moore-Penrose Inverse. The Moore-Penrose inverse divides along orthogonal

complements. Since N(A) is the problematic subspace, that is, N(A) is nontrivial precisely when

A fails to be injective, we decompose Rn into complementary subspaces Rn = N(A) ⊕N(A)⊥ =

N(A)⊕R(AT ), noting that A is injective on R(AT ).

Definition 2.6. For a matrix A ∈ Rm×n, the Moore-Penrose inverse of A is the unique matrix

A† ∈ Rn×m satisfying

(i) AA†A = A

(ii) A†AA† = A†

(iii) (AA†)T = AA†

(iv) (A†A)T = A†A.

Remark. By a simple examination of the symmetry of properties (i)-(iv) it is immediate that if A†

is the Moore-Penrose inverse of A then A is the Moore-Penrose inverse of A†. That is, (A†)† = A.

Furthermore, it is clear that if A is invertible, then A−1 is the Moore-Penrose inverse of A.

We now justify the declaration that a Moore-Penrose inverse exists and is unique. Recall that

a projection is an idempotent matrix P , that is a matrix satisfying P 2 = P . For such a matrix,

R(P ) and N(P ) are complementary subspaces and Px = x for all x ∈ R(P ). We say that P is

the projection onto R(P ) along N(P ). Furthermore, for any two complementary subspaces U and

W of Rn, there exists a unique projection onto U along W . What’s more, the projection onto U

along W is the unique matrix satisfying Px = x for x ∈ U and Px = 0 for x ∈ W . A projection

P is symmetric if and only if N(P ) = R(P )⊥, in which case, we say that P is the orthogonal

projection onto R(P ). Therefore, a matrix satisfying Px = x for x ∈ U and Px = 0 for x ∈ U⊥ is

the orthogonal projection onto U .
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Theorem 2.7. Let PU denote the orthogonal projection onto a subspace U . For a given A ∈ Rm×n,

A† satisfies (i)-(iv) if and only if

(a) AA† = PR(A),

(b) A†A = PR(A†).

Proof. (⇒) If A† satisfies (i)-(iv) then by (i), AA†AA† = (AA†A)A† = AA† so that AA† is

idempotent (a projection). Property (iii) guarantees that AA† is also symmetric so that AA† is

an orthogonal projection. It remains to show that R(AA†) = R(A). By property (i), and the fact

that R(AB) ⊆ R(A) for any matrices A and B,

(2.13) R(A) = R(AA†A) ⊆ R(AA†) ⊆ R(A),

by which we see that R(A) = R(AA†). The same arguments with properties (ii) and (iv) and the

roles reversed gives a similar result for A†A.

(⇐) If A† satisfies (a) then AA† is symmetric which gives (iii). Furthermore,

(2.14) AA†A = PR(A)A = A,

so we have (i). By similar reasoning, (b) gives (ii) and (iv).

Corollary 2.8. If A† satisfies (i)-(iv) then rankA† = rankA.

Proof. We have rankA = rankPR(A). Since dimR(AB) ≤ dimR(B) for any matrices A and B,

this implies that

(2.15) rankA = rankPR(A) = rankAA† ≤ rankA†.

On the other hand,

(2.16) rankA† = rankPR(A†) = rankA†A ≤ rankA.

7



Corollary 2.9. If A† satisfies (i)-(iv) then R(A†) = R(AT ).

Proof. If x ∈ N(A) = R(AT )⊥ then

(2.17) PR(A†)x = A†Ax = 0.

Therefore, N(A) ⊆ N(PR(A†)). Since PR(A†) is the orthogonal projection onto R(A†), we have

N(A) ⊥ R(A†). It follows that R(AT )⊥ = N(A) ⊆ R(A†)⊥, and so R(A†) ⊆ R(AT ). Since

rankA† = rankA = rankAT we obtain R(A†) = R(AT ).

Remark. Recall that dimR(AT ) = dimR(A), so the two spaces are isomorphic. What’s more,

A|R(AT ) is an isomorphism, that is, for each y ∈ R(A), there exists a unique x ∈ R(AT ) such that

Ax = y.

Theorem 2.10. For every matrix A ∈ Rm×n there exists a unique Moore-Penrose inverse. That

is, there exists a unique A† ∈ Rn×m satisfying (i)-(iv).

Proof. If A† satisfies (i)-(iv) and z ∈ R(A)⊥ then by Theorem 2.7

(2.18) A†z = A†AA†z = A†PR(A)z = A†0 = 0.

For any y ∈ R(A), denote by xy the unique point in R(AT ) such that Axy = y. Then y = PR(A)y =

AA†y. Since by Corollary 2.9, R(A†) = R(AT ) we must have A†y = xy.

Thus far we have shown that the only possible definition of A† that satisfies (i)-(iv) is to have

A†z = 0 for z ∈ R(A)⊥ and A†y = xy, which establishes uniqueness. For existence, we show that

this definition satisfies (a) and (b) in Theorem 2.7.

If y ∈ R(A) then AA†y = Axy = y. Furthermore, for z ∈ R(A)⊥ we have AA†z = 0. Therefore

AA† = PR(A). For xy ∈ R(A†), where y ∈ R(A), we have A†Ax = x. If z ∈ N(A) then it is

immediate that A†Az = 0 so A†A = PR(A†).

The Moore-Penrose inverse is often viewed as an equation solving inverse. Consider the system

Ax = b. If the system is consistent, that is, b ∈ R(A), then a solution is given by x = A†b since

Ax = AA†b = PR(A)b = b. If the system is inconsistent, then x = A†b is a least squares solution

of Ax = b. Note that we have not assumed A has full column rank.

8



The singular value decomposition gives a convenient method for computing A†. Recall that

any A ∈ Rm×n has a singular value decomposition

(2.19) A = UΣV T ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal and Σ ∈ Rm×n has block form

(2.20) Σ =

Σ0 0

0 0

 ,
where Σ0 ∈ Rr×r is the diagonal matrix Σ0 = diag(σ1, . . . , σr) and σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Theorem 2.11. Let A = UΣV T be a singular value decomposition of A ∈ Rm×n. Then

(2.21) A† = V Σ†UT , where Σ† =

Σ−1
0 0

0 0

 ∈ Rn×m.

Proof. We first verify that Σ† is in fact the Moore-Penrose inverse of Σ. To see this,

(2.22) ΣΣ† =

Σ0 0

0 0


Σ−1

0 0

0 0

 =

I 0

0 0

 ∈ Rm×m,

which is clearly symmetric. Similarly,

(2.23) Σ†Σ =

I 0

0 0

 ∈ Rn×n

is symmetric. Also, using these identities, it is immediate that ΣΣ†Σ = Σ and Σ†ΣΣ† = Σ†.

9



We now show that A† satisfies (i)-(iv). We have

AA†A = UΣV TV Σ†UTUΣV T = UΣΣ†ΣV T = UΣV T = A,(2.24)

A†AA† = V Σ†UTUΣV TV Σ†UT = V Σ†ΣΣ†UT = V Σ†UT = A†,(2.25)

(AA†)T = (UΣΣ†UT )T = U(ΣΣ†)TUT = UΣΣ†UT = AA†,(2.26)

(A†A)T = (V Σ†ΣV T )T = V (Σ†Σ)TV T = V Σ†ΣV T = A†A.(2.27)

Remark. The singular value decomposition of a matrix is not unique. The matrix Σ is unique,

but the matrices U and V are not. In spite of this, the Moore-Penrose inverse is unique. That is,

for any singular value decomposition of A, the above theorem gives a method for computing the

unique Moore-Penrose inverse A†.

There are other inverses that are similar to the Moore-Penrose because they share one or more

of properties (i)-(iv) from Definition 2.6 on Page 6. These are collectively called (i, j, k)-inverses,

referring to an inverse which satisfies the ith, jth, and kth properties but not the remaining property.

It is not necessary to have three properties. For instance, in this thesis we make use of a (1,2)-

inverse. That is, an inverse satisfying properties (i) and (ii) but not (iii) or (iv).

2.2.2 The Drazin Inverse. There are many spectral properties of square matrices that are

not preserved by the Moore-Penrose inverse. For example, If A and B are similar, invertible

matrices, it follows that A−1 and B−1 are similar. This is not true with the Moore-Penrose

inverse. Furthermore, it is not always the case that (A2)† = (A†)2. Of course, we cannot hope for

the property (AB)† = B†A† either. For these properties we turn to a spectral generalized inverse,

called the Drazin inverse. The outline of this section follows [1, Chapter 7].

We use the convention A0 = I. Recall that for any two matrices A and B, R(AB) ⊆ R(A).

Therefore, for A ∈ Rn×n we obtain the nested sequence

(2.28) Rn = R(A0) ⊇ R(A1) ⊇ R(A2) ⊇ · · · .

Since this is a decreasing sequence and Rn is finite-dimensional there exists a smallest nonnegative
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integer k such that R(Ak) = R(Ak+1) = R(Ak+2) = · · · . Equivalently, rankAk = rankAk+1 =

rankAk+2 = · · · , which also implies N(Ak) = N(Ak+1).

Definition 2.12. For a matrix A ∈ Rn×n, the smallest nonnegative integer k such that rankAk =

rankAk+1 is called the index of A and is denoted IndA.

Remark. The matrix A is invertible if and only if IndA = 0 since Rn = R(I) = R(A0) = R(A1) if

and only if A is full rank.

Definition 2.13. For A ∈ Rn×n with IndA = k, the Drazin inverse of A is the unique matrix

AD satisfying

(i) ADAAD = AD,

(ii) AAD = ADA,

(iii) Ak+1AD = Ak.

We are obliged to show that such a matrix exists and is unique.

Proposition 2.14. Let A ∈ Rn×n have index k. Then R(Ak) and N(Ak) are complementary

subspaces. That is, Rn = R(Ak)⊕N(Ak).

Proof. The Rank-Nullity Theorem implies that dimR(Ak) + dimN(Ak) = n. Therefore, to show

that R(Ak) and N(Ak) are complementary subspaces, it is sufficient to show that R(Ak)∩N(Ak) =

{ 0 }. For k = 0 this is immediate. If k ≥ 1 and y ∈ R(Ak) ∩ N(Ak) then y = Ax for some

x ∈ R(Ak−1). However, since y ∈ N(Ak), 0 = Aky = Ak+1x. Thus x ∈ N(Ak+1). But k = IndA

so N(Ak+1) = N(Ak). Therefore, y = Akx = 0 and R(Ak) ∩N(Ak) = { 0 }.

Remark. The space N(Ak) is the generalized eigenspace of A corresponding to the eigenvalue λ = 0

and R(Ak) is the direct sum of the nonzero generalized eigenspaces of A.

Recall that for a matrix A ∈ Rn×n, a subspace U ⊆ Rn is A-invariant if x ∈ U implies that

Ax ∈ U .

Proposition 2.15. If k = IndA for A ∈ Rn×n then N(Ak) and R(Ak) are A-invariant subspaces

of Rn.
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Proof. If x ∈ R(Ak) then Ax = R(Ak+1) = R(Ak) since k = IndA. Therefore R(Ak) is A-

invariant. If x ∈ N(Ak), then Ax ∈ N(Ak−1) ⊆ N(Ak), hence N(Ak) is also A-invariant.

Recall that a square matrix N is nilpotent of order k if k is the smallest nonnegative integer

such that Nk = 0 and Nk−1 6= 0. The zero matrix is nilpotent of order 1.

Lemma 2.16. Let A ∈ Rn×n with IndA = k be given and let r = rankAk. Then there exists an

invertible P ∈ Rn×n such that

(2.29) A = P

M 0

0 N

P−1,

where M ∈ Rr×r is invertible and N ∈ R(n−r)×(n−r) is nilpotent of order k.

Proof. Let p1, . . . , pr be a basis for R(Ak) and pr+1, . . . , pn be a basis for N(Ak). By Proposition

2.14, R(Ak) and N(Ak) are complementary subspaces. It follows that p1, . . . , pn is a basis for

Rn and P =
[
p1 . . . pn

]
is invertible. By Proposition 2.15, R(Ak) and N(Ak) are invariant

subspaces of A, therefore, P−1AP has the form

(2.30) P−1AP =

M 0

0 N

 .
Where M ∈ Rr×r is the action of A on R(Ak) and N ∈ R(n−r)×(n−r) is the action of A on N(Ak).

It is immediate then that M is invertible and N is nilpotent of order k.

Theorem 2.17. Every square matrix has a unique Drazin inverse.

Proof. Given A ∈ Rn×n, let P , M , and N be the matrices in the decomposition (2.29) guaranteed

by Theorem 2.16. Define

(2.31) AD = P

M−1 0

0 0

P−1.

We claim that AD satisfies (i)-(iii) in Definition 2.13. By inspection, ADAAD = AD, so (i) is
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satisfied. For the second,

(2.32) AAD = P

M 0

0 N

P−1P

M−1 0

0 N

P−1 = P

I 0

0 0

P−1 = ADA,

so (ii) is satisfied. Note that

(2.33) Ak = P

Mk 0

0 0

P−1,

since N is nilpotent of order k. Therefore,

(2.34) Ak+1AD = P

Mk+1 0

0 0

P−1P

M−1 0

0 0

P−1 = P

Mk 0

0 0

P−1 = Ak.

To show uniqueness, suppose X satisfies (i)-(iii) and write

(2.35) P−1XP =

X1 X2

X3 X4

 .
By (iii),

(2.36) P

Mk 0

0 0

P−1 = Ak = Ak+1X = P

Mk+1X1 Mk+1X2

0 0

P−1.

Since P is invertible, Mk = Mk+1X1 and 0 = Mk+1X2. Since M is invertible, X2 = 0 and

MX1 = I, or X = M−1. By (ii) and (iii)

(2.37) P

 Mk 0

X3M
k 0

P−1 = XAk+1 = Ak = P

Mk 0

0 0

P−1,

from which it follows that X3 = 0. By (i) and (ii), we have that AX2 = X. Therefore, NX2
4 = X4.

Thus, Nk−1X4 = NkX2
4 = 0. But then Nk−2X4 = Nk−1X2

4 = 0. Continuing, we finally arrive at
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X4 = N0X4 = N1X2
4 = 0, hence X = AD is unique.

Remark. By (2.32) in the proof of the previous theorem, AADx = x for x ∈ R(Ak) and AADx = 0

for x ∈ N(Ak). It follows that AAD = ADA is the projection onto R(Ak) along N(Ak).

2.3 Limits and Summation

In the study of Markov chains, the series

(2.38)
∞∑
k=0

T k = I + T + T 2 + T 3 + · · ·

is of fundamental importance. In this section we determine when the series converges and what

the limit is.

A matrix norm is a norm on Rm×n that satisfies the submultiplicative property ‖AB‖ ≤

‖A‖‖B‖. It follows that ‖Ak‖ ≤ ‖A‖k. If ‖T‖ < 1 then limk→∞ ‖T k‖ ≤ limk→∞ ‖T‖k = 0. For

any matrix norm, |Ti,j | ≤ ‖T‖ so‖T‖ < 1 implies that limk→∞ T k = 0.

Proposition 2.18. If ‖T‖ < 1 for some matrix norm ‖ · ‖ then (2.38) converges to (I − T )−1.

Proof. If we multiply the partial sums of (2.38) by (I − T ) we obtain

(2.39) (I − T )
N∑
k=0

T k = I − TN+1.

Since T k → 0 as k →∞, we obtain the desired result.

Let σ(T ) be the spectrum, or set of eigenvalues, of T . The spectral radius is

(2.40) ρ(T ) = max
λ∈σ(T )

|λ|.

Note that for any induced matrix norm, the inequality, ‖Tx‖ ≤ ‖T‖‖x‖ implies that |λ| ≤ ‖T‖.

Therefore, ρ(T ) ≤ ‖T‖. Thus, ‖T‖ < 1 implies ρ(T ) < 1 but the converse is not necessarily true.

If ρ(T ) < 1, we can show that (2.38) converges to (I−T )−1. To do so, we appeal to Jordan forms.

We give a brief review of Jordan forms here and refer the reader to [11] for more details.
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The Jordan form of a diagonalizable matrix is the diagonal matrix D = diag(λ1, . . . , λn). If a

matrix is not diagonalizable, the Jordan form becomes more complicated. This can only occur if

the matrix has repeated eigenvalues. If A is n× n with r < n distinct eigenvalues λ1, . . . , λr, then

A is similar to a sum of the form

(2.41) P−1AP = D + J,

where D and J are block diagonal matrices D = diag(D1, . . . , Dr) and J = diag(J1, . . . , Jr). Here

Di and Ji are both mi ×mi matrices, where mi is the algebraic multiplicity of λ1 and Di is the

scalar matrix Di = λiI.

The blocks Ji, called Jordan segments, have a block structure Ji = diag(J (1)
i , . . . , J

(pi)
i ). Each

block J (k)
i is called a Jordan block. It is a nilpotent matrix of the form

(2.42) J
(k)
i =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

...

0 0 0 · · · 1

0 0 0 · · · 0


.

Each Jordan segment J (k)
i is a n(k)

i × n
(k)
i matrix and is nilpotent of order n(k)

i − 1. Furthermore,

the ones in J
(k)
i advance up diagonals with each power. That is, the ones in J

(k)
i lie on the first

super-diagonal. (J (k)
i )2 has a similar structure but with ones on the second super-diagonal, etc.

If a Jordan block is 1 × 1, it is just the scalar zero. If an entire Jordan segment is zero, then for

that eigenvalue, A is diagonalizable. This occurs when the geometric multiplicity of λi equals its

algebraic multiplicity, in which case we say that λi is semisimple.

Jordan forms are an essential tool for analyzing the convergence of (2.38). Note that T k =

P (D + J)kP−1. Therefore, T k converges if and only if (D + J)k converges. Similarly,

(2.43)
∞∑
k=0

T k =
∞∑
k=0

(
P (D + J)P−1

)k
= P

( ∞∑
k=0

(D + J)k
)
P−1.

Therefore, (2.38) converges for T if and only if it converges for the Jordan form D + J of T .
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Lemma 2.19. The limit limk→∞ T k = 0 if and only if ρ(T ) < 1.

Proof. Let D + J be the Jordan form of T and let r = ρ(T ). Note that J is nilpotent of order m.

By the binomial theorem,

(2.44) (D + J)k =
k∑
p=0

(
k

p

)
Dk−pJp.

For p ≥ m, Jp = 0, therefore,

(2.45) (D + J)k =
m∑
p=0

(
k

p

)
Dk−pJp.

For all p < m, Jpi,j is either one or zero. Since D is diagonal,
[
Dk−pJp

]
i,j

= Dk−p
i,i Jpi,j , which is

either Dk−p
i,i or 0. Thus, (D + J)k → 0 is possible only when r < 1. If this is the case, then since

p ≤ m and m is fixed, for large enough k,
(
k
p

)
≤ km+1. Therefore,

(2.46) |[(D + J)k]i,j | ≤ (m+ 1)km+1rk−p → 0, as k →∞.

Corollary 2.20. If ρ(T ) < 1 then (2.38) converges to (I − T )−1.

Proof. Multiplying (I − T ) by partial sums of (2.38) we obtain

(2.47) (I − T )
N∑
k=0

T k = I − TN+1.

By the previous proposition, TN+1 → 0 as N →∞ so we obtain the desired result.

It should be clear that (2.38) converges only when limT k = 0. This implies that ρ(T ) < 1.

However, if ρ(T ) = 1, it is possible that T is Cesaro summable. A unit eigenvalue of T is any

eigenvalue satisfying |λ| = 1.

Theorem 2.21 (see [11]). The series

(2.48) lim
N→∞

1
N

N∑
k=0

T k
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converges if and only if ρ(T ) < 1, or if ρ(T ) = 1, it converges if and only the unit eigenvalues

of T are semisimple. When it converges, the limit is the spectral projection onto N(I − T ) along

R(I − T ). If S = I − T , this may be written in terms of the Drazin inverse as follows.

(2.49) lim
N→∞

1
N

N∑
k=0

T k = I − SSD.

2.4 Stochastic Matrices

A Markov chain is represented by its transition matrix (see Section 3.3), which is a stochastic

matrix. A matrix T is stochastic if Ti,j ≥ 0 and ‖Tj‖1 = 1 for all j, where Tj is the jth column

of T . Sometimes the term stochastic matrix refers to nonnegative matrices whose rows sum to

1. This may be clarified by indicating whether the matrix is column stochastic or row stochastic,

however, in this thesis we deal only with column stochastic matrices and we refer to them simply

as stochastic.

The theory of nonnegative matrices, also called Perron-Frobenius theory, is a rich area of

matrix analysis. We address only a few ideas and refer the reader to [10] and [11] for more details.

Nonnegative matrices fall into two basic categories: reducible and irreducible.

Definition 2.22. Let T be a square nonnegative matrix. T is reducible if there exists a permutation

P such that

(2.50) PTTP =

X 0

Y Z

 ,
where X and Z are both square. If no such permutation exists then T is irreducible.

The way to interpret this definition is using graph theory. A nonnegative n×n matrix may be

interpreted as the adjacency matrix of a directed graph with n nodes. The entry Ti,j corresponds

to the weight from node j to node i and a zero entry indicates that no edge exists. If P is a

permutation matrix then PTTP is the adjacency matrix of an isomorphic graph, that is, a graph

obtained by relabeling the nodes.

Suppose that T is reducible, and that it has already been transformed into the form (2.50). Then

there are no paths from any of the nodes corresponding to the block Z to the nodes corresponding
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to block X. If Y is nonzero then there is some path from X to Z, but once a node in the Z group

has been entered, there is no path back to the X group. In contrast, if T is irreducible, no such

subdivision exists. Such a graph is said to be strongly connected. That is, there exists a path from

any node to any other node.

If T is reducible then the submatrix X is also a square, nonnegative matrix and it is also either

reducible or irreducible. If X is reducible, we may apply another permutation to T to produce a

matrix of the form.

(2.51) T ∼


X1 0 0

X2 X3 0

Y1 Y2 Z

 .

Continuing in this manner we obtain the canonical form for reducible matrices,

(2.52) T =



T11 0 . . . 0 0 0 . . . 0

T21 T22 . . . 0 0 0 . . . 0
...

...
. . .

...
...

...
. . .

...

Tr1 Tr2 . . . Trr 0 0 . . . 0

Tr+1,1 Tr+1,2 . . . Tr+1,r Tr+1,r+1 0 . . . 0

Tr+2,1 Tr+2,2 . . . Tr+2,r 0 Tr+2,r+2 0
...

...
. . .

...
...

...
. . .

...

Tm1 Tm2 . . . Tmr 0 0 . . . Tmm



.

Each diagonal block Tii is an irreducible matrix. The blocks T11, . . . , Trr are called the transient

classes. The blocks Tr+1,r+1, . . . , Tmm are called the ergodic classes. In terms of the graph of T ,

once the nodes corresponding to the block T11 have been left, they cannot be re-entered. Therefore,

they are transient nodes. A path through the graph then travels down the transient classes until

arriving in one of the ergodic classes. Once a node in an ergodic class has been reached, there is

no path to another ergodic class or back to a transient class.

Proposition 2.23. If T is a stochastic matrix then ρ(T ) = 1 and 1 ∈ σ(T ).

Proof. Since ‖Tj‖1 = 1 for all j, it follows that ‖T‖1 = 1. Therefore, ρ(T ) ≤ 1. However, since all
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the columns of T , or all the rows of TT sum to 1, λ = 1 is an eigenvalue of TT , and therefore T .

We conclude that ρ(T ) = 1.

The previous result and the analysis of Section 2.3 indicate that (2.38) does not converge.

However, Perron-Frobenius theory does guarantee that every unit eigenvalue of a stochastic matrix

is semisimple. Recall that an eigenvalue is semisimple if the algebraic multiplicity equals the

geometric multiplicity. This leads us to state, without proof, the following theorem.

Theorem 2.24. For every stochastic matrix T , the series

(2.53) lim
N→∞

1
N

N∑
k=0

T k = G

converges to G = I − SSD where S = I − T .

Chapter 3. Stochastic Analysis

Finite state Markov chains are a specific class of stochastic processes. In this chapter we develop

the basic theory of probability spaces and stochastic processes.

3.1 Probability Spaces

Probability theory is the principle tool for analyzing models with uncertainty. The key concept

in probability theory is the experiment, for example, rolling a die or tossing a coin. Experiments

are characterized by the fact that the outcome is uncertain, that is, each realization of the ex-

periment may yield different results. Probability spaces provide a mathematical formalism for

probability theory so that the tools of measure theory may be applied. In this section we give a

brief introduction; for a more complete reference, see [4] and [8].

Recall that a σ-algebra F on a set Ω is a collection of subsets of Ω satisfying

(i) ∅ ∈ F .
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(ii) If A ∈ F then Ac ∈ F , where Ac = Ω \A is the complement of A in Ω.

(iii) If A1, A2, . . . ∈ F is countable then ∪iAi ∈ F .

Given a σ-algebra on Ω, a measure is a function µ : F → [0,∞] satisfying

(i) µ(∅) = 0,

(ii) If A1, A2, . . . is a countable disjoint collection of sets in F then

(3.1) µ

( ∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai).

Definition 3.1. A probability space is a triple (Ω,F , P ) where Ω, called the sample space, consists

of all possible outcomes, F is a σ-algebra of measurable subsets of Ω, called events, and P is a

measure P : F → [0, 1] satisfying P (Ω) = 1.

Definition 3.2. If A is a collection of subsets of a sample space Ω, the σ-algebra generated by A,

denoted σ(A), is the smallest σ-algebra over Ω containing A.

Implicit in the definition is a claim that such a σ-algebra exists and is unique. The power set

of Ω is a σ-algebra over Ω containing every subset. Therefore, a σ-algebra containing A exists.

It is straightforward to show that the intersection of σ-algebras is a σ-algebra. Therefore, the

intersection of all σ-algebras on Ω that contain A is the unique smallest σ-algebra σ(A).

Definition 3.3. Given A,B ∈ F , the conditional probability P (A|B) defined by

(3.2) P (A|B)P (B) = P (A ∩B)

is the probability that event A occurs given that event B occurs.

Theorem 3.4 (Bayes’ Rule). For A,B ∈ F ,

(3.3) P (A|B)P (B) = P (B|A)P (A).

Proof. From the definition,

(3.4) P (A|B)P (B) = P (A ∩B) = P (B ∩A) = P (B|A)P (A).
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Theorem 3.5 (Law of Total Probability). Let A1, A2, . . . ∈ F be a countable partition of Ω, that

is, the Ai are pairwise disjoint and ∪iAi = Ω. Then for any A ∈ F ,

(3.5) P (A) =
∞∑
i=1

P (A|Ai)P (Ai).

Proof. Since the Ai are a partition of Ω,

∞∑
i=1

P (A|Ai)P (Ai) =
∞∑
i=1

P (A ∩Ai) = P

( ∞⋃
i=1

A ∩Ai

)

= P

(
A

∞⋃
i=1

Ai

)
= P (A ∩ Ω) = P (A).

(3.6)

Corollary 3.6. Let A1, A2, . . . ∈ F be a countable partition of Ω. Then for any A,B ∈ F ,

(3.7) P (A|B) =
∞∑
i=1

P (A|Ai)P (Ai|B).

3.2 Random Variables

Definition 3.7. A random variable is an F-measurable function X : Ω → R. That is, for any

Borel set B ⊆ R, the preimage under X of B is measurable: X−1(B) ∈ F .

We have insisted that X be measurable with respect to a σ-algebra F . This requirement is

somewhat superfluous as every function X : Ω→ R is measurable with respect to some σ-algebra

on Ω. In fact, one can show that

(3.8) σ(X) =
{
X−1(B)

∣∣B is a Borel set
}

is a σ-algebra on Ω. Clearly X is measurable with respect to σ(X). In fact, σ(X) is the smallest

σ-algebra for which X is measurable and is called the σ-algebra generated by X. Therefore, unless

the σ-algebra is important, we assume F = σ(X).
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Although a random variable is a function, there is some notation that is unique to random

variables. Often, we drop the argument, denoting X = X(ω), and think of X as a variable in its

own right. The notation X ∈ A for A ⊆ R is used to denote the subset of Ω:

(3.9) X ∈ A = X−1(A) = {ω ∈ Ω |X(ω) ∈ A } .

Definition 3.8. The distribution of a random variable X is the measure µ on R defined by

(3.10) µ(A) = P (X ∈ A).

Remark. Because the preimage under X of any Borel set is an F-measurable set in Ω, µ is a

probability measure on a σ-algebra containing all of the Borel sets of R.

There are two fundamental results from measure theory that have great application in prob-

ability theory: the Monotone Convergence Theorem and the Dominated Convergence Theorem.

Before stating them, we remind the reader of a few results from measure theory.

Definition 3.9. Given A ∈ F , The indicator random variable of A, denoted 1A is the random

variable

(3.11) 1A(ω) =


1 ω ∈ A,

0 ω /∈ A.

Definition 3.10. A simple random variable is a random variable S that can be written as a

weighted sum of a finite number of indicator random variables. That is

(3.12) S =
k∑
i=1

αi1Ai
,

where αi ∈ R and Ai ∈ F .

Remark. The Ai may be chosen to be disjoint and we assume that this is the case.

Definition 3.11. The expectation of a random variable X, denoted EX is the integral of X on Ω

22



with respect to P . That is,

(3.13) EX =
∫

Ω

XdP.

Recall from measure theory that an integral of the type used in Definition 3.11 is defined in four

phases. First, for an indicator random variable, E1A = P (A) is the obvious definition. For a simple

function, the desirable linearity property dictates that ES =
∑k
i=1 αiP (Ai). For a nonnegative

random variable X, that is X(ω) ≥ 0 for all ω ∈ Ω, we define EX to be

(3.14) EX = sup {ES | 0 ≤ S ≤ X and S is a simple random variable. }

This expectation may be infinite. However, since P (Ω) = 1 <∞, if X is bounded, so is EX. For

general random variables X, we define the positive part of X by

(3.15) X+(ω) =


X(ω) X(ω) ≥ 0

0 X(ω) < 0

and the negative part of X by

(3.16) X−(ω) =


0 X(ω) ≥ 0

−X(ω) X(ω) < 0.

Therefore, X+ and X− are nonnegative random variables and X = X+ −X−. If either of EX+

or EX− are finite, we define EX = EX+ − EX−. By convention, for α ∈ R, ∞− α = ∞ and

α −∞ = −∞. Only the indeterminant case ∞−∞ is left undefined. A necessary and sufficient

condition for EX to exist and be finite is E|X| <∞.

We now state the Monotone and Dominated Convergence Theorems and a couple of their

corollaries. There are analogous results in measure theory, so we do not prove them here. We

invite the reader to review [4] and [8].

Theorem 3.12 (Monotone Convergence Theorem). Let 0 ≤ X1 ≤ X2 ≤ · · · be a sequence of
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nonnegative, increasing random variables. Then limXk exists and

(3.17) E lim
k→∞

Xk = lim
k→∞

EXk.

Corollary 3.13. Let 0 ≤ X1, X2, . . . be a sequence of nonnegative random variables. Then

(3.18) E

∞∑
k=1

Xk =
∞∑
k=1

EXk.

Theorem 3.14 (Dominated Convergence Theorem). Let X1, X2, . . . be a sequence of random

variables. If there exists a nonnegative random variable Y with EY < ∞ and |Xk| ≤ Y for all k

then limXk exists and

(3.19) E lim
k→∞

Xk = lim
k→∞

EXk.

Corollary 3.15. Let X1, X2, . . . be a sequence of random variables. If there exists a nonnegative

random variable Y with EY <∞ and

(3.20)
N∑
k=0

|Xk| ≤ Y

for all N then
∑
Xk exists and

(3.21) E

∞∑
k=0

Xk =
∞∑
k=0

EXk.

3.3 Markov Chains

In this section we develop the fundamentals of Markov chains. We begin with the general notion

of a stochastic process and then focus in on temporally-homogeneous, finite-state Markov chains.

Definition 3.16. A stochastic process is a sequence of random variables Xk : Ωk → R, k = 0, 1, . . ..

Generally we think of k as a time variable. At each discrete instant of time, an experiment

occurs that is modeled by the random variable Xk. Presumably, the experiments are in some way

related. Often they are the same experiment. In this case Ω0 = Ω1 = · · · .
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For a stochastic process, we are generally interested in the sequence of outcomes X0, X1, . . ..

A result of Kolmogorov allows us to construct a space Ω = Ω0×Ω1× · · · consisting of all possible

sequences of outcomes. In this case ω ∈ Ω is a sequence (ω0, ω1, . . .), where each ωk ∈ Ωk. We

may think of Xk as a function on Ω by setting

(3.22) Xk(ω) = Xk(ωk).

In this setting, we often define X = (X0, X1, . . .) to be the sequence of random variables. Thus,

X is in fact a random variable on Ω.

Definition 3.17. A filtration on a sample space Ω is a sequence of σ-algebras F0 ⊆ F1 ⊆ F2 ⊆ · · · .

A σ-algebra describes the measurable events. In that sense, it is a description of the amount

of information available at time k. For a stochastic process, we choose Fk so that X0, . . . , Xk are

all Fk-measurable. Therefore, unless otherwise specified, we assume that Fk = σ(X0, . . . , Xk) is

the smallest σ-algebra on Ω for which X0, . . . , Xk are all measurable.

Definition 3.18. Let X be a random variable on Ω and let F be a σ-algebra on Ω. The conditional

expectation of X with respect to F , denoted E(X|F) is the unique F-measurable random variable

Y satisfying for all A ∈ F ,

(3.23)
∫
A

XdP =
∫
A

Y dP.

Remark. While it is true that the conditional expectation of X with respect to F exists and is

unique, the proof of these facts is beyond the scope of this thesis; see [4]. By way of notation,

E(X|Y ), where X and Y are random variables, is defined to be E(X|σ(Y )).

Note that conditional expectation differs from conditional probability in that conditional prob-

ability is a number between 0 and 1, whereas the conditional expectation of a random variable is

another random variable. The idea is that Y is the best approximation of X that is measurable

with respect to the σ-algebra F . If X is already measurable with respect to F then E(X|F) = X.

The context of temporally-homogeneous, finite-state Markov chains makes the abstract con-

cepts of filtrations and conditional expectation much more concrete. We only treat temporally
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homogeneous Markov chains in this thesis. Therefore, when referring to a Markov chain, it is

implicit that we mean a temporally homogeneous Markov chain.

Definition 3.19. A stochastic process Xk on Ω = Ω0×Ω1×· · · is a Markov chain if for k = 1, 2, . . .,

(3.24) E(Xk|Fk−1) = E(Xk|Xk−1).

The equality (3.24) is called the Markov property. It says that if we know the outcome of

X0, . . . , Xk−1 then we are no better off for predicting Xk than if we just knew Xk−1.

Definition 3.20. A finite-state Markov chain is a Markov chain in which each Xk takes on values

in some finite subset of R, which we denote by S = { s1, . . . , sn }. Each si is called a state. If

Xk = si we say that the Markov chain is in state si at time k.

By the Markov property,

(3.25) P (Xk = si|X1 = si1 , X2 = si2 , . . . , Xk−1 = sik−1) = P (Xk = si|Xk−1 = sik−1),

that is, the probability of transitioning into state si at time k depends only on the state at time

k − 1.

Definition 3.21. The transition matrix of a finite-state Markov chain Xk with n states is the

n× n stochastic matrix T whose entries are

(3.26) Ti,j = P (Xk = si|Xk−1 = sj).

Remark. Note that Ti,j is independent of k. That is, we are assuming that the probability of

moving from state sj to state si in a single step is the same regardless of the time. This is precisely

what we mean by temporally homogeneous. This assumption simplifies much of the analysis while

still describing a surprising breadth of phenomena. A simple application of Theorem 3.5 shows

that T is stochastic.

Proposition 3.22. For all m ≥ 0,

(3.27) P (Xk+m = si|Xk = sj) = [Tm]i,j .
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Proof. The proof is by induction on m. By Corollary 3.6,

P (Xk+m = si|Xk = sj) =
n∑
h=1

P (Xk+m = si|Xk+m−1 = sh)P (Xk+m−1 = sh|Xk = sj)

=
n∑
h=1

Ti,h
[
Tm−1

]
h,j

= [Tm]i,j .

(3.28)

Let µ be the distribution of Xk. Since Xk takes on finitely many values in R, µ is completely

described by point-masses at s1, . . . , sn. Therefore, there is a unique correspondence between

distributions of Xk and stochastic vectors in Rn and we use these two representations interchange-

ably. Thus, when we refer to the initial-distribution of a finite-state Markov chain, we mean the

stochastic vector µ ∈ Rn defined by

(3.29) µi = P (X0 = si).

Given an initial distribution µ, there is a unique probability measure Pµ on Ω satisfying

(3.30) Pµ(X0 = si) = µi, and Pµ(Xk = si|Xk−1 = sj) = Ti,j ,

see, for example, [4]. Let Eµ denote expectation with respect to Pµ:

(3.31) EµY =
∫

Ω

Y dPµ.

Theorem 3.23. Let Xk be a finite-state Markov chain with initial distribution µ and transition

matrix T . Then for k = 0, 1, 2, . . . ,

(3.32) Pµ(Xk = si) =
[
T kµ

]
i
.

Proof. We proceed by induction on k. For k = 0 the result is obvious since Pµ(X0 = si) =
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[
T 0µ

]
i

= µi. By Theorem 3.5,

Pµ(Xk = si) =
n∑
h=1

Pµ(Xk = si|Xk−1 = sh)Pµ(Xk−1 = sh)

=
n∑
h=1

Ti,h
[
T k−1µ

]
h

=
[
T kµ

]
i
.

(3.33)

Chapter 4. Numerical Analysis

Modern computers have made it possible to solve increasingly large and computationally complex

problems. However, computers suffer from the limitations of time, space, and precision. This

necessitates a careful numerical analysis of algorithms that are intended to solve applied problems.

In this chapter we review some of the fundamental concepts of numerical analysis.

4.1 Complexity

An analysis of the complexity of an algorithm is generally split into two pieces: the temporal

complexity and the spatial complexity. Temporal complexity refers to the amount of time required

to complete an operation. This is typically measured in terms of floating point operations (FLOPs).

Spatial complexity is the amount of space, or memory, required by the algorithm and is generally

measured in bytes.

Since the exact number of operations and the time each takes to complete varies by machine,

as does the amount of memory, we typically describe complexity using the less detailed and more

practical big-O notation.

Definition 4.1. Let f(x) and g(x) be real-valued functions defined on some subset of the reals.

We say that f(x) is big-O of g(x), denoted f(x) = O(g(x)), as x → x0 if there exists M > 0 and
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δ > 0 such that

(4.1) |f(x)| ≤M |g(x)|, x ∈ (x0 − δ, x0 + δ).

Example 4.2. Let f : N→ N be given by f(n) = 3n3 + 3n2 + 2. Then f(n) = O(n3) as n→∞

since for M = 4 and sufficiently large n, |f(n)| ≤ 4n3.

Using big-O notation, we say an algorithm has temporal complexity O(t(n)) and spatial com-

plexity O(s(n)) if the number of FLOPs for a problem of size n is a function which is O(t(n)) as

n→∞ and the number of bytes required for a problem of size n is O(s(n)) as n→∞.

Example 4.3. Consider the problem of adding n floating point numbers x1, . . . , xn. The basic

algorithm is

Algorithm 4.4. (i) Initialize s = 0.

(ii) For i = 1, . . . , n, set s = s+ ni.

This algorithm requires n + 1 floating point operations. One to initialize s = 0 and then one

for each addition s = s+ xi. It also requires n+ 1 “pieces” of memory, one for s and one for each

xi. The number of bytes depends on the machine and the precision, however, it is clearly some

constant multiple of n + 1. Therefore, we say that the algorithm has temporal complexity O(n)

and spatial complexity O(n).

4.2 Conditioning

Conditioning is a measure of the sensitivity of a function to changes in the inputs. The outline of

this section follows [14, Chapter 12].

Definition 4.5. For a given function f : Rn → Rm, the absolute condition number of f at a point

x is

(4.2) a(x) = lim
δ→0

sup
‖δx‖≤δ

‖δf(x)‖
‖δx‖

,

where δf(x) = f(x+ δx)− f(x).
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Remark. We hasten to point out that the conditioning of a problem has absolutely nothing to do

with any specific algorithm for computing f . Conditioning is a property of the function itself, not

how the function is implemented on a computer. We also note that on a finite-dimensional vector

space, the choice of norm is often unimportant since any two norms differ by at most a constant

multiple independent of x. Therefore, we typically use the norm that is convenient for the problem.

Definition 4.6. For a given function f : Rn → Rm, the relative condition number of f at a point

x is

(4.3) κ(x) = lim
δ→0

sup
‖δx‖≤δ

‖δf(x)‖
‖f(x)‖

/
‖δx‖
‖x‖

,

where δf(x) = f(x+ δx)− f(x).

Remark. Relative errors are generally more informative that absolute errors because they are

invariant of scale. Furthermore, relative errors are typically used in defining and implementing

finite-precision arithmetic, see Section 4.3.

The condition number is a unitless quantity which reflects how perturbations in inputs are

magnified by the function f . The larger the condition number, the greater the change caused by

a fixed-sized perturbation. Whether a particular condition number is acceptable depends largely

on the problem.

The relative condition number satisfies

(4.4) κ(x) = lim
δ→0

sup
‖δx‖≤δ

‖δf(x)‖
‖δx‖

‖x‖
‖f(x)‖

‖x‖
‖f(x)‖

a(x).

Often we are interested in uniform bounds for κ = κ(x) or a = a(x). Note that

(4.5) κ(x) = lim
δ→0

sup
‖δx‖≤δ

‖δf(x)‖
‖δx‖

‖x‖
‖f(x)‖

‖x‖
‖f(x)‖

a(x).

Thus, the relative condition number may be determined in terms of the absolute condition number.

For a function f(x, y) of two variables, we often evaluate κx and κy separately. That is, we fix y

and treat f as a function of x to determine κx, then we reverse roles for κy. The next few examples

illustrate these ideas.
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Example 4.7. Consider the problem of matrix-vector multiplication for an invertible matrix.

That is, consider the function f(A, x) = Ax where A ∈ Rn×n is invertible and x ∈ Rn. For the

condition number with respect to A we have

(4.6) (A+ δA)x = b+ δb.

That is, perturbing A by δA produces the perturbed output b + δb where b = Ax is the solution

to the unperturbed problem. In other words, δf = δb. Therefore,

(4.7) δAx = δb.

Therefore, ‖δb‖ = ‖δAx‖ ≤ ‖δA‖‖x‖. Hence,

(4.8) aA = lim
δ→0

sup
‖δA‖≤δ

‖δb‖
‖δA‖

≤ lim
δ→0

sup
‖δA‖≤δ

‖δA‖‖x‖
‖δA‖

= ‖x‖.

It follows that

(4.9) κA = aA
‖A‖
‖b‖
≤ ‖A‖‖x‖
‖Ax‖

=
‖A‖‖A−1Ax‖
‖Ax‖

≤ ‖A‖‖A−1‖.

Example 4.8. Consider the same problem: f(A, x) = Ax = b, but now treat f as a function of x

for fixed A. A perturbation δx yields the system

(4.10) A(x+ δx) = b+ δb,

where again, Ax = b. Therefore, Aδx = δb and it follows that ‖δb‖ ≤ ‖A‖‖δx‖. Hence,

(4.11) ax = lim
δ→0

sup
‖δx‖≤δ

‖δb‖
‖δx‖

≤ lim
δ→0

sup
‖δx‖≤δ

‖A‖‖δx‖
‖δx‖

= ‖A‖.

Notice the symmetry between aA and ax. For the relative condition number,

(4.12) κx = ax
‖x‖
‖b‖
≤ ‖A‖ ‖x‖

‖Ax‖
≤ ‖A‖‖A−1‖.
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Example 4.9. Now consider the function g(A, b) = x where Ax = b and A is invertible. Since

g(A, b) = f(A−1, b),

(4.13) aA ≤ ‖b‖, κA ≤ ‖A‖‖A−1‖, ab ≤ ‖A−1‖, κb ≤ ‖A‖‖A−1‖.

Remark. It is a fortunate (and somewhat miraculous) coincidence that the relative condition num-

ber in every case is bounded by ‖A‖‖A−1‖. That is, whether we are performing matrix-vector

multiplication or solving a linear system, whether we treat A, x, or b as the input, we get the same

bound κ ≤ ‖A‖‖A−1‖. Because of this, ‖A‖‖A−1‖ is called the condition number of the matrix

A. In fact, our analysis does not actually require A to be invertible. We could instead use the

Moore-Penrose inverse defined in Section 2.2.1 to get κA = ‖A‖‖A†‖. In terms of the 2-norm this

is κA = σ1
σr

where σ1 and σr are the largest and smallest singular values of A respectively.

4.3 Finite-Precision Arithmetic

Digital computers use finite-precision arithmetic. For scientific computing applications, this is

typically implemented using IEEE floating point arithmetic; see, for example [3, 5, 14]. We do not

go into much depth on finite-precision arithmetic here, although a basic understanding is essential

to analyze the stability of numerical algorithms.

Any finite-precision arithmetic system necessarily has bounds on the largest magnitude it can

represent. For IEEE double-precision arithmetic, this is approximately 10308. That is, a double-

precision floating-point number can represent a number in the range of ±10308. More importantly,

not every number in this range can be represented. For any x in the representable range of a

floating point system, let fl(x) denote the best floating point representation. That is, fl(x) is the

representable number that is closest to x. The standard model for floating-point arithmetic specifies

that there exists a number u, called the unit roundoff, such that for any x in the representable

range, there exists δ with |δ| ≤ u such that

(4.14) fl(x) = (1 + δ)x.

That is, the relative error in fl(x) is no more than u. If “op” denotes any of the standard operations
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+,−,×, /, then for x, y and x op y in the representable range,

(4.15) fl(x op y) = (1 + δ)(x op y),

where |δ| ≤ u. That is, the relative error in computing x op y is at most u. Any reasonable

algorithm involves more than a single operation. Let

(4.16) γk =
ku

1− ku
, and γ̃k =

cku

1− cku
,

where c is a small integer constant independent of k. The following result shows how errors from

multiple operations combine.

Lemma 4.10 (see [5, pp. 67]). If |δ| ≤ γk and |ε| ≤ γj then (1 + δ)(1 + ε) = (1 + ξ) where

|ξ| ≤ γk+j.

4.4 Stability

Whereas conditioning is a measure of the sensitivity of a function to perturbation, stability at-

tempts to measure the susceptibility of an algorithm to roundoff. Of course, the roundoff that

actually occurs depends on the inputs. Furthermore, it is possible for roundoff in different stages

of an algorithm to cancel, yielding a result that is much more accurate than a stability analysis

would suggest. The outline of this section follows [5] and [14].

A variable wearing a hat will denote a computed quantity. For example f̂(x) denotes the

computed value of f(x). Our primary concern is the accuracy of an algorithm. The relative error

of an algorithm is

(4.17)
‖f̂(x)− f(x)‖
‖f(x)‖

.

The smaller the magnitude of the relative error, the more accurate the algorithm.

On a finite-precision machine, roundoff errors are unavoidable. In fact, since we may not even

be able to precisely express the inputs, there is no hope for an algorithm to be very accurate if

a problem is ill-conditioned. With an ill-conditioned problem, the slightest roundoff error in the
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input may result in large errors in the output, even if the algorithm is exact. Stability is a more

realistic measure of the performance of an algorithm.

For a function f : Rn → Rm, let f̂(x) represented the computed value of f(x). Choose ∆x ∈ Rn

and ∆f ∈ Rm satisfying

(4.18) f̂(x) = f(x+ ∆x) + ∆f.

We call ∆f the forward error and ∆x is called the backward error.

The forward errors are what people generally think of when they think of computational errors.

Forward errors are merely variation from the actual value. Backward errors are errors attributed

to the input. Of course, there is no way of knowing where the errors actually occurred, nor is the

decomposition generally unique. However, a decomposition clearly exists by setting ∆x = 0 and

∆f = f̂(x)− f(x).

Definition 4.11. An algorithm is forward stable if for fixed n and arbitrary x ∈ Rn, there exists

a forward error ∆f and a backward error ∆x satisfying (4.18) and

(4.19)
‖∆f‖
‖f‖

= O(u),
‖∆x‖
‖x‖

= O(u),

as u→ 0.

Definition 4.12. An algorithm is backward stable if for fixed n and arbitrary x ∈ Rn there exists

a backward error ∆x such that f̂(x) = f(x+ ∆x) and

(4.20)
‖∆x‖
‖x‖

= O(u),

as u→ 0.

Loosely speaking, a forward stable algorithm gives almost the correct answer to almost the

correct question, whereas a backward stable algorithm gives exactly the correct answer to almost

the correct question. Setting ∆f = 0 we see that backward stability implies forward stability.

Backward stability is significant for two reasons. First, backward stable algorithms are desirable

because the answer is plausible. Consider the function f(x) = ex. Suppose we have two algorithms
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for computing f(x) and suppose that on the input x = −10, the first produces the result f̂(x) =

−4.5 × 10−05 and the second produces the output f̂(x) = 4.5 × 10−4. The correct answer is

approximately 4.5× 10−5, therefore, the relative error of the first algorithm is only 2, whereas the

second algorithm has a relative error of 9. In fact, the answer is off by an order of magnitude.

However, the quantity −4.5 × 10−5 does not make sense for the function f(x) = ex > 0. In

a physical problem, this quantity may not even have a meaningful interpretation. Meanwhile,

4.5× 10−4 ≈ e−7.7 is at least the correct value of ex for some value of x close to −10.

The second reason is that backward stability isolates the conditioning of the problem. It is

possible for an algorithm for an ill-conditioned problem to be backward stable. This is because the

large errors in the output may be attributed to small errors in the input. Thus, backward stability

is a better measure of the algorithm, whereas conditioning measures the problem. In fact, we can

make the interplay between conditioning, stability, and accuracy more precise.

Theorem 4.13 (see [14]). Suppose the relative condition number of the function f(x) is κ and an

algorithm f̂ for f is backward stable. Then for any x, the relative error of f̂ satisfies

(4.21)
‖f̂(x)− f(x)‖
‖f(x)‖

= O(κu).

The theorem indicates that the accuracy of a backward stable algorithm is as good as the

precision of the arithmetic system and the conditioning of the problem allow. We conclude our

discussion of stability by stating two results that we shall use in our stability analysis. Recall that

|A| is the matrix whose (i, j) entry is |Ai,j |.

Theorem 4.14 (see [5, p. 63]). Let x and y be vectors in Rn. Then the computed inner product

fl(xT y) satisfies

(4.22) fl(xT y) = (x+ ∆x)T y = xT (y + ∆y), |∆x| ≤ γn|x|, |∆y| ≤ γn|y|.

Theorem 4.15 (see [5, p. 361]). For nonsingular A ∈ Rn×n and b ∈ Rn, solving the system

Ax = b using the QR factorization computed by the Householder algorithm satisfies the following
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error bounds for the computed quantity x̂,

(4.23) (A+ ∆A)x̂ = b,

where

(4.24) ‖aj‖2 ≤ γ̃n2‖aj‖2, j = 1, . . . , n.

Chapter 5. Transition Events

In this chapter we make precise the notion of a transition event. We define two types of transition

events: cumulative transition events and time-average transition events. We then derive expressions

for computing the expectation of these transition events in terms of the transition matrix T , a mask

M , and the initial distribution µ.

A cumulative transition event describes the transient behavior of a reducible Markov chain.

To simplify the analysis, we begin with the common case of an absorbing Markov chain, a specific

case of reducible Markov chains. We then generalize the analysis to reducible Markov chains. In

every case we provide examples of transition events.

5.1 Cumulative Events on Absorbing Chains

A mask is a matrix M ∈ Rn×n that describes the weights assigned to the transitions of a Markov

chain. Here Mi,j is the weight assigned to the transition from sj to si. The transition event for

M is the random variable whose value on any realization is the sum of the mask entries,

(5.1) YM =
∞∑
k=0

MXk+1,Xk
.
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Lemma 5.1. Given M ∈ Rn×n,

(5.2) EµMXk+1,Xk
=

n∑
i=1

[
(M � T )T kµ

]
i
.

Proof. By total probability (see Theorem 3.5)

EµMXk+1,Xk
=

n∑
i,j=1

Mi,jPµ(Xk+1 = si, Xk = sj)

=
n∑

i,j=1

Mi,jPµ(Xk+1 = si|Xk = sj)Pµ(Xk = sj)

=
n∑

i,j=1

Mi,jTi,j
[
T kµ

]
j

=
n∑
i=1

[
(M � T )T kµ

]
i
.

Let A ⊂ S denote the absorbing states of Xk; that is, sj ∈ A if P (Xk+1 = sj | Xk = sj) = 1,

or equivalently, Tj,j = 1. The Markov chain Xk is absorbing if A 6= ∅ and there exists k ∈ N such

that

(5.3) P (Xk ∈ A | X0 = sj) > 0, j = 1, . . . , n.

In other words, an absorbing chain is a reducible chain in which the ergodic classes are single

states; see Section 2.4. Without loss of generality, the transition matrix of an absorbing chain

assumes the form

(5.4) T =

AT 0

BT I

 ,
where AT ∈ Rt×t and t = n − |A| is the number of transient states. Thus, AT and BT are the

transitions leaving the t transient states. In particular, the diagonal entries of AT are strictly less

than 1. Furthermore,

(5.5) T k =

 AkT 0

BT
∑k−1
m=0A

m
T I

 .
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Lemma 5.2. If T is the transition matrix of an absorbing Markov chain then the spectral radius

of AT satisfies ρ(AT ) < 1. Moreover, (I −AT )−1 exists and

(5.6) (I −AT )−1 =
∞∑
k=0

AkT .

Proof. Since there is a finite path with positive probability from any state to an absorbing state,

it follows that for some k ≥ 0, BTk has a nonzero entry in each column. That is, the block of

transitions from the transient states to the absorbing states is nonzero for each transient state.

Since T k is stochastic, it follows that ‖ATk‖1 = ‖AkT ‖1 < 1. Therefore, ρ(AkT ) < 1, which implies

that ρ(AT ) < 1.

Lemma 5.3. Let M,T ∈ Rn×n be given, where T is the transition matrix of an absorbing Markov

chain. If Mj,j = 0 whenever sj ∈ A then

(5.7)
∞∑
k=0

(M � T )T k = (M � T )

(I −AT )−1 0

0 0

 .
Proof. If sj ∈ A then (M � T )i,j = 0 for i = 1, . . . , n. Using the block form (5.4) for M ,

(5.8) M � T =

AM �AT 0

BM �BT 0

 .
Combining this with (5.5),

(5.9) (M � T )T k =

(AM �AT )AkT 0

(BM �BT )AkT 0

 = (M � T )

AkT 0

0 0

 .
Hence,

∞∑
k=0

(M � T )T k = (M � T )
∞∑
k=0

AkT 0

0 0

 = (M � T )

(I −AT )−1 0

0 0

 .
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Throughout the paper, let

(5.10) Q =

I −AT 0

0 0

 , and Q− =

(I −AT )−1 0

0 0

 .
Note that Q− satisfies (I−T )Q−(I−T ) = (I−T ) and Q−(I−T )Q− = Q− so Q− is a (1,2)-inverse

of I − T ; see Section 2.2. However, it is not always the case that ((I − T )Q−)T = (I − T )Q− or

that (Q−(I−T ))T = Q−(I−T ). Hence, Q− is not the Moore-Penrose inverse; it is not the Drazin

inverse of I − T since I − T and Q− do not necessarily commute. However, it is straightforward

to show that Q− is both the Moore-Penrose inverse and the Drazin inverse of Q.

Theorem 5.4. Let M,T ∈ Rn×n and µ ∈ Rn be given, where T is the transition matrix of an

absorbing Markov chain and µ is stochastic. Set D = diag(Q−µ). If Mj,j = 0 for all sj ∈ A then

the random variable (5.1) has expectation

(5.11) EµYM = tr(MDTT ).

Proof. Suppose that Mi,j ≥ 0 for all i, j so that YM is an increasing series. Then by the Monotone

Convergence Theorem, see Section 3.2, we may exchange the order of summation and expectation,

(5.12) EµYM =
∞∑
k=0

EµMXk+1,Xk
.

Applying Lemma 5.1,

(5.13) EµYM =
∞∑
k=0

n∑
i=1

[
(M � T )T kµ

]
i

=
n∑
i=1

[ ∞∑
k=0

(M � T )T kµ

]
i

.

By Lemma 5.3 and Corollary 2.3,

(5.14) EµYM =
n∑
i=1

[
(M � T )Q−µ

]
i

= tr(MDTT ).
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For general M , let Z be the random variable Z =
∑∞
k=0 |MXk+1,Xk

|. For all m ∈ N,

(5.15)

∣∣∣∣∣
m∑
k=0

MXk+1,Xk

∣∣∣∣∣ ≤
∞∑
k=0

|MXk+1,Xk
| = Z.

The nonnegative case indicates that Eµ|Z| = EµZ < ∞ so that the Dominated Convergence

Theorem allows us to exchange the order of summation with expectation. The remainder of the

argument is identical to the nonnegative case.

Remark. Theorem 5.4 indicates that the condition Mj,j = 0 for sj ∈ A is sufficient to guarantee

that Eµ|YM | <∞. This condition is practically necessary; if sj ∈ A satisfies Pµ(Xk = sj) > 0 for

some k ∈ N then Mj,j 6= 0 implies that Eµ|YM | =∞. Thus, Mj,j = 0 is required of all absorbing

states that are “reachable” from the initial distribution µ.

Example 5.5. Consider an object that moves between n states with transition probabilities Ti,j

and suppose that sn is absorbing. Let d(sj , si) be the distance between sj and si and set

(5.16) Mi,j =


0 j = n

d(sj , si) otherwise.

The random variable (5.1) describes the distance traveled on any realization. If the initial position

of the object has distribution µ then Theorem 5.4 indicates that the expected distance traveled

is given by (5.11). Notice that the quantity depends on the transitions traversed, not the states

visited, so that this event is most naturally a transition event.

5.2 Cumulative Events on Reducible Chains

We now generalize to a reducible Markov chain; see Section 2.4. We assume that the transition

matrix T is in canonical form (2.52). We generalize the block form (5.4) for T to

(5.17) T =

AT 0

BT ET

 ,
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where AT and BT correspond to the transient states and ET is block diagonal containing the

ergodic classes. Let E denote the set of ergodic states.

Theorem 5.6. Set D = diag(Q−µ). For a reducible Markov chain T , if Mi,j = 0 whenever si

and sj are in the same ergodic class, then the random variable (5.1) has expectation

(5.18) EµYM = tr(MDTT ).

Proof. Since ρ(Tii) < 1 for all the transient classes it follows that ρ(AT ) < 1 as in Lemma 5.2.

The condition Mi,j = 0 for si and sj in the same ergodic class guarantees the result of Lemma 5.3.

With these results, the remainder of the proof is identical to the proof of Theorem 5.4.

Example 5.7. Meyer showed that the following quantities may be obtained for absorbing chains

using the Drazin inverse:

(i) The probability of being absorbed into state si ∈ A when initially in state sj /∈ A.

(ii) The expected number of times the chain will be in state si /∈ A when initially in state sj /∈ A.

(iii) The expected number of steps until absorption when initially in state sj /∈ A.

For general reducible chains, Meyer suggests representing each ergodic class by a single ab-

sorbing state and using the above results to determine the same quantities. We can express these

quantities in terms of transition events. Furthermore, we may do so on any reducible chain without

having to convert to an absorbing representation. For any ergodic class Em, let

(5.19) Mi,j =


1 si ∈ Em, sj /∈ E ,

0 otherwise.

Then YM is 1 on any realization which enters Em and zero elsewhere. Thus, EµYM is the probability

of absorption into Em which gives (i) for any reducible chain.

For (ii), given sh /∈ E , let

(5.20) Mi,j =


1 i = h, sj /∈ E ,

0 otherwise.
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Then EµYM is the expected number of arrivals at state sh given the initial distribution µ. Setting

Mi,j = 1 when j = h instead of i = h gives the expected number of departures from state sh.

These quantities may differ depending on the initial distribution.

To find (iii) let

(5.21) Mi,j =


1 sj /∈ E ,

0 otherwise.

Then EµYM is the expected number of steps until absorption into some ergodic class.

5.3 Time-Average Events

A time-average transition event is the average sum of the transition weights

(5.22) lim
N→∞

1
N

N∑
k=0

M −Xk+1, Xk.

By Theorem 2.24, this limit converges to G = I − SSD, where S = I − T .

Theorem 5.8. Set D = diag(Gµ). Then for any stochastic T , the random variable

(5.23) YM = lim
N→∞

1
N

N∑
k=0

MXk+1,Xk

has expectation

(5.24) EµYM = tr(MDTT ).

Proof. For all N ∈ N,

(5.25)
1
N

N∑
k=0

MXk+1,Xk
≤ 2 max { |Mi,j | | 1 ≤ i, j ≤ n }

so that we may apply the Dominated Convergence Theorem. This and the linearity of expectation
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give

EµYm = lim
N→∞

1
N

N∑
k=0

EµMXk+1,Xk

=
n∑
i=1

[
(M � T )

(
lim
N→∞

1
N

N∑
k=0

T k

)
µ

]
i

=
n∑
i=1

[(M � T )Gµ]i = tr(MDTT ).

(5.26)

Remark. If T is reducible, the value of M on the transitions leaving transient states is irrelevant;

the value of YM on any realization depends only on the ergodic class that is entered. Thus, YM

represents the steady-state behavior of T in this case. For example, in the case of an absorbing

chain

(5.27) EµYM =
∑
sj∈A

Pµ(Xk → sj)Mj,j .

If we fix sj ∈ A and set Mj,j = 1 with all other entries zero, then EµYM is the probability of

absorption into sj given the initial distribution µ.

Example 5.9. Consider a hydrogen atom that is excited by an external energy source so that the

atom’s electron is perpetually changing energy states. Let {s1, . . . , sn} be the various allowable

energy levels and Ti,j be the probability that the atom’s electron moves from sj to si. Also, let

µ be the distribution on the electron’s initial position. To determine the portion of light emitted

by the hydrogen atom that is in a particular range, say the visible light range, we set Mi,j = 1 for

any transition that emits visible light and Mi,j = 0 otherwise. Then the portion of light that is

visible in any realization is the time-average random variable given by (5.23). Applying Theorem

5.8, the expected portion of visible light is given by (5.24).
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Chapter 6. Composite Markov Chains

One of the motivating questions for this thesis was to determine the expected number of lead

changes in a turn-based, competitive, stochastic system. Transition events are an excellent way to

answer this question, but in order to describe the transition event, we need a Markov chain that

describes a competitive system.

6.1 Construction

Let T1 ∈ Rn1×n1 and T2 ∈ Rn2×n2 be stochastic matrices and let T = T1 ⊗ T2 ∈ Rn1n2×n1n2

be the Kronecker product of T1 and T2; see Section 2.1. Recall that the entries of T may be

labeled by T(i1,i2),(j1,j2), which represents the (i2, j2) entry of the (i1, j1) block of T and is equal

to T(i1,i2),(j1,j2) = [T1]i1,j1 [T2]i2,j2 .

Proposition 6.1. If T1 ∈ Rn×n and T2 ∈ Rm×m are stochastic then so is T = T1 ⊗ T2.

Proof. It is immediate that T is nonnegative. To show that ‖Tj‖1 = 1 for every column Tj , we

write Tj as T(·,·),(j1,j2) and then sum

‖T(·,·),(j1,j2)‖1 =
n∑

i1=1

m∑
i2=1

T(i1,i2),(j1,j2) =
n∑

i1=1

m∑
i2=1

[T1]i1,j1 [T2]i2,j2

=
n∑

i1=1

[T1]i1,j1
m∑
i2=1

[T2]i2,j2 =
n∑

i1=1

[T1]i1,j1 = 1,

(6.1)

since T1 and T2 are stochastic.

Recall that the Kronecker product is associative. It follows that T1⊗ · · · ⊗Tp is also stochastic

whenever T1, . . . , Tp are stochastic. The stochastic matrix T = T1 ⊗ T2 has an meaningful inter-

pretation. If Xk is the Markov chain of T1 ∈ Rn×n with states {s1, . . . , sn} and Yk is the Markov

chain of T2 ∈ Rm with states {t1, . . . , tm} then

(6.2) T(i1,i2),(j1,j2) = P (Xk+1 = si1 , Yk+1 = ti2 | Xk = sj1 , Yk = tj2).
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Similarly, given stochastic µ1 ∈ Rn and µ2 ∈ Rm, the vector µ = µ1 ⊗ µ2 ∈ Rnm is stochastic and

the same indexing scheme applies:

(6.3) Pµ(X0 = si1 , Y0 = ti2) = µ(i1,i2).

6.2 Lead Changes

Suppose T0 is an absorbing Markov chain representing the progression of an agent to the absorbing

“goal” state. Suppose further that the states are ordered such that higher indices represent being

closer to winning. Then the p-wise Kronecker product T = T⊗p0 represents competition between p

players taking turns. It is natural to ask what the expected number of lead changes is.

For clarity, let p = 2. We count a lead change if on any turn a player comes from behind and

ends in the lead. If a tie is either created or broken on a turn, we count a half a lead change. The

mask for two-player lead changes is given by

(6.4) M(i1,i2),(j1,j2) =



0 sj1 ∈ A or sj2 ∈ A

1 j2 < j1 and i2 > i1

1 j2 > j1 and i2 < i1

1/2 j2 = j1 and i2 6= i1

1/2 j2 6= j1 and i2 = i1

0 otherwise.

When sj1 ∈ A the (i1, j1) block is zero, since the first agent has already won. For sj1 /∈ A the
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(i1, j1) block is

(6.5) M(i1,·),(j1,·) =



0 . . . 0 1/2 1 . . . 1
...

...
...

...
...

0 . . . 0 1/2 1 . . . 1
...

1/2 . . . 1/2 0 1/2 . . . 1/2 0

1 . . . 1 1/2 0 . . . 0
...

...
...

...
...

...

1 . . . 1 1/2 0 . . . 0



.

When p > 2, there are at least two natural ways to define a lead change. The first is to

count a lead change whenever the player in the lead is passed by another. We count a half

lead change for breaking or establishing a tie in the leading position. The second way to extend

lead changes for p > 2 is to count the permutations in the players positions. For example, if

j1 > j2 > · · · > jp and i1 < i2 < · · · < ip, then this complete lead change gets a weight of

M(i1,...,ip),(j1,...,jp) = 1 + · · ·+ p = p(p+ 1)/2.

6.3 Competitive Advantage

There are other questions about competitive systems that can be answered using transition events.

We address only p = 2, that is two-player systems. However, these examples have extensions for

p > 2. Consider the mask

(6.6) M(i1,i2),(j1,j2) =


0 sj1 ∈ A or sj2 ∈ A,

1 si1 ∈ A and si2 /∈ A,

0 otherwise.

The cumulative transition event YM for this mask is the indicator event for player 1 winning. That

is, YM = 1 whenever player 1 wins and 0 otherwise. Thus, EµYM is the probability of player 1

winning. Obviously, a similar mask gives the probability that player 2 wins.
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Consider the mask

(6.7) M(i1,i2),(j1,j2) =


0 sj1 ∈ A or sj2 ∈ A,

1 si1 ∈ A and si2 ∈ A,

0 otherwise.

The cumulative transition event YM for M is the indicator event for a tie. That is YM = 1 if

player 1 and player 2 reach the absorbing state on the same turn and zero otherwise. EµYM is the

probability of a tie.

In many turn-based competitive systems, a tie is broken by declaring player 1 the winner. In

fact, in many games, if player 1 reaches the absorbing state, player 2 is not granted his last turn.

In this case EµYM is the probability that player 1 wins merely for being first in the turn ordering

and is a measure of the advantage of being the first player.

Chapter 7. Computation

In this chapter we characterize the conditioning of cumulative transition events on reducible chains.

The conditioning of time-average events is similar; the only differences arise from the computation

of the Drazin inverse, rather than the (1,2)-inverse for cumulative events. After addressing condi-

tioning, we provide an algorithm for computing the expectation of cumulative transition events on

reducible chains and discuss the complexity and stability of this algorithm.

7.1 Conditioning

Recall the definition of the relative condition number κ given in Section 4.2. In this section, we give

bounds on κ for the function f(T,M, µ) = tr(MDTT ) defined by (5.18). We treat this as three

separate conditioning problems by analyzing the conditioning of f with respect to each input M,T,

and µ individually. This affords an understanding of the sensitivity of (5.18) to perturbations in
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each input.

Although the one-norm is a natural choice for column-stochastic matrices, M and D are not

stochastic and the trace in (5.18) corresponds more naturally to the Frobenius inner product on

the space of matrices. Therefore, we give bounds on the condition number κ in terms of the Frobe-

nius norm ‖A‖F =
√

tr(ATA). By Cauchy-Schwarz, | tr(ATB)| ≤ ‖A‖F ‖B‖F . Furthermore, the

Frobenius norm satisfies the submultiplicative property, that is, ‖AB‖F ≤ ‖A‖F ‖B‖F . Therefore,

(7.1) | tr(MDTT )| = | tr(TTMD)| ≤ ‖T‖F ‖M‖F ‖D‖F .

Theorem 7.1. Set

(7.2) κ =
‖M‖F ‖T‖F ‖(I −AT )−1‖2

| tr(MDTT )|
.

The relative condition numbers for the expectation of transition events have the following bounds:

κM ≤ κ,(7.3a)

κT ≤ κ(1 + ‖T‖F ‖(I −AT )−1‖2),(7.3b)

κµ ≤ κ.(7.3c)

Proof. Recall from Theorem 5.6 and (5.10) that D = diag(ν), where ν = Q−µ. Since µ is stochastic

and ‖ · ‖2 ≤ ‖ · ‖1 we obtain the bound ‖µ‖2 ≤ ‖µ‖1 = 1. Therefore,

(7.4) ‖D‖F =

(
n∑
i=1

d2
ii

)1/2

= ‖ν‖2 = ‖Q−µ‖2 ≤ ‖(I −AT )−1‖2.

For κM , fix T and µ and treat f(M) = tr(MDTT ) as a function of M only. We remark that D is

independent of M . Therefore, for a perturbation δM of M we obtain

‖δf(M)‖F = | tr((M + δM)DTT )− tr(MDTT )|

= | tr(δMDTT )| ≤ ‖δM‖F ‖T‖F ‖(I −AT )−1‖2
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by (7.1) and (7.4). Hence,

(7.5) lim
δ→0

sup
‖δM‖F≤δ

‖δf(M)‖F
‖δM‖F

≤ ‖T‖F ‖(I −AT )−1‖2.

Multiplying by ‖M‖F /‖f(M)‖F = ‖M‖F /| tr(MDTT )| we obtain (7.3a).

The matrix D depends on both T and µ. We denote by DT+δT and Dµ+δµ the diagonal matrix

obtained from T + δT and µ + δµ, respectively, and use a similar notation for ν. A perturbation

δT of T causes a perturbation in Q−. If δAT is the submatrix of δT corresponding to AT , then

(7.6)

(I −AT − δAT )−1 0

0 0

 = (Q− δQ)−,

where δQ is δAT padded with zeros. In the limit as δ → 0, ‖δAT ‖F ≤ ‖δT‖F ≤ δ implies that the

inverse (I −AT − δAT )−1 exists. Note that

(7.7) ν = Q−µ =

(I −AT )−1 0

0 0

µ =

ν̃
0

 ,
where ν̃ ∈ Rt is the transient portion of ν. If µ̃ and δν̃T also represent the transient portions of µ

and δνT , respectively, then

(7.8) (I −AT − δAT )(ν̃ + δν̃T ) = µ̃.

Since (I −AT )ν̃ = µ̃, it follows that

(7.9) δν̃T = (I −AT − δAT )−1δAT ν̃.

Consider f(T ) = tr(MDT ∗) as a function of T only, where M and µ are fixed. Then

‖δf(T )‖F = | tr(MDT+δT (T + δT )T )− tr(MDTT )|

≤ | tr(M(DT+δT −D)TT )|+ | tr(MDT+δT δT
T )|

≤ ‖M‖F ‖DT+δT −D‖F ‖T‖F + ‖M‖F ‖DT+δT ‖F ‖δT‖F ,(7.10)
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by (7.1). We require bounds on ‖DT+δT −D‖F and ‖DT+δT ‖F . In terms of ν we have ‖DT+δT −

D‖F = ‖ν + δνT − ν‖2 = ‖δνT ‖2. Applying (7.9), and noting that ‖(Q − δQ)−‖2 = ‖(I − AT −

δAT )−1‖2 and ‖δQ‖2 = ‖δAT ‖2,

(7.11) ‖δνT ‖2 = ‖(Q− δQ)−δQν‖2 ≤ ‖(I −AT − δAT )−1‖2‖δAT ‖2‖ν‖2.

Clearly, ‖δAT ‖2 ≤ ‖δT‖2 ≤ ‖δT‖F . Combining this fact with (7.4) we obtain,

(7.12) ‖DT+δT −D‖F = ‖δνT ‖2 ≤ ‖(I −AT − δAT )−1‖2‖(I −AT )−1‖2‖δT‖F .

We now turn our attention to ‖DT+δT ‖F = ‖ν + δνT ‖2 ≤ ‖ν‖2 + ‖δνT ‖2. Using (7.4) and (7.12),

(7.13) ‖DT+δT ‖F ≤ ‖(I −AT )−1‖2 + ‖(I −AT − δAT )−1‖2‖(I −AT )−1‖2‖δT‖F .

Putting (7.10), (7.12), and (7.13) together, we have

‖δf(T )‖F
‖δT‖F

≤ ‖M‖F ‖(I −AT )−1‖2(7.14a)

+ ‖M‖F ‖T‖F ‖(I −AT − δAT )−1‖2‖(I −AT )−1‖2(7.14b)

+ ‖M‖F ‖(I −AT − δAT )−1‖2‖(I −AT )−1‖2‖δT‖F .(7.14c)

In the limit as δ → 0, (7.14c) is zero and (I −AT − δAT )−1 = (I −AT )−1 in (7.14b), hence

(7.15) lim
δ→0

sup
‖δT‖F≤δ

‖δf(T )‖F
‖δT‖F

≤ ‖M‖F ‖(I −AT )−1‖2
(
1 + ‖T‖F ‖(I −AT )−1‖2

)
.

Multiplying by ‖T‖F /‖f(T )‖F = ‖T‖F /| tr(MDTT )| we obtain (7.3b).

Denote by δνµ the change in ν due to a perturbation δµ of µ. This satisfies

(7.16) ν + δνµ = Q−(µ+ δµ).
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By multiplying and canceling equal terms, we obtain

(7.17) δνµ = Q−δµ.

We now consider f(µ) = tr(MDTT ) as a function of µ, where M and T are fixed. Applying

(7.1) we obtain

(7.18) ‖δf(µ)‖F = | tr(MDµ+δµT
T )− tr(MDTT )| ≤ ‖M‖F ‖T‖F ‖δνµ‖2.

Using (7.17) we have ‖δνµ‖2 ≤ ‖(I −AT )−1‖2‖δµ‖2. Thus,

(7.19) lim
δ→0

sup
‖δµ‖≤δ

‖δf(µ)‖F
‖δµ‖2

≤ ‖M‖F ‖T‖F ‖(I −AT )−1‖2.

Since µ is stochastic, ‖µ‖F = ‖µ‖2 ≤ ‖µ‖1 = 1. Hence, multiplying (7.19) by ‖µ‖F /‖f(µ)‖F ≤

1/| tr(MDTT )| we obtain (7.3c).

Since T is stochastic, ‖T‖F ≤
√
n. In all the examples given in chapters 5 and 6, ‖M‖F is no

more than order n2. Therefore, the magnitude of κ depends primarily on two factors: ‖(I−AT )−1‖2

and | tr(MDTT )|. As I − AT becomes singular, ‖(I − AT )−1‖2 is unbounded. In this case, the

conditioning may be poor, which is to be expected since the conditioning of the linear system

(I −AT )ν = µ is also poor.

The conditioning may also be poor if tr(MDTT ) is close to zero, particularly when ‖M‖F ‖T‖F ‖(I−

AT )−1‖2 is relatively large. As the trace is a summation, cancelation of large magnitude terms

with opposite signs results in poor conditioning. However, in all the examples in chapters 5 and

6, M is nonnegative. Since D and T are always nonnegative, cancellation is not a problem in this

case, although the order of summation may affect roundoff errors; see [5, p. 63].

Even when M is nonnegative, tr(MDTT ) may be small due to orthogonality. Recall that

tr(ATB) is the Frobenius inner product on Rm×n. Therefore, tr(MDTT ) = tr(DTTM) =

〈TD,M〉F = ‖TD‖F ‖M‖F cos θ where θ is the angle between TD and M . If these matrices

are nearly orthogonal, the condition number may be large. This orthogonality often results from

measuring events that are very unlikely to occur.
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The quadratic dependence on ‖T‖F ‖(I−AT )−1‖2 in the upper bound for κT is to be expected

since EµYM = tr(MDTT ) depends on T in two places: the product DTT and the computation of

ν.

7.2 Implementation

In this section we provide an algorithm for computing (5.18). Let µ̃ and ν̃ be the first t entries of

µ and ν, respectively, where t is the number of transient states and Let Mj and Tj denote the jth

columns of M and T . Then (5.18) may be expressed as

(7.20) tr(MDTT ) =
n∑
i=1

[(M � T )ν]i =
t∑

j=1

νjM
T
j Tj .

Algorithm 7.2. The following computes (7.20) for the inputs T,M , and µ where T is in canonical

form (2.52).

(i) Solve (I−AT )ν̃ = µ̃ by forming theQR factorization of (I−AT ) using Householder reflections;

see, for example [5, 14].

(ii) Compute the first t columns of R = TD, where D = diag(ν) by scaling the jth column of T

by νj .

(iii) Compute ψ =
∑t
j=1M

T
j Rj .

We refer to Steps 1-2 as the setup. This portion of the algorithm depends only on T and µ.

Furthermore, Step 3 depends only on M . If several transition events are to be determined for the

same chain and initial distribution, the setup need only be computed once.

Remark. The matrix I − AT is invertible and diagonally dominant by columns. Gaussian Elim-

ination on such a system requires no pivots and is stable [5]. However, the theoretical bounds

for Gaussian Elimination are insufficient to provide satisfactory bounds for Algorithm 7.2 beyond

n ≈ 2300. It is well-known that Gaussian Elimination generally performs much better in practice

than numerical analysis suggests [5]. This does not change the asymptotic complexity of Algo-

rithm 7.2 but does improve the constants. A MATLAB implementation for absorbing chains which

uses Gaussian Elimination is provided in Figure 7.1.
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% T is the transition matrix
% mu is the initial distribution
% preserves spartsity if T is sparse

% Compute mask independent portion: R

n = size(T,1);
a = sum(diag(T == 1));
t = n - a;
nu = (speye(t)-T(1:t,1:t))\mu((1:t)’);
R = spdiags([nu;zeros(a,1)],0,n,n)*T’;

% now for any masks M1, M2,...
EY1 = full(sum(sum(M1.*R)));
EY2 = full(sum(sum(M2.*R)));

Figure 7.1: A MATLAB implementation of Algorithm 7.2 for absorbing chains in canonical form.

7.3 Complexity

Recall that I − AT ∈ Rt×t, where t is the number of transient states. It is well known that the

temporal complexity of Step 1 is O(t3) and the spatial complexity is O(t2); see, for example [3, 5,

14]. Steps 2 and 3 both have temporal and spatial complexity O(nt). Therefore, the setup requires

O(t3 + nt) time and O(nt) space. Once the setup is completed, (7.20) may be computed in O(nt)

time and space for each mask representing a transition event.

7.4 Stability

In this section we give bounds on the backward errors introduced in the computation of Algo-

rithm 7.2. Recall from Section 4.3 that u denotes the unit roundoff and

(7.21) γk =
ku

1− ku
, and γ̃k =

cku

1− cku
,

where c is a small integer constant independent of k. The following result from Section 4.3 has

been reproduced as a reference.

Lemma 7.3 (see [5, pp. 67]). If |δ| ≤ γk and |ε| ≤ γj then (1+δ)(1+ε) = (1+ξ) where |ξ| ≤ γk+j.

Theorem 7.4. Given T , M and µ the value ψ̂ computed by Algorithm 7.2 is the exact solution for
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the inputs T + ∆T,M + ∆M , and µ, where ∆T and ∆M satisfy the following column-wise bounds

(7.22) ‖∆Tj‖2 ≤ 2
√
nγ̃n2‖Tj‖2, and ‖∆Mj‖2 ≤

(1 + 2
√
n)γ̃n2√

1− 4
√
nγ̃n2

‖Mj‖2,

provided 1− 4
√
nγ̃n2 > 0.

Proof. The computed solution obtained in Step 1 satisfies the following column-wise backward

error bounds [5, p. 361]:

(7.23) (I −AT −∆AT )ν̂ = µ̃+ ∆µ̃, where ‖∆AT j‖2 ≤ γ̃n2‖(I −AT )j‖2, 1 ≤ j ≤ t,

Since Tj is stochastic, 1 = ‖Tj‖1 ≤
√
n‖Tj‖2, hence

(7.24) ‖(I −AT )j‖2 ≤ 1 + ‖Tj‖2 ≤ (
√
n+ 1)‖Tj‖2 ≤ 2

√
n‖Tj‖2.

Setting

(7.25) ∆T =

∆AT 0

0 0

 ,
we obtain the bound

(7.26) ‖∆Tj‖2 = ‖∆AT j‖2 ≤ 2
√
nγ̃n2‖Tj‖2.

Since D is diagonal, the computation in Step 2 to produce the matrix R = TD involves only a

single multiplication in each entry of R. Therefore, the computed result satisfies,

(7.27) R̂i,j = (1 + δi,j)ν̂jTi,j , |δi,j | ≤ u, 1 ≤ i ≤ n, 1 ≤ j ≤ t,

where δi,j is the relative error caused by roundoff in the multiplication ν̂jTi,j . Step 3 is the inner

product of two nt×1 vectors: (vec M)T (vec R̂). The computed result satisfies the following bound
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on backward errors,

(7.28) ψ̂ =
t∑

j=1

n∑
i=1

(1 + εi,j)Mi,jR̂i,j =
t∑

j=1

ν̂j

n∑
i=1

(1 + εi,j)(1 + δi,j)Mi,jTi,j ,

where εi,j is the backward error of the (i, j) entry that results from the computation of the inner

product and satisfies |εi,j | ≤ γnt. This error bound is independent of the order of summation;

the bounds may be improved by a careful ordering of the terms [5, p. 63]. Since |δi,j | ≤ u ≤ γ1,

Lemma 4.10 guarantees that (1 + εi,j)(1 + δi,j) = (1 + ξi,j) where |ξi,j | ≤ γnt+1. To obtain (7.22),

we require a perturbation ∆M satisfying

(7.29)
n∑
i=1

(1 + ξi,j)Mi,jTi,j =
n∑
i=1

(M + ∆M)i,j(T + ∆T )i,j , 1 ≤ j ≤ t.

Recall that ∆T was fixed above when solving the system (I − AT )ν̃ = µ̃. Canceling the term

Mi,jTi,j from the summation and regrouping,

(7.30)
n∑
i=1

(ξi,jMi,jTi,j −Mi,j∆Ti,j) =
n∑
i=1

∆Mi,j(Ti,j + ∆Ti,j), 1 ≤ j ≤ t,

Let ξj be the jth column of the matrix ξ = (ξi,j). For each j, the left hand side of (7.30) is the

scalar quantity

(7.31) bj = (ξj �Mj)TTj −∆TTj Mj ,

where, ξj � Mj is the Hadamard, or entry-wise product. The system (7.30) is equivalent to

(Tj + ∆Tj)T∆Mj = bj , which, for nonzero Tj + ∆Tj , has as a solution

(7.32) ∆Mj =
bj

‖Tj + ∆Tj‖22
(Tj + ∆Tj).

Using our bound on ∆T , Cauchy-Schwarz guarantees

‖Tj + ∆Tj‖22 = ‖Tj‖22 + 2TTj ∆Tj + ‖∆Tj‖22 ≥ ‖Tj‖22 − 2‖Tj‖2‖∆Tj‖2

≥ ‖Tj‖22 − 4
√
nγ̃n2‖Tj‖22 = (1− 4

√
nγ̃n2)‖Tj‖22 > 0,(7.33)
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under the assumption 1− 4
√
nγ̃n2 > 0. Therefore, the computed ψ̂ is the exact solution (7.20) for

the inputs M + ∆M,T + ∆T , and µ. In (7.26) we gave bounds for ∆T . By Cauchy-Schwarz,

‖∆Mj‖2 =
|bj |‖Tj + ∆Tj‖2
‖Tj + ∆Tj‖22

≤
|(ξj �Mj)TTj |+ |MT

j ∆Tj |
‖Tj + ∆Tj‖2

≤ γnt+1‖Mj‖2‖Tj‖2 + ‖Mj‖2‖∆Tj‖2
‖Tj + ∆Tj‖2

≤ γnt+1 + 2
√
nγ̃n2√

1− 4
√
nγ̃n2

‖Mj‖2,

by (7.26) and (7.33) and the observation ‖Tj‖2 ≤ ‖Tj‖1 = 1, since Tj is stochastic. Finally, the

bounds t ≤ n−1 and n ≥ 1 imply that nt+1 ≤ n2, so γnt+1 ≤ γn2 ≤ γ̃n2 and we obtain (7.22).

Remark. For fixed n, (7.22) simplifies to

(7.34)
(1 + 2

√
n)γ̃n2√

1− 4
√
nγ̃n2

≤ 4
√
nγ̃n2

1− 4
√
nγ̃n2

= O(
√
nγ̃n2),

as u→ 0. The quantity ∆Mj obtained in (7.32) is the solution to the optimization problem

(7.35)
minimize ‖∆Mj‖2

subject to (Tj + ∆Tj)T∆Mj = bj .

Chapter 8. Simulations

We conducted a numerical study by computing expectations and comparing them to a Monte Carlo

simulation. We used the game Chutes and Ladders (or Snakes and Ladders), which is characterized

by a substantial number of states (82) and exhibits a gradual drift towards the absorbing state

combined with occasional large jumps. Furthermore, this game is a good illustration of composite

Markov chains as discussed in §6. The MATLAB script used for computing expectations and the

code for the simulations can be found in [7]. We simulated the following events in 100 million

games and determined the sample mean for each. The results are summarized in Table 8.1.
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8.1 Simulated Events

• Second-To-Last Square: This is the number of times that a player gets “stuck” on the second-

to-last square. Remember that if a player spins a number that would place him beyond the

last square, he forfeits his turn.

• Large Ladder Traversal: The number of times a player traverses the largest ladder from

square 28 to square 84.

• Game Length: The number of turns in the game.

In addition to the above events the following were simulated for a two-player game.

• Lead Changes: The number of lead changes in the game as discussed in §6.

• First-player Advantage: This is the indicator event for the first player winning when both

players finish on the same turn. In expectation, it is the probability that the first player wins

by virtue of being the first player.

• First-player Win Frequency: This is the indicator event for the first player winning. In

expectation, this is the probability that the first player wins.

We note that nearly every one of these events is a transition event. Game length for Chutes

and Ladders has been studied using various techniques. However, the second-to-last square event,

or its generalize to the turn forfeiture event, is most logically described by a transition event. The

large ladder traversal event cannot be described solely in terms of states. We have shown how lead

changes is also a transition event, since it depends on the ordering of the players at the beginning

and end of a transition. Also, player advantage depends on knowing when the first player reaches

the winning state, not just whether he does it first.

8.2 Simulation Results

As can be seen in Table 8.1, the expectation computed using the expression tr(MDTT ) agrees with

the sample mean for at least three significant digits in every case. This is approximately what would

be expected by the Central Limit Theorem after simulating each event 100, 000, 000 = (104)2
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Table 8.1: Comparison of Monte Carlo simulations with computed expectations

Sample Computed Computation
Event Mean tr(MDTT ) Time (sec)

Single-Player Events
Setup 1.8(-3)

Second-To-Last Square 1.2954 1.2958 1.3(-4)
Large Ladder 0.5895 0.5896 1.0(-4)
Game Length 39.596 39.598 2.9(-4)

Two-Player Events
Setup 2.5

Second-To-Last Square 1.1159 1.1166 8.1(-3)
Large Ladder 0.8181 0.8180 3.2(-2)
Game Length 26.513 26.513 3.1
Lead Changes 3.9679 3.9679 3.4

First-Player Advantage 0.0156 0.0156 6.2(-3)
First-Player Wins 0.5078 0.5078 1.4(-1)

times. The execution time for computing expectations, shown in the last column of the table,

indicates that even moderately large problems can feasibly be solved using this approach; the 2-

player Chutes and Ladders matrix has over 6500 rows. Parallelization would permit much larger

problems, however, we expect that for large n, simulation will be faster, just as Monte Carlo

integration is more efficient than quadrature for high-dimensional problems. For this problem,

there may be some structure in the composite matrix T = T⊗p0 that can be exploited to reduce

the high-dimensional sum to a smaller problem, although we were unable to discover any.
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