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ABSTRACT 

Role of Epistasis in Alzheimer’s Disease Genetics 
 

Mark T. W. Ebbert 
Department of Biology, BYU 

Doctor of Philosophy 
 

Alzheimer’s disease is a complex neurodegenerative disease whose basic etiology and 
genetic structure remains elusive, despite decades of intensive investigation. To date, the 
significant genetic markers identified have no obvious functional effects, and are unlikely to play 
a role in Alzheimer’s disease etiology, themselves. These markers are likely linked to other 
genetic variations, rare or common. Regardless of what causal mutations are found, research has 
demonstrated that no single gene determines Alzheimer’s disease development and progression. 
It is clear that Alzheimer’s disease development and progression are based on a set of 
interactions between genes and environmental variables. This dissertation focuses on gene-gene 
interactions (epistasis) and their effects on Alzheimer’s disease case-control status. 

We genotyped the top Alzheimer’s disease genetic markers as found on AlzGene.org 
(accessed 2014), and tested for interactions that were associated with Alzheimer’s disease case-
control status. We identified two potential gene-gene interactions between rs11136000 (CLU) 
and rs670139 (MS4A4E) (synergy factor = 3.81; p = 0.016), and rs3865444 (CD33) and 
rs670139 (MS4A4E) (synergy factor = 5.31; p = 0.003). Based on one data set alone, however, it 
is difficult to know whether the interactions are real. We replicated the CLU-MS4A4E interaction 
in an independent data set from the Alzheimer’s Disease Genetics Consortium (synergy factor = 
2.37, p = 0.007) using a meta-analysis. We also identified potential dosage (synergy factor = 2.98, p 
= 0.05) and APOE ε4 effects (synergy factor = 4.75, p = 0.005) in Cache County that did not replicate 
independently. The APOE ε4 effect is an association with Alzheimer’s disease case-control status in 
APOE ε4 negative individuals. There is minor evidence both the dosage (synergy factor = 1.73, p = 0.02) 
and APOE ε4 (synergy factor = 2.08, p = 0.004) effects are real, however, because they replicate when 
including the Cache County data in the meta-analysis. These results demonstrate the importance of 
understanding the role of epistasis in Alzheimer’s disease. 

During this research, we also developed a novel tool known as the Variant Tool Chest. 
The Variant Tool Chest has played an integral part in this research and other projects, and was 
developed to fill numerous gaps in next-generation sequence data analysis. Critical features 
include advanced, genotype-aware set operations on single- or multi-sample variant call format 
(VCF) files. These features are critical for genetics studies using next-generation sequencing 
data, and were used to perform important analyses in the third study of this dissertation. 

By understanding the role of epistasis in Alzheimer’s disease, researchers will begin to 
untangle the complex nature of Alzheimer’s disease etiology. With this information, therapies 
and diagnostics will be possible, alleviating millions of patients, their families and caregivers of 
the painful experience Alzheimer’s disease inflicts upon them. 

Keywords: Alzheimer’s disease, epistasis, MS4A4E, CLU, CD33
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Chapter 1 

Background 

Epistasis involves multiple genes contributing to a single phenotype, but understanding 

the nature of an epistatic interaction is not always clear. Epistatic interactions are generally 

discovered in two ways: (1) statistically; and (2) biologically. Statistical epistasis is deviation 

from additive effects between factors in the model1, while biological epistasis is a physical 

interaction between two or more biological components. Both statistical and biological epistasis 

affect a single phenotype, however.  

Bridging the gap between statistical and biological epistasis is a challenging, but 

necessary task for understanding genetics at its roots. Most phenotypes involve epistasis in 

complex organisms. Experiments to discover biological epistasis are challenging to carry out and 

limited in the interactions that they can identify. Identifying statistical epistasis also results in 

unique challenges. Specifically, discovering that two biological molecules interact provides 

crucial pathway and functional information, but the implications across phenotypes are often less 

obvious. Furthermore, just because proteins from two genes don’t physically interact does not 

mean they do not both affect the same phenotype; the two proteins may be involved in the same 

pathway and cause different cascading events, or a given phenotype may be determined by 

multiple pathways. The possibilities seem endless. This limitation of understanding biological 

epistasis is where statistical epistasis excels. Using statistics, we can explore whether multiple 

genetic factors have a non-additive effect on a phenotype. If so, these genetic factors may be co-

involved in the phenotype’s presentation. Limitations of statistically derived epistasis, however, 

involve a certain level of uncertainty in the results because of: (1) false-positive and false-

negative results; and (2) biological uncertainty. False-positive results are rampant when testing 
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numerous hypotheses, while false-negatives are likely because of poor statistical power. 

Regarding biological uncertainty, any statistically positive result may leave researchers 

questioning whether the interaction is real because the biology may not be obvious. In some 

cases, little or no information is available about a given gene. By focusing efforts to bridge the 

gap between statistical and biological epistasis, researchers will be able to leverage the 

complementary strengths of these two approaches and understand genetics at is roots. 

Methods to Identify Statistical Epistasis: Merits and Limitations 

Identifying statistical epistasis is the most common and cost-effective approach to 

discovering gene-gene interactions, but most studies of genetics in human disease focus on single 

genetic loci—likely an oversimplification of the underlying biology. To advance our genetic 

understanding of all phenotypes, we must understand the underlying epistatic relationships. 

Some analysis methods have been developed specifically to identify gene-gene interactions. 

Multifactor dimensionality reduction2–17 and logistic regression18–30 are the two most common 

methods. Synergy factors are an extension of logistic regression, and for the purposes of this 

discussion are included in that group. Multifactor dimensionality reduction is a nonparametric 

approach while logistic regression is parametric. Each method has disadvantages that limit their 

ability to identify interactions. 

Logistic regression has several drawbacks when detecting epistasis according to He et 

al15: (1) interaction terms grow exponentially as the number of main effects included in the 

model increase; and (2) parameter estimates have large standard errors because the data is high-

dimensional—decreasing power to detect the interactions. Another limitation according to 

Combarros et al. is that logistic regression is generally only valid for binary interactions because 

of limited sample size31. Park et al. proposed penalized logistic regression as a method to 
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overcome the limitations and showed that penalized logistic regression performs better than 

multifactor dimensionality reduction in some situations32.  

Many studies have demonstrated the utility of multifactor dimensionality reduction33–37. 

Advantages of multifactor dimensionality reduction include increased power15,38 and superior 

ability to identify high-order interactions even when main effects are statistically insignificant32. 

Limitations, however, are that it is incapable of identifying additive main effects32 and it 

struggles with missing values in high-dimensional data39.  

Given that the strengths and limitations of logistic regression and multifactor 

dimensionality reduction complement each other, combining them may be a powerful option. 

Multifactor dimensionality reduction could be used to discover complex interactions while 

logistic regression can be used for main effects. 

There are other issues to consider that apply to all available methods such as potential 

false positives. According to Page et al.40, there are four reasons an allele or interaction between 

alleles can be associated with a complex disease: (1) it is actually causative; (2) the association is 

by random chance; (3) a single allele is in disequilibrium with the causative allele; and (4) the 

association is due to a systematic bias in some portion of the study. Because of the high-

dimensionality and small sample size of many studies, there is an increased likelihood of false 

positives for reasons stated by Page et al.; however, there is another potential cause of false 

positives known as “overfitting”. Overfitting happens when a complex model is fit to data and is 

not generalizable beyond the population from which the sample was derived41. The cause has 

commonly been attributed to either genetic and environmental heterogeneity42 or due to 

epistasis1,43. 
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There are many approaches designed to prevent false positives and overfitting when 

studying predictive alleles in a given disease, but they are not fool proof. For instance, protocol 

when performing multiple comparisons—thousands in the case of Genome Wide Association 

Studies (GWAS)—involves adjusting p-values to limit the number of false positives due to 

chance. Similar methods exist to prevent overfitting statistical models to data. Although these 

methods are useful, researchers mistakenly report false associations.  

Even though weak associations are often reported, this practice is not completely wrong. 

Statistical analyses are limited by the available data, and data is limited because of external 

restraints such as financial support, limited patient availability, genetic material, and even ethical 

restrictions. Given the various challenges researchers face to produce data, it is no wonder weak 

associations are reported. The key to separating true and false associations will be testing in 

independent data sets if they are large enough, or using meta-analyses across many smaller data 

sets to determine if the signal is consistent and significant. If a signal is replicable, researchers 

will then need to test associations biologically in cell lines or model organisms. 

Epistasis in LOAD 

Numerous studies have identified statistical epistasis in Alzheimer’s disease using 

logistic regression18–30 and multifactor dimensionality reduction2–14.  Here we describe studies 

where results have been replicated in at least two independent samples. .  

In 2004 Robson et al. identified statistical epistasis between the transferrin (TF) C2 allele 

and the haemochromatosis (HFE) C282Y allele using logistic regression and synergy factor 

analysis21. These genes were targeted because of previous evidence of iron buildup in 

Alzheimer’s patients, which both of these genes play a role in metabolizing44–46. In 2009, Kauwe 

et al. replicated the findings from Robson et al. in a separate cohort22. There is strong evidence of 
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a biological cascading effect for this statistical interaction, as suggested by Kauwe et al.22. HFE 

binds with transferrin receptor 1 (TfR1), but the C282Y allele has a lesser affinity, allowing 

TfR1 to bind TF more easily22,47. It was hypothesized that more aggressive binding of TF may 

cause over absorption of dietary iron, leading to iron deposits in various tissues22,48. Additionally, 

Giunta et al. suggested wild-type TF plays an important role in iron transport and limits amyloid 

aggregation22,49. All of this information supports hypotheses by Robson et al.21 and Lehmann et 

al.50 that this interaction increases LOAD risk through increased redox-active iron and oxidative 

Stress. 

Likewise, in 2004 Infante et al. identified statistical epistasis between interleukin-6 (IL-6) 

and interleukin-10 (IL-10) associated with decreased risk for Alzheimer’s disease based on 

previous evidence that patients with Alzheimer’s disease produce more pro-inflammatory 

interleukin-6 and less anti-inflammatory interleukin-1051. In 2009 Combarros et al. replicated the 

statistical interaction in a separate cohort18. This interaction may play a critical role in LOAD 

because Remarque et al. demonstrated that Alzheimer’s disease patients have a pro-inflammatory 

phenotype and that Alzheimer’s disease patients produce more IL-6 (pro-inflammatory) and less 

IL-10 (anti-inflammatory) when compared to controls52. It is difficult to determine, however, 

whether this inflammation is contributing to Alzheimer’s disease, or is simply another side effect 

of the underlying cause.  

In 2009, Combarros et al. performed a comprehensive analysis of over 100 reports of 

statistical epistasis, using and introducing their own synergy factor statistic. This study highlights 

the innate challenges in discovering statistical epistasis. The authors were only able to support 27 

of the originally reported gene-gene interactions using their synergy factor analysis. The 

challenge with epistatic replication is that there are many factors that influence whether the 
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interaction can be detected in a given data set. Sample size, heterogeneity, and environmental 

factors are likely the most influential for detecting a real interaction. 

In 2014, Gusareva et al. published the first replicable interaction associated with LOAD 

using an exhaustive, genome-wide screening approach53. They identified an interaction between 

KHDRBS2 (rs6455128) and CRYL1 (rs7989332) using a cohort from France including 2,259 

cases and 6,017 controls. The interaction was then replicated in a cohort from Germany 

including 555 cases and 824 controls. The interaction was further supported by a meta-analysis 

using five more independent LOAD cohorts. Transcriptome analysis showed decreased 

expression for both genes in the temporal cortex and cerebellum brain regions. Gusareva et al. 

hypothesized a biological link between KHDRBS2 and CRYL1 through a potential association 

with heat-shock proteins and LOAD. KHDRBS2 is believed to affect transcription of heat-shock 

proteins because of studies in it’s homologue Slm1 in Saccharomyces cerevisiae53,54. Slm1 was 

shown to interact with and activate TORC255, a kinase complex part of the TOR pathway, which 

Pierce et al. demonstrated affects amyloid β and cognitive function in Alzheimer’s disease mouse 

models56. Pierce et al. hypothesized the reason inhibiting the TOR pathway affects amyloid β and 

cognition because of upregulated heat-shock proteins. This study in particular, represents the 

next step in discovering and describing functional repercussions of epistasis. 

Epistasis Among Top LOAD Genes 

Most epistasis studies in LOAD involve candidate genes, but to date, no study has 

addressed possible interactions between the top LOAD genes as found on AlzGene.org (accessed 

December 2014). These genes include the following: APOE, BIN1, ABCA7, CR1, MS4A4E, 

CD2AP, PICALM, MS4A6A, CD33, and CLU. BIN1 (rs744373), ABCA7 (rs3764650), CR1 

(rs3818361), MS4A4E (rs670139), and CD2AP (rs9349407) are associated with increased risk 
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for LOAD while PICALM (rs3851179), MS4A6A (rs610932), CD33 (rs3865444), and CLU 

(rs11136000) are associated with decreased risk (6-10). Only one study to date, by Verhaaren et 

al., has examined the contribution of these nine risk alleles to LOAD status prediction (11). 

Verhaaren et al. calculated an additive genetic risk score and compared LOAD status prediction 

performance of age, gender, and APOE ε4 genotype using logistic regression with and without 

the additive genetic risk score. The genetic risk score did not improve prediction performance 

significantly, suggesting that the nine alleles may not be diagnostically useful when constrained 

to an additive relationship. The assumption of additive relationships between risk loci is common 

but is likely to be an oversimplification of the underlying biology for LOAD and other complex 

diseases (12-14). In fact, there may be underlying gene-gene interactions not examined in the 

Verhaaren et al. study or others that improve LOAD status prediction performance.  

In this dissertation we evaluate the possible interactions between these variants and their 

effects on Alzheimer’s disease in several large, independent datasets and develop software to 

facilitate follow-up of genetic findings using whole genome sequence data. The first chapter 

describes my efforts to explore the effects of interactions on the diagnostic capabilities of known 

AD risk markers. Briefly, we genotyped each locus in 2,419 subjects from the Cache County 

Study on Memory Health and Aging and verified results by Verhaaren et al., but also explored 

statistical epistasis among the loci to determine if any interactions are informative to the model 

in the presence of the main (individual) allele affects. Two interactions were significant in the 

model: an interaction between CD33 and MS4A4E (p < 0.003; SF 5.31, 95% CI 1.79 - 15.77), 

and between CLU and MS4A4E (p < 0.016; SF 3.81, 95% CI 1.28 - 11.32). 

In subsequent chapters we describe novel software and our efforts to replicate these gene-

gene interactions by performing an independent meta-analysis of datasets from the Alzheimer’s 
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Disease Genetics Consortium (ADGC), followed by a combined meta-analysis including the 

original Cache County data. This work includes evaluation of dosage effects in both interactions 

and an APOE ε4 effect as well as a permutation experiment to test robustness of results that had a 

significant p-value in the independent analysis. Finally, we explored possible causal variants that 

underlie this interaction using whole-genome sequence data from the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI).  

Future Directions 

Many researchers are focusing their efforts on epistasis and the community is beginning 

to discover epistatic interactions that play a role in LOAD. The work outlined in this dissertation, 

which leveraged the use of markers known to show association with AD risk, supports an 

interaction between CLU and MS4A4E and is an important piece in understanding LOAD 

etiology. Each of the top candidate genes has a consistent and strong signal across numerous data 

sets, making it a reasonable hypothesis that there are interactions between them. It is not 

reasonable, however, to assume that the most critical interactions are only between loci with 

main effects. As such, researchers must approach epistasis in LOAD with even larger data sets 

using exhaustive, genome-wide approaches as demonstrated by the exciting study by Gusareva et 

al.  

The International Genomics of Alzheimer’s Project (IGAP) has a data set of over 74,000 

cases and controls57—a massive data set by today’s standards. Given the success by Gusareve et 

al., a similar agnostic (hypothesis-free) approach in such a large data set will likely result in 

more, stable interactions associated with LOAD case-control status, thus leading to potentially 

useful approaches for both diagnostics and therapeutics. IGAP also discovered several more 
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alleles with main effects in a recent study57. Rerunning our analysis across the top loci including 

IGAP’s newly discovered loci may uncover new interactions. 

Ultimately, however, we must bridge the gap between statistical and biological epistasis. 

Biological experiments demonstrating tangible effects on known or novel LOAD pathology will 

be essential to understanding the underlying etiology. These gene-gene interactions may involve 

physical interactions between proteins, or they may be indirect where they affect a downstream 

product. 
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Abstract 

Background. Reported odds ratios and population attributable fractions (PAF) for late-

onset Alzheimer’s disease (LOAD) risk loci (BIN1, ABCA7, CR1, MS4A4E, CD2AP, PICALM, 

MS4A6A, CD33, and CLU) come from clinically ascertained samples. Little is known about the 

combined PAF for these LOAD risk alleles and the utility of these combined markers for case-

control prediction. Here we evaluate these loci in a large population-based sample to estimate 

PAF and explore the effects of additive and non-additive interactions on LOAD status prediction 

performance. 

Methods. 2,419 samples from the Cache County Memory Study were genotyped for 

APOE and nine LOAD risk loci from AlzGene.org. We used logistic regression and ROC 

analysis to assess the LOAD status prediction performance of these loci using additive and non-

additive models and compared ORs and PAFs between AlzGene.org and Cache County. 

Results. Odds ratios were comparable between Cache County and AlzGene.org when 

identical SNPs were genotyped. PAFs from AlzGene.org ranged from 2.25-37%; those from 

Cache County ranged from 0.05-20%. Including non-APOE alleles significantly improved 

LOAD status prediction performance (AUC = 0.80) over APOE alone (AUC = 0.78) when 

allowing allelic interactions (p = 0.03). We also identified potential allelic interactions (p-values 

uncorrected): CD33-MS4A4E (Synergy Factor = 5.31; p = 0.003) and CLU-MS4A4E (SF = 3.81; 

p = 0.016). 

Conclusions. While non-additive interactions between loci significantly improve 

diagnostic ability, the improvement does not reach the desired sensitivity or specificity for 

clinical use. Nevertheless, these results suggest that understanding gene-gene interactions may be 

important in resolving the etiology of Alzheimer’s disease. 
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Introduction 

Researchers have implicated several genes associated with late-onset Alzheimer’s disease 

(LOAD) including APOE. APOE ε4 increases LOAD risk and APOE ε2 reduces risk (1-4). 

According to AlzGene.org (5), nine additional genes significantly affect LOAD risk;  BIN1 

(rs744373), ABCA7 (rs3764650), CR1 (rs3818361), MS4A4E (rs670139), and CD2AP 

(rs9349407) are associated with increased risk for LOAD while PICALM (rs3851179), MS4A6A 

(rs610932), CD33 (rs3865444), and CLU (rs11136000) are associated with decreased risk (6-10). 

Only one study to date has examined the contribution of these nine risk alleles to LOAD status 

prediction (11). Verhaaren et al. calculated an additive genetic risk score and compared LOAD 

status prediction performance of age, gender, and APOE ε4 genotype using logistic regression 

with and without the additive genetic risk score. The genetic risk score did not improve 

prediction performance significantly, suggesting that the nine alleles may not be diagnostically 

useful when constrained to an additive relationship. The assumption of additive relationships 

between risk loci is common but is likely to be an oversimplification of the underlying biology 

for LOAD and other complex diseases (12-14). In fact, there may be underlying gene-gene 

interactions not examined in the Verhaaren et al. study or others that improve LOAD status 

prediction performance.  

Some of the population attributable fractions for these nine loci have been reported 

individually and in different combinations (6, 8, 9); however, no study to date has reported the 

combined population attributable fraction for all nine risk alleles. Furthermore, previously 

reported odds ratios and population attributable fractions are from clinically ascertained samples 

rather than a population-based sample (6-10). The latter may provide a more reliable measure of 
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population risk because clinically ascertained samples select for disease, enriching risk alleles in 

the sample. 

In this study we estimated the allelic odds ratios and population attributable fractions for 

APOE ε2, APOE ε4, and the nine non-APOE LOAD risk alleles in a large population-based 

sample. We also extended the genetic risk score used by Verhaaren et al. by testing whether the 

nine non-APOE alleles contribute significantly to LOAD status prediction when interactions 

between loci are not constrained to additive relationships. 

Methods and Materials 

Sample collection. The Cache County Study on Memory Health and Aging was initiated 

in 1994 (15). This cohort of 5,092 individuals represented approximately 90% of the Cache 

County population aged 65 and older. Specific details about data collection, obtaining consent, 

and phenotyping individuals in the Cache County population have been reported previously (15). 

Briefly, case-control status was determined in four triennial waves of data collection in a multi-

stage dementia screening and assessment protocol. The first stage of screening consisted of 

administration of the Modified Mini-Mental State Exam-Revised (3MS-R) (16). Screen positive 

individuals and a randomly selected 19% designated subsample were invited to complete 

subsequent stages of evaluation consisting of an informant interview and the next stage, a 

clinical assessment including neuropsychological testing. The clinical assessment results were 

reviewed by a geropsychiatrist and neuropsychologist and preliminary diagnoses of dementia or 

other cognitive disorders were assigned. Those carrying a diagnosis of dementia or its prodrome 

were invited to complete standard laboratory tests for dementia, an MRI scan, and a 

geropsychiatrist examination. Final case-control status was determined by an expert panel of 

clinicians including study geropsychiatrists, neuropsychologists, a neurologist and cognitive 
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neuroscientist. Diagnoses of AD followed NINCDS-ADRDA criteria (17), and cases included 

Possible or Probable AD. Controls were identified as those who were diagnosed with no 

dementia (per clinical assessment) or whose cognitive test result was negative at each preceding 

screening stage. Persons with incomplete screening results (i.e., those who were screen positive 

at one stage, but did not complete the subsequent stage), or missing genotype data were excluded 

from the analyses, leaving 2093 participants without dementia (controls) and 326 persons with 

LOAD (cases). All study procedures were approved by the Institutional Review Boards of Utah 

State, Duke and the Johns Hopkins University. 

DNA from the 2,419 Cache County study participants was genotyped for the nine non-

APOE LOAD risk alleles in the AlzGene.org  “ALZGENE TOP RESULTS” list (18) using 

TaqMan Assays (Table 2.1). Genotyping failed for rs3764650 (ABCA7) and rs3818361 (CR1) so 

we selected rs3752246 and rs6656401 to represent the effects reported by ABCA7 and CR1 for 

AD risk, respectively. The CR1 SNPs are in high linkage disequilibrium (D’ = 0.995, R2 = 0.84) 

while both ABCA7 SNPs are within 10 kilobases of each other and rs3752246 was reported as 

significant by Naj et al. (9) APOE ε2 and APOE ε4 were previously genotyped as part of the 

Cache County study (15).  

Statistical analyses. All statistical analyses were performed in R (19). We used logistic 

regression and receiver operating characteristic (ROC) curve analysis to assess case-control 

predictive performance of the nine non-APOE alleles. Specifically, we tested whether the non-

APOE alleles significantly improved LOAD status prediction performance over models 

excluding the non-APOE alleles. Two types of models were generated: additive risk profiles and 

genotype models to test potential additive and non-additive relationships, respectively. To assess 

efficacy of each model, we measured LOAD status prediction performance using the area under 
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Table 2.1. Summary Statistics for Significant Markers  

SNP Nearest Gene 

MAF   Odds Ratio   PAF 

AlzGene Cache Co.   AlzGene (95% CI) Cache Co. (95% CI)   AlzGene Cache Co. 
          

rs3752246* ABCA7 0.10 0.18  1.23 (1.18 - 1.28) 0.94 (0.76 - 1.17)  2.25 4.65 
rs7412 APOE2 0.06 0.09  0.62 (0.46 - 0.85) 0.89 (0.63 - 1.22)  36 10 
rs429358 APOE4 0.22 0.17  3.68 (3.30 - 4.11) 2.51 (2.07 - 3.04)  37 20 
rs744373 BIN1 0.29 0.30  1.17 (1.13 - 1.20) 1.02 (0.85 - 1.22)  4.61 0.54 
rs9349407 CD2AP 0.29 0.28  1.12 (1.08 - 1.16) 1.03 (0.85 -1.23)  3.29 0.70 
rs3865444 CD33 0.31 0.34  0.89 (0.86 - 0.92) 1.00 (0.84 - 1.19)  7.63 0.05 
rs11136000 CLU 0.38 0.39  0.88 (0.86 - 0.91) 0.88 (0.74 - 1.04)  7.85 7.98 
rs6656401 CR1 0.19 0.19  1.19 (1.09 - 1.30) 0.92 (0.74 -1.13)  3.49 6.84 
rs670139 MS4A4E 0.41 0.41  1.08 (1.05 - 1.11) 1.0 (0.84 - 1.18)  3.14 0.05 
rs610932 MS4A6A 0.42 0.43  0.90 (0.88 - 0.93) 0.89 (0.76 -1.06)  5.81 6.33 
rs3851179 PICALM 0.35 0.38  0.88 (0.86 - 0.91) 0.85 (0.72 - 1.01)  8.19 9.69 
       Combined PAF (All Alleles)  75 51 
       Combined PAF (Excluding APOE)  38 32 

         

Note. Minor allele frequencies, odds ratios, and population attributable risks were calculated for all SNPs using both data from AlzGene.org and the Cache 
County population-based study. Population attributable fractions are reported as percentages. For better interpretation and comparison to previous studies, the 
risk allele for each locus (whether the major or the minor allele) was used to calculate population attributable fractions but the minor allele was used for odds 
ratios. Minor allele frequencies are comparable between AlzGene.org and the Cache County data. Odds ratios are generally similar except ABCA7 and CR1 differ 
in direction. Individual population attributable fractions in Cache County varied in magnitude when compared to those calculated for AlzGene.org. Combined 
population attributable fractions were also lower in Cache County. As expected APOE ε4 and APOE ε2 have strong population effects whereas the remaining 
alleles have minimal individual effect. Based on AlzGene.org data, combined population attributable fractions suggest the combined effect of the nine non-APOE 
alleles is approximately equal to APOE ε2 or APOE ε4 alone; however, the nine non-APOE alleles appear to have a larger effect than either APOE allele in the 
Cache County data. 
 
*The SNP for ABCA7 (rs3752246) was not reported on AlzGene.org, but was reported in Naj et al. as significant and was used in place of rs3764350  
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the curve (AUC) of the ROC curves. All models were adjusted for age and gender. A separate 

model using only age and gender was also generated to establish reference values. 

We calculated three additive risk scores for participants in the Cache County Study to 

measure LOAD status prediction performance for the nine non-APOE LOAD risk alleles. 

Specifically, the following risk profiles were calculated: (1) APOE alone; (2) the nine LOAD 

risk alleles with APOE; and (3) the nine LOAD risk alleles without APOE. The risk allele 

(whether the major or the minor allele) and associated beta coefficient were used for each locus. 

We calculated additive risk scores as the sum of the risk across all alleles (equation 2.1), where β 

equals a previously calculated risk allele beta coefficient from odds ratios (β = ln(odds ratio)) 

reported by AlzGene.org (accessed February 2012), and N equals the subject’s number of risk 

alleles. APOE ε2 and APOE ε4 were coded jointly into a single class variable as 22, 23, 24, 33, 

34, and 44. 

 
(2.1) 

We also tested genotype models using genotype data in place of the risk profile score. We 

generated the following genotype models: (1) APOE alone; (2) the nine LOAD risk alleles with 

APOE; and (3) an optimized model. Using genotypes does not constrain the model to an additive 

relationship, allowing for other genetic models within each locus. The optimized model was 

generated using a stepwise regression method to test if interactions between loci contribute to 

LOAD status prediction and was selected using Akaike’s information criterion (AIC). To test for 

and avoid overfitting, we included three random variables while generating the optimized model. 

These variables were generated randomly with respect to all genotype and phenotype data in our 

study and were included to provide evidence that the selected variables provide meaningful 
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information (20). While the absence of all random variables in the model does not guarantee the 

model was not overfit, it does suggest the included variables provide useful diagnostic 

information.  

Synergy factors—a statistic that measures the strength of allelic interactions in case-

controls studies (13, 21)—were calculated for any statistically significant allelic interactions 

using logistic regression. All synergy factors were adjusted for age, gender, and APOE ε4 by 

including only the main effects of the interacting alleles, the interaction term between the alleles, 

age, gender, and the number APOE ε4 alleles (Status =  allele1*allele2 + age + gender + 

APOE4num). Synergy factor confidence intervals were calculated using the interaction term 

coefficient ±1.96 * standard error of the parameter estimate of the interaction term. 

Odds ratios and population attributable fractions were also calculated. Odds ratios here 

estimate the relative risk of Alzheimer’s disease given allelic exposure while population 

attributable fractions estimate the proportional decrease in LOAD cases that would occur if the 

risk factor were removed from the population. Odds ratios were calculated only for the Cache 

County subjects but population attributable fractions were calculated for both Cache County 

subjects and the pooled AlzGene samples using published odds ratios and minor allele 

frequencies from AlzGene.org. We calculated population attributable fractions using equation 

2.2 (9, 22), where p equals the allele frequency and OR is the odds ratio. A combined population 

attributable fraction was calculated for all risk factors and just the nine non-APOE risk factors 

using equation 2.3 (9, 22, 23) to estimate the proportional decrease in LOAD cases if all included 

risk factors were removed from the population. In this equation PAFj represents previously 

calculated PAFs from equation 2.2 and n is the number of loci included in the combined PAF. 

For better interpretation and comparison to previous studies, the risk allele for each locus 
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(whether the major or the minor allele) was used to calculate population attributable fractions but 

the minor allele was used for odds ratios. 

 
(2.2) 

 

 
(2.3) 

Results 

Sample demographics. The sample consisted of 1406 females and 1013 males. The 

mean age and standard deviation were 75.13 and 7.29 years, respectively. Mean age was 

significantly different between cases and controls (p = 2.2e-16), as were the proportion of males 

in each group (p = 0.04; Supplemental Table 2.1). Similarly, mean age was significantly different 

between participants included in the study and those excluded for reasons previously mentioned 

(p = 2.2e-16; Supplemental Table 2.2). The proportion of males, however, was not significantly 

different between included and excluded participants (p = 0.29). 

Odds ratios. Odds ratios calculated for the Cache County data were generally 

comparable in direction and magnitude to odds ratios from AlzGene.org when identical SNPs 

were genotyped. ABCA7 and CR1 varied, but a different SNP was genotyped for ABCA7 and the 

95% confidence intervals for CR1 overlap between AlzGene.org and Cache County results 

(Table 2.1). Odds ratios from meta-analyses on AlzGene.org for ABCA7 and CR1 are 1.23 (95% 

CI 1.18 – 1.28) and 1.19 (95% CI 1.09 – 1.30), respectively, while from the Cache County data 

were 0.94 (95% CI 0.76 – 1.17) and 0.92 (95% CI 0.74 – 1.13), respectively. No alleles deviated 

significantly from Hardy Weinberg equilibrium. 
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Population attributable fraction. Population attributable fractions as calculated from 

AlzGene.org data ranged from 2.25% to 37% while those from Cache County ranged from 

0.05% to 20% (Table 2.1). The highest risks were attributed to APOE ε4 (AlzGene = 37%; 

Cache = 20%) and lack of the APOE ε2 (AlzGene = 36%; Cache = 10%) whereas the next 

highest risk was attributed to PICALM (AlzGene = 8.19%; Cache = 9.69%). The smallest risk for 

AlzGene.org was from ABCA7 (2.2%) while the smallest for the Cache County data were CD33 

and MS4A4E (0.05%). Combined population attributable fractions for all LOAD risk alleles 

(including APOE) were 75% and 51% for AlzGene.org and Cache County, respectively. Using 

only the nine non-APOE alleles were 38% and 32% for AlzGene.org and Cache County, 

respectively. 

LOAD status prediction performance. The non-APOE alleles combined with APOE 

(AUC = 0.782) did not improve LOAD status prediction performance over APOE alone (AUC = 

0.783) when constrained to an additive model (Supplemental Figure 2.1), as previously reported 

(11); nor did the non-APOE alleles without APOE (AUC = 0.728) significantly improve LOAD 

status prediction performance over age and gender alone (AUC = 0.727; p = 0.2372). The model 

using all genotype data (full genotype model) when not constrained to an additive relationship 

(AUC = 0.796), however, did improve LOAD status prediction performance significantly over 

APOE alone (AUC = 0.783; p = 0.03; Figure 2.1). Moreover, the optimized model allowing for 

interactions between loci (AUC = 0.82) improves significantly over the full genotype model (p = 

8.39e-07). All three genotype models improve prediction performance significantly over age and 

gender alone. None of the random variables previously mentioned were selected for the 

optimized model. Selected variables and interactions for the optimized model are as follows: 

rs3752246, rs6656401, rs11136000, rs610932, rs3865444, rs670139, Age, APOE.factor, 
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rs3865444:rs670139, rs11136000:rs670139, rs3752246:APOE.factor, rs3752246:rs610932, and 

rs670139:Age. 
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Figure 2.1. Non-APOE LOAD risk loci contributions to LOAD status prediction 
performance. Three logistic regression models based on age, gender, and genetic information 
for APOE and the non-APOE LOAD risk loci illustrate the contribution of the non-APOE LOAD 
risk loci in LOAD status prediction performance. The models are as follows: APOE alone (Only 
APOE), all loci (Full genotype), and the optimized model (Optimal genotype). A fourth model 
using only age and gender (Age/Gender) was also generated as a baseline. The optimized model 
was optimized using Akaike’s Information Criterion (AIC). Comparing the full genotype model 
to APOE alone demonstrates that the LOAD risk loci contribute significantly to LOAD status 
prediction performance (p = 0.03) while the optimized model improves significantly over the full 
genotype model (p = 8.39e-07). Area under the curve (AUC) is listed in parentheses within the 
legend.  
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Locus interactions. Investigating the optimized genotype model revealed two 

statistically significant alleles and two significant allelic interactions, though the p-values were 

not corrected for multiple testing. Genotypes A/G (p = 0.02) and G/G (p = 0.03) in rs6656401 

(CR1) were significant individually. The significant interactions were between the rs3865444 

C/C (CLU) genotype and the rs670139 G/G (MS4A4E) genotype (p = 0.016; SF 3.81, 95% CI 

1.28 - 11.32) and the rs11136000 C/C (CD33) genotype and the rs670139 G/G (MS4A4E) 

genotype (p = 0.003; SF 5.31, 95% CI 1.79 - 15.77). 

Discussion 

Recent research has identified several alleles that may prove useful in resolving 

Alzheimer’s disease etiology (6-10), but until now there had not been an assessment of their 

population attributable fraction in a large, population-based sample. Similarly, deeper 

interrogation of the diagnostic utility of the Alzheimer’s disease candidate genes is needed. 

Verhaaren et al. explored the diagnostic utility based on an additive relationship, which we 

replicated in this work, but they did not test locus interactions—a major aim of this research. 

During this process we also estimated allelic odds ratios and population attributable fractions. 

The data reported in this study are generalizable to other U.S. populations of northern 

European descent. The Cache County population has been included in the Centre d’Etude du 

Polymorphisme Humain (CEPH) families that are used to represent the European sample in the 

HapMap project (24, 25). Utah’s early pioneers were mostly unrelated and originated from 

various European locations (26-28), which is necessary for generalizability. The AlgGene.org 

data—a meta-analysis—varies between loci but is largely Caucasian-based as well. Many of the 

loci include populations of African, Asian, and Hispanic decent but the sample sizes for these 

populations are much smaller than the Caucasian populations. 
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Odds ratios. We compared Cache County odds ratios to those reported in the meta-

analyses on AlzGene.org and found them comparable. Minor differences were observed in 

ABCA7 and CR1 where we genotyped SNPs that are not listed on AlzGene.org. Specifically, 

minor alleles for both ABCA7 and CR1 were considered risk alleles (odds ratio > 1) according to 

data on AlzGene.org while odds ratios in the Cache County data suggest decreased risk, although 

the confidence intervals from both studies are broad and overlap each other so they may not be 

significantly different. Possible causes include: (1) differences in sample ascertainment between 

clinical and population studies (e.g. the cases in clinically ascertained samples are generally 

younger than those in the Cache County Sample; see AlzGene.org, Supplemental Table 2.1); and 

(2) allelic odds ratios are not adjusted for age, gender, and other loci—nor are they adjusted for 

undiscovered or uncharacterized allelic interactions (13, 29-31).  

Clinical and population studies differ in sample ascertainment. Clinically ascertained 

cases and controls are selected to minimize confounding variables and maximize contrast 

between the true underlying causes by minimizing known differences between the two groups 

except for the phenotype of interest. Population-based studies, however, are designed to 

represent true population characteristics such as allele frequencies, odds ratios, and population 

attributable fractions, as reported here. Because of the natural differences between these two 

study types, it is important to use them to their greatest advantage. 

The complex nature of Alzheimer’s disease inheritance, however, suggests that variations 

between studies may be exist because allelic odds ratios are not adjusted for age, gender, and 

other loci—nor are they adjusted for undiscovered and uncharacterized allelic interactions. Each 

of these factors plays a significant role in Alzheimer’s disease etiology and not adjusting for 

them introduces error into odds ratio estimates. Allelic interactions also likely contribute to the 
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“missing heritability” in Alzheimer’s disease. No single genetic locus characterizes Alzheimer’s 

disease etiology. APOE alone is highly predictive, but the genetic loci included here also appear 

to influence Alzheimer’s disease susceptibility, as reported in this study and others (6-10). 

Furthermore the effects of APOE vary between ethnic groups (32-36). Failure to replicate 

established genome-wide association study findings in some populations (13, 37) further 

suggests the possible influence of environmental factors, gene-environment, and gene-gene 

interactions. 

Population attributable fractions. Cache County population attributable fractions 

varied in magnitude when compared to those calculated from AlzGene.org data. Combined 

population attributable fractions were lower in Cache County. As expected APOE ε4 and APOE 

ε2 have strong population effects whereas the remaining alleles have minimal individual effects. 

Based on AlzGene.org data, combined population attributable fractions suggest the combined 

effect of the nine non-APOE alleles is approximately equal to APOE ε2 or APOE ε4 alone; 

however, the combined non-APOE alleles appear to have a larger effect than either APOE allele 

in the Cache County data. The Cache County values are of value because they are population-

based and better represent risks within populations—the purpose of the PAF statistic. Despite 

being more conservative than other estimates (combined), however, the population attributable 

fractions reported in this study may still be inflated because they are based on the unadjusted 

allelic odds ratios and because the exposure frequency for the genotyped SNPs may vary from 

the functional variants they represent. Future estimates are also likely to change as allelic 

interactions are discovered and incorporated into the calculations.  

Diagnostic utility. Verhaaren et al. demonstrated that the nine non-APOE genes do not 

improve LOAD status prediction performance when constrained to an additive relationship, 
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which we confirmed in this study. When unconstrained, however, the top nine alleles improved 

LOAD status prediction performance significantly, demonstrating these alleles may provide 

more information as we better understand their epistatic relationships. The optimized model 

further improved LOAD status prediction performance and revealed CLU-MS4A4E and CD33-

MS4A4E interactions that may prove valuable in Alzheimer’s disease research. Synergy factors 

for both interactions suggest that being homozygous for both alleles in either interaction 

increases risk. Yet, although these data suggest the additional LOAD risk alleles significantly 

improve LOAD status prediction performance, the improvement is marginal and does not reach 

the desired sensitivity or specificity for clinical use. 

The optimized model clearly improves LOAD status prediction performance over the full 

genotype model and over APOE alone, suggesting allelic interactions may be useful for 

diagnostic purposes; however, the p-values were not corrected for multiple testing. As such, 

these interactions need to be tested in an independent data set. It is also possible the optimized 

model is overfit; however, the random variables included in the model selection process were not 

selected for the final model, lending evidence that the final variables included provide non-

random information. The revealed interactions also have strong synergy factors suggesting they 

may be important. Furthermore, the genotype model with all alleles improves LOAD status 

prediction performance over APOE alone, lending support for underlying relationships amongst 

the factors included in the model.  

Implications and future directions. The results presented here offer evidence that gene-

gene interactions play a role in Alzheimer’s disease susceptibility; however, the reported 

interactions, do not appear to improve LOAD status prediction performance by an amount that is 

relevant in a clinical diagnostic setting. These results do suggest that to fully understand the 
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genetic basis of Alzheimer’s disease risk we must improve our efforts to characterize gene-gene 

and gene-environment interactions.  

Additionally, environmental factors have not received as much attention as genetic 

factors in Alzheimer’s disease research and should be thoroughly investigated (12). Although the 

CLU-MS4A4E and CD33-MS4A4E interactions appear to have strong effects in the Cache 

County study, there may be unmeasured environmental factors that increase the effect of these 

interactions in the Cache County population. Other research has shown that only 30% of 

Alzheimer’s disease is explained by known genes, demonstrating that environmental effects and 

gene by environment interactions will be essential in future studies (38). 

The CLU-MS4A4E and CD33-MS4A4E interactions have not been previously reported 

leaving the biological foundation in question. Using IPA (Ingenuity® Systems, 

www.ingenuity.com), we explored possible interactions between each pair and found that, while 

no information is available for MS4A4E specifically, both CLU and CD33 interact indirectly with 

MS4A2 (Supplemental Figures 2.2 and 2.3). According to IPA, both thioacetamide and TGFB1 

act indirectly on both CLU and MS4A2 (Supplemental Figure 2.2). CLU also binds to BCL2L1, 

which is acted upon by MS4A2. Likewise, CD33 acts on PTPN6, which binds to MS4A2 and 

CD33 binds to CBL, which then acts on MS4A2 (Supplemental Figure 2.3). Both MS4A4E and 

MS4A2 are members of the membrane-spanning 4-domain gene family. A complete IPA legend 

is available in Ingenuity’s website 

(http://ingenuity.force.com/ipa/articles/Feature_Description/Legend). 

Overall, the results presented in this paper suggest that gene-gene interactions (epistasis) 

may play an important role in Alzheimer’s disease etiology. While discovering and 

characterizing epistatic interactions is a non-trivial task, researchers and consortiums must heed 
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the plentiful evidence that Alzheimer’s disease is driven by complex gene-gene and gene-

environment interactions. 
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Supplemental Table 2.1. Demographic Comparison between Cases and Controls Included in the 
Study Analysis 

  
  

Age   Gender 

Mean 
Standard 
Deviation   Male Female n 

Proportion 
of 

Females 
        

Cases 80.17 7.24  119 207 326 0.63 
Controls 74.34 6.68  894 1199 2093 0.57 
n    1013 1406 2419  
p-value = 2.2e-16      = 0.04 

        

Note. The mean age between cases and controls included in the study were significantly different as are the 
differences in the proportion of females.  
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Supplemental Table 2.2. Demographic Comparison between Participants Included and 
Excluded in the Analysis 

  
  

Age   Gender 

Mean 
Standard 
Deviation   Male Female n 

Proportion 
of Females 

        

Included 75.13 6.92  1013 1406 2419 0.58 
Excluded 77.33 7.48  1074 1399 2473 0.57 
n    2087 2805 4892  
p-value = 2.2e-16      = 0.29 

        

Note. The mean age between participants included and those excluded were significantly different, but the 
proportion of females was not. One possible cause of this difference is that samples excluded for missing genotype 
data were significantly older than those that were included. This is likely because the majority of DNA samples 
come from the original buccal swabs. These samples have lower call rates than the blood DNA that was collected at 
later waves of assessment. As a result, the individuals who were oldest at the start of the study have higher genotype 
missing rates. This results in the slightly higher age of excluded samples over included samples. However, unless 
there is a loss of individuals who go on to develop AD vs. those who remain non-demented this unlikely to bias our 
results. There is no evidence for such a bias. 
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Supplemental Figure 2.1. Non-APOE LOAD risk loci contributions to LOAD status 
prediction performance under additive constraints. The non-APOE alleles combined with 
APOE did not improve LOAD status prediction performance over APOE alone when constrained 
to an additive model; nor did the non-APOE alleles without APOE significantly improve LOAD 
status prediction performance over age and gender alone (p = 0.2372). Area under the curve 
(AUC) is listed in parentheses within the legend. 

 

 

 

42 



 
 

 
Supplemental Figure 2.2. CLU-MS4A4E pathway analysis. Pathway analysis using 
Ingenuity’s IPA demonstrates evidence that both CLU and CD33 interact indirectly with MS4A2, 
a member of the membrane-spanning 4-domain gene family, as is MS4A4E. Both thioacetamide 
and TGFB1 act indirectly on both CLU and MS4A2 (Supplemental Figure 2). CLU also binds to 
BCL2L1, which is acted upon by MS4A2. Likewise, CD33 acts on PTPN6, which binds to 
MS4A2 and CD33 binds to CBL, which then acts on MS4A2 (Supplemental Figure 3). No 
information regarding MS4A4E specifically was available in IPA. An exhaustive legend 
describing the molecules and interactions are available on Ingenuity’s website 
(http://ingenuity.force.com/ipa/articles/Feature_Description/Legend). 
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Supplemental Figure 2.3. CD33-MS4A4E pathway analysis. Pathway analysis using 
Ingenuity’s IPA demonstrates evidence that both CLU and CD33 interact indirectly with MS4A2, 
a member of the membrane-spanning 4-domain gene family, as is MS4A4E. Both thioacetamide 
and TGFB1 act indirectly on both CLU and MS4A2 (Supplemental Figure 2). CLU also binds to 
BCL2L1, which is acted upon by MS4A2. Likewise, CD33 acts on PTPN6, which binds to 
MS4A2 and CD33 binds to CBL, which then acts on MS4A2 (Supplemental Figure 3). No 
information regarding MS4A4E specifically was available in IPA. An exhaustive legend 
describing the molecules and interactions are available on Ingenuity’s website 
(http://ingenuity.force.com/ipa/articles/Feature_Description/Legend). 
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Abstract 

Background. Since the advent of next-generation sequencing many previously untestable 

hypotheses have been realized. Next-generation sequencing has been used for a wide range of 

studies in diverse fields such as population and medical genetics, phylogenetics, microbiology, 

and others. However, this novel technology has created unanticipated challenges such as the 

large numbers of genetic variants. Each Caucasian genome has more than 4 million single 

nucleotide variants, insertions and deletions, copy number variants, and structural variants. 

Several formats have been suggested for storing these variants; however, the variant call format 

(VCF) has become the community standard. 

Results. We developed new software called the Variant Tool Chest (VTC) to provide 

much needed tools to work with VCF files. VTC provides a variety of tools for manipulating, 

comparing, and analyzing VCF files beyond the functionality of existing tools. In addition, VTC 

was written to be easily extended with new tools. 

Conclusions. Variant Tool Chest brings new and important functionality that 

complements and integrates well with existing software. VTC is available at 

https://github.com/mebbert/VariantToolChest 

Background 

The variant call format (VCF) has become the standard format for storing variants 

identified in next-generation sequencing (NGS) and other studies. VCF files are flexible with 

eight fixed fields including chromosome (CHROM), position (POS), known variant IDs such as 

dbSNP identifications (ID), reference allele (REF), alternate allele(s) (ALT), variant quality 

score (QUAL), filter information summarizing why a variant was or was not considered valid by 
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the variant calling software (FILTER), and an information field (INFO). Additional fields 

containing genotypes for one or more samples may also be present. Each row of the file contains 

information about observed variants at the given position and chromosome, may have 

information about how the variant(s) was/were identified (allele frequency, depth, strand bias, 

genotype likelihoods, etc.), and biological annotations (gene, variant frequency, 1000 Genomes 

membership, mRNA and protein positions, etc.). The last columns of a VCF file contain 

genotype information specifying whether the individual is heterozygous, homozygous reference 

or variant, or whether it is unknown (missing). Finally, VCF files can contain information for a 

single or multiple samples. Alternatively, summary VCF files containing minimal information 

(chromosome, position, reference allele, variant allele, and genotypes) can be used. VCF files are 

used to store all variant types including single nucleotide variants, insertions and deletions, copy 

number variants, and structural variants. The VCF has become an important format in modern 

biology and is the only widely used format for variant storage. 

Several programs exist for manipulating and comparing VCF files: VCF tools [1], 

BedTools [2], BcfTools, and the Genome Analysis Toolkit (GATK) [3, 4]. Each of these 

softwares is flexible and powerful, but missing certain essential features. In this manuscript we 

describe a novel program, the Variant Tool Chest (VTC). The Variant Tool Chest complements 

existing softwares by extending their capabilities without replicating existing solutions for 

working with VCF files. We also provide suggestions for building upon the VTC rather than 

building new tools from scratch. VTC can be downloaded at 

https://github.com/mebbert/VariantToolChest. 
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Results and Discussion 

Novel features. Multi-sample VCF support. As next-generation sequencing continues to 

gain momentum, researchers need the ability to compile many samples into a single VCF or 

analyze variants from multiple VCF files. VTC was built to work with a combination of multi- 

and single-sample VCF files. Existing softwares are only capable of handling either a single 

VCF file, or one multi-sample VCF file. VTC can handle a mix of single and multi-sample VCF 

files, with the user defining which sample(s) to use from each of the VCF files. 

Genotype set operations. VTC contains a powerful set operation tool named 

“SetOperator” designed to perform simple or complex set operations using VCF files, including 

intersects, complements, and unions. While various tools exist to perform set operations on VCF 

files, VTC improves existing solutions in two ways. First, existing software performs set 

operations based only chromosome and base pair position. This means that if one individual is 

heterozygous and another homozygous, the resulting operations would assume that these two 

individuals have the same genotype. Second, existing tools work on only a collection of single 

sample VCF files. In contrast, VTC can perform set operations on a single multi-sample VCF 

file, or a combination of multi- and single sample VCF files. Furthermore, the user can choose to 

only perform the operations based on certain individuals from each multi-sample VCF file. 

These abilities save researchers time by not forcing the user to extract all samples of interest into 

a collection of single sample VCF files, and allow more efficient storage of genotypes in multi-

sample VCF files. For example, it is helpful and makes sense for a researcher to store all 

genotypes for a single family in a single VCF file; however, the researcher may have interest in 

performing set operations across multiple families (VCF files), such as performing an 

intersection of variants from all affected individuals from all families.  
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VTC has several operation-specific settings for intersects and complements that allow 

researchers to specify genotype-level requirements. For intersects, VTC currently has five 

genotype-level intersect methods and two record-level (i.e., ignore genotypes) intersect methods. 

The genotype-level intersect methods are as follows: (1) heterozygous; (2) homozygous variant; 

(3) heterozygous or homozygous variant; (4) homozygous reference; and (5) match sample 

exactly across variant pools. The record-level intersect methods are: (1) variant; and (2) position.  

The genotype-level intersect methods require that all sample genotypes involved in the 

intersect fall into the specified category. One caveat is that the heterozygous genotype requires 

the sample to have a reference allele. So if a sample’s genotype has two different variant alleles 

(i.e. a tri-allelic position), though technically a heterozygote, will not be considered as such. This 

distinction is made assuming that researchers interested in identifying heterozygotes will assume 

the samples have a reference allele. This also greatly simplifies several corner cases when 

dealing with multiple variants at a single location.  

The record-level intersect methods ignore genotypes and only consider whether the 

variant pools included in the analysis contain the variant. The “position” method only considers 

chromosome, position, and the reference allele, while the “variant” method also includes the 

alternate allele(s). For the “variant” method, records with multiple alternates are considered to 

intersect if at least one of the alternates matches. 

There are currently three complement methods: (1) heterozygous or homozygous variant; 

(2) exact genotype matches; and (3) variant. When performing a complement, the “heterozygous 

or homozygous variant” method requires that all sample genotypes in both variant pool be either 

a heterozygous or homozygous variant in order to be removed from the variant pool being 

subtracted from. The “exact genotype” method requires that all samples across both variant pools 
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have the same genotype, whatever it may be. The “variant” method ignores genotypes and only 

subtracts if the chromosome, position, reference, and alternate match between the two variant 

pools. 

Unions combine all variants and specified samples into a single VCF file regardless of 

genotype. Samples missing variants will have a “no call” genotype (“./.”). 

Detailed set operation syntax. The Set Operator tool in the VTC empowers researchers to 

define set operations with a powerful, simple syntax. This simple syntax has several advantages: 

(1) researchers may specify any number of input files (variant pools) to perform operations; (2) 

researchers may specify specific samples within a given variant pool to include in the operation; 

and (3) each operation is assigned an identification value (ID) automatically by VTC or specified 

by the user, so that it can be used in subsequent operations. The general syntax structure for a 

single operation is as follows (no spaces): 

oId=operator[input_id1[sample_id1,sample_id2,etc.]:input_id2[sample_id3,sample_id4,etc.]:etc.] 

where oId is a user-specified ID for the operation (may be omitted), operator is the operation of 

interest (i, c, or u for intersect, complement, or union), input_id is the variant pool ID, and 

sample_id is a sample ID for a sample within the given variant pool. If sample IDs are omitted, 

Set Operator will use all samples within the variant pool. For example, the following intersect 

operation will perform an intersect on all samples within the variant pools named “file1” and 

“file2”: myOP=i[file1:file2]. 

Operation stringing. As previously mentioned, the set operation syntax allows resulting 

variant pools to be used in subsequent operations. This feature allows researchers to obtain final 

results with a single command in most circumstances. Continuing with the previous example, 
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“myOP” may be specified in a subsequent operation as follows: “myOP=i[file1:file2] 

myOP2=c[myOP:file3]”. 

Intermediate files. When performing complex set operations, researchers may want all 

intermediate operation results to be printed to a file. Otherwise, the researcher would be required 

to perform separate commands. As such, a simple option named “--intermediate-files” will print 

each operation result to a file named according to the specified “oId” previously mentioned.  

Header repair. VCF files can be complex, and maintaining a valid VCF header can be 

challenging. Since VTC is built on the code that defines VCFs, it is possible to detect invalid 

VCF headers and repair them. VTC will automatically add missing required header information 

such as the “GT” header line when genotypes are being printed. There are many useful 

(unrequired) header lines that cannot be anticipated, however. This feature is still under active 

development. 

Add/remove “chr.” Chromosome numbers in VCF files may be prefixed by “chr” or may 

simply be the chromosome ID (e.g., chrX or X). Many next-generation sequencing softwares are 

incapable of handling VCF files that do not use the same convention simultaneously. For 

example, if one file includes “chr” and another does not, current tools will reject the files. And 

some tools require the VCF files to have the same chromosome ID as the reference sequenced 

used in the original analysis. VTC will either prepend or remove “chr” from all variant records 

seamlessly according to the user’s specifications by simply including (or omitting) the “--add-

chr” flag. 

Summary information. Several tools exist that will provide high- or low-level detail on a 

variant pool, but they can be cumbersome. VTC has a tool named VarStats that will provide a 

quick summary of the variant pool, or a detailed variant-by-variant summary. High-level 
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summary metrics include total number of variants, total number of single nucleotide variants 

(SNVs), insertions and deletions, structural variants, and variants with multiple alternates. The 

summary also includes summary depth and quality values. The variant-by-variant summary 

includes allelic counts and the minimum, maximum, and average read depth and quality scores 

for each variant.  

Compare operation. Many analyses require researchers to perform several set operations 

to identify all variants in common between VCFs, those that are unique to a given VCF, and 

researchers may also need the combined set. Researchers are generally not satisfied knowing 

only the number of variants that fall into each group, such as would be represented by a Venn 

diagram. To obtain all of this information a researcher would perform four set operations: an 

intersect (common variants), two complements (unique variants), and a union (combined set). 

Set Operator has a compare operation (“--compare”) that will automatically perform all four 

operations, print the results to their respective files, and print a summary of each resulting variant 

pool to the console. This option currently is limited to two input files. 

VCF association analysis.  Association analyses are common using genomic data, but we 

are not aware of any available tools to perform such analyses on VCF files. The VarStats tool in 

VTC will perform association analyses on all variants in a variant pool if a phenotype file is 

provided. Results, including odds ratios and p-values for each variant are printed to a file. If 

there are multiple alternates at a given location, VarStats will perform the analysis on each 

alternate and print results on a separate line. This option does not currently provide p-value 

correction such as multiple test correction, but will be implemented in a future release. These 

corrections can be easily performed in statistical software. 
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Future Directions 

Filter tool. Next-generation sequencing variants are often filtered on various values 

including quality scores and depth. Several tools already exist that, when combined, satisfy most 

needs for filtering variants. Ideally, a single tool would incorporate all of this functionality along 

with new features for simplicity. 

File formats. While VCFs are the most common format for next-generation sequencing 

variants, there are other file formats that will be incorporated into VTC including Plink (ped/map 

or bim/bam/fam) and comma-separated value (CSV) files. Plink is particularly important since 

there are many existing large-datasets in Plink format. In order to compare or combine data in 

Plink format to those in VCF format, there must be a tool to handle this. VTC will enable 

researchers to read in variant data from multiple formats and perform all of the same analyses 

seamlessly. This is especially pertinent as a common QC measure of single nucleotide variants 

identified in NGS studies is to compare NGS variants to variants genotyped on a SNP array. 

Array data is most often reported in Plink format. 

Enhanced compare. As different technologies are compared, there is a need to 

determine concordance between samples tested on multiple technologies. VTC will implement 

an “Enhanced Compare” option that will report genotypes that are perfect matches, imperfect 

matches (heterozygous variant observed on one technology and homozygous variant observed 

from the other), and no matches for the same samples on different technologies.  

Additional SetOperator options. Anticipating all possible uses and hypotheses is 

difficult with any new tool, especially with data as complex as genomic variants. Responding to 

these needs is important and will likely involve updated SetOperator options. A few options we 

plan to implement are to accommodate specialized union operations, similar to those for intersect 

53 



 
 
and complement. Specifically, users may need to union only heterozygotes, heterozygotes or 

homozygous variant, only homozygous variant, or only homozygous reference. 

Incorporate new and existing tools. Building useful computational tools that interface 

well together benefits researchers across all disciplines. New tools, while generally valuable to 

the research community, often do not integrate well with other tools used within a discipline, 

causing end users grief. There are likely many reasons for this fragmentation, but we would like 

to address two major sources: (1) contributing to an existing project can be costly (in time and 

money) and difficult; and (2) computational researchers need to publish their work to 

demonstrate academic productivity. 

While object-oriented programming mitigates much of the difficulty, contributing to an 

existing project is still difficult because of the time and effort required to become familiar with 

existing source code. Many projects have hundreds of classes with complex interactions that 

make adding new functionality daunting. In many cases, a researcher may opt to write a separate 

tool simply because it is more feasible. Unfortunately, this causes fragmentation between tools. 

To promote well-integrated tools, VTC was written specifically to facilitate contribution with its 

easily extensible code structure. Any computational researcher can begin a new tool without 

needing to familiarize him/herself with other complex code.  

Contributing to existing source code can be challenging, but publishing requirements also 

present a challenge to computational researchers, since publications are an essential measure of 

academic productivity. If a computational researcher adds a novel algorithm to an existing tool, 

s/he may forfeit the opportunity to publish the algorithm and get feedback from the community. 

Because VTC is simply a collection of useful tools, however, researchers can contribute an 

independent tool or algorithm with an independent name and publish it independently. 
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As we mentioned above, it is not possible to predict all possible operations and uses for 

software like VTC and we anticipate the need for additional functionality. To this end, we invite 

all computational researchers to contribute independent tools associated with variant analysis to 

VTC. This will benefit researchers by promoting tool integration within a simple, intuitive 

framework.  

Conclusions 

VCF files are the standard format for storing variants identified in next-generation 

sequencing (NGS) and other studies, but working with them can be challenging. In this 

manuscript we describe a novel program, the Variant Tool Chest (VTC). The Variant Tool Chest 

is easily extendable and complements existing softwares by extending their capabilities without 

replicating existing solutions for working with VCF files. VTC is available at 

https://github.com/mebbert/VariantToolChest 

Methods 

Variant tool chest overview. The Variant Tool Chest (VTC) is a collection of tools to 

analyze variants from next-generation sequencing (NGS) and other studies, and is intended to 

become a tool chest to accommodate most analysis needs. It is written in Java (version 1.7) for 

speed and portability. Two tools currently exist in the tool chest named SetOperator and 

VarStats. Set Operator performs set operations such as intersects, complements, and unions on 

variant sets termed variant pools. VarStats performs statistical operations including association 

analyses and summaries on variant pools. Since there are numerous other tools necessary for 

analyzing variant pools, VTC was written with an emphasis on extensibility. 
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Extensibility. To make VTC easily extensible, each tool is written independently and is 

self-contained within a single Java package. Researchers can add tools without being forced to 

familiarize and integrate with other complicated code. A single class named VTCEngine is the 

main entry for all tools. VTCEngine receives user input and executes the appropriate tool(s). 

Most arguments are passed to, and handled by the tool of interest. Each tool uses a simple 

argument-parsing library named Argparse4j [5] to define and handle all arguments. All tools use 

the same variant and sample data structures known as VariantPool and SamplePool, respectively.  

VariantPool is built on the open source public application programming interfaces (APIs) 

distributed by the Broad Institute that define the Variant Call Format (VCF) file structure. 

Specifically, the VTC is built on the Picard [6], SAMTools [7], tribble, and variant APIs. Tribble 

provides necessary utilities for creating and working with various data file types, including VCF 

indexes. All three libraries are essential components incorporated into the Genome Analysis 

Toolkit (GATK) [3, 4]. As such, VTC is capable of reading and writing valid VCF files, 

dependably. For generalizability, data structure classes are contained within the main 

vtc.datastructures Java package. Any future classes generally applicable across multiple tools 

should also be defined within the vtc.datastructures package. Likewise, a class named UtilityBelt 

was created for methods that are generally applicable. The file structure of VTC can be seen in 

Figure 3.1.  
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Figure 3.1. Variant tool chest (VTC). The VTC was built to be extensible. Each new tool only 
needs to interface with a few simple classes and is otherwise completely independent. All tools 
should be self-contained within a single parent Java package. The main driver class for VTC is 
VTCEngine. Any new tool should have its own Engine class and be instantiated from 
VTCEngine. All generally applicable data structures such as VariantPool and SamplePool are 
placed within the vtc.datastructure Java package. Any new generally applicable data structures 
should also be placed in vtc.datastructure. Otherwise the data structure should be housed within 
the tool’s package. Likewise, any generally applicable methods should be placed in the 
UtilityBelt class. 
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Abstract 

Background. Ebbert et al. recently reported two potential gene-gene interactions 

between rs11136000 (CLU) and rs670139 (MS4A4E) (SF=3.81, p=.016), and rs3865444 (CD33) 

and rs670139 (MS4A4E) (SF=5.31, p=.003) using the Cache County data. Here, we evaluate 

those interactions in a large, independent dataset. 

Methods. Using 32 independent data sets from the Alzheimer’s Disease Genetics 

Consortium (ADGC), we tested each interaction, controlling for age, gender, and APOE ε4 dose. 

We then performed two meta-analyses per interaction (ADGC only and with Cache) using 

METAL, and performed 10,000 permutations to obtain empirical p-values. We repeated the 

meta-analyses in APOE ε4 carrier and non-carrier strata, estimated the combined population 

attributable fraction (cPAF) for both, and explored causal variants. 

Results. Our results support the CLU-MS4A4E interaction (ADGC: SF=2.37, p=0.007; 

with Cache: SF=2.71, p=0.0004) and found a potential dosage effect using the ADGC data 

between rs11136000:C/C and rs670139:G/T (with Cache: SF=1.73, p=0.02). Empirical p-values 

obtained from permutations support the main interaction (ADGC: p=0.03; with Cache: p=0.002). 

The CD33-MS4A4E interaction did not replicate (ADGC: SF=1.16, p=0.78). We found an 

association for the CLU-MS4A4E interaction in Cache County for APOE ε4 negative individuals 

(SF=4.75, p=0.005). This association only replicates including Cache (ADGC: SF=1.28, p=0.15; 

with Cache: SF=2.08, p=0.004). The estimated cPAF for CLU and MS4A4E is 8.0. We found no 

obvious causal variants. 

Conclusions. We replicated the main CLU-MS4A4E interaction and provide evidence of 

a possible dosage and APOE ε4 effect. We also estimate an 8% decrease in Alzheimer’s disease 

incidence if the CLU-MS4A4E risk alleles were removed from the population.  
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Introduction 

Alzheimer’s disease (AD) is a common and complex neurodegenerative disease. It is the 

most common cause of dementia and is characterized by the accumulation of amyloid plaques 

and neurofibrillary tangles. To date, many genetic loci have been found that modify AD risk, but 

collectively, they explain only a fraction of the heritability of the disease (1) and are not 

diagnostically useful (2). It is hypothesized that rare variants with large effects as well as 

epistatic interactions account for much of the unexplained heritability in AD and have been 

largely hidden due to limitations in traditional GWAS studies. As such, rare variant and epistatic 

effects are poorly understood. Recent studies, however, have demonstrated that gene-gene 

interactions play a critical role in the etiology and progression of AD (2–5). 

A recent study by Ebbert et al. (2) found evidence of two gene-gene interactions among 

three known AD genes that increase AD risk: CLU-MS4A4E and CD33-MS4A4E. Specifically, 

Ebbert et al. reported interactions between rs11136000 C/C (CLU) and rs670139 G/G (MS4A4E) 

genotypes (synergy factor = 3.81; p = .016), and the rs3865444 C/C (CD33) and rs670139 G/G 

(MS4A4E) genotypes (synergy factor = 5.31; p = .003). All three genes are on the “AlzGene Top 

Results” list, which summarizes the most established genes associated with AD to date. 

In this study, we attempted to replicate these gene-gene interactions by performing an 

independent meta-analysis of data sets from the Alzheimer’s Disease Genetics Consortium 

(ADGC), followed by a combined meta-analysis including the original Cache County data. We 

also tested for dosage effects in both interactions and an APOE ε4 effect. We then performed a 

rigorous permutation experiment to test robustness of results that had a significant p-value in the 

independent analysis. We also explored possible causal variants using whole-genome sequence 

data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The main CLU-MS4A4E 
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interaction replicates in both the independent and combined meta-analysis, with minor evidence 

of a dosage effect. There is also minor evidence of an association between the CLU-MS4A4E 

interaction and case-control status in APOE ε4 negative individuals. The CD33-MS4A4E 

interaction failed to replicate.  

Methods 

SNP data preparation and statistical analysis. We used SNP microarray data from 

ADGC in this study, which consists of 32 studies over two phases. More information about this 

dataset can be found in a previous report by Naj et al. (6) and the ADGC data preparation 

description (7).  

Since gene-gene interactions are challenging to identify and replicate, we used only the 

highest quality data possible. For each ADGC data set, we filtered SNPs imputed with low 

information (info < .5) and then converted the IMPUTE2/SNPTEST format files to PLINK 

format, using PLINK v1.90b2i (8). We used the default PLINK uncertainty cutoff of .1, meaning 

any imputed call with uncertainty greater than .1 was treated as missing. We included SNPs with 

a missing genotype rate less than 0.05 (PLINK command ‘--geno 0.05’). After cleaning SNPs, 

we included only individuals with a missing rate less than 0.01 (PLINK option ‘--mind 0.1’) to 

select only the samples with high genotyping rates. We then extracted the three SNPs of interest: 

rs3865444 (CD33), rs670139 (MS4A4E), and rs11136000 (CLU) and tested Hardy-Weinberg 

equilibrium (9; 10). Using R v3.1.1 (11), we then excluded all samples that did not have 

complete data for all covariates including age, gender, cohort, case-control status, APOE ε4 dose, 

and the two SNPs being tested in the corresponding interaction. Any data sets missing the 

respective SNPs or covariates after data cleaning were excluded from further analysis.  
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Following data preparation, we tested the individual interactions in each data set using 

logistic regression. We performed logistic regressions in R using the covariates previously 

mentioned. We defined the R models as “case_control ~ rs3865444*rs670139 + apoe4dose + age 

+ sex” and “case_control ~ rs11136000*rs670139 + apoe4dose + age + sex” for the CD33-

MS4A4E and CLU-MS4A4E interactions, respectively, which include the main and interaction 

effects in the models. All analyses in this study used each gene’s homozygous minor allele as the 

reference group.  

Using results from each study, we performed a meta-analysis to test significance across 

the ADGC data sets using the METAL version released on 2011-03-25 (12), and performed a 

second meta-analysis including the Cache County results. We tested the originally reported 

interactions, along with heterozygous interactions (rs11136000 C/C interacting with rs670139 

G/T and rs3865444 C/C interacting with rs670139 G/T) to check for potential dosage effects, 

based on suggestive evidence found in the original Cache County study (Supplemental Table 

4.1). We also stratified the Cache County data by APOE ε4 status and tested for an association 

with case-control status. Based on those results, we then tested for the same association in the 

ADGC data.  

Following the meta-analyses, we performed a permutation analysis with 10,000 

permutations for interactions that replicated in the independent data set. For each ADGC data set, 

we randomly permuted case-control status across all individuals, tested the interaction by logistic 

regression, and reran the meta-analysis. We stored the p-values from each of the 10,000 meta-

analyses. We then calculated the empirical p-value by finding the original p-value’s rank in the 

distribution of p-values divided by the number of permutations. 
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Our results are represented as synergy factors (4; 13) and their associated 95% 

confidence intervals and p-values. Synergy factors measure whether the effect size of two 

interacting genetic variants is greater than the sum. Similar to odds ratios, synergy factors less 

than one and greater than one suggest decreased and increased risk in case-control studies, 

respectively, as long as the appropriate reference group is used.  

We calculated each synergy factor’s 95% confidence interval for each meta-analysis, but 

omitted the ADC1 cohort, which had only a single case, inclusion of which made the 95% 

confidence interval for the summary synergy factor from 0 - ∞. 

Exploring causal mutations. We explored causal mutations for confirmed interactions 

using 809 ADNI whole genomes that were sequenced, aligned to hg19, and variants called by 

Illumina using their internal analysis procedure. We used linkage disequilibrium, Regulome DB 

(accessed November 2014) (14), and functional annotations from wAnnovar (15) to isolate SNPs 

of interest. We first extracted all SNPs within approximately 50 kilobases of each SNP of 

interest, calculated linkage disequilibrium using Haploview (16), and retained all SNPs with a D’ 

≥ 0.99. Using Regulome DB and wAnnovar, we annotated each remaining SNP for: (1) known 

regulation and functional effects; (2) minor allele frequencies from the 1000 Genomes Project 

(17), 6500 Exomes Project (18), and the ADNI data set; and (3) corresponding MutationTaster 

predictions (19). We retained all SNPs with a Regulome DB score less than 4, and all SNPs 

located in untranslated (UTRs) or exonic regions (if nonsynonymous). For each retained SNP, 

we tested individual associations with case-control status and subsequently tested their 

interaction with all SNPs in the other interacting gene.  
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Results 

Sample and data set demographics. Sample demographics and minor allele frequencies 

for each SNP are presented for each data set (Table 4.1). Nine of the 32 data sets passed quality 

controls for the CD33-MS4A4E interaction while seven passed for CLU-MS4A4E. The remaining 

data sets were either missing required SNP(s), missing a covariate, or consisted of only controls 

and could not be included in the analysis. All SNPs passed Hardy-Weinberg equilibrium in all 

data sets for both cases and controls.  

Interaction and dosage meta-analysis results. The originally reported CLU-MS4A4E 

interaction between the rs11136000 C/C (CLU) and rs670139 G/G (MS4A4E) genotypes 

replicates in both the independent (synergy factor = 2.37, p = 0.007; Figure 4.1b) and combined 

(synergy factor = 2.71, p = 0.0004; Figure 4.1b) meta-analyses (Supplemental Table 4.1), with 

minor evidence for a dosage effect in the combined meta-analysis (synergy factor = 1.73, p = 

0.02; Figure 4.1a). Empirical p-values obtained from permutations support the main interaction 

(ADGC: p = 0.03; with Cache: p = 0.002). We found an association with case-control status in 

people with no APOE ε4 alleles in the Cache County data alone (synergy factor = 4.75, p = 

0.005; Supplemental Table 4.2) that did not exist in people with one or more APOE ε4 alleles 

(synergy factor = 1.22, p = 0.74; Figure 4.2b; Supplemental Table 4.2). The association in APOE 

ε4 negative subjects did not replicate in the meta-analysis across the ADGC (synergy factor = 

1.28, p = 0.15; Figure 4.2b; Supplemental Table 4.2), though it was significant when including 

the Cache County data (synergy factor = 2.08, p = 0.004; Figure 4.2b; Supplemental Table 4.2). 

The CD33-MS4A4E interaction failed to replicate in either the independent (synergy factor = 

1.16, p = 0.78; Figures 4.3a and 4.3b) or combined (synergy factor = 1.63, p = 0.24; Figures 4.3a 

and 4.3b) meta-analyses. 
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Table 4.1. Sample Demographics by Data Set 

Study N Cases (%) Females (%) Age APOE 4 + (%) 
rs670139 MAF 

(T) 
rs3865444 MAF 

(A) 
rs11136000 MAF 

(T) 
         

ACT1 1858 487 (26.2) 1068 (57.5) 82.28 526 (28.3) 0.41 0.33 NA 
ADC1 388 1 (00.3) 237 (61.1) 74.99 129 (33.2) 0.41 0.33 0.39 
ADC2 681 566 (83.1) 365 (53.6) 79.38 394 (57.9) 0.42 0.33 0.39 
ADNI 371 230 (62.0) 157 (42.3) 77.82 201 (54.2) 0.45 0.31 0.37 
LOAD 2965 1515 (51.1) 1882 (63.5) 78.22 1667 (56.2) 0.43 0.31 0.38 
TARC1 388 244 (62.9) 244 (62.9) 78.96 189 (48.7) 0.43 0.32 0.41 
UMVUMSSM_A 1058 450 (42.5) 676 (63.9) 75.48 451 (42.6) 0.43 0.31 0.38 
UMVUMSSM_B 390 135 (34.6) 236 (60.5) 73.99 118 (30.3) 0.41 0.33 0.38 
UMVUMSSM_C 271 210 (77.5) 160 (59.0) 74.77 167 (61.6) 0.42 0.29 NA 

         

Note. For each dataset the following information is provided: percent cases and females, age, APOE ε4 positive percentage, and minor allele frequencies for 
rs670139, rs3865444, and rs11136000.  
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Figure 4.1a. Forest plot showing CLU-MS4A4E interaction replication with potential 
dosage effect: Original interaction test. We tested the original interaction, which replicated in 
both the independent and combined meta-analyses (figure b). We also tested for a dosage effect, 
which did not replicate independently, but does in the combined (figure a). The ADC1 data set 
was omitted when calculating the 95% confidence interval for the meta-analysis synergy factor 
because the data set only had 1 case, giving a standard error from 0 - ∞.   
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Figure 4.1b. Forest plot showing CLU-MS4A4E interaction replication with potential 
dosage effect: Dosage effect test. We tested the original interaction, which replicated in both the 
independent and combined meta-analyses (figure b). We also tested for a dosage effect, which 
did not replicate independently, but does in the combined (figure a). The ADC1 data set was 
omitted when calculating the 95% confidence interval for the meta-analysis synergy factor 
because the data set only had 1 case, giving a standard error from 0 - ∞.  
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Figure 4.2a. Forest plot showing APOE ε4 negative association with Alzheimer’s disease 
case-control status: Independent meta-analysis. We stratified the Cache County data by 
APOE ε4 status and tested for an association with Alzheimer’s disease case-control status. We 
found an association in the APOE ε4 negative stratum in Cache County that did not replicate in 
the independent meta-analysis, but did in the combined analysis (figure b). There was no 
association in the APOE ε4 positive stratum. 
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Figure 4.2b. Forest plot showing APOE ε4 negative association with Alzheimer’s disease 
case-control status: Combined analysis. We stratified the Cache County data by APOE ε4 
status and tested for an association with Alzheimer’s disease case-control status. We found an 
association in the APOE ε4 negative stratum in Cache County that did not replicate in the 
independent meta-analysis, but did in the combined analysis (figure b). There was no association 
in the APOE ε4 positive stratum. 
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Figure 4.3a. Forest plot showing CD33-MS4A4E failed replication of interaction and dosage 
effect: Independent meta-analysis. We tested the original interaction, which did not replicate in 
either the independent or combined meta-analyses (figure b). We also tested for a dosage effect, 
which also did not exist. The ADC1 data set was omitted when calculating the 95% confidence 
interval for the meta-analysis synergy factor because the data set only had 1 case, giving a 
standard error from 0 - ∞. 
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Figure 4.3b. Forest plot showing CD33-MS4A4E failed replication of interaction and 
dosage effect: Combined analysis. We tested the original interaction, which did not replicate in 
either the independent or combined meta-analyses (figure b). We also tested for a dosage effect, 
which also did not exist. The ADC1 data set was omitted when calculating the 95% confidence 
interval for the meta-analysis synergy factor because the data set only had 1 case, giving a 
standard error from 0 - ∞. 
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Exploring causal mutations. Since only the CLU-MS4A4E interaction replicated, we 

only explored causal SNPs within these genes. There were 36 and 32 SNPs that fit the inclusion 

criteria previously described for SNPs in the regions of rs11136000 and rs670139, respectively 

(Supplemental Tables 4.3 and 4.4). Most of the SNPs are rare (MAF < 0.01) according to the 

1000 Genomes, 6500 Exomes, and ADNI data sets. None of the SNPs were significantly 

associated with case-control status individually. The pairwise interaction association tests 

between all included SNPs near and including rs11136000 (CLU) and rs670139 (MS4A4E) 

revealed an interaction between rs670139 and rs1532278 (synergy factor = 1.83, p = 0.01 

unadjusted). The SNP rs1532278 was previously identified by Naj et al. (6) as being associated 

with case-control status. There were three suggestive interactions between rs9331931 (CLU, 

intronic) and the following: (1) rs7926344 (synergy factor = 0.53, p = 0.06); (2) rs2081547 

(synergy factor = 0.53, p = 0.06); and (3) rs11230180 (synergy factor = 0.54, p = 0.07). SNPs 

rs2081547 and rs11230180 are interesting because they have been shown to modify expression 

of MS4A4A (20), the gene upstream from MS4A4E. They also have a Regulome DB score of 

‘1f’, meaning they are known to modify expression and are known DNase and transcription 

factor binding sites. 

Discussion 

In this study we attempted to replicate two gene-gene interactions and their association 

with Alzheimer’s disease case-control status. The CD33-MS4A4E interaction failed to replicate, 

and may have resulted from over-fitting in the Cache County data. The CD33 protein interacts 

indirectly with a protein related to MS4A4E known as MS4A2 by physically interacting with the 

CBL protein that interacts with MS4A2. Both MS4A4E and MS4A2 are members of the 

membrane-spanning 4-domain gene family, giving credence to an interaction between CD33 and 
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MS4A4E. Statistical evidence for this interaction is lacking, however, and more analyses may be 

necessary to draw more definitive conclusions. 

We replicated the CLU-MS4A4E interaction, and further demonstrated some evidence of 

a dosage effect for MS4A4E along with a potential association in APOE ε4 negative subjects. The 

interaction between the rs11136000 (CLU) C/C and rs670139 (MS4A4E) G/G genotypes is 

significant in both the independent meta-analysis (synergy factor = 2.37, p = 0.007) using only 

the ADGC data sets and the combined meta-analysis (synergy factor = 2.71, p = 0.0004) 

including the Cache County data, suggesting it may be valid. There is, however, a distinction to 

be made regarding statistical epistasis and biological epistasis. While there is evidence that CLU, 

like CD33, interacts indirectly with MS4A2, little is known about MS4A4E itself and we do not 

know whether it biologically interacts with CLU. MS4A2 indirectly modifies BCL2L1 activation 

or expression (2), which physically interacts with CLU. Research suggests CLU prevents 

amyloid fibrils and other protein aggregation events (Yerbury et al 2007) while MS4A4E may 

facilitate aggregation as a membrane-spanning protein. Membrane-spanning proteins play 

diverse roles in cell activity including transport and signaling. Experiments will be required to 

determine whether there is biological epistasis between CLU and MS4A4E, and whether the 

interaction affects amyloid fibril formation. These results indicate further investigative efforts in 

gene-gene interactions (and protein-protein interactions) may be important to resolve 

Alzheimer’s disease etiology. 

We tested for evidence of an APOE ε4 effect in the Cache County data and found a 

significant effect in APOE ε4 negative subjects and no significant effect in APOE ε4 positive 

subjects. Subsequent meta-analyses with the ADGC data suggest this effect may be valid, though 

it only replicates when including the original Cache County result.  
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Since all analyses in this study used each gene’s homozygous minor allele as the 

reference group, the interactions between major alleles are framed as a risk factor, meaning the 

interaction between the minor alleles is protective. The minor allele for CLU is protective as is 

being APOE ε4 negative, while the minor allele for MS4A4E increases risk. The interaction 

between CLU and MS4A4E from the minor allele perspective is protective.  

We found no obvious causal variants linked to rs11136000 or rs670139 with a D’ ≥ 0.99 

in the ADNI whole-genome data, though we believe further analysis of both rs11230180 

(MS4A4E) and rs2081547 (MS4A4E) are warranted given their known expression effect on 

MS4A4A. SNP rs9331931 (CLU) has minimal regulome evidence, but is also worth further 

investigation. 

A major gap in Alzheimer’s disease literature to date is the lack of known causal variants. 

Several SNPs have repeatedly turned up in genome-wide association studies, but the tagSNPs 

themselves are unlikely to play a direct role in Alzheimer’s disease etiology. What is more likely 

is that the tagSNPs are in close linkage disequilibrium with one or more causal variants. We 

believe there are two explanations: (1) the SNPs are linked to multiple rare variants that drive 

Alzheimer’s disease development and progression; or (2) there is another common variant in the 

region with functional effects that remain unknown. In either case, given the biological 

complexity of Alzheimer’s disease and results presented in this study, we believe epistasis plays 

a critical role in Alzheimer’s disease etiology. As such, the community must continue to identify 

and vet these and other interactions that are supported in the literature. 
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Supplemental Table 4.1. Independent and Combined Meta-Analyses Replicate CLU-MS4A4E Interaction, but CD33-MS4A4E 
Fails to Replicate 

Gene interaction (rs) Genotype Study (direction) 
Synergy factor (95% 

CI) p-value N 
      

CLU:MS4A4E (rs11136000:rs670139) CC:GT ADC1 (-) 0.23 (0 - ∞) 0.50 388 
  ADC2 (-) 0.50 (0.06 - 4.42) 0.27 681 
  ADNI (+) 2.40 (0.30 - 19.19) 0.20 371 
  LOAD (+) 2.11 (0.98 - 4.55) 0.03 2965 
  TARC1 (-) 0.33 (0.04 - 2.80) 0.16 395 
  UMVUMSSM_a (+) 3.03 (0.92 - 9.93) 0.03 1067 
  UMVUMSSM_b (-) 0.70 (0.07 - 7.34) 0.38 390 
  Cache County (+) 2.98 (1.003 - 8.86) 0.05 2419 
  Meta (no Cache) 1.40 (0 - ∞) 0.11 6257 
  Meta (with Cache) 1.73 (0 - ∞) 0.02 8676 

 
      
 CC:GG ADC1 (+) 170.82 (0 - ∞) 0.50 388 
  ADC2 (+) 1.07 (0.13 - 8.83) 0.47 681 
  ADNI (+) 2.81 (0.30 - 25.70) 0.18 371 
  LOAD (+) 1.90 (0.83 - 4.35) 0.07 2965 
  TARC1 (-) 0.39 (0.05 - 3.30) 0.19 395 
  UMVUMSSM_a (+) 2.57 (0.67 - 9.83) 0.08 1067 
  UMVUMSSM_b (+) 3.16 (0.27 - 36.74) 0.18 390 
  Cache County (+) 3.81 (1.28 - 11.32) 0.02 2419 
  Meta (no Cache) 2.37 (0 - ∞) 0.007 6257 
  Meta (with Cache) 2.71 (0 - ∞) 0.0004 8676 
      
CD33:MS4A4E (rs3865444:rs670139) CC:GT ACT1 (-) 0.62 (0.20 - 1.90) 0.20 1858 
  ADC1 (+) 21.23 (0 - ∞) 0.50 388 
  ADC2 (+) 2.01 (0.16 - 25.46) 0.30 681 
  ADNI (+) 7.34 (0.49 - 109.57) 0.07 371 
  LOAD (+) 1.02 (0.40 - 2.60) 0.48 2965 
  TARC1 (-) 0.28 (0.02 - 5.14) 0.20 388 
  UMVUMSSM_a (+) 1.53 (0.37 - 6.37) 0.28 1058 
  UMVUMSSM_b (-) 0.89 (0.02 - 42.43) 0.48 390 
  UMVUMSSM_c (-) 0.72 (0.02 - 23.49) 0.43 271 
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Gene interaction (rs) Genotype Study (direction) 
Synergy factor (95% 

CI) p-value N 
      

  Cache County (+) 1.70 (0.63 - 4.58) 0.30 2419 
  Meta (no Cache) 1.18 (0 - ∞) 0.65 8370 
  Meta (with Cache) 1.28 (0 - ∞) 0.37 10789 
      
 CC:GG ACT1 (-) 0.90 (0.28 - 2.93) 0.43 1858 
  ADC1 (+) 90.09 (0 - ∞) 0.50 388 
  ADC2 (+) 1.76 (0.13 - 23.77) 0.33 681 
  ADNI (+) 8.00 (0.43 - 148.42) 0.08 371 
  LOAD (-) 0.66 (0.24 - 1.78) 0.21 2965 
  TARC1 (+) 1.27 (0.05 - 30.14) 0.44 388 
  UMVUMSSM_a (+) 1.11 (0.26 - 4.69) 0.44 1058 
  UMVUMSSM_b (-) 0.59 (0.01 - 29.50) 0.40 390 
  UMVUMSSM_c (-) 0.41 (0.01 - 19.21) 0.32 271 
    Cache County (+) 5.31 (1.79 - 15.77) 0.003 2419 
  Meta (no Cache) 1.16 (0 - ∞) 0.78 8370 
  Meta (with Cache) 1.63 (0 - ∞) 0.24 10789 

      

Note. Logistic regression results from each data set and both meta-analyses are shown for the main CLU-MS4A4E and CD33-MS4A4E interactions and their 
respective dosage analyses. The CLU-MS4A4E interaction replicates in both independent and combined meta-analyses. There is also evidence of a dosage effect 
when including the Cache County data in the meta-analysis. The CD33-MS4A4E interaction fails to replicate.   
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Supplemental Table 4.2. Minor Evidence of an Association with Alzheimer’s Disease Case-
Control Status in APOE ε4 Negative Individuals 

APOE ε4 status Study (direction) 

Synergy 
factor (95% 

CI) p-value N 
     

+ ADC1 (NA) NA 
 

NA 129 
 ADC2 (NA) NA NA 394 
 ADNI (NA) NA NA 201 
 LOAD (+) 1.20 (0.59 - 

 
0.31 1667 

 TARC1 (-) 0.29 (0.03 - 
 

0.16 193 
 UMVUMSSM_a (+) 1.82 (0.32 - 

 
0.25 456 

 UMVUMSSM_b (+) 1.53 (0.06 - 
 

0.40 118 
 Cache County (+) 1.22 (0.36 - 

 
0.74 749 

 Meta (no Cache) 1.17 (0.62 - 
 

0.26 3158 
  Meta (with Cache) 1.19 (0.67 - 

 
0.26 3907 

      
- ADC1 (NA) NA NA 259 
 ADC2 (-) 0.48 (0.06 - 

 
0.25 287 

 ADNI (-) 0.58 (0.04 - 
 

0.35 170 
 LOAD (+) 1.18 (0.47 - 

 
0.37 1298 

 TARC1 (+) 1.85 (0.31 - 
 

0.25 202 
 UMVUMSSM_a (+) 2.63 (0.79 - 

 
0.06 611 

 UMVUMSSM_b (+) 1.28 (0.18 - 
 

0.41 272 
 Cache County (+) 4.75 (1.59 - 

 
0.005 1670 

 Meta (no Cache) 1.28 (0.70 - 
 

0.15 3099 
 Meta (with Cache) 2.08 (1.19 – 

 
0.004 4769 

     

Note. We found a significant association between Alzheimer’s disease case-control status and APOE ε4 negative 
individuals in the Cache County data set, while no association existed in APOE ε4 positive individuals. The 
association in APOE ε4 negative individuals did not replicate independently, but was significant when including the 
Cache County data in the meta-analysis.   
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Supplemental Table 4.3. Top Variants in Linkage Disequilibrium with rs11136000 (CLU) that Have a Regulome DB Score 
Less than 4, or Are Located in UTR or Exonic Regions 

SNP SNP Ref Alt Position Gene 
Regulome 

DB Function 
Function 

consequence 
MAF 

(ADNI) 
MAF 

(1000G) 
MAF 

(esp6500) 

Mutation taster 
score 

(prediction) 
             

rs11136000 chr8:27441327 C T 27441327 EPHX2, CLU 2a intergenic  0.001 0.004   
(CLU) rs9331945 A G 27454957 CLU 2b UTR3  0.014 0.004   

 rs9331892 G A 27468005 CLU 2b exonic synonymous 0.007 0.05 0.06  
 chr8:27445942 G A 27445942 EPHX2, CLU 2b intergenic  0.006 0.003   
 chr8:27449609 G A 27449609 EPHX2, CLU 2b intergenic  0.006 0.004   
 chr8:27452473 C T 27452473 EPHX2, CLU 2b intergenic  0.001    
 rs1532278 T C 27466315 CLU 2b intronic  0.62 0.72   
 chr8:27468411 T C 27468411 CLU 2b intronic  0.001 0.003   
 rs56121659 C T 27469064 CLU 2b intronic  0.001 0.01   
 rs9331886 C T 27469066 CLU 2b intronic  0.003 0.02   
 chr8:27471977 G C 27471977 CLU 2b intronic  0.001    
 rs77336101 G A 27474871 CLU, 

SCARA3 
2b intergenic  0.02 0.02   

 chr8:27475208 C G 27475208 CLU, 
SCARA3 

2b intergenic  0.002 0.0005   

 rs73560231 C T 27478302 CLU, 
SCARA3 

2b intergenic  0.002 0.003   

 chr8:27491389 G A 27491389 SCARA3 2b upstream  0.002    
 chr8:27494300 G C 27494300 SCARA3 2b intronic  0.001    
 rs73679246 G A 27463156 CLU 2c intronic  0.009 0.07   
 rs73558162 G A 27423389 EPHX2, CLU 3a intergenic  0.001 0.01   
 rs78590228 G T 27442119 EPHX2, CLU 3a intergenic  0.001 0.01   
 chr8:27445866 C T 27445866 EPHX2, CLU 3a intergenic  0.009 0.0009   
 chr8:27448407 A G 27448407 EPHX2, CLU 3a intergenic  0.003 0.0005   
 chr8:27452662 A G 27452662 EPHX2, CLU 3a intergenic  0.001    
 rs9331931 G C 27458104 CLU 3a intronic  0.28 0.15   
 chr8:27461286 C A 27461286 CLU 3a intronic  0.001    
 chr8:27483098 C T 27483098 CLU, 

SCARA3 
3a intergenic  0.001    

 rs56276902 A G 27511118 SCARA3 3a intronic  0.002    
 chr8:27472251 G T 27472251 CLU 4 UTR5  0.003 0.003 0.004 0.997 (N) 
 chr8:27491676 C T 27491676 SCARA3 4 UTR5  0.001 0.0009   
 chr8:27507233 G A 27507233 SCARA3 5 exonic non-

synonymous 
0.001  0.0002 0.881 (N) 

 rs9331938 C T 27457479 CLU 7 exonic non-
synonymous 

0.002 0.005 0.01 1 (N) 

 rs9331936 T G 27457512 CLU 7 exonic non-
synonymous 

0.008 0.06 0.07 0 (P) 

 chr8:27462461 G A 27462461 CLU 7 exonic non- 0.001 0.0005 0.001 1 (N) 
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SNP SNP Ref Alt Position Gene 
Regulome 

DB Function 
Function 

consequence 
MAF 

(ADNI) 
MAF 

(1000G) 
MAF 

(esp6500) 

Mutation taster 
score 

(prediction) 
             

synonymous 
 rs41276297 G A 27462662 CLU 7 exonic non-

synonymous 
0.001 0.001 0.003 1 (N) 

 chr8:27516016 C T 27516016 SCARA3 7 exonic non-
synonymous 

0.001   1 (N) 

 chr8:27516732 C T 27516732 SCARA3 7 exonic non-
synonymous 

0.001  0.00008 1 (D) 

 rs3735754 G A 27516955 SCARA3 7 exonic non-
synonymous 

0.002 0.04 0.001 0.997 (D) 

             

Note. Using the ADNI whole-genome data, we used linkage disequilibrium, Regulome DB (accessed November 2014), and functional annotations from 
wAnnovar to isolate SNPs of interest. We first extracted all SNPs within approximately 50 kilobases of each SNP of interest, calculated linkage disequilibrium 
using Haploview, and retained all SNPs with a D’ ≥ 0.99. Using Regulome DB and wAnnovar, we annotated each remaining SNP for: (1) known regulation and 
functional effects; (2) minor allele frequencies from the 1000 Genomes Project, 6500 Exomes Project, and the ADNI data set; and (3) corresponding 
MutationTaster predictions. We retained all SNPs with a Regulome DB score less than 4, and all SNPs located in untranslated (UTRs) or exonic regions (if 
nonsynonymous). No SNPs were significantly associated with case-control status in the ADNI whole-genome data.
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Supplemental Table 4.4. Top Variants in Linkage Disequilibrium with rs670139 (MS4A4E) that Have a Regulome DB Score 
Less than 4, or Are Located in UTR or Exonic Regions 

SNP SNP Ref Alt Position Gene 
Regulome 

DB Function 
Function 

consequence 
MAF 

(ADNI) 
MAF 

(1000G) 
MAF 

(esp6500) 

Mutation 
taster score 
(prediction) 

             

rs670139 rs11230180 G T 59961486 MS4A6A, 
AB231731 

1f intergenic  0.36 0.27   

(MS4A4E) rs2081547 C T 59989430 AB231729, 
AB231731 

1f ncRNA_intronic  0.37 0.31   

 chr11:59940500 C T 59940500 MS4A6A, 
MS4A6A 

2b exonic;splicing non-
synonymous 

0.004 0.005 0.003 0.996 (N) 

 chr11:59936960 G A 59936960 MS4A2, 
MS4A6A 

2b intergenic  0.001    

 chr11:59961500 A G 59961500 MS4A6A, 
AB231731 

2b intergenic  0.003    

 rs79917136 T G 59961877 MS4A6A, 
AB231731 

2b intergenic  0.006 0.01   

 chr11:59962069 T A 59962069 MS4A6A, 
AB231731 

2b intergenic  0.02 0.01   

 rs76834915 G T 59936781 MS4A2, 
MS4A6A 

2c intergenic  0.002 0.01   

 rs79315507 T G 59923606 MS4A2, 
MS4A6A 

3a intergenic  0.001 0.01   

 chr11:59926285 A G 59926285 MS4A2, 
MS4A6A 

3a intergenic  0.001    

 rs12285212 G T 59927523 MS4A2, 
MS4A6A 

3a intergenic  0.002 0.01   

 chr11:59929465 C T 59929465 MS4A2, 
MS4A6A 

3a intergenic  0.002 0.003   

 chr11:59936007 G A 59936007 MS4A2, 
MS4A6A 

3a intergenic  0.01 0.005   

 chr11:59936023 C G 59936023 MS4A2, 
MS4A6A 

3a intergenic  0.002 0.01   

 rs683892 A T 59938266 MS4A6A 3a downstream  0.002    
 chr11:59943683 C T 59943683 MS4A6A 3a intronic  0.005    
 chr11:59960287 C T 59960287 MS4A6A, 

AB231731 
3a intergenic  0.002 0.002   

 chr11:59961597 G T 59961597 MS4A6A, 
AB231731 

3a intergenic  0.001    

 rs7926344 G A 59962166 MS4A6A, 
AB231731 

3a intergenic  0.36 0.27   

 rs71488445 T C 59962240 MS4A6A, 
AB231731 

3a intergenic  0.07 0.03   

 chr11:59998347 A T 59998347 AB231729, 
AB231731 

3a upstream  0.002 0.01   
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SNP SNP Ref Alt Position Gene 
Regulome 

DB Function 
Function 

consequence 
MAF 

(ADNI) 
MAF 

(1000G) 
MAF 

(esp6500) 

Mutation 
taster score 
(prediction) 

             

 chr11:60009095 C T 60009095 AB231731, 
MS4A4A 

3a intergenic  0.003    

 chr11:59940217 A T 59940217 MS4A6A 4 UTR3  0.002 0.01   
 chr11:59940271 A C 59940271 MS4A6A 4 UTR3  0.002 0.004   
 chr11:59950687 C G 59950687 MS4A6A 4 UTR5  0.002 0.004   
 chr11:59940074 G A 59940074 MS4A6A 5 UTR3  0.002 0.0005   
 chr11:59980590 C T 59980590 AB231729, 

AB231731 
5 ncRNA_exonic  0.006    

 rs7929057 C T 59980598 AB231729, 
AB231731 

5 ncRNA_exonic  0.13 0.13   

 chr11:59980750 C T 59980750 MS4A4E 6 exonic non-
synonymous 

0.001 0.0005  1 (N) 

 chr11:59939123 C T 59939123 MS4A6A 7 UTR3  0.002 0.0005   
 chr11:59939286 T C 59939286 MS4A6A 7 UTR3  0.002 0.004   
 rs61742546 A G 59949058 MS4A6A 7 exonic non-

synonymous 
0.02 0.01 0.02 1 (N) 

             

Note. Using the ADNI whole-genome data, we used linkage disequilibrium, Regulome DB (accessed November 2014), and functional annotations from 
wAnnovar to isolate SNPs of interest. We first extracted all SNPs within approximately 50 kilobases of each SNP of interest, calculated linkage disequilibrium 
using Haploview, and retained all SNPs with a D’ ≥ 0.99. Using Regulome DB and wAnnovar, we annotated each remaining SNP for: (1) known regulation and 
functional effects; (2) minor allele frequencies from the 1000 Genomes Project, 6500 Exomes Project, and the ADNI data set; and (3) corresponding 
MutationTaster predictions. We retained all SNPs with a Regulome DB score less than 4, and all SNPs located in untranslated (UTRs) or exonic regions (if 
nonsynonymous). No SNPs were significantly associated with case-control status in the ADNI whole-genome data.
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Chapter 5 

Future Directions 

Despite decades of research, a major gap in Alzheimer’s disease etiology persists, and no 

effective treatments exist. A major contributor to this gap is the void of known causal variants, or 

even a clear understanding of which pathways drive development and progression of 

Alzheimer’s disease clinical symptoms. There are many avenues to pursue in understanding 

Alzheimer’s disease, but discovering the genetic basis for the disease is a critical aspect that 

researchers must accomplish to understand its etiology. Understanding the pleiotropic and 

epistatic nature of involved genes, and specific mutations, may be critical. Several SNPs have 

repeatedly turned up in genome-wide association studies, but the SNPs themselves generally do 

not have obvious functional effects, and are unlikely to play a role in Alzheimer’s disease 

etiology. What is more likely is that the SNPs are linked to one or more causal variants. We see 

two possible reasons the non-causal SNPs are robust across data sets, yet causal variants remain 

elusive: (1) the SNPs are linked to multiple rare variants that drive Alzheimer’s disease 

development and progression; or (2) there is another common variant in the region that is either 

unobserved in large studies, or has misunderstood functional effects (e.g., gene regulation). 

Examples of common and rare functional variants with significant effects on Alzheimer’s disease 

development and progression include the common APOE ε4 and APOE ε2 alleles, and the rare 

TREM2 rs75932628 (R47H) variant and the PLD3 rs145999145 (V232M) variant. Whether the 

causal variants are rare or common, given the biological complexity of Alzheimer’s disease and 

results presented in this study, we believe epistasis plays a critical role in Alzheimer’s disease 

etiology. As such, the community must continue to identify and vet these interactions. 
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In this research, we identified an interaction between rs11136000 (CLU) and rs670139 

(MS4A4E) in the Cache County data that later replicated in a meta-analysis across the ADGC 

data. We also identified potential dosage and APOE ε4 effects. To further understand this 

interaction’s nature, researchers need to do the following: (1) test the interaction in more data 

sets to verify its veracity; (2) identify causal variants in the region; and (3) test causal variants in 

vitro within cell lines or in vivo within mice.  

Identifying and verifying epistatic interactions is challenging, largely because of the 

statistical power limits. There are 𝑛𝑛(𝑛𝑛−1)
2

 possible interactions amongst covariates, where 𝑛𝑛 is the 

number of genotypes. Given the large number of variables that can be included, the number of 

hypothesis tests grows quickly, draining valuable statistical power. Thus, managing false 

positives and negatives becomes an uphill battle. Once an interaction is identified, testing 

replication is still challenging because having data sets large enough to contain sufficient 

numbers of each genotype is not trivial. The CLU-MS4A4E interaction we identified replicated in 

ADGC, but epistatic interactions must be vetted to prevent costly, unsuccessful biological 

experiments. With further evidence to support this interaction, future experiments to understand 

the biological nature will be warranted. 

Along with further replication, researchers need to identify causal variants in the region. 

At present, the two most likely explanations are multiple rare causal variants linked with 

rs11136000 and rs670139, and more common SNPs that weren’t measured in genome-wide 

association data sets. Next-generation sequencing across large cohorts in these areas should 

provide the necessary clarity to identify the causal variants, whether rare or common. We 

identified a list of variants for both rs11136000 and rs670139 (Supplemental Tables 4.3 and 4.4) 

with a D’ ≥ 0.99 using next-generation sequencing and annotated them with their known 
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regulome and exonic functions. Most were rare variants with no known functional effect, but 

some are worth investigating because of known function. Genotyping these alleles in a large 

cohort such as the Cache County data will make it possible to explore association with 

Alzheimer’s disease development. 

Any vetted variants that demonstrate statistical verification and have reasonable 

biological support need to be tested in vitro or in vivo to verify function. Research suggests CLU 

prevents amyloid fibrils and other protein aggregation events. Any variants known to modify CLU 

expression or function should be tested for correlation with protein aggregation in vitro. Little is known 

about MS4A4E, but given the statistical interaction with CLU, testing suspect functional variants with 

protein aggregation may be the most logical choice. 

We have presented valuable information regarding epistasis in Alzheimer’s disease in 

this research, including a novel gene-gene interaction between CLU and MS4A4E that modulates 

risk for Alzheimer’s disease. Alzheimer’s disease is a complex neurodegenerative disease whose 

genetic structure remains elusive, but this research provides convincing evidence that epistasis 

plays an important role in disease etiology and must be thoroughly explored.  
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