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a b s t r a c t

We consider the zeroth order model of the family of approximate deconvolution models
of Stolz and Adams. We propose and analyze fully discrete schemes using discontinuous
finite elements. Optimal error estimates are derived. The dependence of these estimates
with respect to the Reynolds number Re is O(Re eRe), which is an improvement with
respect to the classical continuous finite element method where the dependence is
O(Re eRe

3
), Layton [1].
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1. Introduction

Turbulence is a phenomenon that appears in many processes in nature and it is connected with many industrial
applications because of its richness in scales. Based on the Kolmogorov theory [2], Direct Numerical Simulation (DNS)
where all the scales are captured, requires the number of mesh points in space per each time step in to be O(Re9/4) in
three-dimensional problems, where Re is the Reynolds number. This is not computational economical and sometimes
not even feasible. One promising approach is Large Eddy Simulation (LES) where we are seeking for the large scales,
i.e. finding the averaged (filtered) quantities of velocity, [3–5]. A good survey of the spatial filters commonly used in LES is
given in [6].

We explore the discontinuous finite element techniques when applied to the zeroth order LES model (introduced
below) of local averages of the fluid velocity. First, consider the Navier–Stokes equations under the no-slip boundary
condition,

ut + ∇ · (uu) − ν∆u + ∇p = f in (0, T ] × Ω, (1.1)

∇ · u = 0 in [0, T ] × Ω, (1.2)

u = 0 in [0, T ] × Γ , (1.3)

u(0, ·) = u0(·) in Ω, (1.4)

where Ω ⊂ Rd, (d = 2 or d = 3), is a convex bounded regular domain with boundary Γ , u is the fluid velocity, p is
the fluid pressure and f is the body force driving the flow. The kinematic viscosity ν > 0 is inversely proportional to
the Reynolds number of the flow. The initial velocity is given by u0. A pressure normalization condition

∫
Ω
p = 0 is also

needed for uniqueness of the pressure.
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The zeroth-order model is obtained by applying a spatial averaging operator to (1.1)–(1.4) defined by:

φ = A−1φ in Ω, (1.5)
φ = 0 on Γ , (1.6)

where A = −δ2△ + I . Here δ > 0 represents the averaging radius, in general, chosen to be of the order of the mesh
size [7].

Using the fact that A−1 commutes with △, we then obtain the following averaged Navier–Stokes equations:

ut + ∇ · (uu) − ν∆u + ∇p = f in (0, T ] × Ω, (1.7)

∇ · u = 0 in [0, T ] × Ω, (1.8)

u = 0 on [0, T ] × Γ , (1.9)

u(0, ·) = u0(·) in Ω. (1.10)

If we now neglect the error ∇ · (uu)− ∇ · (uu), which is of order δ2, and the commutation error ∇ · u− ∇ · u, we obtain
the zeroth-order model problem satisfied by an approximation w of the local averages u of the velocity:

wt + ∇ · (ww) − ν∆w + ∇p = f in (0, T ] × Ω, (1.11)

∇ · w = 0 in [0, T ] × Ω, (1.12)

w = 0 on [0, T ] × Γ , (1.13)

w(0, ·) = u0(·) in Ω. (1.14)

The zeroth order model is the lowest order model of a family of approximate deconvolution models introduced by Stolz
and Adams [8,9]. In the case of periodic boundary conditions, existence, uniqueness and regularity of strong solutions of
these models is proved in [10]. The particular zeroth order model is considered in [11,12]. Even though there is a large
literature on the simulation of Stolz–Adams models for incompressible and compressible flows, there is little published
work in the literature on the numerical analysis of the models. In [13,14], two different semi-discrete schemes using
conforming finite elements are analyzed.

In this work, we formulate and analyze a class of discontinuous finite element methods for solving the popular lowest
order of the Stolz and Adams models. The approximations of the averaged velocity w and pressure p are discontinuous
piecewise polynomials of degree one and zero respectively. Because of the lack of continuity constraint between elements,
the Discontinuous Galerkin (DG) methods offer several advantages over the classical continuous finite element methods:
(i) local mesh refinement and derefinement are easily implemented (several hanging nodes per edge are allowed);
(ii) the incompressibility condition is satisfied locally on each mesh element; and (iii) unstructured meshes and domains
with complicated geometries are easily handled. In the case of DNS, DG methods have been applied to incompressible
Navier–Stokes equations in several papers (see for instance [15–18] and reference herein). However, only few works
contain a theoretical error analysis of the method. The steady-state Navier–Stokes equations are analyzed in [19] and
the time-dependent Navier–Stokes equations in [20] where the DG methods are combined with an operator splitting
technique. Another discontinuous Galerkin method for the Navier–Stokes equations based on a mixed formulation are
considered in [21]. For high Reynolds numbers, the numerical analysis of a DG scheme combined with a LES turbulence
model (subgrid eddy viscosity model) is derived in [22]. This turbulence model involves two grids. Also, a numerical
analysis of a DG scheme for a high order family of fluid flow models was derived in [23]. These models are based on a
time relaxation regularization of Navier–Stokes equations.

This paper is organized as follows. Section 2 introduces some notation and mathematical properties. In Section 3, the
fully discrete schemes are introduced. A priori error estimates are derived in Section 4. Conclusions are given in the last
section.

2. Notation and mathematical preliminaries

To obtain a discretization of the model we introduce a regular family of triangulations Eh of Ω , consisting of triangles
of maximum diameter h. Let hE denote the diameter of a triangle E and ρE the diameter of its inscribed circle. By regular,
we mean that there exists a parameter ζ > 0, independent of h, such that

hE

ρE
= ζE ≤ ζ , ∀E ∈ Eh.

We shall use this assumption throughout this work. We denote by Γh the set of all interior edges of Eh. Let e denote a
segment of Γh shared by two triangles Ek and E l (k < l) of Eh; we associate with e a specific unit normal vector ne directed
from Ek to E l and we define formally the jump and average of a function φ on e by:

[φ] = (φ|Ek )|e−(φ|El )|e, {φ} =
1
2
(φ|Ek )|e+

1
2
(φ|El )|e.
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If e belongs to the boundary Γ , then ne is the unit normal n exterior to Ω and the jump and the average of φ on e coincide
with the trace of φ on e. Next, we define the discrete velocity and pressure spaces consisting of discontinuous piecewise
polynomials:

Xh
= {v ∈ (L2(Ω))2 : ∀E ∈ Eh, v ∈ (P1(E))d}, (2.1)

Q h
= {q ∈ L20(Ω) : ∀E ∈ Eh, q ∈ P0(E)}. (2.2)

Here, for any domain O, L2(O) is the classical space of square-integrable functions with inner-product (f , g)O =
∫
O fg

and norm ∥ · ∥0,O . The space L20(Ω) is the subspace of functions of L2(Ω) with zero mean value:

L20(Ω) = {v ∈ L2(Ω) :

∫
Ω

v = 0}.

We also use the standard Sobolev spaces Hr (Ω), with norm ∥ · ∥r,Ω and semi-norm |·|r,Ω . Denoting by |e| the measure of
e, we associate with the spaces Xh and Q h the following norms

∥v∥X =

(
|||∇v|||20,Ω+

∑
e∈Γh∪Γ

1
|e|

∥[v]∥2
0,e

)1/2
, (2.3)

∥q∥Q = ∥q∥0,Ω , (2.4)

where |||v|||0,Ω is the broken norm defined by:

|||v|||0,Ω=

(∑
E∈Eh

∥v∥2
0,E

)1/2
.

For the spacial averaging operator defined in (1.5)–(1.6), we assume that the following bound holds:

∥φ∥2,Ω ≤ C∥φ∥2,Ω , (2.5)

where C is independent of δ.

Remark 2.1. There remains the question of uniform in δ constant C for the above bound for the error analysis. This
is a question about uniform-regularity of an elliptic–elliptic singular perturbation problem and some results are proven
in [24]. To summarize, in the periodic case it is very easy to show by Fourier series that for all k

|A−1φ|k+1 ≤ C |φ|k+1 . (2.6)

The non-periodic case can be more delicate. Suppose ∂Ω ∈ Ck+3 and φ = 0 on ∂Ω (i.e. φ ∈ H1
0 (Ω)

⋂
Hk+1(Ω)).

Then it is known that φ ∈ Hk+3(Ω)
⋂

H1
0 (Ω), and ∆φ = 0 on ∂Ω . Further,

∥φ∥j ≤ C∥φ∥j j = 0, 1, 2

So, (2.6) holds for k = −1, 0, +1. It also holds for higher values of k provided additionally ∆jφ = 0 on ∂Ω for
0 ≤ j ≤

[ k+1
2

]
− 1.

Finally, we recall some trace and inverse inequalities, that hold true on each element E in Eh, with diameter hE . The
constant C is independent of hE .

∥v∥0,e ≤ C(h−1/2
E ∥v∥0,E + h1/2

E ∥∇v∥0,E), ∀e ∈ ∂E, ∀v ∈ (H1(E))d, (2.7)

∥∇v∥0,e ≤ C(h−1/2
E ∥∇v∥0,E + h1/2

E ∥∇
2v∥0,E), ∀e ∈ ∂E, ∀v ∈ (H2(E))d, (2.8)

∥v∥0,e ≤ C h−1/2
E ∥v∥0,E, ∀e ∈ ∂E, ∀v ∈ Xh, (2.9)

∥∇v∥0,e ≤ C h−1/2
E ∥∇v∥0,E, ∀e ∈ ∂E, ∀v ∈ Xh. (2.10)

3. Numerical methods

In this section, we introduce the DG scheme and show existence of the numerical solution. We first define the bilinear
forms a : Xh

× Xh
→ R, d : Xh

× Xh
→ R, and J1 : Xh

× Xh
→ R by

a(z, v) =

∑
E∈Eh

∫
E

∇z : ∇v +

∑
e∈Γh∪Γ

σ

|e|

∫
e
[z] · [v]

−

∑
e∈Γh∪Γ

∫
e
{∇z}ne · [v] + ϵa

∑
e∈Γh∪Γ

∫
e
{∇v}ne · [z], (3.1)

d(z, v) =

∑
E∈Eh

∫
E

∇z : ∇v + ϵd
∑
e∈Γh

∫
e
[∇z]ne · {v} −

∑
e∈Γh

∫
e
[∇v]ne · {z}, (3.2)
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J1(z, v) =

∑
e∈Γh

1
|e|

∫
e
[∇z]ne · [∇v]ne. (3.3)

The parameters ϵa, ϵd take the value −1, 0 or 1: this will yield different schemes that are slight variations of each other.
We will show that all the resulting schemes are convergent with optimal convergence rate in the energy norm. In the
case where ϵa = ϵd = −1, the bilinear forms a and d are symmetric; otherwise they are non-symmetric. We remark that
the form a(w, v) is the standard interior penalty discontinuous Galerkin discretization of the operator −∆w. The form d
is introduced here because of the action of the averaging operator A−1. Finally, we assume that if ϵa is either −1 or 0, the
jump parameter σ should be chosen sufficiently large to obtain coercivity of a (see Lemma 3.3). If ϵa = 1, then the jump
parameter σ is taken equal to 1. The choice of ϵd does not affect the value of the jump parameter.

The incompressibility condition (1.12) is enforced by means of the bilinear form b : Xh
× Q h

→ R defined by

b(v, q) = −

∑
E∈Eh

∫
E
q∇ · v +

∑
e∈Γh∪Γ

∫
e
{q}[v] · ne. (3.4)

Finally, we recall the DG discretization of the nonlinear convection term w·∇w, which was introduced in [19] and studied
extensively in [19,20],

c(z,u; v, θ) =

∑
E∈Eh

(∫
E
(u · ∇v) · θ +

1
2

∫
E
(∇ · u)v · θ

)
−

1
2

∑
e∈Γh∪Γ

∫
e
[u] · ne{v · θ}

+

∑
E∈Eh

∫
∂E−

|{u} · nE |(vint − vext) · θint, (3.5)

where

∂E− = {x ∈ ∂E : {z} · nE < 0},

and z denotes the dependence of ∂E− on z. The superscript int (resp. ext) refers to the trace of the function on a side of
E coming from the interior of E (resp. coming from the exterior of E on that side). When the side of E belongs to ∂Ω ,
the convention is the same as for defining jumps and average, i.e. the jump and average coincide with the trace of the
function. Note that the form c is not linear with respect to z, but linear with respect to u, v and t.

We can now define the numerical scheme that uses discontinuous finite elements in space and backward Euler in
time. For this, we let △t denote the time step such that M = T/△t is a positive integer. We let ti = i△t . We denote the
function φ evaluated at the time tm by φm. With the above forms, the fully-discrete scheme is: Find (wh

n, p
h
n)n≥0 ∈ Xh

×Q h

such that:

1
△t

(wh
n+1 − wh

n, v)Ω +
δ2

△t
d(wh

n+1 − wh
n, v) + c(wh

n,w
h
n;w

h
n+1, v) + b(v, phn+1)

+νa(wh
n+1, v) + δ2J1(wh

n+1, v) = (fn+1, v)Ω ∀v ∈ Xh, (3.6)

b(wh
n+1, q) = 0 ∀q ∈ Q h, (3.7)

(wh
0, v)Ω = (u0, v)Ω ∀v ∈ Xh. (3.8)

However, this scheme is not consistent. In order to precisely state the consistency error, we need the following result.

Lemma 3.1. For φ smooth enough and any v in Xh, we have:

(φ, Av)Ω − (φ, v)Ω = ℓ(φ, v), (3.9)

where

ℓ(φ, v) = δ2
∑

e∈Γh∪Γ

∫
e
(∇φ)ne · [v] − δ2

∑
e∈Γh

∫
e
φ · [∇v]ne.

Furthermore, the following bound holds:

ℓ(φ, v) ≤ Cδ2
(
∥v∥X + J1(v, v)1/2

)
∥φ∥2,Ω , (3.10)

where C only depends on the domain Ω .

Proof. By definition of φ, we have

(φ, Av)Ω = (φ, v)Ω − δ2
∑
E∈Eh

(φ, ∆v)E .
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Using Green’s formula and the fact that φ ∈ (H2(Ω))2, we have

(φ, Av)Ω = (φ, v)Ω + δ2
∑
E∈Eh

(∇φ, ∇v)E − δ2
∑
E∈Eh

(∇vnE, φ)∂E .

We again use Green’s formula and obtain

(φ, Av)Ω = (φ, v)Ω − δ2
∑
E∈Eh

(∆φ, v)E + δ2
∑
E∈Eh

(∇φnE, v)∂E − δ2
∑
E∈Eh

(∇vnE, φ)∂E

= (Aφ, v)Ω + δ2
∑

e∈Γh∪Γ

∫
e
(∇φ)ne · [v] − δ2

∑
e∈Γh∪Γ

∫
e
[∇v]ne · φ.

Using the boundary condition (1.6), we then have (3.9). In order to prove (3.10), we use Cauchy–Schwarz’s inequality,
trace inequalities (2.7), (2.8) and the bound (2.5):

ℓ(φ, v) ≤ δ2
∑

e∈Γh∪Γ

∥(∇φ)ne∥0,e∥[v]∥0,e + δ2
∑
e∈Γh

∥φ∥0,e∥[∇v] · ne∥0,e

≤ Cδ2(
∑

e∈Γh∪Γ

1
|e|

∥[v]∥2
0,e)

1/2
∥φ∥2,Ω + Cδ2J1(v, v)1/2∥φ∥1,Ω

≤ Cδ2∥v∥X∥φ∥2,Ω + Cδ2J1(v, v)1/2∥φ∥2,Ω . □

In the inequality above and throughout the paper, the constant C is a generic constant that is independent of h, ν, δ
and ∆t , and that takes different values at different places.

Lemma 3.2 (Consistency). Let (w, p) be the solution to (1.11)–(1.14). Using the notation of Lemma 3.1, define

Ec(w, p, f; v) = ℓ(∇ · (ww), v) + ℓ(∇p, v) + ℓ(f, v).

Then, (w, p) satisfies

(wt , v)Ω + δ2d(wt , v) + cw(w;w, v) + b(v, p) + νa(w, v) + δ2J1(w, v)

= (f , v)Ω − Ec(w, p, f; v) ∀v ∈ Xh, ∀t > 0, (3.11)

b(w, q) = 0 ∀q ∈ Q h, ∀t > 0, (3.12)

(w0, v)Ω = (u0, v)Ω ∀v ∈ Xh. (3.13)

Proof. Eqs. (3.12) and (3.13) are clearly satisfied because of (1.12), (1.13), (1.14) and the regularity of w. Next, we multiply
(1.11) by Av and integrate over one mesh element E:

(wt , Av)E + (∇ · (ww), Av)E − ν(∆w, Av)E + (∇p, Av)E = (f, Av)E .

Summing over all elements E, using Lemma 3.1 and the fact that ∇ · (ww), ∇p and f belong to (L2(Ω))2, we have:∑
E∈Eh

(wt , Av)E + (∇ · (ww), v)Ω − ν
∑
E∈Eh

(∆w, Av)E

+(∇p, v)Ω = (f, v)Ω − Ec(w, p, f; v).

Next, using the definition of A, Green’s formula and the fact that wt = 0 on the boundary, we have:∑
E∈Eh

(wt , Av)E = (wt , v)Ω − δ2
∑
E∈Eh

(wt , ∆v)E

= (wt , v)Ω + δ2
∑
E∈Eh

(∇wt , ∇v)E − δ2
∑
e∈Γh

∫
e
[∇v]ne · {wt}.

The regularity of wt then gives:∑
E∈Eh

(wt , Av)E = (wt , v)Ω + δ2d(wt , v).

Similarly, we have by the definition of A and Green’s formula:

−ν
∑
E∈Eh

(∆w, Av)E = −ν(∆w, v)Ω + νδ2
∑
E∈Eh

(∆w, ∆v)E

= ν
∑
E∈Eh

(∇w, ∇v)E − ν
∑

e∈Γh∪Γ

∫
e
(∇w)ne · [v] + νδ2

∑
E∈Eh

(∆w, ∆v)E .
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The regularity of w and the fact that ∆v = 0 then yield:

−ν
∑
E∈Eh

(∆w, Av)E = νa(w, v) + δ2J1(w, v).

Therefore, we obtain the following equation for w:

(wt , v)Ω + δ2d(wt , v) + νa(w, v) + δ2J1(w, v) + (∇ · (ww), v)Ω + (∇p, v)Ω
= (f, v)Ω − Ec(w, p, f; v).

The final result is obtained by noting that Green’s formula yields

(∇p, v)Ω = b(v, p),

and that the incompressibility condition with the regularity of w yield

(∇ · (ww), v)Ω = (w · ∇w, v)Ω = c(w,w;w, v). □

We now recall important properties satisfied by the forms a, b, c [19,20,25].

Lemma 3.3 (Coercivity). If ϵa = 1, assume that σ = 1. If ϵa ∈ {−1, 0}, assume that σ is sufficiently large enough. Then, there
is a constant κ > 0, independent of h, such that

a(v, v) ≥ κ∥v∥2
X , ∀v ∈ Xh. (3.14)

It is clear that κ = 1 if ϵa = 1. Otherwise, κ is a constant that depends on the polynomial degree of v and of the
smallest angle in the mesh, [26].

Lemma 3.4 (Inf–sup Condition). There exists a positive constant β , independent of h such that

inf
q∈Q h

sup
v∈Xh

b(v, q)
∥v∥X∥q∥0,Ω

≥ β. (3.15)

Lemma 3.5 (Positivity).

c(v, v, z, z) ≥ 0, ∀v, z ∈ {θ ∈ (L2(Ω))d : θ|E∈ (H2(E))d, ∀E ∈ Eh}. (3.16)

We can now state the existence and uniqueness of the discrete solution.

Proposition 3.1. Assume that Lemma 3.3 holds. Assume that δ and ∆t are of the order h. In addition, if ϵd ∈ {−1, 0}, assume
that ∆t is sufficiently small. Then, there exists a unique solution to (3.6)–(3.8).

Proof. The existence of wh
0 is trivial. Given wh

n, the problem of finding a unique wh
n+1 satisfying (3.6)–(3.7) is linear and

finite-dimensional. Therefore, it suffices to show uniqueness of the solution. We first consider the problem restricted to
the subspace Vh defined by

Vh
= {v ∈ Xh

: b(v, q) = 0 ∀q ∈ Q h
}.

Let wh
n+1 and ŵh

n+1 be two solutions and let χn+1 = wh
n+1 − ŵh

n+1. Then, χn+1 satisfies:

1
△t

(χn+1, v)Ω +
δ2

∆t
d(χn+1, v) + cw

h
n (wh

n; χn+1, v) + νa(χn+1, v)

+δ2J1(χh
n+1, v) = 0 ∀v ∈ Vh.

Choosing v = χn+1 and using the coercivity and positivity results (3.14), (3.16) gives:

1
∆t

∥χn+1∥
2
0,Ω +

δ2

∆t
d(χn+1, χn+1) + νκ∥χn+1∥

2
X + δ2J1(χn+1, χn+1) ≤ 0. (3.17)

We now expand the term δ2

∆t d(χn+1, χn+1).

δ2

∆t
d(χn+1, χn+1) =

δ2

∆t
|||∇χn+1|||

2
0,Ω+

δ2

∆t
(ϵd − 1)

∑
e∈Γh

∫
e
[∇χn+1]ne · {χn+1}. (3.18)

In the case where ϵd = 1, all the terms in (3.17) are non-negative and we easily conclude that χn+1 = 0. Otherwise,
if ϵd ∈ {−1, 0}, we bound the second term in (3.18) by using the fact that δ and ∆t are of order h, Cauchy–Schwarz’s
inequality and trace inequality (2.9):

δ2

∆t
(ϵd − 1)

∑
e∈Γh

∫
e
[∇χn+1]ne · {χn+1} ≤

δ2

2
J1(χn+1, χn+1) + C∥χn+1∥

2
0,Ω .
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Thus, we obtain

(
1

∆t
− C)∥χn+1∥

2
0,Ω +

δ2

∆t
|||∇χn+1|||

2
0,Ω+νκ∥χn+1∥

2
X +

δ2

2
J1(χn+1, χn+1) ≤ 0,

which yields that χn+1 = 0 if ∆t is sufficiently small enough. The existence and uniqueness of the pressure phn+1 is then
obtained from the inf-sup condition (3.15). □

We end this section by recalling some approximation properties of the spaces Xh and Q h. From [19,27], for any
v ∈ (H1

0 (Ω))2, there is a unique discrete velocity ṽ ∈ Xh such that

b(v − ṽ, q) = 0 ∀q ∈ Q h. (3.19)

Furthermore, if v ∈ (H1
0 (Ω))2 ∩ (H2(Ω))2, there is a constant C independent of h such that

∥v − ṽ∥X ≤ Ch|v|2,Ω , (3.20)

|v − ṽ|m,Ω ≤ Ch2−m
|v|2,Ω , m = 0, 1. (3.21)

We will apply these error bounds to both w and wt .
For the pressure space, we use the approximation given by the L2 projection. For any q ∈ L20(Ω), there exists a unique

discrete pressure q̃ ∈ Q h such that

(q − q̃, z)Ω = 0 ∀z ∈ Q h. (3.22)

In addition, if q ∈ H1(Ω), then

∥q − q̃∥m,E ≤ Ch1−m
|q|1,E, ∀E ∈ Eh, m = 0, 1, 2. (3.23)

4. A priori error estimates

In this section, convergence of the scheme (3.6)–(3.8) is proved. Optimal error estimates in the energy norm are
obtained.

Theorem 4.1. Assume that w ∈ l2(0, T ; (H2(Ω))d), wt ∈ l2(0, T ; (H2(Ω))d) ∩ L∞((0, T ) × Ω), wtt ∈ L2(0, T ; (H1(Ω))d) and
p ∈ l2(0, T ;H1(Ω)). Assume that u0 ∈ (H2(Ω))d and f ∈ l2(0, T ; (L2(Ω))d). Assume also that the coercivity Lemmas 3.3 and
3.1 hold. If δ and ∆t are chosen of the order of h, and if △t is chosen sufficiently small, there exists a constant C, independent
of h and ∆t but dependent on ν−1 such that the following error bounds holds, for any 1 ≤ m ≤ M:

∥wm − wh
m∥

2
0,Ω + νκ∆t

m∑
n=1

∥wn − wh
n∥

2
X ≤ Ch2(ν−1

+ ν + 1).

Proof. Defining en = w(tn) − wh(tn) and subtracting (3.6) from (3.11), we have:

(wt (tn+1), v)Ω +
1
△t

(en+1 − en, v)Ω + δ2d(wt (tn+1), v) +
δ2

△t
d(en+1 − en, v)

+νa(en+1, v) + cwn+1 (wn+1;wn+1, v) − cw
h
n (wh

n;w
h
n+1, v) + b(v, pn+1 − phn+1)

+δ2J1(en+1, v) =
1
△t

(wn+1 − wn, v)Ω +
δ2

△t
d(wn+1 − wn, v) − Ec(wn+1, pn+1, fn+1; v), ∀v ∈ Xh.

We now decompose the error en = ηn−φn, where φn = wh
n−w̃n and ηn is the interpolation error ηn = wn−w̃n. Choosing

v = φn+1 in the equation above and using the coercivity result (3.14), we obtain:

1
2△t

(∥φn+1∥
2
0,Ω − ∥φn∥

2
0,Ω ) +

δ2

△t
d(φn+1 − φn, φn+1) + νκ∥φn+1∥

2
X

−cwn+1 (wn+1;wn+1, φn+1) + cw
h
n (wh

n;w
h
n+1, φn+1) + δ2J1(φn+1, φn+1) ≤ (ηt (tn+1), φn+1)Ω

+δ2d(ηt (t
n+1), φn+1) + νa(ηn+1, φn+1) + (w̃t (tn+1) −

1
△t

(w̃n+1 − w̃n), φn+1)Ω

+δ2d(w̃t (tn+1) −
1
△t

(w̃n+1 − w̃n), φn+1) + b(φn+1, pn+1 − phn+1)

+δ2J1(ηn+1, φn+1) − Ec(wn+1, pn+1, fn+1; φn+1). (4.1)

Consider now the nonlinear terms from the above equation. We first note that since w is continuous, we can rewrite

c(wn+1,wn+1;wn+1, φn+1) = c(wh
n,wn+1;wn+1, φn+1).
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Now, adding and subtracting the interpolant w̃n+1 yields

c(wh
n,w

h
n;w

h
n+1, φn+1) − c(wh

n,wn+1;wn+1, φn+1)

= c(wh
n,w

h
n; φn+1, φn+1) − c(wh

n, φn; ηn+1, φn+1) + c(wh
n, φn;wn+1, φn+1)

−c(wh
n, ηn; w̃n+1, φn+1) − c(wh

n,wn; ηn+1, φn+1) − c(wh
n,wn+1 − wn;wn+1, φn+1).

Thus, we rewrite the error equation (4.1) as

1
2△t

(∥φn+1∥
2
0,Ω − ∥φn∥

2
0,Ω ) +

δ2

△t
d(φn+1 − φn, φn+1) + νκ∥φn+1∥

2
X

+c(wh
n,w

h
n; φn+1, φn+1) + δ2J1(φn+1, φn+1)

≤ |c(wh
n, φn; ηn+1, φn+1)| + |c(wh

n, φn;wn+1, φn+1)|

+|c(wh
n, ηn; w̃n+1, φn+1)| + |c(wh

n,wn; ηn+1, φn+1)|

+|c(wh
n,wn+1 − wn;wn+1, φn+1)| + |(ηt (tn+1), φn+1)Ω |

+δ2|d(ηt (t
n+1), φn+1)| + ν|a(ηn+1, φn+1)| + |(w̃t (tn+1) −

1
△t

(w̃n+1 − w̃n), φn+1)Ω |

+δ2|d(w̃t (tn+1) −
1
△t

(w̃n+1 − w̃n), φn+1)| + |b(φn+1, pn+1 − phn+1)|

+|δ2J1(ηn+1, φn+1)| + |Ec(wn+1, pn+1, fn+1; φn+1)|

≤ |T0| + |T1| + · · · + |T12|. (4.2)

From property (3.16), the term c(wh
n,wh

n; φn+1, φn+1) in the left-hand side of (4.2) is positive and therefore it will be
dropped. For the other terms of the form c(·, ·; ·, ·) that appear on the right-hand side of the above error equation we
obtain bounds, exactly as in the proof of Theorem 5.2 in [22]. We recall that the constant C is a generic constant that is
independent of h, ν, δ and ∆t , and that takes different values at different places.

|T0| = |c(wh
n, φn; ηn+1, φn+1)| ≤

νκ

26
∥φn+1∥

2
X +

C
ν

∥φn∥
2
0,Ω ,

|T1| = |c(wh
n, φn;wn+1, φn+1)| ≤

νκ

26
∥φn+1∥

2
X +

C
ν

∥φn∥
2
0,Ω ,

|T2| = |c(wh
n, ηn; w̃n+1, φn+1)| ≤

νκ

26
∥φn+1∥

2
X +

C
ν
h2

|wn|
2
2,Ω ,

|T3| = |c(wh
n,wn; ηn+1, φn+1)| ≤

νκ

26
∥φn+1∥

2
X +

C
ν
h2

|wn|
2
2,Ω ,

|T4| = |c(wh
n,wn+1 − wn;wn+1, φn+1)| ≤

νκ

26
∥φn+1∥

2
X +

C
ν

△t2∥wt∥
2
L∞([tn,tn+1]×Ω).

Therefore, we have

|T0| + · · · + |T4| ≤
5νκ

26
∥φn+1∥

2
X + Cν−1

∥φn∥
2
0,Ω + Cν−1h2

|wn|
2
2,Ω + Cν−1

△t2∥wt∥
2
L∞([tn,tn+1]×Ω). (4.3)

We now consider the term D =
δ2

△t d(φn+1 − φn, φn+1) in the left-hand side of (4.2). We first decompose it into two parts

D =
δ2

△t
d(φn+1, φn+1) −

δ2

△t
d(φn, φn+1) = D1 + D2.

Then, by the definition of the bilinear form d(·, ·) we have

D1 =
δ2

△t

∑
E∈Eh

∫
E
∇φn+1 : ∇φn+1 + (ϵd − 1)

δ2

△t

∑
e∈Γh

∫
e
{φn+1} · [∇φn+1]ne

= D11 + D12.

The term D11 is positive and stays in the left-hand side of the error equation. In the case where ϵd = 1, the other term
D12 vanishes. In the case where ϵd ∈ {−1, 0}, we need to bound D12. Using the definition of J1 term, Cauchy–Schwarz’s
inequality, trace inequality (2.9) and the fact that δ and ∆t are of the order of h, we have

D12 ≤
δ2

12
J1(φn+1, φn+1) + C(1 − ϵd)2

δ2

∆t2
∥φn+1∥

2
0,Ω

≤
δ2

12
J1(φn+1, φn+1) + C(1 − ϵd)2∥φn+1∥

2
0,Ω . (4.4)
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Next, we expand the term D2 the following way

D2 = −
δ2

△t

∑
E∈Eh

∫
E
∇φn+1 : ∇φn +

δ2

△t

∑
e∈Γh

∫
e
{φn} · [∇φn+1]ne

− ϵd
δ2

△t

∑
e∈Γh

∫
e
{φn+1} · [∇φn]ne

= D21 + D22 + D23.

To bound D21 we simply use Cauchy–Schwarz inequality and Young’s inequality to obtain

D21 ≤
δ2

2∆t
|||∇φn+1|||

2
0,Ω+

δ2

2∆t
|||∇φn|||

2
0,Ω . (4.5)

To bound D22 we use Cauchy–Schwarz inequality and Young’s inequality together with the definition of the jump J1, trace
inequality (2.9) and the fact that δ and ∆t are of the order of h

D22 ≤ C
δ2

△t
J1(φn+1, φn+1)

1/2
∥φn∥0,Ω

≤
δ2

12
J1(φn+1, φn+1) + C

δ2

∆t2
∥φn∥

2
0,Ω

≤
δ2

12
J1(φn+1, φn+1) + C∥φn∥

2
0,Ω . (4.6)

We bound D23 in the same way as D22 to obtain

D23 ≤
δ2

△t

∑
e∈Γh

∥{φn+1}∥0,e∥[∇φn]ne∥0,e

≤
δ2

2
J1(φn, φn) + C

δ2

∆t2
∥φn+1∥

2
0,Ω

≤
δ2

2
J1(φn, φn) + C∥φn+1∥

2
0,Ω . (4.7)

We now bound the rest of the terms on the right hand side of Eq. (4.2). To bound T5 we use Cauchy–Schwarz’s inequality,
Young’s inequality and the approximation result (3.21) applied to wt ,

|T5| ≤ ∥φn+1∥0,Ω∥ηt (tn+1)∥0,Ω

≤ ∥φn+1∥
2
0,Ω + Ch4

|wt (tn+1)|
2
2,Ω . (4.8)

We expand the term T6 as

|T6| ≤ |δ2
∑
E∈Eh

∫
E
∇φn+1 : ∇ηt (t

n+1)|

+ |δ2
∑
e∈Γh

∫
e
{ηt (t

n+1)} · [∇φn+1]ne| + |ϵdδ
2
∑
e∈Γh

∫
e
{φn+1} · [∇ηt (t

n+1)]ne|

= |T61| + |T62| + |T63|.

We bound T61 using Cauchy–Schwarz’s inequality, Young’s inequality, and the approximation result (3.20), yielding

|T61| ≤ δ2∥φn+1∥X∥ηt (t
n+1)∥X

≤
νκ

26
∥φn+1∥

2
X + Cν−1δ4∥ηt (t

n+1)∥2
X

≤
νκ

26
∥φn+1∥

2
X + Cν−1δ4h2

|wt (tn+1)|
2
2,Ω . (4.9)

Using the definitions of the jump J1, trace inequality (2.7), and the approximation result (3.21) we have

|T62| ≤
δ2

12
J1(φn+1, φn+1) + Cδ2h4

|wt (tn+1)|
2
2,Ω . (4.10)



10 M. Neda and B. Rivière / Results in Applied Mathematics 8 (2020) 100093

The term T63 vanishes if ϵd = 0. Otherwise, we bound it using trace inequalities (2.8), (2.9) and approximation result
(3.21) and the fact that δ is of the order of h,

|T63| ≤ δ2
∑
e∈Γh

∥{φn+1}∥0,e∥[∇ηt (t
n+1)] · ne∥0,e

≤ ∥φn+1∥
2
0,Ω + Cδ2h2

|wt (tn+1)|
2
2,Ω . (4.11)

From the above bounds (4.9), (4.10) and (4.11), we have

|T6| ≤
νκ

26
∥φn+1∥

2
X +

δ2

12
J1(φn+1, φn+1) + C(ν−1

+ 1)δ2h2
|wt (tn+1)|

2
2,Ω + ∥φn+1∥

2
0,Ω . (4.12)

We also expand the term T7 as

|T7| ≤ |ν
∑
E∈Eh

∫
E
∇ηn+1 : ∇φn+1| + |ν

∑
e∈Γh∪Γ

∫
e
{∇ηn+1}ne · [φn+1]|

+ |νϵa
∑

e∈Γh∪Γ

∫
e
{∇φn+1}ne · [ηn+1]| + |νJ0(ηn+1, φn+1)|

= |T71| + |T72| + |T73| + |T74|. (4.13)

We bound T71 using Cauchy–Schwarz inequality, Young’s inequality and the approximation result (3.20)

|T71| ≤ ν∥φn+1∥X∥ηn+1∥X

≤
νκ

26
∥φn+1∥

2
X + Cν∥ηn+1∥

2
X

≤
νκ

26
∥φn+1∥

2
X + Cνh2

|wn+1|
2
2,Ω . (4.14)

Using Cauchy–Schwarz’s inequality, trace inequality (2.8) and approximation result (3.21) we have

|T72| ≤ ν
∑

e∈Γh∪Γ

∥{∇ηn+1}ne∥0,e

∑
e∈Γh∪Γ

∥[φn+1]∥0,e

≤ Cν(
∑

e∈Γh∪Γ

1
|e|

∥[φn+1]∥
2
0,e)

1/2(|||∇ηn+1|||0,Ω+h|||∇2ηn+1|||0,Ω )

≤
νκ

26
∥φn+1∥

2
X + Cνh2

|wn+1|
2
2,Ω . (4.15)

Using Cauchy–Schwarz’s inequality, trace inequality (2.10), and approximation result (3.20), we have

|T73| ≤ ν(
∑

e∈Γh∪Γ

∥{∇φn+1}ne∥
2
0,e)

1/2(
∑

e∈Γh∪Γ

∥[ηn+1]∥
2
0,e)

1/2

≤ Cν∥φn+1∥X (
∑

e∈Γh∪Γ

1
|e|

∥[ηn+1]∥
2
0,e)

1/2

≤
νκ

26
∥φn+1∥

2
X + Cνh2

|wn+1|
2
2,Ω . (4.16)

Using the approximation result (3.20) we have

|T74| ≤ ν(
∑

e∈Γh∪Γ

σ

|e|
∥[φn+1]∥

2
0,e)

1/2(
∑

e∈Γh∪Γ

σ

|e|
∥[ηn+1]∥

2
0,e)

1/2

≤ Cν∥φn+1∥X∥ηn+1∥X

≤
νκ

26
∥φn+1∥

2
X + Cνh2

|wn+1|
2
2,Ω . (4.17)

Putting together the bounds (4.14), (4.15), (4.16) and (4.17), we obtain

|T7| ≤ 4
νκ

26
∥φn+1∥

2
X + Cνh2

|wn+1|
2
2,Ω . (4.18)

To bound the term T8, we first use a Taylor expansion with integral remainder. Thus,

w̃n = w̃n+1 − ∆tw̃t (tn+1) +
1
2

∫ tn+1

tn
(s − tn)w̃tt (s)ds. (4.19)
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The above implies that

∥w̃t (tn+1) −
w̃n+1 − w̃n

∆t
∥
2
0,Ω ≤

∆t
6

∫ tn+1

tn
∥w̃tt (s)∥2

0,Ωds.

Thus, with (3.21), we have

|T8| ≤ ∥φn+1∥
2
0,Ω + C∆t

∫ tn+1

tn
∥w̃tt (s)∥2

0,Ωds

≤ ∥φn+1∥
2
0,Ω + C∆t

∫ tn+1

tn
∥wtt (s)∥2

0,Ωds. (4.20)

Using the Taylor expansion (4.19) and defining θ =
1
2

∫ tn+1
tn

(s − tn)w̃tt (s)ds, we can rewrite the term T9 as

|T9| = |δ2d(θ, φn+1)|

≤ |δ2
∑
E∈Eh

∫
E
∇φn+1 : ∇θ| + |δ2

∑
e∈Γh

∫
e
{θ} · [∇φn+1]ne|

+ |ϵdδ
2
∑
e∈Γh

∫
e
{φn+1} · [∇θ]ne|

= |T91| + |T92| + |T93|. (4.21)

We bound T91 using Cauchy–Schwarz inequality, Young’s inequality and (3.21),

|T91| ≤ δ2|||∇φn+1|||0,Ω |||∇θ|||0,Ω

≤
νκ

26
∥φn+1∥

2
X + Cν−1δ4|||∇θ|||20,Ω

≤
νκ

26
∥φn+1∥

2
X + Cν−1δ4∆t

∫ tn+1

tn
|||∇w̃tt (s)|||20,Ωds

≤
νκ

26
∥φn+1∥

2
X + Cν−1δ4∆t

∫ tn+1

tn
|||∇wtt (s)|||20,Ωds. (4.22)

Using the definition of J1, trace inequality (2.9), approximation result (3.21) and the fact that δ is of the order of h, we
have

|T92| ≤ Cδ2J1(φn+1, φn+1)
1/2(

∑
e∈Γh

∥{θ}∥2
0,e)

1/2

≤
δ2

12
J1(φn+1, φn+1) + Cδ2∆t

∫ tn+1

tn

∑
e∈Γh

∥{w̃tt (s)}∥2
0,eds

≤
δ2

12
J1(φn+1, φn+1) + Cδ∆t

∫ tn+1

tn
∥w̃tt (s)∥2

0,Ωds,

≤
δ2

12
J1(φn+1, φn+1) + Cδ∆t

∫ tn+1

tn
∥wtt (s)∥2

0,Ωds. (4.23)

The term T93 vanishes if ϵd = 0. Otherwise, we bound it using trace inequalities (2.9), (2.10), approximation result (3.21)
and the fact that δ is of the order of h.

|T93| ≤ δ2
∑
e∈Γh

∥{φn+1}∥0,e∥[∇θ] · ne∥0,e

≤ ∥φn+1∥
2
0,Ω + Cδ2∆t

∫ tn+1

tn
|||∇w̃tt (s)|||20,Ωds,

≤ ∥φn+1∥
2
0,Ω + Cδ2∆t

∫ tn+1

tn
∥∇wtt (s)∥2

0,Ωds. (4.24)

Putting together the three estimates (4.22), (4.23) and (4.24), we have

|T9| ≤
νκ

26
∥φn+1∥

2
X +

δ2

12
J1(φn+1, φn+1) + ∥φn+1∥

2
0,Ω + C(ν−1

+ 1)δ∆t
∫ tn+1

tn
∥wtt (s)∥2

1,Ωds. (4.25)
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Because of (3.19) and (3.22), the pressure term T10 is reduced to

|T10| = |b(φn+1, pn+1 − p̃n+1) + b(φn+1, p̃n+1 − phn+1)|

= |b(φn+1, pn+1 − p̃n+1)|

= |

∑
e∈Γh

∫
e
{pn+1 − p̃n+1}[φn+1] · ne|,

which is bounded by using Cauchy–Schwarz’s inequality, Young’s inequality, trace inequality (2.7) and approximation
result (3.23)

|T10| ≤ C(
∑

e∈Γh∪Γ

1
|e|

∥[φn+1]∥0,e)1/2(∥pn+1 − p̃n+1∥0,Ω + h|||∇pn+1 − ∇p̃n+1|||0,Ω )

≤
νκ

26
∥φn+1∥

2
X + Cν−1h2

|pn+1|
2
1,Ω . (4.26)

The term T11 is simply bounded using Cauchy–Schwarz, approximation result (3.20) and the fact that δ is of the order of
h,

|T11| ≤
δ2

12
J1(φn+1, φn+1) + Cδ2J1(ηn+1, ηn+1)

≤
δ2

12
J1(φn+1, φn+1) + Ch2

|wn+1|
2
2,Ω . (4.27)

We finally need to bound the consistency error term Ec(wn+1, pn+1, fn+1; φn+1). Using the bound (3.10), we have

|Ec(wn+1, pn+1, fn+1; φn+1)| ≤
δ2

12
J1(φn+1, φn+1) +

νκ

26
∥φn+1∥

2
X

+Cδ2(1 + ν−1)(∥(∇ · (ww))n+1∥
2
2,Ω + ∥∇pn+1∥

2
2,Ω + ∥fn+1∥

2
2,Ω ). (4.28)

With the bounds (4.3), (4.4), (4.5), (4.6), (4.7), (4.8), (4.12), (4.18), (4.20), (4.25), (4.26), (4.27), and (4.28), the error equation
becomes

1
2△t

(∥φn+1∥
2
0,Ω − ∥φn∥

2
0,Ω ) +

νκ

2
∥φn+1∥

2
X +

δ2

2
(J1(φn+1, φn+1) − J1(φn, φn))

+
δ2

2△t
(|||∇φn+1|||

2
0,Ω−|||∇φn|||

2
0,Ω ) ≤ C(ν−1

+ 1)∥φn∥
2
0,Ω + C̃∥φn+1∥

2
0,Ω

+Ch2(ν−1
|wn|

2
2,Ω + (ν + 1)|wn+1|

2
2,Ω + (ν−1

+ 1)|wt (tn+1)|22,Ω ) + Ch2ν−1
|pn+1|

2
1,Ω

+C∆t(ν−1
+ 1)

∫ tn+1

tn
∥wtt (s)∥2

1,Ωds + C∆t2ν−1
∥wt∥

2
L∞([tn,tn+1]×Ω)

+Cδ2(1 + ν−1)(∥(∇ · (ww))n+1∥
2
2,Ω + ∥∇pn+1∥

2
2,Ω + ∥fn+1∥

2
2,Ω ).

where C and C̃ are constants independent of h, ν and ∆t . We now multiply the equation by 2∆t and sum from n = 0 to
n = m − 1 to obtain

(1 − 2∆tC̃)∥φm∥
2
0,Ω + νκ∆t

m−1∑
n=0

∥φn+1∥
2
X + ∆tδ2J1(φm, φm) + δ2|||∇φm|||

2
0,Ω

≤ ∥φ0∥
2
0,Ω + ∆tδ2J1(φ0, φ0) + δ2|||∇φ0|||

2
0,Ω+C(ν−1

+ 1)
m−1∑
n=0

∥φn∥
2
0,Ω

+Ch2∆t
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(ν−1
|wn|

2
2,Ω + (ν + 1)|wn+1|

2
2,Ω + (ν−1

+ 1)|wt (tn+1)|22,Ω )
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2
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∫ T

0
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1,Ωds + C∆t2ν−1
∥wt∥

2
L∞([0,T ]×Ω)

+Cδ2(1 + ν−1)∆t
m−1∑
n=0

(∥(∇ · (ww))n+1∥
2
2,Ω + ∥∇pn+1∥

2
2,Ω + ∥fn+1∥

2
2,Ω ).
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Thus, if ∆t is small enough, using Gronwall’s lemma, we conclude that there is a constant C independent of h and ∆t ,
but dependent on ν−1, such that

∥φm∥
2
0,Ω + νκ∆t

m∑
n=1

∥φn∥
2
X ≤ ∥φ0∥

2
0,Ω + ∆tδ2J1(φ0, φ0) + δ2|||∇φ0|||

2
0,Ω

+Ch2(ν−1
+ ν + 1) + Cδ2(1 + ν−1).

The final result is then obtained by noting that the term ∥φ0∥
2
0,Ω + ∆tδ2J1(φ0, φ0) is of order h2 and by using triangle

inequality and approximation results. □

5. Conclusion

In this paper, we formulated and analyzed a numerical scheme for solving the Stolz–Adams approximate deconvolution
problem for turbulent flows. The proposed method is convergent with optimal convergence rates with respect to the mesh
size. The approximations of the average velocity and pressure are discontinuous piecewise polynomials. One benefit of
using discontinuous elements is that the error estimates depend on the Reynolds number as O(Re eRe), whereas the
dependence is O(Re eRe

3
) for classical continuous finite elements [13] for this specific large eddy simulation model.

In this work, since the time discretization technique is backward Euler, we limited the order of approximation to
linear and constant for the velocity w and pressure p respectively. If we use a second order in time approach, such as
Crank–Nicolson, we can increase the order of spatial approximation to quadratic and linear for w and p. However, it does
not make sense to go to higher order since the consistency error is of second order only.

Finally, we point out that our proposed scheme contains parameters ϵa, ϵd ∈ {−1, 0, 1} that yield different but similar
numerical approximations. Only numerical simulations of benchmark problems for high Reynolds numbers, will help
determine which choices of ϵa and ϵd are preferred for a given mesh size. This is the object of a future paper.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Monika Neda: Conceptualization, Methodology, Writing - original draft, Writing - review & editing. Béatrice Rivière:
Conceptualization, Methodology, Investigation, Supervision, Writing - review & editing.

References

[1] Layton W. Introduction to the numerical analysis of incompressible viscous flows. Society for Industrial and Applied Mathematics; 2008.
[2] Kolmogorov AV. The local structure of turbulence in incompressible viscous fluids for very large Reynolds number. Dokl Akad Nank SSR

1941;30:9–13.
[3] Berselli LC, Iliescu T, Layton W. Mathematics of large eddy simulation of turbulent flows. Berlin: Springer; 2006.
[4] Pope S. Turbulent flows. Cambridge University Press; 2000.
[5] John V. Large eddy simulation of turbulent incompressible flows. Analytical and numerical results for a class of LES models. Berlin:

Springer-Verlag; 2004.
[6] Sagaut P. Large eddy simulation for incompressible flows. Berlin: Springer; 2001.
[7] Germano M. Differential filters of elliptic type. Phys Fluids 1986;29:1757–8.
[8] Adams NA, Stolz S. Deconvolution methods for subgrid-scale approximation in large eddy simulation. In: Modern simulation strategies for

turbulent flow. R.T. Edwards; 2001.
[9] Stolz S, Adams NA. An approximate deconvolution procedure for large-eddy simulation. Phys Fluids 1999;11:1699–701.

[10] Dunca A, Epshteyn Y. On the Stolz-Adams deconvolution model for the large-eddy simulation of turbulent flows. SIAM J Math Anal
2006;37:1890–902.

[11] Layton W, Lewandowski R. A simple and stable scale similarity model for large eddy simulation: energy balance and existence of weak solutions.
Appl Math Lett 2003;16:1205–9.

[12] Layton W, Lewandowski R. On a well posed turbulence model. Discrete Contin Dyn Syst Ser B 2006;6:111–28.
[13] Manica CC, Merdan SK. Finite element error analysis of a zeroth order approximate deconvolution model based on a mixed formulation. J Math

Anal Appl 2007;331:669–85.
[14] Manica CC, Merdan SK. Convergence analysis of the finite element method for a fundamental model in turbulence. Math Models Methods Appl

Sci 2012;22:24.
[15] Tavelli M, Dumbser M. A staggered space–time discontinuous Galerkin method for the three-dimensional incompressible Navier–Stokes

equations on unstructured tetrahedral meshes. J Comput Phys 2016;319:294–323.
[16] Bassi F, Crivellini A, Pietro DD, Rebay S. An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible

Navier–Stokes equations. J Comput Phys 2006;218(2):794–815.
[17] Nguyen N, Peraire J, Cockburn B. An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier—Stokes

equations. J Comput Phys 2011;230(4):1147–70.
[18] Krank B, Fehn N, Wall WA, Kronbichlerr M. A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application

to DNS and LES of turbulent channel flow. J Comput Phys 2017;348:634–59.

http://refhub.elsevier.com/S2590-0374(20)30003-0/sb1
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb2
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb2
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb2
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb3
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb4
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb5
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb5
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb5
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb6
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb7
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb8
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb8
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb8
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb9
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb10
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb10
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb10
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb11
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb11
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb11
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb12
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb13
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb13
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb13
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb14
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb14
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb14
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb15
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb15
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb15
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb16
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb16
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb16
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb17
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb17
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb17
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb18
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb18
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb18


14 M. Neda and B. Rivière / Results in Applied Mathematics 8 (2020) 100093

[19] Girault V, Rivière B, Wheeler MF. A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and
Navier–Stokes problems. Math Comp 2005;74:53–84.

[20] Girault V, Rivière B, Wheeler MF. A splitting method using discontinuous Galerkin for the transient incompressible Navier–Stokes equations.
Math Model Numer Anal 2005;39(6):1115–48.

[21] Cockburn B, Kanschat G, Schotzau D. A locally conservative LDG method for the incompressible Navier–Stokes equations. Math Comp
2005;74:1067–95.

[22] Kaya S, Rivière B. A discontinuous subgrid eddy viscosity method for the time-dependent Navier–Stokes equations. SIAM J Numer Anal
2005;43(4):1572–95.

[23] Neda M. Discontinuous time relaxation method for the time dependent Navier–Stokes equations. Adv Numer Anal 2010;419021:1–21.
[24] Layton W. A remark on regularity of an elliptic-elliptic singular perturbation problem. Technical Report, University of Pittsburgh; 2007.
[25] Wheeler MF. An elliptic collocation-finite element method with interior penalties. SIAM J Numer Anal 1978;15:152–61.
[26] Epshteyn Y, Rivière B. Estimation of penalty parameters for symmetric interior penalty Galerkin methods. J Comput Appl Math 2007;206:843–72.
[27] Crouzeix M, Raviart PA. Conforming and non conforming finite element methods for solving the stationary Stokes equations. RAIRO Numer

Anal 1973;33–76.

http://refhub.elsevier.com/S2590-0374(20)30003-0/sb19
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb19
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb19
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb20
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb20
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb20
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb21
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb21
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb21
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb22
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb22
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb22
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb23
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb24
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb25
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb26
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb27
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb27
http://refhub.elsevier.com/S2590-0374(20)30003-0/sb27

	A discontinuous Galerkin method for the Stolz–Adams approximate deconvolution model for turbulent flows
	Introduction
	Notation and mathematical preliminaries
	Numerical methods
	A priori error estimates
	Conclusion
	Declaration of competing interest
	CRediT authorship contribution statement
	References


