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a b s t r a c t

Normalized cut or Ncut has been one of the most widely used models for image
processing. A constraint can also be included in the framework of Ncut to represent
a priori information for an effective image segmentation. This results in the so-called
constrained Ncut problem. In this paper we present an observation that the constrained
Ncut problem can be formulated as an indefinite system of equations under a mild
condition on targeted segmentation results. We then show that the indefinite system can
be effectively handled by the Augmented Lagrangian Uzawa iterative method together
with a classical Algebraic Multigrid Method. Both mathematically and numerically, we
demonstrate that the Augmented Lagrangian Uzawa method achieves a solution in
one iteration. We show how the proposed method can be efficiently applied for the
newly tested recursive two-way Ncut with constraints, i.e., a new constrained sequential
segmentation as well. A number of numerical experiments are presented to confirm our
theory and to show the superiority of the proposed method. In particular, numerical
experiments show that the speed of our algorithm can be orders of magnitude faster
than the previously proposed Projected Power Method, a significant improvement of
conventional image segmentation algorithms.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Image segmentation has been an ongoing topic since the 1990’s. Many models have been proposed in order to perform
accurate image cuts. The Normalized Cut has been a groundbreaking model that has had a huge impact on the accuracy
of image cuts. ‘‘The Normalized Cut criterion measures both the total dissimilarity between the different groups as well
as the total similarity within the groups’’ explained Shi and Malik when the normalized cut was first proposed in [1].
However, in general, the Normalized Cut has a major drawback whenever there are sections of an image that require
more careful selection of the cut. Shi and Yu proposed a modified Normalized Cut model with information on the image
cut given a priori [2]. A further development was then made by Eriksson et al. [3], which formulate the Normalized Cut
segmentation with linear equality constraints in a unified fashion. The idea of using a priori information to perform an
image cut can be traced back to Marr [4]. It is demonstrated that the constraint can bring the information necessary
to overcome the aforementioned major drawback of the Normalized Cut. This is because using a priori information can
ensure that some parts of an image that are expected to be in one segment stays in the specified parts of the image when
cutting the image.
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Due to the success of the Normalized Cut model with constraints, there have been a number of attempts to efficiently
solve the Normalized Cut model with constraints. However, the attempts seem to be based on its original formulation
as an eigenvalue problem with constraints. Gander, Golub, and Matt [5] proposed the first method and there have been
other attempts to improve the performance of the solution algorithms. One successful method is considered to be the
Projected Power Method by Xu et al. in [6].

In this paper, we propose a reformulation of the standard Normalized Cut with constraints into an indefinite system
of equations. We then show that the indefinite system can be effectively handled by the Augmented Lagrangian Uzawa
iterative method [7] together with a classical Algebraic Multigrid Method [8]. We note that there are in fact, available
multiscale image segmentation algorithms (see [9,10] and references cited therein). However, they adopt the different
segmentation models. To the authors’ best knowledge, the formulation of the original Normalized Cut with constraints as
the indefinite system and the solver for the indefinite system based on the Augmented Lagrangian Uzawa iterative method
have not been proposed in literature. We demonstrate that the proposed method achieves a solution in one iteration both
mathematically and numerically. We show how the proposed method can be efficiently applied for the recursive two-way
Normalized Cut with constraints, i.e., sequential constrained segmentations as well. Numerical experiments show that the
speed of our algorithm can be orders of magnitude faster than the previously proposed Projected Power Method for the
Normalized Cut with constraints.

Throughout the paper, for the sake of simplicity, the null space and the range of any matrix C will be denoted by N (C)
and R(C), respectively.

The rest of the paper is organized as follows. Section 2 describes the Normalized Cut with constraints, using the notation
introduced by Shi and Malik [1]. In Section 3, the constrained minimization problem is reformulated as an indefinite
system of equations. A fast solver for the indefinite system is then proposed. A use of the proposed method for recursive
two-way Normalized Cut with constraints and a constrained sequential segmentation is discussed. Section 4 presents
numerical experiments that demonstrate the performance of the proposed algorithm. The concluding remark and future
direction are stated in Section 5.

2. Preliminaries

In order to partition an image (n pixels), we use a graph cut on G = (V, E), where V is the set of vertices (pixels,
|V| = n) and E is the set of edges (connecting a pair of pixels). In order to introduce the Normalized Cut we introduce
the following quantities:

cut(X,V) =

∑
a∈X,b∈V\X

w(a, b), and assoc(X,V) =

∑
a∈X,t∈V

w(a, t), ∀X ⊂ V. (2.1)

where w(a, b) is defined as the weight of the edge between a vertex a in X and a vertex b in X\A. Note that w(a, b) is
expressed by a nonnegative similarity function between nodes a and b. In our paper, we use the Gaussian-Kernel function
given below (2.3) following Shi and Malik [1]. Notice that assoc(X,V) is the total connection from nodes in X to all nodes
in the graph.

Performing a graph cut implies we partition the set V into two disjoint sets A and B (where A∪B = V and A∩B = ∅).
The Normalized Cut of A and B is then defined as

Ncut(A,B) =
cut(A,V)

assoc(A,V)
+

cut(B,V)
assoc(B,V)

. (2.2)

By providing an appropriate labeling of each vertex, we shall identify the label and the vertex. With this identification
being introduced, we shall simply write w(a, b) = w(i, j) or simply w(a, b) = wij, where i and j are the label of vertex
a and b, respectively. Specifically, the entries of the affinity matrix, W = (wij)i,j=1,...,n are generated with the Gaussian
Kernel [1] as follows:

wij =

⎧⎨⎩exp
(

−|f (i) − f (j)|2

σ 2
I

)
exp

(
−∥x(i) − x(j)∥2

σ 2
X

)
if ∥x(i) − x(j)∥ < r

0 otherwise,
(2.3)

where ∥·∥ is the Euclidean ℓ2 norm, r is the parameter, the upper bound of the distance between i and j for which wij ̸= 0,
f (i) is the brightness value of the ith pixel, x(i) is the spacial location or coordinate of the ith pixel, σI and σX are tuning
parameters that control the difference in brightness and the difference in spacial location, respectively. Eq. (2.3) should
reflect the likelihood that two pixels (nodes i and j) belong to the same point. If the pixels are too far away (farther than
a given radius r), then the value of the edge weight wij is set to 0. It is expected that a larger tuning parameter r produces
a better solution for the minimization of the normalized cut. However, we observe that if r ≥ 4, then visually, sufficient
minimization is obtained. Throughout the paper, the numerical results are obtained with the choice of r = 5 if r is not
specified explicitly. The weight function given in (2.3) is a standard choice and a slightly modified or different choice does
not seem to give much different similar results [11].
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We define the following quantities given by Shi and Malik:

di =

∑
j

wij, κ =

∑
xi>0 di∑
i di

, and σ =
κ

1 − κ
(2.4)

and introduce an indicator vector x ∈ Rn, where xi = 1 if i ∈ A and xj = −1 if j ∈ B, we obtain the following constrained
Normalized Cut problem:

min
xi∈{1,−1}

Ncut(A,B)(x) = min
ui∈{1,−σ }

u⊤(D − W )u
u⊤Du

subject to u⊤De = 0, (2.5)

where u = (1+ x)− σ (1− x), e = (1, . . . , 1)⊤ ∈ Rn and D = diag(di). We note that with v := D
1
2 u, the problem (2.5) can

be transformed into the following constrained minimization problem:

min
vi∈{d1/2i ,−d1/2i σ }

v⊤D−
1
2 (D − W )D−

1
2 v

v⊤v
subject to v⊤D

1
2 e = 0. (2.6)

Shi and Malik then relax the constraints that vi ∈

{
d1/2i , −d1/2i σ

}
and simply allow vi to take on any real values. This

leads to an eigenvalue problem given as follows:

D−1/2(D − W )D−1/2v = λv.

The computation is performed to find the eigenvector that corresponds to the smallest nonzero eigenvalue. Once the
eigenvector is found, the signs of each component of the eigenvector are used to partition the graph.

Our approach follows the one from Shi and Malik, however, we notice that if two partitions A and B have the same
number of vertices, then σ = 1 in (2.4) and therefore, ui is either 1 or −1. This then indicates that the denominator of
the objective function, i.e., u⊤Du behaves like a constant.

Additionally, by providing prior information into the minimization problem, i.e., by adding extra constraints to problem
(2.6), we expect to get better segmentation results. Mathematically, the constraints can be imposed by introducing a
matrix B ∈ Rm×n and a vector c ∈ Rm. B will consist of m rows with zeros everywhere except at the location of the pixel
chosen by the user (in lexicographical order) where the entry is 1. The vector c contains the information of the graph to
which that pixel belongs. More precisely, we construct the matrix B = (Bij)i=1,...,m,j=1,...,n consisting of entries of either one
or zero (each row of B has one and only one nonzero entry) and c = (ci)i=1,...,m consisting of ones and negative ones. For
example, for a given kth row of B, let jk be the column of B for which Bk,jk = 1, for k = 1, . . . ,m and let ck be chosen to be
one. This means, we impose the pixel vjk belongs to the group A. On the other hand, if ck is chosen to be the negative one,
it means vjk is constrained to belong to the group B. It is expected that providing more constraints makes more accurate
segmentation result. The constraint that ensures some pixels belong to the partition will be chosen by the user. Getting
a better result with providing sufficiently small amount of constraints is ideal. Namely, it is desired that m ≪ n. This
discussion leads to the following rather relaxed, but constrained optimization problem.

min
v

v⊤D−
1
2 (D − W )D−

1
2 v subject to v⊤D

1
2 e = 0, Bv = c. (2.7)

We remark that L. Xu et al. [6] used the Projected Power Method for solving the problem (2.7) with additional constraints
∥v∥ = 1, which looks to be more faithful for the original Ncut problem. However, the issue arises here that c has to be
carefully modified so that two constraints Bv = c and ∥v∥ = 1 do not lead to an ill-posed problem.

The main contribution of this paper is to design a fast solver for the above optimization problem and to show that
such a relaxation does indeed a good segmentation result. Additionally, we extend this idea to segment more than two
cuts. Namely, we consider k-way Ncut problem via recursive two-way Ncut with constraints. The proposed method can
be considered as a new multi-class constrained Ncut. Furthermore, we show that as the recursion progresses, the size of
the minimization problem becomes much more smaller while the structure of the problem is maintained.

3. Algorithms for constrained minimization

In this section, we shall reformulate problem (2.7) as an indefinite system of equations and introduce the augmented
Lagrangian Uzawa iterative method. We shall demonstrate with mathematical rigor, that the proposed augmented
Lagrangian Uzawa method for the indefinite system can attain the solution in one iteration. We begin our discussion
with the reformulation of problem (2.7) as an indefinite system of equations.

3.1. An indefinite system equivalent to problem (2.7)

For a fixed r > 0, let W = (wij) be given by (2.3) and set

A = D−1/2(D − W )D−1/2
∈ Rn×n (3.1)
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Note that the larger the r is, the denser the matrix A is. For r =
√
2, it corresponds to a 9-point stencil. In general, wij

decreases exponentially when |x(i) − x(j)| becomes larger. We note that the matrix A is called, a graph Laplacian. It is
symmetric and irreducible, i.e., the graph corresponding to A is connected. We can also establish that

v⊤(D − W )v =

∑
i<j

wij(vi − vj)2. (3.2)

This identity shows that A is semidefinite. However, it is not positive definite. In fact, it holds that

N (D − W ) = span
{
(1, 1, . . . , 1)⊤ ∈ Rn} and N (A) = {D1/2e : e ∈ N (D − W )}. (3.3)

To reformulate the Problem (2.7), we introduce B ∈ Rm×n and c ∈ Rm (typically, m ≪ n) and consider a functional
F : Rn

↦→ R defined as follows:

F (v) =
1
2
v⊤Av, (3.4)

Then, Problem (2.7) can be formulated as follows:

min
v∈Bc

F (v), where Bc = {v ∈ Rn
: Bv = c}. (3.5)

Note that the matrix B = (Bij)i=1,...,m,j=1,...,n consists of entries of either one or zero. Each row of B has one and only one
nonzero entry. Therefore, it is important to observe that B is onto and with eℓ, the standard ℓth Euclidean basis for Rn.
Furthermore, we can characterize the null space of B as follows. Let {j1, j2, . . . , jn} is the permutation of {1, 2, . . . , n} so
that Bkjk = 1 for 1 ≤ k ≤ m,

N (B) = span
{
ejm+1 , ejm+2 , . . . , ejn ∈ Rn

: Bkjℓ = 0, for 1 ≤ k ≤ m and m + 1 ≤ ℓ ≤ n
}
. (3.6)

Throughout this paper, we let {jm+1, jm+2, . . . , jn} be the index set that represents the null space of B.
We now introduce a simple, but important conclusion from both characterization of N (A) and N (B). Namely,

N (A) ∩ N (B) = {0}. (3.7)

We are now in a position to present the main result in this section:

Theorem 3.1. We assume that B ∈ Rn×m is onto and A is semidefinite such that N (A)∩N (B) = {0}. Then, a unique minimizer
for the minimization problem (3.5) can be found by solving the following indefinite problem:(

A B⊤

B 0

)(
v

p

)
=

(
f
0

)
, (3.8)

where f := −Aw with w being a particular vector such that Bw = c. Namely, the unique minimizer will be v + w.

Proof. Let w ∈ Bc be given, i.e., Bw = c. Then, it is easy to see that the space Bc is the affine space given by

Bc = w + B0, (3.9)

and

B0 = {v ∈ Rn
: Bv = 0}. (3.10)

Note that the space B0 is identical to N (B). Using this relation, the minimization problem (3.5) can be stated as follows:

min
v∈B0

F (v + w) or min
v∈B0

F (v) + v⊤Aw +
1
2
w⊤Aw. (3.11)

On the other hand, since w⊤Aw is independent of v, the minimization problem (3.11) is equivalent to

min
v∈B0

1
2
v⊤Av − v⊤f , where f := −Aw. (3.12)

Although it may not be unique, if v is a minimizer in B0 for the functional G(v) =
1
2v

⊤Av − v⊤f , then it holds that for
any given u ∈ B0 and ε ∈ R, the function g(ε) = G(v + εu) takes its minimum at ε = 0, i.e.,

dg
dε

(0) = 0 = u⊤(Av − f ). (3.13)

Due to the fact that u is arbitrary, we conclude that

u⊤(Av − f ) = 0, ∀u ∈ N (B). (3.14)

This means f − Av is orthogonal to N (B). Invoking the closed range theorem stating that

N (B)⊥ = R(B⊤) (3.15)
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Table 4.1
Comparison of time elapsed (in seconds (s)) for each algorithm. The parameter µ for the Augmented Lagrangian Uzawa is chosen to be 108 .
Picture Projected Power Method MINRES Augmented Lagrangian Uzawa

Bird 93.4 s 0.36 s 0.19 s
Camel 398 s 0.68 s 0.30 s
Elephants 601.5 s 19.6 s 3.6 s

Table 4.2
Comparison of number of iterations for each algorithm. The parameter µ for the Augmented Lagrangian Uzawa is chosen to be 108 .
Picture Projected Power Method MINRES Augmented Lagrangian Uzawa

Bird 9300 206 1
Camel 16,000 238 1
Elephants 22,000 433 1

and using the assumption that B is onto and so B⊤
: Rm

↦→ Rn is one to one, we arrive at the unique existence of a vector
p in Rm such that

B⊤p = f − Av.

This means that if we solve the following indefinite problem,

f − Av = B⊤p and Bv = 0, (3.16)

then the minimizer for (3.5) is given by v + w. It remains to show that in fact, the minimizer v is unique. We assume
that there are two minimizers, for instance v1 and v2. Then the characterization of the minimizer indicates that

v1 = v2 + n for some n ∈ N (A). (3.17)

But, Bv1 = Bv2 + Bn = Bv2. Therefore, Bn = 0. On the other hand, An = 0 and N (A) ∩ N (B) = {0}. Therefore, n = 0. This
completes the proof. □

Remark 3.1. In practice, we will not consider the case when N (A)∩N (B) ̸= {0}. But, if it is true then the minimizer can
be shown to belong to N (A).

3.2. The augmented Lagrangian Uzawa method for the indefinite system (3.8)

We now discuss how to solve the indefinite system. Let A =

(
A B⊤

B 0

)
. Since A is not invertible, we can introduce

the pseudo inverse of A, denoted by A† [12] and present a simple, but important result.

Lemma 3.1. The indefinite matrix A is spectrally equivalent to the mapping(
A 0
0 −BA†B⊤

)
. (3.18)

Proof. We have the following block LU factorization of A:(
A B⊤

B 0

)
=

(
I 0

BA† I

)(
A B⊤

0 −BA†B⊤

)
. (3.19)

This completes the proof. □

We note that one can try to use the (preconditioned) MINRES to solve the system matrix A with an appropriate
preconditioner. For example, A can be handled by algebraic multigrid method [13]. As demonstrated in Tables 4.1 and
4.2, the performance of MINRES is not too bad in comparison with the Projected Power Method. However, the uniform
iteration number cannot be expected for different images without applying appropriate preconditioners. The construction
of good preconditioner seems to be, however, unclear yet, for BA†B⊤. Therefore, we take a different path, i.e., Uzawa-type
algorithm. In particular, we shall design the augmented Lagrangian Uzawa iterative method. Surprisingly, this method
produces the fastest method while the block matrix can be handled by a simple application of algebraic multigrid method.

In passing to the discussion of the Augmented Lagrangian Uzawa iterative method, we point out that the matrix BA†B⊤

is positive definite. For the Ncut with constraints, we see that BA†B⊤ is positive definite. To see this, for any given x ∈ Rm,
we assume that the Euclidean inner product given as follows is zero:

0 = (BA†B⊤x, x) = (A†B⊤x, B⊤x) = (AA†A−2AB⊤x, B⊤x) = (A†A−2AB⊤x, AB⊤x). (3.20)
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Then, we have that AB⊤x = 0. Now, since if B⊤x = 0, then x = 0, it should hold that B⊤x = e. However, B⊤ must contains
zero rows and therefore, for any x ∈ Rn, it is impossible to have B⊤x = e. This means x must be zero to satisfy Eq. (3.20).
This proves that BA†B⊤ is positive definite. Namely, the minimum eigenvalue of BA†B⊤, denoted by µ0 is positive.

We begin our discussion for Uzawa method applied to the system (3.8). It is well-known that the Uzawa method [14] is
based on two steps: (1) solve for u by appropriately inverting the matrix A and apply the Richardson iterative method [15]
for the Schur complement system BA†B⊤. The Richardson iterative method converges if we choose damping parameter,
say κ so that 0 < κ < 2

ρ(S) , where S = BA†B⊤. Certainly, the choice of the damping parameter κ affects the convergence of
the Uzawa’s iteration and to come up with a procedure for choosing optimal damping parameter is a non-trivial task if at
all possible. One remedy is to use the Augmented Lagrangian method [7,16], which solves a modified problem, equivalent
to (3.8) by the Uzawa method. The modified problem is as follows:{

(A + µB∗B)u + B⊤p = f ,
Bu = 0. (3.21)

The application of Uzawa for the above system requires two investigations. First, the augmented matrix A + µB⊤B is
invertible. Second, the spectrum of the Schur complement operator for the indefinite matrix given by(

A + µB∗B B⊤

B 0

)
. (3.22)

Typically, we have in mind that the parameter µ will be chosen so that µ ≫ 1. As we shall see below, the larger the µ is,
the better the convergence speed is. We first discuss the invertibility of the block matrix A + µB⊤B for any given µ > 0.
In fact, we show that A + µB⊤B is M-matrix [17]. We recall that a matrix C is an M-matrix if it is irreducible, i.e., the
graph corresponding to C is connected and the following conditions hold:

Cjj > 0, ∀1 ≤ j ≤ n (3.23a)

Cij ≤ 0, ∀i, j : i ̸= j (3.23b)

Cjj ≥

n∑
i=1:̸=j

|Cij|, ∀1 ≤ j ≤ n (3.23c)

Cjj >

n∑
i=1:̸=j

|Cij|, for at least one j. (3.23d)

Lemma 3.2. The matrix A + µB⊤B is an M-matrix.

Proof. The matrix A is a graph Laplacian [18,19]. Therefore, it is irreducible and semidefinite. From the property of B, it
is clear that B⊤B is the diagonal matrix such that N (B⊤B) = N (B). This means that nonzero entries in the diagonal of B⊤B
are located in i such that 1 ≤ i ≤ n and i ∈ {j1, j2, . . . , jm}. Therefore, if µ > 0, then clearly, the matrix A+ µB⊤B satisfies
all the condition that M-matrix should satisfy. This completes the proof. □

Due to Lemma 3.2, we can write the Schur compliment matrix as follows:

Sµ = B(A + µB⊤B)−1B⊤. (3.24)

Therefore, the application of Sherman–Morrison–Woodbury formula (with a slight modification due that A is not
invertible), leads to the following identity:

S−1
µ = [B(A + µB⊤B)−1B⊤

]
−1

= µI + (BA†B⊤)−1 (3.25)

and so, we have that the spectrum of Sµ denoted by σ (Sµ) is given by σ (Sµ) = {η0/(1+µη0) : η0 ∈ σ (BA†B⊤)}. Therefore,
the spectral radius of Sµ has the upper bound, i.e., ρ(Sµ) < 1/µ for any µ > 0. The application of the Uzawa method
to (3.21) with damping parameter κ = µ reads: Given (uℓ, pℓ), the new iterate (uℓ+1, pℓ+1) is obtained by solving the
following system:{

(A + µB⊤B)uℓ+1
= f − B⊤pℓ,

pℓ+1
= pℓ

+ µBuℓ+1.
(3.26)

Convergence of this method has been discussed in several works [7,16]. Here we also provide a result on the rate of
convergence of the Augmented Lagrangian method with references, which indicates that for large µ, the iterates converge
very fast to the solution of (3.21). The only difference of the following result from the standard results in [7,16] is that A
is not invertible.

Lemma 3.3. Let (u0, p0) be a given initial guess and for ℓ ≥ 1, let (uℓ, pℓ) be the iterates obtained via the Augmented
Lagrangian method. Then the following estimates hold [7,16]:
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∥p − pℓ
∥ ≤

(
1

1 + µµ0

)ℓ

∥p − p0∥,

|u − uℓ
|A ≤

√
1/µ∥p − pℓ−1

∥ ≤

√
1/µ

(
1

1 + µµ0

)ℓ

∥p − p0∥.

where µ0 is the minimum eigenvalue of S = BA†B⊤ and |·|A is the A-seminorm.

Remark 3.2. Shown is that {uℓ
} converges to u in A-semi-norm. However, it can be converted into a norm. Note that the

original system (3.8) is equivalent to a system A replaced by A + δB∗B for any δ > 0 since Bu = 0. One can then apply
the Augmented Lagrangian Uzawa method for the modified system. Then, the A semi-norm will be replaced by A + δB∗B
norm.

The payoff, however, is that to obtain uℓ+1 we need to solve a nearly singular system, such as

(A + µB⊤B)uℓ+1
= f − µB⊤pℓ. (3.27)

While the dependency of the number of iterations can be handled by an appropriate multigrid decomposition of the space
Rn, in many applications, the key issue arises from the fact that B⊤B would be a singular matrix with large null spaces.

Let the algebraic multigrid method generate the nested multigrid structure for the space Rn, say V1 ⊂ V2 ⊂ · · · VJ−1 ⊂

VJ with VJ = Rn and each space Vk is further decomposed as a local space so that smoothing can be done in the chosen
local spaces, V ℓ

ν with ℓ = 1, . . . , nν . Therefore, the complete space decomposition of Rn can be given as follows:

Rn
=

J∑
ν=1

Vν =

J∑
ν=1

nν∑
ℓ=1

V ℓ
ν . (3.28)

Generally, the dependency of the performance of standard iterative method is hampered by the large null space of B, or
the parameter µ and the problem size, i.e., n. The well-constructed algebraic multigrid method can handle the issue of
the size, n using the nested space decomposition. The key issue is in the dependency of the performance on µ. Theory
developed in [16,20] indicates that it can be effectively handled by an appropriate local subspace decomposition, i.e.,

N (B) =

J∑
ν=1

nν∑
ℓ=1

V ℓ
ν ∩ N (B). (3.29)

As described in (3.6), N (B) =
∑n

k=m+1 span{ejk}. This means if for example, VJ is decomposed so that with nJ = n,

Rn
= VJ =

nJ∑
ℓ=1

V ℓ
J with V ℓ

J = span{eℓ
}.

With this decomposition of VJ , we see that both identities (3.28) and (3.29) hold true. The algebraic multigrid method
based on the above decomposition with exact or inexact local solves for each local subspaces V ℓ

ν (the former is the point-
Gauss–Seidel smoothing) leads to the method that achieves convergence independent of µ. In fact, this means that any
standard algebraic multigrid method can achieve the parameter independent convergence with respect to µ.

Lastly, we note that the standard algebraic multigrid method may suffer from the denseness of the matrix. As we have
already discussed, the larger the r is the denser the matrix A is. However, since our numerical experiments indicate that if
r is sufficiently large, say r = 4 or 5, then numerically the segmentation result does the sufficiently good performance and
the performance of the algebraic multigrid method for r = 5 is sufficiently good, the improvement of algebraic multigrid
method for the dense matrix A + µB⊤B, was not considered in this paper. This is in fact out of the scope of this paper.

3.3. Constrained sequential segmentation

As a simple extension of two-way Ncut with constraints, we can consider constrained sequential segmentations for
multiple Ncut problems. In this section, we discuss how our algorithm proposed in Section 3.2 can be applied for the
multiple Ncut problem in the framework of constrained sequential segmentation. Let an image be given as well as its
graph representation, G0 = (V0, E0). We assume that the following p decompositions of V0 are considered:

V0 = ∪
p
ℓ=1Aℓ such that Ai ∩ Aj = ∅ for i ̸= j. (3.30)

The algorithm of the recursive two-way Ncut for the p decomposition problem can be described as follows:

Algorithm 3.1. Set A0 = ∅. We then perform:
For k = 1, · · · , p,

(1) Set A = Ak and B = ∪
p
ℓ=k+1Aℓ
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Fig. 4.1. Bird segmentation. Image segmented for r = 1, r = 2 and r = 4.

(2) Construct G = Gk = (Vk, Ek) by removing Ak−1 as follows:

G = (V, E), where V = Vk−1\Ak−1 and E = {eab ∈ Ek−1 : ∀a, b ∈ Vk}. (3.31)

(3) Construct W and D from G as well as the constraint for the two Ncut segmentation for A and B, i.e., the matrix B
and the vector c.

(4) Solve the following constrained two-way Ncut problem:

min
xi∈{1,−1}

Ncut(A,B)(x) subject to Bv = c. (3.32)

EndFor

We would like to remark that the constrained minimization problem in (3.32) can be performed using the proposed
algorithm in Section 3.2. In fact, as the recursion becomes deeper, the problem size becomes significantly smaller.
Therefore, it is easier to obtain the desired segmentation. Furthermore, the structure of the problem can be maintained
in the recursive procedure, which is described below in more details.

The k − 1th step of the Ncut problem is completed with W and D constructed from Gk−1. Namely, A = Ak−1 and
B = ∪

p
ℓ=kAℓ is assumed to be decomposed. To move on to kth step we generate the permutation matrix P ∈ Rnk−1×nk−1 ,

where nk−1 = |A ∪ B|. More precisely, let nk = |B|, then the action of P would be given as follows: Pv = v̂, where

v = (v1, v2, ·, vnk−1 )
⊤ and v̂ = (vσ1 , vσ2 , . . . , vσnk−1

)⊤ with σk ∈ B, ∀1 ≤ k ≤ nk. (3.33)

In order to generate a new system, we take W obtained from Gk−1 and set all entries in σ th
k columns and rows of W for

nk + 1 ≤ k ≤ nk−1. Using this updated W , denoted by W , we construct D and M = D
−1/2

(D − W )D
−1/2

. We then obtain
A ∈ Rnk×nk by taking the first nk × nk block of the matrix PMP⊤. Lastly, by constructing the constraint matrix B and a
vector c , we arrive at the following constrained minimization:

min
v

v⊤Av, subject to Bv = c. (3.34)

Since the permutation P does not change the structure of the system matrix, the same algorithm in Section 3.2 can be
applied.

4. Numerical experiments

In this section, we present the performance of the proposed algorithms, the Augmented Lagrangian Uzawa in
comparisons with the standard Projected Power Method and MINRES and also present the result of constrained sequential
segmentation.

We first present a simple result that indicates that the choice of r may not be too large. The Fig. 4.1 shows the effect
of r by comparing the result for the solutions obtained by using different r ’s, i.e., r = 1, r = 2, and r = 4. The result
indicates while for the small r , the result is not satisfactory, but for relatively large r ≥ 4, the result immediately improves
and stabilizes. Note that the green and blue points are chosen by the user as constraints in order to segment the image.
The user is able to choose which points they think are inside of the image and vice versa. The solution contains all of the
pixels classified in two graphs. The red line is where the change occurs.

4.1. Performance of iterative methods

We report the performance of the Augmented Lagrangian Uzawa method and MINRES in comparisons with the
Projected Power Method [6]. We used a tolerance of 5 × 10−8 for the relative residual error and r = 5 for stopping
criterion. The CPU times were compared for the total of three pictures, a bird, a camel and a pair of elephants. The size
of each picture are 81 × 64 for the bird, 100 × 88 for the camel, and 384 × 256 for the elephant. The results of the CPU
time elapsed comparison is shown in Table 4.1.

We also compared the number of iterations for each picture. The results are shown in Table 4.2. As the theory predicts,
the number of iteration for the Augmented Lagrangian Uzawa is uniform independent of the images. The chosen parameter
for µ = 108.
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Table 4.3
Iteration number of algebraic multigrid method to solve A + µB⊤B for different µ.
Picture µ = 102 µ = 104 µ = 108

Bird 22 (0.12 s) 21 (0.13 s) 18 (0.18 s)
Camel 21 (0.20 s) 21 (0.20 s) 21 (0.27 s)
Elephants 35 (3.07 s) 35 (3.34 s) 35 (3.58 s)

Fig. 4.2. First step constrained segmentation of the bird with points chosen as above. The green and blue points are chosen by the user as constraints
in order to segment the image. The red line represents the segmentation produced by the solution. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

Fig. 4.3. First step constrained segmentation of the bird with points chosen as in 4.2.

Lastly, we present the performance of algebraic multigrid method for solving A+µB⊤B for different µ. The performance
of the algebraic multigrid method does not deteriorate at all for larger µ, but works robustly as discussed in Section 3.2
(see Table 4.3).

4.2. Results of constrained sequential segmentations with constraints

In this subsection, we present constrained sequential segmentation results. We present the results for the bird and
elephant pictures. The bird image has a complication in the bottom where there should be a segmentation between the
legs and the tail of the bird. The segmentation may occur incorrectly because the user may be not aware of that section in
the image at first sight. In case it happens, the user can apply the second segmentation to fix the problem in a constrained
sequential segmentation. This has been described in the following example.

Figs. 4.2 and 4.3 present the first step segmentation result and constraints used in the segmentation (see Fig. 4.2). As
discussed, the bottom parts of the bird, between the tail and legs of the bird has not been segmented correctly.

In our second step, we use the left side of Fig. 4.3 and attempt another step of segmentation. New constraints and
results are described in Fig. 4.4, which removes the incorrectly segmented part (see Fig. 4.5).

We now consider a bit more challenging example of a pair of elephants. Our goal is to segment large elephant and
then small elephant sequentially. The Fig. 4.6 shows the segmentation of the large elephant and points chosen for the
segmentation. The left side of Fig. 4.7 is then used for the second step of segmentation, the segmentation of the small
elephant. The Fig. 4.8 shows the second step segmentation results together with the points chosen as constraints. This
has been post processed and presented in Fig. 4.9. Visually, we successfully achieved the desired segmentation results.
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Fig. 4.4. Second step constrained segmentation of the bird with points chosen as above.

Fig. 4.5. Second step constrained segmentation of the bird with points chosen as in 4.4.

Fig. 4.6. First step constrained segmentation of Elephants with points chosen as above. The green and blue points are chosen by the user as
constraints in order to segment the image. The red line represents the segmentation produced by the solution. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4.7. First step constrained segmentation of Elephants with points chosen as chosen in 4.6.

Fig. 4.8. Second step constrained segmentation of Elephants with points chosen as above.
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Fig. 4.9. Second step constrained segmentation of Elephants with points chosen as in 4.8.

5. Conclusion

In this paper we have demonstrated that the Normalized Cut problem with linear constraints can be formulated as an
indefinite system of equation. We then propose the Augmented Lagrangian Uzawa method to solve the indefinite system.
The proposed method shows a significant improvement in computing speed and it allows for the information a priori to
be easily implemented. We note that the Augmented Lagrangian Uzawa is a method that can be mathematically proved
with uniform convergence and demonstrate that it can be used even for multiple constrained segmentations in a recursive
fashion with an advantage of reducing the degree of freedom in each recursion step. In numerical tests, we showed how
r can affect the solution to the constrained segmentation problem as well and concluded that a relatively large values
of r lead to robust and sufficiently good results. In our future works, we shall design a preconditioner for the MINRES
and attempt to understand the relation between multiple Normalized Cut with constraints and the proposed recursive
two-way Normalized Cut with constraints.
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