
Results in Applied Mathematics 8 (2020) 100089

Contents lists available at ScienceDirect

Results in AppliedMathematics

journal homepage: www.elsevier.com/locate/results-in-applied-mathematics

A high order hybridizable discontinuous Galerkinmethod for
incompressiblemiscible displacement in heterogeneous
media
Maurice S. Fabien a,1, Matthew Knepley b, Beatrice Riviere c,∗,2

a Division of Applied Mathematics, Brown University, Providence, RI, United States of America
b Department of Computer Science and Engineering, State University of New York at Buffalo, Buffalo, NY, United States of America
c Department of Computational and Applied Mathematics, Rice University, Houston, TX, United States of America

a r t i c l e i n f o

Article history:
Received 23 August 2019
Received in revised form 10 December 2019
Accepted 17 December 2019
Available online 15 January 2020

Keywords:
High order
Discontinuous Galerkin
Hybridization
Porous media
Quarter five spot
Heterogeneity

a b s t r a c t

An hybridizable discontinuous Galerkin method of arbitrary high order is formulated
to solve the miscible displacement problem in porous media. The spatial discretization
is combined with a sequential algorithm that decouples the flow and the transport
equations. Hybridization produces a linear system for the globally coupled degrees of
freedom, that is smaller in size compared to the system resulting from the interior
penalty discontinuous Galerkin methods. We study the impact of increasing the polyno-
mial order on the accuracy of the solution. Numerical experiments show that the method
converges optimally and that it is robust for highly heterogeneous porous media in two
and three dimensions.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Miscible displacement in porous media is a fundamental process for modeling groundwater flows and enhanced oil
recovery [1–7]. The velocity of the fluid mixture satisfies Darcy’s law with a viscosity that varies in time because it depends
on the solvent concentration. The transport equation models the propagation of the solvent through the medium and
is coupled with the flow equations via diffusive and advective fluxes. The overall mathematical model is a system of
coupled nonlinear partial differential equations. There is a vast literature on first order methods used to solve the miscible
displacement problems and several discretizations have been proposed. The works [8–10] use a finite element method
whereas the work [11] combines the finite element method and the method of characteristics. Recently there has been
a strong interest in developing high order methods with polynomial approximation of degree greater than or equal to
three. High order methods have been shown to be computationally efficient on coarse meshes.

The class of discontinuous Galerkin (DG) methods easily handles high order approximations because of the lack of
continuity constraints between the mesh elements. The works [12–15] introduce interior penalty discontinuous Galerkin
methods for the miscible displacement problem and approximate the fluid pressure and the solvent concentration by
discontinuous piecewise polynomials of degree up to four. The authors demonstrate the robustness of the DG methods
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for heterogeneous media and for viscous fingering. The papers also show the accuracy in the concentration front when
quadratic or cubic polynomials are used, as opposed to linears.

The novel contribution of this work is to formulate and apply an hybridizable discontinuous Galerkin (HDG) method
of high order for solving the miscible displacement problem in heterogeneous media. Hybridization has been shown to
significantly reduce the total number of globally coupled degrees of freedom for a variety of model problems [16–18], as
well as the number of nonzero entries in the discretization matrix [19,20]. The reduction in degrees of freedom (and total
non zero entries in discretization operators) is of great importance, as we use high order accurate approximations for the
simulation of complex flow and transport systems. This paper approximates the unknowns by polynomials with degree
up to sixteen and it contains several numerical simulations in two and three dimensional porous media with varying
permeability fields. The HDG method employs numerical fluxes (equivalent to Lagrange multipliers) as trace unknowns
that are defined on the mesh skeleton. Once the trace unknowns are solved for, they become boundary data of small
local problems for the element unknowns. Hybridization of the DG method has two important consequences: first, the
global matrix is of reduced size compared to standard DG; and second, the uniqueness of the trace unknowns on the mesh
skeleton stabilizes the discontinuous approximation of the flow and transport in highly heterogeneous media, so that the
amount of overshoot and undershoot is minimal and does not increase with time. In our work, we do not post-process
the concentration with a slope limiting technique. An approach related to the HDG scheme called the hybrid high order
method [21], was applied to the miscible displacement problem in [22] on a variety of meshes in two dimensions. The
method employs local gradient reconstruction operators (also known as lift operators) in space and a Crank–Nicolson time
stepping. Up to degree three polynomials are considered, and it is demonstrated that a piecewise linear basis provides
the best balance between computational efficiency and accuracy. The novelty of our work compared to [22] consists of
several aspects: we do not use local gradient reconstruction, we use a first order in time and the numerical examples
employ polynomial degrees up to 16.

The HDG method enjoys several properties: it has optimal order of convergence k+1 in the L2 norm for all approximate
variables if polynomials of degree k are employed; it possesses a local postprocessing that can enhance the accuracy of
the scalar variable (with an order of accuracy k + 2); and it retains favorable aspects of classical DG methods (e.g. local
mass conservation, ability to handle unstructured meshes, etc.). The HDG method for coupled flow and transport satisfies
a compatibility property defined in [23]. Furthermore, if more accuracy is desired, one can resort to a simple element
by element postprocessing that projects the flow velocity into an H(div, Ω)-conforming subspace. This postprocessing
is available since the scalar and flux unknowns converge optimally and the normal component of the numerical flux
for the HDG method is single valued [16]. HDG methods for the convection–diffusion problem have been studied by
numerous authors, including the case of convection-dominated diffusion, and small diffusion coefficients [16,24–27]. To
the best of our knowledge, there are very few papers on HDG for complex porous media flows. Recently, we developed
an HDG method for solving immiscible two-phase flows in porous media [28], which is a different application than
miscible displacement. In two-phase flows, capillary pressure (difference between phase pressures) plays an important
role, whereas miscible displacement is a single phase flow and the diffusion–dispersion matrix plays a critical role. Finally,
we point out that hybridization has been applied to classical mixed finite element methods [29,30], which alleviates the
difficulty in solving saddle-point systems arising from mixed finite element methods. A recent work combines the hybrid
mixed finite element method for solving the flow equations and the classical discontinuous Galerkin method for solving
the transport equation for the miscible displacement problem [31].

A brief outline of the paper is now given. Section 2 contains the model problem and Section 3 the numerical scheme.
Simulations are shown in Section 4. Conclusions follow.

2. Model problem

The displacement of one incompressible fluid by another in the domain Ω ⊂ Rd (for d = 2, 3) over the time interval
(0, T ) is governed by the following coupled equations:

∇ · u = sI − sP , u = −
K

µ(c)
∇p, in Ω × (0, T ], (1)

φ
∂c
∂t

+ ∇ · (uc + q) = sI c̄ − sPc, q = −D(u)∇c, in Ω × (0, T ]. (2)

The primary unknowns are the pressure of the fluid mixture denoted by p, the concentration of the solvent in the fluid
mixture denoted by c , the fluid mixture velocity denoted by u and the diffusive flux q. The coefficient µ is the viscosity
of the fluid mixture and φ and K are respectively the porosity and permeability of the porous medium. The porosity is
a positive constant and the permeability is a piecewise constant field with values bounded below by a positive constant.
The functions sI and sP are the flow rates at injection and production wells respectively, and c̄ is the solvent concentration
prescribed at the injection wells. In the definition of the diffusive flux, q, the dispersion–diffusion matrix, D(u), depends
nonlinearly on the velocity [32]:

D(u) = (dm + αt∥u∥)I + (αℓ − αt )
uuT

∥u∥
,
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where dm is the molecular diffusion, αt and αℓ are the tangential and longitudinal dispersivities, respectively, I is the
identity matrix and ∥ · ∥ denotes the Euclidean norm. The values dm, αt , αℓ are positive constants. The viscosity of the
fluid mixture is a continuous function and it satisfies the common quarter-power mixing law [33]

µ(c) = (c(µs)−0.25
+ (1 − c)(µo)−0.25)−4,

where µs and µo are the viscosity of the solvent and resident fluid respectively.
Let n denote the outward unit normal vector to Ω . The system is completed by no flow boundary conditions and an

initial condition for the concentration:

u · n = 0, on ∂Ω × (0, T ],

D(u)∇c · n = 0, on ∂Ω × (0, T ],

c(·, t) = c0, in Ω × {0}.

3. Discretization

The domain Ω is partitioned into a mesh, Eh, made of quadrilaterals in two dimensions and hexahedra in three
dimensions. The skeleton of the mesh is denoted by Γh and it is the set of all edges in two dimensions or faces in three
dimensions. The set of interior edges/faces is denoted by Γ i

h and the set of boundary edges/faces by Γ ∂
h . The collection of

all element boundaries is denoted by ∂Eh, and it is distinct from Γh, as interior edges (or faces) are duplicated. For each
mesh element E (resp. face e), let Qk(E) (resp. Qk(e)), denote the set of polynomials over E (resp. e), of degree k in each
coordinate direction. Throughout the paper, we denote by nE the unit normal vector outward of a mesh element E. For
each interior face, e, shared by two elements, say Ei and Ej with i < j, we uniquely define the normal vector ne pointing
outward of Ei. With this choice of direction for the normal vector, the jump [w] and average {w} of scalar function w are
uniquely defined by:

[w] = w|Ei−w|Ej , {w} =
1
2
(w|Ei+w|Ej ).

The discrete spaces are

Wh = {w ∈ L2(Ω) : w|E∈ Qk(E), ∀E ∈ Eh},

V h = (Wh)d,

Mh = {ζ ∈ L2(Γh) : ζ |e∈ Qk(e), ∀e ∈ Γh}.

(3)

3.1. Semi-discrete scheme

Eqs. (1)–(2) are discretized by the hybridizable discontinuous Galerkin method. We employ the usual notation (·, ·)O
for the L2 inner-product over an open domain O. The semi-discrete scheme is: find uh, qh in V h, ph, ch in Wh, p̂h, ĉh in Mh
such that for all (v, w, ζ ) in V h × Wh × Mh

(µ(ch)K−1uh, v)E − (ph, ∇ · v)E + (̂ph, v · nE)∂E = 0, (4)

− (uh, ∇w)E + (uh · nE + ph − p̂h, w)∂E = (sI − sP , w)E, (5)

(D(uh)−1qh, v)E − (ch, ∇ · v)E + (̂ch, v · nE)∂E = 0, (6)

(φ
∂ch
∂t

, w)E − (uhch + qh, ∇w)E

+ (qh · nE + τ (ch − ĉh) + ĉhuh · nE, w)∂E = (sI c̄ − sPch, w)E, (7)

for all E in Eh, and

(̂ph, ζ )e = ({ph} +
1
2
[uh · ne], ζ )e, (8)

(̂ch({τ } −
1
2
[uh · ne]), ζ )e = (

1
2
[qh · ne] + {τ ch}, ζ )e, (9)

for all e in Γ i
h , and

(̂ph, ζ )e = (ph, ζ )e, (10)

(̂ch(τ −
1
2
uh · ne), ζ )e = (

1
2
qh · ne + τ ch, ζ )e, (11)

for all e in Γ ∂
h .
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The coefficient τ is a stabilization parameter that may take a different value on each mesh element [16]. From [25,34],
we set

τ (x) = |uh(x) · nE | + max (∥D(uh(x))∥∞, 1), ∀x ∈ ∂E, ∀E ∈ Eh.

3.2. Fully discrete scheme

It is well known that the pressure and velocity fields evolve in time much more slowly than the concentration.
Therefore the sequential algorithm, that decouples the pressure and velocity equations from the concentration and
diffusive flux equations, is widely accepted in the literature. Let ∆t denote the time step. For the initial condition, we
define c0h ∈ Wh satisfying

(c0h , w)E = (c0, w)E, ∀E ∈ Eh, ∀w ∈ Wh.

The fully discrete scheme is given in two steps. First, given cn−1
h in Wh, find un

h in V h, pnh in Wh and p̂nh in Mh such that

(µ(cn−1
h )K−1un

h, v)E − (pnh, ∇ · v)E + (̂pnh, v · nE)∂E = 0, ∀E ∈ Eh, (12)

− (un
h, ∇w)E + (un

h · nE + pnh − p̂nh, w)∂E = (sI − sP , w)E, ∀E ∈ Eh, (13)

(̂pnh, ζ )e = ({pnh} +
1
2
[un

h · ne], ζ )e, ∀e ∈ Γ i
h, (14)

(̂pnh, ζ )e = (pnh +
1
2
un
h · ne, ζ )e, ∀e ∈ Γ ∂

h , (15)

for all (v.w, ζ ) in V h × Wh × Mh.
Second, find qn

h in V h, cnh in Wh and ĉnh in Mh such that

(D(uh
n)−1qn

h, v)E − (cnh , ∇ · v)E + (̂cnh , v · nE)∂E = 0, ∀E ∈ Eh, (16)

(φ
cnh − cn−1

h

∆t
, w)E − (un

hch + qn
h, ∇w)E + (qn

h · nE, w)∂E

+ (τ (cnh − ĉnh ) + ĉnhu
n
h · nE, w)∂E = (sI c̄ − sPcnh , w)E, ∀E ∈ Eh, (17)

(̂cnh (τ −
1
2
[un

h · ne]), ζ )e = (
1
2
[qn

h · ne] + τ {cnh }, ζ )e, ∀e ∈ Γ i
h, (18)

(̂cnh (τ −
1
2
un
h · ne), ζ )e = (

1
2
qn
h · ne + τ cnh , ζ )e, ∀e ∈ Γ ∂

h , (19)

for all (v.w, ζ ) in V h × Wh × Mh.

3.3. Local and global solves

The main advantage of HDG methods is that the hybridization decouples the solution of the unknowns pnh, u
n
h, c

n
h , q

n
h

from the solution of the trace unknowns p̂nh and ĉnh . The solution of the trace unknowns requires solving a global system
whereas the solution of the other unknowns is done locally on each mesh element, which is embarrassingly parallel. Since
the trace unknowns live on the mesh skeleton, the size of the global system is smaller compared to the size of the global
system in a standard DG method. Specific information regarding total degrees of freedom and total nonzero entries in
the discretization matrix for different element types can be found in [19,20,35]. For clarity we consider some quantitative
examples to illustrate this point.

3.3.1. Two-dimensional quadrilateral mesh
In this section we compare the degrees of freedom for a classical DG and HDG scheme applied to problems (1) and (2).

We consider a uniform mesh of the unit square with N × N quadrilateral elements. The number of degrees of freedom
of the global system for HDG is proportional to the number of edges and is equal to 4(k + 1)(N2

+ N). The number of
degrees of freedom for the global system for the classical DG methods is proportional to the number of elements and is
equal to 2((k + 1)2N2). This yields a ratio R that is smaller than one whenever k is greater than 1 + 2N−1.

R =
HDGcoupled DOFs

DGcoupled DOFs
=

2(N + 1)
(k + 1)N

.

Fig. 1 visualizes this ratio, for various values of k and N . Fig. 1a shows that for a given polynomial degree, the ratio
decreases. However, much more substantial reductions for R are obtained if the polynomial degree is increased, which is
clear from Fig. 1b. For instance, for k = 3 and N ≥ 50, the HDG method has about half the number of globally coupled
degrees of freedom than classical DG.
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Fig. 1. Ratio of globally coupled degrees of freedom for HDG to classical DG for quadrilateral meshes.

Fig. 2. Ratio of globally coupled degrees of freedom for HDG to classical DG for tetrahedral meshes.

3.3.2. Three-dimensional tetrahedral mesh
We consider the unit cube partitioned into N×N×N hexahedra. Each hexahedron is then divided into five tetrahedra.

In this case, the number of degrees of freedom of the global system for HDG is equal to (k+2)(k+1)(6N3
+2N2) whereas

the number of degrees of freedom for the global system for the classical DG methods is equal to 5(k+3)(k+2)(k+1)N3/3.
The ratio R is then less than one whenever k is greater than (3 + 6N−1)/5. We plot in Fig. 2 the ratio for different values
of k and N . Similar conclusions to the 2D case can be made.

3.3.3. Linear solvers
Since our algorithm decouples flow and transport, multiple linear systems are to be solved at every time step. In the

most simple situation only two linear solves are needed per time step, one for obtaining the pressure and velocity and the
other for concentration. In some situations one could lag the pressure/velocity update and use it for multiple time steps
before obtaining a new update. Iterative coupling and high order time stepping may be utilized to enhance the solution,
which increases the number of linear solves that are needed per time step. Efficient linear solvers are required for this
class of problems, as the dominant cost occurs during this phase of the simulation.

3.4. Local solves

The local solves are performed locally on each mesh element, and give rise to a sequence of small dense matrix–matrix
operations. As such, this process is efficiently parallelizable. In particular, we use highly optimized dense matrix linear
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algebra subroutines [36,37]. Our previous work explains how to implement these local solves efficiently in a massively
parallel environment [38].

3.5. Global solves

On the other hand, the globally coupled problem for the trace unknowns gives rise to a large sparse linear system
which must be solved for at each time step. To do this, a multigrid technique is utilized. We begin the multigrid process
with the so-called polynomial-multigrid scheme (or p-multigrid) [39–42], which defines a level hierarchy by polynomial
degree. That is, the matrix associated with the fine level is the discretization with the largest polynomial degree used (k).
The lower levels are defined by the discretization with smaller polynomial degrees, k − 1, k − 2, . . . , 1. The resulting
multigrid scheme is very effective, and we observe roughly 6 to 12 iterations per solve. Below we outline key features of
the global solver.

In order to move between the levels, prolongation and restriction operators are required. These spaces are nested, as
the mesh spacing is fixed, and only the polynomial degree is altered. This allows us to take advantage of straightforward
prolongation and restriction operators, which are element local. The prolongation operator is the natural embedding from
the space of polynomials of degree k− 1 into the space of polynomials of degree k. To preserve symmetry, the restriction
operator is taken as the transpose of the prolongation operator.

A key ingredient for multigrid is the relaxation or smoother operator. One challenge in designed or selecting a smoother
is that high polynomial degrees (k > 1) as well as heterogeneous coefficients worsen the conditioning of the globally
coupled discretization matrix. In order to overcome these challenges, a strong relaxation method is needed. In this paper
we use a minimal overlapping additive Schwarz scheme [43]. This smoother performs well in the context of flow and
transport applications.

Once the multigrid process reaches the coarse grid level (associated with polynomial degree k = 1 in our work), we
solve the resulting system using the GAMG solver from PETSc [44–46]. If the mesh size is very small, one can continue
the hierarchy using geometric multigrid [38,47]. However, in our work, we are able to use relatively coarse meshes due
to the adoption of large polynomial degrees.

4. Numerical experiments

4.1. Manufactured solution in 2D

To test the convergence properties of our method, we use the method of manufactured solutions on the unit square
partitioned into N × N quadrilateral elements. For simplicity, we use Dirichlet boundary conditions, which are obtained
through the following prescribed solutions:

p(x, y, t) = 1 + xy tanh(1 − x) tanh(1 − y) exp(−t),

c(x, y, t) = cos(t) sin(πx) sin(πy)/(2π )2.

The following values are chosen for this test:

K = 9.44 · 10−3, φ = 0.2, dm = 1, αℓ = 1.8 · 10−5, αt = 1.8 · 10−6.

The quarter power mixing law is used with viscosity ratio µo/µs = 2. We set ∆t = 0.1/((k + 1)kN2), and T = 0.5. We
vary the mesh size and the polynomial degree. Table 1 shows the errors in the L2 norm and convergence rates for the
pressure, velocity, concentration and diffusive flux. The HDG scheme results in optimal rates of k + 1 in the L2 norm.

4.2. Quarter-five spot in homogeneous medium

In this example, the domain, Ω = [0, 1000]2, has an injection well at the bottom left corner and a production well at
the right top corner. The wells are defined by the source/sink terms, which are piecewise constant with compact support.
That is, sI is nonzero on [0, 100]× [0, 100] and sP is nonzero on [900, 1000]× [900, 1000]. The constants are determined
by the following constraint:∫

Ω

sI =

∫
Ω

sP = 0.28.

Viscosity is the same as in the previous example. The other physical parameters for this example are:

K = 10−10, φ = 0.2, dm = 10−9, αℓ = 1.8 · 10−5, αt = 1.8 · 10−6, c̄ = 1.

In this classical test problem, the solvent fluid is injected at the lower left corner, and displaces the fluid mixture to
the upper right corner [48]. A uniform quadrilateral mesh of 1024 elements is used, with discontinuous piecewise quartic
basis functions. The final simulation time is T = 10 days, and we provide snapshots at t = 2.5, t = 5.0, t = 7.5, and
t = 10. Our splitting algorithm allows for large timesteps, and in this case we fix ∆t = 0.1 days. The solvent concentration
is displayed in Fig. 3.
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Fig. 3. Quarter-five spot problem in a homogeneous medium, with a mesh of 1024 elements, and polynomial order k = 4. Snapshots of the solvent
profile are displayed at various times. The concentration travels from the injection well to the production well.

Table 1
Errors and convergence rates for ph, uh, ch, and qh , on a Cartesian mesh of N × N elements. The variables uh, ch, ph and qh converge at the rate of
k + 1 in the L2 norm.
k N ∥ph − p∥L2(Ω) ∥uh − u∥L2(Ω) ∥ch − c∥L2(Ω) ∥qh − q∥L2(Ω)

Error Rate Error Rate Error Rate Error Rate

1 4 4.528e−03 – 9.965e−05 – 9.965e−04 – 4.538e−05 –
8 1.364e−03 1.73 3.090e−05 1.68 3.090e−04 1.68 1.367e−05 1.73
16 3.791e−04 1.84 8.674e−06 1.83 8.674e−05 1.83 3.799e−06 1.84
32 1.002e−04 1.91 2.309e−06 1.90 2.309e−05 1.90 1.005e−06 1.91
64 2.581e−05 1.95 5.969e−07 1.95 5.969e−06 1.95 2.587e−07 1.95

2 4 4.502e−05 – 1.032e−07 – 1.032e−05 – 4.502e−06 –
8 6.466e−06 2.79 1.481e−08 2.80 1.481e−06 2.80 6.466e−07 2.79
16 8.680e−07 2.89 1.997e−09 2.89 1.997e−07 2.89 8.680e−08 2.89
32 1.125e−07 2.94 2.599e−10 2.94 2.599e−08 2.94 1.125e−08 2.94

3 4 3.517e−06 – 8.058e−09 – 8.058e−07 – 3.517e−07 –
8 2.461e−07 3.83 5.650e−10 3.83 5.650e−08 3.83 2.461e−08 3.83
16 1.624e−08 3.92 3.745e−11 3.91 3.745e−09 3.91 1.624e−09 3.92
32 1.043e−09 3.96 2.413e−12 3.95 2.413e−10 3.95 1.043e−10 3.96

4 4 3.895e−06 – 1.203e−10 – 7.798e−07 – 3.895e−07 –
8 1.333e−07 4.86 4.114e−12 4.87 3.092e−08 4.65 1.333e−08 4.86
16 4.395e−09 4.92 1.366e−13 4.91 1.097e−09 4.81 4.395e−10 4.92
32 1.413e−10 4.95 4.440e−15 4.94 3.666e−11 4.90 1.413e−11 4.95

5 4 1.476e−07 – 4.118e−11 – 4.914e−10 – 1.476e−08 –
8 2.593e−09 5.83 7.192e−13 5.83 9.115e−12 5.75 2.593e−10 5.83
16 4.303e−11 5.91 1.194e−14 5.91 1.573e−13 5.85 4.303e−12 5.91
32 6.939e−13 5.95 1.935e−16 5.94 2.597e−15 5.92 6.939e−14 5.95
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Fig. 4. Polynomial order study at t = 7.5, on a coarse mesh with 256 elements. As the polynomial order increases, the resolution of the concentration
front is sharper.

Next, we study the effect of the polynomial order on the concentration profile. In Fig. 4, we show the concentration
contours at t = 7.5 for several polynomial degrees (k ∈ {1, 2, 4, 8}) on a coarser mesh with 256 elements. Features
near the concentration front (especially close to the production well) become more defined as the polynomial order is
increased. To get a better sense for the convergence of the method, we examine the profile along the line y = x at t = 7.5
for polynomial orders varying from piecewise linears to piecewise octics. Fig. 5 shows the full profile and three zoomed
views. The full profile shows convergence of the method as the polynomial degree increases. The zoomed-views show
that the concentration is sharper for higher polynomial degrees.

4.3. Quarter-five spot in medium with permeability lens

We now consider the miscible displacement problem in a porous medium where the permeability value is 10−10

everywhere except in the lens [250, 500] × [250, 500], where the value is 1000 times smaller. This region of lower
permeability acts as an impermeable area for the fluid mixture. All other parameters are the same as in Section 4.2.
The concentration contours at various times are depicted in Fig. 6, on a mesh with 1024 elements and with polynomial
degree k = 4. As expected, the injected solvent avoids the region of lower permeability, while still traveling towards the
production well. With high order approximations we are able to resolve the concentration front around the lens boundary
with a fine resolution, as demonstrated by the sharpness of the front.

Fig. 7 shows the effect of increasing the polynomial order on the concentration solved on a coarser mesh of 256
elements. We fix t = 7.5, and increase the polynomial order in a geometric sequence (k ∈ {1, 2, 4, 8, 16}). The HDG
method with all tested polynomial orders is able to capture the region of low permeability. Piecewise linears and
quadratics give the most diffusive fronts particularly near the production well. Increasing the polynomial order has the
impact of sharpening the concentration front and producing more accurate simulations on coarser meshes.

4.4. Quarter-five spot in two-dimensional highly heterogeneous media

In this section, we vary the permeability such that it is piecewise constant on each mesh element. The values of
the permeability are chosen from three horizontal layers of the reservoir described in the SPE10 comparative solution
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Fig. 5. Concentration profile along the line y = x. Mesh contains 256 elements. Sharper concentration profiles are obtained with higher order
polynomials.

project [49]. These permeability slices are scaled to a 64 × 64 grid, instead of the native 60 × 220 grid. Figs. 8a, 8b, and
8c show the selected permeability layers, which vary over the Talbert and Upper Ness formations. Layer 44 and 74 contain
channels of higher permeability.

In all experiments we use a mesh with 4096 quadrilateral elements, and discontinuous piecewise quartic basis
functions. All other parameters are the same as in Section 4.2. In Fig. 9, snapshots of the concentration are given at
different times. The concentration profiles are displayed for each of the three permeability layers. Layer 1 corresponds
to Figs. 9a, 9b, and 9c. Layer 44 corresponds to Figs. 9d, 9e, and 9f. Layer 74 corresponds to Figs. 9g, 9h, and 9i. The
location of the channels in layer 44 is favorable to the flow direction from the bottom left corner to the top right corner
of the domain. The other two layers contain impermeable regions that prevent the solvent to reach the production
well at the same rate as for layer 44. This example shows the HDG method can handle highly heterogeneous porous
media.

4.5. Three-dimensional domain with permeability lens

In this section we consider a porous medium with a permeability lens, analogous to the one described in Section 4.3
but in three dimensions. The domain is now Ω = [0, 1000]3. The permeability lens described in Section 4.3 is extruded in
the z-direction, so that the region of lower permeability is a pillar. Production and injection wells are placed at opposite
ends of the domain (e.g. near the origin and the coordinate (1000, 1000, 1000)). The remaining parameters are the same
as in Section 4.3.

We use a structured mesh with 3072 tetrahedral elements, and piecewise quartic basis functions. Fig. 10 shows the
Darcy velocity field, uh, The velocity is zero in the low permeability pillar and the fluid velocity is directed from the source
to the sink (see Fig. 10)

Fig. 11 contains snapshots of the concentration at different times. The volumetric slices show that the fluid mixture
avoids the region of lower permeability, as expected.
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Fig. 6. Evolution of concentration for the permeability lens problem. The HDG method exhibits the correct behavior, since the concentration avoids
the region of low permeability. Mesh with 1024 elements, and polynomial order k = 4.

4.6. Three-dimensional domain with heterogeneous permeability

In this example, the permeability field is highly heterogeneous and it is shown in Fig. 12. The values of the permeability
are extracted from a 32 × 64 × 16 region of the SPE10 comparative solution project [49]. The domain is Ω = [0, 50] ×

[0, 100] × [0, 25].
A quarter-five spot problem is set up as follows: we place an injection well at the coordinate (0, 0, 25) and a production

well at (50, 100, 25), with
∫

Ω
sI =

∫
Ω
sP = 1.5. The mesh contains 174080 tetrahedral elements, and we use piecewise

cubic basis functions. All other parameters are the same as in Section 4.2. The concentration contours are displayed at
various times in Figs. 13a, 13b, and 13c. The solvent propagates through the medium as expected, from the injection well
to the production well.

5. Conclusion

This work presents a sequential hybridizable discontinuous Galerkin method for solving the miscible displacement
problem in two and three dimensions. We show optimal convergence rates for manufactured solutions. We vary the
polynomial degree and we demonstrate the accuracy of high polynomial approximation with respect to the sharpness
of the concentration front. The method can easily handle heterogeneities in the permeability field, as shown in several
examples of quarter-five spot problems.
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Fig. 7. Polynomial order study at t = 7.5, on a fixed mesh with 256 elements. As the polynomial degree increases, the approximation quality
improves significantly.

Fig. 8. Permeability fields in log scale on 64 × 64 grid.
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Fig. 9. Concentration contours for quarter-five spot problem in two-dimensional heterogeneous media, with 4096 quadrilateral elements and
discontinuous piecewise quartic polynomials.

Fig. 10. Miscible displacement in three dimensional domain. Darcy velocity field at t = 7.5 days (arrows not to scale), obtained with mesh with
3072 tetrahedral elements and with piecewise quartic basis functions.
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Fig. 11. Miscible displacement in three dimensional domain. Concentration snapshots at various times. The concentration is visualized as volume
slices.

Fig. 12. Permeability field (log scale).

Fig. 13. Miscible displacement in heterogeneous medium. The concentration snapshots are visualized as volume slices.
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