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a b s t r a c t

Maxwell’s equations describes the propagation of electromagnetic fields in materials.
Constitutive laws are used to describe the material response to the fields. We extend a
novel computational framework involving Polynomial Chaos Expansions to the Lorentz
model including random parameters. We perform stability and dispersion analyses for
the resulting fully discrete schemes utilizing the second order Yee scheme in two spatial
dimensions.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Electromagnetic interrogation of dispersive materials is of current interest in industry for its potential as a non-
invasive method in identifying weaknesses or compositions in materials. An example is determining a material’s dispersive
properties through the analysis of a single transmitted ultra-wideband (UWB) pulse. Several different methods have been
suggested that expand on the common Lorentz polarization model, some employing linear combinations of poles or
normally distributed poles to fit data [1]. In this paper, however, we explore placing beta distributions on the dielectric
parameters in the model. A recently rediscovered modeling framework allows uncertainty at the molecular level to
enter via distributions of parameters representing variability [2]. Numerous experimental efforts have been pursued to
describe electromagnetic measurements for materials in the frequency domain with distributions of dielectric parameters,
especially relaxation times in multiple Debye models. A significant amount of this work is reviewed in the survey paper
by Foster and Schwan [3].

First we present necessary background information including Maxwell’s equations, the constitutive equations, and the
Lorentz model. Next we define random polarization including distributions of dielectric parameters. For analysis in the
time domain, we use Polynomial Chaos [4–6] and the Finite Difference Time Domain (FDTD) [7,8] method to discretize
for a dispersive medium [9–12]. Finally we show the stability of the random Lorentz model and its discretization, and
perform a dispersion analysis in a manner similar to [2] for the Random Debye model.
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2. Background

2.1. Maxwell’s equations

We begin by presenting Maxwell’s equations that describe the behavior of electromagnetic waves in free space. D and
B are the electric and magnetic flux densities, E and H are the electric and magnetic fields, J is the conduction current
density, and ρ is the charge density

∂D
∂t

+ J = ∇ × H (1a)

∂B
∂t

= −∇ × E (1b)

∇ · D = ρ (1c)

∇ · B = 0. (1d)

Next, we incorporate the constitutive laws that adapt Maxwell’s equations for propagation in materials. Additionally,
ϵ̃ is electric permittivity and is equal to the product of the permittivity of free space and relative permittivity (ϵ̃ = ϵ0ϵ).
Magnetic permeability is given by µ, the material’s polarization and conductivity are P and σ , and Js is the source current

D = ϵ̃E + P (2a)

B = µH + M (2b)

J = σE + Js. (2c)

To find the equations defining electromagnetic waves in a material, we substitute the constitutive equations into
Maxwell’s curl equations:

ϵ̃
∂E
∂t

= ∇ × H − J −
∂P
∂t

= ∇ × H − σE − Js −
∂P
∂t

(3)

µ
∂H
∂t

= −∇ × E −
∂M
∂t

. (4)

For convenience of notation, we restrict our discussion in this section to the one dimensional case with waves
propagating in the z-direction, however, the Yee Scheme and Polynomial Chaos Expansions apply in a similar manner to
2D and 3D. Because electromagnetic waves are transverse with the electric and magnetic fields oscillating perpendicular
to each other, we choose E and H to oscillate in the x and y directions, respectively. Prior to interrogation, there are no
fields or polarizations present so our initial conditions are:

E(0, z) = H(0, z) = P(0, z) = 0. (5)

Our boundary conditions include the interrogating signal, fb(t), at z = 0 and a reflective surface at z = z0:

E(t, 0) = fb(t) and E(t, z0) = 0. (6)

We also assume that our material is non-conducting with no magnetization or source current (σ = 0, M = 0, µ = µ0
and Js = 0):

ϵ̃
∂Ex
∂t

= −
∂Hy

∂z
−

∂Px
∂t

(7a)

µ0
∂Hy

∂t
= −

∂Ex
∂z

. (7b)

where µ0 is the magnetic permeability of free space. From now on, we drop the subscripts so that E = Ex, P = Px, and
H = Hy.

2.2. Lorentz model

There are several models that describe polarization in materials. In this paper, we focus on the Lorentz model for
which the physical assumption is that we can treat electrons in the material as simple harmonic oscillators (i.e. electrons
attached to little springs) [13]. We can then write down the second order differential equation for a damped, driven
oscillator where ν is the damping coefficient, ω0 is the natural resonant frequency, and x is the displacement:

mẍ + 2mνẋ + mω2
0x = Fdriving . (8)

Recall that polarization can be defined as the electric dipole moment density and that the dipole moment between
two equal charges is the product of their charge and displacement (p⃗ = qx⃗). Then letting N be the electron density and

⃗Fdriving = qE⃗, we convert (8) into a differential equation relating the polarization and electric field:

P̈ + 2νṖ + ω2
0P = ϵ0ω

2
pE with ω2

p = Nq2/mϵ0. (9)



A. Fisher, J. Alvarez and N.L. Gibson / Results in Applied Mathematics 8 (2020) 100098 3

It is helpful to note that ν and ωp can be expressed in terms of a time constant τ and static permittivity ϵs where
ν =

1
2τ and ω2

p = ω2
0(ϵs − ϵ∞) [13]. Using either Fourier or Laplace transforms, we may express the polarization in terms

of a convolution of the electric field:

P =

∫ t

0
g(t − s, x)E(s, x)dx (10a)

g =
ϵ0ω

2
p

ν0
e−νt sin ν0t and ν0 =

√
ω2

0 − ν2. (10b)

The function g is the dielectric response function (DRF) and is responsible for how the polarization reacts to past
electric fields. In other words, it encompasses the polarization’s memory of the electric field. Plugging equation (9) into
(2a) and taking the Fourier transform, we get D̂ = ϵ0ϵ(ω)Ê where ϵ(ω) is the complex permittivity given by

ϵ(ω) = ϵ∞ +
ω2

p

ω2
0 − ω2 + i2νω

. (11)

For multiple poles, the permittivity merely includes a summation:

ϵ(ω) = ϵ∞ +

∞∑
i=1

ω2
p,i

ω2
0,i − ω2 + i2νiω

. (12)

2.3. Random polarization

In this paper, we research the effects of altering the original Lorentz model by applying a probability distribution to one
of the parameters. As mentioned earlier, one (or more) of the material parameters in the Lorentz model could be assumed
to have microscale variation which could be modeled with probability distributions. If one of the material parameters is
random, then so will be the polarization and the complex permittivity. We define the random Lorentz model similar to
(9) and (11), but where the material parameter is now a random variable and P is the random polarization:

P̈ + 2νṖ + ω2
0P = ϵ0ω

2
pE (13)

and

ϵ(ω) = ϵ∞ +
ω2

p

ω2
0 − ω2 + i2νω

. (14)

Next, we define the macroscopic polarization of (7a) as the expected value of the random polarization where the
random parameter is given in terms of a random variable ξ defined over [a,b] with probability density function f (ξ ) [14]:

P(t, z) =

∫ b

a
P(t, z; ξ ) f (ξ )dξ . (15)

We emphasize that Maxwell’s equations (7) depend only on the expected value of the random polarization, and therefore
remain deterministic in this model. If we were to allow ϵ or µ to be random, or random initial or boundary conditions,
then a stochastic Maxwell’s equation [15–17] would result.

In [18] it was determined that a parameter that should be considered variable in a material is ω0, therefore we make
this assumption in the current work. In Fig. 1 we show a simulation of the electric field which is coupled to the expected
value of the random Lorentz polarization, compared to the electric field which is coupled to a deterministic Lorentz model
for the polarization using only the average parameter value. The distribution on ω0 makes an appreciable difference in
both amplitude and phase. Since the parameter ω0 always appears as ω2

0 , we choose to vary ω2
0 for simplicity. See [19]

for estimation of the distribution of parameters using complex permittivity as well as time-domain data.

3. Polynomial Chaos

3.1. Polynomial expansion

Now we consider the time domain formulation of the random Lorentz model, using Polynomial Chaos to deal with
the random variable ω2

0 . Polynomial Chaos is a method for approximating solutions to random differential equations by
expressing quantities as orthogonal polynomial expansions in the random variable [6]. We expand in the normalized Jacobi
polynomials (of which, Legendre polynomials are a special case), but because they are defined on [−1,1] it is necessary
to scale our distribution. Letting ω2

0 = m+ rξ so that ξ is defined on [−1,1], we identify m and r as the center and radius
of the distribution. The random polarization can now be expressed as a function of ξ ,

P(ξ, t) =

∞∑
i=0

αi(t)φi(ξ ). (16)
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Fig. 1. Simulation of expected value of random Lorentz model compared to the Lorentz model with average parameters.

All orthogonal polynomials also satisfy a recurrence relationship,

ξφn(ξ ) = anφn+1(ξ ) + bnφn(ξ ) + cnφn−1(ξ ) (17)

where the coefficients for the Jacobi polynomials are:

an =
2(n + α̂)(n + β̂)

(2n + α̂ + β̂)(2n + α̂ + β̂ + 1)

bn =
β̂2

− α̂2

(2n + α̂ + β̂)(2n + α̂ + β̂ + 2)

cn =
2(n + 1)(n + α̂ + β̂ + 1)

(2n + α̂ + β̂ + 1)(2n + α̂ + β̂ + 2)
,

where α̂ and β̂ are parameters of the orthogonal polynomial family and are analogous to shape parameters in the Beta
probability distribution.

Plugging (16) into (13) and replacing ω2
0 with m + rξ gives,

∞∑
i=0

α̈i(t)φi(ξ ) + 2να̇i(t)φi(ξ ) + (rξ + m)αi(t)φi(ξ ) = ϵ0ω
2
pEφ0(ξ ). (18)

Then separating and using the recurrence relation (17), we have

∞∑
i=0

[α̈i(t) + 2να̇i(t) + mαi(t)]φi(ξ )

+r
∞∑
i=0

αi(t) [aiφi+1(ξ ) + biφi(ξ ) + ciφi−1(ξ )] = ϵ0ω
2
pEφ0(ξ ). (19)

Taking the weighted inner product with φj(ξ ) for j = 0 . . . p − 1, we have

p−1∑
i=0

[α̈i(t) + 2να̇i(t) + mαi(t)]
⟨
φi, φj

⟩
+r

p−1∑
i=0

αi(t)
[
ai
⟨
φi+1, φj

⟩
+ bi

⟨
φi, φj

⟩
+ ci

⟨
φi−1, φj

⟩]
=
⟨
ϵ0ω

2
pEφ0, φj

⟩
(20)
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where
⟨
φi, φj

⟩
for the normalized Jacobi polynomials is defined as:⟨

φi, φj
⟩
:=

∫ 1

−1
φi(ξ )φj(ξ )w(ξ )dξ =

{
0 if i ̸= j
1 if i = j. (21)

Because we have projected onto a finite number of basis polynomials, we can now express our system in matrix
notation:

⃗̈α + 2ν ⃗̇α + Aα⃗ = f⃗ (22)

where A = rM + mI ,

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

b0 c1 0 · · · 0

a0 b1 c2
...

0
. . .

. . .
. . . 0

... ap−3 bb−2 cp−1
0 · · · 0 ap−2 bp−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
and f⃗ = ê1ϵ0ω2

pE

and ê1 is the first standard column unit vector.
Letting ⃗̇α = β⃗ we may express (22) as a system of differential equations:

⃗̇α = β⃗ (23a)
⃗̇β = −Aα⃗ − 2νβ⃗ + f⃗ . (23b)

Note that the deterministic value f⃗ forces the system and is dependent on the electric field governed by Maxwell’s
equations. Maxwell’s equations are coupled to the macroscopic polarization, i.e., the expected value of the random
polarization at each point (t, z), which is well approximated by

P(t, z; F ) = E[P] ≈ αo(t, z), (24)

where the F notation indicates that there is a dependence on the choice of probability distribution.

4. Forward simulation time domain

4.1. FDTD discretization

Combining Maxwell’s equations with our results from Polynomial Chaos, we have the four equations that completely
determine propagation through a dielectric material. We repeat them here as a reference:

ϵ∞ϵ0
∂E
∂t

= −
∂H
∂z

− β0 (25a)

∂H
∂t

= −
1
µ0

∂E
∂z

(25b)

⃗̇α = β⃗ (25c)
⃗̇β = −Aα⃗ − 2νβ⃗ + f⃗ . (25d)

It is important to note that ∂P
∂t is the time rate of change in the macroscopic polarization, or the time rate of change of

the expected value of the random polarization. Since the 0th Jacobi polynomial approximates the expected value of the
expansion, we identify β0 =

∂P
∂t . This explains our substitution in (25a).

To model these equations, we discretize them according to the one-dimensional Yee Scheme [7]. The Yee Scheme
implements a staggered grid where the electric field and random polarization are evaluated at integer time steps and
spatial steps, while the magnetic field is evaluated at half integer time steps and spatial steps. We consider the domain
z ∈ [0, z0] for t ∈ [0, T ], choosing integers jmax and nmax to discretize so that ∆z = z0/jmax and ∆t = T/nmax. Let zj = j∆z
and tn = n∆t . If U is a field variable, we define the grid functions, or the numerical approximations, as

Un
j ≈ U(zj, tn).

Our discrete initial conditions and boundary conditions are:

E0
j = α⃗0

j = β⃗0
j = 0 for 0 ≤ j ≤ jmax, Hn

j = 0 for 0 ≤ j ≤ jmax and n ≤ 0,

En
0 = fb(tn) and En

jmax
= 0 for 0 ≤ n ≤ nmax

for some given boundary value function fb(t).
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Fig. 2. P-convergence of forward simulation at t = 1.4 × 10−5 ns, (b) is a zoom of (a).

First we approximate derivatives with finite differences and constant terms with averages:

ϵ∞ϵ0
En+1
j − En

j

∆t
= −

H
n+ 1

2
j+ 1

2
− H

n+ 1
2

j− 1
2

∆z
−

βn+1
0,j + βn

0,j

2
(26a)

H
n+ 1

2
j+ 1

2
− H

n− 1
2

j+ 1
2

∆t
= −

1
µ0

En
j+1 − En

j

∆z
(26b)

α⃗n+1
j − α⃗n

j

∆t
=

β⃗n+1
j + β⃗n

j

2
(26c)

β⃗n+1
j − β⃗n

j

∆t
= −A

α⃗n+1
j + α⃗n

j

2
− 2ν

β⃗n+1
j + β⃗n

j

2
+

ê1ϵ0ω2
p

2

[
En+1
j + En

j

]
. (26d)

Eqs. (26a), (26c), and (26d) are defined for {1 ≤ j ≤ jmax − 1, 0 ≤ n ≤ nmax − 1} and (26b) is defined for
{0 ≤ j ≤ jmax − 1, 0 ≤ n ≤ nmax − 1}.

4.2. Simulation convergence

We now show that the Polynomial Chaos method converges quickly in p. We assume the material parameters
τ = 7 × 10−16, ω0 = 1.8 × 1016, and ωp = 2 × 1016 from [13]. We choose the time step to sufficiently resolve the
smallest time scale, which in this problem is Tp := 2π/ωp. Specifically, we used ∆t = 0.0005Tp, or 1.7 × 10−19 (note
that computations were actually performed in scaled time). The spatial step was chosen to satisfy the CFL constraint,
specifically ∆z =

1
2 c ∆t , where c is the speed of light in a vacuum.

Choosing the interrogating signal as a sine wave with angular frequency of 6×1015 and duration of 5 periods, we plot
the signals at t = 1.4×10−5 ns for four different p values in Fig. 2. Note that p = 1 corresponds to a deterministic model,
ignoring the distribution entirely. The signals for p = 3 and p = 4 are indistinguishable on the plots. The approximate
relative errors of p = 2 and p = 3 compared to p = 4 are .56% and 0.014%, respectively. Thus, an expansion of three



A. Fisher, J. Alvarez and N.L. Gibson / Results in Applied Mathematics 8 (2020) 100098 7

polynomials accurately approximates the convergence for large p. However, due to the high resonant frequencies of
Lorentz materials, time steps and simulations must be very short. Therefore, small discrepancies might lead to more
significant errors on a larger simulation.

5. Stability

5.1. 2D random Lorentz model

Here we show the stability of the random Lorentz model in a two dimensional domain D, similar to the work for
the random Debye model in [20]. However, the analysis could easily be generalized to three dimensions. First, we give
Maxwell’s Equations for two dimensions along with the random Lorentz differential equation written as a system of first
order equations. To do this, we define the scalar curl operator on a vector field U = (Ux,Uy)T as curl U =

∂Uy
∂x −

∂Ux
∂y , and

the vector curl operator on the scalar field V to be curl V =

(
∂V
∂y , − ∂V

∂x

)T
.

µ0
∂H
∂t

= − curl E (27a)

ϵ0ϵ∞

∂E
∂t

= curl H − J (27b)

∂P
∂t

= J (27c)

∂J
∂t

= −2νJ − ω2
0P + ϵ0ω

2
pE, (27d)

where J := E[J ].
Next we define the vector spaces,

H(curl,D) = {u ∈
(
L2(D)

)2
; curl u ∈ L2(D)} (28)

H0(curl,D) = {u ∈ H(curl,D),n × u = 0} (29)

where (·, ·)2 and ∥ · ∥2 denote the L2 inner product and norm. Note that the boundary restriction of H0 for an electric field
is equivalent to a perfect electric conducting (PEC) boundary condition. This PEC condition is necessary so that Green’s
formula for the curl operator holds

(curl H,u) = (H, curl u) , ∀u ∈ H0(curl,D). (30)

We also introduce the Hilbert space VF = (L2(Ω))2 ⊗ (L2(D))2 where Ω is the support of the distribution, [a,b], on ω2
0 .

The inner product and norm are defined as follows:

(u, v)F = E[(u, v)2]

∥u∥2
F = E[∥u∥2

2].

We note that this inner product and norm thus involve integration over D and Ω .
Multiplying (27a) by v ∈ L2(D), (27b) by u ∈ H0(curl,D), (27c) and (27d) by w1,w2 ∈

(
L2(D)

)2, and integrating over
the domain D, we arrive at the weak formulation:(

µ0
∂H
∂t

, v

)
2

= (−curl E, v)2 (31a)(
ϵ0ϵ∞

∂E
∂t

,u
)

2
= (curl H,u)2 − (J,u)2 (31b)(

∂P
∂t

,w1

)
F

= (J ,w1)F (31c)(
∂J
∂t

,w2

)
F

= (−2νJ ,w2)F +
(
−ω2

0P,w2
)
F +

(
ϵ0ω

2
pE,w2

)
F
. (31d)

We now have all the tools to prove stability for the 2D random Lorentz model.

Theorem 5.1. Let D ⊂ R2 and suppose that E ∈ C(0, T ;H0(curl,D)) ∩ C1(0, T ; (L2(D))2), P,J ∈ C1(0, T ; (VF )
2), and

H(t) ∈ C1(0, T ; L2(D)) are solutions of the weak formulation (31) for the Maxwell–Lorentz system (27) along with PEC boundary
conditions. Then the system exhibits energy decay

E(t) ≤ E(0) ∀t ≥ 0, (32)
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where the energy E(t) is defined as

E(t) =

(√µ0 H(t)
2
2
+

√ϵ0ϵ∞ E(t)
2
2
+

 ω0

ωp
√

ϵ0
P(t)

2
F
+

 1
ωp

√
ϵ0

J (t)
2
F

) 1
2

. (33)

Proof. We choose v = H, u = E, w1 = P , and w2 = J in (31), multiply (31c) by ω2
0

ϵ0ω2
p
, and multiply (31d) by 1

ϵ0ω2
p
. Then

add all four equations together, utilizing our definition of energy and Green’s formula.

1
2
dE2(t)
dt

= −

(
curl E,H

)
2
+

(
H, curl E

)
2
−

(
J, E
)
2
+

(
ω2

0

ϵ0ω2
p
J ,P

)
F

+

(
−2ν
ϵ0ω2

p
J ,J

)
F

+

(
−ω2

0

ϵ0ω2
p
P,J

)
F

+ (E,J )F

(34)

= −

√ 2ν
ϵ0ω2

p
J
2
F
, (35)

since (E,J )F = (E,E[J ])2 = (J, E)2.
After cancellation, we are left with

dE2(t)
dt

= −2
√ 2ν

ϵ0ω2
p
J
2
F
, (36)

and rearranging, we get

dE(t)
dt

=
−1
E(t)

√ 2ν
ϵ0ω2

p
J
2
F

≤ 0 (37)

for E(t) ̸= 0. Therefore the energy, E(t), is non-increasing and E(t) ≤ E(0) ∀t > 0. Further, the energy is conserved if
ν = 0, i.e., no damping. □

5.2. Maxwell-PC Lorentz-FDTD

5.2.1. Discretization
For our discrete approximation to converge to the true solution, it must be consistent and stable. Consistency is

guaranteed by FDTD. To show the stability of the Lorentz-FDTD model in two dimensions, we borrow notation from [20]
that will ease the proof. First, consider the space (x, y) ∈ [0, a] × [0, b] for t ∈ [0, T ]. Choose integers ℓmax, jmax, and nmax
to discretize the space so that ∆x = a/ℓmax, ∆y = b/jmax, and ∆t = T/nmax. Let xℓ = ℓ∆x, yj = j∆y, and tn = n∆t . We
stagger three discrete meshes in the x and y directions, and two discrete meshes in the time domain:

τ
Ex
h :=

{(
x
ℓ+ 1

2
, yj
)

|0 ≤ ℓ ≤ ℓmax − 1, 0 ≤ j ≤ jmax

}
(38)

τ
Ey
h :=

{(
xℓ, yj+ 1

2

)
|0 ≤ ℓ ≤ ℓmax, 0 ≤ j ≤ jmax − 1

}
(39)

τH
h :=

{(
x
ℓ+ 1

2
, yj+ 1

2

)
|0 ≤ ℓ ≤ ℓmax − 1, 0 ≤ j ≤ jmax − 1

}
(40)

τ E
t :=

{(
tn
)
|0 ≤ n ≤ nmax

}
(41)

τH
t :=

{(
tn+

1
2

)
|0 ≤ n ≤ nmax − 1

}
. (42)

The field variables are discretized on the following discrete meshes:

Ex, Px on τ
Ex
h , Ey, Py on τ

Ey
h , H on τH

h , Ex, Ey, Px, Py on τ E
t , H on τH

t .

Let xα, yβ be a node on any spatial mesh, and tγ a node on either temporal mesh. If U is a field variable, we define
the grid functions, or the numerical approximations, as

Uγ

α,β ≈ U(xα, yβ , tγ ).

We define the time difference operator and time averaging operator as

δtU
γ

α,β :=
U

γ+
1
2

α,β − U
γ−

1
2

α,β

∆t
(43)

U
γ

α,β :=
U

γ+
1
2

α,β + U
γ−

1
2

α,β

2
(44)



A. Fisher, J. Alvarez and N.L. Gibson / Results in Applied Mathematics 8 (2020) 100098 9

and the spatial difference operators in the x and y direction as

δxU
γ

α,β :=

Uγ

α+
1
2 ,β

− Uγ

α−
1
2 ,β

∆x
(45)

δyU
γ

α,β :=

Uγ

α,β+
1
2

− Uγ

α,β−
1
2

∆y
. (46)

Next, we define the L2 normed spaces

VE :=

{
F : τ

Ex
h × τ

Ey
h −→ R2

| F = (Fx
l+ 1

2 ,j
, Fy

l,j+ 1
2
)T , ∥F∥E < ∞

}
(47)

VH :=

{
U : τH

h −→ R | U = (Ul+ 1
2 ,j+ 1

2
), ∥U∥H < ∞

}
(48)

with the following discrete norms and inner products

∥F∥2
E = ∆x∆y

ℓmax−1∑
ℓ=0

jmax−1∑
j=0

(
|Fx

ℓ+ 1
2 ,j

|
2
+ |Fy

ℓ,j+ 1
2
|
2
)
, ∀ F ∈ VE (49)

(F,G)E = ∆x∆y
ℓmax−1∑

ℓ=0

jmax−1∑
j=0

(
Fx

ℓ+ 1
2 ,j

Gx
ℓ+ 1

2 ,j
+ Fy

ℓ,j+ 1
2
Gy

ℓ,j+ 1
2

)
, ∀ F,G ∈ VE (50)

∥U∥
2
H = ∆x∆y

ℓmax−1∑
ℓ=0

jmax−1∑
j=0

|U
ℓ+ 1

2 ,j+ 1
2
|
2, ∀ U ∈ VH (51)

(U, V )H = ∆x∆y
ℓmax−1∑

ℓ=0

jmax−1∑
j=0

U
ℓ+ 1

2 ,j+ 1
2
V

ℓ+ 1
2 ,j+ 1

2
, ∀ U, V ∈ VH . (52)

Finally, we define discrete curl operators on the staggered L2 normed spaces as

curlh : VE −→ VH

curlhF := δxFy − δyFx

curlh : VH −→ VE

curlhU := (δyU, −δxU)T .
(53)

We require that PEC conditions hold for all F ∈ VE so that

Fx
ℓ+ 1

2 ,0
= Fx

ℓ+ 1
2 ,J

= 0, 0 ≤ ℓ ≤ ℓmax (54)

Fy
0,j+ 1

2
= Fx

L,j+ 1
2

= 0, 0 ≤ j ≤ jmax. (55)

Then discrete integration by parts shows that Green’s curl identity holds for our discrete system as well:

(curlhE,H)H = (E, curlhH)E . (56)

The definitions are tedious, but we see that all discrete operators, spaces, and inner products are closely related to the
continuous case, as discussed in the previous section.

5.2.2. 2D Yee scheme
Utilizing the operators defined in (43)–(46), we can write out the discrete forms of (27):

δtHn
ℓ+ 1

2 ,j+ 1
2

=
1
µ0

(
δyEn

x
ℓ+ 1

2 ,j+ 1
2

− δxEn
y
ℓ+ 1

2 ,j+ 1
2

)
(57a)

ϵ0ϵ∞δtE
n+ 1

2
x
ℓ+ 1

2 ,j
= δyH

n+ 1
2

ℓ+ 1
2 ,j

− β⃗
n+ 1

2
0,x

ℓ+ 1
2 ,j

(57b)

ϵ0ϵ∞δtE
n+ 1

2
y
ℓ,j+ 1

2
= −δxH

n+ 1
2

ℓ,j+ 1
2

− β⃗
n+ 1

2
0,y

ℓ,j+ 1
2

(57c)

δt α⃗
n+ 1

2
x
ℓ+ 1

2 ,j
= β⃗

n+ 1
2

x
ℓ+ 1

2 ,j
(57d)

δt α⃗
n+ 1

2
y
ℓ,j+ 1

2
= β⃗

n+ 1
2

y
ℓ,j+ 1

2

(57e)



10 A. Fisher, J. Alvarez and N.L. Gibson / Results in Applied Mathematics 8 (2020) 100098

δt β⃗
n+ 1

2
x
ℓ+ 1

2 ,j
= −ω2

0α⃗
n+ 1

2
x
ℓ+ 1

2 ,j
− 2νβ⃗

n+ 1
2

x
ℓ+ 1

2 ,j
+ ê1ϵ0ω2

pE
n+ 1

2
x
ℓ+ 1

2 ,j
(57f)

δt β⃗
n+ 1

2
y
ℓ,j+ 1

2
= −ω2

0α⃗
n+ 1

2
y
ℓ,j+ 1

2

− 2νβ⃗
n+ 1

2
y
ℓ,j+ 1

2

+ ê1ϵ0ω2
pE

n+ 1
2

y
ℓ,j+ 1

2

. (57g)

However, we can simplify the work by writing the equations in vector notation, where we recall that F ∈ VE are
defined on τ

Ex
h × τ

Ey
h and U ∈ VH are defined on τH

h :

δtHn
+

1
µ0

(
curlhEn)

= 0 (58a)

ϵ0ϵ∞δtEn+ 1
2 =

(
curlhHn+ 1

2

)
− êT1 β⃗

n+ 1
2 (58b)

δt α⃗
n+ 1

2 = β⃗
n+ 1

2 (58c)

δt β⃗
n+ 1

2
= −ω2

0α⃗
n+ 1

2
− 2νβ⃗

n+ 1
2

+ ê1ϵ0ω2
pE

n+ 1
2 . (58d)

We must also define another space and inner product for the random polarization in vector notation as α⃗ and β⃗ are
now 2 × p matrices:

Vα :=

{
α⃗ : τ

Ex
h × τ

Ey
h −→ R2

× Rp
⏐⏐⏐ α⃗ = [α0, . . . ,αp−1], αk ∈ VE, ∥α⃗∥α < ∞

}
where the discrete L2 grid norm and inner product are defined as

∥α⃗∥
2
α =

p−1∑
k=0

∥αk∥
2
E, ∀ α⃗ ∈ Vα

(α⃗, β⃗)α =

p−1∑
k=0

(
αk, βk

)
E
, ∀ α⃗, β⃗ ∈ Vα.

5.2.3. Energy decay and stability
We choose both spacial steps to be equal (∆x = ∆y = h), and require that the usual CFL condition for two dimensions

holds:
√
2c∞∆t ≤ h. (59)

Theorem 5.2 (Energy Decay for Maxwell-PC Lorentz-FDTD). If the stability condition (59) is satisfied, then the Yee scheme for
the 2D TE mode Maxwell-PC Lorentz system given in (57) satisfies the discrete identity

δtE
n+ 1

2
h =

−1

E
n+ 1

2
h


√

2ν
ϵ0ω2

p
β⃗

n+ 1
2

h


2

α

(60)

for all n where

En
h =

⎛⎝µ0(Hn+ 1
2 ,Hn− 1

2 )H +
√ϵ0ϵ∞ En

2
E +


√

ω2
0

ϵ0ω2
p
α⃗n


2

α

+


√

1
ϵ0ω2

p
β⃗n


2

α

⎞⎠1/2

(61)

defines a discrete energy.

Proof. Multiplying both sides of (58b) by ∆x∆yE
n+ 1

2 and summing over all nodes on τ
Ex
h × τ

Ey
h , we obtain

ϵ0ϵ∞(δtEn+ 1
2 , E

n+ 1
2 )E = (curlhHn+ 1

2 , E
n+ 1

2 )E − (êT1 β⃗
n+ 1

2
, E

n+ 1
2 )E (62)

which is equivalent to

ϵ0ϵ∞

2∆t

[
∥En+1

∥
2
E − ∥En

∥
2
E

]
= (curlhHn+ 1

2 , E
n+ 1

2 )E − (êT1 β⃗
n+ 1

2
, E

n+ 1
2 )E . (63)

Next, we take the average of (58a) at n and n + 1, multiply by ∆x∆yHn+ 1
2 , and sum over τH

h to get

µ0(δtH
n+ 1

2 ,Hn+ 1
2 )H + (curlhE

n+ 1
2 ,Hn+ 1

2 )H = 0 (64)
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which is equivalent to
µ0

2∆t

[
(Hn+ 3

2 ,Hn+ 1
2 )H − (Hn+ 1

2 ,Hn− 1
2 )H
]

+ (curlhE
n+ 1

2 ,Hn+ 1
2 )H = 0. (65)

Multiplying (58c) by ∆x∆yα⃗
n+ 1

2 and summing over τ
Ex
h × τ

Ey
h , we get(

δt α⃗
n+ 1

2 , α⃗
n+ 1

2

)
α

=

(
β⃗

n+ 1
2
, α⃗

n+ 1
2

)
α

. (66)

We multiply by ω2
0

ϵ0ω2
p
and rewrite as

ω2
0

2∆tϵ0ω2
p

[
∥α⃗n+1

∥
2
α − ∥α⃗n

∥
2
α

]
=

ω2
0

ϵ0ω2
p

(
β⃗

n+ 1
2
, α⃗

n+ 1
2

)
α

. (67)

Lastly, we multiply (58d) by ∆x∆yβ⃗
n+ 1

2 and sum over τ
Ex
h × τ

Ey
h to obtain(

δt β⃗
n+ 1

2 , β⃗
n+ 1

2

)
α

=

−ω2
0

(
α⃗
n+ 1

2 , β⃗
n+ 1

2

)
α

− 2ν

(
β⃗

n+ 1
2
, β⃗

n+ 1
2

)
α

+

(
ê1ϵ0ω2

pE
n+ 1

2 , β⃗
n+ 1

2

)
α

. (68)

We multiply by 1
ϵ0ω2

p
and rewrite as

1
2∆tϵ0ω2

p

[
∥β⃗

n+1
∥
2
α − ∥β⃗

n
∥
2
α

]
=

−ω2
0

ϵ0ω2
p

(
α⃗
n+ 1

2 , β⃗
n+ 1

2

)
α

−
2ν

ϵ0ω2
p

(
β⃗

n+ 1
2
, β⃗

n+ 1
2

)
α

+

(
ê1E

n+ 1
2 , β⃗

n+ 1
2

)
α

. (69)

Adding (63), (65), (67), and (69), then using the definition (61), we have

1
2∆t

{
(En+1

h )2 − (En
h )

2}
= −

2ν
ϵ0ω2

p

(
β⃗

n+ 1
2
, β⃗

n+ 1
2

)
α

(70)

where we noticed that

(ê1E
n+ 1

2 , β⃗
n+ 1

2
)α = (êT1 β⃗

n+ 1
2
, E

n+ 1
2 )E .

We can rewrite (70) in the form

En+1
h − En

h

∆t
= −

(
2

En+1
h + En

h

)
√

2ν
ϵ0ω2

p
β⃗

n+ 1
2


2

α

, (71)

where it is assumed that En
h > 0 for any n. We prove that (61) is a discrete energy (or positive definite function) by

rewriting as

(En
h )

2
= µ0∥H

n
∥
2
H + ϵ0ϵ∞(En,AhEn)E +

1
ϵ0ω2

p

(
ω0α⃗

n
, ω0α⃗

n
)

α
+

2ν
ϵ0ω2

p

(
β⃗

n+ 1
2

h , β⃗
n+ 1

2
h

)
α

(72)

where Ah is positive definite when the CFL condition is satisfied. The details follow similarly to [20]. □

6. Dispersion analysis

6.1. Exact dispersion for random Lorentz

We plug the plane wave solutions V (t, x, y) = Ṽ ei(xkx+yky−ωt) into the Random Lorentz system. After rearranging terms
we get:

ωµ0H̃ = kxẼy − kyẼx (73a)

ϵ0ϵ∞Ẽx = −
ky
w

H̃ − P̃x (73b)
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ϵ0ϵ∞Ẽy = −
kx
w

H̃ − P̃y (73c)

P̃x =
ϵ0ω

2
p Ẽx

ω2
0 − ω2 + i2νω

(73d)

P̃y =
ϵ0ω

2
p Ẽy

ω2
0 − ω2 + i2νω

. (73e)

We take P̃ = E(P̃) where ω2
0 is the random variable. Plugging (73d) into (73b) and (73e) into (73c) we find:

ωµ0H̃ = kxẼy − kyẼx (74a)

ϵ0ϵẼx = −
ky
ω
H̃ (74b)

ϵ0ϵẼy =
kx
ω
H̃ (74c)

ϵ = ϵ∞ + ω2
pE
(

1
ω2

0 − ω2 + i2νω

)
(74d)

where, in particular, (74d) gives the expected complex permittivity. Finally, plugging (74b) and (74c) into (74a), we find
the dispersion relation for the Random Lorentz system

ω2

c2
ϵ = k2 (75)

where ϵ0µ0 =
1
c2

and k2 = k2x + k2y .

6.2. Lorentz PC dispersion

We assume plane wave solutions of all the field variables such that V n
ℓ,j = Ṽ ei(ℓ∆xkx,∆+j∆yky,∆−ωn∆t). For simplicity, we

define the following terms:

ω∆ =
2

∆t
sin
(

ω∆t
2

)
, Kx,∆ =

2
∆x

sin
(
kx,∆∆x

2

)
, Ky,∆ =

2
∆y

sin
(
ky,∆∆y

2

)
. (76)

Plugging the plane wave solutions into the PC-Random Lorentz model and simplifying gets:

− µ0H̃ω∆ = ẼxKy,∆ − ẼyKx,∆ (77a)

ϵ̃Ẽxω∆ = −H̃Ky,∆ − iβ̃0,x cos
(

ω∆t
2

)
(77b)

ϵ̃Ẽyω∆ = H̃Kx,∆ − iβ̃0,y cos
(

ω∆t
2

)
(77c)

α̃xω∆ = iβ̃x cos
(

ω∆t
2

)
(77d)

α̃yω∆ = iβ̃y cos
(

ω∆t
2

)
(77e)

β̃xω∆ = (−iAαx − i2νβ̃x + ê1iϵ0ω2
p Ẽx) cos

(
ω∆t
2

)
(77f)

β̃yω∆ = (−iAαy − i2νβ̃y + ê1iϵ0ω2
p Ẽy) cos

(
ω∆t
2

)
. (77g)

We now add additional notation for the discrete misrepresentation of the model parameters

A∆ = A cos2
(

ω∆t
2

)
, ν∆ = ν cos

(
ω∆t
2

)
, and ωp,∆ = ωp cos

(
ω∆t
2

)
. (78)
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Fig. 3. Plots of phase error with varying r using h = 0.1 and P = 1.

Next we insert (77d) into (77f) and (77e) into (77g) and solve for β̃x,0 and β̃y,0 to get:

β̃x,0 = −iêT1
(
A∆ − ω2

∆I − i2ν∆ω∆I
)−1

ê1ϵ0ω∆ω2
p Ẽx cos

(
ω∆t
2

)
(79a)

β̃y,0 = −iêT1
(
A∆ − ω2

∆I − i2ν∆ω∆I
)−1

ê1ϵ0ω∆ω2
p Ẽy cos

(
ω∆t
2

)
, (79b)

where I is the identity matrix.
Plugging (79a) into (77b) and (79b) into (77c), we find:

Ẽxϵ0ω∆ϵ∆ = −H̃Ky,∆ (80a)

Ẽyϵ0ω∆ϵ∆ = H̃Kx,∆ (80b)

ϵ∆ = ϵ∞ + ω2
p,∆ êT1

(
A∆ − ω2

∆I − i2ν∆ω∆I
)−1

ê1 (80c)

where, in particular, (80c) gives the discrete expected complex permittivity. Note that the relation has a similar form to
(74d) in that the matrix inverse takes the place of division and the pre and post multiplication by ê1, the first standard
unit normal vector, has the effect of taking an expected value. Finally, we insert (80a) and (80b) into (77a) to find the
discrete dispersion relation

ω2
∆

c2
ϵ∆ = k2∆, (81)

where k2∆ = K 2
x,∆ + K 2

y,∆.

6.3. Dispersion error

The exact dispersion relation can be compared with a discrete dispersion relation to determine the amount of
dispersion error. We define the phase error Φ for a scheme applied to a model to be

Φ =

⏐⏐⏐⏐k − k∆

k

⏐⏐⏐⏐ , (82)

where the numerical wave number k∆ is implicitly determined by the discrete dispersion relation (81) with (80c) and k
is the exact wave number for the model implicitly defined by (75) with (74d). We wish to examine the phase error as
a function of ω in the range around ω0 (depicted with an overbar to indicate that it is a parameter of the distribution
of ω2

0 , in particular, the square root of the midpoint of the distribution). The discretization parameter ∆t is determined
by the dimensionless scaling parameter h := ω0∆t/(2π ), while ∆x = ∆y are determined by the CFL condition after ∆t
has been determined. The parameter r indicates the variability of the random variable ω2

0 := ω2
0 + rξ, ξ ∈ (−1, 1). (In
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Fig. 4. Plots of phase error varying P using h = 0.1 and r = 0.1.

Fig. 5. Plots of phase error varying P using h = 0.1 and r = 0.5.

the numerical examples below, we use a relative value of r , for instance r = 0.1 ω2
0. The work in [18,19] showed that

r = 0.0855 is reasonable for modeling saltwater data in the frequency domain.)
We assume a uniform distribution for simplicity and the following realistic material parameters [13]

ϵ∞ = 1, ϵs = 2.25, ν = 2.8 × 1015 1/s, ω0 = 4 × 1016 rad/s.

Fig. 3 shows the effect of the width of the random distribution of ω2
0 by fixing the number of terms in the polynomial

chaos expansion (P = 1 means linear polynomials) and the scaling parameter h = 0.1. As expected, the lower variability
in the dielectric parameter yields the lesser dispersion error since only two terms of PCE cannot be expected to well
represent a random effect with such variability. Figs. 4 and 5 show the convergence in degree of PCE. In particular, for
low variability, r = 0.1 three terms is sufficient to reduce the dispersion error down to the baseline for this choice of
discretization parameters. In other words, there is a contribution to the dispersion error from the spatial, temporal and
spectral discretizations, and here the spectral contribution is less than the others for P > 2. For high variability, r = 0.5,
there is a persistent contribution to the dispersion error from the spectral discretization for at least P up to 4. Figs. 6
and 7 repeat the two previous cases but reduce the time step by a factor of 10 (thus, also the spatial step). Thus the
contributions to the dispersion error from space and time discretizations are reduced, and higher resolution in random
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Fig. 6. Plots of phase error varying P using h = 0.01 and r = 0.1.

Fig. 7. Plots of phase error varying P using h = 0.01 and r = 0.5.

space is necessary to similarly reduce the spectral contribution to dispersion error. For the low variability case, P = 3 is
sufficient; for the high variability case, there is still a non-negligible contribution even with P = 6. Finally, Fig. 8 shows
an addition decrease in the space and time discretization steps, and again P = 3 appears to be sufficient for reducing the
spectral contribution to dispersion error down to the baseline in the low variability case.

7. Conclusion and future work

We have used Polynomial Chaos Expansions to discretize in random space the auxiliary differential equation for the
Lorentz polarization model which includes distributions of dielectric parameters. Using the Yee Scheme to fully discretize
the Random Lorentz system in the time domain, we provided simulations which show fast convergence in the degree of
polynomials used in the expansion. We have shown the stability of the random system, and that the numerical approach
maintains the conditional stability of the Yee scheme for Lorentz materials. We have also derived the discrete dispersion
relation which allows the phase error to be computed. Results were provided in one and two dimensions, but the approach
is easily extendable to three dimensions.
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Fig. 8. Plots of phase error varying P using h = 0.001 and r = 0.1.
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