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a b s t r a c t

Component coupling is a crucial part of climate models, such as DOE’s E3SM (Caldwell
et al., 2019). A common coupling strategy in climate models is for their components
to exchange flux data from the previous time-step. This approach effectively performs
a single step of an iterative solution method for the monolithic coupled system,
which may lead to instabilities and loss of accuracy. In this paper we formulate an
Interface-Flux-Recovery (IFR) coupling method which improves upon the conventional
coupling techniques in climate models. IFR starts from a monolithic formulation of the
coupled discrete problem and then uses a Schur complement to obtain an accurate
approximation of the flux across the interface between the model components. This
decouples the individual components and allows one to solve them independently by
using schemes that are optimized for each component. To demonstrate the feasibility of
the method, we apply IFR to a simplified ocean–atmosphere model for heat-exchange
coupled through the so-called bulk condition, common in ocean–atmosphere systems.
We then solve this model on matching and non-matching grids to estimate numerically
the convergence rates of the IFR coupling scheme.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Efficient, accurate, and stable coupling schemes, or couplers, are essential for large scale predictive simulations of
complex multiphysics phenomena such as the global earth system; see [1]. Efficiency can be achieved by designing the
coupler in such a way that each constituent component of the model can be discretized and solved independently from
the other components. Most couplers accomplish this by lagging the coupling condition at the previous time-step, thus
allowing each component to run autonomously in between coupling steps.

This so-called loosely coupled, or partitioned, methodology [2,3] is minimally intrusive, which allows each component
of the multi-physics models to be built, optimized, and evaluated separately from the other components. Effectively, every
component is treated as a black box by all other components. This allows for greater flexibility and speed of development
in multi-physics codes such as E3SM [1]. However, mathematically such couplers can be viewed as performing a single step
of an iterative solution procedure for the fully coupled monolithic system. As a result, they are prone to instabilities [4]
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and may require additional mechanisms such as Anderson acceleration [5], or modified transmission conditions [6] to
ensure acceptable accuracy and/or stability.

Many of these issues can be avoided by treating the constituent model components as gray instead of as black boxes.
Black box components typically provide information only about their field values on the interface. In contrast, a gray
box component can also be queried about additional interface entities such as the element stiffness and mass matrices
along the interface. This additional information can significantly improve the accuracy of, e.g., the fluxes exchanged by
the components. For example, if two black box components exchange finite element field values, the interface flux is
usually computed by differentiating these finite element fields, leading to the loss of one order of accuracy. In contrast,
a gray box coupler would provide enough information to perform a more accurate variational flux recovery [7], which
provides an optimally accurate flux approximation.

In this paper we refer to couplers employing black box components as agnostic, whereas couplers that employ gray
boxes are termed informed. Another example of an informed strategy would be to make the coupler aware of the
monolithic structure of the coupled model. Depending on this structure, the coupler may be able to find the flux in
the monolithic model at the current time-step, without having to solve it. The implicit value recovery (IVR) method
implements this type of strategy [8] for monolithic models whose semi-discrete in space formulations can be reduced to
Hessenberg index-1 Differential Algebraic Equations (DAEs).

For the informed coupling scheme to retain the advantages of the agnostic coupling scheme, it must still be non-
intrusive to each component that it couples and allow these components to run in a decoupled manner. This means the
coupler must not demand significant structural changes in the codes implementing the components, nor solve for the
components in a tightly coupled manner. At the same time, the informed scheme must be able to query information
about the model equations, which is possible with today’s modular software construction. In the worse case scenario
where this information is not available, the coupler must produce the information. The IVR method follows this paradigm
of well-informed but non-intrusive coupling. In this work, we draw upon the ideas of IVR to develop an informed
coupler for a representative coupling problem in Earth System Models. Specifically, we focus on the heat exchange in
the ocean–atmosphere system connected by a Robin-like transmission condition known as the ‘‘bulk condition’’.

Coupled climate models, or more simply, coupled climate systems such as the ocean–atmosphere system are a
taxing application for any coupler. Climate models require fine resolution and long time-horizons to make meaningful
predictions. They also possess multi-scale behavior which further complicates the coupling process. As a result, the climate
system requires a coupling scheme which is stable for long time horizons, conservative, and sufficiently accurate. In
this paper we will limit our concern to the largest coupled system in the Earth system, the ocean–atmosphere system.
We chose this system for several reasons. First, it comprises the two largest components in the climate system, both
possessing multiple time-scales. Second, the ocean–atmosphere system has been studied by both domain experts [9–11]
and mathematicians [12–16] alike, resulting in a better understanding of its properties relative to the other subsystems
in the Earth System Model. Finally, the bulk coupling conditions in this subsystem are similar in nature to those which
exist between other pairs of components in the climate system.

The stability of various agnostic coupling schemes for the bulk condition applied to the heat equation is investigated
in [17] for implicit time-stepping methods. Similar analysis of agnostic couplers for the more general ocean–atmosphere
system is carried out in [15,16,18,19]. Collectively, it has been shown that most such couplers are either unconditionally
stable or conserve flux. This fact motivates our interest in alternative informed coupling strategies for the bulk condition
as a potential pathway towards couplers that are both conservative and unconditionally stable, while still allowing for a
decoupled solution of the component models.

This work is a first step in that direction in which we extend the IVR coupler to a Bulk-Interface-Flux-Recovery (Bulk-IFR)
coupler designed for the bulk condition case. The IVR approach was formulated for ‘‘perfect’’ transmission conditions [20]
which enforce both continuity of a quantity and its flux across the interface. In contrast, the bulk coupling condition [12–14]
in the ocean–atmosphere system is derived through drag laws on the interface and states that the flux of a quantity
through the interface is proportional to the jump of that quantity across the interface, i.e., it is an example of an
‘‘imperfect’’ coupling condition.

This makes the Bulk-IFR extension presented in this paper different from its IVR parent in a non-trivial way. IVR starts
from a semi-discrete in space monolithic formulation, in which the perfect coupling condition is enforced by a Lagrange
multiplier, and which is a Hessenberg index-2 DAE. Differentiation of the constraint equation in time reduces the index
to one; application of explicit time stepping to this DAE then effectively decouples its components.

In contrast, IFR treats the bulk coupling condition as an independent interface equation and introduces the interface
flux as a new dependent variable. Discretization in space then leads to a monolithic problem in which the states and the
flux are coupled through the interface equation, which prevents us from applying the time differentiation ‘‘trick’’ from
IVR to that equation. Instead, we proceed to discretize in time and formulate the Bulk-IFR coupler for the fully discrete
monolithic problem. The structure of this problem allows us to decouple its components by solving a Schur complement
equation for the dependent flux variable, as in the IVR scheme. After solving this equation the flux is treated as a boundary
condition by the two subsystems at the next time-step.

Because the Schur complement is formed for the fully discrete monolithic problem Bulk-IFR is not limited to the explicit
time integration schemes required to perform the decoupling in IVR. Another important distinction stems from the fact
that the bulk condition couples the states and the flux variable. As a result, the structure of the fully discrete monolithic
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Fig. 1. Ocean-atmosphere domain with interface Γ .

problem in the Bulk-IFR coupler resembles that of stabilized mixed variational problems [21], which are not subject to an
inf–sup stability condition [22]. In contrast, the monolithic problem in the IVR coupler is of the mixed type [23,24], which
implies an inf–sup condition, which must be satisfied. Consequently, the IFR coupler allows for a greater flexibility in the
discretization of the flux variable than the IVR coupler.

Although the new Bulk-IFR method leads to fully decoupled sub-problems, solution of the Schur complement still
recovers the exact flux of the discretized monolithic system. As a result, the Bulk-IFR scheme does not introduce any
of the partitioning errors that are pervasive in most agnostic couplers. We note that the scope of the Bulk-IFR coupler
extends to any coupled problem with a Robin-like ‘‘imperfect’’ transmission condition.

The layout of the paper is as follows. In Section 2, we describe the simple heat transfer model for the ocean–atmosphere
system. The Bulk-IFR scheme is described for the model in Section 3. The scheme is derived for both implicit and
explicit time-stepping schemes. However, demonstration of the method to implicit and hybrid implicit–explicit time-
stepping schemes is beyond the scope of this work and will be reported in a forthcoming paper. The simplified test
case, representative of the heat transfer in the ocean–atmosphere system is described in Section 4. Finally the Bulk-IFR
method is applied to the test case with explicit time stepping and convergence rates are shown for matching grids and
non-matching grids for each domain. In this work, we only aim to simply extend the IVR method to the bulk condition
case, and reserve further analysis for future research.

2. Governing equations

As a simplified proxy for a coupled ocean/atmosphere system we consider a specialized form of the advection–diffusion
equation on two subdomains Ω1,Ω2 ∈ R2, with boundaries ∂Ω1 and ∂Ω2, separated by a common one-dimensional
interface Γ . The two subdomains are stacked vertically and the governing equations are defined so that diffusion occurs
in the vertical (y) direction and advection in the horizontal (x) direction. The governing equations can then be written as

∂ϕi

∂t
−
∂

∂y
ki
∂ϕi

∂y
+ ui

∂ϕi

∂x
= fi in Ωi × [0, T ] i = 1, 2 , (2.1)

with initial conditions

ϕi(x, y, 0) = ϕ0
i (x, y) in Ωi i = 1, 2 , (2.2)

and boundary conditions

ϕi = gi on ∂Ωi \ Γ i = 1, 2 . (2.3)

These two sets of equations are connected through a bulk interface condition stating that the flux between the two
subdomains is continuous and equal to a function of the jump in the solution. Succinctly,

k1
∂ϕ1

∂y
ŷ · n̂ = k2

∂ϕ2

∂y
ŷ · n̂ = α(ϕ1 − ϕ2) on Γ , (2.4)

where ŷ is the unit vector in the y direction and n̂ is a specified normal direction perpendicular to the interface. We will
choose a simple rectangular domain, partitioned across the y direction so that n̂ is parallel or anti-parallel to ŷ. A simple
schematic of the domain is given in Fig. 1. We adopt the convention that the unit normal vectors n̂1 and n̂2 forΩ1 andΩ2,
respectively point outward from the respective domain. Based on the schematic and choosing upward to be the positive y
direction, we will choose n̂ = n̂2 pointing in the positive y direction. This is very natural since we think of the atmosphere
being above the ocean. Therefore we will have a change of sign in the boundary condition for the equation in Ω1.

To derive the Bulk-IFR scheme we begin with monolithic formulation of the model problem obtained by introducing
the interface flux as a new dependent variable λ and adding a weak form of the bulk condition (2.4) to the weak
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forms of the differential equations in (2.1). The resulting monolithic weak problem is given by; seek {ϕ1, ϕ2, λ} ∈

H1
D(Ω1) × H1

D(Ω2) × H1/2(Γ ) such that

(ϕ̇1, ψ1)0,Ω1
+ ⟨λ,ψ1⟩Γ +

(
k1

∂ϕ1
∂y ,

∂ψ1
∂y

)
0,Ω1

+

(
u1

∂ϕ1
∂x , ψ1

)
0,Ω1

= (f1, ψ1)0,Ω1
∀ψ1 ∈ H1

D(Ω1)

(ϕ̇2, ψ2)0,Ω2
− ⟨λ,ψ2⟩Γ +

(
k2

∂ϕ2
∂y ,

∂ψ2
∂y

)
0,Ω2

+

(
u2

∂ϕ2
∂x , ψ2

)
0,Ω2

= (f2, ψ2)0,Ω2
∀ψ2 ∈ H1

D(Ω2) ,

⟨α(ϕ1 − ϕ2) − λ,µ⟩Γ = 0 ∀µ ∈ H−1/2(Γ ),

(2.5)

where the function spaces are chosen to enforce the Dirichlet boundary conditions, denoted by the subscript D. The last
equation contributes the term ⟨λ,µ⟩Γ which endows (2.5) with the structure of a penalized mixed problem, see, e.g.,
[25, p. 71] and [21]. This structure relaxes the inf–sup stability requirement of the mixed setting. By treating λ as a
separate variable, the system has been lifted to a space with more degrees of freedom. Unlike the standard transmission
conditions case which generates a Lagrange multiplier system, in [8], the bulk condition can be substituted back in to the
model equations. However, the lifted form of the model equations allows the interface condition to be treated in a special
way, separately from the model equations.

3. Partitioned scheme

Discretizing the monolithic mixed problem (2.5) in space we obtain the following semi-discrete problem.

Seek {ϕh
1, ϕ

h
2, λ

h
} ∈ Sh1,D(Ω1) × Sh2,D(Ω2) × Gh

Γ such that,

(
ϕ̇h
1, ψ

h
1

)
0,Ω1

+
⟨
λh, ψh

1

⟩
Γ

+

(
k1

∂ϕh1
∂y ,

∂ψh
1

∂y

)
0,Ω1

+

(
u1

∂ϕh1
∂x , ψ

h
1

)
0,Ω1

=
(
f1, ψh

1

)
0,Ω1

∀ψh
1 ∈ Sh1,D(Ω1)

(
ϕ̇h
2, ψ

h
2

)
0,Ω2

−
⟨
λh, ψh

2

⟩
Γ

+

(
k2

∂ϕh2
∂y ,

∂ψh
2

∂y

)
0,Ω2

+

(
u2

∂ϕh2
∂x , ψ

h
2

)
0,Ω2

=
(
f2, ψh

2

)
0,Ω2

∀ψh
2 ∈ Sh2,D(Ω2)⟨

α(ϕh
1 − ϕh

2) − λh, µh
⟩
Γ

= 0 ∀µh
∈ Gh(Γ ).

(3.1)

Thanks to term
⟨
λh, µh

⟩
Γ

the flux variable is not subject to an inf–sup stability condition and, compared to a mixed
formulation, we have a greater flexibility in the choice of the discrete space Gh

Γ .
The semi-discrete monolithic problem (3.1) is equivalent to the following system of Differential Algebraic Equations

(DAEs)

M1φ̇1 + GT
1λ+ K1φ1 = f1(t)

M2φ̇2 − GT
2λ+ K2φ2 = f2(t)

αG1φ1 − αG2φ2 − M̂Γ λ = 0 .
(3.2)

In this setting, φ1 and φ2 are coefficient vectors of the solutions ϕh
1 and ϕh

2 and λ is the coefficient vector of the flux-
variable λh. The coefficient matrices for the advection–diffusion operators are denoted by Ki, i = 1, 2. Mass matrices for
the subdomain spaces are denoted Mi, i = 1, 2, the interface mass matrix is designated M̂Γ , and Gi, i = 1, 2 are rectangular
matrices with elements given by

(Gi)qr = ⟨ψh
i,q, µ

h
r ⟩Γ , q = 1, . . . , ni, r = 1, . . . , |Gh

|; i = 1, 2.

If instead of the bulk coupling condition (2.4) our monolithic problem were to employ a perfect interface condition the
last equation in (3.2) would read

G1φ1 − G2φ2 = 0 , (3.3)

and the monolithic problem would be a Hessenberg Index-2 DAE. In this case, one can differentiate (3.3) to obtain an
alternate constraint on the time derivative of the solution:

G1φ̇1 − G2φ̇2 = 0 . (3.4)

Substitution of (3.3) with (3.4) transforms the monolithic problem into a Hessenberg Index-1 DAE. This makes it possible
to solve for the algebraic variable λ in terms of the states φ1 and φ2. Application of an explicit time integration scheme
to the monolithic problem then effectively decouples it into two independent equations, one for each subdomain. This
approach was followed in [8] to develop the IVR coupling approach.

In the case with the bulk interface coupling condition (2.4), the additional term (M̂Γ λ) that helps assuage the stability
restrictions of the mixed setting also prevents us from applying the IVR time differentiation ‘‘trick’’ directly to the
semidiscrete problem (3.2). Instead, we will first discretize (3.2) in time to generate a fully discrete monolithic formulation
from which we can obtain λ by constructing a Schur complement similar to the one in the IVR approach. Furthermore,
unlike IVR where explicit time stepping was required to decouple the equations, we now have the flexibility to ‘‘mix-and-
match’’ explicit and/or implicit time discretizations in each domain. This flexibility is inherited from the fact that the bulk
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condition case is a lifted PDE and not a Lagrange multiplier system. Specifically, we allow for the possibility of an explicit
method in one domain and an implicit method in the other. If the same time-stepping method is used in both domains,
the time discretization for the bulk condition is clear by substituting it back into the model equations. However, if the
time-stepping methods in each domain are different, the discretization for the bulk condition is not clear. For this reason,
we allow the bulk condition to be discretized in time separately from the model equations in the Bulk-IFR method. In
some cases, this can be thought of as a semi-implicit method, where the coupling conditions receive special treatment.
This is especially useful when mixing explicit and implicit time-stepping methods, where treating the bulk condition
explicitly could lead to instabilities. In this situation, one does not expect optimal accuracy because the coupling term
is treated implicitly in the explicit method. Discovering discretizations for the bulk condition that are both stable and
optimally accurate are a topic of future research. Another option is to use an implicit discretization in one domain for
the bulk condition and an explicit discretization in the other, with respect to the each domains’ time-discretization [17].
While this treatment is stable and efficient, in general, the method does not conserve flux. To achieve conservation on
matching grids, the Bulk-IFR method uses a single flux, λ, for both domains.

To demonstrate the flexibility of the Bulk-IFR method in the choice of implicit and explicit methods, we discretize
the equations using the θ–method, with a different θi ∈ [0, 1] for each domain. This general approach gives rise to
a family of time-discretizations. We could choose to discretize the bulk condition with the θ–method as well, but for
the sake of flexibility we choose a backward Euler discretization. In fact, if both domains’ models are discretized with
backward Euler, this choice of discretization for the bulk condition leads a consistent monolithic backward Euler method.
Moreover, the Bulk-IFR method does this while still decoupling the domains’ model equations. Of course, a more general
formulation could be given that encompasses multi-stage and multi-step methods. However, the θ–method suffices to
demonstrate how the Bulk-IFR method handles heterogeneous time-integration across the interface in a simple manner,
and the procedure generalizes for any single stage method. For multi-stage methods, the decoupling strategy is not as
clear. One must either perform the Bulk-IFR method at all or some of the stages, with the remaining stages treat the
bulk condition with the native multi-stage approximation. In the worse case-scenario, the decoupling strategy is not as
effective. Constructing approximations of the flux which are well suited for multi-stage methods are reserved for future
research.

The θ–method discretization of the system in (3.2) gives the following fully discrete monolithic formulation:

M1
(
φn+1

1 − φn
1

)
/∆t + K1

(
θ1φ

n+1
1 + (1 − θ1)φn

1

)
+ GT

1λ
n+1

= θ1f1(tn+1) + (1 − θ1)f1(tn) ,
M2

(
φn+1

2 − φn
2

)
/∆t + K2

(
θ2φ

n+1
2 + (1 − θ2)φn

2

)
− GT

2λ
n+1

= θ2f2(tn+1) + (1 − θ2)f2(tn)
αG1φ

n+1
1 − αG2φ

n+1
2 − M̂Γ λ

n+1
= 0 .

(3.5)

If we define the following matrix

Wi = Mi +∆tθiKi ,

and reform the right hand sides as

gi(φn
i ) = ∆t(θifi(tn+1) + (1 − θi)(fi(tn) − Kφn

i )) + Miφ
n
i ,

then the monolithic problem (3.5) is equivalent to the following linear system of equations⎡⎢⎣W1 0 ∆tGT
1

0 W2 −∆tGT
2

αG1 −αG2 −M̂Γ

⎤⎥⎦
⎡⎢⎣φ

n+1
1

φn+1
2

λ

⎤⎥⎦ =

⎡⎣g1(φn
1)

g2(φn
2)

0

⎤⎦ . (3.6)

In the next section we present the decoupling of (3.6) in the general case and then consider the case when both subdomain
equations are discretized by an explicit time integrator. The case where an explicit time integrator is used in one domain
and implicit in the other be easily inferred from these examples, and for this reason is omitted.

3.1. The general case

We first reorder (3.6) by grouping together the solution coefficients in the interior of the domain, designated by
subscript 0, and the coefficients on the interface, designated by subscript Γ . The remaining undefined subscripts, Γ 0 and
0Γ identify the parts of the mass matrix from the interior to the boundary and vice-versa, respectively. The reordered
monolithic system then assumes the following form:⎡⎢⎢⎢⎢⎢⎣

W1,Γ 0 ∆tGT
1 W1,Γ 0 0

0 W2,Γ −∆tGT
2 0 W2,Γ 0

αG1 −αG2 M̂Γ 0 0

W1,0Γ 0 0 W1,0 0
0 W2,0Γ 0 0 W2,0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

φn+1
1,Γ

φn+1
2,Γ

λ

φn+1
1,0

φn+1
2,0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
g1,Γ (φn

1)

g2,Γ (φn
2)

0

g1,0(φn
1)

g2,0(φn
2)

⎤⎥⎥⎥⎥⎥⎦ . (3.7)
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Note that we abuse the notation slightly by using Gi in both the full system and interface-partitioned system. In fact, the Gi
operators in (3.7) are now absent of non-interface degrees of freedom, which are simply zero in the larger representation of
Gi. Performing a Schur complement, we have the following reduced linear system for degrees of freedom on the interface⎡⎢⎣A1,Γ 0 ∆tGT

1

0 A2,Γ −∆tGT
2

αG1 −αG2 −M̂Γ

⎤⎥⎦
⎡⎢⎣φ

n+1
1,Γ

φn+1
2,Γ

λ

⎤⎥⎦ =

⎡⎣̂g1,Γ (φn
1)

ĝ2,Γ (φn
2)

0

⎤⎦ , (3.8)

where Ai and ĝi,Γ are generalized mass matrices and force vectors given by

A1,Γ = W1,Γ − W1,Γ 0W−1
1,0W1,0Γ and A2,Γ = W2,Γ − W2,Γ 0W−1

2,0W2,0Γ ,

ĝ1,Γ (φn
1) = g1,Γ (φn

1) − W1,Γ 0W−1
1,0g1,0(φn

1) and ĝ2,Γ (φn
2) = g2,Γ (φn

2) − W2,Γ 0W−1
2,0g2,0(φn

2),
We can then solve for λ as

λ =
(
α∆tGT

1A
−1
1,Γ G1 + α∆tGT

2A
−1
2,Γ G2 − M̂Γ

)−1 (
α∆tGT

1A
−1
1,Γ ĝ1,Γ (φn

1) − α∆tGT
2A

−1
2,Γ ĝ2,Γ (φn

2)
)

= S−1 (
α∆tGT

1A
−1
1,Γ ĝ1,Γ (φn

1) − α∆tGT
2A

−1
2,Γ ĝ2,Γ (φn

2)
)
, (3.9)

where S is the Schur complement matrix. Now the flux λn+1 can be inserted into the full monolithic system and φn+1
1 and

φn+1
2 can be found independently in a decoupled fashion, while treating λn+1 as boundary condition on Γ .

3.2. The explicit case

Choosing the time integrator to be explicit in each domain, i.e., setting θ1 = 0 and θ2 = 0, reduces the linear system
in (3.6) to⎡⎢⎣ M1 0 ∆tGT

1

0 M2 −∆tGT
2

αG1 −αG2 −M̂Γ

⎤⎥⎦
⎡⎢⎣φ

n+1
1

φn+1
2

λ

⎤⎥⎦ =

⎡⎣g1(φn
1)

g2(φn
2)

0

⎤⎦ . (3.10)

After reordering (3.10) to separate out the components in the interior of the domain, indexed by 0, and the components
on the interface, indexed by Γ we arrive at the following linear system⎡⎢⎢⎢⎢⎢⎣

M1,Γ 0 ∆tGT
1 M1,Γ 0 0

0 M2,Γ −∆tGT
2 0 M2,Γ 0

αG1 −αG2 M̂Γ 0 0

M1,0Γ 0 0 M1,0 0
0 M2,0Γ 0 0 M2,0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

φn+1
1,Γ

φn+1
2,Γ

λ

φn+1
1,0

φn+1
2,0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
g1,Γ (φn

1)

g2,Γ (φn
2)

0

g1,0(φn
1)

g2,0(φn
2)

⎤⎥⎥⎥⎥⎥⎦ . (3.11)

In the case of a lumped mass matrix, M1,Γ 0, M2,Γ 0, M1,0Γ , and M2,0Γ are identically zero and we have the reduced linear
system over the interface⎡⎢⎣M1,Γ 0 ∆tGT

1

0 M2,Γ −∆tGT
2

αG1 −αG2 −M̂Γ

⎤⎥⎦
⎡⎢⎣φ

n+1
1,Γ

φn+1
2,Γ

λ

⎤⎥⎦ =

⎡⎣g1,Γ (φn
1)

g2,Γ (φn
2)

0

⎤⎦ . (3.12)

We can then solve for λ as

λ =
(
α∆tGT

1M
−1
1,Γ G1 + α∆tGT

2M
−1
2,Γ G2 − M̂Γ

)−1 (
α∆tGT

1M
−1
1,Γ g1,Γ (φn

1) − α∆tGT
2M

−1
2Γ g2,Γ (φn

2)
)
. (3.13)

Note that in this case, the Schur complement is almost trivial to construct because it only involves inverses of diagonal
matrices.

In the case of a consistent mass matrix, we have the following reduced linear system⎡⎢⎣Ā1,Γ 0 ∆tGT
1

0 Ā2,Γ −∆tGT
2

αG1 −αG2 −M̂Γ

⎤⎥⎦
⎡⎢⎣φ

n+1
1,Γ

φn+1
2,Γ

λ

⎤⎥⎦ =

⎡⎣̂g1,Γ (φn
1)

ĝ2,Γ (φn
2)

0

⎤⎦ . (3.14)

where Ai,Γ and ĝi,Γ are generalized mass matrices and force vectors given by

Ā1,Γ = M1,Γ − M1,Γ 0M−1
1,0M1,0Γ and Ā1,Γ = M2,Γ − M2,Γ 0M−1

2,0M2,0Γ ;

ĝ1,Γ (φ1) = g1,Γ (φ1) − M1,Γ 0M−1
1,0g1,0(φ1) and ĝ2,Γ (φ2) = g2,Γ (φ2) − M2,Γ 0M−1

2,0g2,0(φ2),
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From this linear system an equation for λ analogous to Eq. (3.13) is obtained. Because we consider advection, we will not
consider mass lumping.

4. Simplified ocean-atmosphere test case

Motivated by the test case forcing in [19] (Q in Section 4), we present a test case which represents the heat exchange
between the ocean and atmosphere. The model used is the advection–diffusion equation for the temperature and a
prescribed velocity, as described in Section 2.

4.1. Domain

We choose the spatial domain to be a rectangular domain such that (x, y) ∈ [0, xmax] × [−ymax, ymax]. To model the
ocean–atmosphere interface, the domain will lie approximately on the mixing layers of the atmosphere and ocean and
span a large distance in the x direction. The parameters defining the domain are xmax = 10 km and ymax = 500 m. The
atmospheric domain is given by Ω1 = [0, xmax]×[0, ymax] and the oceanic domain is given by Ω2 = [0, xmax]×[−ymax, 0].
This choice leads to the interface Γ lying on the line y(x) = 0.

4.2. Analytic solution

Following [19], we set the forcing in the atmosphere to be a sinusoid and the forcing in the ocean to be zero. Physically
speaking, this choice in the forcing is such that it models radiative heating and heat dissipation in the atmosphere, and
no radiative heating in the ocean. Certain properties are desired in the solution for physical reasons:

1. ϕi > 0 because the solution is a temperature.
2. The bulk condition is to be satisfied non-trivially, i.e., the solution must have a jump at Γ .
3. The solution must be some small variation about some constant temperature which is comparable to variations seen

in the ocean–atmosphere system.

Let us choose a general sinusoidal form for the forcing in the atmosphere f1, e.g.,

f1(x, t) = A cos (Nπ (x − u1t)) ,

where N ∈ Q. To find the solution of (2.1), we construct an advection equation and a Poisson equation in order to make
a reasonable ansatz about the solution of (2.1). This is a suitable strategy since the advection and diffusion operators act
in mutually orthogonal directions. We will also assume that diffusivities ki are constants. This gives

∂ϕ̃1

∂t
+ u1

∂ϕ̃1

∂x
=0 (4.1)

−k1
∂2ϕ̂1

∂y2
=f1 , (4.2)

Clearly, choosing

ϕ̃1(x, t) =
1

Nπ
f1 + c1 ,

satisfies the advection equation, and choosing

ϕ̂(y) = −
1
2k1

(y − a)2f1 + c2y + c3 ,

satisfies the Poisson equation, where a, c1, c2, and c3 are constants. Neglecting the linear term in ϕ̂, a reasonable ansatz
for ϕ1 is

ϕ1 = −
A′

2Nπk1
cos(Nπ (x − u1t))(y − a)2 + T1,

where c3 = T1 is chosen such that ϕ1 > 0 and gives a temperature profile seen in the atmosphere near the ocean. This
ansatz constrains A to be

A =
A′

Nπ
.

To find ϕ2, the previous approach is repeated for f2 = 0. For the given forcing, the Poisson equation reduces to a
Laplace equation. We choose our ansatz for ϕ2 to have a linear dependence on y. A reasonable ansatz for ϕ2 is then given
by

ϕ2 =
B′

Nπk2
cos(Nπ (x − u2t))(y − b) + T2 ,
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where b and T2 are constants. Our ansatz on the ϕ1 and ϕ2 satisfy the model equations, but they also need to satisfy the
bulk condition, given in (2.4). The bulk condition asserts that

−
A′

Nπ
cos(Nπ (x − u1t))(y − a) =

B′

Nπ
cos(Nπ (x − u2t))

= α(−
A′

2Nπk1
cos(Nπ (x − u1t))(y − a)2 −

B′

Nπk2
cos(Nπ (x − u2t))(y + b) + (T1 − T2)) on Γ .

Recall that Γ is given by the line y(x) = 0. Inserting this into the bulk condition gives

A′

Nπ
cos(Nπ (x − u1t))a =

B′

Nπ
cos(Nπ (x − u2t))

= α

(
−

A′

2Nπk1
cos(Nπ (x − u1t))a2 −

B′

Nπk2
cos(Nπ (x − u2t))b + (T1 − T2)

)
,

which can be satisfied if u1 = u2 = u
aA′

Nπ
cos(Nπ (x − ut)) =

B′

Nπ
cos(Nπ (x − ut))

= α

(
−a2

A′

2Nπk1
cos(Nπ (x − ut)) −

B′

Nπk2
cos(Nπ (x − ut))b + (T1 − T2)

)
.

This simplifies to

aA′

Nπ
=

B′

Nπ
= α

(
−a2

A′

2Nπk1
−

B′

Nπk2
b + (T1 − T2) sec(Nπ (x − ut))

)
.

The relation above will lead to α having space and time dependence. We make α constant by letting T1 = T2 = T . This
gives

aA′

Nπ
=

B′

Nπ
= α

(
−a2

A′

2Nπk1
−

B′

Nπk2
b
)
.

from where one can easily determine the relations

B′
= A′a ,

and

α = −
A′a(

a2A′

2k1
+

B′

k2
b
) ,

respectively. Although the parameter α is a constant and does not contain the jump in the velocities of the two models,
as is the case for the physical bulk condition [17], this test case is still suitable to test the Bulk-IFR method on a Robin
boundary condition. In fact, choosing α to contain the jump in the velocities will not change the structure of problem,
but makes finding an analytical solution more difficult.

4.3. Physical parameters

We now specify values for the parameters based on physical assumptions, which are summarized in Table 1. We choose
the constant T to be 293.15 K. The thermal diffusivities for air and seawater can be found readily in the literature and are
temperature dependent. However, for turbulent flows, the diffusivities can be much higher than those in laminar flows.
For the manufactured solution, the thermal diffusivities only scale the solution and change the CFL. So using an arbitrary
value instead an exact value from ocean–atmosphere system only changes the scaling of the solution. The values of the
diffusivities and the size of the discontinuity at the interface determine the magnitude of the flux across the interface,
and hence define the strength of the coupling. For this reason, we will vary the value of the diffusivities in the numerical
tests, to evaluate the Bulk-IFR method at different coupling strengths. One should note that the physical values specified
in [17] are in the range of values that we choose. Moreover, we do not choose extremely small diffusivities as this would
lead to an extremely small flux across the interface and decouple the sub-problems.

4.4. Free parameters

As of now the parameters a, b, A′ and N have not yet been defined. These parameters will be constrained so that the
solution is realistic and meets the criteria set in 4.2. The value of N controls the frequency of the forcing and therefore
the solution. We arbitrarily choose N =

1
1000 so that the wave has a period of 5 over the domain at t = 0. We choose

b = −ymax so that amplitude of ϕ2 is largest at the surface and goes to the constant value of T as the bottom of the domain
is reached. This is done to model the more chaotic upper ocean and the more steady temperatures at deeper depths.
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Table 1
Model parameters for the simplified ocean–atmosphere test-case.
Parameter Value

T 293.15 K = 20 ◦C
u 1 m s−1

M1 2 K
M2 0.5 K

Fig. 2. Surface and density plot of the solution (ϕ1, ϕ2), (top, bottom), at t = 0. The domain is given in meters and the solution in given in degrees
Celsius.

Finally, we desire that the solution is a small variation around some constant value. The parameters B′ and A′ are
coupled by the bulk condition, thus there are two free parameters left, a and B′, that allow us to control the variation
in temperature. The value B′ can be chosen in such a way that this property is ensured. The maximum amplitude of φ2
about T occurs at y = 0 and is given by

max |ϕ2 − T | = (
B′ymax

Nπk2
) = M2 .

A maximum amplitude of M2 in ϕ2, about T , is achieved by choosing B′ to be

B′
=

M2Nπk2
ymax

.

The maximum amplitude of ϕ1 about T is given by

max |ϕ1 − T | =
A′a2

2Nπk1
= M1 . (4.3)

From the bulk condition, the value of A′ is constrained to be

A′
=

B′

a
.

Substituting this into (4.3) gives
B′a

2Nπk1
= M1 .

Thus to achieve a maximum amplitude of M1 in ϕ1, about T , a is constrained to be

a =
2M1Nπk1

B′
.

Now that all the parameters have been specified, except the diffusivities, we can visualize the initial condition of the
solution. A surface and density plot of ϕ1 (top) and ϕ2 (bottom) are show in Fig. 2.

5. Numerical results

The test case in the previous section is implemented using the finite element method in space and the forward Euler
method in time. For simplicity Lagrange, piece-wise linear elements on rectangles were chosen. The space Gh

Γ for the
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Table 2
The grid size in the x and y direction, the time-step, the relative error in the L2 norm, the relative error in the H1

semi-norm, and the convergence rates between the two finest meshes for k1 = 0.1 and k2 = 2.
k1 = 0.1 m2 s−1 k2 = 2 m2 s−1 α = 4e−4 m s−1

hx hy ∆t L2 H1 SN

333 33.3 1.06 5.059e−03 2.967e−01
166 16.6 0.52 1.216e−03 1.488e−01
83.3 8.33 0.26 2.923e−04 7.458e−02

Rate – – 2.057 0.997

Table 3
The grid size in the x and y direction, the time-step, the relative error in the L2 norm, the relative error in the H1

semi-norm, and the convergence rates between the two finest meshes for k1 = 1 and k2 = 20.
k1 = 1 m2 s−1 k2 = 20 m2 s−1 α = 4e−3 m s−1

hx hy ∆t L2 H1 SN

333 33.3 1.06 5.000e−03 2.953e−01
166 16.6 0.53 1.198e−03 1.488e−01
83.3 8.33 0.17 2.906e−04 7.262e−02

Rate – – 2.043 1.034

Table 4
The grid size in the x and y direction, the time-step, the relative error in the L2 norm, the relative error in the H1

semi-norm, and the convergence rates between the two finest meshes for k1 = 10 and k2 = 200.
k1 = 10 m2 s−1 k2 = 200 m2 s−1 α = 4e−2 m s−1

hx hy ∆t L2 H1 SN

333 33.3 0.277 4.718e−03 2.993e−01
166 16.6 0.069 1.261e−03 1.547e−01
83.3 8.33 0.017 4.124e−04 8.085e−02

Rate – – 2.057 0.997

auxiliary variable λ on the interface must also be specified. It can chosen to be the trace space, on Γ , of either Sh1 ,Γ (Ω1)
or Sh2 ,Γ (Ω2), or the union of their trace spaces. However, stability is not guaranteed if the union of the spaces is chosen.
For this reason, if the meshes on the two domains are not the same, the trace space on one side of the interface will be
chosen. We also use the SUPG method to ensure stability, because of the consideration of advective processes. We follow
the same procedure for SUPG as in [8].

5.1. Convergence study in space

The first test we consider is the convergence in space of the Bulk-IFR method with different strengths of diffusion. The
time horizon was chosen to be 100 s, and the time-step was chosen to be ∆t = 0.01∆tCFL, where ∆tCFL corresponds
to a Courant number of one for the most restrictive CFL condition between the advection and diffusion terms. Thus
the time-step is refined with respect to the CFL condition so that the time-discretization error does not pollute the
spatial-discretization convergence.

The convergence results are given in Table 2 for k1 = 0.1 and k2 = 2, Table 3 for k1 = 1 and k2 = 20, Table 4 for
k1 = 10 and k2 = 200, and Table 5 for k1 = 1e4 and k2 = 2e4. Each table also provides the corresponding value of α.
The value of α and the magnitude of the discontinuity, given by M1 and M2 decide the magnitude of the flux. The relative
errors are given in the L2 and H1 semi-norm. To show the convergence, the semi-norm is given as opposed to the H1

norm because the error in semi-norm is much smaller than in the L2, in an absolute sense. In all cases we observe that
the Bulk-IFR coupler maintains optimal theoretic rates of convergence for the bilinear finite elements employed in the
test.

5.2. Non-matching resolution in grids

In general, the climate model’s component’s models use different grids whose resolutions are adapted to the physics
of each component. Thus, in order for the Bulk-IFR scheme to be useful for ocean–atmosphere coupling it must be able
to handle different grid resolutions. To verify this, the next test considers spatial convergence when the two subdomains’
grids have different resolutions.

The time horizon was chosen to be 100 s, and the time-step was chosen to be∆t = 0.01∆tCFL, where∆tCFL corresponds
to a Courant number of one for the most restrictive CFL condition between the advection and diffusion terms. Thus, the
time-step is refined with respect to the CFL condition so that the time-discretization error does not interfere with the
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Table 5
The grid size in the x and y direction, the time-step, the relative error in the L2 norm, the relative error in the H1

semi-norm, and the convergence rates between the two finest meshes for k1 = 1e4 and k2 = 2e4.
k1 = 1e4 m2 s−1 k2 =2e4 m2 s−1 α = 4 m s−1

hx hy ∆t L2 H1 SN

333 33.3 2.77e−3 4.233e−03 2.931e−01
166 16.6 6.94e−4 1.075e−03 1.4811e−01
83.3 8.33 1.76e−4 2.691e−04 7.4263e−02

Rate – – 2.057 0.997

Table 6
The grid size in the x and y direction for Ω1 and Ω2 , the time-step, the relative error in the L2 norm, the relative
error in H1 semi-norm, and the convergence rates between the two finest meshes k1 = 1 and k2 = 20. The degrees of
freedom for Ω1 on the interface are used for the auxiliary equation.
k1 = 1 m2 s−1 k2 = 20 m2 s−1 α = 4e−3 m s−1

hx,1 hy,1 hx,2 hy,2 ∆t L2 H1 SN

66.6 6.66 333 33.3 0.11 7.516e−04 7.431e−02
33.2 3.32 166 16.6 0.02 1.821e−04 3.697e−02

Rate – – – – 2.045 1.007

Table 7
The grid size in the x and y direction for Ω1 and Ω2 , the time-step, the relative error in the L2 norm, the relative
error in H1 semi-norm, and the convergence rates between the two finest meshes k1 = 1 and k2 = 20. The degrees of
freedom for Ω2 on the interface are used for the auxiliary equation.
k1 = 1 m2 s−1 k2 = 20 m2 s−1 α = 4e−3 m s−1

hx,1 hy,1 hx,2 hy,2 ∆t L2 H1 SN

66.6 6.66 333 33.3 0.11 7.522e−04 7.443e−02
33.2 3.32 166 16.6 0.02 1.836e−04 3.790e−02

Rate – – – – 2.034 0.973

spatial-discretization convergence. For this test, Ω1 is chosen to be five times finer than Ω2 so that the set of degrees of
freedom on one side of the interface are not a super-set of the other side.

We perform the convergence tests with two different choices of discretizations for the flux variable in the interface
equation, corresponding to the traces of the finite element spaces from each subdomain. In the first test we use the trace
of the space defined on the finer mesh on Ω1 and in the second test we discretize the flux using the trace of the space on
the coarser mesh in Ω2. The convergence results for these tests are shown in Tables 6 and 7, respectively. In both cases
the convergence rates match the expected theoretical rates of the bilinear elements used for the tests.

6. Conclusions

In this work, we have extended the IVR method in [8] to the bulk coupling condition in ocean–atmosphere dynamics.
The extension differs from the IVR method in a non-trivial way. For this reason, we refer to this method as the Bulk-
IFR method. The Bulk-IFR method is applicable to both explicit and implicit time-stepping methods through the use of
the θ−method time discretization. However, for simplicity, we only demonstrated the Bulk-IFR method with explicit
time-stepping schemes in the numerical results. We applied the Bulk-IFR coupler to a coupled system comprising two
advection–diffusion equations with advection in the horizontal direction and diffusion in the vertical direction. This
problem configuration can be viewed as a simple heat transfer model in the ocean–atmosphere interface which is driven
by the bulk condition.

The Bulk-IFR method was demonstrated on a simplified test case with an exact solution for the bulk condition. The test
case consists of a wave in the horizontal direction with a discontinuity across the interface. The discontinuity drives the
flux across the interface in the bulk condition. Convergences tests were performed using the Bulk-IFR method for different
magnitudes of diffusion, which lead to different magnitudes in flux across the interface. The Bulk-IFR method was also
evaluated on non-matching grids for the two subdomains. In all cases, the expected convergence rates were achieved.

Although we have demonstrated the Bulk-IFR method for a simplified ocean–atmosphere model of heat transfer, there
is still much research to be done. In particular, applying the Bulk-IFR method with implicit or semi-implicit methods is of
great interest. Typically the diffusion in these types of models is treated implicitly to avoid the restrictive CFL condition
associated with the diffusion. Therefore, the Bulk-IFR method’s performance under these conditions is critical for any
success for the method in real world applications. Another challenge for the method is the application to the bulk condition
existing in the velocity equations in the ocean–atmosphere system. The bulk condition is non-linear in this case, and thus
the Bulk-IFR method would require modification to be efficient. All these topics will be critical points in future research.



12 K.C. Sockwell, K. Peterson, P. Kuberry et al. / Results in Applied Mathematics 8 (2020) 100110

CRediT authorship contribution statement

K. Chad Sockwell: Conceptualization, Methodology, Software, Writing. Kara Peterson: Conceptualization, Methodol-
ogy, Software, Writing. Paul Kuberry: Conceptualization, Methodology, Software, Writing. Pavel Bochev: Conceptualiza-
tion, Methodology, Software, Supervision, Writing. Nat Trask: Conceptualization, Methodology, Software.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research; United States under Award Number DE-SC-0000230927, and the Coupling Approaches for
Next-Generation Architectures (CANGA) project, a joint effort funded by the United States Department of Energy’s Office
of Science under the Scientific Discovery through Advanced Computing (SciDAC), and the Laboratory Directed Research
and Development program at Sandia National Laboratories, United States.

References

[1] Caldwell Peter M, Mametjanov Azamat, Tang Qi, Van Roekel Luke P, Golaz Jean-Christophe, Lin Wuyin, et al. The DOE E3SM coupled model
version 1: Description and results at high resolution. J Adv Modelling Earth Syst 2019;n/a(n/a).

[2] Piperno Serge, Farhat Charbel. Partitioned procedures for the transient solution of coupled aeroelastic problems – Part II: energy transfer analysis
and three-dimensional applications. Comput Methods Appl Mech Engrg 2001;190(24–25):3147–70, Advances in Computational Methods for
Fluid-Structure Interaction.

[3] de Boer A, van Zuijlen AH, Bijl H. Review of coupling methods for non-matching meshes. Comput Methods Appl Mech Engrg
2007;196(8):1515–25, Domain Decomposition Methods: recent advances and new challenges in engineering.

[4] Förster Christiane, Wall Wolfgang A, Ramm Ekkehard. Artificial added mass instabilities in sequential staggered coupling of nonlinear structures
and incompressible viscous flows. Comput Methods Appl Mech Engrg 2007;196(7):1278–93.

[5] Toth Alex, Kelley CT. Convergence analysis for Anderson acceleration. SIAM J Numer Anal 2015;53(2):805–19.
[6] Banks JW, Henshaw WD, Schwendeman DW, Tang Qi. A stable partitioned FSI algorithm for rigid bodies and incompressible flow. Part I: Model

problem analysis. J Comput Phys 2017;343:432–68.
[7] Carey GF, Chow SS, Seager MK. Approximate boundary-flux calculations. Comput Methods Appl Mech Engrg 1985;50(2):107–20.
[8] Peterson Kara, Bochev Pavel, Kuberry Paul. Explicit synchronous partitioned algorithms for interface problems based on Lagrange multipliers.

Comput Math Appl 2019;78(2):459–82.
[9] Fairall Chris W, Bradley Edward F, Rogers David P, Edson James Bearer, Young George S. Bulk parameterization of air-sea fluxes for tropical

ocean-global atmosphere coupled-ocean atmosphere response experiment. J Geophys Res: Oceans 1996;101(C2):3747–64.
[10] Lemarié Florian, Blayo Eric, Debreu Laurent. Analysis of ocean-atmosphere coupling algorithms: consistency and stability. Procedia Comput Sci

2015;51:2066–75.
[11] Lemarie F, Blayo E, pelletier C, Debreu L. Analysis of ocean-atmosphere coupling algorithms: Consistency and stability. In: Presentation at the

7th international conference on coupled problems. 2017.
[12] Lions Jacques-Louis, Temam Roger, Wang Shouhong. Models of the coupled atmosphere and ocean(CAO I). Comput Mech Adv 1993;1(1):5–54.
[13] Lions JL, Temam R, Wang S. Numerical analysis of the coupled atmosphere-ocean models(CAO II) 0. Comput Mech Adv 1993;1(1):55–119.
[14] Lions Jl L, Temam R, Wang S. Mathematical study of the coupled models of atmosphere and ocean (CAO III). J Math Pures Appl 1995;74:105–63.
[15] Connors Jeffrey M, Howell Jason S, Layton William J. Decoupled time stepping methods for fluid-fluid interaction. SIAM J Numer Anal

2012;50(3):1297–319.
[16] Connors Jeffrey M, Dolan Robert D. Stability of two conservative, high-order fluid-fluid coupling methods. Adv Appl Math Mech

2019;11(6):1287–338.
[17] Zhang Hong, Liu Zhengyu, Constantinescu Emil, Jacob Robert. Stability analysis of interface conditions for ocean-atmosphere coupling. 2019,

arXiv preprint arXiv:1909.00916.
[18] Aggul Mustafa, Connors Jeffrey M, Erkmen Dilek, Labovsky Alexander E. A defect-deferred correction method for fluid-fluid interaction. SIAM

J Numer Anal 2018;56(4):2484–512.
[19] Connors Jeffrey Mark, Ganis Benjamin. Stability of algorithms for a two domain natural convection problem and observed model uncertainty.

Comput Geosci 2011;15(3):509–27.
[20] Javili A, Kaessmair S, Steinmann P. General imperfect interfaces. Comput Methods Appl Mech Engrg 2014;275:76–97.
[21] Brezzi Franco, Douglas Jim. Stabilized mixed methods for the Stokes problem. Numer Math 1988;53:225–35.
[22] Brezzi F. On existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. Model Math Anal Numer

1974;21.
[23] Brezzi F, Fortin M. Mixed and hybrid finite element methods. Berlin: Springer; 1991.
[24] Brezzi Franco, Bathe Klaus-Jurgen. A discourse on the stability conditions for mixed finite element formulations. Comput Methods Appl Mech

Engrg 1990;82(1–3):27–57, Proceedings of the Workshop on Reliability in Computational Mechanics.
[25] Gunzburger MD. Finite element methods for viscous incompressible flows. Boston: Academic; 1989.

http://refhub.elsevier.com/S2590-0374(20)30020-0/sb1
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb1
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb1
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb2
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb2
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb2
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb2
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb2
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb3
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb3
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb3
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb4
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb4
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb4
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb5
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb6
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb6
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb6
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb7
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb8
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb8
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb8
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb9
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb9
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb9
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb10
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb10
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb10
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb11
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb11
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb11
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb12
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb13
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb14
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb15
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb15
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb15
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb16
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb16
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb16
http://arxiv.org/abs/1909.00916
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb18
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb18
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb18
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb19
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb19
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb19
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb20
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb21
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb22
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb22
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb22
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb23
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb24
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb24
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb24
http://refhub.elsevier.com/S2590-0374(20)30020-0/sb25

	Interface Flux Recovery coupling method for the ocean–atmosphere system
	Introduction
	Governing equations
	Partitioned scheme
	The general case
	The explicit case

	Simplified ocean-atmosphere test case
	Domain
	Analytic solution
	Physical parameters
	Free parameters

	Numerical results
	Convergence study in space
	Non-matching resolution in grids

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


