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a b s t r a c t

Models to represent the interactions of liquid crystalline phases with vesicles mem-
branes have been widely studied in recent times due to its connection with biological
materials. In this work we propose a new model to represent a vesicle membrane
with internal nematic order whose equilibrium states depend on the competition
between the bending, elastic and anchoring energies. Moreover we present a new
unconditionally energy stable numerical scheme to approximate the model. Additionally,
we present several numerical simulations in order to illustrate the good performance of
the proposed scheme and the influence of the nematic order in the dynamics of the
system.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Biological vesicle membranes can be understood as closed structures made of phospholipid bilayers (two lipid
monolayers) with anchored proteins that separates an aqueous compartment from a surrounding fluid, whose study
has direct applications to biology, biophysics and bioengineering [1–3]. In studying structural changes, dynamics and
deformation of vesicles, one must additionally understand the coupling of these materials with the environmental
conditions, including interactions with different type of flows, thermotropic effects and electric or magnetic fields [3,4].
In particular, there is a growing interest on understanding the coupling of vesicle membranes with anisotropic flows of
the liquid crystal type.

It has been observed that liquid crystals play an important role in the dynamics of biological components. One classical
example is discussed in [5], where the similarities between cholesteric liquid crystals and the extracellular matrices of
fibrous tissues in plants and animals are exposed, concluding that although these biological materials can be studied
using the main concepts introduced by physicists in the field of liquid crystals, it is necessary to keep in mind that
living cells are present in such systems, and this fact opens considerable perspectives for new research. Moreover, liquid
crystalline phases found in many biological materials, such as actin, DNA, cellulose, and collagen can be responsible for the
deformation of cell membranes [6]. In [7] it is reported that the spontaneous assembly of phospholipids at planar interfaces
(like the ones in the vesicle membranes) between thermotropic liquid crystals and aqueous phases produce patterned
orientations of the liquid crystals that reflect the spatial and temporal organization of the phospholipids. Moreover, it
is known that in membranes with nematic liquid-crystalline order there is a geometric coupling between the nematic
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director and the shape of the membrane and this fact is potentially useful for designing colloidal particles for photonic
applications [8]. In [9], the authors report on the dynamics of continuous anchoring transitions at interfaces formed
between nematic liquid crystals (LCs, 4´ -pentyl-4-cyanobiphenyl (5CB)) and immiscible aqueous phases that are induced
by either non-specific or specific interactions between phospholipid vesicles and proteins adsorbed at the liquid crystalline
interfaces. There are also evidences that liquid crystalline materials, such as actin or tubulin networks, are known to be
capable of deforming the shape of cells [10]. The results presented in [10] indicate that, depending on its elastic properties,
the liquid crystal is indeed able to deform the vesicle until it reaches an equilibrium, anisotropic shape. The magnitude
of the deformation is determined by a balance of elastic and surface forces and these predictions are confirmed by their
experimental observations of spindle-like shapes in experiments with giant unilamellar vesicles with planar anchoring.
Another interesting relation between liquid crystals and vesicle membranes has been presented in [11], where it has been
shown that when a thin film of active, nematic microtubules and kinesin motor clusters is confined on the surface of a
vesicle, four 1

2 -topological defects oscillate in a periodic manner between tetrahedral and planar arrangements. In fact,
the authors present a theoretical description of nematics, coupled to the relevant hydrodynamic equations to explain the
dynamics of active nematic shells.

It is known that the equilibrium shapes assumed by vesicles membranes (without interaction with external fields)
correspond with minimizers of different surface energies, such as the bending elastic energy, and this energy can be
expressed using the diffuse interface approach, introducing a phase field unknown to localize the interface [12–15]. There
are already several works in the literature to study analytically and numerically the dynamics of vesicle membranes using
the phase field approach with and without coupling with external fields (check [16–20] and the references therein). To
point out some interesting ideas, we refer the reader to [21], where the authors explore a wide variety of patterns of
closed surfaces that minimize the elastic bending energy with fixed surface area and volume by constructing phase-field
functionals of bending energy with penalty terms for the constraints, although no energy stability for the schemes is
provided. Another interesting work is [22], where the authors present an unconditionally energy stable numerical scheme
for a vesicle membrane model that satisfies exactly the conservation of volume constraint and penalizes the surface area
constraint. There are also several works studying the coupling of vesicles with external fields. In [23] a phase field method
is developed to investigate the morphological evolution of a vesicle in an electric field, taking into account coupled
mechanical and electric effects such as bending, osmotic pressure, surface tension, flexoelectricity, and dielectricity of
the membrane, studying in detail the morphological evolution of an axisymmetric vesicle under an electric field. Another
approach is considered in [24], where the authors investigate using a lattice-Boltzmann algorithm the behavior of 2D
deformable vesicles immersed in a nematic liquid crystal assuming homeotropic anchoring and they present the resulting
equilibrium shapes for a range of surface elasticities, and investigate the interactions between pairs of vesicles.

The motivation of this work comes from studies like [3], where it has been shown that vesicles with nematic internal
order are realistic situations. To represent this situation we consider an extension of the vesicle membrane model studied
in [22] (that comes from the interesting work presented in [12]). The difference with the previous approach is that we
are interested in studying the deformation of membrane-bound vesicles considering that inside the membrane there is
component with a preferred orientation of its molecules, as studied in [6]. In fact, we are going to consider that the
component inside the membrane is a nematic liquid crystal whose orientation inside the membrane and its interaction
with the membrane (anchoring effects) will determine the dynamics and equilibrium configurations of the system.
Additionally, the coupling between the phase field part and the liquid crystal part is derived following similar arguments
to the ones presented in [25], where the authors presented and studied a model for complex fluids composed by the
mixture between isotropic (Newtonian fluid) and nematic (liquid crystal) flows taking into account anchoring effects of
the liquid crystal molecules on the interface between both fluids. In fact, in recent years there have been many related and
relevant works studying the interactions between isotropic and nematic flows, see [26–28] and the references therein.

The paper is organized as follows: In Section 2 we present the model that we are considering and the main ideas to
derive it. Section 3 is devoted to design new numerical splitting schemes and show its unconditionally energy stability.
In Section 4 we present several numerical experiments in order to show the validity of our approach and to show the
dynamics of the system. Finally, we state the conclusions of our work in Section 5.

2. The model

We denote by φ the phase field variable which is used to localize the interior (φ = 1) and the exterior (φ = −1) of
the membrane. The dynamics of the membrane is derived through the energetic variational approach with respect to the
total energy (Etot (φ, d)) of the system, that relates the bending, the nematic and the anchoring energies.

The bending energy is associated to the phase field function used to localize the membrane, with ε > 0 being a
parameter related with the interfacial width of the membrane. In particular, the bending energy is defined as

Eben(φ) :=
ε

2

∫
Ω

(
∆φ −

1
ε2 G(φ)

)2

dx =
ε

2

∫
Ω

ω2dx , (2.1)

where

ω := −∆φ +
1
ε2 G(φ) , G(φ) := F ′(φ) − εk(x)H ′(φ) (2.2)
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with

F (φ) :=
1
4
(φ2

− 1)2 , H(φ) :=
1
3
φ3

− φ,

and k(x) is a given function representing the spontaneous curvature. The volume and surface area of the vesicle are defined
as

A(φ) :=

∫
Ω

φ dx and B(φ) :=

∫
Ω

(
ε

2
|∇φ|

2
+

1
ε
F (φ)

)
dx,

respectively. We want to develop a model such that the volume (A(φ)) and surface area (B(φ)) of the vesicles remain
constant in time, that is, we need to enforce somehow these constraints in our model. We are going to follow the approach
considered in [22], imposing volume conservation exactly by considering a H−1-gradient flow (Cahn–Hilliard-type model)
while the conservation of the surface area will be approximated via introducing a penalization term in the energy. In fact,
the total energy of the system that we are going to consider is:

Etot (φ, d) = Ebp(φ) + λnemEnem(d, φ) + λanch Eanch(d, φ), (2.3)

where Ebp(φ) denotes the penalized bending energy, Enem(d, φ) denotes the elastic energy due to the nematic liquid crystal
(that also contains a penalization part related with the unitary constraint of the director vector) and Eanch(d, φ) denotes
the anchoring energy that represents the influence of the interfacial effects on the orientation of the nematic liquid crystal
molecules in the membrane. Moreover, parameters λnem > 0 and λanch > 0 are introduced to balance the effect of each
energy in the system. In particular, the energy terms reads:

Ebp(φ) := Eben(φ) +
1
2η

(
B(φ) − β

)2
, (2.4)

with η > 0 being the penalization parameter and β > 0 the desired surface area of the system. Moreover,

Enem(d, φ) =

∫
Ω

I(φ)
(
1
2
|∇d|

2
+ P(d)

)
dx,

and finally, depending on the anchoring effect considered:

Eanch(d, φ) =
1
2

∫
Ω

(
δ1|d|

2
|∇φ|

2
+ δ2 |d · ∇φ|

2) dx,
with

(δ1, δ2) =

{ (0, 0) no anchoring ,

(0, 1) parallel anch. ,
(1, −1) homeotropic anch. .

(2.5)

The functional P(d) is considered as the following double-well potential whose minimums (and consequently their
equilibrium states) are located at ±1:

P(d) =
1

4η2
d
(|d|

2
− 1)2, (2.6)

with ηd > 0 and we represent its derivative as p(d) := P ′(d).
We have introduced the volume fraction of the liquid crystal (I(φ) ∈ [0, 1]) as in [25] with its derivative represented

by i(φ) := I ′(φ). In fact, we consider the following interpolation function:

I(φ) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
16

(φ + 1)3 (3φ2
− 9φ + 8) if φ ∈ (−1, 1) ,

1 if φ ≥ 1 ,

0 if φ ≤ −1 ,

(2.7)

and its derivative is defined as

i(φ) := I ′(φ) =

⎧⎪⎨⎪⎩
15
16

(φ + 1)2 (φ − 1)2 if φ ∈ (−1, 1) ,

0 in other case .
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Now, we are going to derive the coupled system. This can be done combining ideas from the Least Action Principle
(LAP) and the Maximum Dissipation Principle (MDP) [29,30], arriving at the following PDE system:⎧⎪⎪⎨⎪⎪⎩

dt + γnem

(
δEtot
δd

)
= 0 ,

φt − ∇ ·

(
γben∇

δEtot
δφ

)
= 0 ,

(2.8)

with γnem, γben > 0. The expressions for each variational derivative in (2.8) will be introduced as two new variables:

z :=
δEtot
δd

= λnem
δEnem
δd

+ λanch
δEanch
δd

= λnem

(
−∇ · (I(φ)∇d) + I(φ) p(d)

)
+ λanch

δEanch
δd

, (2.9)

and

µ :=
δEtot
δφ

=
δEbp
δφ

+ λnem
δEnem
δφ

+ λanch
δEanch
δφ

= −ε ∆ω +
1
ε
G′(φ)ω +

1
η
(B(φ) − β)

(
−ε∆φ +

1
ε
F ′(φ)

)
+ λnemI ′(φ)

(
1
2
|∇d|

2
+ P(d)

)
+ λanch

δEanch
δφ

,

where the anchoring terms will depend on the case considered ((δ1, δ2) as in (2.5)):
δEanch
δd

= δ1|∇φ|
2d + δ2(d · ∇φ)∇φ , (2.10)

and
δEanch
δφ

= ∇ ·
(
δ1|d|

2
∇φ + δ2(d · ∇φ) d

)
. (2.11)

By using the variational derivative variables z and µ, system (2.8) can be reformulated as:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dt + γnemz = 0 ,

λnem[−∇ · (I(φ)∇d) + I(φ) p(d)] + λanch
δEanch
δd

− z = 0 ,

φt − ∇ · (γben∇µ) = 0 ,

−ε ∆ω +
1
ε
G′(φ)ω +

1
η
(B(φ) − β)

(
−ε∆φ +

1
ε
F ′(φ)

)
+λnemI ′(φ)

(
1
2
|∇d|

2
+ P(d)

)
+ λanch

δEanch
δφ

− µ = 0 ,

εω + ε∆φ −
1
ε
G(φ) = 0 .

(2.12)

where (δEanch/δd) and (δEanch/δφ) were previously defined in (2.10) and (2.11), respectively. The PDE system (2.12) is
supplemented with the following initial and boundary conditions:

d|t=0= d0, φ|t=0= φ0 in Ω,(
I(φ)∇d

)
· n
⏐⏐
∂Ω

= 0, ∇µ · n|∂Ω = 0 in (0, T ),
φ|∂Ω = −1 , ∇φ · n|∂Ω = 0 , in (0, T ),

(2.13)

where n denotes the outwards normal vector to the boundary ∂Ω .

Lemma 2.1. System (2.12) complemented with the initial and boundary conditions proposed in (2.13) satisfies the following
dissipative energy law,

d
dt

Etot (φ(t), d(t)) + γben ∥∇µ(t)∥2
L2 + γnem ∥z(t)∥2

L2 = 0 . (2.14)

Proof. Testing (2.12)1 by z , (2.12)2 by dt , (2.12)3 by µ, (2.12)4 by φt , ((2.12)4)t by ω, and adding these relations we easily
derive the energy law (2.14). ■

3. Numerical scheme

The aim of this section is to design unconditionally energy-stable schemes for approximating the system (2.12).
Hereafter

(
·, ·
)
denotes the L2(Ω)-scalar product.
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3.1. A generic FE space-discrete scheme

Let

Dh × Zh × Φh × Mh × Wh ⊂ H1(Ω) × L2(Ω) × H1(Ω) × H1(Ω) × H1(Ω)

be conformed finite element spaces associated to a regular and quasi-uniform triangulation Th of the domain Ω whose
polyhedric boundary is denoted by ∂Ω . For the sake of simplicity we skip the use of the subscript h to denote functions
that are discrete in space. Then the problem reads: Find

(d(t), z(t), φ(t), µ(t), ω(t)) ∈ Dh × Zh × Φh × Mh × Wh

such that

d
⏐⏐
t=0 = PDhd0 , φ

⏐⏐
t=0 = PΦhφ0 , in Ω , (3.15)

(with PX denoting the L2-projection into the space X) and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
dt , z̄

)
+ γnem(z, z̄) = 0 ,

λnem
(
I(φ)∇d, ∇d̄

)
+ λnem

(
I(φ) p(d), d̄

)
+ λanch

(
δEanch
δd

, d̄
)

− (z, d̄) = 0 ,(
φt , µ̄

)
+ γben (∇µ, ∇µ̄) = 0 ,

ε (∇ω, ∇φ̄) +
1
ε

(
G′(φ)ω, φ̄

)
+

1
η
(B(φ) − β)

(
ε(∇φ, ∇φ̄) +

1
ε
(F ′(φ), φ̄)

)
+λnem

(
i(φ)

(
1
2
|∇d|

2
+ P(d)

)
, φ̄

)
+ λanch

(
δEanch
δφ

, φ̄

)
− (µ, φ̄) = 0 ,

ε(ω, ω̄) − ε(∇φ, ∇ω̄) −
1
ε

(
G(φ), ω̄

)
= 0 ,

(3.16)

for any

(d̄, z̄, φ̄, µ̄, ω̄) ∈ Dh × Zh × Φh × Mh × Wh.

Lemma 3.1. Any solution (d(t), z(t), φ(t), µ(t), ω(t)) of the space-discrete scheme (3.16) satisfies the following space-discrete
version of the energy law (2.14):

d
dt

Ẽtot (φ(t), d(t), ω(t)) + γben ∥∇µ(t)∥2
L2 + γnem ∥z(t)∥2

L2 = 0 , (3.17)

where the following modified energy appears

Ẽtot (φ(t), d(t), ω(t)) = Ẽbp(φ(t), ω(t)) + λnemEnem(d(t), φ(t)) + λanch Eanch(d(t), φ(t)) ,

with

Ẽbp(φ(t), ω(t)) =

∫
Ω

ω2(t)dx +
1
2η

(
B(φ(t)) − β

)2
.

Proof. Taking as test functions (d̄, z̄, φ̄, µ̄, ω̄) = (d(t), z(t), φ(t), µ(t), ω(t)) and making the time derivative of ((3.16))5,
we arrive at (3.17). ■

3.2. Fully-discrete scheme for the vesicle problem

For simplicity, we assume a uniform partition of the time interval [0, T ]: tn = n∆t , with ∆t = T/N denoting the time
step, δt denoting the discrete time derivative and an+

1
2 denoting the midpoint approximation like

δtan+1
:=

an+1
− an

∆t
and an+

1
2 :=

an+1
+ an

2
. (3.18)

We consider a first order semi-implicit finite difference time scheme to approximate (3.16), where we split the
computation of the system into two sub-steps:
Initialization:

Let φ0, d0 given in (3.15) and ω0
∈ Wh such that

ε
(
ω0, ω̄

)
− ε

(
∇φ0, ∇ω̄

)
−

1
ε

(
G(φ0), ω̄

)
= 0 ∀ ω̄ ∈ Wh. (3.19)

Step n + 1:
Given (φn, dn, wn) ∈ Φh × Dh × Wh.
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Substep 1: Find (dn+1, zn+1) ∈ Dh × Zh such that, for each (d̄, z̄) ∈ Dh × Zh⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
dn+1

− dn

∆t
, z̄
)

+ γnem(zn+1, z̄) = 0 ,

λnem

(
I(φn)∇dn+1, ∇d̄

)
+λnem

(
I(φn)p∆t (dn+1, dn), d̄

)
+ λanch

(
Λd(dn+1, φn), d̄

)
− (zn+1, d̄) = 0 ,

(3.20)

where Λd(dn+1, φn) and p∆t (dn+1, dn) denote first order approximations of
δEanch
δd

(d(tn+1), φ(tn+1)) and
p(d(tn+1)), respectively. In fact,

Λd(d, φ) :=
δEanch
δd

(d, φ) = δ1|∇φ|
2 d + δ2 (d · ∇φ)∇φ,

with (δ1, δ2) chosen as in (2.5).
Substep 2: Find (φn+1, µn+1, ωn+1) ∈ Φh × Mh × Wh such that for any (φ̄, µ̄, ω̄) ∈ Φh × Mh × Wh:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
φn+1

− φn

∆t
, µ̄

)
+ γben(∇µn+1, ∇µ̄) = 0 ,

ε(∇ωn+1, ∇φ̄) +
1
ε

(
G∆t
sec(φ

n+1, φn)ωn+1, φ̄
)
+ λanch

(
Λφ(dn+1, φn+1), ∇φ̄

)
+

1
η

(
B(φn+1) + B(φn)

2
− β

)(
ε(∇φn+ 1

2 , ∇φ̄) +
1
ε
(F∆t

sec (φ
n+1, φn), φ̄)

)
+λnem

(
i∆t (φn+1, φn)

[
1
2
|∇dn+1

|
2
+ P(dn+1)

]
, φ̄

)
− (µn+1, φ̄) = 0 ,

ε
(
ωn+1, ω̄

)
− ε

(
∇φn+1, ∇ω̄

)
−

1
ε

(
G(φn+1), ω̄

)
= 0 ,

(3.21)

where i∆t (φn+1, φn) and −∇ · Λφ(dn+1, φn+1) represent first order approximations of i(φ(tn+1)) and
δEanch
δφ

(d(tn+1), φ(tn+1)), respectively. In fact,

Λφ(d, φ) := δ1 |d|
2
∇φ + δ2 (d · ∇φ) d , (3.22)

with the values of (δ1, δ2) defined in (2.5). Moreover, F∆t
sec (φ

n+1, φn) and G∆t
sec(φ

n+1, φn) denote secant type ap-
proximations (see [31–33] and the references therein for different ways of handling these type of potentials):

F∆t
sec (φ

n+1, φn) :=
F (φn+1) − F (φn)

φn+1 − φn =
1
4
(φn+1

+ φn)((φn+1)2 + (φn)2 − 2) (3.23)

and

G∆t
sec(φ

n+1, φn) :=
G(φn+1) − G(φn)

φn+1 − φn = (φn+1
− φn)2 + 3

(
φn+1φn

− 1 − εk(x)(φn+1
+ φn)

)
. (3.24)

Lemma 3.2. Scheme (3.21) satisfies the conservation of mass, that is,∫
Ω

φn+1
=

∫
Ω

φn
= . . . =

∫
Ω

φ0 . (3.25)

Proof. Testing (3.21) by µ̄ = 1. ■

3.3. Energy stability

Lemma 3.3. Scheme (3.20)–(3.21) satisfies the following discrete dissipative energy law (which is a discrete version of the
energy law (2.14)),

δt Ẽtot
(
ωn+1, φn+1, dn+1

)
+ γben∥∇µn+1

∥
2
L2

+ γnem∥zn+1
∥
2
L2

+ NDn+1
ω + NDn+1

elast + NDn+1
penal + NDn+1

interp + NDn+1
anch = 0 ,

(3.26)
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where the numerical dissipation terms are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NDn+1
ω =

ε ∆t
2

∥δtω
n+1

∥
2
L2

NDn+1
elast = λnem

∆t
2

∫
Ω

I(φn)
⏐⏐δt∇dn+1

⏐⏐2 dx,

NDn+1
penal = λnem

∫
Ω

I(φn)
(
p∆t (dn+1, dn) · δtdn+1

− δtP(dn+1)
)
dx,

NDn+1
interp = λnem

∫
Ω

(
|∇dn+1

|
2

2
+ G(dn+1)

)(
i∆t (φn+1, φn) δtφn+1

− δt I(φn+1)
)
dx,

(3.27)

and

NDn+1
anch = λanch

∆t
2

∫
Ω

[
δ1

(
|δtdn+1

|
2
|∇φn

|
2
+ |dn+1

|
2
|δt∇φn+1

|
2
)

+ δ2

(
|δtdn+1

· ∇φn
|
2
+ |dn+1

· ∇δtφ
n+1

|
2
)]

dx,

with the values of (δ1, δ2) depending on the type of anchoring defined in (2.5).

Proof.
For the sake of simplicity we will only show the case of homeotropic anchoring (the parallel anchoring case can be

studied using the same arguments while the no anchoring case is just a trivial generalization).
Taking (z̄, d̄) = (zn+1, δtdn+1) in (3.20), we obtain:

γnem∥zn+1
∥
2
L2

+ NDn+1
elast + NDn+1

penal

+λnem

∫
Ω

I(φn) δt

(
|∇dn+1

|
2

2
+ P(dn+1)

)
dx

+
λanch

2∆t
δ1

∫
Ω

[
|∇φn

|
2
|dn+1

|
2
− |∇φn

|
2
|dn

|
2
]
dx

+
λanch

2∆t
δ2

∫
Ω

[
|dn+1

· ∇φn
|
2
− |dn

· ∇φn
|
2
]
dx

+
λanch

2
∆t
∫

Ω

[
δ1|δtdn+1

|
2
|∇φn

|
2
+ δ2|δtdn+1

· ∇φn
|
2
]
dx = 0.

(3.28)

On the other hand, taking (µ̄, φ̄) = (µn+1, δtφ
n+1) in (3.21)1,2, adding the resulting relations and taking into account the

definition of F∆t
sec (φ

n+1, φn) and G∆t
sec(φ

n+1, φn) given in (3.23) and (3.24), that is,

1
ε

(
G∆t
sec(φ

n+1, φn)ωn+1, δtφ
n+1
)

=
1

ε ∆t

(
G(φn+1) − G(φn), ωn+1) ,(

ε(∇φn+ 1
2 , ∇δtφ

n+1) +
1
ε
(F∆t

sec (φ
n+1, φn), δtφn+1)

)
= B(φn+1) − B(φn),

we obtain

γben∥∇µn+1
∥
2
L2 + ε(∇ωn+1, ∇δtφ

n+1)

+
1

ε ∆t

(
G(φn+1) − G(φn), ωn+1)

+
1
2η

δt

(
B(φn+1) − β

)2
+ NDn+1

interp

+λnem

∫
Ω

(
|∇dn+1

|
2

2
+ G(dn+1)

)
δt I(φn+1)dx

+
λanch

2∆t
δ1

∫
Ω

[
|∇φn+1

|
2
|dn+1

|
2
− |∇φn

|
2
|dn+1

|
2
]
dx

+
λanch

2∆t
δ2

∫
Ω

[
|dn+1

· ∇φn+1
|
2
− |dn+1

· ∇φn
|
2
]
dx

+
λanch

2
∆t
∫

Ω

[
δ1|dn+1

|
2
|∇δtφ

n+1
|
2
+ δ2|dn+1

· ∇δtφ
n+1

|
2
]
dx = 0 .

Subtracting (3.21)3 and (3.21)3 for previous time step, and dividing by ∆t , we obtain

ε(δtωn+1, ω̄) − ε
(
∇δtφ

n+1, ∇ω̄
)
−

1
ε ∆t

(
G(φn+1) − G(φn), ω̄

)
= 0 . (3.29)

Then taking ω̄ = ωn+1 in (3.29), we obtain

ε

2
δt∥ω

n+1
∥
2
L2 + NDn+1

ω − ε
(
∇δtφ

n+1, ∇ωn+1)
−

1
ε ∆t

(
G(φn+1) − G(φn), ωn+1)

= 0 . (3.30)
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Adding relations (3.29) and (3.30), the terms 1
ε ∆t

(
G(φn+1) − G(φn), ωn+1

)
and ε

(
∇δtφ

n+1, ∇ωn+1
)
cancel, hence we

derive:
δtEbp(ωn+1, φn+1) + γben∥∇µn+1

∥
2
L2 + NDn+1

ω + NDn+1
interp

+λnem

∫
Ω

(
|∇dn+1

|
2

2
+ G(dn+1)

)
δt I(φn+1)dx

+
λanch

2∆t
δ1

∫
Ω

[
|∇φn+1

|
2
|dn+1

|
2
− |∇φn

|
2
|dn+1

|
2
]
dx

+
λanch

2∆t
δ2

∫
Ω

[
|dn+1

· ∇φn+1
|
2
− |dn+1

· ∇φn
|
2
]
dx

+
λanch

2
∆t
∫

Ω

[
δ1|dn+1

|
2
|∇δtφ

n+1
|
2
+ δ2|dn+1

· ∇δtφ
n+1

|
2
]
dx = 0 .

(3.31)

Adding relations (3.28) and (3.31), we arrive at the desired relation presented in (3.26). ■

Remark 3.4. From (3.26) it is clear that scheme (3.20)–(3.21) is unconditional energy-stable if we consider approximations
of p∆t (dn+1, dn) and i∆t (φn+1, φn) such that

NDn+1
penal ≥ 0 and NDn+1

interp ≥ 0 . (3.32)

There are several ways of achieving this goal, but we will consider the approximations introduced in [25] (where it is
shown that these approximations satisfy (3.32))

p∆t (dn+1, dn) = p̃(dn) +
1
2

∥̃p′(dn)∥∞ (dn+1
− dn) ,

i∆t (cn+1, cn) = i(cn) +
5
√
3

12
(cn+1

− cn) ,
(3.33)

with

p̃(d) =

⎧⎪⎪⎨⎪⎪⎩
2
η2
d

(|d| − 1)
d
|d|

if |d| ≥ 1 ,

1
η2
d
(|d|

2
− 1) d if |d| ≤ 1 .

(3.34)

Lemma 3.5. Scheme (3.20)–(3.21) considering the approximations of p∆t (dn+1, dn) and i∆t (φn+1, φn) presented in (3.33) is
unconditionally energy-stable.

4. Simulations

In this section we present numerical results to show the effectiveness of the numerical schemes derived in the paper. In
particular, we have considered the scheme presented in (3.20)–(3.21) considering the approximations of p∆t (dn+1, dn) and
i∆t (φn+1, φn) presented in (3.33) and for the sake of simplicity we only consider the case with no spontaneous curvature
(k(x) = 0). It is important to remark that Substep 1 is a linear scheme while Substep 2 is a nonlinear one.

4.1. Iterative scheme

In order to approximate (3.21), we use a variant of the Newton’s method considered in [22] to approximate the
solution:

Initialization (l = 0): Set (φ0,n, µ0,n, ω0,n) = (φn, µn, ωn) ∈ Φh × Mh × Wh
Algorithm: Given (φl,n, µl,n, ωl,n) ∈ Φh × Mh × Wh, compute (φl+1,n, µl+1,n, ωl+1,n) ∈ Φh × Mh × Wh such that for all

(φ̄, µ̄, ω̄) ∈ Φh × Mh × Wh:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
φl+1,n

− φn

∆t
, µ̄

)
+ γben(∇µl+1,n, ∇µ̄) = 0 ,

ε(∇ωl+1,n, ∇φ̄) +
1
ε

(
G∆t
sec(φ

l,n, φn)ωl+1,n, φ̄
)
+ λanch

(
Λφ(dn+1, φl+1,n), ∇φ̄

)
+

1
η

(
B(φl,n) + B(φn)

2
− β

)(
ε

2
(∇(φl+1,n

+ φn), ∇φ̄) +
1
ε
(̂F∆t

sec (φ
l+1,n, φl,n, φn), φ̄)

)
+λnem

(
i∆t (φl+1,n, φn)

[
1
2
|∇dn+1

|
2
+ P(dn+1)

]
, φ̄

)
− (µl+1,n, φ̄) = 0 ,

ε
(
ωl+1,n, ω̄

)
− ε

(
∇φl+1,n, ∇ω̄

)
−

1
ε

(̂
G(φl+1,n, φl,n), ω̄

)
= 0 ,

(4.35)
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Table 1
Parameters.
Ω [0, T ] h dt λnem λanch γnem γben ε ηd η tol

[0, 1]2 [0, 1.0e−3
] 1/120 1.0e−7 10.1 10.1 0.5 0.01 0.01 0.075 1.0e−3 1.0e−5

Table 2
Values considered for β and d0 .

Case 1 Case 2 Case 3 Case 4

β 0.75 × B(φ0) 0.75 × B(φ0) 1.25 × B(φ0) 1.25 × B(φ0)
d0 (0, 1) (1, 0) (0, 1) (1, 0)

where

F̂∆t
sec (φ

l+1,n, φl,n, φn) = F∆t
sec (φ

l,n, φn) + (F∆t
sec )

′(·, φn)
⏐⏐⏐
φl,n

(φl+1,n
− φl,n)

and

Ĝ(φl+1,n, φl,n) = G(φl,n) + G′(φl,n)(φl+1,n
− φl,n).

To iterate until
∥(φl+1,n, µl+1,n, ωl+1,n) − (φl,n, µl,n, ωl,n)∥L2×L2×L2

∥(φl+1,n, µl+1,n, ωl+1,n)∥L2×L2×L2
≤ tol,

with tol > 0 being a certain given tolerance.
All the simulations have been carried out in 2D using FreeFem++ software [34], with an unstructured mesh and all the

discrete spaces have been discretized as P1. The discrete and physical parameters are presented in Table 1.
We focus on two different settings in the simulations, the first one consists on imposing as the surface area a value

lower than the initial surface area (β < B(φ0)) while in the second one we impose that the desired surface area is higher
than the initial surface area (β > B(φ0)). The idea in both situations is to consider the same initial condition for φ (a
biconcave vesicle) with different initial orientations of the nematic liquid crystal (d0) and see how these initial conditions
play a role in the dynamics of the whole system depending on the anchoring effects considered. In fact, we consider four
different cases that are presented in Table 2.

4.2. Homeotropic anchoring effects (δ1, δ2) = (1, −1)

We can observe on Figs. 1 and 6 the dynamics for Cases 1-2 and Cases 3-4, respectively. In Fig. 1 the vesicles are
evolving in such a way that the system is reducing the amount of interface because the imposed (desired) value of the
surface area is lower than the initial one, although it seems that the dynamics does not change significantly when different
values for d0 are considered. It is clear from the graphs presented in Figs. 2–3 that the total energy is decreasing in both
cases and in Figs. 4–5 we can observe that the value of the surface area is decreasing and that

∫
Ω

φ always remain constant
and therefore the volume of the vesicles (volume= (1/2)

∫
Ω
(φ + 1)) also remain constant as expected.

On the other hand, when we impose that the surface area of the vesicle has to increase (Cases 3 and 4), we can observe
in Fig. 6 that the dynamics of the vesicle are strongly related with the initial configuration of the director vector d0. In
fact, in one case the system achieve a pronounced biconcave shape (Case 3) and in the other the system evolve to an
elongated shape (Case 4). In both cases the total energy of the system decreases as expected, as it can be observed in
Figs. 7–8. Moreover, it can also be observed in Figs. 9–10 that the volume of the vesicles remain constant in both cases
as well as the fact that the value of the surface area is increasing as expected in both cases.

4.3. Parallel anchoring effects (δ1, δ2) = (0, 1)

We can observe on Figs. 11 and 16 the dynamics using parallel anchoring for Cases 1-2 and Cases 3-4, respectively.
We can observe in Fig. 11 that the vesicles are evolving in such a way that the system is reducing the amount of interface
because the imposed (desired) value of the surface area is lower than the initial one, although it seems that the dynamics
does not change significantly when different values for d0 are considered (as it happened in the homeotropic case). It is
clear from the graphs presented in Figs. 12–13 that the total energy is decreasing in both cases and in Figs. 14–15 we can
observe that

∫
Ω

φ remains constant in time (therefore also the volume remains constant) and the value of the surface
area is decreasing as expected.

On the other hand, we have imposed that the surface area of the vesicle has to increase (Cases 3 and 4) in Fig. 16 and
we can observe that the dynamics of the vesicle are strongly related with the initial configuration of the director vector
d0. In fact, in one case the system achieve an elongated shape (Case 3) and in the other the system evolve to a pronounced
biconcave shape (Case 4). In both cases the total energy of the system decreases as expected, as it can be observed in
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Fig. 1. Dynamics for Case 1 (Top Row) and Case 2 (Bottom Row) at times t = 0, 0.00025, 0.0005, 0.00075, 0.001 (from left to right).

Fig. 2. Evolution of the Total Energy (left) and the Bending, Elastic and Anchoring Energies (right) for Case 1.

Fig. 3. Evolution of the Total Energy (left) and the Bending, Elastic and Anchoring Energies (right) for Case 2.

Figs. 17–18. Moreover, it can also be observed in Figs. 19–20 that
∫

Ω
φ remains constant in both cases (and therefore the

volume remain constant) as well as the fact that the value of the surface area is increasing as expected in both cases.
It is interesting to remark that as one can expect, the dynamics for the parallel case with d0

= (0, 1) are equivalent to
the homeotropic case with d0

= (1, 0) and the same happens when we consider the parallel case with d0
= (1, 0) and

the homeotropic case with d0
= (0, 1).
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Fig. 4. Evolution of
∫

Ω
φ (left) and Surface Area (right) of the vesicle for Case 1.

Fig. 5. Evolution of
∫

Ω
φ (left) and Surface Area (right) of the vesicle for Case 2.

Fig. 6. Dynamics for Case 3 (Top Row) and Case 4 (Bottom Row) at times t = 0, 0.00025, 0.0005, 0.00075, 0.001 (from left to right).
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Fig. 7. Evolution of the Total Energy (left) and the Bending, Elastic and Anchoring Energies (right) for Case 3.

Fig. 8. Evolution of the Total Energy (left) and the Bending, Elastic and Anchoring Energies (right) for Case 4.

Fig. 9. Evolution of
∫

Ω
φ (left) and Surface Area (right) of the vesicle for Case 3.

5. Conclusions

In this paper we have studied the case of vesicle membranes with internal nematic order, taking into account
bending, nematic and anchoring effects. Firstly, we have derived a thermodynamically consistent model that includes the
contributions of all the effects. Then, we have derived a splitting numerical scheme that allows us to split the computation
of the unknowns in two different sub-steps (reducing the computational cost when compared with a coupled scheme),
computing first the nematic part (d, z) (director vector-equilibrium) and then computing (φ, µ, ω) (phase field part).
Moreover, we have proved that using some particular choices for the approximations of p∆t (dn+1, dn) and i∆t (φn+1, φn)
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Fig. 10. Evolution of
∫

Ω
φ (left) and Surface Area (right) of the vesicle for Case 4.

Fig. 11. Dynamics for Case 1 (Top Row) and Case 2 (Bottom Row) at times t = 0, 0.00025, 0.0005, 0.00075, 0.001 (from left to right).

Fig. 12. Evolution of the Total Energy (left) and the Bending, Elastic and Anchoring Energies (right) for Case 1.
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Fig. 13. Evolution of the Total Energy (left) and the Bending, Elastic and Anchoring Energies (right) for Case 2.

Fig. 14. Evolution of
∫

Ω
φ (left) and Surface Area (right) of the vesicle for Case 1.

Fig. 15. Evolution of
∫

Ω
φ (left) and Surface Area (right) of the vesicle for Case 2.

(and we detail one possible choice in (3.33)), the proposed scheme is unconditionally energy-stable, because it satisfy a

discrete energy law independently of the size of the spatial and time meshes considered.
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Fig. 16. Dynamics for Case 3 (Top Row) and Case 4 (Bottom Row) at times t = 0, 0.00025, 0.0005, 0.00075, 0.001 (from left to right).

Fig. 17. Evolution of the Total Energy (left) and the Bending, Elastic and Anchoring Energies (right) for Case 3.

Fig. 18. Evolution of the Total Energy (left) and the Bending, Elastic and Anchoring Energies (right) for Case 4.
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Fig. 19. Evolution of
∫

Ω
φ (left) and Surface Area (right) of the vesicle for Case 3.

Fig. 20. Evolution of
∫

Ω
φ (left) and Surface Area (right) of the vesicle for Case 4.

Several numerical computations using this new numerical scheme to approximate the system have been reported,
showing the good performance of the proposed method considering different initial conditions and studying the different
dynamics that homeotropic and parallel anchoring effects produce. In fact, the resulting dynamics are different from
the ones without considering internal nematic order, that were presented in [22]. In all the cases the energy-stability
is achieved and we illustrate how the different choice of the initial configuration of the nematic director vector (d0)
characterize the behavior of the system.

Finally, the obtained results suggest that the presented numerical scheme is the right choice to do a systematically
study of all the possible configurations that can be obtained in 2D, due to its efficiency and accuracy. Moreover, the
numerical scheme can be trivially extended to study the dynamics of vesicles with internal nematic order in 3D.

Declaration of competing interest

No author associated with this paper has disclosed any potential or pertinent conflicts which may be perceived to have
impending conflict with this work. For full disclosure statements refer to https://doi.org/10.1016/j.rinam.2020.100102.

Acknowledgment

The research of Francisco Guillén-González and María Ángeles Rodríguez-Bellido has been supported by Proyecto
PGC2018-098308-B-I00, financiado por FEDER/Ministerio de Ciencia e Innovación - Agencia Estatal de Investigación, Spain.

References

[1] Campelo F, Hernández-Machado A. Shape instabilities in vesicles: A phase-field model. Eur Phys J Spec Top 2007;143:101–8.
[2] Campelo F, Cruz A, Pérez-Gil J, Vázquez L, Hernández-Machado A. Phase-field model for the morphology of monolayer lipid domains. Eur Phys

J E 2012;35:49.

https://doi.org/10.1016/j.rinam.2020.100102
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb1
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb2
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb2
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb2


F. Guillén-González, M.Á. Rodríguez-Bellido and G. Tierra / Results in Applied Mathematics 8 (2020) 100102 17

[3] Hocine S, Brulet A, Lin J, Yang J, Di Cicco A, Bouteillerce L, et al. Structural changes in liquid crystal polymer vesicles induced by temperature
variation and magnetic fields. Soft Matter 2011;7:2613–23.

[4] Barthes-Biesel D. Motion and deformation of elastic capsules and vesicles in flow. Annu Rev Fluid Mech 2016;48:25–52.
[5] Bouligand Y. Liquid crystals and biological morphogenesis: Ancient and new questions. C R Chim 2008;11:281–96.
[6] Rofouie P, Pasini D, Rey AD. Morphology of elastic nematic liquid crystal membranes. Soft Matter 2017;13:5366.
[7] Brake JM, Daschner MK, Luk YY, Abbott NL. Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals. Science

2003;302(5653):2094–7.
[8] Nguyen TS, Geng J, Selinger RLB, Selinger JV. Nematic order on a deformable vesicle: theory and simulation. Soft Matter 2013;9:8314.
[9] Tan LT, Abbott NL. Dynamic anchoring transitions at aqueous-liquid crystal interfaces induced by specific and non-specific binding of vesicles

to proteins. J Colloid Interface Sci 2015;449:452–61.
[10] Zhang R, Zhou Y, Martinez-Gonzalez JA, Hernandez-Ortiz JP, Abbott NL, de Pablo JJ. Controlled deformation of vesicles by flexible structured

media. Sci Adv 2016;2(8). e1600978.
[11] Zhang R, Zhou Y, Rahimi M, de Pablo JJ. Dynamic structure of active nematic shells. Nature Commun 2016;7:13483.
[12] Du Q, Liu C, Ryham R, Wang X. Energetic variational approaches in modeling vesicle and fluid interactions. Physica D 2009;238:923–30.
[13] Du Q, Liu C, Wang X. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J Comput Phys

2004;198:450–68.
[14] Du Q, Liu C, Wang X. Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J Comput Phys

2006;212:757–77.
[15] Du Q, Wang X. Convergence of numerical approximations to a phase field bending elasticity model of membrane deformations. Int J Numer

Anal Model 2007;4:441–59.
[16] Climent-Ezquerra B, Guillén-González F. Convergence to equilibrium of global weak solutions for a Cahn-Hilliard-Navier–Stokes vesicle model.

Z Angew Math Phys 2019;70:125.
[17] Du Q, Li M, Liu C. Analysis of a phase field navier-stokes vesicle-fluid interaction model. Discrete Contin Dyn Syst 2007;8:539–56.
[18] Chen R, Ji G, Yang X, Zhang H. Decoupled energy stable schemes for phase-field vesicle membrane model. J Comput Phys 2015;302:509–23.
[19] Du Q, Zhang J. Adaptive finite element method for a phase field bending elasticity model of vesicle membrane deformations. SIAM J Sci Comput

2008;30:1634–57.
[20] Du Q, Zhu L. Analysis of a mixed finite element method for a phase field bending elasticity model of vesicle membrane deformation. J Comput

Math 2006;24:265–80.
[21] Banham T, Li B, Zhao Y. Pattern formation by phase-field relaxation of bending energy with fixed surface area and volume. Phys Rev E

2014;90(3). 033308.
[22] Guillén-González F, Tierra G. Unconditionally energy stable numerical schemes for phase-field vesicle membrane model. J Comput Phys

2018;354:67–85.
[23] Gao LT, Feng XQ, Gao H. A phase field method for simulating morphological evolution of vesicles in electric fields. J Comput Phys

2009;228:4162–81.
[24] Mackay FE, Denniston C. Deformable vesicles interacting in a nematic liquid crystal. Soft Matter 2013;9:5285.
[25] Guillén-González F, Rodríguez-Bellido MA, Tierra G. Linear unconditional energy-stable splitting schemes for a phase-field model for

nematic-isotropic flows with anchoring effects. Internat J Numer Methods Engrg 2016;108:535–67.
[26] Yang X, Forest G, Liu C, Shen J. Shear cell rupture of nematic liquid crystal droplets in viscous fluids. J Non-Newton Fluid Mech 2011;166:487–99.
[27] Yang X, Forest G, Li H, Liu C, Shen J, Wang Q, et al. Modeling and simulations of drop pinch-off from liquid crystal filaments and the leaky

liquid crystal faucet immersed in viscous fluids. J Comput Phys 2013;236:1–14.
[28] Zhao J, Yang X, Shen J, Wang Q. A decoupled energy stable scheme for a hydrodynamic phase-field model of mixtures of nematic liquid crystals

and viscous fluids. J Comput Phys 2016;305:539–56.
[29] Yue P, Feng JJ, Liu C, Shen J. A diffuse-interface method for simulating two-phase flows of complex fluids. J Fluid Mech 2004;515:293–317.
[30] Feng JJ, Liu C, Shen J, Yue P. An energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: advantages

and challenges. In: Modeling of soft matter. New York: Springer; 2005, p. 1–26.
[31] Tierra G, Guillén-González F. Numerical methods for solving the Cahn-Hilliard equation and its applicability to related energy-based models.

Arch Comput Methods Eng 2015;22:269–89.
[32] Guillén-González F, Tierra G. On linear schemes for a Cahn Hilliard diffuse interface model. J Comput Phys 2013;234:140–71.
[33] Guillén-González F, Tierra G. Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models. Comput Math Appl

2014;68:821–46.
[34] Hecht F. New development in FreeFem++. J Numer Math 2012;20:251–65.

http://refhub.elsevier.com/S2590-0374(20)30013-3/sb3
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb3
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb3
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb4
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb5
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb6
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb7
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb7
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb7
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb8
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb9
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb9
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb9
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb10
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb10
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb10
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb11
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb12
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb13
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb13
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb13
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb14
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb14
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb14
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb15
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb15
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb15
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb16
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb16
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb16
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb17
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb18
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb19
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb19
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb19
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb20
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb20
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb20
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb21
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb21
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb21
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb22
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb22
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb22
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb23
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb23
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb23
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb24
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb25
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb25
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb25
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb26
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb27
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb27
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb27
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb28
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb28
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb28
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb29
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb30
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb30
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb30
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb31
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb31
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb31
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb32
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb33
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb33
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb33
http://refhub.elsevier.com/S2590-0374(20)30013-3/sb34

	Nematic order on a deformable vesicle with anchoring effects
	Introduction
	The model
	Numerical scheme
	A generic FE space-discrete scheme
	Fully-discrete scheme for the vesicle problem
	Energy stability

	Simulations
	Iterative scheme
	Homeotropic anchoring effects (1,2)=(1,-1)
	Parallel anchoring effects (1,2)=(0,1)

	Conclusions
	Declaration of competing interest
	Acknowledgment
	References


