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1. Introduction

Let £2 C R? be a bounded polygonal domain. We consider the following optimal control problem (cf. [1]):

L - .11 2 B 2
Find (7, i) = ?;%)Tﬂg[i 1y = Yalag) + 5 lulsq) (1.1)
where (y, u) € H(£2) x [?(£2) belongs to K, if and only if
/ Vy-dex—i—/ ywdx:f uwdx—i—/ gwds Yw e H(2), (1.2)
2 2 2 a2
y<v a.e.in £2. (1.3)
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Remark 1.1. Throughout this paper we follow the standard notation for differential operators, functions spaces and
norms that can be found for example in [2-4].

We assume that

(i) yq belongs to [*(£2) and B is a positive constant,
(ii) g = T% for some ¢, € H4(£2),

loc loc

3
(iii) v belongs to H3 (£2) N W2>(£2) such that B—‘ﬁ > gondf.

We can reformulate the optimal control problem in terms of y alone. To this end, we introduce the affine subspace V,
of H!(£2) defined by

Vg = [y € H'(£2) : there exists u € [?(£2) such that

/Vy-dex+fywdx=/ uwdx—i—f gwds VweH1(.Q)}.
2 2 2 a2

In the homogeneous case where g = 0, we will denote the linear subspace V of H!(£2) by V.

Remark 1.2. The constraint (1.2) in the definition of V, is the weak form of the following boundary value problem:
—Ay+y=uin 2 and 9y/on=g on ds2,

where Ay is understood in the sense of distributions, and g € H‘%(B.Q) is understood as the normal trace of Vy €
H(div, £2). Therefore an alternative definition of V; is given by

Ve ={y e H'(2): 2y e ’(2) and dy/dn = g on 312},
where .y = —Ay + y defines an isomorphism from V, onto L*(2).

Due to elliptic regularity [5-7], V; is an affine subspace of H'**(£2) for some o € (%, 1], where o = 1 if £2 is convex,
and

Izllg1+eco) < Co[lZzll20) + Iellnzey] Yz € Ve (14)

Note that V, is also an affine subspace of H,f,c(Q) by interior elliptic regularity.

It follows from (1.4) and the Sobolev inequality [3] that V, C C(£2) and we can reformulate the minimization problem
(1.1)—(1.3) as follows:

. = . 1 2 :3 2
Find 7 = ary{‘g“[g”y el + 512V | (15)
where
Ky ={veV;:v<yin} (1.6)

Our goal is to develop P; finite element methods (FEMs) for (1.5)-(1.6).

FEMs for elliptic distributed optimal control problems with pointwise state constraints have been studied by many
authors (cf. [8-27] and the references therein). In [26], a C° interior penalty method for the optimal control problem
(1.1)-(1.3) on convex domains with the homogeneous boundary condition (g = 0) was analyzed by the tools developed
in [23]. In [24], theoretical and numerical results for two P; FEMs for a state-constrained elliptic distributed optimal
control problem with Dirichlet boundary conditions were obtained for general polygonal/polyhedral domains, where the
analysis extended the framework in [23]. In this paper, we will extend the results in [24] to (1.5)-(1.6). We note the
convergence results in [24,25] and the current paper are the first ones for nonconvex and nonsmooth domains.

The remainder of the paper is organized as follows. In the next section, we recall some results regarding the continuous
problem (1.5)-(1.6), and we present two discrete problems in Section 3. Preliminary estimates for the convergence analysis
are gathered in Section 4, followed by the convergence analysis of the FEMs in Sections 5 and 6. We present numerical
results in Section 7 that corroborate the theoretical results and end with some concluding remarks in Section 8.

We will use C (with or without subscript) to denote a generic positive constant independent of the mesh size. To avoid
the proliferation of constants, we will also use the notation A < B to denote the inequality A < (constant)B, where the
hidden constant is independent of the mesh size. The notation A ~ B is equivalent to the statement that A < B and B < A.

2. The continuous problem

In this section we will collect information on the continuous problem (1.5)-(1.6). From here on we use (-, -) to denote
the inner product for L?(£2) (or [L*(£2)]?).
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Let Z =y — {;. We can rewrite (1.5)-(1.6) as

] 1 p
2 = argmin| 5 12 — 0a — )l 0y + 5 1202 + Gl (2.1)

zek

where
K={veV:v<y —{in 2} (2.2)
Since V is a Hilbert space under the inner product

v, 2) =(y,2) + (2y, 22),

it follows from the standard theory [28-30] that (2.1)-(2.2) (and hence (1.5)-(1.6)) has a unique solution characterized
by the variational inequality

G—Ya.y =3 +B(Ly, 2(y—y)) =0 VyeK,. (2.3)
Interior Regularity of y
By the interior regularity results for fourth order variational inequalities in [31-33], we have
j € Hp(2)NWEX(£2). (2.4)

Lagrange Multiplier ;.
Recall that V C C(£2). Let ¢ € C*°(£2) NV be nonnegative. Then y =y — ¢ € K; and we have, by (2.3),

(V= ya, ¢) + B(£y, £¢) < 0. (2.5)

Since C*(£2) NV is dense in C(£2), it follows from (2.5) and the Riesz representation theorem [34-36] that

@—yd,z)+ﬂ(xy,zz)=/zdu vzev, (2.6)
2

where p is a nonpositive finite Borel measure on £2.
Let 24 = {x € 2 : y(x) = Y¥(x)} be the active set for the constraint (1.3). Under the assumption dys/dn > g, we have
(cf. [26, Appendix])

2 is a compact subset of £2. (2.7)

For any z € V whose support is disjoint from 2, €z 4 y belong to K for sufficiently small €. Therefore, by (2.3), we
have

(V —ya,2)+ B(2LYy, £z) =0 (2.8)
for all z € V such that supp(z) N 2A = @. Hence, in view of (2.6),
W is a nonpositive finite Borel measure supported on £, (2.9)

which is equivalent to

/ (5 — ¥)dp = 0. (2.10)
2

Remark 2.1. The conditions (2.6), (2.9) and (2.10) are the Karush-Kuhn-Tucker (KKT) conditions that characterize the
solution of (1.5)-(1.6).

Let @ belong to CX°($2) (the space of C* functions with compact supports in £2) such that & = 1 in an open
neighborhood of the compact subset 2 of §2. Given any z € V, We have, by (2.6) and (2.9),

/zdu=/zq§du
Q Q2

= —ya.2®) + (LY, £(zP))
= =4 2P) + (LY, —A(z®) + (29))
= —Ya.2®) + B(V(LY), V(z®P)) + (LY. 2®),

where the integration by parts is justified by (2.4) and the fact that z belongs to H2 _(£2). It follows that

loc

’/ zdu) < Cllzllg1(g) VzeV, (2.11)
2

where G is an open neighborhood of the support of @ such that G CC 2 (i.e., the closure of G is a compact subset of £2).
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Given any z € H!(£2), we can construct a sequence z, € V such that |z, — Z|lg1ig — 0 as n — oo. (In fact we can
choose z, from C2°(£2).) In view of (2.11), limp_, o fg z,du is independent of the choices of z,. We can therefore define

(u,z) = lim | zdu  Vz e H(). (2.12)

n—-oo 0

Note that (u,z) = fg zdu for z € V because we can take z, = z for all n in (2.12).
It follows from (2.11) and (2.12) that

. 2)| < Clzllyrey Yz eH'(R). (2.13)

Regularity of u
In view of (2.13), we can define the adjoint state p € H'(£2) by

(VD.VZ)+(p.2) = —ya.2) — (n.2) VzeH' (L)
It then follows from the definition of V (cf. Remark 1.2 with g = 0) that

([a,gz):(y—yd,z)—/ zdy VzelV. (2.14)
2

Comparing (2.6) and (2.14), we find
(p—BLy,£z)=0 VzeV,

and hence, since . : V — [?(£2) is an isomorphism,

ii=9y=p8""peH(Q). (2.15)
Global Regularity of y
According to (1.4), we have
y € HT (), (2.16)

where o belongs to (%, 1] in general. In the case where £2 is convex, the constraint (1.2) and the regularity of & in (2.15)

imply that 1 < « < 2 (cf. [5, Chapter 5] and [6, Section 18]). The assumption ¢ € H*(£2) ensures that the Neumann
boundary condition does not interfere with the higher regularity for convex domains.

3. The discrete problems

Let .7, be a regular triangulation of £2 and V}, € H'(£2) be the P; finite element space associated with ;. The diameter
of T € 7 is denoted by hy and h = maxre 5, hr is the mesh parameter.

3.1. The first Py finite element method

The first P; FEM is to find

_ .11 B
Yn= argmm[fllyn ~Vall o)+ 5 (ZhgVn, fh,gyh)], (3.1)
yheky, L2 2
where
Kn = {vh € Vot vn < Iy}, (3.2)

and I : C(£2) —> V, is the nodal interpolation operator. In other words, the discrete constraint is only imposed at the
vertices of . The affine map .4, ; : H'(2) —> V,, is defined by

(Lhgw, vr) = (Vw, Vup) + (w, vy) — / gupds Y, € V. (3.3)
a2

Remark 3.1. The P; FEM defined by (3.1) and (3.2) is identical to the method in [9], but our convergence analysis in
Section 5 is completely different. In particular our convergence results do not require §2 to be convex and we also have
error estimates in L>°(£2).

Notice that
ez = Q2 Vz eV, (3.4)
where Q;, : [2(£2) — V,, is the [?(£2) orthogonal projection. This is true, since

(Zhgz, vn) = (Vz, V) + (2, Uh)_/ gupds = (Zz,vp) = (QuLz, vp) Yoy €V,
2

by Remark 1.2 and (3.3).
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In the case where g = 0, the affine map .4, o becomes a linear map that will be denoted simply by %4, i.e., % :
HY(£2) — V,, satisfies
(Lw, vy) = (Vw, Vup) + (w, vp) Yw e H(2), vy € Vp. (3.5)
We have a useful relation
Lhgv1 — Zhgva = Zh(v1 —v2) Y, v, € H(R) (3.6)

that follows immediately from (3.3) and (3.5).
Using (3.6) and a standard computation, we can characterize the unique solution y, € K, of (3.1)-(3.2) by the following
discrete variational inequality:

(Yn — Ya- Yo — Yn) + B(LagVh, L(n — Y1) =0 Vy € K. (3.7)
3.2. The second P; finite element method

To construct the second P; FEM, we first introduce another inner product (-, -), defined by
IT|>
) = — Y up, Vi, 3.8
(v wi)h = Y ( > 3 ) vn(P)wn(p) ¥ vn, wh € Vi (3.8)
peVp TeTp

where 2 is the set of the vertices in the triangulation %, %, denotes the collection of all elements that have p as a
common vertex, and |T| is the area of T.
The second P; FEM is to find

_ Tl B . i
Yn = argmm[illyh —Ydllfz(g) + E(i”h,gJ/h, i”h,gYh)h], (3.9)
Yh€Kp

where K}, is defined in (3.2), and the affine map jh’g :HY(2) — V, is given by

(jh’gw, vph = (Vw, Vug) 4+ (w, vy) — / gupds Y, € Vp. (3.10)
082

As before, we will denote %, ; by .4, when g = 0, i.e, % : H'(£2) —> Vj, satisfies
(Zhw, v = (Vw, Vop) + (w, vp) Yoy € V. (3.11)
Then we again have
ZhgV1 — Zhgva = Zh(v1 —v2) Yy, v € H'(R), (3.12)
and the unique solution y, € Kj, of (3.9) can be characterized by the following discrete variational inequality:

(Fn — Ya, Yo — In) + B(Lhghn. Zen — ) =0 Vyj € K. (3.13)

Remark 3.2. The P; FEM defined by (3.9) and its counterpart in [24] are new methods for elliptic distributed optimal
control problems with pointwise state constraints. The motivation for introducing these methods is the fact that, unlike
traditional P; FEMs (such as the P; FEM from Section 3.1), the system matrices for FEMs with mass lumping are readily
available because the mass matrix for the inner product (-, -); is diagonal. Therefore it is straightforward to solve the
discrete variational inequalities by a primal-dual active algorithm [37-39] that converges superlinearly.

4. Preliminary estimates

In this section we derive some estimates that will be used in the convergence analysis in Sections 5 and 6. We assume
that % is either quasi-uniform [2,4] or graded around the reentrant corners [5,40-42].

4.1. The interpolation operator I

We summarize here some estimates regarding the nodal interpolation operator that we need in the convergence
analysis. They follow from (1.4) and the standard error estimates of the nodal interpolation operator I, in [2,4,5,43,44]:
Iz — Inzll 2@y + hlz — Inzly1qy + hllz — Inzllie2) S h1+r(||$z||L2(Q) + 18g lh2¢ey) (4.1)

for all z € V,, where

. {a if %, is quasi-uniform, (42)

1 if %, is graded around the reentrant corners.
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In particular, we have
z = Inzll (o) + hlz — Ihzlyr o) + hllz — Inzllo(2) S R+t Z2llj20) Yz eV. (4.3)
Let ¢ € H(£2) be arbitrary. We have, by (3.5), standard inverse and interpolation error estimates [2,4],

(Z(p — Ing), vi) = (V(¢ — In@), Vp) + (¢ — Ingd, vp)

<ll¢ - 1h¢||H1(_Q)||Uh||H1(Q) S h|¢|H2(9)||Uh||H1(_Q) S |¢|H2(g)||Uh||1_2(:z),

and hence

I2h(d — i)l 20y < |Plu2ey Yo € HY(R). (4.4)
We conclude by using (3.4) and (4.4) that

%Il 22y < 1% Und — Pl 122) + 1QL Pl 12(2)s (4.5)

S Pl H 12020y S 1022y Vo € H*(2)NV.
4.2. The operator Ej

The operator Ej, : V, —> V is defined by
ZLEpvn = Sy Yo, € Vp, (4.6)
or equivalently
(VEpvp, Vw) 4 (Epvp, w) = (Lhop, w) Yw e H(Q). (4.7)
Due to the interior elliptic regularity (cf. [45]), E,v, belongs to H2 (£2) and

loc

IEnvnllnzc) = Coll-Zhonll2e) (4.8)

for any open set G CC £2.
Comparing (3.5) and (4.7), we see that v, € V; is the H'(£2) orthogonal projection of E,vy € V. It then follows from
(4.3) and (4.6) that

lEnvn — vnllgiey = Inf [[Epvn — whllgig) (4.9)
wpeVy
< lIEnvn — InEnvnllgi oy S hr”fEhUh”LZ(g) = hr”ghvh”LZ(Qy
Furthermore, by a standard duality argument, we get
IEnvn — valliz2) S W7 [l Zhnllizq)- (4.10)
Combining (4.8), (4.9) and the local error estimate in [46, Theorem 9.1], we also have
[vn — Envnlp gy S hll-Zhonllizg) Vup € Vi, (4.11)

where G(21) CC £2 is an open neighborhood of the active set 2.
According to (1.4) (with ¢, = 0) and the Sobolev inequality, we have

zllreo(2) + 112llm1(0) < CollZzll 2, VzeV. (4.12)

We can use the operator Ej to obtain a discrete analog of (4.12).

Lemma 4.1. There exists a positive constant C independent of h such that

lvnllio@) + lvnllpey < Cll-Zhonllizey Y on € Vi

Proof. Since v, € Vj, is the H'(£2) orthogonal projection of Ejv,, we have, by (4.6) and (4.12),
lvnlliiey < IEnvnllpy ey S I-ZEnvnllizo) = II-Zhonllizg)-
Observe that we have a discrete Sobolev inequality [4, Lemma 4.9.2]
lonllieqe) < (1+ [Inh))2 lvnllgtey  Yun € Vi, (4.13)
which together with (4.3), (4.6), (4.9) and (4.13) implies
lvn — Epvplizec2y < llvn — IhEnvnlliec(@) + 1hEnvn — Epvplliee(2)

1
< (1 + Inh)2 |jvp — IhEpvn gy + BT ILZEnvnll 20,
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< (14 Inh))3 (flog — Envnllg @) + IEnvn — IhEnvnllgiay) + B | Zhonll 20
< 1+ kD27 | Zionll g
On the other hand, we have, by (4.6) and (4.12),
Envnllio(@) S 1-ZEnvnllizo) = 1 -Zhvnlliy2)-

The estimate for [|vy||ioo(s2) follows from these two estimates. O
4.3. The operator Ry,

The Riesz projection R, : H'(£2) —> V;, is defined by
(VRyv, V) + (Ryv, vy) = (Vu, Vo) + (v, vp) Yo, € V.
It follows immediately from (3.5) and (4.14) that
SRz = %z Vze H(R),
and hence also, in view of (3.6),
LhgRnz = %hgz  Vz e H(R).
Note that (3.4) and (4.16) imply
ZhgRnz = 2z Yz eV,
Similarly, we have, by (3.11), (3.12) and (4.14),
ZhgRnz = Shgz  Vz e H(R).
As in (4.9) and (4.10), we have the following standard error estimates:
1y — Ryl () < Ch",
¥ — Ryl 20y < Ch*".

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

(4.19)
(4.20)

Combining the interior regularity (2.4) and the L? error estimate (4.20) with the local error estimate in [46, Theorem 10.1],

we have
17 — R lliceay < Inhlh® + h*°.
Finally, it follows from (4.1), (4.13) and (4.19) that
1Y — Riylloo(2) < MY — Iy llieoqey + 1y — R llieo(e)
SH (1 A2 1Y = Rudlyr ey
S I+ 1+ D2 [0 = Py + 15 = Ridlnen]
< (14 Inh)2h,
and hence

lim ||y — Rpy|l1oo(2) = O.
lim Iy — Ruylliee2)
5. Convergence analysis of the first P, finite element method

We will use the mesh dependent norm || - ||, defined by

Ivlli = (v, v) + B(Lhv, Zh).

5.1. An abstract error estimate

(4.21)

(4.22)

(4.23)

(5.1)

Let y € K, be the solution to (1.5)-(1.6), y, € K be the solution to the discrete problem (3.1)-(3.2), and y, € Kj be

arbitrary.
It follows from (3.6), (3.7) and (5.1) that
1yn = Iully = Wn — I Yn — In) + BZWn — In)s Zn — In))
= Wh =¥, Yn = ¥n) + B(GWn — ¥), Zh(yn — Yn))
+ (VY = Ya, Yn — ¥n) + B(LhY, Z(yn — ¥n))
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= (h — Yds Yo — In) — B(Lhyn, Z0(yn — ¥n))

= Yn — ¥, Yn — ¥n) + B(L(yn — ¥), Z0(yn — ¥n)) (5.2)
+ —Ya, Yo — In) + B(Lh gy, Zh(¥n — In))
= I —Ya, Yn — ¥n) — B(Lhg¥n, Zh(yn — In))

< lyn = Fllalyn = Iulln + [ = Ya. Yo — In) + B(Lhgd. Zon — In))]-

Remark 5.1. The derivation of (5.2) is the only place where we use the fact that y; is the solution to (3.1)-(3.2). The
relation (5.3), the estimate (5.4) and Lemma 5.1 below actually hold for any y, € V.

Using (2.6), (3.4) and (4.6), we can rewrite the second term on the last line of (5.2) as

(Y =Y Yn = ¥n) + B(Lhgy, Zu(Yn — In))
=Y —yda, Yn — Y1) — En(¥n — Jn)) (5.3)
+ [ = Ya, Ex(Yn — ) + B(LY. LEn(yh — ¥n))]

— = Yo On — ) — Ear — 7)) + / En(yn — e,
2
and we have, by (4.10),
(3 = Ya. Wn — Y1) — Eah — 1)) < CR* vk — V)l 2(2)- (54)

The next Lemma will give a bound on the last term of the right-hand side of (5.3).
Lemma 5.1. We have
/9 Exyh — e < RILZ0h — Il + 12+ Ih — ¥l Y39 € Ki
where 2l = {x € 2 : y(x) = Y(x)} is the active set for the constraint (1.3).

Proof. We begin with the estimate
/ Eulyn — )i = / [Eutyn — 1) — On — 7)]die + f (It — )i
2 2 2
4 / 1 — ¥)du + / O — hy)du (55)
2 2
< / [Ex(yn — 1) — O — )] due + / 1 — ¥)du
2 2

+ / O — I
2

that follows from (2.9) and (3.2).
We can bound the terms on the right-hand side of (5.5) in the following way:

/ [Exyn — n) — Wn — In)]die < IExn — I) — Oh — Il e (5.6)
2
S hllZh(yn — Yn)llize)

by (2.9), (2.13) and (4.11);

/ W — v )du = / (G — ) — G — ¥)]du (57)
2 A
SIG = ¥) = — W)l < Ch?
by (2.9), (2.10) and the fact that ¥,y € W,ifo(.(z); and
/ (Yn = Iny)dpe < N1yn — Iny iy (5.8)
2

by (2.9). O
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Putting (5.2)-(5.4) and Lemma 5.1 together, we find
Iyn = Fulls < yn = Fllnllyn — Iulle + B 1Lan — In)l 20y
+ hlZiyn = Inllizge) + h* + llyn = Iy oo
< (Iyn = Flln + R)Iyn = Iulln + 0 + lyn — Il
which together with the inequality of arithmetic and geometric means implies
1
Iyh = Yulln S Iyw = Ylln +h+lyn = hylloomy — YYn € K. (5.9)
Finally by applying the triangle inequality twice, we conclude from (5.9) that
1Y = Yulln < 1Y — Yalln + 1yn — Inlln
1
1 _ 1
ST = yulln + b+ 17 = Yall oy + 17 = 17l oy
1
S5 = Yalln + 0+ 17 = Vol 2o Vyh € Vi,

where we have also used the interior regularity y € W,i’coo(.Q). It follows that

1
17— Fnlln < h+ inf [IF = yalln + 17 = Yall fog]- (5.10)
Yh€Kp

Remark 5.2. The abstract error estimate (5.10) implies that ||y — y4||n is uniformly bounded with respect to h. Indeed,
let ¢ be a sufficiently large positive number so that {; — ¢ < ¥ on £2. Then y — ¢ + ¢ belongs to V and y, = I4(¢; — ¢)
belongs to K. We obtain from (5.10) that

1
17 = Fulln £ 1415 = In(Zg — lln + 17 = (&g — Ol 0
1
ST+ = (&g — Ollizgoy + BILT — In(Zg — Nllizgoy + 17 — n(Gg — OII7 @)
and the right-hand side is uniformly bounded with respect to h because

I2h(¥ — In(g — D2y = 1V — & + 2y + 1-%h(5g — ¢ — In(Ge — )2
N EAVAS Cg + C)”LZ(Q) + |§g|H2(Q)
by (3.4) (applied to the case where g = 0) and (4.4).

5.2. Concrete error estimates
We can obtain concrete error estimates from (5.10) by producing y, € Kj that is an accurate approximation of y.
Lemma 5.2. For h sufficiently small, there exists y, € Ky, such that

_ ! 5
Iyh = Ylln + 11yn = Yl oy < CUIMAIZh + A7),

where the positive constant C is independent of h.

Proof. Let €; = ||y — RuYllioo(gany. It follows from (4.21) that

en < |Inh|h? + %, (5.11)
We claim that

Yn = Rpy — enlnd (5.12)

belongs to K for h <« 1, where ¢ € C2°(£2) is nonnegative and ¢ = 1 on G(2).
Indeed, since v —y > § > 0 on £2 \ G(2), by the definition of y;, in (5.12) we have

Yh<Ry=y+Ry—y)<v¥—-5+Ry—y) on2\Gx,
and therefore, by (4.23),
yu(p) < ¥(p) for all vertices p € 2 \ G()
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if h is sufficiently small. On the other hand, we can use (5.11), (5.12) and the fact that ¢ = 1 on G(2() to get

Y=Y+ Ry —y)—en=y=y  onG),
and therefore
yn(p) < ¥(p)  for all vertices p € G().
So y, belongs to K. Moreover, we have
17 = yulli = 15 = Yulifo gy + BIZT — Yl
S IR = Ilia oy + lenlidll o) + llenZhlndlfo o) < B+ €f < InhPh* +h*
by (4.5), (4.15), (4.20) and (5.11); and
Iyn = Fllre@) < IIRY — Fllroq) + lenln@ o < [Inhlh? + h**

by (4.21) and (5.11).
Putting these together, we finally reach

_ _ 1 1
I¥n = Vlin + Iyn = Vo S IINAIZh+h7. O

The following theorem presents a concrete error estimate for the first P; FEM.

Theorem 5.1. Suppose (¥, i) € Ky is the solution of (1.1)-(1.3), yn € Kj, is the solution of (3.1)-(3.2), and u = %, gys. Then,

we have
o o 1 .
lu — tnll20y + Iy — Yrllgo) < C(IInh|2h + h),

where the positive constant C is independent of h.

Proof. For h sufficiently small, we have by (5.1), (5.10), and Lemma 5.2,
- - 1 .
17 = ¥ullizo) + 145 — ¥n)llz@@y < Inh|2h + hF.
It follows from (2.15), (3.4), (3.6) and (5.14) that
llun — ﬂ”ﬂ(g) = ||$h,g5_/h - 33_/”1_2(9)
< Zhehn — Zhgdllizie) + 1-%hey — LYz
< 1% — Yz + 1Qu2y — L2
<|Inhjzh+h",
where we have also used the standard estimate
1Quw — w2y < Chlwlyiey  VYw € H'(R2).
Next, since
o o - 1
IReY — Inllg gy < 1-Zh(Rey — Yu)lli2i2y = 140V — ¥n)lli2(g) < lInh|zh + AT
by Lemma 4.1, (4.15) and (5.14), and
1y — Ruylly1 ey < ChT
by (4.19), we have

- - - — - - 1
1y = Inlluey < 11y — Rayllgro) + IReY — Yullgiey < Inh|2h + A"

(5.13)

(5.14)

(5.15)

(5.16)

The estimate (5.13) is also valid for h bounded away from 0 because the left-hand side of (5.13) is uniformly bounded
with respect to h. The uniform boundedness of ||y — ¥nlly1) follows immediately from Lemma 4.1 and Remark 5.2, and

from (5.15) we find
= tnllzey) < 14 — Indllze) + 1Qn2Y — LY@y < 1Y — Iulln + 12Vl 12¢2)s

which together with Remark 5.2 implies the uniform boundedness of [|u — tpll;2q). O

We also have the following L* error estimate that indicates, up to a term of magnitude O(|In h|%h + h"), the L*° error
for the optimal control problem is the same as the L* error for the P; FEM for a second order elliptic boundary value

problem.
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Theorem 5.2. Suppose y € K, is the solution of (1.5)-(1.6) and yj, € Ky is the solution of (3.1)—(3.2). Then we have

_ 1 _ _
1y = Ynllie(2y < CUInh[2h 4 h") + ||y — RiY o),

where the positive constant C is independent of h,

Proof. The theorem follows from the triangle inequality, Lemma 4.1, (4.15) and (5.14):

17 — ¥nllre(2)y < 1Y — Ruyllioo(2) + IRWY — Ynllio(2)
< Iy — Ruylleo(@) + CllZh(RhY — ¥n)lli2o)
= ¥ — Rayllreec2) + 140V — Yn)ll 2y
_ _ 1 .
< Iy — Ruyllio(e) + C(lInh|2h +h"). O

6. Convergence of the second P, finite element method

We will use the following mesh dependent norm
lollz = (v, v) + B(Ghv, Zhv)n (6.1)
in the analysis of the second P; FEM, which relies on the results for the first P; FEM in Section 5 and the relation between
Zhg and Lhg-
6.1. Relations between %, , and % ,

It is clear from the definition of the two discrete operators (3.3) and (3.10) that, for any w € H'(£2), we have
(Zhgw, vp) = (Lhgw, v Yvp € Vi, (6.2)
and in particular,
(Lw, vy) = (Ghw, vp)n Yw e H(R2), vy € V. (6.3)
One can easily verify that
(ns v)n = (v, vp)  Yup € Vi, (6.4)
and by a property of mass lumping (cf. [47,48]), we have
1
(ns wn) = Cons widel < (20 W lonry ) Nwnllzgey Y ons wh € Vi (65)
Te Ty
Using (6.2) and (6.5), we find

(Zhgw — Zhgw, walpl = [(Lhgw, wh) — (Lhgw, wail (6.6)
< hlghgwlyi gy llwnllze) Yw e H'(2), wy € Vi,

and so by (6.4),
”jh,gw - efh,gw”LZ(Q) < h|$h,gw|H1(_Q) Ywe Hl(Q)' (67)
It is also easy to show that

(fh_gw,fh,gw) < (jh,gw,jh,gw)h Yw e Hl(.Q). (6.8)
6.2. An abstract error estimate

We will need the following estimate regarding %, and %, to derive an abstract error estimate for the second P; FEM.
From (3.4), (6.1), (6.6) and (6.8), we have

(Zhg¥ — ZhgVs ZoWh — Il S hl-Zh g o) 12V — Il 2y
< RIQuZF i1 yn — Tl (6.9)
< hlZylma)lyn — Yulln,
where we have used the estimate (cf. [49,50])

|Quwlyig) S Wl Yw € H'(R). (6.10)
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Using (3.12), (3.13), (6.1), (6.3) and (6.9), we may proceed as in (5.2) to obtain
llyn = Fullz < llyn — Ylullyn — Fulls + G — Ya. Yo — 9n) + B(Zhg@), Zah — In)n
= llyn — Yllullyn — Iully + F — Ya. ¥n — In) + B(Zhg¥s ZoWn — Fn))n
+ B(LhgY — Zhgd Zhh — In)h (6.11)
S Myn = Ylallyn — Iulln + [ = Ya. Y — In) + B(Lheds Lon — In))]
+ h. 2y ) lyn — Inlly-

Notice that since the term (y — Y4, Yn — ¥n) + B(Lh gy, Zh(yn — ¥n)) appearing in the last inequality of (6.11) is identical
to the last term that appears in (5.2), we can directly apply the estimates (5.3), (5.4) and Lemma 5.1 from Section 5.1 (cf.
Remark 5.1).

Continuing from (6.11), we find

Nye = ¥ully < Wyn = Ylnllye — Fulln + RILn — Iz + 1 + yh — I lliooce)
+ hllyn — nlly
< Myn = FMallyn = Fully 4 Bllyn = Fally + 1 + yn — Wyl

which together with the inequality of arithmetic and geometric means implies

1
Wyn = Yulln < Wyn = Ylln + 410 — Il oy Y Y0 € Kn.

So by the triangle inequality, we arrive at

1
05 = Falls < B+ inf [yn = 7l + Iy = 3 ey (6.12)
ynekp

6.3. Concrete error estimates

Let y, € Kj be defined by (5.12). Then, by using (4.18), (6.4) and (6.7), one can show that Lemma 5.2 also holds with
lyn — ylln replaced by [lyn — yll,. That is, for h sufficiently small, y, satisfies

_ _ 1 1
yn = Ylln =+ 1y = Yl oy < IInhI2h +h".
Therefore it follows from (6.12) that
o 1
Iy = yully < Inh|2h + A7, (6.13)

and we have the following concrete error estimates.

Theorem 6.1. Suppose (y, u) € K, is the solution of (1.1)-(1.3), y» € Kj is the solution of (3.9) and u, = ‘ﬁ,,gjlh. Then we
have

— _ — - 1
1@ — @yll2cy + 17 — Flli ey < CUINRIZ R+ ),

where the positive constant C is independent of h.

Proof. We have, by (2.15), (3.4), (5.16), (6.1), (6.4), (6.7), (6.10) and (6.13),

llu — L_lh”LZ(g) = |l2y - jh,g)_’h”LZ(Q)
<12V — gz + 1 %hed — Zhgdllize) + 1-9hed — Zhghnllizeo
= |l2y - th)_’”l_z(g) + ||-$h,g}_’ - jh,g.)_/”Lz(Q) + ||>2’7h(}_’ _}_’h)”LZ(Q)
S h LYoy + MLYlmie) + 1Y — yally
< [Inh|2h+ h".

Next, it follows from Lemma 4.1, (4.15), (6.1), (6.8) and (6.13) that

17— ¥nlliey < NV — Ruyllyiey + IRnY — Ynll o)
ShT + 1Ry — Yl
=h" + 10 — ¥l S+ 1Y = Inlln S InhiZh+ k7. O

We also have the following L* error estimate as we did for the first P; FEM. The proof proceeds as in Theorem 5.2 but
by additionally using (6.8) and (6.13).
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Table 7.1
Results for the first Py FEM on uniform meshes for Example 7.1.
ko NVk+1 = Vllzey  Rate  |Yke1 —Vilpie)  Rate  [IYks1 —Ykllio(e)  Rate [lUgs1 — Uklli2e)  Rate
0  2.04e-02 1.36e—01 7.45e—02 6.92e—01
1 1.08e—02 0.92 6.45e—02 1.08 4.37e—02 0.77 3.28e—01 1.08
2 3.01e-03 184  4.58e—02 0.49 9.77e—03. 2.16 2.67e—01 0.30
3 1.15e—03 1.39 2.50e—02 0.87 3.95e—03 1.31 1.10e—01 1.28
4 292e-04 1.98 1.28e—02 0.97 1.24e—03 1.67 3.29e—02 1.74
5  6.54e—05 2.16 6.43e—03 0.99 3.83e—04 1.69 1.43e—02 1.20
6 1.81e—05 1.85 3.23e—03 0.99 1.09e—04 1.82 4.18e—03 1.78
7  4.08e—06 2.15 1.62e—03 1.00 3.40e—05 1.68 1.36e—03 1.62
Table 7.2
Results for the second P; FEM on uniform meshes for Example 7.1.
ko NVk+1 = Vllzey  Rate  |Yke1 —Vilpie)  Rate  [Yks1 —Yklio(e)  Rate [ligs1 — Uklli2e)  Rate
0 295e-02 2.23e—01 1.19e—01 4.29e—01
1 1.32e—02 1.16 9.34e—02 1.25 5.56e—02 1.10  3.09e-01 0.47
2 3.19e-03 2.05 5.42e—02 0.79 6.94e—03 3.00 2.50e—01 0.31
3 8.32e-04 194  2.65e—02 1.03 3.17e—03 1.13 9.00e—02 1.48
4 2.20e—04 1.92 1.29e—02 1.04  8.45e—04 191 2.85e—02 1.66
5  3.62e—-05 261 6.45e—03 1.00 2.58e—04 1.71 1.36e—02 1.07
6 1.08e—05 1.75 3.23e—03 1.00 7.91e—05 1.70 4.02e—03 1.76
7 3.29e—06 1.71 1.62e—03 1.00 3.24e—05 1.29 1.30e—03 1.63

Theorem 6.2. Suppose y € K, is the solution of (1.5)-(1.6) and y, € K is the solution of (3.9). We have

o 1 . _ _
Iy — Ynllzoe) < C(Inh|Zh + h") + |y — Rullie ),

where the positive constant C is independent of h.

7. Numerical results

In this section, we report numerical results that corroborate the theory and illustrate the performance of the two P;
FEMs. We solved the discrete problem for the first P; FEM by using the MATLAB quadprog M-function, and we solved the
discrete problem for the second P; FEM by a primal-dual active set algorithm [37-39]. The approximate optimal state
and optimal control on the kth level mesh are denoted by y, and i respectively.

In the first two examples, we consider convex domains with the homogeneous Neumann boundary condition.
Nonhomogeneous boundary conditions are treated in the other two examples. Since the results for the two FEMs are
very similar, for brevity we only report the results for the second P; FEM after the first example.

Example 7.1. In this example 2 is the pentagon (cf. Fig. 7.1) with vertices (0.5, 0), (0, 0.5), (—0.5, 0.5), (—0.5, —0.5) and
(0.5, —0.5). Following [26, Section 6, Example 3], we choose y4(x) = 2 — |x|?, ¥(x) = 1.85 + (x1 + 0.25)* + (x5 + 0.25)%,
B = 0.001 and g = 0. Since we do not know the exact solution (y, u) of this problem, we report the errors between
consecutive approximations in Tables 7.1 and 7.2.

For both FEMs, we observe O(h) convergence for the approximation of y in the H' seminorm which agrees with
Theorems 5.1 and 6.1. The convergence rates for the approximations of y and i in the L>-norm are better than the estimates
in Theorems 5.1 and 6.1, and the convergence for the approximation of y in the L°® norm is also better than the estimates
in Theorems 5.2 and 6.2. These higher convergence rates are consistent with the fact that the optimal state y (and hence
the optimal control 1) has higher interior and global regularities since §2 is convex and the free boundary 92! is sufficiently
smooth.

The graphs of yg and uig and the active set obtained by the second P; FEM are displayed in Fig. 7.1. All of them match
the ones obtained in [26] by a quadratic C° interior penalty method.

Example 7.2. In this example £2 = (—4, 4)? and we construct the exact solution y as in [24, Section 7, Example 1] but
modify it in a way that y satisfies the homogeneous Neumann boundary condition.
We construct y(x) in the following way:

x> — 1 if x| <1,
Jx) = S v(Ix) + [1+ ¢(IxDIw(|x]) if 1 < [x] < 3,
w(x) if |x| > 3,
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Fig. 7.1. State, control and active set for Example 7.1.

Table 7.3
Results for the second P; FEM on uniform meshes for Example 7.2.
kY —yllzey  Rate IV = Yelury ~ Rate Iy — yllie(@) ~ Rate lu — ukllizey  Rate
0 8.13e+4-00 8.01e+4-00 1.38e+4-00 1.51e+401
1 9.84e+4-00 —0.28 9.72e+4-00 —0.28 2.58e+-00 —0.90 1.64e+4-01 —0.12
2 1.05e+01 —0.09 1.19e+01 —0.29 2.61e+00 —0.02 1.80e+01 —0.13
3 1.40e+00 291 4.63e+4-00 1.36 3.45e—-01 2.92 1.20e+01 0.58
4 2.99e—01 2.22 2.35e4-00 0.98 9.76e—02 1.82 5.03e+4-00 1.25
5 8.28e—02 1.85 1.19e+00 0.99 3.48e—02 1.49 1.67e+00 1.59
6 2.89e—02 1.52 5.92e—-01 1.00 1.37e—02 1.35 5.33e—01 1.64
7 9.14e—03 1.66 2.95e—01 1.00 3.68e—03 1.89 1.83e—01 1.54
8 3.11e—03 1.56 1.48e—01 1.00 1.13e—03 1.70 6.13e—02 1.58
where
t—1\4 1
WO = (2= D(1- =) + 51 -3),
2 4
00 =[1+4(57) +10(57) +20(57) J (-5
N 2 2 2 2 /7

w(x) =2 cos(%(xl + 4)) cos(%(xz + 4)).

The control ii is then equal to —Ay + j. Now we choose ¥(x) = |x|> — 1, 8 = 1, and

BA’y —2BAy + By + if x| = 1,

X) = _ ~ T .
yal) {ﬂAzy—ZﬂAy+ﬂy+y+1 if x| < 1.

By construction, such choices of i, 8, y; and y satisfy the KKT conditions (cf. Remark 2.1) with the measure u in (2.6)
defined by

fzduz —42[ zds—fzdx VzeV, (7.1)
2 a2 2

and the active set 2 is the closed disk with radius 1 centered at the origin.

The results for the second P; FEM on uniform meshes are reported in Table 7.3, where we use I, to denote the
nodal interpolation operator onto the finite element space associated with the kth level mesh. The reduction rate of
Iy — Ykllio(s2) Tepresents the order of convergence of y in the L*°-norm.

The O(h) convergence of the approximation of y agrees with Theorem 6.1. The convergence rates for the approximations
of y in I? and L* norms and for the approximation of u in the L? norm are better than those predicted by Theorems 6.1
and 6.2. These higher convergence rates are consistent with the higher regularity enjoyed by y and u.

The graphs of yg and iig and the active set obtained by the second P; FEM are displayed in Fig. 7.2. The active set has
clearly been correctly captured.
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Fig. 7.2. State, control and active set for Example 7.2.

Table 7.4

Results for the second P; FEM on uniform meshes for Example 7.3.
k ly* = Ykll22) Rate Iy = Yluie) Rate 1V = Yiellioo(e2) Rate lur — Ukl 2 () Rate
0 4.39e+01 2.42e+01 1.21e+01 3.83e+01
1 8.61e+-00 2.35 8.62e+4-00 1.49 2.99e+-00 2.02 1.78e+-01 1.10
2 9.34e+4-00 —-0.12 1.22e+01 —0.50 2.56e+4-00 0.22 1.75e+4-01 0.03
3 1.44e+00 2.70 4.63e+00 1.40 3.45e—01 2.89 1.20e+-01 0.54
4 3.32e—01 2.12 2.40e+-00 0.95 1.76e—01 0.97 4.93e+00 1.28
5 8.48e—02 1.97 1.19e+-00 1.01 4.93e—02 1.84 1.63e+00 1.59
6 2.35e—02 1.85 5.92e—01 1.00 1.36e—02 1.86 5.23e—01 1.64
7 5.83e—03 2.01 2.96e—01 1.00 3.24e—03 2.07 1.80e—01 154
8 2.66e—03 1.13 1.48e—01 1.00 8.03e—04 2.01 6.06e—02 1.57

Example 7.3. This example is a modification of Example 7.2 so that the exact solution has non-homogeneous Neumann
boundary condition. We take 2 = (—4,4)%, 8 =1, q(x) = x1, ¥* = ¥ +q,

Yi=ya+(+B), ¥y =y+q and @ =u+gq,

where , y4, y and u are identical to the ones in Example 7.2.
Then y* is the exact solution of the following slightly more general problem:

_, . I1 B
g = argmin| 2y = Yl g, + 51290 ) — / 2 ds), (7.2)
yekg 82

where g = dq/dn and
K;={veV;:v<y*inQ2} (7.3)

Indeed, we have y* < y*, 21* = 2 (the active set from Example 7.2), and since q is harmonic,

(}_’*—ya,z)—kﬁ(fj/*,.fz)—/ qzds:[zdu* YzeV,
a2 2

where w, = u is defined in (7.1). Therefore the KKT conditions for (7.2) are satisfied.

Remark 7.1. Note that (7.2) is identical to (1.5) when g = 0. For nonhomogeneous Neumann boundary conditions,
the more general cost functional in (7.2) facilitates the construction of an exact solution from the exact solution of the
corresponding problem with the homogeneous Neumann boundary condition.

We can solve (7.2) by a straightforward modification of the P; FEMs in Sections 3.1 and 3.2, where the additional term
B fa.(z gynds is included in the cost functionals in (3.1) and (3.9). It is easy to check that the error estimates in Sections 5
and 6 remain valid.

The numerical results for the second P; FEM on uniform meshes are given in Table 7.4. The performance is similar to
what we observed in Example 7.2. This is not surprising since the difference between the exact solutions of Examples 7.2
and 7.3 is just the linear polynomial g.

The graphs of yg and ug and the active set obtained by the second P; FEM are displayed in Fig. 7.3. The relations
y* =y+qand u* = u+q can be observed by comparing Figs. 7.2 and 7.3. The active set has also been correctly captured.
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Fig. 7.3. State, control and active set for Example 7.3.

Table 7.5

Results for the second P; FEM on uniform meshes for Example 7.4.

k Iy* = yllz@y  Rate [V* = Ykluiey  Rate 11V* = Yiellioo ) Rate lu* = uell2e) Rate
0 4.62e+01 1.86e+01 1.14e+4-01 4.19e+01

1 1.19e+-01 1.96 1.16e+01 0.67 2.80e+4-00 2.03 1.94e4-01. 1.11
2 9.79e+00 0.28 1.31e+01 -0.17 2.56e+00 0.13 1.78e+01 0.12
3 1.72e+00 2.51 5.25e+00 1.32 4.62e—01 2.47 1.20e+01 0.56
4 4.57e—01 191 2.79e+00 0.91 2.67e—01 0.79 4.94e+00 1.28
5 1.40e—01 1.70 1.47e+00 0.93 1.60e—01 0.74 1.64e+00 1.59
6 4.79e—02 1.55 7.95e—01 0.88 9.92e—02 0.69 5.24e—01 1.64
7 1.68e—02 1.52 4.43e—01 0.84 6.18e—02 0.68 1.80e—01 1.54
8 6.55e—03 1.35 2.53e—01 0.80 3.88e—02 0.67 6.08e—02 157

Example 7.4. In this example, we use the L-shaped domain £ = (-8, 8)2\([0, 8] x [-8, 0]) (cf. Fig. 7.4) and solve the
minimization problem (7.2) with a nonhomogeneous Neumann boundary condition.

First of all, let a = (—4, 4) and take i and y4 to be the functions from Example 2. If we use y,(x) = ¥ (x — a) and
Y§(x) = y4a(x — a) as the input with g = 1, then the exact solution of (1.1)-(1.3) with g = 0 will be y,(x) = y(x — a) and
uq(x) = u(x — a), where (y, u) is the exact solution of Example 2. Furthermore, the active set in this case will simply be
the shift of the active set of Example 2 by a.

Let the harmonic function q in polar coordinates be defined by

q(r,0) = r% cos(26/3)

and take
Y =vY,+4q and y;=yi+(1+ Bq.

As in Example 7.3, the exact solution of (7.2) with g = 4(dq/dn) is then given by
", u") = (Va + 49, Uq + 49).

Note that the singularity due to the reentrant corner is captured by g.

In Table 7.5, we report results for the second P; FEM on uniform meshes. In this case, the estimates in Theorems 6.1
and 6.2 hold with = 2/3, and the reduction in the order of convergence (compared to previous examples) is noticeable
except for the [?-error of the control.

We have also run the same numerical example on graded meshes of the L-shaped domain. The graded meshes are
generated by the refinement procedure in [40], and they are depicted in Fig. 7.4. The results are presented in Table 7.6.
The observed improvement in the convergence rates agrees with Theorems 6.1 and 6.2, since t is improved to 1 for graded
meshes (cf. (4.2)).

The graphs of yg and ug and the active set are displayed in Fig. 7.5. Again the active set has been correctly captured.

8. Concluding remarks

The P; FEMs from Sections 3.1 and 3.2 can also be applied to the optimal control problem (1.1)-(1.3) on a three
dimensional polyhedral domain. This was carried out in [24] for the Dirichlet boundary condition.
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Table 7.6
Results for the second P; FEM on graded meshes for Example 7.4.
k 17" = yelli2ee) Rate 1V = Yilui ) Rate 1y* = Yillieo2) Rate lu* — ugll2e) Rate
0 1.96e+01 1.40e+01 5.36e+-00 2.30e+01
1 9.77e+-00 1.01 1.07e+01 0.38 3.02e+00 0.83 1.76e+01 0.39
2 4.86e+00 1.01 8.28e+00 0.37 1.98e+4-00 0.61 1.38e+01 0.35
3 7.87e—01 2.63 3.47e+00 1.26 3.45e—01 2.52 6.76e+-00 1.03
4 2.09e—01 1.92 1.61e+00 1.11 1.51e—01 1.19 2.91e+-00 1.21
5 6.11e—02 1.77 7.70e—01 1.06 4.00e—02 1.92 1.05e+00 1.47
6 1.36e—02 2.16 3.80e—01 1.02 1.08e—02 1.89 4.40e—01 1.26
7 2.93e—03 2.22 1.89e—01 1.01 4.25e—03 1.34 1.74e—01 1.34
8 9.89e—04 1.57 9.46e—02 1.00 2.46e—03 0.79 5.98e—02 154
8 T T T 8 8
6F 6 6
4 4 4
2F 2 2
0 0 0
s 2 2
4 4 4
S 6 K
B . . . . 8 . . . . :
-8 6 4 2 0 2 4 6 8 8 -6 2 2 4 6 B -6 4 2 0 2 8
(a) k=1 (b) k=2 (c) k=3
Fig. 7.4. Graded meshes on the L-shaped domain with grading parameter 0.6.
20
o
10
5
0
5 ]

The analysis of the P; FEMs are considerably simpler under the condition that the active set is a compact subset of

(b) Control

Fig. 7.5. State, control and active set for Example 7.4.

(c) Active Set

£2. In the Dirichlet case, this condition is satisfied in any dimension as long as the (pointwise) constraint for the state is

separated from the boundary condition of the state. In the Neumann case, this condition is implied by our assumption

dy/on > g for two dimensional domains. Unfortunately the arguments in [26, Appendix] do not extend immediately to
three dimensions. This is the reason that the three dimensional case is not addressed in this paper.
Higher order FEMs are advantageous when y enjoys additional regularities (cf. [26]). Therefore it will be interesting to

extend the approach in this paper to higher order FEMs based on discontinuous Galerkin discretizations of the constraint

(1.2), for which mass lumping is not required.
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