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a b s t r a c t

In this paper, we study the stabilizer-free weak Galerkin methods on polytopal meshes
for a class of second order elliptic boundary value problems of divergence form and
with gradient nonlinearity in the principal coefficient. With certain assumptions on the
nonlinear coefficient, we show that the discrete problem has a unique solution. This
is achieved by showing that the associated operator satisfies certain continuity and
monotonicity properties. With the help of these properties, we derive optimal error
estimates in the energy norm. We present several numerical examples to verify the
error estimates.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We consider the stabilizer free weak Galerkin method for the quasilinear elliptic partial differential equations (PDEs)
in Ω ⊂ Rd with d = 2, or 3:{

−∇ · (κ(x, |∇u|)∇u) = f in Ω,

u = 0 on ∂Ω.
(1.1)

This class of PDEs arise, for example, in the study of compressible flow in the airfoil design (cf. [1]) or the eddy currents
in a nonlinear ferromagnetic material (cf. [2]). We assume throughout the paper that the diffusion coefficient κ(x, s), for
x ∈ Ω and s ∈ R satisfies the following assumption.

Assumption 1.1. Assume κ(x, s) is a Carathéodory function, and assume that there are constants 0 < α < β with

α(t − s) ≤ κ(x, t)t − κ(x, s)s ≤ β(t − s), 0 ≤ s ≤ t (1.2)

for a.e. x ∈ Ω .
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Note that this assumption implies that α ≤ κ(x, t) ≤ β a.e. x ∈ Ω and for all t > 0. For simplicity, we denote κ(s) := κ(x, s)
in the rest of paper.

The analysis of standard conforming finite element method for general quasilinear problems was discussed in [3]. For
the class of monotone quasilinear PDEs (1.1), the finite element error estimates were developed in [4] for the differential
operators defined on a reflexive Banach space. In [5], a one-parameter family of hp-version discontinuous Galerkin
finite element methods was developed and analyzed for the numerical approximation of this type of quasilinear elliptic
equations, subject to mixed Dirichlet–Neumann boundary conditions on ∂Ω . The finite volume methods were discussed
in [6].

First proposed in [7], the weak Galerkin (WG) finite element methods are based on the novel idea of using weak
functions and their weak derivative (see Section 2 for more details) in the design of numerical approximation schemes.
Due to the discontinuous nature of the methods, the WG methods are very flexible in solving a variety of PDEs on
general polytopal meshes. For the second order elliptic quasilinear PDEs, the existence of solutions of the WG methods
was shown in [8] by a Schauder fixed point argument. However, the uniqueness and the error estimations of the
numerical approximations are restricted only to the linear PDEs, and have not been addressed for the nonlinear ones. Only
recently in [9], the authors gave the well-posedness and error estimate in the energy norm for the monotone quasilinear
PDEs (1.1).

One disadvantage of the aforementioned WG methods, as well as other classes of discontinuous finite element methods
(e.g. discontinuous Galerkin methods), is the existence of stabilization terms, which are usually necessary to enforce
weak continuity of the discontinuous solutions across element boundaries. Removing stabilizers from discontinuous finite
element methods will simplify formulations and reduce programming complexity significantly. Motivated by this, a class
of stabilizer-free WG methods were first proposed and analyzed recently in [10] for Poisson’s equation. In this new
formulation, the WG methods can be viewed as the counterpart of the weak formulation of the continuous problem
by replacing the classical gradient by the weak gradient operator.

The goal of this paper is to formulate and analyze this stabilizer-free WG methods for the monotone quasilinear
PDEs (1.1). With the structural Assumption 1.1, we show the stabler-free WG formulation satisfies certain continuity
and monotonicity properties. These properties imply the discrete problem has a unique solution, thanks to a nonlinear
version of the Lax–Milgram theorem (Theorem 3.1) for monotone operators. We then derive optimal error estimates in
the energy norm.

The rest of this paper is organized as follows. In Section 2, we introduce basic notation, and present the stabilizer-free
WG methods for the model problem (1.1). In Section 3, we discuss the existence and uniqueness of the discrete problem.
We first present an abstract existence and uniqueness of nonlinear operator equation, then verify the stabilizer-free WG
methods satisfies the conditions based on Assumption 1.1. In Section 4, we show the main error estimate in the energy
norm. In Section 5, we present some numerical experiments to confirm the theory. The paper ends with some concluding
remarks and prospects for future work.

2. Weak Galerkin method

For any given subset D ⊆ Ω , we use the standard definition of Sobolev spaces Hs(D) with s ≥ 0. The associated inner
product, norm, and semi-norms in Hs(D) are denoted by (·, ·)s,D, ∥·∥s,D, and |·|s,D, respectively. When s = 0, H0(D) coincides
with the space of square integrable functions L2(D). In this case, the subscript s is suppressed from the notation of norm,
semi-norm, and inner products. Furthermore, the subscript D is also suppressed when D = Ω . Throughout the paper, we
use C to denote a generic positive constant that is independent of the meshsize and the solutions, and may take different
values in different appearance.

Let Th be a partition of the domain Ω consisting of polygons in two dimensions or polyhedra in three dimensions
satisfying a set of shape-regular conditions (see [8] for example). For every element T ∈ Th, we denote by hT the diameter
of T and mesh size h := maxT∈Th hT for Th.

We introduce the weak function v = {v0, vb} that allows v to take different forms in the interior and on the boundary
of each element T ∈ Th:

v =

{
v0, in T ,

vb, on ∂T .

Given an integer k ≥ 1, we define a local finite element space Vh(T ) on each element T ∈ Th as follows

Vh(T ) = {v = {v0, vb} : v0 ∈ Pk(T ), vb|e∈ Pk(e), e ∈ ∂T }. (2.1)

A global finite element space Vh is then derived by patching all the local elements Vh(T ) with common values on interior
edges. Let V 0

h be a subspace of Vh consisting of functions with vanishing boundary.
For any v = {v0, vb}, the discrete weak gradient ∇wv ∈ [Pj(T )]d is defined as the unique vector field satisfying

(∇wv, τ)T = −(v0, ∇ · τ)T + ⟨vb, τ · n⟩∂T , ∀τ ∈ [Pj(T )]d, (2.2)

where j > k is an integer to be specified later (see Lemma 2.1). For simplicity, we adopt the following notations,
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Then the WG scheme for (1.1) is to find uh = {u0, ub} ∈ V 0
h such that:

ah(uh; uh, v) := (κ(|∇wuh|)∇wuh, ∇wv)Th
= (f , v0) ∀v = {v0, vb} ∈ V 0

h . (2.3)

Let Q0, Qb and Qh be the locally defined L2 projections onto Pk(T ), Pk(e) and [Pj(T )]d accordingly on each element T ∈ Th
and e ⊂ ∂T . For the exact solution u of (1.1), we define Qhu as

Qhu = {Q0u,Qbu} ∈ Vh.

For any v ∈ Vh + H1(Ω), we introduce the following energy norm and the corresponding inner product:

|||v|||
2
= (∇wv, ∇wv)Th . (2.4)

We also define a discrete H1 semi-norm as follows:

∥v∥1,h =

⎛⎝∑
T∈Th

(
∥∇v0∥

2
T + h−1

T ∥v0 − vb∥
2
∂T

)⎞⎠ 1
2

. (2.5)

It is easy to see that ∥v∥1,h defines a norm in V 0
h . The following lemma indicates that ∥ · ∥1,h is equivalent to the |||·||| in

(2.4).

Lemma 2.1 ([10,11]). Let j = n + k − 1, where n is the number of edges (faces) in each element. There exist two positive
constants C1 and C2 such that for any v = {v0, vb} ∈ Vh, we have

C1∥v∥1,h ≤ |||v|||≤ C2∥v∥1,h. (2.6)

We remark that even though in Lemma 2.1 we required j = n+k−1, our numerical experiments in Section 5 indicate
that we can still get optimal error estimates with j = k + 1 or j = k + 2.

3. Existence and uniqueness

In this section, we show the problem (2.3) has a unique solution. For this purpose, we first present an abstract theorem.
Let H be a Hilbert space with the inner product denoted by (·, ·)H and the induced norm ∥ · ∥H . We say a (nonlinear)
operator N : H → H is strongly monotone if there exists a constant λ > 0 such that

(N(u) − N(v), u − v)H ≥ λ∥u − v∥
2
H; (3.1)

N : H → H is Lipschitz continuous if there is a constant Λ > 0 such that

∥N(u) − N(v)∥H ≤ Λ∥u − v∥H . (3.2)

The following theorem (cf. [12]) can be viewed as the nonlinear version of the Lax–Milgram theorem. For completeness,
we include a simple proof here.

Theorem 3.1. Let the operator N : H → H be strongly monotone (3.1) and Lipschitz continuous (3.2). Then N(u) = f has a
unique solution for all f ∈ H.

Proof. Let Au = u − ε(N(u) − f ). It is clear that the solution to the equation N(u) = f is equivalent to the fixed point
Au = u of A. By the strong monotonicity (3.1) and Lipschitz continuity (3.2), the operator A : H → H satisfies

∥Au − Av∥
2
H = ∥u − v∥

2
H + ε2

∥N(u) − N(v)∥2
H − 2ε(N(u) − N(v), u − v)H

≤
(
1 − 2ελ + Λε2)

∥u − v∥
2
H .

Clearly, for any ε ∈ (0, 2λ/Λ2), A : H → H is a contraction mapping. By Banach fixed-point theorem, A has a unique fixed
point. Hence N(u) = f has a unique solution. □

Remark 3.2. By the proof of Theorem 3.1, we can construct a fixed point iteration un+1 = Aun for any initial guess
u0 ∈ H . For appropriate choice of ε, this iteration is guaranteed to converge (globally). This is in fact the relaxed Picard
iteration, which is the algorithm used in Section 5 for solving the nonlinear problems.

Based on Theorem 3.1, in order to show (2.3) has a unique solution, we just need to verify the related discrete nonlinear
operator satisfies the strong monotonicity (3.1) and the Lipschitz continuity (3.2). These properties can be obtained
by Assumption 1.1 on the coefficient κ . We first show the following continuity and monotonicity lemma.

Lemma 3.3. If the coefficient κ satisfies Assumption 1.1, then we have

α|ξ − η|
2

≤ (κ(|ξ|)ξ − κ(|η|)η, ξ − η) , ∀ξ, η ∈ Rd (3.3)

|κ(|ξ|)ξ − κ(|η|)η| ≤ β|ξ − η|, ∀ξ, η ∈ Rd. (3.4)
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Proof. To prove (3.3), we use the lower bound in Assumption 1.1.

(κ(|ξ|)ξ − κ(|η|)η, ξ − η) = κ(|ξ|)|ξ|2 + κ(|η|)|η|
2
− [κ(|ξ|) + κ(|η|)]ξ · η

= (κ(|ξ|)|ξ| − κ(|η|)|η|) (|ξ| − |η|) + [κ(|ξ|) + κ(|η|)] (|ξ||η| − ξ · η)

≥ α(|ξ| − |η|)2 + 2α (|ξ||η| − ξ · η)

= α|ξ − η|
2.

On the other hand, by the upper bound in Assumption 1.1, we have,

|κ(|ξ|)ξ − κ(|η|)η|
2

= κ(|ξ|)|ξ|2 + κ(|η|)|η|
2
− 2κ(|ξ|)κ(|η|)ξ · η

= (κ(|ξ|)|ξ| − κ(|η|)|η|)2 + 2κ(|ξ|)κ(|η|) (|ξ||η| − ξ · η)

≤ β2 (|ξ| − |η|)2 + 2β2 (|ξ||η| − ξ · η)

= β2
|ξ − η|

2.

Taking square root on both sides, we obtain (3.4). □

The estimate (3.3) in Lemma 3.3 implies the following strong monotonicity of ah.

Lemma 3.4. If the coefficient κ satisfies Assumption 1.1, then the nonlinear form ah defined in (2.3) is strongly monotone in
the sense that

α|||u1 − u2|||
2
≤ ah(u1; u1, u1 − u2) − ah(u2; u2, u1 − u2), ∀u1, u2 ∈ V 0

h .

Proof. The conclusion is a direct consequence of the inequality (3.3). □

On the other hand, the estimate (3.4) implies the following Lipschitz continuity of ah.

Lemma 3.5. If the coefficient κ satisfies Assumption 1.1, then the nonlinear form ah defined in (2.3) is Lipschitz continuous
in the sense that

|ah(u1; u1, v) − ah(u2; u2, v)| ≤ β|||u1 − u2||||||v|||, ∀u1, u2, v ∈ V 0
h .

Proof. By inequality (3.4), we immediately get that

|ah(u1; u1, v) − ah(u2; u2, v)| =
⏐⏐(κ(|∇wu1|)∇wu1 − κ(|∇wu2|)∇wu2, ∇wv)Th

⏐⏐
≤ β|||u1 − u2||||||v|||.

This completes the proof. □

Now, we are ready to present the existence and uniqueness of (2.3).

Theorem 3.6. If the coefficient κ satisfies Assumption 1.1, then the weak Galerkin finite element scheme (2.3) has a unique
solution.

Proof. In order to use the abstract existence and uniqueness result in Theorem 3.1, we first need to rewrite Eq. (2.3) in
the operator form on the finite dimensional Hilbert space V 0

h with the inner product and norm defined in (2.4). For any
v = {v0, vb} ∈ V 0

h we have (cf. [8, Lemma 7.1], and Lemma 2.1)

∥v0∥ ≤ C∥v∥1,h ≤ C |||v|||. (3.5)

Hence, we have

|(f , v0)| ≤ ∥f ∥∥v0∥ ≤ C∥f ∥|||v|||.

This implies that f is a bounded linear functional on V 0
h . Then by Riesz representation theorem, there exists an f ∈ V 0

h
such that

(f , v) = ⟨f , v⟩, ∀v ∈ V 0
h .

Here, ⟨·, ·⟩ is the inner product defined in (2.4).
Fix a w ∈ V 0

h , consider the linear functional Φw(v) := ah(w; w, v) for any v ∈ V 0
h . By Assumption 1.1, it is clear that

Φw(v) ≤ β|||w||||||v|||.

That is, Φw is a bounded linear functional on V 0
h . By Riesz representation theorem, there exists a N(w) ∈ V 0

h such that

Φw(v) = ⟨N(w), v⟩, ∀v ∈ V 0
h .
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Therefore, (2.3) is equivalent to the following operator form: Find uh ∈ V 0
h such that

N(uh) = f . (3.6)

Lemma 3.4 implies that N is strongly monotone, and Lemma 3.5 implies that N is Lipschitz continuous on V 0
h . By

Theorem 3.1, (3.6) has a unique solution. Therefore, (2.3) has a unique solution. □

4. Error analysis

In this section, we establish the error estimate for the WG finite element approximation (2.3) in the energy norm
defined in (2.4). For this purpose, we first introduce the following lemmas.

Lemma 4.1 ([10, Lemma 2.1]). Let v ∈ H1(Ω), then on any element T ∈ Th, it holds

∇wv = Qh∇v. (4.1)

Lemma 4.2 ([10, Lemma 4.3]). Let w ∈ Hk+1(Ω). Then

|||w − Qhw|||≤ Chk
|w|k+1. (4.2)

Now we are ready to prove the main theorem.

Theorem 4.3. Let uh ∈ Vh be the weak Galerkin finite element solution to (2.3). Assume that u ∈ Hk+1(Ω) is the exact
solution to (1.1), and the coefficient κ satisfies Assumption 1.1. If in addition, κ ∈ W k,∞(Ω ×R+), then there exists a constant
C > 0 independent of h, u and uh such that

|||u − uh|||≤ Chk
∥u∥k+1.

Proof. By (4.2) and the triangle inequality, it suffices to show that

|||uh − Qhu|||≤ Chk
|u|k+1. (4.3)

For simplicity, let eh := uh−Qhu = {e0, eb} ∈ V 0
h , where e0 = u0−Q0u and eb = ub−Qbu. We also denote σ(v) := κ(|∇v|)∇v

and σw(v) := κ(|∇wv|)∇wv.
We test the continuous equation (1.1) with v0 for any v = {v0, vb} ∈ V 0

h . Notice that the flux σ(u) is continuous in the
normal direction, we obtain

(σ(u), ∇v0)Th − ⟨σ(u) · n, v0 − vb⟩∂Th = (f , v0)Th . (4.4)

Then by the strong monotonicity Lemma 3.4, we have

α|||eh|||2 ≤ ah(uh; uh, eh) − ah(Qhu;Qhu, eh)
= (f , e0)Th − ah(Qhu;Qhu, eh)

= (σ(u), ∇e0)Th − ⟨σ(u) · n, e0 − eb⟩∂Th − (σw(Qhu), ∇weh)Th , (4.5)

where we used (4.4) in the last step. On each T ∈ Th, it follows from integration by parts and the definition of the discrete
weak gradient (2.2),

(σ(u), ∇e0)T = (Qh(σ(u)), ∇e0)T
= −(∇ · Qh(σ(u)), e0)T + ⟨Qh(σ(u)) · n, e0⟩∂T
= (Qh(σ(u)), ∇weh)T + ⟨Qh(σ(u)) · n, e0 − eb⟩∂T .

Therefore, we get

(σ(u), ∇e0)Th = (Qh(σ(u)), ∇weh)Th + ⟨Qh(σ(u)) · n, e0 − eb⟩∂Th . (4.6)

Replacing the first term on the right-hand side of the inequality (4.5) with the right-hand side of (4.6), we obtain

α|||eh|||2 ≤ (Qh(σ(u)) − σw(Qhu), ∇weh)Th

− ⟨(Qh(σ(u)) − σ(u)) · n, e0 − eb⟩∂Th . (4.7)

To estimate the first term in (4.7), we have

∥Qh(σ(u)) − σw(Qhu)∥ ≤ ∥(I − Qh)σ(u)∥ + ∥σ(u) − σw(Qhu)∥

≤ Chk
|σ(u)|k + β∥∇u − ∇w(Qhu)∥

≤ Chk
|u|k+1 + β (∥∇u − ∇wu∥ + ∥∇w(u − Qhu)∥)
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= Chk
|u|k+1 + β (∥∇u − Qh∇u∥ + |||u − Qhu|||)

≤ Chk
|u|k+1 (4.8)

where in the second inequality we used the inequality (3.4), in the third inequality we used the condition κ ∈ W k,∞(Ω ×

R+), and in the fourth equality we used Lemma 4.1 for the second term and the definition of the norm (2.4) for the last
term. Here, we have also used the approximation properties for Qh and Qh in the last step. In particular, we have

∥q − Qhq∥ ≤ Chk
|q|k (4.9)

(see [13, Lemma 4.1] for a proof of this inequality on general polytopal mesh); for the last term |||u − Qhu|||, the estimate
follows directly from (4.2). Therefore, we obtain the following estimate for the first term in (4.7)

(Qh(σ(u)) − σw(Qhu), ∇weh)Th ≤ ∥Qh(σ(u)) − σw(Qhu)∥|||eh|||

≤ Chk
|u|k+1|||eh|||. (4.10)

Now we turn to estimate the second term in (4.7). We need the following trace inequality for any function v ∈ H1(T )
(cf. [13]):

∥v∥
2
∂T ≤ C(h−1

T ∥v∥
2
T + hT∥∇v∥

2
T ). (4.11)

By this trace inequality and the estimate (4.8), we have the following estimate for the second term in (4.7):

⟨(Qh(σ(u)) − σ(u)) · n, e0 − eb⟩∂Th

≤ C
∑
T∈Th

∥Qh(σ(u)) − σ(u)∥∂T∥e0 − eb∥∂T

≤ C

⎛⎝∑
T∈Th

hT∥Qh(σ(u)) − σ(u)∥2
∂T

⎞⎠1/2 ⎛⎝∑
T∈Th

h−1
T ∥e0 − eb∥2

∂T

⎞⎠1/2

≤ Chk
|σ(u)|k|||eh|||≤ Chk

|u|k+1|||eh|||. (4.12)

In the last inequality, we used the trace inequality (4.11), the estimate (4.9), the condition κ ∈ W k,∞(Ω × R+), and
the norm equivalency (2.6). The conclusion then follows directly from inequalities (4.10) and (4.12). This completes the
proof. □

5. Numerical experiments

We apply the new stabilizer-free weak Galerkin finite element method with various polynomial degrees and on various
polygonal grids, to two monotone elliptic equations. Even though we did not give the analysis for the L2 error estimates,
we present them in these numerical examples for comparison. Note the L2 error between the exact solution u ∈ H1

0 (Ω)
and the WG approximation uh = {u0, ub} ∈ V 0

h is defined by

∥u − uh∥
2
0 :=

∑
T∈Th

∫
T
|u − u0|

2dx.

5.1. Example 1

We solve problem (1.1) on square domain Ω = (0, 1)2, where the coefficient function and the exact solution are

κ(|∇u|) = 1 + e−|∇u|2 , u = sin(πx)(y − y2). (5.1)

This function κ satisfies condition (1.2) with α = 1 −
√
2/e and β = 2.

We compute the solution (5.1) on two types of grids, shown in Figs. 1 and 2. We use Pk (k = 1, 2, 3, 4 in (2.1)) weak
Galerkin finite elements with Pk+1 weak gradient (j = k + 1) in (2.2) on rectangular grids (Fig. 1), and Pk (k = 1, 2, 3
in (2.1)) weak Galerkin finite elements with Pk+2 weak gradient (j = k + 2) in (2.2) on polygonal grids (Fig. 2). In the
computation, the function κ(|∇uh|) is interpolated in to the discontinuous Pk−1 space on the same grid. On each level, we
solve the nonlinear discrete equations by the relaxed-Picard iteration. The errors and the order of convergence are listed
in Tables 1–2 for the computation on two types of grids, respectively.

For a comparison, we also solve this problem by the traditional weak Galerkin finite element method, i.e., the method
with a stabilization/penalty. The WG with a stabilization is to find uh = {u0, ub} ∈ V 0

h such that:

(κ(|∇wuh|)∇wuh, ∇wv)Th
+ ⟨

1
h
(u0 − ub), v0 − vb⟩∂Th = (f , v0) (5.2)
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Fig. 1. The level one, level two and level three rectangular grids.

Fig. 2. The level one and level two quadrilateral–pentagonal–hexagonal grids.

Table 1
The error and the order of convergence for (5.1) by Pk WG finite elements (2.1) on square grids (Fig. 1).
Level ∥uh − u∥0 Rate |||uh − u||| Rate

P1 element with P2 gradient (j = 2 in (2.2))

4 0.6829E−03 2.58 0.3218E−01 1.97
5 0.1343E−03 2.35 0.8080E−02 1.99
6 0.3071E−04 2.13 0.2022E−02 2.00
7 0.7483E−05 2.04 0.5056E−03 2.00

P2 element with P3 gradient (j = 3 in (2.2))

4 0.7518E−04 3.93 0.5291E−02 2.97
5 0.5663E−05 3.73 0.6690E−03 2.98
6 0.4687E−06 3.59 0.8390E−04 3.00
7 0.4698E−07 3.32 0.1049E−04 3.00

P3 element with P4 gradient (j = 4 in (2.2))

3 0.3009E−03 6.82 0.9279E−02 4.72
4 0.1304E−04 4.53 0.5598E−03 4.05
5 0.7081E−06 4.20 0.3455E−04 4.02
6 0.3753E−07 4.24 0.2298E−05 3.91

P4 element with P5 gradient (j = 5 in (2.2))

2 0.3124E−01 2.67 0.2036E+00 3.04
3 0.1762E−03 7.47 0.2652E−02 6.26
4 0.1811E−05 6.60 0.5513E−04 5.59
5 0.6090E−07 4.89 0.3395E−05 4.02

for all v = {v0, vb} ∈ V 0
h , where

⟨
1
h
(u0 − ub), v0 − vb⟩∂Th =

∑
T∈Th

∫
e⊂∂T

1
h
(u0 − ub)(v0 − vb)ds. (5.3)

The computation is performed on a PC with an Intel i5-7200U CPU at 2.50 GHz. We list the total CPU time for the two
methods in Table 3. The differences are negligible. But the new method is slightly more accurate than the traditional weak
Galerkin finite element. This is because the traditional WG has a penalty term which makes the solution more continuous
(both new and the traditional solutions are discontinuous) but less flexible. Of course, the P2 solutions are much more
accurate than the P1 solutions with less computational time.
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Table 2
The error and the order of convergence for (5.1) by Pk WG finite elements (2.1) on quadrilateral–pentagonal–hexagonal
grids (Fig. 2).
Level ∥uh − u∥0 Rate |||uh − u||| Rate

P1 element with P3 gradient (j = 3 in (2.2))

3 0.3785E−02 0.92 0.1751E+00 0.94
4 0.1315E−02 1.53 0.8855E−01 0.98
5 0.3692E−03 1.83 0.4418E−01 1.00
6 0.9499E−04 1.96 0.2206E−01 1.00

P2 element with P4 gradient (j = 4 in (2.2))

3 0.1219E−02 1.81 0.1617E−01 1.86
4 0.3427E−03 1.83 0.4533E−02 1.84
5 0.8914E−04 1.94 0.1187E−02 1.93
6 0.2254E−04 1.98 0.3011E−03 1.98

P3 element with P5 gradient (j = 5 in (2.2))

2 0.1024E−02 2.75 0.1865E−01 1.99
3 0.1550E−03 2.72 0.4905E−02 1.93
4 0.1422E−04 3.45 0.6854E−03 2.84
5 0.1489E−05 3.26 0.8820E−04 2.96

Table 3
A comparison of new WG (2.3) and the traditional WG (5.2), for solving (5.1) on square grids (Fig. 1).
Level ∥uh − u∥0 Rate |||uh − u||| Rate

New P1 WG by (2.3)

5 0.1343E−03 2.35 0.8080E−02 1.99
6 0.3071E−04 2.13 0.2022E−02 2.00
7 0.7483E−05 2.04 0.5056E−03 2.00

Total CPU time = 876.28125 s

The traditional P1 WG by (5.2)

5 0.1489E−03 2.28 0.9474E−02 1.89
6 0.3520E−04 2.08 0.2932E−02 1.69
7 0.8681E−05 2.02 0.1132E−02 1.37

Total CPU time = 876.09375 s

New P2 WG by (2.3)

4 0.7447E−04 3.94 0.5288E−02 2.97
5 0.5553E−05 3.75 0.6681E−03 2.98
6 0.4609E−06 3.59 0.8377E−04 3.00

Total CPU time = 371.625 s

The traditional P2 WG by (5.2)

4 0.7005E−04 4.00 0.5564E−02 2.96
5 0.5040E−05 3.80 0.7260E−03 2.94
6 0.4027E−06 3.65 0.1024E−03 2.83

Total CPU time = 372.25 s

5.2. Example 2

We solve problem (1.1) on square domain Ω = (0, 1)2 again, where the coefficient function and the exact solution are

κ(|∇u|) =
3 + 2|∇u|
1 + |∇u|

, u = (x − x2) sin(πy). (5.4)

The errors and the order of convergence are listed in Tables 4–5 for the computation on two types of grids shown in
Figs. 1 and 2, respectively. This function κ satisfies condition (1.2) with α = 2 and β = 3. But this non-linear function has
an additional singularity, comparing to that in Example 1, the square-root singularity. This is related to the assumption
κ ∈ W k,∞(Ω × R+) in Theorem 4.3. Here the singularity is caused by the function |∇u| =

√
u2
x + u2

y , whose partial
derivatives will blowup as ∇u ≈ 0 especially when the order k > 1. Due to the loss of regularity of the coefficient κ , the
higher order finite element methods do not perform as good as the results in Example 1 (see Tables 4–5).

6. Conclusion

In this paper, we studied the stabilizer-free weak Galerkin methods for a class of second order elliptic boundary value
problems of divergence form and with gradient nonlinearity in the principal coefficient. With certain assumption on
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Table 4
The error and the order of convergence for (5.4) by Pk WG finite elements (2.1) on square grids (Fig. 1).
Level ∥uh − u∥0 Rate |||uh − u||| Rate

P1 element with P2 gradient (j = 2 in (2.2))

4 0.6126E−03 3.42 0.3214E−01 2.06
5 0.7175E−04 3.09 0.7950E−02 2.02
6 0.1003E−04 2.84 0.1982E−02 2.00
7 0.1721E−05 2.54 0.4952E−03 2.00

P2 element with P3 gradient (j = 3 in (2.2))

4 0.3328E−03 3.95 0.6875E−02 3.00
5 0.2511E−04 3.73 0.8669E−03 2.99
6 0.2382E−05 3.40 0.1095E−03 2.98
7 0.2701E−06 3.14 0.1382E−04 2.99

P3 element with P4 gradient (j = 4 in (2.2))

2 0.7066E−01 0.97 0.3533E+00 1.82
3 0.4185E−02 4.08 0.3976E−01 3.15
4 0.2706E−03 3.95 0.4931E−02 3.01
5 0.2536E−04 3.42 0.6241E−03 2.98

P4 element with P5 gradient (j = 5 in (2.2))

2 0.7508E−01 0.98 0.3588E+00 1.95
3 0.7335E−02 3.36 0.4763E−01 2.91
4 0.6863E−03 3.42 0.6028E−02 2.98
5 0.7295E−04 3.23 0.7777E−03 2.95

Table 5
The error and the order of convergence for (5.4) by Pk WG finite elements (2.1) on quadrilateral–pentagonal–hexagonal
grids (Fig. 2).
Level ∥uh − u∥0 Rate |||uh − u||| Rate

P1 element with P3 gradient (j = 3 in (2.2))

3 0.5015E−02 2.09 0.1725E+00 1.01
4 0.1308E−02 1.94 0.8634E−01 1.00
5 0.3324E−03 1.98 0.4319E−01 1.00
6 0.8356E−04 1.99 0.2160E−01 1.00

P2 element with P4 gradient (j = 4 in (2.2))

3 0.4899E−03 3.56 0.1394E−01 2.29
4 0.7084E−04 2.79 0.3275E−02 2.09
5 0.1548E−04 2.19 0.8049E−03 2.02
6 0.3853E−05 2.01 0.2001E−03 2.01

P3 element with P5 gradient (j = 5 in (2.2))

2 0.4760E−02 2.79 0.3883E−01 2.41
3 0.2852E−03 4.06 0.4779E−02 3.02
4 0.1755E−04 4.02 0.5969E−03 3.00
5 0.1114E−05 3.98 0.7501E−04 2.99

the nonlinear coefficient, we showed that the discrete problem has a unique solution. This was achieved by showing the
associated operator satisfies certain continuity and monotonicity properties. With the help of these properties, we derived
optimal error estimates in the energy norm. We presented several numerical experiments to verify the error estimates.

From the numerical experiments in Section 5, we observed superconvergence in both L2 and energy error estimates,
especially on the rectangular grids (cf. Tables 1 and 4). These phenomena, as well as the effects of numerical quadrature
on the approximation will be investigated in future works.
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