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a b s t r a c t

We parameterize the error in the time-relaxation model of turbulence by means of
a deterministic corrector with stochastic noise term that represents the unresolved
effects of the small scales on the large scales. Our method uses the large scales from
a reference solution of the Navier–Stokes equations to compute the corrections needed
to ensure the large scales from the turbulence model are the same as those in the
reference solution over time. In the absence of model error, the theory of determining
modes implies the size of the corrections needed over time decrease to zero provided
enough Fourier modes were observed from the reference solution. In the presence of
model error, the corrections do not decrease to zero. In this case, we call them the
unresolved tendencies. After a theoretical analysis on the size of the these tendencies,
our main result parameterizes them using a least-squares fit and characterizes the
resulting residual as a time-correlated Gaussian noise processes. In doing so, we not
only obtain an improved turbulence model, but a concrete representation of the error
in the time-relaxation model of turbulence.

© 2020 The Author. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The time-relaxation model of turbulence was introduced in 2001 by Stolz, Adams and Kleiser [1] as a way to
approximate evolution of incompressible fluid flow with less computational effort than a direct numerical simulation
of Navier–Stokes equations. The truncation of scales in the time-relaxation model were analyzed by Layton and Neda
in [2] and a parameter sensitivity analysis performed by Neda, Pahlevani and Waters [3]. Additional studies appear in
Dunca and Neda [4], in [5] and references therein. Advantages of the time-relaxation model include simplicity of numerical
implementation using well-developed pressure solvers already present in existing subroutine libraries as well as suitability
for wall-bounded flows.

In this paper the time-relaxation model represents a typical approximation of the incompressible Navier–Stokes needed
for a definite context in which to develop and test the method of stochastic parameterization that will be described shortly.
A similar parameterization could be performed for any dynamical system designed to approximate another. Doing so
not only has the potential to improve the accuracy of the approximate dynamics, but the resulting characterization of
errors further provides a quantitative framework for comparing different turbulence models. Before embarking on such a
comparative analysis, it is important to first develop the theoretical and computational framework needed to effectively
perform the stochastic parameterization. This, then, is our goal.

The method of stochastic parameterization presented here is inspired by the work of Wilks [6] for the two-layer Lorenz
96 model. In that paper the effects of the small scales in the second layer on the large scales in the first was modeled
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by a fourth-degree polynomial plus a time-correlated noise term given by a discrete Ornstein–Uhlenbeck process, also
called a red-noise Markov process. Lu, Lin and Chorin [7] perform a similar study of the effects of the small scales in
the Kuramoto–Sivashinsky equation on a low-dimensional Fourier truncation. In that work a second-degree polynomial
based on an approximate inertial manifold was used plus a discrete q-step noise process designed to more accurately
characterize the time-correlations present in the errors of the low-dimensional truncation. Other research along these
lines include Mohebujjaman, Rebholz, Iliescu [8], among others. See also the references in each of the above papers.

We note that the reduced dynamics considered in all the above studies started out as a low-dimensional projection
which did not initially contain any terms to model the effects of the small scales on the large ones. As a result, significant
improvements could be made by introducing terms deduced from the data to represent those effects. One distinguishing
feature of the time-relaxation model (and other reasonable turbulence models) is that add-hoc and theoretical averaging
techniques have already been used to construct terms which represent the effects of the missing scales. As a result, we
are working in a context where improvements are more difficult to come by and where simply characterizing existing
model errors becomes increasingly important. Turbulence models may also include variables and degrees of freedom that
do not obviously correspond to any of the available data when using data-driven correction techniques. This is another
difficulty that has to be overcome.

To motivate our research, recall that a natural task in the experimental sciences is to use observational measurements
of a physical system taken over time to improve existing mathematical models of those physical systems. Related is the
task of characterizing the model error in a model in order to obtain estimates on the uncertainties in predictions made
using those approximations. Both these activities are directly connected to one of the primary uses of mathematics in
science: to predict the future. With this in mind, one of our tasks is to improve an existing turbulence model to obtain
greater predictive ability.

Consider, therefore, two dynamical systems

du
dt

= F (u) and
dũ
dt

= F̃ (ũ)

where F represents the exact dynamics we wish to compute and F̃ represents an approximation of those dynamics that
we are able to compute. Our goal is to use observational data of the solution u to construct a more accurate dynamical
system

dv
dt

= G(v) (1)

such that v(t) approximates u(t) for longer into the future than ũ(t) and then characterize the errors in that model.
In [9] the residual model error was defined as

dR
dt

= F (u) − F̃ (u) where
du
dt

= F (u)

and subsequently computed for the LANS-α and NS-α deconvolution models of turbulence. It was discovered in all
cases that the model error was correlated over short distances in both space and time. However, for certain choices
of parameters |R| grew as

√
t while for other values it grew linearly. As a good turbulence model should be free of the

systematic biases that lead to linear error growth, one of the purposes of the corrector we shall obtain through data-driven
stochastic parameterization is to remove such systematic biases. The remaining model error can then be characterized by
a mean-zero time-correlated noise process.

Although the techniques presented in this paper could also be applied to the LANS-α and NS-α deconvolution models
of turbulence, we have chosen to study only the time-relaxation model. We remark that each of these models employ
the same spatial filter to obtain average velocity fields; however, in the time-relaxation model that filter is applied as
a relaxation term while in the others it appears as a smoothing term in the nonlinear velocity transport. It would be
interesting to use stochastic parameterization to compare these and other turbulence models. As this is outside the scope
of the present research, such comparisons are left for future work.

Returning to the task at hand, note that obtaining an improved dynamical model from observational measurements is
different but similar to the goal of data-assimilation, whereby incomplete observational measurements are used over time
to obtain an improved estimate of the current state for subsequent forecasting. We therefore couple the solutions u and
ũ in a way similar to the direct-insertion method of Charney, Halem and Jastrow [10]. Given observational measurements
of u represented by Pu where P is a low-dimensional orthogonal projection, compute q such that q0 = 0 and

dq
dt

= (I − P )̃F (q + Pu) where
du
dt

= F (u) (2)

to obtain an approximation of u given by q+ Pu. An alternative way to describe this same algorithm may be obtained by
writing U = q + Pu and Q = I − P to obtain that

dU
dt

= Q F̃ (U) + PF (u) where
du
dt

= F (u). (3)

In real-world applications the projection P will likely include filtering to regularize and remove measurement errors
from the observational data. As data assimilation is not our focus, we avoid such difficulties by assuming Pu is given by
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a noise-free Fourier projection onto the large scales of the flow. Such an idealized setting was first considered for the
two-dimensional incompressible Navier–Stokes equations in a periodic domain by Browning, Henshaw and Kreiss [11],
see also Henshaw, Kreiss and Yström [12]. In [13] and [14] it was theoretically proved and verified numerically thatu − U


L2 → 0 exponentially as t → ∞ (4)

for projections P of sufficient rank when F̃ = F and there is no model error.
When F̃ ̸= F and there is model error, the most one can hope for is a bound such as

lim sup
t→∞

u − U

L2 ≤ E (5)

where E is a function of the model error. Ideally, we would like that

E → 0 as F̃ → F (6)

for projections P such that (4) holds. This is, in fact, the result of Theorem 2 as proved in the present paper and further
verified through numerical simulation.

We shall relate the continuous-in-time coupling described by (3) with an easier to compute near-continuous coupling
defined as follows. Let tn = hn for h > 0 small and consider

dũ
dt

= F̃ (ũ) for t ∈ [tn, tn+1) (7)

with initial conditions on each interval given by

ũ(tn) =

{
Pu0 for n = 0
Pu(tn) + (I − P) limt↗tn ũ(t) for n > 0.

(8)

The above algorithm under the assumption F̃ = F of no model error was studied in [15], see also [16], for the two-
dimensional incompressible Navier–Stokes equations. Analysis in those works prove for any h > 0 that there is P of
sufficient rank such that

∥u − ũ∥L2 → 0 exponentially as t → ∞.

When F̃ ̸= F and there is model error, a result similar to (5) should hold. That is, given suitable choices for h and P we
expect there to be a bound of the form

lim sup
t→∞

∥u − ũ∥L2 ≤ E (9)

where E, as before, is a function of the model error.
Upon defining the tendencies

τ n
= (νh)−1(Pu(tn) − Pũn) where ũn

= limt↗tn ũ(t) (10)

one can express the coupling in (8) as ũ(tn) = νhτ n
+ ũn. Here ν is a positive constant – the viscosity in the Navier–Stokes

equation – included to scale the values of τ n in a way that is convenient later. We now make a critical remark:
If the tendencies τ n could be predicted for tn in the future, we could then use those tendencies to compute (7) for as far
into the future as we like while maintaining the bound described in (9).

Of course, knowing the τ n arbitrarily far into the future is essentially as difficult as knowing the solution u itself. However,
such a rephrasing of the problem indicates how F̃ needs to be modified to obtain a uniform-in-time approximation of the
exact solution far into the future. In particular, we now have a framework in which to construct a statistical model based
on the observations Pu(tn) obtained at times tn in the past to predict τ n in the future. The resulting characterization of τ n

can then be used to construct the dynamical model denoted above by G which we shall call the corrected model as well
as a corresponding system of stochastic differential equations which make the model error explicit.

This paper is organized as follows. In Section 2 we recall the two-dimensional Navier–Stokes equations and describe
the time-relaxation model in detail. We then prove Theorem 2 and finish by testing the sharpness of that theorem
using numerical simulation. Section 3 performs the data-driven stochastic parameterization. After a linearly-constrained
least-squares fit is performed to find the corrector the remaining mean-zero residuals are then modeled by fitting a
time-correlated red-noise process. We also state and prove two propositions relating the near-continuous dynamics used
to numerically fit our parameters to the continuous dynamics used to describe the final system of stochastic equations.
The paper finishes with some numerical tests in Section 4 comparing the original time-relaxation model to our improved
deterministic and stochastic models. This is followed by concluding remarks and directions for future research.

2. Theory and data assimilation

The two-dimensional incompressible Navier–Stokes equations are given by
∂u
∂t

− ν∆u + (u · ∇)u + ∇p = f and ∇ · u = 0, (11)
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where u = u(x, t) is the Eulerian velocity field, ν is the kinematic viscosity, p is the physical pressure and f a
time-independent body forcing.

We begin by recalling the Fourier representation of these equations on periodic domains and then describe the time-
relaxation model of turbulence. Throughout, we shall employ the functional notation of Constantin and Foias [17], see
also Robinson [18]. In particular, define the norms

∥u∥2
γ = 4π2

∑
k∈Z2

|k|2γ |uk|
2 for u =

∑
k∈Z2

ukeik·x

where uk ∈ C2 and the corresponding spaces

Vγ =
{
u : k · uk = 0, u−k = uk, u0 = 0 and ∥u∥γ < ∞

}
.

The condition k · uk = 0 implies the elements of each space are divergence free, u−k = uk implies they are real valued
and u0 = 0 indicates the average velocity is zero.

For simplicity denote

|u| = ∥u∥0, ∥u∥ = ∥u∥1 and ∥u∥∗ = ∥u∥−1

as well as

H = V0, V = V1 and V ∗
= V−1.

Note that H is a Hilbert space and V ∗ is the dual of V with respect to the pairing

(u, v) = 4π2
∑
k∈Z2

ukvk.

Thus, V ⊆ H ⊆ V ∗ forms a Gelfand triple with continuous, compact and dense injections.
Now, write the Leray–Helmholtz projector and Stokes operator as

Πu =

∑
k∈Z2

uk · (k2, −k1)
|k|2

[ k2
−k1

]
eik·x and Au = Π

∑
k∈Z2

|k|2ukeik·x,

respectively, and the bilinear term as

B(u, v) = Π
∑
k∈Z2

Bkeik·x where Bk =

∑
ℓ∈Z2

i(uk−ℓ · ℓ)vℓ.

Note that including the projection Π in the definitions of A and B ensures the range of each operator is divergence free.
This, along with the assumption that f ∈ H , allows us to express the incompressible two-dimensional Navier–Stokes
equations (11) as

du
dt

+ νAu + B(u, u) = f . (12)

It is known, see [17] or [18] for details, that the incompressible two-dimensional Navier–Stokes equations (12) possess
unique strong solutions depending continuously on the initial condition u0. Namely, we have

Theorem 1. Let u0 ∈ V and f ∈ H. Then (12) has unique strong solutions that satisfy

u ∈ L∞
(
(0, T ); V

)
∩ L2

(
(0, T ); V2

)
and

du
dt

∈ L2
(
(0, T );H

)
for any T > 0. Furthermore, this solution is in C

(
[0, T ]; V

)
and depends continuously on the initial data u0 in the V norm.

Moreover, these equations possess a unique global attractor A such that

u ∈ A implies ∥u∥ ≤ ρV = νλ
1/2
1 G

where G = |f |/(ν2λ1) is the Grashof number. Here λ1 has units length−2 and is a dimensional constant – the smallest
eigenvalue of the Stokes operator – which happens to have the numerical value of 1 since we are working with 2π-periodic
functions. We further recall the orthogonality condition for the bilinear term and Ladyzhenskaya bound given by(

B(u, v), v
)

= 0 and
⏐⏐(B(u, v), u)⏐⏐ ≤ c1|u|∥u∥∥v∥, (13)

respectively, which hold for functions u, v ∈ V . Here c1 is an absolute constant depending only on the shape of the domain
and in the present case satisfies c1 ≤ 2 + (2π )−1.

The time-relaxation model may be obtained from the incompressible two-dimensional Navier–Stokes equations by
adding a relaxation term that contains a spatial filter designed to attenuate small scales. We denote that filter by

Hũ =

∑
k∈Z2

Hkũkeik·x where Hk = 1 −
α2

|k|2

1 + α2|k|2
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and express the time-relaxation model as

dũ
dt

+ νAũ + B(ũ, ũ) = f + χ
(
Hũ − ũ

)
. (14)

The time-relaxation model contains two parameters, α which determines the length-scales upon which the filter acts as
well as the relaxation parameter χ . We shall write F̃ → F to indicate that the time-relaxation model converges to the
two-dimensional incompressible Navier–Stokes equations as either α → 0 or χ → 0.

Define the orthogonal projection P onto the large-scale Fourier modes appearing in (2) and its complement Q by

Pu =

∑
0<|k|2≤λ

ukeik.x and Q = I − P .

Here λ > 0 is a parameter that determines the resolution of observational measurements represented by Pu.
Before turning to the task of proving the theoretical bounds given in (5), we note, after checking that the additional term

χ
(
H(ũ)− ũ

)
does no harm to the estimates, that the well-posedness of (2) follows directly from the proof of Theorem 3.1

in [13] covering the case when F̃ = F . We now state and prove Theorem 2, which not only implies E → 0 as F̃ → F but
suggests the rate of convergence in terms of α and χ .

Theorem 2. Suppose the reference solution u ∈ A lies on the global attractor of the incompressible two-dimensional
Navier–Stokes equations. Let U be the solution to (3) and λ ≥ 4c21ν

−2ρ2
V . Then

lim sup
t→∞

|u − U | ≤ α2χC1 where C1 =
2ρV

ν1/2 .

Proof. Setting w = u − U it follows that Pw = 0 and Qw = w. Moreover,

dw
dt

= QF (u) − Q F̃ (U) (15)

= −νAw − QB(u, u) + QB(U,U) − χQ (HU − U).

Differencing yields

−B(u, u) + B(U,U) = −B(w, u) + B(w, w) − B(u, w)

and

−χ (HU − U) = χ (Hw − w) − χ (Hu − u).

In light of the fact that Qw = w, the orthogonality (13) implies(
QB(w, w), w

)
= 0 and

(
QB(u, w), w

)
= 0.

Now, multiplying (15) by w and integrating over space yields

1
2
d|w|

2

dt
+ ν∥w∥

2
= −

(
B(w, u), w

)
+ χ (Hw − w, w) − χ (Hu − u, w).

Estimate using Ladyzhenskaya’s inequality (13) to obtain(
B(w, u), w

)
≤ |w|

2
L4∥u∥ ≤

c21
ν

|w|
2ρ2

V +
ν

4
∥w∥

2.

Estimate

(Hw − w, w) = −4π2
∑

|k|2>λ

α2
|k|2

1 + α2|k|2
|wk|

2
≤ 0 (16)

and using similar techniques estimateQ (Hu − u)
2

∗
= 4π2

∑
|k|2>λ

( α2
|k|2

1 + α2|k|2
)2

|k|−2
|uk|

2

= 4π2α4
∑

|k|2>λ

( 1
1 + α2|k|2

)2
|k|2|uk|

2
≤ α4

∥u∥2.
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It follows that

χ |(Hu − u, w)| ≤ ∥Hu − u∥∗∥w∥ ≤
χ2

ν
∥Hu − u∥2

0 +
ν

4
∥w∥

2

≤
α4χ2

ν
∥u∥2

+
ν

4
∥w∥

2
≤

α4χ2

ν
ρ2
V +

ν

4
∥w∥

2.

Since Pw = 0 the improved Poincaré inequality

|w|
2

= 4π2
∑

|k|2>λ

|wk|
2

≤ 4π2
∑

|k|2>λ

|k|2

λ
|wk|

2
= λ−1

∥w∥
2

now implies

d|w|
2

dt
+

(
νλ −

2c21
ν

ρ2
V

)
|w|

2
≤ 2α4χ2ρ2

V .

By hypothesis ν2λ ≥ 4c21ρ
2
V ; consequently,

d|w|
2

dt
+

νλ

2
|w|

2
≤ 2α4χ2ρ2

V .

Now, multiplying by the integrating factor eνt/2 yields

d|w|
2eνλt/2

dt
≤ 2α4χ2ρ2

V e
νλt/2

from which it follows that

|w|
2

≤ |w0|
2e−νλt/2

+ 2α4χ2ρ2
V e

−νλt/2
∫ t

0
eνλs/2ds

= |w0|
2e−νλt/2

+ α4χ2
(4ρ2

V

νλ

)(
1 − e−νλt/2). (17)

Therefore,

lim sup
t→∞

|w|
2

≤ α4χ2C1 where C1 =
4ρ2

V

νλ
.

This finishes the proof of the theorem. ■

Note that F̃ → F as either α → 0 or χ → 0 and in both these cases we have that the upper bound E → 0 as
mentioned in (6). The theorem, however, also suggests a dependency of E as a function of α and χ . As it will be necessary
to compute U for different values of α and χ to find the corrector and resulting stochastic parameterization which form
the focus of our research, we pause momentarily and use those same computations to check the sharpness of the bounds
found in Theorem 2.

To obtain results related to previous computations we consider the flow conditions studied in [13], see also [14].
Since, it is convenient for the corrector and resulting parameterization to involve fewer parameters, we specifically select
a forcing function f and viscosity ν for which the size of λ is modest and for which the resulting fluid is energetic and
undergoes complicated time-dependent motion. Thus, we set ν = 0.0001 and take the body force to be supported on an
annulus in Fourier space as

f =

∑
16≤|k|2≤34

fkeik·x

with the time-independent modes fk ∈ C2 chosen such that

k · fk = 0, f−k = fk, and |f | = 0.0025.

Note in this case that the Grashof number G = 250 000 and that λ = 5 is sufficient in the case F̃ = F to ensure (4) holds.
All computations were performed with 256 × 256 Fourier transforms using a spectral Galerkin method consisting

of 170 × 170 dealiased modes, only half of which need to be computed because of the conjugate symmetry. Time
was integrated using a 3rd-order Adams–Bashforth method with a step size of 0.0078125. A detailed description of the
numerical code appears in [13] and [14]. It is interesting that the dual-processor Pentium III computer on which the
original code was developed had an aggregate parallel performance of about 11 time steps per second while the 32-core
EPYC server used for the present computations achieves an aggregate parallel performance of 13184 time steps per second.
Although computer performance has increased 1000 fold, the scope of practical problems being solved in applications has
increased at an even greater rate. Therefore, methods for constructing approximate dynamics that efficiently yield accurate
results are as relevant today as ever.
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Fig. 1. The degree to which the time-relaxation model synchronizes to the Navier–Stokes equations when coupled on Fourier modes with |k|2 ≤ 5.
The left shows the dependency on the filter length-scale α; the right considers the relaxation parameter χ .

To obtain an initial condition u0 ∈ A for the reference solution u used in our numerical experiments, we perform a
preliminary long-time simulation of only the two-dimensional incompressible Navier–Stokes equations starting at time
t = −25 000 in the past. By t = 0 the energetics of the flow have long since appeared to enter into a time-varying
state with stationary statistical properties. The solution u obtained by moving forward in time from u0 is consequently
presumed to lie close to a point on the global attractor A and to within the limits of rounding error exactly on the
global attractor corresponding to the discretized dynamics. For reference, following the definition appearing in [19], the
large-eddy turnover time Tε of the resulting flow averaged for t ∈ [0, 25 000] is Tε = 90.5775.

Numerical computations to check the sharpness of the bounds in Theorem 2 were performed for values of α and χ

such that

α ∈ {0.0, 0.005, 0.01, 0.02, 0.04, 0.08} (18)

and

χ ∈ {0.0, 0.00625, 0.0125, 0.025, 0.05}. (19)

Fig. 1 illustrates the behavior of |u − U | for U0 = Pu0 where u0 ∈ A is the initial condition described above. For
all choices of parameters tested, the norm |u − U | initially decreased at the same exponential rate as the case when
F̃ = F . Though not shown in the graphs, when F̃ = F the difference between ũ and u continued to decrease at the same
exponential rate until reaching the limits of rounding error, that is, until |u − U | ≤ 10−15. While the theoretical estimate
given by (17) also describes an initial decay whose exponential rate is independent of the choice of parameters, it should
be noted that the rate e−νλt/2 predicted by the theory is much slower than observed numerically. The transfer of energy
between scales due to the bilinear term B is likely responsible for the rapid convergence of the approximating solution U
to the reference solution u; however, the effects of these physics did not play a role in the analysis.

When F̃ ̸= F the evolution of |u − U | levels out after time t = 2000 and begins to fluctuate around some average value.
Interestingly, the pattern of fluctuation looks quite similar for each of the different values of α and χ tested. Note also
that the separation between each of the curves is noticeably greater when varying α compared to varying χ . In particular,
the theoretical bound given in Theorem 2 where α appears with a higher power than χ seems to reflect a computational
property shown by the graphs.

Before turning to the task of stochastic parameterization, we further examine the theoretical bound in Theorem 2 in
relation to the numerical bounds

E(α, χ ) = max
{
|u − U | : t ∈ [10 000, 25 000]

}
.

Using the values summarized in Table 1, we then suppose that

log E(α, χ ) ≈ m0 + m1 logα + m2 logχ

and perform a least-squares fit to obtain

m0 ≈ 4.46007, m1 ≈ 1.63203 and m2 ≈ 0.83383.

Although, the values of m1 and m2 are not exactly equal to 2 and 1, respectively, it is interesting that m1 is almost exactly
the double of m2.
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Table 1
Upper bounds on ∥u − U∥L2 where t ∈ [10 000, 25 000] as a function of α and χ for the time-relaxation model.
α χ = 0.00625 χ = 0.0125 χ = 0.25 χ = 0.05

0.005 1.64938e−04 3.27937e−04 6.48201e−04 1.26636e−03
0.010 6.46036e−04 1.26227e−03 2.41116e−03 4.41967e−03
0.020 2.38330e−03 4.37428e−03 7.76947e−03 1.42511e−02
0.040 7.45131e−03 1.37361e−02 2.32833e−02 3.58971e−02
0.080 2.11713e−02 3.26244e−02 5.40707e−02 8.02256e−02

On the other hand, since m1 < 2 and m2 < 1 then the bounds of Theorem 2 are guaranteed to dominate in the limit.
This implies that the values we have estimated for m1 and m2 from Table 1 could not hold possibly hold as α → 0 or
χ → 0. Additional computations for smaller values of α and χ resolve this problem but would constitute a distraction
too far from our ultimate goal. It is worth noting, however, that a quick reexamination of Fig. 1 indicates the curves for
smaller values of α and χ are just perceptibly farther apart.

3. Stochastic parameterization

Having studied what happens when the large-scale Fourier modes of an approximating solution governed by the
time-relaxation model are replaced by the corresponding Fourier modes of a direct numerical simulation of the two-
dimensional incompressible Navier–Stokes equations, we now look into the energetics needed to realize that coupling as
an additional force. To this end, consider the tendencies τ n defined by (10). We begin by making a connection between
the discrete-in-time coupling given in (7) and the continuous-in-time coupling (2) studied in the previous section.

From a numerical point of view, the only thing necessary to identify (7) with (2) is to take h equal to the size of the time
steps used by the time integrator. As all our simulations have been performed using a fixed time step of size 0.0078125,
we consequently take h = 0.0078125. From a physical point of view, this means we are sampling τ n about 11 600 times
per large-eddy turnover. Mathematically, on the other hand, there is a significant difference between near-continuous
and continuous coupling.

To provide a mathematical connection between the two consider the limit h → 0. We begin by studying the
convergence of the low modes with

Proposition 1. Suppose for any T > 0 fixed that there is M independent of h and large enough such that

|PF̃ (ũ)| ≤ M for all t ∈ [0, T ].

Then |Pũ(t) − PU(t)| → 0 as h → 0.

Proof. Since u ∈ A, then by taking M larger if necessary, we may further assume

|PF (u)| ≤ M for all t ∈ [0, T ].

By definition

u(tn) = u(tn−1) +

∫ tn

tn−1

F (u) and ũn
= ũ(tn−1) +

∫ tn

tn−1

F̃ (ũ).

Therefore, since (8) implies Pũ(tn−1) = Pu(tn−1), it follows that

νhτ n
= P

(
u(tn) − ũn)

=

∫ tn

tn−1

P
(
F (u) − F̃ (ũ)

)
. (20)

For notational convenience denote by δ(t) the Dirac impulse and formally rewrite Eqs. (7) governing the evolution of
ũ as

dũ
dt

= F̃ (ũ) + ν

∞∑
n=1

δ(t − tn)hτ n where ũ0 = Pu0. (21)

Consequently, for any t ∈ [0, T ] such that t ̸= tn for all n, we have that

ũ(t) = ũ(0) +

∫ t

0
F̃ (ũ) + ν

∫ t

0

∞∑
n=1

δ(t − tn)hτ n

= Pu0 +

∫ t

0
F̃ (ũ) + ν

∑
tn<t

δ(t − tn)hτ n
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= Pu0 +

∫ t

0
F̃ (ũ) +

∫ tn

0
P
(
F (u) − F̃ (ũ)

)
= Pu0 +

∫ tn

0
Q F̃ (ũ) +

∫ tn

0
PF (u) +

∫ t

tn
F̃ (ũ).

Integrating (3) in the case of continuous coupling yields

U(t) = Pu0 +

∫ t

0
Q F̃ (U) +

∫ t

0
PF (u).

Therefore,

|Pũ(t) − PU(t)| ≤

∫ t

tn
|PF (u)| +

∫ t

tn
|PF̃ (ũ)|. (22)

At the same time, if t = tn for some n, then Pũ(t) = PU(t). Thus, the above bound (22) actually holds for all t ∈ [0, T ]

and h > 0.
Given the hypothesis that both |PF (u)| and |PF̃ (ũ)| are bounded by M and the fact that |t − tn| ≤ h we conclude

|Pũ(t) − PU(t)| ≤ 2hM → 0 as h → 0.

This verifies the low modes of ũ and U agree in the limit. ■

We remark the hypothesis in Proposition 1 on the existence of an M independent of h is a strong one. It is likely such
an assumption can be justified when λ is sufficiently large using arguments similar to those appearing in [15]. We leave
such things as future research while noting for completeness that when λ = 5 our numerics fully support the claim that
|̃F ũ| is bounded independent of h.

Proposition 2. Suppose λ ≥ 4c21ν
−2ρ2

V as in Theorem 2. Then, there exists a non-decreasing function g where g(ε) → 0 as
ε → 0 such that

sup
{
|Pũ(t) − PU(t)| : t ∈ [0, T ]

}
≤ ε

implies |Q ũ − QU(t)| ≤ eg(ε)T − 1 for all t ∈ [0, T ] and any ε > 0.

Proof. Since the high modes are governed identically as

dQ ũ
dt

= Q F̃ (ũ) and
dQU
dt

= Q F̃ (U),

then setting W = Q ũ − QU and w̃ = ũ − U yields
dW
dt

= −νAW − QB(ũ, ũ) + QB(U,U) + χ (H(W ) − W ).

Thus,
dW
dt

= −νAW − QB(w̃, ũ) + QB(w̃, w̃) − QB(ũ, w̃) + χ (H(W ) − W ).

Taking inner product with W yields

1
2
d|W |

2

dt
+ ν∥W∥

2
≤ −(B(w̃, ũ),W ) + (B(w̃, w̃),W ) − (B(ũ, w̃),W ).

Using

|w̃|
1/2

≤ |W |
1/2

+ |Pw̃|
1/2 and ∥w̃∥

1/2
≤ ∥W∥

1/2
+ ∥Pw̃∥

1/2

estimate as⏐⏐(B(w̃, ũ),W )
⏐⏐ ≤ c1|w̃|

1/2
∥w̃∥

1/2
|W |

1/2
∥W∥

1/2
∥u∥

≤ c1ρV |W |∥W∥ + c1λ−1/4ε1/2ρV |W |∥W∥
1/2

+ c1ε1/2ρV |W |
1/2

∥W∥ + c1λ1/4ερV |W |
1/2

∥W∥
1/2,⏐⏐(B(w̃, w̃),W )

⏐⏐ = |(B(w̃, Pw̃),W )|

≤ c1|w̃|
1/2

∥w̃∥
1/2

|W |
1/2

∥W∥
1/2

∥Pw̃∥

≤ c1ε|W |∥W∥ + c1λ−1/4ε3/2
|W |∥W∥

1/2

+ c1ε3/2
|W |

1/2
∥W∥ + c1λ1/4ε2

|W |
1/2

∥W∥
1/2
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and ⏐⏐(B(ũ, w̃),W )
⏐⏐ = |(B(ũ, Pw̃),W )|

≤ c1|ũ|
1/2

∥ũ∥1/2
|W |

1/2
∥W∥

1/2
∥Pw̃∥

≤ c1ελ1/2λ
1/4
1 ρV |W |

1/2
∥W∥

1/2.

After repeatedly applying the inequality

ab ≤
|a|p

p
+

|b|q

q
where

1
p

+
1
q

= 1

for various powers of p and q, we finally obtain that⏐⏐(B(w̃, ũ),W )
⏐⏐ +

⏐⏐(B(w̃, w̃),W )
⏐⏐ +

⏐⏐(B(ũ, w̃),W )
⏐⏐

≤
ν

2
∥W∥

2
+

c21ρ
2

ν
|W |

2
+

g(ε)
2

(
1 + |W |

2)
where g(ε) → 0 as ε → 0. It follows that

d|W |
2

dt
+

(
νλ −

2c21ρ
2

ν

)
|W |

2
≤ g(ε)

(
1 + |W |

2).
This implies

d(1 + |W |
2)

dt
≤ g(ε)

(
1 + |W |

2).
Therefore

1 + |W (t)|2 ≤
(
1 + |W0|

2)eg(ε)t ,
and since W0 = 0, then |W (t)|2 ≤ eg(ε)T − 1 for all t ∈ [0, T ]. ■

Since Proposition 1 implies ε → 0 as h → 0 and hence eg(ε)T − 1 → 0, then combining Propositions 1 and 2 together
yields that

|ũ(t) − U(t)| → 0 uniformly for t ∈ [0, T ] as h → 0. (23)

Having finished the mathematical discussion connecting near-continuous coupling to the continuous coupling in the limit
h → 0, we return to our main focus: Developing a statistical model for predicting the values of τ n into the future.

Philosophically, our method of prediction is based on the idea that the exact dynamics denoted by F governing the
evolution of u are either unknown or computationally too expensive to implement. In the present case, of course, this
is not true. The two-dimensional incompressible Navier–Stokes equations are well known and computationally tractable.
Though we focus on two-dimensional turbulence, our purpose, in reality, is to better understand how to improve any type
of approximate dynamics using data-driven stochastic parameterization based on observational measurements. Thus, we
pretend for a moment that the only thing we can compute is ũ using the time-relaxation model and that we can also
make observations Pu of a solution u mysteriously computed by someone else. Now, since it is known that the low Fourier
modes given by Pu are sufficient to ensure ũ stays uniformly close to u, then all we need is to find a way of predicting
the values of Pu, or equivalently τ n, for times in the future. Switching things around, since τ n depends on Pu and Pu is
approximated by Pũ, we suppose that it may be possible to approximate τ n as a function of Pũ. Thus, our first task is to
find a corrector given as a functional relationship between τ n and Pũn.

In our simulations λ = 5 and the rank of P is 20. However, due to the fact that the velocity field is real valued, it holds
that ũ−k = ũk. Therefore, only 10 complex degrees of freedom are represented by the tendencies τ n. For definiteness we
postulate a functional dependency of τ n on Pũn such that

τ n
≈ τ̃ n where τ̃ n

= ΩPũn
+ β

and Ω ∈ C10×10 and β ∈ C10. This form for τ̃ n is not only convenient but it can correct for excess dissipation – a linear
phenomenon – and the biases that affect some turbulence models. To maintain a real-valued and divergence-free flow
we further impose the constrains that

τ̃ n
−k = τ̃ n

k and k · τ̃ n
k = 0 for every n ∈ N.

Note that the flow is automatically mean zero since k = (0, 0) is not included among the modes onto which P is a
projection.

Upon counting the entries in Ω and β , one sees there are 110 complex parameters that need to be found in order
construct our corrector. Even though this may seem like a large number of parameters, there is little problem over fitting
because of how large we take the time series in n. In particular, we employ N = 3 200 000 values for τ n and ũn in our
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Fig. 2. Comparison of predicted tendencies τ̃k to actual tendencies τk viewed as a function of ũk for k = (0, 1). To show detail only data taken at
the times tn for n = 0, 8000, 16 000, . . . , 3 192 000 have been plotted.

calculations. Since h = 0.0078125, this means the resulting corrector was obtained by fitting values over the time interval
[0, T ] where T = 25 000.

In order to model the errors in the predicted tendencies τ̃ n with a mean-zero noise process, we impose a further linear
constraint on the choice of Ω and β to ensure

1
N

N∑
n=1

τ n
=

1
N

N∑
n=1

τ̃ n. (24)

This reduces the number of complex parameters to 100. Forming the matrix needed to perform a least-squares fit results
in a 10N×100 complex-valued matrix taking 24 GB of RAM which can be processed on a well-equipped desktop computer.
For computational efficiency, similar estimates of Ω and β can be obtained by subsampling the tendency information as

ũnµ and τ nµ for a fixed µ ∈ N (25)

chosen (for example µ = 32) to ensure the resulting matrices are easy to process. It is, therefore, possible to quickly
find approximations for Ω and β corresponding to each of the combinations of α and χ specified by (18) and (19) in the
previous section.

To visualize how the tendencies τ̃ n predicted by Pũn are related to the actual tendencies τ n, we create scatter plots
made out of the real slices

(Re ũn
k, Re τ n

ℓ ) compared with (Re ũn
k, Re τ̃ n

ℓ )

for values of k and ℓ such that 0 < |k|2 ≤ 5 and 0 < |ℓ|2 ≤ 5 as well as

(Re ũn
k, Im τ n

ℓ ) compared with (Re ũn
k, Im τ̃ n

ℓ )
(Im ũn

k, Re τ n
ℓ ) compared with (Im ũn

k, Re τ̃ n
ℓ )

and
(Im ũn

k, Im τ n
ℓ ) compared with (Im ũn

k, Im τ̃ n
ℓ ).

As there are 400 such plots, we only reproduce a few representative examples.
Fig. 2 illustrates a pronounced correlation between the reals parts of ũ(0,1) and τ(0,1) but little correlation when the

real and imaginary parts are mixed. Note that a graph similar to the one on the left reveals a similar correlation between
imaginary and imaginary parts; a graph similar to the one of the right indicates little correlation when the real and
imaginary parts are mixed the other way around. These observations also hold when k = ℓ for other Fourier modes. On
the other hand, when k ̸= ℓ the graphs in Fig. 3 along with other representative examples suggest there is very little
correlation between τℓ and ũk.

In general, the diagonal terms in the matrix Ω are noticeably larger than the off-diagonal terms. Moreover, as those
diagonal terms do not represent significant correlations between the real and imaginary parts, they are also approximately
real. Since the filter denoted by H in the time-relaxation model (14) acts in Fourier space only along the diagonal, it is
natural that corrector found by our least-squares regression is concentrated along the diagonal. Moreover, as shown by
the analysis in (16) among other places, the relaxation term acts in a purely dissipative way. Therefore, as confirmed by



12 E. Olson / Results in Applied Mathematics 8 (2020) 100114

Fig. 3. Comparison of predicted tendencies τ̃ℓ to actual tendencies τℓ viewed as a function of ũk for k, ℓ ∈ { (0, 1), (0, 2) }. To show detail only data
taken at the times tn for n = 0, 8000, 16 000, . . . , 3 192 000 have been plotted.

the positive slope of the correlation shown on the left in Fig. 2, it seems reasonable that the diagonal of Ω be positive to
correct for the extra dissipation.

Before characterizing the errors in our predicted values of τ n, we explicitly write down the function G which provides
the more accurate dynamics described in (1). We first argue, in a somewhat heuristic fashion, that Ω and β , which depend
on h, have limits when h → ∞. To see this, first set h = t/n so that t = tn is fixed and rewrite (20) as

τ (t) =
1
νh

∫ t

t−h
P
(
F (u) − F̃ (ũ)

)
.

Under the assumptions where Proposition 1 holds Eq. (23) implies the convergence of ũ → U is uniform. For similar
reasons PF̃ (ũ) → PF̃ (U) uniformly. Therefore,

1
νh

∫ t

t−h
P
(̃
F (U) − F̃ (ũ)

)
→ 0 as h → 0.

Also, since both F (u) and F̃ (U) are continuous functions of t , then

1
νh

∫ t

t−h
P
(
F (u) − F̃ (U)

)
→ ν−1P

(
F (u(t)) − F̃ (U(t))

)
as h → 0.

Thus, τ (t) → τ ◦(t) as h → 0 where τ ◦(t) = ν−1P
(
F (u(t)) − F̃ (U(t))

)
.

Let Ω◦ and β◦ be chosen to minimize∫ T

0
|τ ◦(s) − τ̃ ◦(s)|2ds where τ̃ ◦(s) = Ω◦Pu(s) + β◦ (26)

subject to the constrains that

τ̃ ◦

−k(t) = τ̃ ◦

k (t) and k · τ̃ ◦

k (t) = 0 for all t ∈ [0, T ]

as well as
1
T

∫ T

0
τ ◦(s)ds =

1
T

∫ T

0
τ̃ ◦(s)ds.

Since the definition of τ n includes h in the denominator, then the least-squares problems used to define Ω and β are
exactly the Riemann sums whose limits correspond to (26). Because of this, we further claim without proof that Ω → Ω◦

and β → β◦ as h → 0.
Under this assumption we now insert τ̃ n into (21) to obtain

dṽ
dt

= F̃ (ṽ) + ν

∞∑
n=1

δ(t − tn)h(ΩP ṽn
+ β) where ṽn

= limt↗tn ṽ(t)

and then take the limit as h → 0 to obtain the corrected model
dv
dt

= G(v) where G(v) = F̃ (v) + ν(Ω◦Pv + β◦). (27)
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Since the dynamics of F̃ have been modified only in the low modes, the problem of solving for v is still well posed.
Whether the system is still dissipative is less clear as indeed it appears the numerical value of Ω found above acts as a
source of energy.

We turn now to the task of using a red-noise process of the form

Xn
k = φh

x,kX
n−1
k + σx,k(1 − φ2h

x,k)
1/2ξ n

k

Y n
k = φh

y,kY
n−1
k + σy,k(1 − φ2h

y,k)
1/2ηn

k (28)

where ξ n
k and ηn

k are independent standard Gaussian random variables to model the errors xnk and ynk in the predicted
tendencies defined by

xnk + iynk = τ n
k − τ̃ n

k where 0 < |k|2 ≤ λ.

There are two natural ways to initialize the noise process given in (28): One could simply set X0
k = σx,kξ

0
k and Y 0

k = σy,kη
0
k

where ξ 0
k and η0

k are again independent standard Gaussian random variables; alternatively, one could set X0
k = x0k and

Y 0
k = y0k so that τ̃ 0

k + X0
k + iY 0

k exactly agrees with the last observed tendency τ 0
k prior to making predictions. The latter

makes more sense in the context of data assimilation and consequently the strategy taken in Section 4. We now seek to
find σx,k, σy,k, φx,k and φy,k for which the statistical properties of Xk and Yk reflect those of the actual errors xk and yk.

Since the noise-processes used for the real and imaginary parts have an identical structure, we describe only how to
fit the parameters σx,k > 0 and φx,k ∈ [0, 1]. Moreover, for simplicity, we omit x from the subscripts and write only σk
and φk in what follows. Now, as in [6], we estimate σk by computing the variance as

σ 2
k =

1
N

N∑
n=1

|xnk |
2 since

1
N

N∑
n=1

xnk = 0

is already ensured by the constraint (24) used to determine Ω and β .
Next, estimate φk. Since the autocorrelation of the noise process Xn

k is given by

φhℓ
k =

Cov(Xn+ℓ
k , Xn

k )
V[Xn

k ]
,

we first estimate the corresponding quantities for the actual errors in the tendencies as

γ ℓ
k =

1
N − ℓ

N−ℓ∑
j=1

(
xjk − ⟨x0k⟩

)(
xj+ℓ

k − ⟨xℓ
k⟩

)
=

1
N − ℓ

N−ℓ∑
j=1

(
xjkx

j+ℓ

k − ⟨x0k⟩⟨x
ℓ
k⟩

)
where

⟨xmk ⟩ =
1

N − ℓ

N−ℓ∑
j=1

xj+m
k .

Although Ω and β were chosen so the average over all values of xnk is zero, it is unlikely that every shifted average ⟨xmk ⟩

is also zero. It is important, therefore, to subtract these terms when estimating the autocorrelation.
The next step is to choose φk such that

φhℓ
k ≈ γ ℓ

k /γ 0
k for all ℓ ∈ N.

Unfortunately, the combination of non-linear dynamics and continuous dependence on initial conditions that lead to
the time correlations represented by γ ℓ

k /γ 0
k are quite different in nature than the exponentially decaying correlations

represented by φk. As a result, it is impossible to obtain a truly convincing fit no matter what value of φk is chosen. While
a more complicated noise process as considered in [7] could lead to a better fit, the noise given by (28) is easier to handle
in the limit h → 0 and appears sufficient to quantify the model error remaining in the corrected dynamics given by G as
well as predict the rate at which solutions obtained from that model deviate from the exact solution u.

Therefore, to find φk we first choose ℓ so that γ ℓ
k /γ 0

k ≈ ε where ε is a fixed value in (0, 1), and then choose φk so that
φhℓ
k has the same value. Specifically, set ε = 0.5 and then interpolate φk as φk = ε1/(hℓ+θ ) where ℓ and θ satisfy

γ ℓ+1
k

γ 0
k

≤ ε <
γ ℓ
k

γ 0
k

and θ = h log
(εγ 0

k

γ ℓ
k

)/
log

(γ ℓ+1
k

γ ℓ
k

)
.

Before carrying out the above procedure, we say a few words about why our estimates for σk and φk are already scaled
in such a way as to have limits when h → 0. First, since we already know τ n

→ τ ◦(t), the definition of σk can then be
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Table 2
Values for the noise in the stochastic parameterization of the time-relaxation model when α = 0.02 and
χ = 0.0125.
k1 k2 σ 2

x,k σ 2
y,k φx,k φy,k

0 1 1.05831e−06 9.83669e−07 0.92203 0.92224
0 2 2.26852e−05 2.07332e−05 0.92575 0.92721
1 0 1.01637e−06 1.10255e−06 0.92271 0.92134
1 1 3.69466e−06 3.84067e−06 0.92258 0.91853
1 2 2.23293e−04 2.20599e−04 0.94458 0.94387
2 0 2.16467e−05 2.36145e−05 0.92643 0.92423
2 1 2.25934e−04 2.56874e−04 0.93935 0.94655
−2 1 2.59807e−04 2.28193e−04 0.94238 0.93992
−1 1 4.24431e−06 3.83753e−06 0.91897 0.92331
−1 2 2.13486e−04 2.23961e−04 0.93927 0.94268

interpreted as a Riemann sum which converges to

(s◦)2 =

∫ T

0
|τ ◦(s) − τ̃ ◦(s)|2 as h → 0.

For φk the argument is somewhat different. Express the red-noise process in terms of h as

Xk(t + h) = φh
kXk(t) + σk(1 − φ2h

k )1/2ξk(t + h)

and then iterate to obtain

Xk(t + 2h) = φh
kXk(t + h) + σk(1 − φh

k )
1/2

+ ξk(t + h)

= φ2h
k Xk(t) + σk(1 − φ4h

k )1/2ζk(t + 2h)

where

ζk(t + 2h) =
ξk(t + h) + ξk(t)
(1 + φ2h

k )1/2

is again a standard Gaussian random variable. Notice, since the exponent on φk scales exactly as the increment in time
with no further adjustments needed to the constants, that this suggests – again without rigorous proof – there is some
φ◦

k such that φk → φ◦

k as h → 0.
In summary, having verified that σk and φk have no obvious dimensional dependencies on h, we assume their limits

exist as h → 0 and for reference write down the corresponding continuous in time Ornstein–Uhlenbeck process

dXk = (logφ◦

k )Xk dt + σ ◦

k (−2 logφ◦

k )
1/2dWk

where the Wk are independent standard Brownian motions. Upon defining dZk = dXk + idYk we obtain the full stochastic
model

dV = F̃ (V )dt + ν(Ω◦PV + β◦)dt + νdZ . (29)

While it would be nice to make the above arguments rigorous, we leave such things for future work and return to the
numerics of the present paper.

Numerical values of σ 2
x,k, σ

2
y,k, φx,k and φy,k are tabulated in Table 2. Note that the time correlations in the noise processes

denoted by φx,k and φy,k are similar for each of the Fourier modes and have an average values of about 0.9307. Thus, the
estimate

φ
Tε
k ≈ (0.9307)90.5775 ≈ 0.0014958

shows the tendencies before and after one large-eddy turnover are essentially uncorrelated. This is strikingly similar to
the result reported in [9], that after one large-eddy turnover the residual error in the LANS-α model is also uncorrelated.

Table 2 indicates that the variances σ 2
x,k and σ 2

y,k vary over two decimal orders of magnitude. To measure the overall
effectiveness of our corrector in predicting the tendencies we compute the total variance

Σ2(α, χ ) =

∑
0<|k|2≤5

(
σ 2
x,k + σ 2

y,k

)
for the values of α and χ given by (18) and (19). Table 3 lists values for Σ2(α, χ ) computed with respect to the least
squares fit of Ω and β obtained by subsampling the tendencies as suggested in (25) by the factor µ = 32. A few of
these entries were compared to the results obtained when Ω and β were found using the complete time series with no
appreciable differences. We remark that the values of Σ2(α, χ ) depend more strongly on α than they do as a function of
χ . This is reminiscent to how E(α, χ ) in Table 1 depended on α and χ .
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Fig. 4. The ideal solution constructed using the actual tendencies compared with the original time-relaxation model, the corrected model, the
stochastic model with σ = 0 and eleven different realizations of the full stochastic model.

Table 3
Values of the total variance Σ2(α, χ ) of the error in the predicted tendencies of the time-relaxation
model.
α χ = 0.00625 χ = 0.0125 χ = 0.25 χ = 0.05

0.005 2.08738e−06 8.33508e−06 3.32248e−05 1.31978e−04
0.010 3.29975e−05 1.31081e−04 5.17078e−04 2.01083e−03
0.020 5.03846e−04 1.96061e−03 7.41123e−03 2.63869e−02
0.040 6.79747e−03 2.43741e−02 7.87789e−02 2.18037e−01
0.080 6.32765e−02 1.82659e−01 4.38065e−01 8.69494e−01

4. Improved predictions

In this section we compare the energetics of the corrected model (27) to the original time-relaxation model and then
check whether the corrected model can be used to better predict the future. We also check whether the full stochastic
equations (29) well-characterize the model errors in our approximate dynamics by computing spaghetti plots made using
different realizations of the underlying noise process.

To do this we first compute a solution using (7) based on the exact tendencies τ n which couple the low Fourier modes
in two-dimensional incompressible Navier–Stokes equations to the corresponding modes in the time-relaxation model at
every time step. Such a computation was performed using every choice of α and χ satisfying (18) and (19) for 25 000
units of time—approximately 275 large-eddy turnovers. Then we turn off the coupling and make a prediction into the
future based on the current state in the following ways: By computing

• A free-running solution using the original time-relaxation model (14).
• An improved solution using the corrected dynamics (27).
• A deterministic version of (29) obtained by taking σ = 0.
• An ensemble of stochastic solutions to (29) computed with respect to different realizations of the noise process.

To use as a reference for the others, we also to compute the coupled solution (7) forward in time and call this the ideal
solution.

The graphs on the left in Fig. 4 and in Fig. 5 depict the time evolutions of the L2 norms of the solutions described
above. When α = 0.02 and χ = 0.125 the norm of the solution computed by the original dynamics follows that of the
ideal solution for about one large-eddy turnover and then proceeds at a reduced level still reflecting the same pattern of
fluctuations until about t = 450. On the other hand, the norm of the solutions produced by the corrected dynamics and
stochastic models do not exhibit any increased levels of dissipation and track the norm of the ideal solution quite closely to
time t = 450. After that the norms diverge, but the average levels of the L2 energy remain comparable. When α = 0.04 and
χ = 0.025 the excess dissipation in the original time-relaxation model becomes evident almost immediately and norm
of that solution runs off the bottom of the graph at t = 350. It continues to decrease until the end of the computation at
t = 700. As in the previous case, the corrected and stochastic solutions maintain the same level of energetics on average
as the ideal solution throughout most of the interval.

Before examining the graphs on the right, we also notice the ensemble of stochastic solutions includes both the ideal,
the corrected and the deterministic solution with σ = 0 in their envelope. Moreover, the different members of the
ensemble start to diverge from each other at a time and rate similar to the way they diverge from the ideal solutions.
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Fig. 5. The same comparison as Fig. 4 with different values for the parameters α and χ in the time-relaxation model.

Thus, one does not need the ideal solution to estimate the errors in the prediction. This is important, because for practical
problems the ideal solution is known only in retrospect through data-assimilation.

The graphs on the right in Figs. 4 and 5 depict the L2 norm of differences between the ideal solution and the original,
the corrected, the case when σ = 0 and the fully stochastic solutions. Since the trajectories obtained by the deterministic
solutions again fall within the envelope of stochastic solutions, one can again estimate the error in our predictions from
the stochastic solutions, for example, by computing the norms of the differences between members of the stochastic
ensemble.

When α = 0.02 and χ = 0.0125 we are happy to note that the solution obtained from the corrected dynamics as
well as the deterministic solution when σ = 0 both remain closer to the idea solution than the solution obtained from
the original time-relaxation model over the whole interval shown by the graph. However, such happiness is short lived,
because when α = 0.04 and χ = 0.025 the situation is reversed: the solution computed using the original dynamics stay
closer to the ideal solution over much of the graph up to time t = 450. The reason for this warrants further study. On
one hand this may be an effect of deterministic chaos resolved positively by repeatedly performing the same experiment
using different initial conditions; on the other, it could be a limitation of the methods used.

5. Conclusions

This paper improved the approximate dynamics of the time-relaxation model of turbulence by creating a corrector
and stochastic parameterization obtained by coupling the time-relaxation model through observational measurements
to a direct-numerical simulation of the two-dimensional incompressible Navier–Stokes equations. The final result was
a system of stochastic differential equations representing an improved dynamical model with more accurate energetics,
less bias and the ability to estimate errors in the resulting predictions. While an improved ability to predict the exact
flow was also observed in some cases, such improvements were not universal.

We have attempted to be as rigorous as possible; however, the present paper is of a numerical nature with rigorous
justification of theoretical results planned for the future. In particular, there is still significant work to be done, for example,
to fully characterize the circumstances under which the hypothesis of Proposition 1 hold. Moreover, we have argued in a
heuristic way when passing to the limit as h → 0. It would appear that providing fully rigorous analysis connecting the
continuous and near-continuous dynamical systems discussed in this paper is an important direction for further research.

We remarked in the beginning that the error in turbulence models is correlated in time as well as space. The present
paper characterized the time correlations in terms of a red-noise process but did not address correlations over short
distances in space. We note, however, that the noise process appearing in our parameterization is concentrated only on
the Fourier modes such that 0 < |k|2 ≤ 5. Because of this, we automatically obtain spatial correlations. While there is
reason to believe these spatial correlations are on the right scales, this has not been verified. Moreover, it is not clear such
spatial correlations remain invariant if a larger number of Fourier modes, for example those with 0 < |k|2 ≤ 10, were
used for the parameterization instead.

Note also, since the parameterization considered in this study involves only the large-scale Fourier modes where
0 < |k|2 ≤ 5, that this parameterization does not change the dynamics of the inertial-range. In particular, this implies
the energy and enstrophy cascades of the original and corrected time-relaxation turbulence models should be the same,
as well as the scaling of the corresponding energy spectra.

We close with a speculation that average properties such as the norm may better reflect the physical questions people
are interested in than the exact velocity field. In meteorology, for example, people want to know what the temperature
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will be and how much it will snow, rather than the exact position of the molecules which make up the air. Therefore, in
light of the mixed success in obtaining a better prediction of the velocity field itself, it is comforting to reflect on how
much improved were the predictions of the L2 energetics.
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