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In this paper, a tunable vibration absorber (TVA) is designed to suppress regenerative
chatter in milling of cantilever plates. In machining industry, the majority of work-piece
materials or the interaction of work-piece/cutting tool causes the cutting forces to demon-
strate nonlinear behavior. The application of TVA (as a semi-active controller) is investi-
gated for the process with an extensive nonlinear model of cutting forces. Under
regenerative chatter conditions, optimum values of the absorber position and its spring
stiffness are found such that the plate vibration is minimized. For this purpose, an optimal
algorithm is developed based on mode summation approach. Results are presented and
compared for two cases: regenerative chatter under resonance and non-resonance condi-
tions. It is shown that the absorber acts efficiently in chatter suppression of both machining
conditions, in a wide range of chatter frequencies. Moreover, using TVA leads to the great
improvement in stability limits of the process. Therefore, larger values of depth of cut and
consequently more material removal rate can be obtained without moving to the unstable
machining conditions.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

One of the major machining processes is the peripheral milling. It is especially implemented in aerospace industries
where the end mills are used for milling of wing parts and engine components. However, its appropriate performance
may be unreachable due to existence of various types of vibrations. In machining processes, self-excited vibration or chatter
is the most important type of vibration. Reduction of tool life, poor surface quality and decrease in productivity rate are the
adverse affects of chatter vibrations.

Machine tool chatter is caused either by regeneration or mode coupling, as two well known mechanisms. In machining
processes, the regenerative type is found to be the most important mode of chatter vibration. It occurs when the cut
produced at time t leaves a wavy surface on the material regenerated during subsequent passes of cut (Fig. 1). The phase
difference between the inner and outer waves and the dynamic gain of the system play a key role in stability of the cutting
process. In second mechanism, when there is no interaction between the vibration of the system and undulated surface of
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Fig. 1. Chatter instability caused by the regeneration mechanism.
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the work-piece, usually mode coupling occurs. Consequently, the tool traces out an elliptic path that varies the depth of cut
in such a way as to intensify the coupled modes of vibrations [1].

For the purpose of chatter prediction in high speed and high precision cutting processes, accurate models are required. To
obtain dynamic equations of various milling processes and prediction of cutting forces, deflection of machine components
and form errors, mechanistic approach has been extensively used [2,3]. In milling process, when the cutter has a uniform
pitch, the cutting forces are periodic at tooth passing intervals (due to multiple teeth cutter).

In milling process, chatter stability has been investigated in the frequency and discrete time domains for the linear mod-
els. Also, analytical solutions have been developed for direct prediction of stability lobes in the frequency domain [4] and
prediction of stability limits in high-speed milling (while multi-mode dynamics is considered) [5]. In discrete time domain
and for stability analysis, various methods have been used for direct inclusion of periodically varying system parameters.
Time finite element analysis (TFEA) to investigate limit cycles and bifurcation behavior [6]; semi-discretization and full-
discretization methods (SDM & FDM) for determination of stability lobes diagram [7–12]; and TFEA for simultaneous
predictions of stability and surface location error have been used [13].

In addition, SDM and TFEA have been used in analytical prediction of chatter stability for variable pitch and variable helix
tools [14]. Also, TEFA and Chebyshev collocation methods based on harmonic balance approach have been applied for
stability analysis [15]. A comparison between frequency and semi-discrete time solutions of the chatter stability [16];
and a fuzzy stability analysis for different domains have been presented [17].

Due to recent machining of materials with severe nonlinear characteristics, nonlinear modeling of the chatter phenom-
enon has received more attention. Considering the square and cubic polynomial terms related to the cutting forces, struc-
tural stiffness and power-law functions for cutting forces, delayed nonlinear models of the process have been governed
[18–21]. Also, other sources of nonlinearity in machining processes have been recognized including the visco-elastic and
hysteresis effects, variable friction, thermo-mechanical effect and intermittent engagement of the cutting tool [22].

In the previous researches [23,24], the extended nonlinear modeling of cutting forces and development of closed form
expression through Fourier series expansion have been accomplished. Considering the structural and cutting forces
nonlinearities, dynamics of regenerative chatter and internal resonance phenomenon was investigated [23]. In other
research, nonlinear dynamics and bifurcation analysis of the milling process in the presence of tool wear, process damping
and cutting force nonlinearities was studied [24].

To suppress regenerative chatter in machining processes, various passive and active control approaches have been used.
Tunable vibration absorbers and tuned viscoelastic dampers for turning [25,26], boring [27,28] and milling processes have
been used as some effective passive techniques [29,30]. Also, for the case of nonlinear cutting forces in milling operations, a
tunable vibration absorber was designed to suppress regenerative chatter and improve stability limits of the process [12].

It should be mentioned that in the previous work [12], tunable vibration absorbers (TVAs) were designed to suppress
regenerative chatter of the milling process in which the cutting tool was modeled as an Euler–Bernoulli beam (as a
continuous vibrating system). That case essentially occurs when a relatively long extension part is used (in milling processes
where the access to the work-piece is difficult due to work-space limitations). In [12], the work-piece dynamics was assumed
to be rigid and all the structure flexibility was considered in the cutting tool. In this research (unlike [12]), the cutting tool is
modeled as a lumped rigid 2DOF model (due to its short length), while all the structural flexibility is considered in the thin
plate work-piece. Therefore, the scope of current research is completely different from the previous [12], both in physical
implementation and engineering applications.

Moreover, to avoid chatter vibrations, the changing and selection of spindle speed have been studied [31–34]. In the
category of active vibration control, various works have been developed such as active vibration absorbers [35] and model
reference adaptive control to achieve constant cutting forces, e.g., [34,36]. In addition, active control systems for chatter
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suppression [37,38] have been implemented and sliding mode control and robust control of regenerative chatter have been
proposed [39,40].

However in the majority of previous works, control strategies have been implemented in which the cutting tool or the
work-piece is considered as a one/two degrees of freedom model (SDOF/2DOF). During the milling process of plates, for
the cases where a cutting tool with relatively short extension part is used, this assumption may not be adequately accurate.
Although the short cutting tool (with very high natural frequencies) can be considered as a rigid body, plate work-piece is a
continuous system and contains infinite number of vibration modes. Therefore, if only the dominant mode is considered in
construction of control strategy, the rest of the structural modes may be excited; leading to the undesirable vibrations.

In this paper, a tunable vibration absorber (TVA) is designed for chatter suppression in the milling of plate work-pieces,
with nonlinear cutting force characteristics. Unlike the previous research [12] in which the cutting tool and work-piece were
modeled as flexible and rigid body parts (respectively), the short cutting tool is assumed to be rigid while the plate work-
piece is the flexible component. Unlike the previous work [41], where TVA was designed for a cantilever plate under the sim-
ple harmonic excitation (not in machining), closed form expressions for the nonlinear cutting forces are considered here.

In the presence of nonlinear regenerative chatter with associated time delay terms, the extensive formulation of the
process including the plate and attached absorber is presented. Developing an algorithm based on mode summation tech-
nique, optimum values of the absorber position and its spring stiffness are found such that the plate vibration is minimized.
Simulation results are presented and compared for two cases: regenerative chatter under resonance and non-resonance con-
ditions. For both machining conditions and in a wide range of chatter frequencies, TVA acts efficiently in chatter suppression.
It also improves the stability limits of process. Therefore, larger values of depth of cut and consequently more material
removal rate can be obtained, while dynamic system is stable.

2. Dynamics of the peripheral milling process in the presence of nonlinear regenerative chatter

2.1. Classical linear model of the cutting forces

Dynamics of the cutting forces in peripheral milling process is shown in Fig. 2. The immersion angle is measured clock-
wise from the y-axis and the axial (ac) and radial (w) depths of cut are constant. Assuming the bottom end of one flute as the
reference immersion angle /, the bottom end points of other flutes are described at the angles:
/jð0Þ ¼ /þ j/p; j ¼ 0;1; . . . ; ðN � 1Þ; /p ¼ 2p=N; ð1Þ
where /p is the cutter pitch angle and N is the number of cutter teeth. Considering the lag angle at an arbitrary axial depth of
cut z, the immersion angle of flute j is expressed as [42]:
/jðzÞ ¼ /þ j/p � ð2z=DÞ tan b; j ¼ 0;1; . . . ; ðN � 1Þ; ð2Þ
where b and D are helix angle and diameter of the cutter, respectively. Considering the cutting coefficients contributed by the
shearing and edge actions in tangential (Ktc; Kte) and radial (Krc; Kre) directions (while in 2D modeling, cutting force in the
axial direction is assumed to be negligible with respect to other components), acting cutting forces on a differential flute
element with height dz are expressed as:
dFt; jð/; zÞ ¼ ½Ktc hjð/jðzÞÞ þ Kte� dz;

dFr; jð/; zÞ ¼ ½Krc hjð/jðzÞÞ þ Kre� dz;
ð3Þ
where the chip thickness is:
Fig. 2. (a) Cutting forces in the peripheral milling process (b) dynamic chip thickness in regenerative chatter (Source: [16,42]).
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hjð/; zÞ ¼ cf sin /j ðzÞ ð4Þ
and cf is the feed per revolution. According to coordinates shown in Fig. 2, elemental forces in feed (x) and normal (y) direc-
tions are expressed in terms of tangential and radial forces as:
dFx; jð/; zÞ ¼ �dFt;j cos /jðzÞ � dFr;j sin /jðzÞ;
dFy; jð/; zÞ ¼ þdFt;j sin /jðzÞ � dFr; j cos /jðzÞ:

ð5Þ
Substituting Eqs. (3) and (4) in Eq. (5) and integrating analytically along the cut portion of the flute j, yields the closed
form expressions for cutting forces (see [42] for more details). The cutting forces contributed by all flutes are integrated
digitally to obtain the total forces as:
Fxð/Þ ¼
XN�1

j¼0

Fxj; Fyð/Þ ¼
XN�1

j¼0

Fyj: ð6Þ
2.2. Cutting forces in the presence of nonlinear regenerative chatter

Under machining conditions where cutting forces are inherently nonlinear functions of dynamic chip thickness (e.g.,
Titanium alloys), nonlinear modeling of the process is essential [18–24,42,43]. In addition, stability theories based on linear
dynamics cannot predict stability limits in correlation with those of obtained experimentally. Nonlinear modeling of cutting
forces is arisen from nonlinear material constitutive relations [20–22]. To achieve a more realistic model, cutting forces are
expressed as a complete third-order polynomial function of cut chip thickness as [12,23,24]:
dFt; jð/; zÞ ¼ ½n1 h3
j ð/jðzÞÞ þ n2 h2

j ð/jðzÞÞ þ n3 hjð/jðzÞÞ þ n4 �dz;

dFr; jð/; zÞ ¼ ½d1 h3
j ð/jðzÞÞ þ d2 h2

j ð/jðzÞÞ þ d3 hjð/jðzÞÞ þ d4 �dz;
ð7Þ
where cutting force coefficients ni; di; i ¼ 1; . . . ;4 are found directly from experimental force signals. The input excitations
are the cutting force components in tangential and radial directions (or consequently, Fx and Fy in x–y directions). These cut-
ting force components can be measured by a dynamometer in the absence/presence of regenerative chatter. After cutting
force measurements, their components Ft and Fr are plotted versus chip thickness h. Then, using the linear regression via
Curve Fitting Toolbox of MATLAB, applied on Eq. (7) in un-differential form, cutting force coefficients, ni; di; i ¼ 1; . . . ;4
can be obtained. Details of this identification procedure, implemented on some experimental cutting force data, have been
presented in [23,43].

It should be mentioned that the proposed nonlinear model of cutting forces (Eq. (7)) has an acceptable accuracy for a
relatively wide range of chip thicknesses. This is because, a complete third-order polynomial function is considered for
cutting forces as functions of chip thickness (unlike the previous researches [18–22,42], where a power-law function for
cutting forces was considered and then approximated through Taylor series). Especially, the efficiency of proposed nonlinear
modeling is more obvious when we deal with the machining conditions where cutting forces are inherently nonlinear func-
tions of dynamic chip thickness (e.g., machining of Titanium alloys) [18,20–22,42]. In the presence of regenerative chatter,
the variable total chip thickness is expressed as (instead of Eq. (4)):
h ð/jÞ ¼ ½cf sin /j þ v j;0 � v j�g ð/jÞ; ð8Þ
where cf is the feed per tooth per revolution; cf sin /j is the static part of the chip thickness caused by rigid body motion of
the cutter and v j;0 � v j is the dynamic part; produced due to vibrations of the tool at the present (v j) and previous (v j;0) tooth
periods. gð/jÞ is a unit step function determining whether the tooth is in or out of cut and is described in terms of start (/st)
and exit immersion (/ex) angles of the cutter as:
gð/jÞ ¼
1 /st < /j < /ex;

0 /st > /j or /ex < /j:

(
ð9Þ
Since the static part of chip thickness (cf sin /j) has no effect on the dynamic chip load regeneration mechanism, e.g., [1,4,6–
16], and according to the coordinates shown in Fig. 2, Eq. (8) is reduced to:
h ð/jÞ ¼ ½Dx sin /j þ Dy cos /j�g ð/jÞ; ð10Þ
where
Dx ¼ xðtÞ � xðt � sÞ; Dy ¼ yðtÞ � yðt � sÞ; s ¼ 2p=ðNXÞ; ð11Þ
½xðtÞ; yðtÞ� and ½xðt � sÞ; yðt � sÞ� represent dynamic displacements of the cutter at the present and previous tooth periods and
s is the delay time; where X (rad/s) is the spindle speed.

In the previous researches [12,23,24], the extended nonlinear modeling of cutting forces and development of closed form
expression through Fourier series expansion have been accomplished. According to the formulation presented there, closed
form expressions for nonlinear cutting forces in x–y directions are explained as:
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Fx ¼ �
N

2p
a1Dx3 þ b1

�
Dy3 þ a2Dx2 þ b2Dy2 þ a3Dxþ b3Dyþ 3c1Dx2Dyþ 3c2DxDy2 þ 2c3DxDyþc4g;

Fy ¼ þ
N

2p
a01Dx3 þ b01
�

Dy3 þ a02Dx2 þ b02Dy2 þ a03Dxþ b03Dyþ 3c01Dx2Dyþ 3c02DxDy2 þ 2c03DxDyþc04
�
;

ð12Þ
where for the half immersion up-milling with /st ¼ 0 and /ex ¼ p=2 (as for the case study here), coefficients of Eq. (12) are
determined in terms of ni; di i ¼ 1; . . . ;4 as:
a1 ¼
1
4

n1 þ
3
4
pd1

� �
b1 ¼

1
4

d1 þ
3
4
pn1

� �
a2 ¼

1
3
½n2 þ 2d2� b2 ¼

1
3
½d2 þ 2n2� a3 ¼

1
2

n3 þ
1
2
pd3

� �
;

b3 ¼
1
2

d3 þ
1
2
pn3

� �
c1 ¼

1
4

d1 þ
1
4
pn1

� �
c2 ¼

1
4

n1 þ
1
4
pd1

� �
c3 ¼

1
3
½d2 þ n2� c4 ¼ n4 þ d4;

a01 ¼
1
4
�d1 þ

3
4
pn1

� �
b01 ¼

1
4

n1 �
3
4
pd1

� �
a02 ¼

1
3
½�d2 þ 2n2� b02 ¼

1
3
½n2 � 2d2� a03 ¼

1
2
�d3 þ

1
2
pn3

� �
;

b03 ¼
1
2

n3 �
1
2
pd3

� �
c01 ¼

1
4

n1 �
1
4
pd1

� �
c02 ¼

1
4
�d1 þ

1
4
pn1

� �
c03 ¼

1
3
½n2 � d2� c04 ¼ �d4 þ n4:

ð13Þ
It should be mentioned that ni ¼ ac n̂i; di ¼ ac d̂i i ¼ 1; . . . ;4, where ac is the axial depth of cut. Therefore, in next
formulation and simulation results, axial depth of cut is included in coefficients ni; di. Similarly, the mentioned approach
for nonlinear force modeling can be extended to any other machining condition in which cutting force signals are measured
experimentally (as it has been discussed for a real case study in [23,43]).

3. Application of the tunable vibration absorber (TVA) for regenerative chatter suppression in machining of plate
work-pieces

In this section, the application of a tunable vibration absorber (TVA) for chatter suppression in the milling of plate com-
ponents is studied. The related formulation is presented in a general configuration, but as the case study considered here,
results are investigated for a cantilever plate, as shown in Fig. 3 (which is extensively used in machining processes). There
are some practical limitations or requirements that prevent using the fixtures surrounding the plate. First, in many cases of
machining, due to the limited operating space of CNC machine, it is not possible to use surrounding fixtures. Second, in the
majority of peripheral milling processes, it is exclusively desired to machine the free extremity of the plate. Under these
limitations or desired objectives, using industrial fixtures to prevent bending vibrations is impossible. In a previous research
[41], TVA was designed for a cantilever plate under the simple harmonic excitation as, f ðtÞ ¼ F0 sin xt. In this study, the non-
linear cutting forces in x–y directions, explained by Eq. (12), play as the excitation forces.

During the milling process of plates, for the cases where a cutting tool with relatively short extension part is used, the
assumption of SDOF model may not be sufficiently accurate. Although the short cutting tool (with very high natural frequen-
cies) can be considered as a rigid body, plate work-piece is a continuous system and contains infinite number of vibration
modes. So, when the control procedure is developed to suppress only the dominating mode, the rest of the structural modes
may be excited, resulting in a spill-over problem.

3.1. Vibration specifications of the cantilever plate

Plate structures constitute of an infinite number of degrees of freedom, and the mode summation method is used to
model them as the systems consisting of a finite number of more significant degrees of freedom. As shown in Fig. 3(a), a uni-
form rectangular plate over the domain D defined by 0 < x < L1, 0 < y < h and 0 < z < L2 and clamped in z ¼ L2 is considered
(h is the plate thickness). The plate is under the excitation of cutting forces in x–y directions, in correspondence with coor-
dinates shown in Fig. 2. Using the extended Hamilton’s principle [44], and assuming the plate deflection w ðx; z; tÞ in x–z
plane as w ¼Wðx; zÞgðtÞ, in which W depends on the spatial coordinates and g is a time-dependent harmonic function of
frequency x, leads to:
r4 Wðx; zÞ � ~b4 Wðx; zÞ ¼ g=DE
~b4 ¼ q0x2=DE; x; z in D; ð14Þ
where q0 is the mass density, DE is the plate flexural rigidity defined as DE ¼ Eh3
=12ð1� m2Þ and E, h, m are the Young’s

modulus, plate thickness and Poisson’s ratio, respectively. Natural mode shapes of the cantilever plate are found by solving
Eq. (14) as:
Wmnðx; zÞ ¼ /mðvÞ wnð1Þ; ð15Þ
where v ¼ x=L1, 1 ¼ z=L2. Functions / are found for clamped-free beam function as [45]:
/mðvÞ ¼ lmðcosh amv� cos amvÞ � tmðsinh amv� sin amvÞ ðm ¼ 1;2;3; . . .Þ;
lm ¼ ðcosh am þ cos amÞ=ðsinh am sinamÞ; tm ¼ ðsinh am � sin amÞ=ðsinh am sin amÞ;

ð16Þ



Fig. 3. (a) Schematic of the cantilever plate with attached vibration absorbers in peripheral milling process, (b) application of the TVA for chatter
suppression in x–z plane.
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where am are the roots of characteristic equation, cosh am cos am ¼ �1, as a1 ¼ 1:875; a2 ¼ 4:694; a3 ¼ 7:854; a4 ¼ 10:995;
a5 ¼ 14:137; . . .. Functions w are found for free-free beam function as:
w1ð1Þ ¼ 1;w2ð1Þ ¼
ffiffiffi
3
p
ð21� 1Þ;

wnð1Þ ¼ �lnðcosh bn1þ cos bn1Þ � �tnðsinh bn1þ sin bn1Þ ðn ¼ 3;4;5; . . .Þ;

�ln ¼
cosh bn � cos bn

sinh bn sin bn
; �tn ¼

sinh bn þ sin bn

sinh bn sin bn
;

ð17Þ
where bn are the roots of characteristic equation, cosh bn cos bn ¼ 1, as b3 ¼ 4:73; b4 ¼ 7:853; b5 ¼ 10:995; . . .. In this paper,
a square cantilever plate in x–z plane (L1=L2 ¼ 1) is used for analysis (similar results can be obtained for other values of
L1=L2). First five values of the frequency parameter xL2

1 ðq=DÞ0:5 for a cantilever plate are found as 3.49, 8.55, 21.44, 27.46
and 31.17 [45].

3.2. Dynamic model of the plate work-piece with attached vibration absorber

Consider a uniform cantilever plate with a clamped edge in z ¼ L2 as shown in Fig. 3. Transverse deflections of the plate in
x–z and y–z planes are expanded as:
wðx; z; tÞ ¼
X1
m¼1

X1
n¼1

Wmnðx; zÞgmnðtÞ; v ðy; z; tÞ ¼
X1
m¼1

X1
n¼1

Vmnðy; zÞg0mnðtÞ; ð18Þ
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where wðx; z; tÞ and vðy; z; tÞ are the plate deflections at positions ðx; zÞ and ðy; zÞ, respectively. Wmnðx; yÞ and Vmnðy; zÞ are the
natural mode shapes of the plate as explained in Section 3.1. gmnðtÞ and g0mnðtÞ are the modal coordinates which satisfy an
infinite set of independent modal equations as [44]:
Table 1
Nomina

Cutt

Cutt
(a

Table 3
First fiv

x–z P
x–z P
y–z P
€gmnðtÞ þx2
xz gmnðtÞ ¼ NmnðtÞ; NmnðtÞ ¼

Z
D

Wmnðx; zÞ f ðx; z; tÞdDxz; ;

€g0mnðtÞ þx2
yz g

0
mnðtÞ ¼ N0mnðtÞ; N0mnðtÞ ¼

Z
D

Vmnðy; zÞ f 0ðy; z; tÞdDyz; m;n ¼ 1;2; . . .

ð19Þ
As shown in Fig. 3, two vibration absorbers (TVA1 and TVA2) consisting of a lumped mass attached to a spring and damper
are applied at the positions (x ¼ a, z ¼ b1) and (y ¼ h=2, z ¼ b2), respectively. Cutting forces in y–x directions (Fy and Fx) are
exerted at the locations (0 < x ¼ c1 < L1, z ¼ d1 � 0) and (0 < y ¼ c2 < h, z ¼ d2 � 0), respectively. Mass, spring and damper
components of the TVA1 and TVA2, in x–z and y–z planes, are denoted by my; ky; cy and mx; kx; cx, respectively (they are
only shown for TVA1 in Fig. 3(a)).

The plate deflection at the absorbers locations are denoted by wða; b1; tÞ and v ðh=2; b2; tÞ, respectively. Also, it is denoted
by wðc1; d1; tÞ and v ðc2; d2; tÞ at the position of y and x cutting forces. In addition, uðtÞ and u0ðtÞ stands for displacements of the
absorbers’ mass in x–z and y–z planes, respectively. Referring to Fig. 3 and considering Eq. (19), coupled delay equations for
the constrained plate and absorber in the x–z plane are expressed as:
€gmnðtÞ þ 2fmn xmn _gmnðtÞ þx2
mn gmnðtÞ ¼

1
M Fyðt; sÞWmnðc1;d1Þ � cy½ _wða; b1; tÞ � _uðtÞ�Wmnða; b1Þ � ky½wða; b1; tÞ � uðtÞ�Wmnða; b1Þ
� �

;

my €uðtÞ þ cy½ _uðtÞ � _wða; b1; tÞ� þ ky½uðtÞ �wða; b1; tÞ� ¼ 0

8><
>: ð20-1Þ
and in y–z plane are expressed as:
€g0mnðtÞ þ 2f0mn x0mn _g0mnðtÞ þx02mn g0mnðtÞ ¼
1
M fFxðt; sÞVmnðc2;d2Þ � cx½ _v ðh=2; b2; tÞ � _u0ðtÞ�Vmnðh=2; b2Þ � kx½vðh=2; b2; tÞ � u0ðtÞ�Vmnðh=2; b2Þg;

mx €u0ðtÞ þ cx½ _u0ðtÞ � _v ðh=2; b2; tÞ� þ kx½u0ðtÞ � vðh=2; b2; tÞ� ¼ 0;

8><
>: ð20-2Þ
where M is the plate mass, ðfmn; f0mnÞ and ðxmn; x0mnÞ are damping ratio and natural frequencies of the plate in x–z and y–z
planes, respectively. Also, in Eq. (20), plate deflections at the absorbers’ locations are expanded as:
l values for realistic parameters of the system for cutting conditions and milling dynamics [23,24,43].

ing conditions Start and exit immersion
angles

Cutter teeth
number

Spindle
speed

Helix
angle

Feed rate per tooth per
revolution

/st = 0
/ex = p/2

N = 4 X = 625 rpm b = 30 cf ¼ 0:2 mm/rev-tooth

ing force coefficients
c ¼ 2:5 mm)

n1 ¼ 6765 N=mm3; n2 ¼ �4910 N=mm2; n3 ¼ 2840 N=mm; n4 ¼ 132 N
d1 ¼ 12;740 N=mm3; d2 ¼ �7452 N=mm2; d3 ¼ 1674 N=mm; d4 ¼ 246 N

Table 2
Realistic parameters of the cantilever plate.

Plate specification (AL7075)

Mass per unit area in x–z plane qxz ¼ 56:2 kg=m2

Mass per unit area in y–z plane qyz ¼ 2810 kg=m2

Young modulus E ¼ 71:7 GN=m2

Poisson’s ratio m ¼ 0:33
Length (x) L1 ¼ 1 m
Width (z) L2 ¼ 1 m
Thickness (y) h ¼ 2 cm

e lower natural frequencies of the cantilever plate (while for the absorber my ¼ 2 kg; ky ¼ 23 kN=m).

Natural frequencies of the plate (rad/s)

lane without absorber 107.7 263.9 661.7 847.5 962.1
lane with absorber 125.7 274.7 667.3 852.3 966.6
lane without absorber 3860 2:43� 104 High-order values



Fig. 4. First five lower mode shapes of the cantilever plate.
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wða; b1; tÞ ¼
X1
r¼1

X1
s¼1

Wrsða; b1ÞgrsðtÞ; vðh=2; b2; tÞ ¼
X1
r¼1

X1
s¼1

Vrsðh=2; b2Þg0rsðtÞ: ð21Þ
Delay terms Dx and Dy for the cutting force FyðtÞ, given by Eq. (12), are expanded as:
Dx ¼
X1
r¼1

X1
s¼1

Vrsðc1; 0Þ ½g0rsðtÞ � g0rsðt � sÞ�;

Dy ¼
X1
r¼1

X1
s¼1

Wrsðc1;0Þ ½grsðtÞ � grsðt � sÞ�
ð22Þ
and for the cutting force FxðtÞ as,
Dx ¼
X1
r¼1

X1
s¼1

Vrsðh=2;0Þ ½g0rsðtÞ � g0rsðt � sÞ�;

Dy ¼
X1
r¼1

X1
s¼1

Wrsðh=2; 0Þ ½grsðtÞ � grsðt � sÞ�:
ð23Þ
Under regenerative chatter condition with chatter frequency of xc , the modal coordinates gijðtÞ, g0ijðtÞ, ij ¼ mn; rs and absorb-
ers’ displacements uðtÞ, u0ðtÞ can be written in the exponential form as:
gijðtÞ ¼ �gijeJxc t ; uðtÞ ¼ �ueJxc t; u0ðtÞ ¼ �u0 eJxc t ; ij ¼ mn; rs; ð24Þ
where J denotes the imaginary unit. Substituting the above exponential forms in the coupled dynamics of Eq. (20), leads to
the system vibration equations as:
�gmnðx2
mn �x2

c Þ þ J½2fmn xmn xc �gmn þ �Cy xc Wmnða; b1Þ
X1
r¼1

X1
s¼1

Wrsða; b1Þ �grs�

þCy Wmnða; b1Þ
X1
r¼1

X1
s¼1

Wrsða; b1Þ �grs � �u½Cy Wmnða; b1Þ þ Jxc
�Cy Wmnða; b1Þ� ¼ ~FyWmnðc1;0Þ;

�u ðcy þ Jxc �cy �x2
c Þ � Jxc �cy

X1
r¼1

X1
s¼1

Wrsða; b1Þ �grs � cy

X1
r¼1

X1
s¼1

Wrsða; b1Þ �grs ¼ 0;

8>>>>>>>>>><
>>>>>>>>>>:

ð25-1Þ



Fig. 5. Best position of the absorber for various values of 1 < ky < 25 kN=m (black squares) at different locations of y-direction cutting force (black circle),
when xc ¼ 108 rad=s � xn1.

608 H. Moradi et al. / Applied Mathematical Modelling 39 (2015) 600–620
�g0mnðx02mn �x2
c Þ þ J½2f0mn x0mn xc �g0mn þ �Cx xc Vmnðh=2; b2Þ

X1
r¼1

X1
s¼1

Vrsðh=2; b2Þ �g0rs�

þCxVmnðh=2; b2Þ
X1
r¼1

X1
s¼1

Vrsðh=2; b2Þ �g0rs � �u0½Cx Vmnðh=2; b2Þ þ Jxc
�Cx Vmnðh=2; b2Þ� ¼ ~Fx Vmnðh=2;0Þ;

�u0 ðcx þ Jxc �cx �x2
c Þ � Jxc �cx

X1
r¼1

X1
s¼1

Vrsðh=2; b2Þ �g0rs � cx

X1
r¼1

X1
s¼1

Vrsðh=2; b2Þ �g0rs ¼ 0;

8>>>>>>>>><
>>>>>>>>>:

ð25-2Þ
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where Ci ¼ ki=M; �Ci ¼ ci=M; ci ¼ ki=mi; �ci ¼ ci=mi and ~Fi ¼ Fi=M; i ¼ x; y.
It should be noticed that in Eq. (25), cutting forces Fy and Fx are replaced with Eq. (12) in which Dx and Dy are substituted

with Eqs. (22) and (23). For the case of absorber with mass and spring elements, equation (25) are reduced by setting
�Ci ¼ �ci ¼ 0; i ¼ x; y. In addition, for fresh cutting tools with small amount of tool wear, n4; d4 � 0 and consequently
c4 ¼ c04 � 0 [24]. For the following simulation results, it is assumed that vibration absorbers with mass and spring compo-
nents and cutting tool with small amount of wear are used.

The coupled dynamics of Eqs. (25-1) and (25-2) are the vibration equations for the combined dynamic system (two
equation set for the plate lateral vibrations in x–z and y–z planes and two equations for the vibration absorbers). In the
presence of regenerative chatter, this set of equations can be solved numerically via SIMULINK Toolbox of MATLAB. Under
regenerative chatter condition, and using Eqs. (22) and (23), Eqs. (25-1) and (25-2) are written in the general matrix form as
½Kðt; sÞ�fU ðt; t � sÞg ¼ 0. For R number of modes, ½Kðt; sÞ� is a square matrix of order ð4Rþ 2Þ which is constituted numer-
ically and
fU ðt; t � sÞg ¼ f�gðtÞ �g0ðtÞ �gðt � sÞ �g0ðt � sÞ �uðtÞ �u0ðtÞgT
;

�gðtÞ ¼ ½�g1ðtÞ ::: �gmn¼RðtÞ�1�R;

�gðt � sÞ ¼ ½�g1ðt � sÞ ::: �gmn¼Rðt � sÞ�1�R;

�g0ðtÞ ¼ ½�g01ðtÞ ::: �g0mn¼RðtÞ�1�R
;

�g0ðt � sÞ ¼ ½�g01ðt � sÞ ::: �g0mn¼Rðt � sÞ�1�R
:

ð26Þ
In the absence of regenerative chatter; the rank of ½KðtÞ� is ð2Rþ 2Þ because 2R delay elements including �gðt � sÞ and
�g0ðt � sÞ are vanished from ½Kðt; sÞ� and fUðt; t � sÞg. Under such conditions without time delay terms, if the determinant
of ½KðtÞ� is set to zero, ð2Rþ 2Þ natural frequencies of the whole system including the plate (R natural frequencies in each
of x–z and y–z planes) and absorbers are obtained. To achieve the generalized coordinates �gmnðtÞ, �g0mnðtÞ and the amplitude of
the absorbers displacement �u and �u0, Eqs. (25-1) and (25-2) which includes ð2Rþ 2Þ coupled equations must be solved
simultaneously.

Finally, it should be noticed that the necessity of nonlinear cutting force modeling is due to the nature of machining pro-
cesses. In this paper, a nonlinear cutting force model is used because nonlinear modeling of cutting forces in terms of chip
thickness is more accurate than the linear one (more details are presented in [23,43]). Therefore, advanced nonlinear model
just provides a more accurate model of the process. It does not necessarily lead to the better design of absorber. Moreover,
the absorber is designed for the nonlinear model of cutting forces (Eq. (7)). However, if under some specific machining con-
ditions, cutting forces demonstrate a linear behavior (i.e., ni; di; i ¼ 1;2 approach zero values), then all presented formulation
and design are valid in a more straightforward manner (it is sufficient to fix the mentioned coefficients at zero values).
4. Simulation of the problem, results and discussion

4.1. Practical remarks on simulation of the problem

In this section and as the case study, half immersion up-milling with /st ¼ 0 and /ex ¼ p=2, four teeth N ¼ 4, spindle
speed X ¼ 625 rpm, helix angle b ¼ 30, axial depth of cut ac ¼ 2:5 mm and feed rate cf ¼ 0:2 mm=rev-tooth are considered
for machining conditions. Moreover, coefficients in nonlinear model of cutting forces, ni; di i ¼ 1; . . . ;4, are given in Table 1
[23,24,43]. For simulation of the problem, realistic parameters of the plate work-piece (of AL7075 alloy material), are given
in Table 2. In addition, five number of modes R ¼ 5 is considered for the analysis. This value is selected such that the run
times for next algorithms based on mode summation and semi-discretization approaches, become reasonable.
Table 4
Design for the best position of absorber (a; b1) for various locations of the cutting force in y-direction (0 < c1 < L1 ¼ 1 m; d1 � 0), under
regenerative chatter with resonance conditions (for the absorber: my ¼ 2 kg; ky ¼ 23 kN=m).

Resonance conditions (rad/s) Location of cutting force in y-direction (m) Best position of the absorber (m)

(c1 : variable; d1 ¼ 0) x ¼ a z ¼ b1

xc � xn1 0:5 6 c1 6 1 0.6 0.05
xc � xn2 0 6 c1 < 0:5 0.4 0.05
xc � xn3 0:75 6 c1 6 1 0 0.05

0:5 6 c1 < 0:75 1 0.05
0:25 6 c1 < 0:5 0 0.05
0 6 c1 < 0:25 1 0.05

xc � xn4 0:5 6 c1 6 1 1 0.05
0 6 c1 < 0:5 0 0.05

xc � xn5 0:5 6 c1 6 1 0 0.05
0 6 c1 < 0:5 1 0.05
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In previous researches [23,43], the small value of axial depth of cut (ac ¼ 2:5 mm) was used in cutting experiments to
evaluate the coefficients of cutting forces (i.e., for extraction of ni; di; i ¼ 1; . . . ;4 in Table 1). This parameter extraction
can be accomplished at other larger values of depth of cut (while the stability is still guaranteed). However, the same coef-
ficients will be extracted [2,3,42]. Therefore, ac ¼ 2:5 mm is the nominal value used in simulations.

In practice, periodic cutting loads cause cyclic mechanical and thermal stresses on the tool, which diminishes the tool life.
To dampen the sharp variations in the oscillatory components of the milling forces, helical end mills are preferred [42]. How-
ever, presented formulation is independent of the helix angle (b). This angle value only affects the cutting force coefficients
Fig. 6. Best position of the absorber for various values of 1 < ky < 25 kN=m (black squares) at different locations of y-direction cutting force (black circle),
when xc ¼ 264 rad=s � xn2.



Fig. 7. Best position of the absorber for various values of 1 < ky < 25 kN=m (black squares) at different locations of y-direction cutting force (black circle),
when xc ¼ 848 rad=s � xn4.
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ni; di; i ¼ 1; . . . ;4, given in Table 1. Therefore, the procedure of absorber design is also valid for the cutting tools with straight
teeth (b ¼ 0).

As it is presented in Table 3, and expected physically, natural frequencies of the y–z plane are much higher than those of
x–z plane (the first natural frequency of y–z plane, x01 ¼ 3860, is about four times of the fifth natural frequency of x–z plane,
x5 ¼ 962 rad=s). It indicates that for machining conditions where the x–z plane is under resonance conditions, y–z plane
experience the non-resonance status. Therefore, next simulation results are presented for tunable vibration absorber design
(TVA1) for chatter suppression in the main flexible plane, i.e., x–z plane. It should be mentioned that for machining of



Fig. 8. Best position of the absorber for various values of 1 < ky < 25 kN=m (black squares) at different locations of y-direction cutting force (black circle),
when xc � xn1 (e.g., xc ¼ 70 rad=sÞ.
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cantilever plates, where natural frequencies of x–z and y–z planes are of the same order, design of both TVA1 and TVA2 must
be accomplished according to the complete formulation presented in Section 3.2.

Under resonance conditions, tooth passing frequency (4X) approaches the values of natural frequencies in x–z plane.
Therefore, according to the values presented in Table 3, resonance occurs in the range of 1000 < 4X < 10;000 rpm. Conse-
quently, for very high speed machining conditions, more number of modes (R > 5) must be considered for analysis. First five
mode shapes of the cantilever plate in x–z plane are shown in Fig. 4.



Fig. 9. Best position of the absorber for various values of 1 < ky < 25 kN=m (black squares) while cutting force in y-direction is exerted at (a) x ¼ 1; z ¼ 0
and (b) x ¼ 0; z ¼ 0 (black circle), when xn1 � xc � xn2 e.g., ðxc ¼ 180 rad=sÞ. Similar results to the case (a) is obtained when Fy is exerted at
ðx ¼ 0:8; z ¼ 0Þ or ðx ¼ 0:6; z ¼ 0Þ and similar results to the case (b) is obtained when Fy is exerted at ðx ¼ 0:2; z ¼ 0Þ or ðx ¼ 0:4; z ¼ 0Þ.

Table 5
Design for the best position of absorber (a; b1) for various locations of the cutting force in y-direction (0 < c1 < L1 ¼ 1 m; d1 � 0), under regenerative chatter
with non-resonance conditions (for the absorber: my ¼ 2 kg; ky ¼ 12:6 kN=m).

Resonance conditions (rad/s) Location of cutting force in y-direction (m) Best position of the absorber (m)

(c1 : variable; d1 ¼ 0) x ¼ a z ¼ b1

xc � xn1 0 6 c1 6 1 0.5 0.05
xn1 � xc � xn2

xn3 � xc � xn4

xc � xn5

0:5 6 c1 6 1 1 0.05
0 6 c1 < 0:5 0 0.05

xn2�xc�xn3

xn4�xc�xn5

0:5 6 c1 6 1 0 0.05
0 6 c1 < 0:5 1 0.05
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Finally, the following simulation results can be extended and presented for any other machining condition; in which
dynamic parameters of the system are identified.

4.2. Structure of the algorithm to optimize the absorber’s specification

In this section, an optimal algorithm is developed based on trial and error search on the space of dynamic parameters. In
this algorithm, optimum values of the absorber position and its spring stiffness (as control parameters) are found such that
plate deflection is minimized under various machining conditions. The value of absorbers’ mass is kept constant.

For this purpose, the plate is diffracted into a finite number of square elements (e.g., 20� 20 elements) in x and z
directions. Then, the absorber is moved along the plate by being placed at the nodes of successive elements. As the absorber
is fixed in a node, the midpoint deflection of all plate elements is computed. This procedure is repeated for other next nodes
as the absorber is fixed there (20� 21 nodes). Finally, among all the values for the absorber position, its best position is the
one that the corresponding computed midpoint deflections of elements minimize the following index:
! ¼
X20�20

n¼1

~w2
n; ð27Þ
where ~wn is the midpoint deflection of the nth-element after using the absorber. It should be mentioned that the proposed
search for the best values of the absorbers’ position can be done for the best values of the springs’ stiffness (while other
parameters are kept constant). Moreover, this procedure can be performed with an optimum search on both values of
springs’ stiffness and absorbers’ position, simultaneously.

4.3. Optimum design of the absorber under regenerative chatter with resonance & non-resonance conditions

In this section, best position of the absorber and its spring stiffness are found such that plate deflection is minimized.
Results are presented and compared for two cases, regenerative chatter under resonance and non-resonance conditions.



Fig. 10. Frequency response of the free-corner point A ðx ¼ 1; z ¼ 0Þ under the regenerative chatter condition while cutting force is also exerted at
ðx ¼ 1; z ¼ 0Þ (a) without absorber and (b) with absorber.
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Under resonance conditions, chatter frequency (xc) approaches one of the natural frequencies of x–z plane, presented in
Table 3. In the next simulation results, it is assumed that chatter frequency has been determined by one of the experimental
chatter detection approaches, e.g., [46–48], or with the procedure explained in Appendix A. Absorber mass is assumed to be
fixed at my ¼ 2 kg. Also, it is assumed that the external surface of the work-piece is coated with a thin magnetic layer (while
the absorbers are also magnetic for attachment to the work-piece).

To find the optimum values of absorbers’ specifications, spring stiffness value is changed in the region 1 < ky < 25 kN=m
(e.g., with Dky ¼ 250 N=m). According to Fig. 3(b), the cutting force in y-direction (Fy) moves along the line
(0 < x ¼ c1 < 1 m & z ¼ d1 � 0) while the allowable position of TVA1 is 0 < a < 1 m and 0 < b1 < 0:95 m (0:05 m away from
the cutting section). In the following results and for the simplicity, the coordinate z0 is defined from the cantilever end of
plate, such that zþ z0 ¼ L2 ¼ 1 m.

Fig. 5 shows the best values of absorber position for various values of spring stiffness while xc ¼ 108 rad=s � xn1. Results
are presented for different locations of cutting force Fy along the path of movement (c1 ¼ f1; 0:8; 0:6; 0:4; 0:2; 0g; d1 ¼ 0).
It should be noticed that in this figure and following similar plots, each determined point of absorber location (black squares)
is corresponding to several values of spring stiffness. It means that for several values of the ky, the algorithm predicts a same
position for the absorber (such that the !-index for plate deflection is minimized). The arrows are used to show the direction
of increase in spring stiffness (from ky ¼ 1 to ky ¼ 25 kN=m).



Fig. 11. Frequency response of the free-corner point A ðx ¼ 1; z ¼ 0Þ under the regenerative chatter condition while cutting force is exerted at
ðx ¼ 0:5; z ¼ 0Þ (a) without absorber and (b) with absorber.

H. Moradi et al. / Applied Mathematical Modelling 39 (2015) 600–620 615
As Fig. 5 shows, for different locations of the cutting force, various positions of the absorber are predicted at various val-
ues of the spring stiffness. To make the design more convenient, the intersection of predicted results for various plots of
Fig. 5, is considered as the optimum design. Therefore, according to Fig. 5 (left column), when the cutting force moves along
the path of ð0:5 6 c1 6 1; d1 � 0Þ, the absorber with determined ky ¼ 23 kN=m must be located at ða ¼ 0:6; b1 ¼ 0:05 mÞ.
For the cutting force path ð0 6 c1 < 0:5; d1 � 0Þ, i.e., right column of Fig. 5, the absorber must be located at
ða ¼ 0:4; b1 ¼ 0:05 mÞ. For this switch control law in position, practically two magnetic absorbers with the specifications
of my ¼ 2 kg; ky ¼ 23 kN=m, can be provided in the proposed positions. Then, depending on the position of cutting force,
one of them can be activated to suppress regenerative chatter. The above optimum specifications of the absorber location
(for xc � xn1) is given in Table 4.

Best values of the absorber position for various values of spring stiffness, while xc ¼ 264 rad=s � xn2 and
xc ¼ 848 rad=s � xn4, are shown in Figs. 6 and 7, respectively. For the sake of brevity, similar results for the resonance cases
xc � xn3 and xc � xn5, are not shown. It should be noticed that under some machining conditions, e.g., first plot of Fig. 7,
only one optimum location for the absorber position may be predicted (for all values of ky). With a similar analysis as that
done for the case of xc � xn1 in Fig. 5, optimum specifications of the absorber location for other resonance conditions under
regenerative chatter (xc � xni; i ¼ 2; . . . ;5) are found and presented in Table 4.

Figs. 8 and 9 show the best values of absorber position for various values of spring stiffness, under non-resonance
conditions of xc � xn1 e.g., ðxc ¼ 70 rad=sÞ and xn1 � xc � xn2 e.g., ðxc ¼ 180 rad=sÞ, respectively. It should be men-
tioned that similar results are obtained for other values of xc while xc � xn1 or xn1 � xc � xn2, which are not shown.



Fig. 12. Plate deflection under the regenerative chatter with resonance condition of xc ¼ 108 rad=s � xn1, while the cutting force in y-direction is exerted
at ðc1 ¼ 0:5; d1 ¼ 0Þ (a) without absorber and (b) with absorber.
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As it is shown in Fig. 8, under this non-resonance condition, the predicted optimum position of absorber is more sensitive to
the values of ky (i.e., more optimum locations are predicted in comparison with some other cases, e.g., Figs. 6 or 9). Similar
results are not presented for other non-resonance conditions, xni � xc � xnj; i ¼ 2;3;4; j ¼ 3;4;5 and xc � xn5. Under
regenerative chatter with non-resonance conditions, optimum specifications of the absorber location are presented in Table 5
(while the absorber stiffness is determined as ky ¼ 12:6 kN=m). Design presented in Table 5 is performed with a similar
procedure as discussed for the resonance case of xc � xn1, in Fig. 5.

It should be noticed that in this research, the work-piece plate is clamped at one edge all over the whole machining
process. Moreover, during the machining, the cutting tool moves along a fixed path, i.e., top free edge of the work-piece
(Fig. 3). Under such machining conditions, only the geometrical parameter (L2) is variable. Consequently, natural frequencies
of the plate are changed. But, the developed algorithm predicts the same optimized values of absorber location (generally,
with similar behavior observed in Figs. 5–9). For the sake of brevity, similar simulation results are not presented (when L2 is
decreased). However, it should be noticed that if the cutting tool path becomes variable in each passes of cut, presented
design may be failed along some specific paths. Under such condition, development of the online control strategies (active
controls) is mandatory.

4.4. Chatter suppression via optimum vibration absorber

In the previous section, optimum values of the absorber parameters were found as my ¼ 2 kg; ky ¼ 23 kN=m and
my ¼ 2 kg; ky ¼ 12:6 kN=m for resonance and non-resonance cases, respectively. Also best position of the absorber, for a
wide range of chatter frequencies, is presented in Tables 4 and 5. Frequency response of an arbitrary point, e.g., point A
located at the free-corner of plate ðx ¼ 1; z ¼ 0Þ, is shown in Figs. 10 and 11 (with/without the absorber). In these figures,
the cutting force (Fy) is exerted at the corner ðx ¼ 1; z ¼ 0Þ and midpoint ðx ¼ 0:5; z ¼ 0Þ of plate’s free edge, respectively.
Similarly, other frequency responses can be obtained for various points of the plate, while the cutting force is moving along
the path (0 < x ¼ c1 < 1 m & z ¼ d1 � 0), which are not shown. As it is shown in Figs. 10 and 11, optimum absorber acts
efficiently in chatter reduction, especially around the natural frequencies of the plate (resonance conditions). For instance,



Fig. 13. Plate deflection under the regenerative chatter with resonance condition of xc ¼ 848 rad=s � xn4, while the cutting force in y-direction is exerted
at ðc1 ¼ 0:5; d1 ¼ 0Þ (a) without absorber and (b) with absorber.

Fig. 14. Stability lobes diagram of the process without (black circles) and with (blue squares) vibration absorber. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.).
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comparing the plots of Fig. 10 reveals that TVA reduces the vibration amplitudes about TR1 ¼ 34, TR2 ¼ 19, TR3 ¼ 14,
TR4 ¼ 20 and TR5 ¼ 12 times around resonance conditions xc � xni; i ¼ 1; . . . ;5.

Figs. 12 and 13 show the effect of optimum absorber in chatter suppression of the plate around the first and fourth natural
frequencies (not shown for other resonance/non-resonance cases). In these figures, the cutting force (Fy) is exerted at the
midpoint ðx ¼ 0:5; z ¼ 0Þ of plate’s free edge. As it is shown, designed absorber acts effectively in chatter suppression of
the plate work-piece (this desired objective was defined by Eq. (27)).

4.5. Improvement in stability lobes diagram after implementation of the TVA

Stability of any machine-tool system can be shown in the diagrams in which the effects of axial depth cut, cutting velocity
and other machining parameters on stability are analyzed. In stability lobes diagram, the margins between stable and
unstable conditions are shown with several lobes for various conditions of axial depth of cut and spindle speed.

In this section, to investigate the milling stability, semi-discretization method (SDM) is used. Due to the similarity in
general formulation of SDM to the one presented in [12], it is not developed in this paper. In the research [12], SDM was
applied on the nonlinear model of cutting forces in the milling process, where the extension part of cutting tool was modeled
as an Euler–Bernoulli beam. In analogous with that formulation, SDM can be applied here for the stability analysis in
machining of plate work-piece (as a continuous system).

SDM technique is often used in computational fluid mechanics for solving partial differential equations (PDEs). In this
approach, the PDE is discretized along the spatial coordinates while the time coordinate are kept unchanged. Similarly, this
method was applied for the analysis of delay differential equations (DDEs); where delayed terms are approximated by
piecewise constant functions while the current time terms are kept unchanged [7,8]. Therefore, DDE is approximated by
a series of ordinary differential equations (ODEs).

Following SDM, stability lobes diagrams of the process with/without absorber are shown in Fig. 14. As it is observed,
optimum TVA improves the stability limits with a considerable increase in the critical value of depth of cut. Therefore, after
implementation of TVA, larger values of axial depth of cut and consequently higher material removal rate (MRR) can be
achieved, without moving to the unstable conditions.

Finally, it should be mentioned that in this research, the absorber just recognizes the occurrence of unstable large vibra-
tion amplitudes. Here, this instability is caused by regenerative chatter in machining process. It may be arisen by other
sources of instability in other applications such as the existence of random excitation (e.g., the plates under wind excitation
or floating platforms under ocean/sea wave excitation). Therefore, the presented absorber design for plate work-pieces can
be extended to other industrial applications; while the type of excitation and sources of instability are varied among them.
Moreover, it should be noticed that under broadband random excitations, the frequency contain of the excitation may be
changed. Consequently, more number of modes must be considered in the design procedure. However, after recognition
of dominant modes, it is possible to follow the absorber design for the less number of dominant modes.
5. Conclusions

In this paper, an extended model of the milling process with nonlinear regenerative chatter effect in cutting forces is
considered. A tunable vibration absorber (TVA), as a semi-active control approach, is designed for chatter suppression in
the milling of plate work-pieces. Unlike the previous researches of this area, in which the cutting tool and work-piece were
modeled as flexible and rigid body parts, the short cutting tool is assumed to be rigid while the plate work-piece is the
flexible component. Plate work-piece vibration, caused by nonlinear cutting forces with regenerative chatter effect, is
suppressed after implementation of the TVA.

In the presence of nonlinear regenerative chatter with associated time delay terms, the extensive formulation of the pro-
cess including the plate and attached absorber is presented. Optimum values of the absorber position and its spring stiffness
are found such that the plate vibration is minimized (while the absorber mass is kept constant). For this purpose, an optimal
algorithm based on mode summation technique and auxiliary algorithms via SIMULINK Toolbox of Matlab, are developed.
Simulation results are presented and compared for two cases: regenerative chatter under resonance and non-resonance
conditions. It is observed that for both machining conditions and in a wide range of chatter frequencies, TVA guarantees
chatter suppression effectively. For this evaluation, results are investigated through frequency response functions and plate
deflections (with/without absorber).

Using semi-discretization method (SDM), stability lobes diagrams of the process with/without absorber are constructed.
It is shown that using TVA also improves stability limits of the process. Therefore, larger values of depth of cut and
consequently more material removal rate can be obtained after implementation of the TVA (while the process stability is
guaranteed simultaneously). In comparison with other control approaches, proposed TVA design includes some great
advantages such as simple design, intuitive clarity, reduction in hardware and development cost.
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Appendix A

In this paper, it is assumed that chatter frequency has been detected by one of the experimental chatter detection
approaches, e.g., [46–48]. In these methods, chatter frequency is usually determined by analysis of measured signals such
as: audio, spindle drive current, tool tip acceleration and cutting forces. This signal analysis is accomplished in time or
frequency domains or a combination of them. However, in the simulation results of this paper, chatter frequency is
determined from time analysis of the plate displacements. For this purpose, a trial and error based algorithm is developed
via SIMULINK Toolbox of MATLAB. For various spindle speeds and consequently chatter frequencies, dynamics of the system
with/without absorber, given by Eq. (20), is simulated. Axial depth of cut is increased gradually until reaching unstable con-
ditions. The corresponding unstable time response of the plate deflection (in an arbitrary point) is analyzed. Accordingly,
chatter frequency is determined at the considered spindle speed.

For instance, Fig. A.1 shows the unstable time response of free-corner point (point B) of the plate located at (x ¼ 0; z ¼ 0),
while X ¼ 625 rpm and critical axial depth of cut is ac ¼ 6:8 mm. According to the simulated signal, chatter frequency is
determined as xc ¼ 258 rad=s. Similarly, for other values of the spindle speed, the same analysis can be done to find the
chatter frequency. Fig. A.2 shows the time response of the same point B (x ¼ 0; z ¼ 0), after implementation of the designed
optimum absorber (while X ¼ 625 rpm). As it is observed, using TVA leads to the stable machining conditions.
Fig. A.1. Vibration amplitudes of the free-corner point of the plate located at (x ¼ 0; z ¼ 0) with the spindle speed of X ¼ 625 rpm and critical axial depth of
cut ac ¼ 6:8 mm.

Fig. A.2. Vibration amplitudes of the free-corner point of the plate located at (x ¼ 0; z ¼ 0) after implementation of the absorber, with the spindle speed of
X ¼ 625 rpm and axial depth of cut ac ¼ 6:8 mm.
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