

# Brigham Young University BYU ScholarsArchive

All Theses and Dissertations

2010-07-02

Assessing Traditional Morphology- and Chemistry-Based Species Circumspections in Lichenized Ascomycetes: Character Evolution and Molecular Species Delimitation in Common Western North American Lichens

Steven Leavitt Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the <u>Biology Commons</u>

### BYU ScholarsArchive Citation

Leavitt, Steven, "Assessing Traditional Morphology- and Chemistry-Based Species Circumspections in Lichenized Ascomycetes: Character Evolution and Molecular Species Delimitation in Common Western North American Lichens" (2010). *All Theses and Dissertations*. 2191.

https://scholarsarchive.byu.edu/etd/2191

This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen\_amatangelo@byu.edu.

## Assessing traditional morphology- and chemistry-based species circumspections in lichenized

ascomycetes: character evolution and species delimitation in common

western North American lichens

Steven D. Leavitt

## A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Larry L. St. Clair, Chair Byron J. Adams Leigh A. Johnson Roger Rosentreter Jack W. Sites, Jr.

Department of Biology

Brigham Young University

August 2010

Copyright © 2010 Steven D. Leavitt

All Rights Reserved

## ABSTRACT

Assessing traditional morphology- and chemistry-based species circumspections in lichenized

ascomycetes: character evolution and species delimitation in common

western North American lichens

Steven D. Leavitt

Department of Biology

Doctor of Philosophy

Accurate species delimitation has critical implications for ecological and conservation studies; and for understanding factors driving diversification. However, a growing body of evidence indicates that morphology-based species circumspection in lichenized ascomycetes often fails to accurately represent the number of fungal species. The use of molecular data in lichen systematics provides an important alternative to traditional morphological characters for identifying natural groups and assessing evolutionary histories in challenging lichen taxa. In this work, I examined two common lichen-forming genera in western North America, Rhizoplaca and Xanthoparmelia, as models for investigating character evolution, species delimitation in morphologically and chemically diverse species, and identification of lineages in the early stages of divergence. Phylogenetic hypotheses were reconstructed to assess character evolution using sequence data from four nuclear ribosomal markers and fragments from two nuclear loci. I applied a multifaceted approach to delimit species in *Rhizoplaca* and *Xanthoparmelia* by assembling multiple lines of evidence using DNA sequence data, and genealogical and population genetic analyses. I have found that traditionally circumscribed species are not supported by molecular data. For example, in *Rhizoplaca* previously unrecognized lineages were identified within what has thus far been considered a single species. In contrast, morphologically and chemically distinct species within Xanthoparmelia were not supported by molecular data. Distinct medullary chemistries, growth forms, and the production of vegetative diaspores appear to have evolved independently multiple times in Xanthoparmelia. This work clearly indicates that morphological and chemical characters do not always accurately reflect lichen species diversity within even the best known and studied genera. My study of the Rhizoplaca melanophthalma species complex demonstrates that the genus Rhizoplaca, as presently circumscribed, is more diverse in western North American than previously thought. I present these analyses as a working example of species delimitation in morphologically cryptic lichenized fungi. In Xanthoparmelia diagnostic morphological and chemical characters have evolved in a highly homoplasious manner. In contrast to other studies documenting previously undiscovered fungal lineages masked within lichen species circumscribed by traditional morphological and chemical characters, my work suggests that species diversity has been overestimated in the lichen genus Xanthoparmelia.

**Keywords**: character evolution, convergence, lichens, morphology, Parmeliaceae, *Rhizoplaca*, secondary metabolites, speciation, species concepts, species delimitation, vagrant lichens, *Xanthoparmelia* 

#### ACKNOWLEDGMENTS

I wish to thank my graduate committee for their guidance throughout this work. I recognize and sincerely appreciate the investment of time and assistance generously given throughout the course of this research. Byron Adams provided invaluable help and feedback on early versions that vastly improved my writing. Leigh Johnson has been especially generous with funding, work space and equipment, technical advice, invaluable feedback, and support throughout the entire project; and I sincerely feel that due to his kindness I've been able to successfully complete this dissertation. Roger Rosentreter has been incredibly helpful with his vast knowledge of vagrant lichens, and his enthusiasm for my research always came at the most opportune times. Jack Sites also provided invaluable feedback and insights on early versions, expertise in understanding species delimitation, and important conceptual help. Larry St. Clair provided incredible opportunities, liberty, generosity, kindness, support, friendship, and a great example. He is everything that a major advisor should be.

I am truly indebted to many great people who made significant contributions to the success of this dissertation research. I express heartfelt thanks to colleagues, friends, and family who collected or contributed specimens for this project: Anna Bennett, Curtis Björk, Stuart Crawford, Bernard de Vries, Mike DeVito, Bob Egan, Ted Esslinger, Roy Fuller, Lawrence Glacy, Teegan Hardle, Steve Hardle, Brenda Hardle, J. Hertz, Derek Howell, Donna Howell, Chris Howell, Mike Felix, Trevor Goward, Melinda Greenwood, Jason Hollinger, Katy Knight, Adele Leavitt, Daniel Leavitt, Dean Leavitt, Don Leavitt, Griffin Leavitt, Hailey Leavitt, Jackson Leavitt, James Leavitt, Wayne Leavitt, Garrat Lind, Bruce McCune, Jenifer Munsha, Mark Robinson, Roger Rosentreter, Gajendra Shrestha, the Starkeys, Larry St. Clair, and Tim Wheeler.

I thank Trevor Goward for his support, enthusiasm, discussion, and friendship; Jesse Brienholt for timely help with data analyses; Eric Green and Gajendra Shrestha for valuable discussion; and Christopher Jones, LauraDawn Leavitt, and Peter Ririe for help in the lab.

My family has been provided stability, love, and encouragement. Specifically, my parents, Don and Adele Leavitt and Chris and Donna Howell, have encouraged, promoted, and facilitated the completion of this research. The Fullers, Howells, Starkeys, and Leavitts have all been to kind enough to participate in lichen catching forays. My brother, Dean Leavitt, provided consistent support and guidance throughout this work.

I acknowledge the incredible contributions of my wife, Hailey Leavitt. She certainly has sacrificed more than anyone else throughout the course of this work. She has been patient, loving, supportive, and always made things work out even when it seemed impossible. My two children, Jack and Griffin Leavitt, provided incredible love and acceptance. I deeply treasure the memories of the love and support from my family that was so apparent during the course of this work.

These studies were supported by the California Lichen Society, The Ruth L. Glacy Foundation, Walmart, Imke Schmit at the University of Minnesota, Brigham Young University graduate mentoring, graduate research fellowship awards, and the Brigham Young University Office of Research and Creative Activities.

| LIST OF TABLES                                                                                                                               | viii                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| LIST OF FIGURES                                                                                                                              | ix                                                                                                                             |
| LIST OF SUPPLEMENTARY DATA                                                                                                                   | ix                                                                                                                             |
| CHAPTER ONE: Complex patterns of speciation<br>an integrative approach to discovering and<br>forming <i>Rhizoplaca melanophthalma</i> specie | on in cosmopolitan "rock posy" lichens -<br>delimiting fungal species in the lichen-<br>s-complex (Lecanoraceae, Ascomycota) 1 |
| Abstract                                                                                                                                     | 2                                                                                                                              |
| Introduction                                                                                                                                 |                                                                                                                                |
| Materials and Methods                                                                                                                        | 7                                                                                                                              |
| Results                                                                                                                                      |                                                                                                                                |
| Discussion                                                                                                                                   |                                                                                                                                |
| Conclusions                                                                                                                                  |                                                                                                                                |
| Acknowledgements                                                                                                                             |                                                                                                                                |
| Literature Cited                                                                                                                             |                                                                                                                                |
| CHAPTER TWO: New insights into phylogenet<br>in the species-rich lichen-forming fungal ger<br>western North America                          | ic relationships and character evolution<br>nus <i>Xanthoparmelia</i> (Parmeliaceae) in<br>                                    |
| Abstract                                                                                                                                     |                                                                                                                                |
| Introduction                                                                                                                                 |                                                                                                                                |
| Materials and Methods                                                                                                                        |                                                                                                                                |
| Results                                                                                                                                      |                                                                                                                                |
| Discussion                                                                                                                                   |                                                                                                                                |
| Conclusions                                                                                                                                  |                                                                                                                                |
| Acknowledgements                                                                                                                             |                                                                                                                                |
| Literature Cited                                                                                                                             |                                                                                                                                |

# TABLE OF CONTENTS

| CHAPTER THREE: Species delimitation and evolu<br>chemically diverse communities of the lichen-fo<br>(Parmeliaceae, Ascomycota) in western North A | ition in morphologically and<br>rming genus <i>Xanthoparmelia</i><br>America181 |
|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Abstract                                                                                                                                          |                                                                                 |
| Introduction                                                                                                                                      |                                                                                 |
| Materials and Methods                                                                                                                             |                                                                                 |
| Results                                                                                                                                           |                                                                                 |
| Discussion                                                                                                                                        |                                                                                 |
| Conclusions                                                                                                                                       |                                                                                 |
| Acknowledgements                                                                                                                                  |                                                                                 |
| Literature Cited                                                                                                                                  |                                                                                 |

# LIST OF TABLES

| Table 1.1. | Primers used for PCR amplification and sequencing                              | 43 |
|------------|--------------------------------------------------------------------------------|----|
| Table 1.2. | Genetic variability of sampled markers used in this study                      | 44 |
| Table 1.3. | Polymorphism statistics for candidate species                                  | 45 |
| Table 1.4. | Fixed differences and fixation indices $(F_{ST})$ for all pairwise comparisons | 46 |
| Table 1.5. | Chemotypic variation by candidate species                                      | 47 |
| Table 1.6. | Summary of data supporting candidate species                                   | 48 |
|            |                                                                                |    |
| Table 2.1. | Primers used for PCR amplification and sequencing                              | 16 |
| Table 2.2. | Genetic variability of sampled loci                                            | 17 |
| Table 2.3. | Genetic variability of defined clades                                          | 18 |
|            |                                                                                |    |
| Table 3.1. | Summary of diagnostic morphological and chemical characteristic                | 19 |
| Table 3.2. | Primers used for PCR amplification and sequencing                              | 20 |
| Table 3.3. | Genetic variability of sampled loci                                            | 21 |
| Table 3.4. | Polymorphism statistic for <i>Xanthoparmelia</i> species examined              | 22 |
| Table 3.5. | Estimates of pairwise $F_{ST}$ among putative Xanthoparmelia species           | 23 |
| Table 3.6. | Estimates of pairwise $F_{ST}$ between population clusters                     | 24 |
| Table 3.7. | Results of the paired Shimodaira-Hasegawa topological constraint tests         | 25 |

# LIST OF FIGURES

| Figure 1.1. | Variation in morphology and habit                                                |
|-------------|----------------------------------------------------------------------------------|
| Figure 1.2. | Relationships among sampled specimens                                            |
| Figure 1.3. | The maximum likelihood ITS topology                                              |
| Figure 1.4. | Geographical distributions of candidate <i>Rhizoplaca</i> species                |
| Figure 1.5. | Unrooted statistical parsimony haplotype networks                                |
| Figure 1.6. | Plots of calculations for <i>K</i> values 1-12 in STRUCTURE analysis             |
| Figure 2.1. | Geographic distribution of sampled <i>Xanthoparmelia</i> specimens119            |
| Figure 2.2. | Variation in morphology and habit within sampled <i>Xanthoparmelia</i> 120       |
| Figure 2.3. | Simplified ML topology indicating relationships of <i>Xanthoparmelia</i> taxa122 |
| Figure 2.4. | ML topology indicting intrageneric relationships                                 |
| Figure 2.5. | ML topology indicating clade-specific relationships                              |
| Figure 2.6. | ML topology indicating relationships in clade <i>X</i> -IV 127                   |
| Figure 2.7. | Evolution of morphological and chemical characters 128                           |
| Figure 3.1. | Geographic distributions of sampled <i>Xanthoparmelia</i> specimens              |
| Figure 3.2. | ML phylogenetic relationships of Xanthoparmelia taxa                             |
| Figure 3.3. | Unrooted statistical parsimony haplotype networks                                |
| Figure 3.4. | Plots of calculations for K values 1-12 in STRUCTURE analysis                    |

## LIST OF SUPPLEMENTARY DATA

| Supplementary data 1.1. All specimens included in the present study                            |
|------------------------------------------------------------------------------------------------|
| Supplementary data 1.2. GenBank accession numbers for sampled <i>Rhizoplaca</i> specimens 67   |
| Supplementary data 1.3. Maximum likelihood gene topologies                                     |
| Supplementary data 2.1. Collection information for sampled <i>Xanthoparmelia</i> specimens 129 |
| Supplementary data 2.2. GenBank accession numbers for sampled <i>Xanthoparmelia</i>            |
| Supplementary data 2.3. Maximum likelihood gene topologies                                     |
| Supplementary data 2.4. Full ML tree with nodal support values                                 |
| Supplementary data 3.1. Collection information for sampled specimens                           |
| Supplementary data 3.2. GenBank accession numbers for sampled specimens                        |
| Supplementary data 3.3. Maximum likelihood gene topologies                                     |

## **CHAPTER ONE**

## Complex patterns of speciation in cosmopolitan "rock posy" lichens - an integrative approach to discovering and delimiting fungal species in the lichen-forming *Rhizoplaca melanophthalma* species-complex (Lecanoraceae, Ascomycota)

Steven D. Leavitt<sup>1,5</sup> \*, Johnathon D. Fankhauser<sup>2</sup>, Dean Leavitt<sup>3</sup>, Lyndon D. Porter<sup>4</sup>, Leigh A. Johnson<sup>1</sup>, Larry L. St. Clair<sup>1</sup>

<sup>1</sup>Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602, USA.

<sup>2</sup>Department of Plant Biology, University of Minnesota, 1445 Gortner Ave, St. Paul, MN 55108, USA.

<sup>3</sup> Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-4614

<sup>4</sup>USDA\_ARS Vegetable and Forage Crop Research Unit, Prosser, WA 99350, USA.

<sup>5</sup>Present address: Department of Botany, Field Museum of Natural History, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496

\*Corresponding author:

Steven D. Leavitt. Department of Botany, Field Museum of Natural History, 1400 S. Lake Shore Dr, Chicago, IL 60605-2496, USA, Phone: 801-380-9293, Fax: 801-422-0093, email: leavitt.steven@gmail.com

## Abstract

A growing body of evidence indicates that morphology-based species circumspection of lichenized ascomycetes greatly misrepresents the number of existing species. Recently it has been demonstrated that population-level processes operating within diverging populations can facilitate the identification of lineages in the early stages of species divergence. The cosmopolitan "rock posy" lichen (Rhizoplaca melanophthalma) species-complex includes a number of morphologically distinct species that are both geographically and ecologically widespread, providing a model system to evaluate speciation in lichen-forming ascomyctes. In this study, we assembled multiple lines of evidence from ribosomal and nuclear DNA sequence data, morphology, and biochemistry for species delimitation in the *Rhizoplaca* melanophthalma species-complex. Using multiple analytic approaches, we recover a total of ten candidate species in this study, four of which were described as distinct taxa and six previously unrecognized lineages found within what has been thus far considered a single species. Multiple instances of sympatry support the view that these lineages merit recognition as distinct taxa. Generally, we found little corroboration between morphological and chemical characters and previously unidentified lineages defined in this study, as most candidate species were morphologically polymorphic. However, secondary metabolite data supported one cryptic saxicolous lineage, characterized by orsellinic-derived gyrophoric and lecanoric acids, which we consider to be taxonomically significant. Our study of the R. melanophthalma species-complex indicates that the genus *Rhizoplaca*, as presently circumscribed, is more diverse in western North American than originally perceived, and we present our analyses as a working example of species delimitation in morphologically cryptic and recently diverged lichenized fungi.

**Key words**: lichen species concepts, *Rhizoplaca*, secondary metabolites, speciation, species delimitation, sympatry, vagrant lichens

#### Introduction

Lichens are obligate symbiotic systems consisting of a filamentous fungus, a photosynthetic partner (eukaryotic alga and/or cyanobacterium), and, at least in some cases, nonphotosynthetic bacteria (Cardinale et al., 2008; Grube et al., 2009; Hodkinson and Lutzoni, 2009; Selbmann et al., 2010). The lichenized condition has been extremely successful for many fungal lineages, with an estimated 40% of all ascomycetes forming lichens (Lutzoni, Pagel, and Reeb, 2001). Traditionally, morphology and the expression of signature secondary metabolites have been used to define taxonomic boundaries for lichenized fungi (Culberson, 1972; Hale, 1990; Huneck and Yoshimura, 1996; Huneck, 1999). However, these characters are often widely variable, and their homology has proven difficult to assess between and within taxonomic groups (LaGreca and Lumbsch, 2001; Lumbsch and Schmitt, 2001; Blanco et al., 2004a; Ott et al., 2004; Crespo et al., 2007). A growing body of evidence suggests that in many cases lichen species diversity has been misrepresented (Kroken and Taylor, 2001; Buschbom and Mueller, 2006; Wirtz, Printzen, and Lumbsch, 2008; Crespo and Pérez-Ortega, 2009; O'Brien, Miadlikowska, and Lutzoni, 2009; Printzen, 2009; Wedin et al., 2009), and morphology/chemistry-based species circumspections may underestimate lichenized ascomycete diversity, especially within morphologically similar species with cosmopolitan distributions (Hawksworth, 2001; Crespo et al., 2002; Molina et al., 2002; Murtagh et al., 2002; Dettman, Jacobson, and Taylor, 2003; Divakar et al., 2005).

Because species represent fundamental units of analysis in various sub-disciplines of biology, accurate species diagnoses are critical. Therefore, reassessing current species delimitation is particularly relevant in lichenized fungi, especially in cases when well-established morphological and chemical characters used to define species boundaries are uninformative or incongruent. One of several challenges associated with empirical species delimitation in lichenized fungi is finding and applying the appropriate character sets and analytical tools (Wirtz, Printzen, and Lumbsch, 2008; Crespo and Pérez-Ortega, 2009). In spite of the complicated issues associated with attempts to empirically define species, all contemporary species concepts share the common view that species are segments of separately evolving metapopulation lineages (de Queiroz, 1998, 1999; Mayden, 1999; de Queiroz, 2007). This concept allows researchers to investigate species delimitation using different empirical properties and facilitates the development of new methods to test hypotheses of lineage separation (de Queiroz, 2007). A rapidly growing interest in species delimitations has resulted in novel approaches to investigate species boundaries (Sites and Marshall, 2004; Knowles and Carstens, 2007; O'Brien, Miadlikowska, and Lutzoni, 2009; Vieites et al., 2009; Carstens and Dewey, 2010; O'Meara, 2010; Weisrock et al., 2010; Yang and Rannala, 2010), and more properties (lines of evidence) supporting putative lineages are associated with a higher degree of corroboration (de Queiroz, 2007). Methods identifying lineages in the early stages of species divergence are particularly informative in understanding the processes driving speciation (Wiens, 2004; Weisrock et al., 2010).

An integrative approach to species delimitation is recognized as an essential strategy for rigorously testing species boundaries, particularly among cases involving recent speciation events (Will, Mishler, and Wheeler, 2005; Knowles and Carstens, 2007; Roe and Sperling, 2007). Reliance on a single type of data, such as molecular, morphological, or chemical, often provides an incomplete or inaccurate view of true relationships. Although different data sets and different operational criteria may give conflicting or ambiguous results due to multiple evolutionary processes occurring within and between populations, the use of several independent

suites of characters, such as morphology, geographic range, host preference, and cross-validation using inferences from multiple empirical operational criteria have been shown to establish robust species boundaries (Hey et al., 2003; Sites and Marshall, 2004; Dayrat, 2005; Duminil et al., 2006a; Roe and Sperling, 2007; O'Brien, Miadlikowska, and Lutzoni, 2009; Ruiz-Sanchez and Sosa, 2010; Weisrock et al., 2010).

As traditional characters used to delimit lichen species tend to misrepresent mycobiont diversity, we feel it is important to address lichen species boundaries using an integrative approach based on multiple independent datasets and operational criteria to effectively identify and delimit lichen species. We selected the rock posy *Rhizoplaca melanophthalma* species-complex (Ascomycota, Lecanorales, Lecanoraceae) as a model system to assess species diversity for this study because of its broad ecological and geographical distribution, morphological, chemical and genetic diversity, and its importance as a sensitive indicator of environmental health (Leuckert, Poelt, and Hahnel, 1977; Dillman, 1996; Arup and Grube, 2000; Aslan, Budak, and Karabulut, 2004; Ugur et al., 2004; Zhou et al., 2006). This group was identified as a well-supported monophyletic lineage and includes the placodiod crustose taxon, *Lecanora novomexicana* H. Magn., the umblicate taxon *R. melanophthalma* (DC.) Leuckert & Poelt, and at least 4 vagrant, obligatory unattached, species (Arup and Grube, 2000).

The green rock posy lichen *R. melanophthalma* sensu lato (s. l.) has a worldwide distribution, and in North America it ranges from the northern boreal zone to Mexico along the Rocky Mountain corridor. It is commonly found in the Intermountain Western United States growing in large populations on rocky substrates. Specimens are generally umblicate (fixed to the substrate by a single point of attachment), but often appear squamulose or pulvinate (polyphyllous), and considerable chemical variation is found within the species (McCune, 1987;

Ryan, 2001). However, the assignment of taxonomic rank to distinct morphologies and chemotypes within *R. melanophthalma* s. l. remains uncertain. The vagrant, obligatory unattached, taxa in North America, including *R. cylindrica* (not formally described), *R. haydenii* (Tuck.) W. A. Weber, *R. haydenii* subspecies (ssp.) *arbuscula* Rosentreter, *R. idahoensis* Rosentreter & McCune, *R. melanophthalma* subsp. *cerebriformis* Rosentreter & B. D. Ryan, *R. melanophthalma* ssp. *crispa* Rosentreter & B. D. Ryan, and *R. subidahoensis* (not formally described), are endemic to the high plains and mountains of the central and northern Rocky Mountains in western North America and are particularly susceptible to habitat fragmentation, altered fire dynamics, and agricultural conversion (Rosentreter, 1993). The relationships of the closely related taxa within this group, including the placodiod *Lecanora novomexicana* and vagrant *Rhizoplaca* species remains unclear.

Speciation in lichenized fungi is, in general, understudied, and we present our analyses of the *R. melanophthalma* species-complex to represent the larger focus of this study, which is robust species delimitation in morphologically cryptic and recently diverged lichenized fungi. In this study we followed the general lineage concept (GLC; de Queiroz, 1998, 1999) as our non-operational species definition using an integrative approach to assess diversity within the *R. melanophthalma* species-complex. We analyzed molecular data within a phylogenetic framework to identify candidate species by examining monophyletic groups recovered in the topology, and assessed the putative lineages across individual gene trees to identify lineages that exhibited genealogical exclusivity, an expected pattern for divergent lineages (Avise and Ball, 1990; Baum and Shaw, 1995; Hudson and Coyne, 2002). Candidate species were also evaluated within a population-level framework to assess gene flow and genetic differentiation (O'Brien, Miadlikowska, and Lutzoni, 2009), and we used multi-locus sequence data to identify genetic

clusters without a priori assignment of individuals (Groeneveld et al., 2009; Weisrock et al., 2010). Finally, we investigated patterns in morphological and chemical variation and geographical and ecological distributions for each candidate species. The use of multiple data sets and the combination of analytical methods provides a robust approach to detect and evaluate unidentified lineages within the *R. melanophthalma* species-complex.

#### **Materials and Methods**

*Taxon Sampling*—Sequence data were analyzed from 170 individual posy rock lichens. The focal group was represented by four species from the *R. melanophthalma* species-complex, including R. melanophthalma (127 specimens from 37 localities), Lecanora novomexicana (6 from 4 localities), R. haydenii (6 from 4 localities), and R. idahoensis (4 from 2 localities); three formally described subspecies (ssp.), R. haydenii ssp. arbuscula (2 from a single locality), R. melanophthalma ssp. cerebriformis (1), R. melanophthalma ssp. crispa (1); and two undescribed species, R. cylindrica (1) and R. subidahoensis (1). Figure 1 depicts the high degree of morphological variation within the sampled *R. melanophthalma* species-complex in western North America. The present study emphasized umblicate saxicolous forms; therefore sampling of the lobate taxon L. novomexicana and vagrant taxa were relatively limited. Collections of R. melanophthalma s. l. were initially made in 1997 at ten, 9 x 15 m plots along an altitudinal gradient (2200 - 3400 m) at Thousand Lakes Mountain (TLM), Wayne County Utah, USA (Porter, 1998), and three additional 9 x 15 m plots (2200 m, 2800 m, and 3300 m) were collected on the neighboring Boulder Mountain Plateau (BM), Wayne and Garfield Counties, Utah, in 2008. Seven individual thalli were randomly chosen from each plot to assess ecological trends in distributions and reproductive isolation between candidate species identified in this study (see

section 3.3). We also sampled 39 additional specimens from the *R. melanophthalma* speciescomplex, collected from 24 populations throughout the Intermountain West, USA. Available internal transcribed spacer sequences obtained from GenBank, representing 20 individuals, were included to assess relationships within a broader taxonomic and phylogeographic context. *Rhizoplaca subdiscrepans* (Nyl.) R. Sant. (3 specimens) and *R. chrysoleuca* (Sm.) Zopf (18 specimens) were selected as outgroups, as identified in previous studies (Arup and Grube, 2000; Cansaran et al., 2006; Zhou et al., 2006). Collection information for all included specimens is summarized in <u>Supplementary Table S1</u>, and new voucher material generated for this study is housed at the Brigham Young University Herbarium of Nonvascular Cryptogams (BRY), Provo, Utah, USA.

*Molecular data and sequence alignment*—Total genomic DNA was isolated using either the E.Z.N.A. Plant DNA Kit (Omega Bio-Tek, Norcross, GA), following manufacturer's instructions, or the Prepease DNA Isolation Kit (USB, Cleveland, OH), following the plant leaf extraction protocol. We generated new sequence data via polymerase chain reaction (PCR) for five fungal nuclear markers including three nuclear ribosomal loci, the entire internal transcribed spacer region (ITS), a fragment of the intergenic spacer (IGS), and a group I intron located within nuclear SSU ribosomal DNA (Gutiérrez et al., 2007); and fragments from two low-copy protein-coding loci, *MCM7* and  $\beta$ -tubulin. The nuRNA gene tandem repeat exists in large copy numbers (100-200 copies) facilitating the amplification of the selected markers from older specimens (Thousand Lake Mountain collections made in 1997). Although low levels of intragenomic variation in fungal rDNA repeats suggest convergent evolution in which homogenization is very rapid and effectively maintains highly similar repeat arrays (Ganley and Kobayashi, 2007), previous studies have confirmed the utility of the sampled ribosomal loci for species- and population-level studies in lichenized ascomycetes (Thell, 1999; Kroken and Taylor, 2001; Blanco et al., 2004b; Blanco O and et al., 2004; Buschbom and Mueller, 2006; Lindblom and Ekman, 2006; Brunauer et al., 2007; Gutiérrez et al., 2007; Wirtz, Printzen, and Lumbsch, 2008; O'Brien, Miadlikowska, and Lutzoni, 2009; Wedin et al., 2009). Although a gene duplication of  $\beta$ -tubulin has occurred within Ascomycota, the paralogs are easily distinguishable within the analyzed group, and the marker has been successfully employed to investigate  $\alpha$ -level relationships in other lichenized ascoymycetes (Buschbom and Mueller, 2006; O'Brien, Miadlikowska, and Lutzoni, 2009; Wedin et al., 2009).

Standard polymerase chain reactions (PCR) were used to amplify targeted loci. Fungalspecific primers used in PCR amplifications and in the cycle sequencing reactions are shown in Table 1. PCR cycling parameters used for amplifying the ITS, group I Intron, and  $\beta$ - tubulin loci followed the methods of Blanco et al (2004); cycling parameters for amplifying the IGS followed the 66-56° touchdown reaction described in (Lindblom and Ekman, 2006); and PCR cycling parameters for amplifying the MCM7 fragment followed Schmitt et al. (2009). PCR products were quantified on 1% agarose gel and stained with ethidium bromide. In cases where no PCR product was visualized for the β-tubulin and MCM7 loci, internally nested PCR reactions were performed using 0.3µl of PCR product from the original reaction and newly developed internal primers 'BT-RhizoF' and 'BT-RhizoR' for the β-tubulin fragment, and 'LecMCM7f' and 'LecMCM7r' for the MCM7 fragment. Nested PCR reactions followed the touchdown PCR cycling parameters described above used to amplify the IGS fragment. PCR fragments were cleaned using the PrepEase PCR Purification Kit (USB, Cleveland, OH), following manufacture's protocol, and complementary strands were sequenced using the same primers used for amplification. Sequencing reactions were performed using the Big Dye3 Termination

Sequencing Kit (Applied Biosystems, Foster City, CA), and products were run on an AB 3730x1 automated sequencer at the DNA Sequencing Center, Brigham Young University Provo, Utah, USA.

Sequences were assembled and edited using Sequencher version 3.1.1 (Gene Codes Corporation, Ann Arbor, MI) and Se-Al v2.0a11 (Rambault, 1996), and sequence identity was confirmed with the 'megaBLAST' search in Genbank (Wheeler et al., 2006). Sequences were aligned in Muscle version 3.6 (Edgar, 2004), using default settings.

# *Nucleotide Polymorphism analyses and gene-flow estimation*—We used DnaSP 5.10 (Librado and Rozas, 2009) to calculate basic nucleotide polymorphism statistics, including numbers of haplotypes (*H*), total number of polymorphic sites ( $N_{poly}$ ), average pairwise diversity per site, ( $\pi$ ; Nei, 1987) for each candidate species (see section 3.3). In addition, gene flow between candidate species was assessed by calculating $F_{ST}$ values using DnaSP and counting the number of fixed nucleotides for all pairwise comparisons (O'Brien, Miadlikowska, and Lutzoni, 2009). *F*-statistic calculations were estimated from specimens with complete ITS, IGS, $\beta$ tubulin, and *MCM7* dataset (the ribosomal group I intron was missing in all specimens assigned to a single candidate species, and this marker was therefore excluded from $F_{ST}$ calculations). Aligned sequences were scanned for fixed characters between each candidate species and the remaining data matrix in DnaSP, and the total number of fixed nucleotide positions was tabulated for each candidate species.

*Phylogenetic analyses*—Preliminary phylogenetic reconstructions were performed for each sampled marker independently. However, overall weak phylogenetic signal was identified in the ribosomal group I intron and both protein-coding gene trees, and we preferred to concatenate all markers for phylogenetic reconstructions to improve topology and increase nodal support (Wiens, 1998). Although potential pitfalls of concatenating independent nuclear genes in phylogenetic analyses exist (Degnan and Rosenberg, 2009; Edwards, 2009), coalescent-based methods using multilocus data to simultaneously indentify independently evolving lineages and infer relationships among these are limited (O'Meara, 2009). Furthermore, coalescent-based phylogenetic methods are still very sensitive to deviations from assumptions, especially postdivergence introgression (Leache, 2009; Liu et al., 2009). Heterogeneity in phylogenetic signal among the sampled markers was assessed before combining the datasets (Lutzoni et al., 2004). We performed maximum likelihood (ML) analyses of the concatenated ribosomal dataset (ITS, IGS, and group I intron),  $\beta$ -tubulin, and *MCM7* markers separately in RAxML version 7.0.4 (Stamatakis, 2006; Stamatakis, Hoover, and Rougemont, 2008), using the 'rapid bootstrapping' option as implemented in the CIPRES Web Portal. RAxML allows partitioned analyses implementing the general time reversible (GTR) model of evolution for all partitions, and in the ribosomal dataset individual loci were treated as separate partitions. We used the GTRGAMMA model, which includes a parameter ( $\Gamma$ ) for rate heterogeneity among sites, and chose not to include a parameter for estimating the proportion of invariable sites following recommendations of (Stamatakis, 2006). Support values for the ribosomal,  $\beta$ -tubulin, and *MCM7* phylogenies were examined for well-supported ( $\geq$  70%) conflicts between data sets (Lutzoni et al., 2004).

GenBank accessions were represented solely by ITS sequences, and exploratory phylogenetic reconstructions of all combined accessions and sequence data resulted in reduced nodal support across the topology and important ambiguous relationships. Therefore we chose not to include accessions represented solely by ITS sequences in the complete combined data in order to minimize the effect of missing data (Baurain, Brinkmann, and Philippe, 2007). Phylogenetic relationships were estimated from the combined data set using mixed-model Bayesian inference (BI) as implemented in Mr.Bayes version 3.1.2 (Huelsenbeck and Ronquist, 2001). We used MrModeltest version 2.3 (Nylander et al., 2004) to identify the appropriate model of evolution for each marker using the Akaike Information Criterion (AIC; Posada and Crandall, 2001), and we treated each marker as a separate partition. Four independent replicate searches were executed with eight chains; each run started with randomly generated trees and consisted of sampling every 1000 generations for 20,000,000 generations. To evaluate stationarity and convergence between runs, log-likelihood scores were plotted using TRACER version 1.5 (Rambaut and Drummong 2003), ESS statistics, and the average standard deviation in split frequencies were assessed following (Hall, 2007). Trees generated prior to stationarity were discarded as "burn-in" (Huelsenbeck et al., 2001). The results were summarized with a majority-rule consensus tree from the remaining trees from the four independent runs. Bayesian posterior probabilities (PP) were assessed at all nodes, and clades with PP  $\geq$  0.95 were considered strongly supported (Huelsenbeck and Rannala, 2004).

Because BI may resolve bifurcations with strong support when relationships are really unresolved (Kolaczkowski and Thornton, 2007), we conducted an ML analysis using RAxML 7.0.4, permitting each locus to evolve independently under the GTR substitution model (Stamatakis, 2006; Stamatakis, Hoover, and Rougemont, 2008). We used the GTRGAMMA model, which includes a parameter ( $\Gamma$ ) for rate heterogeneity among sites. Following the recommendations of Stamatakis (2006), we did not include a parameter for the proportion of invariable sites, because  $\Gamma$  mathematically account for this source of rate heterogeneity by using 25 rate categories. A search combining 200 separate maximum likelihood searches (to find the optimal tree) and 1000 "fastbootstrap" replicates to evaluate nodal support was conducted on the complete dataset.

In order to assess relationships within a broader geographic context we reconstructed the ITS gene tree using both BI and ML inference from all available ingroup ITS sequences, including 20 sequences retrieved from the GenBank database, with *R. chrysolueca* selected as the outgroup (Arup and Grube, 2000; Zhou et al., 2006). We implemented MrModeltest version 2.3 (Nylander et al., 2004) to identify the appropriate model of evolution using the AIC, and the ITS gene was treated as a single partition. BI and ML reconstructions were performed for the complete ITS dataset as described above.

The combined topology indicated strong phylogentic subdivision within the *R*. *melanophthalma* species-complex, and the topology was used to guide the identification of candidate species for this study. We chose to define a total of 10 putative species to represent four currently accepted taxa and six phylogenetic lineages identified within the topology representing *R. melanophthalma* s. l. (section 3.3) Following the recommendations of Sites and Marshall (2004) and de Queiroz (2007), we implemented multiple analytical approaches to assess species boundaries for independent corroboration of the candidate species identified in the current study. We emphasized species delimitation criteria that identify lineages exhibiting the population genetic patterns of cohesion through gene flow to identify recently diverged species (Duminil et al., 2006b; Shaffer and Thomson, 2007; Weisrock et al., 2010).

*Haplotype network reconstructions and genealogical concordance*—Although topologies generated by concatenation are often reasonable approximations of reality (Weins 1998), concatenated datasets may potentially be misleading because they can generate unexpected phylogenetic signals, in particular those from DNA sequences sampled from rapidly diverging clades (Kolaczkowski and Thornton, 2004; Edwards, Liu, and Pearl, 2007; Kubatko and Degnan, 2007; Matsen and Steel, 2007; Kolaczkowski and Thornton, 2008). Furthermore, in cases of low levels of divergence and non-bifurcating relationships, tree representation may fail to accurately portray a reasonable genealogy (Clement, Posada, and Crandall, 2000). In these cases, network approaches provide an important alternative to phylogenetic reconstructions. We used statistical parsimony to assess the genealogical relationship of every individual and compare relationships of candidate species between genes. Because recombination within nuclear genes can lead to errors in the estimated topology (Posada, Crandall, and Holmes, 2002), we tested for recombination events in the low-copy protein-coding markers using methods implemented in Recombination Detection Program RPD3 (Martin, Williamson, and Posada, 2005; Heath et al., 2006). Networks were constructed under a 95% parsimony probability criterion (Templeton, Crandall, and Sing, 1992) from concatenated ribosomal sequences (ITS, IGS, intron), the  $\beta$ -tubulin, and the *MCM7* fragments using the program TCS v1.21 (Clement, Posada, and Crandall, 2000). Gaps were treated as missing data for the ribosomal network reconstruction to include voucher specimens missing one of the three ribosomal loci. All protein-coding sequences were trimmed to the length of the fragment resulting from nested PCR reactions and a single sequence missing approximately half the fragment was removed from the β-tubulin network analysis. All network uncertainties (i.e. closed loops) were treated following Templeton and Sing (1993). Relationships of candidate species were evaluated between individual gene trees to identify lineages that exhibited genealogical exclusivity across multiple loci (Avise and Ball, 1990; Hudson and Coyne, 2002). The presence of the same clades in the majority of single-locus genealogies is taken as evidence that the clades represent reproductively isolated lineages (Dettman, Jacobson, and Taylor, 2003; Pringle et al., 2005),

**Bayesian population structure analysis**—Individual-based approaches provide an alternative for identifying population structure and barriers to gene flow (Saisho and Purugganan, 2007), as analyses based on predefined delineations of groups may obscure patterns of differentiation (Latch et al., 2006; Rowe and Beebee, 2007). We used a Bayesian population assignment test implemented in STRUCTURE version 2.32 (Pritchard, Stephens, and Donnelly, 2000; Falush, Stephens, and Pritchard, 2003) to infer population structure based on a combined genotypic matrix from all five loci (ITS, IGS, group I intron, β-tubulin, and MCM7), without using known geographic location or putative species classification of the individual as priors. The five selected loci were estimated to be sufficient to provide an overview of the highly differentiated groups (Saisho and Purugganan, 2007; Groeneveld et al., 2009; Weisrock et al., 2010). An admixture model was used with correlated allele frequencies. We implemented 15 replicate runs for each number of assumed populations (K), with a range of K from 1 to 12. Based on preliminary runs, all analyses used 30,000 MCMC generations to estimate the posterior distribution following a burn-in period of 15,000 generations. In some cases, independent runs for K values 3 through 12 appeared to converge on different parameter space, and longer burn-in or MCMC did not significantly improve convergence. Therefore, we calculated the median log (ln) likelihood of each K value from the four best-scoring runs. Following the procedure outlined by Evanno et al. (2005), we calculated the modal value ( $\Delta K$ ) based on the second order rate of change of the likelihood function between successive K values. Because  $\Delta K$  may favor smaller values of K representing basal levels of hierarchical structure (Evanno, Regnaut, and Goudet, 2005), we also examined subgroups created by the best individual assignments produced by STRUCTURE to identify sublevels of structuring (Evanno, Regnaut, and Goudet, 2005; Saisho and Purugganan, 2007; Groeneveld et al., 2009; Weisrock et al., 2010).

*Morphological and biochemical comparisons*—Considering recent studies (Arup and Grube, 2000; Ryan, 2001; Cansaran et al., 2006; Zhou et al., 2006; Zheng, Sheng, and An, 2007), a total of 14 morphological characters were quantified in an attempt to potentially identify diagnostic characters for candidate species identified in this study, including: point of attachment (distinctly umbilicate/squamulose), thallus form (polyphyllous/monophyllous), lobe morphology (distinct/intermediate/indistinct), upper surface (dull/shiny), upper surface texture (smooth/cracked), upper surface color (light to moderately greenish yellow/olive), lower surface (smooth/rough), lower surface edges (black near edges/not blackened edges), lower surface color (tan/brown), apothecia (sessile/basally constricted), apothecia pruinosity (heavily pruinose/moderately pruinose/not pruinose), thallus margin (entire/crenate), spores (ellipsoid/subglobose), spore size (continuous character).

Lichen compounds were extracted from 0.02g liquid nitrogen-ground specimens overnight in acetone at 4° C. The supernatant was removed, dried, reconstituted in methanol, and analyzed using HPLC. Retention index values (RI) were calculated from benzoic acid and solorinic acid controls (Feige et al., 1993; Lumbsch, 2002). For HPLC, we used an Agilent Technologies 1200 series integrated system with a Zorbax Eclipse XDB8-CB column  $(4.6 \times 150 \text{ mm}, 5 \mu \text{m})$  regulated at 30° C, spectrometric detectors operating at 210, 254, 280, 310 nm, and a flow rate of 0.7 ml/min. Following established protocols (Feige et al., 1993; Lumbsch, 2002), two mobile phases, A and B, were used: 1% aqueous orthophosphoric acid (A) and methanol (B). The run started with 30% B for 1 min and was raised to 70% B within 15min of the start time, then to 100% B during an additional 15min, followed by isocratic elution in 100% B for the final 20min. Mobile phase B was decreased to 30% within 1 min and the column was flushed with 30% B for 15min following each run. UV spectra of each peak were recorded and computer-matched against a library of ultraviolet spectra from authentic metabolites derived under identical conditions using Agilent Chemstation software. The correlation of UV spectra with the standards in the library was greater than 99.9 % for each substance identified. When multiple library entries matched with this level of identity, calculated R/I values were used to discriminate between compounds.

#### Results

For this study 635 new sequences were generated, including 150 ITS, 139 IGS, 75 group 1 intron, 137  $\beta$ -tubulin, and 134 *MCM7* sequences. The data matrix of 2639 aligned nucleotide position characters in the combined analysis is summarized in <u>Table 2</u>. Missing data were generally limited to the outgroup taxa *R. chrysolueca* and *R. subdiscrepans*. However, we were unable to generate group I intron sequences from all accessions recovered in clade IVd from the combined analyses (defined below). All representative haplotypes of the five gene fragments have been deposited in GenBank under Accession Nos. HM576889-HM577515, and are summarized in <u>Supplementary Table S2</u>.

**Polymorphism statistics and estimates of gene flow**—Polymorphism statistics are reported in <u>Table 3</u>. The greatest nucleotide diversity for candidate species was generally recovered for ribosomal loci. High levels of genetic differentiation between all pairs of candidate species were calculated from the combined data set, as measured by  $F_{ST}$  (<u>Table 4</u>). Fixed differences between candidate species defined in this study were identified from ribosomal markers for all pairwise comparisons, and fixed differences were identified in at least one of the protein-coding fragments for 40 of 45 pairwise comparisons (<u>Table 4</u>). The ribosomal data matrix showed the greatest number of fixed character differences between each candidate species compared to all remaining lineages; while the protein-coding matrixes generally did not reveal fixed character differences (<u>Table 4</u>). However, the β-tubulin fragment revealed 9 fixed nucleotide positions in clade I and 1 fixed locus in clade IVb, and the *MCM7* data revealed 2 fixed nucleotide positions in clade I and 5 fixed characters in *R. idahoensis* (clade IV). Group I intron sequences were missing for all individuals assigned to clade IVd and a single individual from *R. haydenii* ssp. *arbuscula* (092f), *R. idahoensis* (093) and clade II (693f).

*Phylogenetic reconstructions*—The ribosomal topology recovered multiple wellsupported lineages within the *R. melanophthalma* species-complex. In contrast, weak phylogenetic signal was generally indentified in both protein-coding matrixes. However, using the  $\geq$  70% bootstrap method to identify conflict, we detected limited discordance between the ribosomal,  $\beta$ -tubulin and *MCM7* topologies restricted to clades with relatively shallow evolutionary histories. Conflicting terminals are shown in individual gene trees (Supplementary data 3). This conflict likely results from retained ancestral polymorphisms in the  $\beta$ -tubulin dataset relative to the more-rapidly evolving ribosomal markers, and given the overall congruence, the ribosomal,  $\beta$ -tubulin , and *MCM7* gene regions were combined to maximize the total number of characters for phylogenetic analyses and branch length estimation (Wiens, 1998; Rokas et al., 2003).

The partitioned Bayesian analyses, summed from four independent runs, yielded a consensus tree with a negative harmonic mean of 11,092.49. All parameters converged within the first 25% of sampled generations, leaving a posterior distribution estimated from 15,000 trees per run (60,000 total post-burn-in sampled trees). The partitioned ML analysis yielded a single best scoring tree -lnL = 10,755.758. As the recovered trees were similar across methods and the topologies did not show any strongly supported conflict; we present here the results of the ML

analysis with ML bootstrap (BS) and posterior probability (PP) values in Figure 2. The *R*. *melanophthalma* group is strongly supported as monophyletic and several other well-supported groups can be identified in the tree.

The ITS topology (Fig. 3) recovered most lineages identified in the combined analyses. GenBank accessions representing individuals collected in Austria (AF159935), China (AY509791, EF095286, and EF095297), and the United States (AF159929-Arizona and AF159935-Arizona) were recovered in a well-supported clade (91/1.0) corresponding to clade II identified in the combined analyses. Six accessions collected in China (EF095278, EF095280, EF095283, EF095285, EF095287, and EF095290) were recovered within a well-supported clade (81/0.98) corresponding to clade IVb from the combined analyses, and two accession representing R. cerebriformis (AF159942, Idaho, USA) and R. subidahoensis (AF159944, Idaho, USA) were recovered within a well-supported clade (90/1.0) corresponding to clade IVa from the combined analyses. A single accession representing *R. cylindrical* (AF159941, Idaho, USA) was recovered in a clade with high ML bootstrap support (82) and weak PP support (0.79) corresponding to clade IVd in the combined analyses. Two vagrant accessions representing R. idahoensis (AF159943-Idaho, USA) and R. haydenii (AF159937-Idaho, USA) were recovered in a well-supported clade (85/1.0) containing individuals all assigned to clades clades IVb, IVc, R. haydenii, R. haydenii ssp. arbuscula, and R. idahoensis in the combined analyses. L. novomexicana was recovered as polyphyletic in two well-supported lineages; one containing specimens collected in northeastern Utah, and the second (clade V, Fig. 3) in two GenBank accessions, one from Arizona (AF159923) and the other from New Mexico (AF159923). However, the relationship between the L. novomexicana lineages lacked strong statistical support.

*Candidate Species*—We defined 10 candidate species based on the results from our phylogenetic reconstructions and current taxonomic boundaries for additional empirical testing of species boundaries. Sampled L. novomexicana (clade I, Fig. 2) were recovered in a wellsupported lineage (BS=100/PP=1.0), and is recovered as sister to the remaining R. *melanophthalma* taxa with weak nodal support. Clade II was recovered with high nodal support (95/1.0), and corresponds to a genetically and morphologically diverse assemblage of umbilicate saxicolous specimens collected throughout the intermountain western United States, all containing usnic and psoromic acids. However, the relationship of clade II to other wellsupported sister lineages lacks strong nodal support (43/0.89). Clade III was also recovered with strong support (100/1.0), and is represented by umbilicate saxicolous individuals with little morphological or genetic variation collected from two plots (BM-3 and TLM-9) on the Aquarius Plateau in south central Utah, U.S.A. Clade III was recovered with strong nodal support (94/0.98) as sister to a fourth well-supported clade (99/1.0) containing a chemically diverse assemblage of umbilicate and vagrant specimens (clade IV). Seven additional candidate species were defined within clade IV to accommodate currently described vagrant taxa and an exhaustive subdivision of the remaining accessions.

All sampled vagrant taxa were recovered within a single monophyletic clade with weak nodal support (BS and PP < 50/0.50). *R. idahoensis, R. haydenii,* and *R. haydenii* spp. *arbuscula* were treated as independent lineages based on current taxonomic circumspection. Both *R. idahoensis* and *R. haydenii* spp. *arbuscula* were recovered as well-supported monophyletic lineages (94/1.0 and 81/1.0, respectively), while *R. haydenii* was found in two well-supported clades. A single saxicolous specimen with unique lobe morphology (715f) was recovered within the *R. haydenii* clade. In addition to the currently described vagrant taxa, four candidate species were defined to accommodate exhaustive subdivision within the larger clade. Clade IVa (Fig. 2) was recovered with strong nodal support (100/1.0) and contains three morphologically and geographically diverse individuals. All specimens containing lecanoric or orscellinic acids were recovered within clade IVb with moderate to strong nodal support (BS = 83; PP = 0.93). Clade IVc (Fig. 2) was also recovered with strong support (82/1.0), and included five individuals; and clade IVd included the remaining 55 individuals. Although this lineage was recovered as monophyletic, it lacked strong support in the combined phylogenetic reconstructions.

Geographic distributions of candidate species and the distribution of these species along the altitudinal transect on Thousand Lakes Mountain and Boulder Mountain, Utah is summarized in Figure 4.

*Haplotype networks*—We recovered a total of five independent haplotype networks for the combined ribosomal data set, and two networks for both the  $\beta$ -tubulin and *MCM7* datasets (Fig. 5A). The ribosomal network haplotypes separated by up to 15 mutational steps had greater than 95% probability of being parsimoniously connected. In the  $\beta$ -tubulin and *MCM7* distinct networks were connected by up to 11 or 10 mutational steps, respectively. For all markers clade I (*L. novomexicana*) formed an independent network. In addition, clades II, III, and IVa formed independent networks constructed from the ribosomal dataset, while clades IVc, IVb, IVd, *R. haydenii* spp. *arbuscula* (clade IV), *R. haydenii* (clade IV), and *R. idahoensis* (clade IV), were found on a single network. In both the  $\beta$ -tubulin and *MCM7* datasets clades II, III, IVa, IVb, IVc, IVd, *R. haydenii* spp. *arbuscula* (clade IV), *R. haydenii* (clade IV), and *R. idahoensis* (clade IV) were found on a single network.

*Bayesian population structure*—The median ML values of the Bayesian clustering analysis using STRUCTURE with estimates of K = 1-12 are shown in Figure 6A. These

analyses reveal a general pattern of a plateau with a decrease in median maximum likelihood values above a K=6 level. In contrast, the  $\Delta K$  method indicates that a K = 2 model best fits the data (Fig. 6B;  $\Delta K = 137.170$  for K = 2;  $\Delta K = < 25$  for all other K values), most likely identifying a basal level of hierarchical structure in the data (Evanno, Regnaut, and Goudet, 2005). The K =2 model identifies individuals recovered in clades I, II, and III from the combined phylogenetic analysis in one population cluster, and individuals recovered in the remaining clades were assigned to a second cluster. However, the plateau in likelihood values around K = 6 suggest a higher number of population clusters (Figure 6A). A plot of individual membership coefficients for K=6 reveals a high number of population clusters with average individual membership coefficients (i.e. posterior probabilities) greater than 0.9 (Figure 5B). Population clusters inferred for K>6 did not yield additional clusters with high membership coefficients. Therefore, we place our focus on K = 6 as an uppermost level of population structure. The K = 6 model is generally consistent with the defined candidate species. However, all vagrant species (R. haydenii, R. haydenii ssp. arbuscular, and R. idahoensis) were recovered within a single population cluster, along with all individuals assigned to clade IVc in the combined phylogenetic analysis. A total of three saxicolous accessions (554f, 556f, and 715F) and three erratic, or facultatively unattached, accessions (668f, 669f, 670f) were assigned to the cluster with vagrant taxa. Clades IVa and IVd were also recovered as a single population cluster; however, membership coefficients for individuals with posterior probabilities were < 0.71 for clade IVa and  $\geq 0.87$  for clade IVd.

*Morphology and Chemistry*—We adopted the approach of Wiens and Penkrot (2002), suggesting that in order for characters to diagnose a lineage they must be invariant for alternative character states or show no overlap in trait values. Both vegetative morphology and reproductive

characters, spore size and shape, were highly variable within some candidate species, and overall we were unable to identify morphological or reproductive characters corroborating candidate species following Wiens and Penkrot (2002).

Occurrence of the 11 most common compounds identified in HPLC analyses within each defined lineage is summarized in <u>Table 5</u>. The majority of specimens belonged to the usnic/psoromic acids chemotype (119 specimens, including all specimens of L. *novomexicana*), having a broad geographical and ecological distribution; 9 specimens contained usnic, psoromic, and lecanoric acid; and 5 specimens contained usnic, psoromic, and orscellinic acid. All sampled vagrant specimens expressed usnic acid only. In addition to the previously reported psoromic acid, we found 2'-*O*-demethylsubpsoromic acid, 2'-*O*-demethylpsoromic acid, and the recently described  $\beta$ -orcinol depsidone, subpsoromic acid (Elix 2000). The dibenzofuranderivative, usnic acid, and constipatic acid, were present in all individuals, except the sampled vagrant taxa. We found gyrophoric (triorsellinic) acid and also the monocyclic-depside precursor, orsellinic acid, restricted to specimens assigned to clade IVb (defined in 3.3) in the combined molecular analyses, in addition to previous reports for lecanoric (diorsellinic) acid (McCune, 1987; Arup and Grube, 2000).

### Discussion

Taxonomic decisions are usually made on the basis of recognizable morphological characters. However, inferring species boundaries in lichenized fungi is not straightforward, as often interspecific boundaries based on traditional morphological and chemical characters misrepresent fungal diversity (Crespo and Pérez-Ortega, 2009; Printzen, 2009). In this study, we

assembled multiple lines of evidence to identify and delimit candidate species within the *Rhizoplaca melanophthalma* species-complex. Based on all of the available evidence, we identified ten candidate species within this complex. Many of these lineages fall within a nominal taxon currently recognized as a single cosmopolitan species, *R. melanophthalma*. Genetic patterns, generated by population-level processes operating within divergent lineages, provide an informative perspective about the process of speciation in the *R. melanophthalma* species-complex.

Generally, relationships estimated from the combined ribosomal dataset (ITS, IGS, and group I intron) recovered a highly structured topology with multiple well-supported clades, while the protein coding gene trees generally showed less resolution and fewer well-supported clades. Given the small  $N_{es}$  for haploid genomes, monophyly may be attained from rapidly evolving markers, even within recently derived lineages (Moore, 1995). As a result, most lineages that were well-supported in the ribosomal phylogeny were unresolved in both protein-coding phylogenies. Furthermore, a large proportion of ribosomal characters showed fixed, alternative character states between putative lineages identified in this study, protein-coding markers provided less resolution. Despite a lack of monophyly in the protein-coding phylogenies for most of the candidate species, gene networks generally supported the groupings, and the STRUCTURE analysis of the combined data set corroborated most groups recovered in the phylogenetic reconstruction. Results of the empirical tests delimiting species are summarized in Table 6.

Although our results provide a compelling case of diversification within the *R*. *melanophthalma* species-complex using molecular data and multiple analytical tools, most candidate species were not supported unambiguously by independent datasets. Besides the placodiod crustose taxon, Lecanora novomexicana, we found that the greatest morphological and chemical variation was restricted to closely related lineages (sampled vagrant taxa and clades IVb and IVc), while morphological and chemical characters supporting more divergent groups were not identified. Ecological interactions are expected to drive phenotypic divergence during the early stages of lineage diversification when species richness is low and available niches are "open" (Schluter, 2000). The ecological transition from a saxicolous attached form to morphologically distinct vagrant forms appears to follow the ecological theory of adaptation (Funk, Nosil, and Etges, 2006). The STRUCTURE analysis assigned all vagrant forms to a single population cluster, suggesting a recent divergence of morphologically diverse vagrant taxa. However, the inclusion of saxicolous attached taxa within this cluster suggests a recent divergence from saxicolous attached forms or an underlying genetic predisposition to vagrancy in at least some saxicolous lineages. (Leavitt, Johnson, and St. Clair, submitted) indentified multiple independent origins of vagrancy within the lichen genus Xanthoparmelia (Parmeliaceae), but our data suggest that that vagrancy in the R. melanophthalma speciescomplex is limited to a single closely related lineage, even among morphologically distinct vagrant forms. However, a broader sample of vagrant individuals is essential to adequately addressing this question, particularly R. haydenii recently described in China (Zheng, Sheng, and An, 2007).

Phylogenetic analyses of both the combined dataset and the ITS marker alone recovered clade IVa with strong support. However, the STRUCTURE analysis assigned all individuals from clade IVa (membership coefficient values between 0.65 and 0.70) to the same population cluster containing accessions recovered in clade IVd. Although nuclear ribosomal DNA (rDNA) repeats generally evolve together through concerted evolution, it has been documented that some
genomes contain a considerable diversity of paralogous rDNA (Buckler-IV, Ippolito, and Holtsford, 1997), and the lack of concordance between the ribosomal DNA with other nuclear markers suggests that the observed divergence in phylogenetic reconstructions may be a result of divergent ITS paralogs within the nuclear ribosomal repeat, rather than representing distinct lineages. The overall impact of paragolous rDNA markers in studies of lichenized ascomycetes remains uncertain, and these results highlights the importance of using multiple independent genetic markers to effectively assess evolutionary relationships.

Previous studies have used thin-layer-chromatography (TLC) to characterize lichen secondary metabolic products within *Rhizoplaca*. In this study HPLC provided a more sensitive approach to determine secondary metabolite diversity within the *R. melanophthalma* group, as many newly reported compounds here would be masked by other compounds, or likely found at levels undetectable by TLC. While data have supported the taxonomic use of some secondary metabolic characters for delimiting lichen taxa (Tehler and Källersjö, 2001; Schmitt and Lumbsch, 2004), other studies found no correlation between chemotypes and lineages identified using molecular phylogenetic reconstructions (Articus et al., 2002; Buschbom and Mueller, 2006; Nelsen and Gargas, 2009; Velmala et al., 2009). We have identified chemical characters corroborating some lineages identified within the *R. melanopthalma* group, including: clade IVb containing a combination of orsellinic, lecanoric, and gyrophoric acids; and *R. haydenii*, *R. haydenii*, ssp. *arbuscula*, and *R. idahoensis* all lack aliphatic acids related to constipatic acid. However, we were unable to identify secondary metabolic characters supporting most identified putative lineages, including the most genetically divergent groups.

McCune (1987) suggested three hypotheses to explain chemical diversity in the genus *Rhizoplaca*: (1) chemotypes are sibling species that cannot or seldom hybridize assuming there

are no reproductive barriers, (2) factors favoring polymorphism in chemistry do not differ markedly between regions, or (3) the polymorphism is neutral to natural selection. Although the present study was not designed to explicitly test these hypotheses, our results indicate within the usnic/psoromic acid race multiple lineages co-occur. The usnic/psoromic/lecanoric acid race appears to be a distinct lineage also containing specimens lacking lecanoric acid but expressing the lecanoric acid precursor, orsellinic acid. Additional studies will be needed to fully elucidate the relationship between *R. melanophthalma* s.l. containing lecanoric or orsellinic acids. Our sampling of the usnic acid chemical race in the *R. melanophthalma* species-complex was limited to a single saxicolous attached individual (715f) and all vagrant taxa. The saxicolous *R. melanophthalma* chemical race containing placodiolic acid was not sampled and its relationship to sampled taxa remains in question.

Porter (1999) reported a correlation between some secondary metabolites and elevation in *R. melanophthalma* populations along an altitudinal gradient on Thousand Lakes Mountain, Utah. Besides the strict correlation of lecanoric and orsellinic acid with clade IVb, the present study did not identify any specific correlations between lineages identified from molecular data and expressed secondary metabolites on Thousand Lake Mountain, suggesting that the production of most minor compounds may be environmentally induced. A combination of species diversity in lichen-forming symbionts (alga and fungus) and ecological factors may explain secondary metabolite variation among the Thousand Lake Mountain populations (Brunauer et al., 2007).

These results offer interesting insights into potential mechanisms driving speciation in lichenized ascomycetes. Cohesive sets of populations yielding distinct patterns in allele frequencies and gene trees often co-occur, suggesting the possibility of sympatric speciation in the *R. melanophthalma* species-complex. Although our understanding of the relative importance of sympatric speciation is incomplete, recent studies suggest that sympatric speciation and parallel diversification may be more important than previously realized (Barluenga et al., 2006; Baloch and Grube, 2009; Kozak, Mendyk, and Wiens, 2009; Crow, Munehara, and Bernardi, 2010). Pre-conditions for sympatric speciation include: 1) sympatric distribution of the most closely related sister species; 2) genetic evidence for reproductive isolation among the lineages; 3) monophyly; and 4) an ecological setting in which allopatric divergence is unlikely (Coyne and Orr, 2004; Barluenga et al., 2006). Although our data appear to fit the first three criteria for sympatric speciation, they do not preclude the possibility that current distributions of the candidate species are an artifact of allopatric diversification followed by secondary sympatry.

The current study was generally limited to the Intermountain region of western North America, and robust data from a broader geographic sampling will be essential to understand the general geographic distribution of the candidate species identified in this study. We anticipate that with improved sampling, additional lineages may be identified within the *R*. *melanophthalma* species-complex, particularly within *L. novomexicana* s.l. However, with the exception of *L. novomexicana*, the ITS topology recovered GenBank accessions within the candidate species defined from our combined dataset set from samples in western North America, suggesting our candidate species may represent some lineages with cosmopolitan distributions. While most candidate species identified in this study appear to demonstrate early stages of species divergence, the occurrence of cohesive cosmopolitan lineages found sympatrically with closely related divergent populations poses challenging questions about the processes that yield and maintain cohesive lineages within widespread lichenized ascomycetes. Clade-specific ecological or microhabitat differences considered alone do not appear to offer a plausible explanation of how sympatric diversification may occur in the candidate species. Some lineages exhibit extensive microsympatry (i.e., divergent lineages occurring within a single sampled plot), as well as the production of abundant perennial apothecia (sexual fruiting bodies) without detectable gene flow or hybridization between microsympatric individuals. This pattern suggests that candidate species may have achieved a significant level of reproductive isolation. However, the role of spatio-temporal isolation in lichenized fungal reproduction is relatively unexplored. It has been proposed that competition for symbiotic partners may be a major driver of diversity in mutualistic relationships (Bruns, 1995; O'Brien, Miadlikowska, and Lutzoni, 2009) and investigating competition for symbionts may provide insights into mechanisms that possibly drive sympatric speciation.

Within lichenized fungi, gene trees have often been used to infer species boundaries, and the over-reliance on a single locus has been problematic in delimiting species because gene duplication, horizontal gene transfer, and deep coalescence may create conflict between the sampled gene tree and the true species tree (de Queiroz and Donoghue, 1990; Maddison, 1997). In some cases, rapidly evolving molecular characters may reach fixation in ephemerally isolated demes, with the potential to reticulate with other conspecific lineages at some point in the future (O'Hara, 1993). Additionally, phylogenetic structure can extend below the level of the species, particularly within asexual and haploid genomes (Birky, Maruyama, and Fuerst, 1983; Birky-Jr, Fuerst, and Maruyama, 1989; de Queiroz and Donoghue, 1990; Davis, 1996) making species limits based on molecular data within lichenized fungi particularly susceptible to excessive subdivision.

29

In spite of the limitations in delimiting taxa using molecular data, most of the candidate species indentified in this study, were not supported by diagnostic morphological or chemical characters, and the effective use of molecular data appears to be an essential approach to appropriately identify natural groups in many fungal lineages (Crespo and Pérez-Ortega, 2009). The authors plan a detailed taxonomic revision for the *Rhizoplaca melanophthalma* species-complex in the near future, including additional taxonomic and morphological sampling to more fully characterize boundaries between candidate species. Results from this study suggest that robust taxon and molecular data sampling, using appropriate empirical operational criteria to delimit species, may provide an improved perspective on the diversification of lichenized fungi (Zwickl and Hillis, 2002), compared to traditional morphological and chemical characters. However, we are not advocating the use of genetic data to the exclusion of other evidence for delimiting species; due to the fact that corroboration of species boundaries via independent lines of evidence is important to the establishment of robust hypotheses of species diversity.

## Conclusions

Analysis of the *R. melanophthalma* species-complex comprises the larger focus of this study, which is using robust species delimitation in morphologically cryptic and recently diverged lichenized fungi. *Rhizoplaca*, as traditionally circumscribed, is a small morphologically diverse lichen genus represented by 9 species (Arup and Grube, 2000; Zhou et al., 2006). This study indicates overall diversity within umbilicate *Rhizoplaca* species may be vastly underestimated, as multiple previously unrecognized lineages were identified within the *R. melanophthalma* group. Previous studies have identified well-supported lineages within *R. chrysoleuca* corresponding to two phenotypic groups (Zhou et al., 2006), and well-supported and

highly structured relationships within the outgroup taxon *R. chrysoleuca* were also recovered in this study, suggesting an additional nominal *Rhizoplaca* taxon may contained previously unrecognized lineages. Extending the present sampling of the *R. melanophthalma* speciescomplex to include a broader geographic context and robust sampling of underrepresented lineages will be critical to improve the understanding of the mechanisms driving speciation in lichenized fungi. Furthermore, an extension of the present sampling to other closely related cosmopolitan *Rhizoplaca* and *Lecanora* species-complexes will provide a potential opportunity for developing a comprehensive classification system for other closely related taxa. Additionally, continued investigation of independent characters supporting candidate lineages will be essential for generating robust hypotheses of species boundaries.

## Acknowledgements

We thank Byron Adams (Provo), Eric Green (Provo), Roger Rosentreter (Boise), Imke Schmitt (Minnesota), and Jack Sites (Provo) for valuable discussion and comments on early versions of this manuscript; Christopher Jones and Peter Ririe for laboratory assistance; and LauraDawn Leavitt (Provo) and Gajendra Shrestha (Provo) for invaluable help in preparing figures. We would also like to thank Jack Elix (Canberra) for providing a digital HPLC library and Thorsten Lumbsch (Chicago) for a collection of authentic substances. This study was supported, in part, by funds from the University of Minnesota to Imke Schmitt (Minnesota), Brigham Young University graduate mentoring and graduate research fellowship awards to SDL, and a Walmart Foundation Internship Grant to JDF. The funding sources had no role in study design, data collection and analysis, preparation or decision to publish this manuscript.

## **Literature Cited**

- ARTICUS, K., J. E. MATTSSON, L. TIBELL, M. GRUBE, and M. WEDIN. 2002. Ribosomal DNA and beta-tubulin data do not support the separation of the lichens *Usnea florida* and *U. subfloridana* as distinct species. *Mycological Research* 106: 412-418.
- ARUP, U., and M. GRUBE. 2000. Is *Rhizoplaca* (Lecanorales, lichenized Ascomycota) a monophyletic genus? *Canadian Journal of Botany* 78: 318-327.
- ASLAN, A., G. BUDAK, and A. KARABULUT. 2004. The amounts Fe, Ba, Sr, K, Ca and Ti in some lichens growing in Erzurum province (Turkey). *Journal of Quantitative Spectroscopy and Radiative Transfer* 88: 423-431.
- AVISE, J. C., and A. S. BALL. 1990. Principles of genealogical concordance in species concepts and biological taxonomy. *In* D. Futuyma AND Antonovics [eds.], Oxford Surveys in Evolutionary Biology. Oxford University Press, Oxford, UK.
- BALOCH, E., and M. GRUBE. 2009. Pronounced genetic diversity in tropical epiphyllous lichen fungi. *Molecular Ecology* 18: 2185-2197.
- BARLUENGA, M., K. N. STÖLTING, W. SALZBURGER, M. MUSCHICK, and A. MEYER. 2006. Sympatric speciation in Nicaraguan crater lake cichlid fish. *Nature* 439: 719-723.
- BAUM, D. A., and K. L. SHAW. 1995. Genealogical perspectives on the species problem. *In* P. C. Hoch AND A. G. Stephenson [eds.], Experimental and Molecular Approaches to Plant Biosystematics, 289-303. Missouri Botanical Garden, St. Louis, Missouri, USA.
- BAURAIN, D., H. BRINKMANN, and H. PHILIPPE. 2007. Lack of Resolution in the Animal Phylogeny: Closely Spaced Cladogeneses or Undetected Systematic Errors? *Molecular Biology and Evolution* 24: 6-9.
- BIRKY, C. W., P. FUERST, and T. MARUYAMA. 1989. Organelle Gene Diversity Under Migration, Mutation, and Drift: Equilibrium Expectations, Approach to Equilibrium, Effects of Heteroplasmic Cells, and Comparison to Nuclear Genes. *Genetics* 121: 613-627.
- BIRKY, C. W., JR., T. MARUYAMA, and P. FUERST. 1983. An approach to population and evolutionary genetic theory for genes in mitochondria and chloroplasts, and some results. *Genetics* 103: 513-527.
- BLANCO, O., A. CRESPO, J. A. ELIX, D. L. HAWKSWORTH, and H. T. LUMBSCH. 2004a. A Molecular Phylogeny and a New Classification of Parmelioid Lichens Containing *Xanthoparmelia*-Type Lichenan (Ascomycota: Lecanorales). *Taxon* 53: 959-975.
- BLANCO, O., A. CRESPO, P. K. DIVAKAR, T. L. ESSLINGER, D. L. HAWKSWORTH, and H. THORSTEN LUMBSCH. 2004b. *Melanelixia* and *Melanohalea*, two new genera segregated

from *Melanelia* (Parmeliaceae) based on molecular and morphological data. *Mycological Research* 108: 873-884.

- BRUNAUER, G., A. HAGER, M. GRUBE, R. TÜRK, and E. STOCKER-WÖRGÖTTER. 2007. Alterations in secondary metabolism of aposymbiotically grown mycobionts of *Xanthoria elegans* and cultured resynthesis stages. *Plant Physiology and Biochemistry* 45: 146-151.
- BRUNS, T. D. 1995. Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. *Plant Soil* 170: 63-73.
- BUCKLER-IV, E. S., A. IPPOLITO, and T. P. HOLTSFORD. 1997. The Evolution of Ribosomal DNA: Divergent Paralogues and Phylogenetic Implications. *Genetics* 145: 821-832.
- BUSCHBOM, J., and G. M. MUELLER. 2006. Testing "species pair" hypotheses: Evolutionary processes in the lichen-forming species complex *Porpidia flavocoerulescens* and *Porpidia melinodes*. *Molecular Biology and Evolution* 23: 574-586.
- CANSARAN, D., S. ARAS, I. KANDEMIR, and M. G. HALICI. 2006. Phylogenetic Relations of *Rhizoplaca* Zopf. from Anatolia Inferred from ITS Sequence Data. *Zeitschrift fur Naturforschung Section C Journal of Biosciences* 61: 405-412.
- CARDINALE, M., J. V. D. C. JR, H. MÜLLER, G. BERG, and M. GRUBE. 2008. *In situ* analysis of the bacterial community associated with the reindeer lichen *Cladonia arbuscula* reveals predominance of *Alphaproteobacteria*. *FEMS Microbiology Ecology* 66: 63-71.
- CARSTENS, B. C., and T. A. DEWEY. 2010. Species Delimitation Using a Combined Coalescent and Information-Theoretic Approach: An Example from North American Myotis Bats. *Systematic Biology*: in press.
- CLEMENT, M., D. POSADA, and K. A. CRANDALL. 2000. TCS: A computer program to estimate gene genealogies. *Molecular Ecology* 9: 1657-1659.
- COYNE, J. A., and H. A. ORR. 2004. Speciation. Sinauer Associates, Sunderland, Massachusetts, USA.
- CRESPO, A., and S. PÉREZ-ORTEGA. 2009. Cryptic species and species pairs in lichens: A discussion on the relationship between molecular phylogenies and morphological characters. *Anales del Jardin Botanico de Madrid* 66: 71-81.
- CRESPO, A., M. C. MOLINA, O. BLANCO, B. SCHROETER, L. G. SANCHO, and D. L. HAWKSWORTH. 2002. rDNA ITS and β-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen *Parmelia saxatilis*. *Mycological Research* 106: 788-795.

- CRESPO, A., H. T. LUMBSCH, J.-E. MATTSSON, O. BLANCO, P. K. DIVAKAR, K. ARTICUS, E. WIKLUND, et al. 2007. Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. *Molecular Phylogenetics and Evolution* 44: 812-824.
- CROW, K. D., H. MUNEHARA, and G. BERNARDI. 2010. Sympatric speciation in a genus of marine reef fishes. *Molecular Ecology* 19: 2089-2105.
- CULBERSON, C. F. 1972. Improved conditions and new data for identification of lichen products by standardized thin-layer chromatographic method. *Journal of Chromatography A* 72: 113-125.
- DAVIS, J. I. 1996. Phylogenetics, Molecular Variation, and Species Concepts. *Bioscience* 46: 502-511.
- DAYRAT, B. 2005. Towards integrative taxonomy. *Biological Journal of the Linnean Society* 85: 407-415.
- DE QUEIROZ, K. 1998. The general lineage concept of species, species criteria, and the process of speciation: a conceptual unification and terminological recommendations, 57-75. Oxford University Press, Oxford, UK.
- \_\_\_\_\_. 1999. The general lineage concept of species and the defining properties of the species category. *Species, New Interdisciplinary Essays*: 49-89.
- \_\_\_\_\_. 2007. Species Concepts and Species Delimitation. *Systematic Biology* 56: 879-886.
- DE QUEIROZ, K., and M. J. DONOGHUE. 1990. Phylogenetic systematics and species revisited. *Cladistics* 6: 83-90.
- DEGNAN, J. H., and N. A. ROSENBERG. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. *Trends in Ecology & Evolution* 24: 332-340.
- DETTMAN, J. R., D. J. JACOBSON, and J. W. TAYLOR. 2003. A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote Neurospora. *Evolution* 57: 2703 2720.
- DILLMAN, K. L. 1996. Use of the lichen Rhizoplaca melanophthalma as a biomonitor in relation to phosphate refineries near Pocatello, Idaho. *Environmental Pollution* 92: 91-96.
- DIVAKAR, P. K., O. BLANCO, D. L. HAWKSWORTH, and A. CRESPO. 2005. Molecular phylogenetic studies on the *Parmotrema reticulatum* (syn. *Rimelia reticulata*) complex, including the confirmation of *P. pseudoreticulatum* as a distinct species. *The Lichenologist* 37: 55-65.

- DUMINIL, J., H. CARON, I. SCOTTI, S.-O. CAZAL, and R. PETIT. 2006a. Blind population genetics survey of tropical rainforest trees. *Molecular Ecology* 15: 3505-3513.
- DUMINIL, J., H. CARON, I. SCOTTII, S.-O. CAZAL, and R. J. PETIT. 2006b. Blind population genetics survey of tropical rainforest trees. *Molecular Ecology* 15: 3505-3513.
- EDGAR, R. C. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics* 5: 1-19.
- EDWARDS, S. V. 2009. Is a new and general theory of molecular systematics emerging? *Evolution* 63: 1-19.
- EDWARDS, S. V., L. LIU, and D. K. PEARL. 2007. High-Resolution Species Trees without Concatenation. *Proceedings of the National Academy of Sciences of the United States of America* 104: 5936-5941.
- EVANNO, G., S. REGNAUT, and J. GOUDET. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Molecular Ecology* 14: 2611-2620.
- FALUSH, D., M. STEPHENS, and J. K. PRITCHARD. 2003. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. *Genetics* 164: 1567-1587.
- FEIGE, G. B., H. T. LUMBSCH, S. HUNECK, and J. A. ELIX. 1993. Identification of lichen substances by a standardized high-performance liquid chromatographic method. *Journal of Chromatography A* 646: 417-427.
- FUNK, D. J., P. NOSIL, and W. J. ETGES. 2006. Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. *Proceedings of the National Academy of Sciences of the United States of America* 103: 3209-3213.
- GANLEY, A. R. D., and T. KOBAYASHI. 2007. Highly efficient concerted evolution in the ribosomal DNA repeats: Total rDNA repeat variation revealed by whole-genome shotgun sequence data. *Genome Research* 17: 184-191.
- GARDES, M., and T. D. BRUNS. 1993. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. *Molecular Ecology Notes* 2: 113-118.
- GROENEVELD, L., D. WEISROCK, R. RASOLOARISON, A. YODER, and P. KAPPELER. 2009. Species delimitation in lemurs: multiple genetic loci reveal low levels of species diversity in the genus Cheirogaleus. *BMC Evolutionary Biology* 9: 30.

- GRUBE, M., M. CARDINALE, J. V. DE CASTRO, JR., H. MULLER, and G. BERG. 2009. Speciesspecific structural and functional diversity of bacterial communities in lichen symbioses. *ISME J* 3: 1105-1115.
- GUTIÉRREZ, G., O. BLANCO, P. DIVAKAR, H. LUMBSCH, and A. CRESPO. 2007. Patterns of Group I Intron Presence in Nuclear SSU rDNA of the Lichen Family Parmeliaceae. *Journal of Molecular Evolution* 64: 181-195.
- HALE, M. E. 1990. A synopsis of the lichen genus *Xanthoparmelia* (Vainio) Hale (Ascomycotina, Parmeliaceae), vol. Book, Whole. Smithsonian Institution Press, Washington D.C., USA.
- HALL, B. G. 2007. Phylogenetic Trees Made Easy: A How-To Manual. Third ed. Sinauer Associates, Sunderland, Massachusetts, USA.
- HAWKSWORTH, D. L. 2001. The magnitude of fungal diversity: the 1.5 million species estimate revisited. *Mycological Research* 105: 1422-1432.
- HEATH, L., E. VAN DER WALT, A. VARSANI, and D. P. MARTIN. 2006. Recombination Patterns in Aphthoviruses Mirror Those Found in Other Picornaviruses. *Journal of Virology* 80: 11827-11832.
- HEY, J., R. S. WAPLES, M. L. ARNOLD, R. K. BUTLIN, and R. G. HARRISON. 2003. Understanding and confronting species uncertainty in biology and conservation. *Trends in Ecology & Evolution* 18: 597-603.
- HODKINSON, B., and F. LUTZONI. 2009. A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. *Symbiosis* 49: 163-180.
- HUDSON, R. R., and J. A. COYNE. 2002. Mathematical Consequences of the Genealogical Species Concept. *Evolution* 56: 1557-1565.
- HUELSENBECK, J. P., and F. RONQUIST. 2001. MrBayes: Bayesian inference of phylogenetic trees. *Bioinformatics* 17: 754 755.
- HUELSENBECK, J. P., F. RONQUIST, R. NIELSEN, and J. P. BOLLBACK. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. *Science (Washington D C)* 294: 2310-2314.
- HUNECK, S. 1999. The Significance of Lichens and Their Metabolites. *Naturwissenschaften* 86: 559-570.
- HUNECK, S., and I. YOSHIMURA. 1996. Identification of Lichen Substances. Springer, New York, New York, USA.

- KNOWLES, L. L., and B. C. CARSTENS. 2007. Delimiting Species without Monophyletic Gene Trees. *Systematic Biology* 56: 887-895.
- KOLACZKOWSKI, B., and J. W. THORNTON. 2004. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. *Nature* 431: 980-984.

. 2007. Effects of Branch Length Uncertainty on Bayesian Posterior Probabilities for Phylogenetic Hypotheses. *Molecular Biology and Evolution* 24: 2108-2118.

\_\_\_\_\_. 2008. A Mixed Branch Length Model of Heterotachy Improves Phylogenetic Accuracy. *Molecular Biology and Evolution* 25: 1054-1066.

- KOZAK, K. H., R. W. MENDYK, and J. J. WIENS. 2009. Can Parallel Diversification Occur in Sympatry? Repeated Patterns of Body-Size Evolution in Coexisting Clades of North American Salamanders. *Evolution* 63: 1769-1784.
- KROKEN, S., and J. W. TAYLOR. 2001. A Gene Genealogical Approach to Recognize Phylogenetic Species Boundaries in the Lichenized Fungus Letharia. *Mycologia* 93: 38-53.
- KUBATKO, L. S., and J. H. DEGNAN. 2007. Inconsistency of Phylogenetic Estimates from Concatenated Data under Coalescence. *Systematic Biology* 56: 17-24.
- LAGRECA, S., and H. T. LUMBSCH. 2001. Three Species of Lecanora New to North America, with Notes on Other Poorly Known Lecanoroid Lichens. *The Bryologist* 104: 204-211.
- LATCH, E., G. DHARMARAJAN, J. GLAUBITZ, and O. RHODES. 2006. Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. *Conservation Genetics* 7: 295-302.
- LEACHE, A. D. 2009. Species Tree Discordance Traces to Phylogeographic Clade Boundaries in North American Fence Lizards (*Sceloporus*). *Systematic Biology* 58: 547-559.
- LEAVITT, S. D., L. A. JOHNSON, and L. L. ST. CLAIR. submitted. New insights into phylogenetic relationships and character evolution in the species-rich lichen-forming genus *Xanthoparmelia* (Parmeliaceae) in western North America.
- LEUCKERT, C., J. POELT, and G. HAHNEL. 1977. Zur Chemotaxonomie der eurasischen Arten der Flechtengattung rhizoplaca. *Nova Hedwigia* 28: 71-129.
- LIBRADO, P., and J. ROZAS. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics* 25: 1451-1452.

- LINDBLOM, L., and S. EKMAN. 2006. Genetic variation and population differentiation in the lichen-forming ascomycete *Xanthoria parietina* on the island Storfosna, central Norway. *Molecular Ecology* 15: 1545-1559.
- LIU, L., L. YU, L. KUBATKO, D. K. PEARL, and S. V. EDWARDS. 2009. Coalescent methods for estimating phylogenetic trees. *Molecular Phylogenetics and Evolution* 53: 320-328.
- LUMBSCH, H. T. 2002. Analysis of phenolic products in lichens. *In* I. Kranner, R. P. Beckett, AND A. Varma [eds.], Protocols in Lichenology, 281-295. Springer, Berlin.
- LUMBSCH, H. T., and I. SCHMITT. 2001. Molecular Data Suggest that the Lichen Genus *Pertusaria* is not Monophyletic. *The Lichenologist* 33: 161-170.
- LUTZONI, F., M. PAGEL, and V. REEB. 2001. Major fungal lineages are derived from lichen symbiotic ancestors. *Nature* 411: 937-940.
- LUTZONI, F., F. KAUFF, C. J. COX, D. MCLAUGHLIN, G. CELIO, B. DENTINGER, M. PADAMSEE, et al. 2004. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. *American Journal of Botany* 91: 1446-1480.
- Maddison, W. P. 1997. Gene Trees in Species Trees. Systematic Biology 46: 523-536.
- MARTIN, D. P., C. WILLIAMSON, and D. POSADA. 2005. RDP2: recombination detection and analysis from sequence alignments. *Bioinformatics* 21: 260-262.
- MATSEN, F. A., and M. STEEL. 2007. Phylogenetic Mixtures on a Single Tree Can Mimic a Tree of Another Topology. *Systematic Biology* 56: 767-775.
- MAYDEN, R. L. 1999. Consilience and a hierarchy of species concepts: Advances towards closure on the species puzzle. *The Journal of Nematology* 31: 95-116.
- MCCUNE, B. 1987. Distribution of Chemotypes of Rhizoplaca in North America. *The Bryologist* 90: 6-14.
- MOLINA, M. D. C., A. CRESPO, O. BLANCO, N. S. HLADUN, and D. L. HAWKSWORTH. 2002. Molecular phylogeny and status of Diploicia and Diplotomma, with observations on Diploicia subcanescens and Diplotomma rivas-martinezii. *The Lichenologist* 34: 509-519.
- MOORE, W. S. 1995. Inferring phylogenies from mtDNA variation: mitochondrial genes versus nuclear-gene trees. *Evolution* 49: 718.
- MURTAGH, G. J., P. S. DYER, P. A. FURNEAUX, and P. D. CRITTENDEN. 2002. Molecular and physiological diversity in the bipolar lichen-forming fungus *Xanthoria elegans*. *Mycological Research* 106: 1277-1286.

- NEI, M. 1987. Molecular evolutionary genetics. New York : Columbia University Press, New York, New York, USA.
- NELSEN, M. P., and A. GARGAS. 2009. Assessing clonality and chemotype monophyly in *Thamnolia* (Icmadophilaceae). *Bryologist* 112: 42-53.
- NYLANDER, J. A. A., F. RONQUIST, J. P. HUELSENBECK, and J. NIEVES-ALDREY. 2004. Bayesian Phylogenetic Analysis of Combined Data. *Systematic Biology* 53: 47-67.
- O'BRIEN, H. E., J. MIADLIKOWSKA, and F. LUTZONI. 2009. Assessing reproductive isolation in highly diverse communities of the lichen-forming funal genus *Peltigera*. *Evolution* 63: 2076-2086.
- O'HARA, R. J. 1993. Systematic Generalization, Historical Fate, and the Species Problem. *Systematic Biology* 42: 231-246.
- O'MEARA, B. C. 2009. New Heuristic Methods for Joint Species Delimitation and Species Tree Inference. *Systematic Biology* 59: 59-73.
- OTT, S., M. BRINKMANN, N. WIRTZ, and H. T. LUMBSCH. 2004. Mitochondrial and nuclear ribosomal DNA data do not support the separation of the Antarctic lichens *Umbilicaria kappenii* and *Umbilicaria antarctica* as distinct species. *The Lichenologist* 36: 227-234.
- PORTER, L. D. 1999. Chemical and metabolic differences in *Rhizoplaca melanophthalma* along an elevational gradient. Master's, Brigham Young University, Provo, Utah, USA.
- POSADA, D., and K. A. CRANDALL. 2001. Selecting the Best-Fit Model of Nucleotide Substitution. *Systematic Biology* 50: 580-601.
- POSADA, D., K. A. CRANDALL, and E. C. HOLMES. 2002. Recombination in evolutionary genomics. *Annual Review of Genetics* 36: 75-97.
- PRINGLE, A., D. M. BAKER, J. L. PLATT, J. P. WARES, J. P. LATGÉ, and J. W. TAYLOR. 2005. Cryptic Speciation in the Cosmopolitan and Clonal Human Pathogenic Fungus Aspergillus fumigatus. Evolution 59: 1886-1899.
- PRINTZEN, C. 2009. Lichen Systematics: The Role of Morphological and Molecular Data to Reconstruct Phylogenetic Relationships, Progress in Botany 71, vol. 71, 233-275. Springer Berlin Heidelberg, Berlin, Germany.
- PRITCHARD, J. K., M. STEPHENS, and P. DONNELLY. 2000. Inference of population structure using multilocus genotype data. *Genetics* 155: 945-959.
- RAMBAULT, A. 1996. Sequence Alignment Editor Available from: <a href="http://tree.bio.ed.ac.uk/software/seal/">http://tree.bio.ed.ac.uk/software/seal/</a>>.

- ROE, A. D., and F. A. H. SPERLING. 2007. Population structure and species boundary delimitation of cryptic *Dioryctria* moths: an integrative approach. *Molecular Ecology* 16: 3617-3633.
- ROKAS, A., B. L. WILLIAMS, N. KING, and S. B. CARROLL. 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. *Nature* 425: 798-804.

ROSENTRETER, R. 1993. Vagrant Lichens in North America. The Bryologist 96: 333-338.

- ROWE, G., and T. J. C. BEEBEE. 2007. Defining population boundaries: use of three Bayesian approaches with microsatellite data from British natterjack toads (*Bufo calamita*). *Molecular Ecology* 16: 785-796.
- RUIZ-SANCHEZ, E., and V. SOSA. 2010. Delimiting species boundaries within the Neotropical bamboo Otatea (Poaceae: Bambusoideae) using molecular, morphological and ecological data. *Molecular Phylogenetics and Evolution* 54: 344-356.
- RYAN, B. D. 2001. *Rhizoplaca. In* T. H. Nash III, B. D. Ryan, C. Gries, AND F. Bungartz [eds.], Lichen Flora of the Greater Sonoran Desert Region, vol. I (the pyrenolichens and most of the squamulose and macrolichens). Lichens Unlimited, Tempe, Arizona, USA.
- SAISHO, D., and M. D. PURUGGANAN. 2007. Molecular Phylogeography of Domesticated Barley Traces Expansion of Agriculture in the Old World. *Genetics* 177: 1765-1776.
- SCHLUTER, D. 2000. The ecology of adaptive radiations. Oxford University Press, Oxford, USA.
- SCHMITT, I., and H. T. LUMBSCH. 2004. Molecular phylogeny of the Pertusariaceae supports secondary chemistry as an important systematic character set in lichen-forming ascomycetes. *Molecular Phylogenetics and Evolution* 33: 43-55.
- SCHMITT, I., A. CRESPO, P. K. DIVAKAR, J. D. FANKHAUSER, E. HERMAN-SACKETT, K. KALB, M. P. NELSEN, et al. 2009. New primers for promising single-copy genes in fungal phylogenies and systematics. *Persoonia* 23: 35-40.
- SELBMANN, L., L. ZUCCONI, S. RUISI, M. GRUBE, M. CARDINALE, and S. ONOFRI. 2010. Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. *Polar Biology* 33: 71-83.
- SHAFFER, H. B., and R. THOMSON. 2007. Delimiting Species in Recent Radiations. *Systematic Biology* 56: 896-906.
- SITES, J. W., and J. C. MARSHALL. 2004. Operational criteria for delimiting species. *Annual Review of Ecology, Evolution, and Systematics* 35: 199-227.

- STAMATAKIS, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22: 2688-2690.
- STAMATAKIS, A., P. HOOVER, and J. ROUGEMONT. 2008. A Rapid Bootstrap Algorithm for the RAxML Web Servers. *Systematic Biology* 57: 758-771.
- TEHLER, A., and M. KÄLLERSJÖ. 2001. *Parmeliopsis ambigua* and *P. hyperopta* (Parmeliaceae): species or chemotypes? *The Lichenologist* 33: 403-408.
- TEMPLETON, A. R., K. A. CRANDALL, and C. F. SING. 1992. A Cladistic Analysis of Phenotypic Associations With Haplotypes Inferred From Restriction Endonuclease Mapping and DNA Sequence Data. III. Cladogram Estimation. *Genetics* 132: 619-633.
- THELL, A. 1999. Group I Intron Versus its Sequences in Phylogeny of Cetrarioid Lichens. *The Lichenologist* 31: 441-449.
- UGUR, A., B. ÖZDEN, M. SAÇ, G. YENER, Ü. ALTINBAŞ, Y. KURUCU, and M. BOLCA. 2004. Lichens and mosses for correlation between trace elements and 210Po in the areas near coal-fired power plant at Yatağan, Turkey. *Journal of Radioanalytical and Nuclear Chemistry* 259: 87-92.
- VELMALA, S., L. MYLLYS, P. HALONEN, T. GOWARD, and T. AHTI. 2009. Molecular data show that *Bryoria fremontii* and *B. tortuosa* (Parmeliaceae) are conspecific. *The Lichenologist* 41: 231-242.
- VIEITES, D. R., K. C. WOLLENBERG, F. ANDREONE, J. KÖHLER, F. GLAW, and M. VENCES. 2009. Vast underestimation of Madagascar's biodiversity evidenced by an integrative amphibian inventory. *Proceedings of the National Academy of Sciences* 106: 8267-8272.
- WEDIN, M., M. WESTBERG, A. T. CREWE, A. TEHLER, and O. W. PURVIS. 2009. Species delimitation and evolution of metal bioaccumulation in the lichenized *Acarospora smaragdula* (Ascomycota, Fungi) complex. *Cladistics* 25: 161-172.
- WEISROCK, D. W., R. M. RASOLOARISON, I. FIORENTINO, J. M. RALISON, S. M. GOODMAN, P. M. KAPPELER, and A. D. YODER. 2010. Delimiting Species without Nuclear Monophyly in Madagascar's Mouse Lemurs. *PLoS ONE* 5: e9883.
- WHEELER, D. L., T. BARRETT, D. A. BENSON, S. H. BRYANT, K. CANESE, V. CHETVERNIN, D. M. CHURCH, et al. 2006. Database resources of the National Center for Biotechnology Information. *Nucleic Acids Research*: gkl1031.
- WHITE, T. J., T. D. BRUNS, S. LEE, and J. TAYLOR. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic Press, San Diego, California, USA.

- WIENS, J. J. 1998. Combining Data Sets with Different Phylogenetic Histories. *Systematic Biology* 47: 568-581.
- WIENS, JOHN J. 2004. What Is Speciation and How Should We Study It? *The American Naturalist* 163: 914-923.
- WILL, K. W., B. D. MISHLER, and Q. D. WHEELER. 2005. The Perils of DNA Barcoding and the Need for Integrative Taxonomy. *Systematic Biology* 54: 844-851.
- WIRTZ, N., C. PRINTZEN, and H. T. LUMBSCH. 2008. The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. Mycological Research 112: 472-484.
- YANG, Z., and B. RANNALA. 2010. Bayesian species delimitation using multilocus sequence data. *Proceedings of the National Academy of Sciences* 107: 9264-9269.
- ZHENG, X.-L., H.-M. SHENG, and L.-Z. AN. 2007. Phylogenetic Analysis of Lichen-Forming Fungi *Rhizoplaca* Zopf from China Based on ITS Data and Morphology *Zeitschrift fur Naturforschung Section C Journal of Biosciences* 62c: 757-764.
- ZHOU, Q.-M., S.-Y. GUO, M.-R. HUANG, and J.-C. WEI. 2006. A study of the genetic variability of *Rhizoplaca chrysoleuca* using DNA sequences and secondary metabolic substances. *Mycologia* 98: 57-67.
- ZWICKL, D. J., and D. M. HILLIS. 2002. Increased Taxon Sampling Greatly Reduces Phylogenetic Error. *Systematic Biology* 51: 588-598.

| TTS, and g            | , ioup i muon i | markers and nuclear markers p-tubunn a      |                            |                        |
|-----------------------|-----------------|---------------------------------------------|----------------------------|------------------------|
| Marker                | Primer name     | Forward primer sequence                     | Annealing temperature (°C) | Reference              |
| IGS                   | IGS12           | 5'-AGTCTGTGGATTAGTGGCCG-3'                  | 66-56<br>(touchdown)       | Carbone & Kohn<br>1999 |
|                       | NS1R            | 5'-GAGACAAGCATATGACTAC-3'                   |                            | Carbone & Kohn<br>1999 |
| ITS/group I<br>intron | ITS1F           | 5'-CTT GGT CAT TTA GAG GAA GTA A-3'         | 55-60                      | Gardes and Bruns 1993  |
|                       | ITS4            | 5'- TCC TCC GCT TAT TGA TAT GC-3'           |                            | White et al. 1990      |
| β-tubulin             | Bt3-LM          | 5'-GAACGTCTACTTCAACGAG-3'                   | 55-60                      | Myllys et al. 2001     |
|                       | Bt10-LM         | 5'-TCGGAAGCAGCCATCATGTTCTT-3'               |                            | Myllys et al. 2001     |
|                       | Bt_rhizo_F      | 5'-GCA ACA AGT ATG TTC CTC GTG C-3'         | 66-56<br>(touchdown)       | this study             |
|                       | Bt_rhizo_R      | 5'-GTAAGAGGTGCGAAGCCAACC-3'                 |                            | this study             |
| MCM7                  | Mcm7-709for     | 5'-ACI MGI GTI TCV GAY GTH AARCC-3'         | 56                         | Schmitt et al. 2009    |
|                       | Mcm7-1348rev    | 5'-GAY TTD GCI ACI CCI GGR TCW CCC<br>AT-3' |                            | Schmitt et al. 2009    |
|                       | LecMCM7f        | 5'-TAC CAN TGT GAT CGA TGY GG-3'            | 66-56<br>(touchdown)       | this study             |
|                       | LecMCM7r        | 5'-GTC TCC RCG TAT TCG CAT NCC-3'           |                            | this study             |

Table 1.1. Primers used for PCR amplification and sequencing of the nuclear ribosomal IGS, ITS, and group I intron markers and nuclear markers  $\beta$ -tubulin and MCM7.

Table 1.2. Genetic variability of sampled markers used in this study, including alignment length (number of basepairs); variable and parsimony-informative (PI) sites for each sampled locus; and locus-specific model of evolution identified using the Akaike information criterion in MrModeltest. Numbers in parentheses indicate the number of variable and parsimony-informative sites for the Rhizoplaca melanophthalma species-complex only.

| Locus          | Length | # variable sites | # PI sites | Model Selected |
|----------------|--------|------------------|------------|----------------|
| ITC            | 561    | 162(01)          | 107 (57)   |                |
| 115            | 301    | 105 (91)         | 127(37)    | UIK+U          |
| IGS            | 374    | 138 (84)         | 103 (54)   | GTR+I          |
| group I intron | 269    | 98 (44)          | 84(30)     | SYM+G          |
| β-tubulin      | 819    | 165 (90)         | 132(55)    | HKY+I+G        |
| MCM7           | 616    | 158 (123)        | 123 (42)   | GTR+G          |
| total          | 2639   | 722 (432)        | 569 (238)  | -              |

Table 1.3. Polymorphism statistics for candidate species within the R. melanophthalma species-complex. N, number of individuals sampled, Npoly, number of polymorphics sites; h, number of unique haplotypes;  $\pi$ , estimate of 4 Nµ per base pair using the average pairwise differences.

|                                 | ITS                     |         | IGS                 |         | intron              |         | β-tubulin               |         | MCM7                    |         |
|---------------------------------|-------------------------|---------|---------------------|---------|---------------------|---------|-------------------------|---------|-------------------------|---------|
|                                 | N/ N <sub>poly</sub> /h | π       | N/ $N_{poly}$ / $h$ | П       | N/ $N_{poly}$ / $h$ | П       | N/ N <sub>poly</sub> /h | π       | N/ N <sub>poly</sub> /h | π       |
| clade I ( L. novomexicana)      | 3/0/1                   | 0       | 4/0/1               | 0       | 3/0/1               | 0       | 4/2/3                   | 0.00146 | 2/11/2002               | 0.02041 |
| clade II                        | 24/35/17                | 0.00930 | 21/37/18            | 0.01776 | 23/19/17            | 0.1089  | 24/34/17                | 0.01430 | 23/10/8                 | 0.00278 |
| clade III                       | 13/5/5                  | 0.00188 | 13/1/2              | 0.0014  | 13/0/1              | 0       | 13/3/2                  | 0.00067 | 13/4/4                  | 0.00157 |
| clade IV (R. haydenii)          | 5/6/4                   | 0.00475 | 4/4/4               | 0.00318 | 5/4/3               | 0.00723 | 5/2/2                   | 0.00117 | 5/7/2                   | 0.00779 |
| clade IV (R. h. spp. arbuscula) | 2/1/2                   | 0.00182 | 2/1/2               | 0.00272 | 1/0/1               | na      | 1/0/1                   | na      | 2/0/1                   | 0       |
| clade IV (R. idahoensis)        | 3/3/2                   | 0.00367 | 3/1/2               | 0.00272 | 2/0/1               | 0       | 3/4/2                   | 0.0039  | 37316                   | 0.00124 |
| clade IVa                       | 3/3/3                   | 0.00427 | 3/2/3               | 0.00363 | 3/0/1               | 0       | 3/0/1                   | 0       | 3/0/1                   | 0       |
| clade IVb                       | 14/9/7                  | 0.00235 | 13/3/4              | 0.00265 | 14/3/4              | 0.00327 | 13/9/9                  | 0.00285 | 13/19/6                 | 0.01308 |
| clade IVc                       | 5/1/2                   | 0.00088 | 5/3/3               | 0.00381 | 5/0/1               | 0       | 5/5/3                   | 0.00439 | 5/2/2                   | 0.00148 |
| clade IVd                       | 55/11/10                | 0.00162 | 55/19/18            | 0.01191 | 0/na/na             | na      | 55/32/8                 | 0.00266 | 55/5/6                  | 0.00040 |
| Total                           | 127/91/52               | 0.02221 | 122/84/54           | 0.02494 | 69/43/27            | 0.03521 | 127/71/40               | 0.01309 | 126/112/33              | 0.01486 |

Table 1.4. Fixed differences and fixation indices (FST) for all pairwise comparisons of candidate species identified within R. melanophthalma species-complex. Numbers across the top row correspond to candidate species numbers in the first column. Numbers of fixed differences (ribosomal / $\beta$ -tubulin/MCM7 characters) are represented for all comparisons below the diagonal and FST values are represented above the diagonal. The last column indicates total number of fixed nucleotides identified between each candidate species and the remaining data matrix. Numbers within parentheses represent fixed ribosomal characters/fixed protein-coding characters. Accessions representing R. haydenii subspecies arbuscula were not included in FST calculations because of the small sample sizes and pairwise comparisons are not represented.

| Candidate species                                  | 1            | 2          | 3           | 4          | 5          | 6           | 7          | 8         | 9        | 10      | fixed                       |
|----------------------------------------------------|--------------|------------|-------------|------------|------------|-------------|------------|-----------|----------|---------|-----------------------------|
| 1. clade I (L.<br>novomexicana)                    | -            | 0.77102    | 0.89534     | 0.86359    | na         | 0.85763     | 0.88863    | 0.85574   | 0.88172  | 0.88085 | characters <b>32(21/11)</b> |
| 2. clade II                                        | 49 (31/13/5) | -          | 0.75792     | 0.732      | na         | 0.69564     | 0.76148    | 0.72461   | 0.75139  | 0.7426  | 3(3/0)                      |
| 3. clade III                                       | 77(55/18/4)  | 32(28/0/4) | -           | 0.90524    | na         | 0.89291     | 0.9382     | 0.88716   | 0.9273   | 0.92874 | 15(15/0)                    |
| 4. clade IV ( <i>R</i> . haydenii)                 | 77(51/20/6)  | 32(26/0/6) | 55(36/11/8) | -          | na         | 0.58915     | 0.82339    | 0.67851   | 0.66667  | 0.71894 | 1(0/1)                      |
| 5. clade IV ( <i>R. h.</i> spp. <i>arbuscula</i> ) | 82(54/19/9)  | 36(28/1/7) | 56(39/9/8)  | 7(2/4/1)   | -          | na          | na         | na        | na       | na      | 0 (0/0)                     |
| 6. clade IV ( <i>R</i> . <i>idahoensis</i> )       | 71(53/8/10)  | 33(28/0/5) | 55(38/8/9)  | 12(1/0/11) | 15(2/0/13) | -           | 0.84298    | 0.6808    | 0.71146  | 0.75427 | 7(1/6)                      |
| 7. clade IVa                                       | 65(38/20/7)  | 36(29/0/7) | 54(36/10/8) | 27(21/5/1) | 27(24/3/0) | 38(23/2/13) | -          | 0.82136   | 0.83333  | 0.80228 | 7(7/0)                      |
| 8. clade IVb                                       | 76(54/19/3)  | 31(29/2/0) | 48(39/7/2)  | 13(4/8/1)  | 11(5/6/0)  | 15(5/5/5)   | 30(23/7/0) | -         | 0.67031  | 0.72953 | 3(2/1)                      |
| 9. clade IVc                                       | 76(51/18/7)  | 35(28/0/7) | 55(39/8/8)  | 18(14/3/1) | 6(6/0/0)   | 18(5/0/13)  | 24(24/0/0) | 9(4/5/0)  | -        | 0.66841 | 1(1/0)                      |
| 10. clade IVd                                      | 61(36/18/7)  | 22(16/0/6) | 45(29/8/8)  | 10(6/3/1)  | 8(8/0/0)   | 14(6/0/12)  | 14(14/0/0) | 13(8/5/0) | 7(7/0/0) | -       | 1(1/0)                      |

| present, 1, miller of thee | , unu 5, u |             | for pres     | ent.                          |                         |                                 |           |              |              |              |
|----------------------------|------------|-------------|--------------|-------------------------------|-------------------------|---------------------------------|-----------|--------------|--------------|--------------|
| Acid                       | clade I    | clade<br>II | clade<br>III | <i>R. haydenii</i> (clade IV) | R. h. ssp.<br>arbuscula | <i>R. idahonesis</i> (clade IV) | Clade IVa | Clade<br>IVb | Clade<br>IVc | Clade<br>IVd |
| Usnic1                     | 1          | 1           | 1            | 1                             | (clade 1 v)<br>1        | 1                               | 1         | 1            | 1            | 1            |
| Psoromic2                  | 1          | 0.91        | 1            | 0                             | 0                       | 0                               | 0.66      | 1            | 0.40         | 0.95         |
| Lecanoric2                 | 0          | 0           | 0            | 0                             | 0                       | 0                               | 0         | 0.57         | 0            | 0            |
| Orsellinic3                | 0          | 0           | 0            | 0                             | 0                       | 0                               | 0         | 0.64         | 0            | 0            |
| Gyrophoric5                | 0          | 0           | 0            | 0                             | 0                       | 0                               | 0         | 0.43         | 0            | 0            |
| Constipatic3               | 0          | 0.91        | 0.64         | 0                             | 0                       | 0                               | 1         | 0.93         | 1            | 0.91         |
| Dehydroconstipatic3        | 0.25       | 0.91        | 0.36         | 0                             | 0                       | 0                               | 1         | 0.93         | 1            | 0.95         |
| Dehydroprotoconstipatic3   | 0.25       | 0.7         | 0.36         | 0                             | 0                       | 0                               | 0.33      | 0.86         | 1            | 0.55         |
| subpsoromic acid3          | 0.25       | 0.43        | 1            | 0                             | 0                       | 0                               | 0         | 0.57         | 1            | 0.78         |
| 2'-O-demethylsubpsoromic4  | 0.75       | 0.52        | 1            | 0                             | 0                       | 0                               | 1         | 0.29         | 1            | 0.87         |
| 2'-O-demethylpsoromic3     | 0.75       | 0.39        | 0.82         | 0                             | 0                       | 0                               | 1         | 0.5          | 0.5          | 0.73         |
|                            |            |             |              |                               |                         |                                 |           |              |              |              |

Table 1.5. Chemotypic variation by candidate species in the R. melanophthalma species-complex based on HPLC analysis. Superscript number following acid nominal indicate acid occurrence: 1, major or minor; 2, major or not present; 3, minor or not present; 4, minor or trace; and 5, trace or not present.

Table 1.6. Summary of data supporting candidate species within the R. melanophthalma species-complex. Fixed characters, the total number of fixed nucleotide characters relative to the remaining data matrix; genealogical exclusivity, candidate species recovered as an exclusive lineage in gene haplotype networks, '\*' indicate support from individual ribosomal,  $\beta$ -tubulin, and MCM7 network reconstructions. STRUCTURE, indicates if the candidate species was recovered as a unique population cluster in the Bayesian clustering analysis, supported from population aggregation analysis; independent characters support, support from independent morphological or chemical data.

| Candidate species               | Fixed<br>characters | Genealogical<br>exclusivity | STRUCTURE                  | Independent character support                            |
|---------------------------------|---------------------|-----------------------------|----------------------------|----------------------------------------------------------|
| clade I (L. novomexicana)       | Yes (21-9-2)        | Yes***                      | Yes                        | Lobate, placodioid thallus morphology                    |
| clade II                        | Yes (3-0-0)         | Yes*-*                      | Yes                        | Not identified                                           |
| clade III                       | Yes (15-0-0)        | Yes***                      | Yes                        | Not identified                                           |
| clade IV (R. haydenii)          | Yes (0-0-1)         | No                          | = vagrant taxa & clade IVc | Vagrant thallus morphology and usnic acid only           |
| clade IV (R. h. ssp. arbuscula) | No                  | No                          | = vagrant taxa & clade IVc | Vagrant thallus morphology and usnic acid only           |
| clade IV (R. idahonesis)        | Yes (1-0-5)         | No                          | = vagrant taxa & clade IVc | Vagrant thallus morphology and usnic acid only           |
| clade IVa                       | Yes (7-0-0)         | Yes*                        | = clade IVa & IVd          | Not identified                                           |
| clade IVb                       | Yes (2-1-0)         | Yes**-                      | Yes                        | Lecanoric/ orsellinic acid are exclusive to this lineage |
| clade IVc                       | Yes (1-0-0)         | Yes*                        | = vagrant taxa & clade IVc | Not identified                                           |
| clade IVd                       | Yes (1-0-0)         | Yes*-*                      | = clade IVa & IVd          | Not identified                                           |



Figure 1.1. Variation in morphology and habit within the *Rhizoplaca melanophthalma* speciescomplex (Lecanoraceae) in western North America: (A) the lobate, placodioid taxon *Lecanora novomexicana*; (B) *Rhizoplaca melanophthalma* sensu lato (s.l.), with distinct light colored, pruinose apothecia discs; (C) *Rhizoplaca melanophthalma* sensu lato (s.l.), umblicate form with distinct lobes and dark apothecia; (D) *R. melanophthalma* s.l., umblicate form lacking lobes with pruinose apothecia (E) *R. melanophthalma* s.l., erratic form completely lacking umbilicus growing free on soil from western Idaho, with apothecia. Images F-I vagrant taxa endemic to the high plains and mountains of the northern Rocky Mountains: (F) *R. melanophthalma* ssp. crispa; (G) *R. idahoensis*; (H) *R. haydenii*; (I) *R. haydenii* ssp. *arbuscula*.



Figure 1.2 (on previous page). Relationships among sampled specimens collected from the *Rhizoplaca melanophthalma* group inferred from a maximum likelihood analysis of ribosomal and nuclear DNA sequence data (~2600 bp, ITS, IGS, intron,  $\beta$ -tubulin, and *MCM7*). Values at each node indicate non-parametric-bootstrap support/posterior probability. Only support indices  $\geq 50/0.50$  are indicated. Clade numbers plotted to the right of the tree indicate candidate species. GenBank accessions represented solely by ITS sequences were not included.



Figure 1.3. The maximum likelihood ITS topology obtained from all sampled specimens and available GenBank accessions collected from the *Rhizoplaca melanophthalma* species-complex. Values at each node indicate non-parametric-bootstrap support/posterior probability. Only support indices  $\geq 50/0.50$  are indicated. Clade numbers plotted to the right of the tree indicate lineages corresponding to candidate species shown in Figure 2.



Figure 1.4. Geographical distributions of candidate *Rhizoplaca* species in the Intermountain western USA. Colors refer to different lineages, indicated in key. Insert shows distributions of putative lineages along two altitudinal gradients in southern Utah, U.S.A. A total of 7 individual were included from each plot and the proportion of candidate species recovered at each plot is represented.



Figure 1.5 (on previous page). Figure 5A) Unrooted statistical parsimony haplotype networks at 95% probability of the ribosomal, *MCM7*, and  $\beta$ -tubulin loci representing relationship within the *R. melanophthalma* species-complex. Each candidate species is designated by a different color. Size of circles is proportional to the number of individuals of a given haplotype, and black dots represent inferred haplotypes not sampled. Figure 5B) Correspondence between candidate species identified from the combined maximum likelihood analysis and the population clusters identified using STRUCTURE. Numbers at nodes represent maximum likelihood bootstrap values and posterior probabilities, and relationships within candidate species are collapsed for ease of presentation (see Fig. 2 for detailed relationships). Candidate species are mapped to corresponding clusters in the STRUCTURE plot. Each population cluster is represented by a different color, and vertical bars within each cluster represent individuals and the proportion of a bar assigned to a single color represents the posterior probability that an individual is assigned to that cluster. The colors in the topology and STRUCTURE plot correspond to candidate species colors shown in Figure 5A and phylogenetic hypothesis of relationships in the *Rhizoplaca melanophthalma* species-complex in western North America.



Figure 1.6. Plots of calculations for *K* values 1-12 in STRUCTURE analysis of the combined dataset. (A) The mean log probability of the data for K = 1 to12, calculated from the four best scoring runs for each *K* value. (B)  $\Delta K$  values for K=2 to 12.

Supplementary data 1.1. All specimens included in the present study: ID, specimen identification and DNA collection number; voucher, herbarium collection number; plot, specific to sampling plots along altitudinal gradients on Thousand Lakes and Boulder Mountains in southern Utah, USA; Lat, latitude; Lon, longitude; Ele., altitude in m. a. s. l.; Collector(s); and source of specimen. Collectors include: MD, M. Devito; KBK, K. Knight; G. Leavitt; HCL, H. Leavitt; JHL, J. Leavitt; SDL, S. Leavitt; LDP, L. Porter; PAR, P. Ririe; GS, G. Shrestha; LLS, L. St. Clair; and EA indicates specimens sampled from the Elemental Analysis collection at the Herbarium of Nonvascular Cryptogams (BRY), Brigham Young University, Provo, Utah, USA.

| ID             | Voucher         | Plot | Location                                      | Lat.       | Lon.      | Ele.     | Collector(s)          | Source     |
|----------------|-----------------|------|-----------------------------------------------|------------|-----------|----------|-----------------------|------------|
| Outgroup taxa  |                 |      |                                               |            |           |          |                       |            |
| R. chrysolueca |                 |      |                                               |            |           |          |                       |            |
| 561f           | BRY-            | -    | USA, UT, Wayne Co.: northwest of              | 38.27364   | -111.6106 | 2344 m   | SDL, HCL, JHL, PAR    | this study |
|                | 55000           |      | Boulder Mountain (BM-1)                       |            |           |          | , , ,                 | 5          |
| 562f           | BRY-            | -    | USA, UT, Wayne Co .: northwest of             | 38.27364   | -111.6106 | 2344 m   | SDL, HCL, JHL, PAR    | this study |
|                | 55001           |      | Boulder Mountain (BM-1)                       |            |           |          |                       |            |
| 565f           | BRY-            | -    | USA, Wayne Co.: Boulder Mountain (BM-         | 38.17228   | -111.5794 | 2809 m   | SDL, HCL, JHL, PAR    | this study |
|                | 55002           |      | 2)                                            |            |           |          |                       |            |
| 566f           | BRY-            | -    | USA, Wayne Co.: Boulder Mountain (BM-         | 38.17228   | -111.5794 | 2809 m   | SDL, HCL, JHL, PAR    | this study |
| 5006           | 55003<br>DDV    |      | 2)<br>USA UT Weens Carl Devilder Merentein    | 29 1 (257  | 111 5251  | 22(0     |                       | 41         |
| 5091           | BK I -<br>55004 | -    | (DM 2)                                        | 38.10257   | -111.5551 | 3300 m   | SDL, HCL, JHL, PAR    | this study |
| 570f           | 33004<br>BRV-   | _    | (DM-5)<br>USA UT Wayne Co : Boulder Mountain  | 38 16257   | -111 5351 | 3360 m   | SDI HCI IHI PAR       | this study |
| 5701           | 55005           |      | (BM-3)                                        | 56.10257   | -111.5551 | 5500 m   | SDL, HCL, JHL, IAK    | this study |
| 581f           | BRY-            | _    | USA. UT. Wayne Co.: Boulder Mountain          | 38.16257   | -111.5351 | 3360 m   | SDL, HCL, JHL, PAR    | this study |
|                | 55570           |      | (BM-3)                                        |            |           |          | ,,,,                  |            |
| 582f           | BRY-            | -    | USA, UT, Wayne Co.: Boulder Mountain          | 38.16257   | -111.5351 | 3360 m   | SDL, HCL, JHL, PAR    | this study |
|                | 55006           |      | (BM-3)                                        |            |           |          |                       |            |
| 583f           | BRY-            | -    | USA, UT, Wayne Co.: Boulder Mountain          | 38.16257   | -111.5351 | 3360 m   | SDL, HCL, JHL, PAR    | this study |
|                | 55007           |      | (BM-3)                                        |            |           |          |                       |            |
| 584f           | BRY-            | -    | USA, UT, Wayne Co.: Boulder Mountain          | 38.16257   | -111.5351 | 3360 m   | SDL, HCL, JHL, PAR    | this study |
| 5056           | 55008           |      | (BM-3)                                        | 20 1 62 55 | 111 5051  | 22.50    |                       |            |
| 5851           | BRY-            | -    | USA, UT, Wayne Co.: Boulder Mountain          | 38.16257   | -111.5351 | 3360 m   | SDL, HCL, JHL, PAR    | this study |
| 501f           | 55009<br>DDV    |      | (BM-5)<br>USA Wayna Ca : Poulder Mountain (PM | 29 17229   | 111 5705  | 2800 m   | SDI UCI IUI DAD       | this study |
| 3911           | 55010           | -    | 2)                                            | 30.17220   | -111.3793 | 2009 111 | SDL, HCL, JHL, FAK    | uns study  |
| 592f           | BRY-            |      | USA Wayne Co · Boulder Mountain (BM-          | 38 17228   | -111 5795 | 2809 m   | SDL HCL IHL PAR       | this study |
| 5721           | 55011           |      | 2)                                            | 56.17220   | 111.5775  | 2009 m   | 552, 1102, 1112, 1111 | uno stady  |
| 593f           | BRY-            | -    | USA, Wayne Co.: Boulder Mountain (BM-         | 38.17228   | -111.5795 | 2809 m   | SDL, HCL, JHL, PAR    | this study |
|                | 55012           |      | 2)                                            |            |           |          | , , ,                 | 2          |
| 594f           | BRY-            | -    | USA, Wayne Co.: Boulder Mountain (BM-         | 38.17228   | -111.5795 | 2809 m   | SDL, HCL, JHL, PAR    | this study |
|                | 55571           |      | 2)                                            |            |           |          |                       |            |
| 595f           | BRY-            | -    | USA, Wayne Co.: Boulder Mountain (BM-         | 38.17228   | -111.5795 | 2809 m   | SDL, HCL, JHL, PAR    | this study |

|                  |           | 55013         |                   | 2)                                    |          |           |        |                    |            |
|------------------|-----------|---------------|-------------------|---------------------------------------|----------|-----------|--------|--------------------|------------|
| 602              | 2f        | BRY-          | -                 | USA, UT, Wayne Co.: northwest of      | 38.27364 | -111.6106 | 2344 m | SDL, HCL, JHL, PAR | this study |
|                  |           | 55014         |                   | Boulder Mountain (BM-1)               |          |           |        |                    |            |
| 603              | ßf        | BRY-          | -                 | USA, UT, Wayne Co.: northwest of      | 38.27364 | -111.6106 | 2344 m | SDL, HCL, JHL, PAR | this study |
|                  |           | 55015         |                   | Boulder Mountain (BM-1)               |          |           |        |                    |            |
| 604              | ŀf        | BRY-          | -                 | USA, UT, Wayne Co.: northwest of      | 38.27364 | -111.6106 | 2344 m | SDL, HCL, JHL, PAR | this study |
|                  |           | 55016         |                   | Boulder Mountain (BM-1)               |          |           |        |                    |            |
| 605              | öf        | BRY-          | -                 | USA, UT, Wayne Co.: northwest of      | 38.27364 | -111.6106 | 2344 m | SDL, HCL, JHL, PAR | this study |
|                  |           | 55017         |                   | Boulder Mountain (BM-1)               |          |           |        |                    |            |
| 606              | õf        | BRY-          | -                 | USA, UT, Wayne Co.: northwest of      | 38.27364 | -111.6106 | 2344 m | SDL, HCL, JHL, PAR | this study |
|                  |           | 55018         |                   | Boulder Mountain (BM-1)               |          |           |        |                    |            |
| 676              | óf        | BRY-          | -                 | USA, UT, Summit County; High Uinta    | 40.82699 | -110.5004 | 3500 m | SDL, LLS, MD       | this study |
|                  |           | 55019         |                   | Wilderness Area                       |          |           |        |                    |            |
| R. subdise       | crepans   |               |                   |                                       |          |           |        |                    |            |
| 102              | 3f        | BRY-          | -                 | USA, Wayne Co.: Boulder Mountain (BM- | 38.17228 | -111.5795 | 2809 m | SDL, HCL, JHL, PAR | this study |
|                  |           | 55020         |                   | 2)                                    |          |           |        |                    |            |
| 734              | f         | BRY-          | -                 | USA, UT, Uintah Co.: Snake John Reef  | 40.29259 | -109.1214 | 1631 m | SDL, LLS, GS       | this study |
|                  |           | 55021         |                   |                                       |          |           |        |                    |            |
| 735              | öf        | BRY-          | -                 | USA, UT, Uintah Co.: Snake John Reef  | 40.29259 | -109.1214 | 1631 m | SDL, LLS, GS       | this study |
|                  |           | 55022         |                   |                                       |          |           |        |                    |            |
| <u>R. melanc</u> | ophthalma | species-com   | <u>olex</u>       |                                       |          |           |        |                    |            |
| clade I – I      | Lecanora  | novomexican   | a                 |                                       |          |           |        |                    |            |
| 730              | )f        | BRY-          | -                 | USA, UT, Summit Co.: Ashley National  | 40.8551  | -110.8747 | 2793 m | SDL, LLS, MD       | this study |
|                  |           | 55023         |                   | Forest                                |          |           |        |                    |            |
| 731              | f         | BRY-          | -                 | USA, UT, Summit Co.: Ashley National  | 40.5976  | -109.8406 | 2606 m | SDL, LLS, GS       | this study |
|                  |           | 55024         |                   | Forest                                |          |           |        |                    |            |
| 732              | 2f        | BRY-          | -                 | USA, UT, Summit Co.: Ashley National  | 40.5976  | -109.8406 | 2606 m | SDL, LLS, GS       | this study |
|                  |           | 55025         |                   | Forest                                |          |           |        |                    |            |
| 733              | ßf        | BRY-          | -                 | USA, UT, Uintah Co.: Snake John Reef  | 40.29259 | -109.1208 | 1631 m | SDL, LLS, GS       | this study |
|                  |           | 55026         |                   |                                       |          |           |        |                    |            |
| clade V –        | Lecanora  | ı novomexicar | <i>ia</i> (from ] | ITS gene tree)                        |          |           |        |                    |            |
| -                |           | AF159923      | -                 | USA, New Mexico                       | -        | -         | -      | -                  | Arup and   |
|                  |           |               |                   |                                       |          |           |        |                    | Grub 2000  |
| -                |           | AF159945      | -                 | USA, Arizona                          | -        | -         | -      | -                  | Arup and   |
|                  |           |               |                   |                                       |          |           |        |                    | Grub 2000  |
| clade II –       | R. melano | ophthalma ser | ısu lato          |                                       |          |           |        |                    |            |
| 563              | ßf        | BRY-          | BM-1              | USA, UT, Wayne Co.: northwest of      | 38.27364 | -111.6106 | 2344 m | SDL, HCL, JHL, PAR | this study |
|                  |           | 55037         |                   | Boulder Mountain (BM-1)               |          |           |        |                    | -          |
| 564              | f         | BRY-          | BM-1              | USA, UT, Wayne Co.: northwest of      | 38.27364 | -111.6106 | 2344 m | SDL, HCL, JHL, PAR | this study |
|                  |           | 55038         |                   | Boulder Mountain (BM-1)               |          |           |        |                    |            |
| 587              | ′f        | BRY-          | BM-3              | USA, UT, Wayne Co.: Boulder Mountain  | 38.16257 | -111.5351 | 3360 m | SDL, HCL, JHL, PAR | this study |

|      | 55039                  |            | (BM-3)                                                      |          |           |        |                    |            |
|------|------------------------|------------|-------------------------------------------------------------|----------|-----------|--------|--------------------|------------|
| 607f | BRY-<br>55040          | BM-1       | USA, UT, Wayne Co.: northwest of<br>Boulder Mountain (BM-1) | 38.27364 | -111.6106 | 2344 m | SDL, HCL, JHL, PAR | this study |
| 608f | BRY-                   | BM-1       | USA, UT, Wayne Co.: northwest of<br>Boulder Mountain (BM-1) | 38.27364 | -111.6106 | 2344 m | SDL, HCL, JHL, PAR | this study |
| 609f | BRY-                   | BM-1       | USA, UT, Wayne Co.: northwest of<br>Boulder Mountain (BM 1) | 38.27364 | -111.6106 | 2344 m | SDL, HCL, JHL, PAR | this study |
| 610f | 55042<br>BRY-          | BM-1       | USA, UT, Wayne Co.: northwest of<br>Boulder Mountain (BM 1) | 38.27364 | -111.6106 | 2344 m | SDL, HCL, JHL, PAR | this study |
| 611f | 55043<br>BRY-<br>55044 | BM-1       | USA, UT, Wayne Co.: northwest of<br>Boulder Mountain (BM-1) | 38.27364 | -111.6106 | 2344 m | SDL, HCL, JHL, PAR | this study |
| 612f | BRY-                   | TLM-       | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (1)         | 38.4243  | -111.6446 | 2220 m | LDP                | this study |
| 614f | BRY-                   | TLM-       | USA, Utah, Wayne Co.: Thousand Lake                         | 38.4243  | -111.6446 | 2220 m | LDP                | this study |
| 615f | BRY-                   | TLM-       | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (1)         | 38.4243  | -111.6446 | 2220 m | LDP                | this study |
| 660f | BRY-                   | TLM-<br>10 | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (10)        | 38.44317 | -111.4703 | 3400 m | LDP                | this study |
| 677f | BRY-                   | -          | USA, UT, Emery Co.: San Rafael Swell                        | 38.70424 | -110.7964 | 1967 m | SDL                | this study |
| 678f | BRY-                   | -          | USA, UT, Emery Co.: San Rafael Swell                        | 38.70424 | -110.7964 | 1967 m | SDL                | this study |
| 693f | BRY-                   | -          | USA, NV, Elko Co.: Humboldt National<br>Forest              | 41.64676 | -115.3130 | 2023 m | EA 15-123A         | this study |
| 696f | BRY-                   | -          | USA, UT, Uintah Co.: Dinosaur National<br>Monument          | 40.37167 | -109.0930 | 2447 m | EA 18-143          | this study |
| 697f | 55052<br>BRY-          | -          | USA, CO, Moffat Co.: Dinosaur National<br>Monument          | 40.44957 | -108.5234 | 1721 m | EA 18-145          | this study |
| 699f | 55055<br>BRY-          | -          | USA, UT, Iron Co.: Cedar Breaks National<br>Monument        | 37.63043 | -112.8317 | 3186 m | EA 22-177          | this study |
| 708f | BRY-                   | -          | USA, ID, Lemhi Co.: Salmon Challis                          | 44.56022 | -113.3507 | 1194 m | EA 41-403          | this study |
| 720f | 55055<br>BRY-          | -          | USA, WY, Johnson Co.: west of Buffalo                       | 44.33849 | -106.7656 | 1581 m | SDL                | this study |
| 721f | 55050<br>BRY-          | -          | USA, WY, Fremont Co.: Wind River                            | 42.73869 | -108.8352 | 2122 m | SDL                | this study |
| 722f | 55057<br>BRY-          | -          | USA, UT, Uintah Co.: Snake John Reef                        | 40.29259 | -109.1208 | 1631 m | SDL, LLS, GS       | this study |

|                   | 55058                  |              |                                                |          |           |          |                        |              |
|-------------------|------------------------|--------------|------------------------------------------------|----------|-----------|----------|------------------------|--------------|
| 724f              | BRY-                   | -            | USA, UT, Uintah Co.: Snake John Reef           | 40.29259 | -109.1208 | 1631 m   | SDL, LLS, GS           | this study   |
|                   | 55059                  |              |                                                |          |           |          |                        | -            |
| 725f              | BRY-                   | -            | USA, UT, Duchesne Co.: Pinyon Ridge            | 40.20385 | -110.7108 | 2055 m   | SDL, LLS, GS           | this study   |
|                   | 55060                  |              | Rest Area                                      |          |           |          |                        |              |
| -                 | AF159929               | -            | USA. Arizona                                   | _        | -         | -        | -                      | Arup and     |
|                   | (ITS only)             |              | - · · · · · · · · · · · · · · · · · · ·        |          |           |          |                        | Grub 2000    |
| -                 | AF159934               | -            | USA, Arizona                                   | -        | -         | -        | -                      | Arup and     |
|                   | (ITS only)             |              |                                                |          |           |          |                        | Grub 2000    |
| -                 | AF159935               | -            | Austria                                        | -        | -         | -        | -                      | Arup and     |
|                   | (ITS only)             |              |                                                |          |           |          |                        | Grub 2000    |
| -                 | AY509791               | -            | China, Xianjiang Province                      | -        | -         | -        | -                      | Zhou et al.  |
|                   | (ITS only)             |              |                                                |          |           |          |                        | 2006         |
| -                 | EF095282               | -            | China, Xianjiang Province Lianshan             | -        | -         | -        | -                      | Zheng et al. |
|                   | (115 011y)<br>EE005286 |              | Mountains<br>China Vianijang Province Tianshan |          |           |          |                        | Zbong et al  |
| -                 | (ITS only)             | -            | Mountains                                      | -        | -         | -        | -                      | 2007         |
| -                 | EF095297               | -            | China, Xianijang ProvinceTianshan              | -        | -         | -        | -                      | Zheng et al. |
|                   | (ITS only)             |              | Mountains                                      |          |           |          |                        | 2007         |
| clade III – R. me | elanophthalma s        | ensu lato    |                                                |          |           |          |                        |              |
| 543f              | BRY-                   | TLM-         | USA, Utah, Wayne Co.: Thousand Lake            | 38,4366  | -111.4677 | 3270 m   | LDP                    | this study   |
| 0.01              | 55061                  | 9            | Mountain (9)                                   | 2011200  | 1111077   | 02/0 III | 201                    | unio study   |
| 544f              | BRY-                   | TLM-         | USA Utah Wayne Co · Thousand Lake              | 38 4366  | -111 4677 | 3270 m   | LDP                    | this study   |
| 5111              | 55062                  | 9            | Mountain (9)                                   | 20.1200  | 111.10//  | 5270 m   |                        | uns study    |
| 571f              | BRV-                   | BM-3         | USA UT Wayne Co · Boulder Mountain             | 38 16257 | -111 5351 | 3360 m   | SDL HCL IHL PAR        | this study   |
| 5711              | 55063                  | Din 5        | (BM-3)                                         | 50.10257 | 111.5551  | 5500 m   | 5522, 1102, 5112, 111K | uns study    |
| 572f              | BRV                    | BM-3         | USA UT Wayne Co : Boulder Mountain             | 38 16257 | -111 5351 | 3360 m   | SDI HCI IHI PAR        | this study   |
| 5721              | 55064                  | DIVI-5       | (BM-3)                                         | 30.10237 | -111.5551 | 5500 III | SDE, HCE, JHE, I MK    | this study   |
| 586f              | 33004<br>BRV           | BM-3         | USA UT Wayne Co : Boulder Mountain             | 38 16257 | -111 5351 | 3360 m   | SDI HCI IHI PAR        | this study   |
| 5001              | 55065                  | DIVI-5       | (BM-3)                                         | 30.10237 | -111.5551 | 5500 III | SDE, HCE, JHE, I MK    | uns study    |
| 588f              | BDV                    | BM-3         | USA UT Wayne Co : Boulder Mountain             | 38 16257 | -111 5351 | 3360 m   | SDI HCI IHI PAR        | this study   |
| 5001              | DK I -                 | DIVI-3       | (BM-3)                                         | 38.10237 | -111.5551 | 5500 III | SDL, IICL, JIIL, I AK  | uns study    |
| 580f              | 55000<br>DDV           | PM 3         | USA UT Wayna Co : Boulder Mountain             | 38 16257 | 111 5351  | 3360 m   | SDI UCI IUI DAD        | this study   |
| 5671              | DK I -                 | DIVI-3       | (BM-3)                                         | 38.10237 | -111.5551 | 5500 III | SDL, IICL, JIIL, I AK  | uns study    |
| 500f              | 55007<br>DDV           | DM 2         | USA UT Wayna Co : Pouldar Mountain             | 28 16257 | 111 5251  | 2260 m   |                        | this study   |
| 5901              | BK I -                 | DIVI-3       | (BM-3)                                         | 36.10237 | -111.5551 | 5500 III | SDL, IICL, JIIL, FAK   | uns study    |
| 650f              | 22008<br>DDV           | ті м         | USA Uteh Weyne Co - Theuser J -l               | 29 1266  | 111 4677  | 2270     | I DD                   | this study   |
| 0321              | ВК I -                 | 1 LIVI-<br>0 | Mountain (0)                                   | 38.4300  | -111.40// | 5270 m   | LDL                    | uns study    |
| (525              | 55069<br>DDX           | ל<br>דו M    | Wountain (9)                                   | 29 4266  | 111 4677  | 2270     | LDD                    | 41           |
| 00.01             | BK Y -                 | ILM-         | USA, Utan, Wayne Co.: Inousand Lake            | 38.4306  | -111.46// | 3270 m   | LDP                    | unis study   |
|                   | 55070                  | 9            | Mountain (9)                                   |          |           |          |                        |              |

| 654f             | BRY-          | TLM-         | USA, Utah, Wayne Co.: Thousand Lake                                 | 38.4366  | -111.4677 | 3270 m | LDP       | this study |
|------------------|---------------|--------------|---------------------------------------------------------------------|----------|-----------|--------|-----------|------------|
|                  | 55071         | 9            | Mountain (9)                                                        |          |           |        |           |            |
| 655f             | BRY-<br>55072 | TLM-<br>9    | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (9)                 | 38.4366  | -111.4677 | 3270 m | LDP       | this study |
| 656f             | BRY-<br>55073 | TLM-<br>9    | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (9)                 | 38.4366  | -111.4677 | 3270 m | LDP       | this study |
| clade IVa – R. 1 | melanophthalm | a sensu lato | )                                                                   |          |           |        |           |            |
| 695f             | BRY-<br>55074 | -            | USA, Utah, Juab Co.: West of Goshen                                 | 39.9697  | -112.0601 | 1840 m | EA 18-140 | this study |
| 706f             | BRY-<br>55075 | -            | USA, ID, Butte Co.: Salmon Challis<br>National Forest               | 43.7197  | -113.0891 | 2432 m | EA 37-356 | this study |
| 714f             | BRY-<br>55076 | -            | USA, NV, White Pine Co.: Humboldt-<br>Toiyabe N.F.                  | 39.1734  | -114.6130 | 3166 m | SDL, LLS  | this study |
| clade IVb – R. r | melanophthalm | a sensu lato | )                                                                   |          |           |        |           |            |
| 550f             | BRY-<br>55077 | TLM-<br>6    | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (6)                 | 38.5111  | -111.4732 | 2875 m | LDP       | this study |
| 551f             | BRY-<br>55078 | TLM-<br>5    | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (5)                 | 38.5076  | -111.4904 | 2725 m | LDP       | this study |
| 552f             | BRY-          | TLM-         | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (5)                 | 38.5076  | -111.4904 | 2725 m | LDP       | this study |
| 626f             | BRY-          | TLM-         | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (3)                 | 38.5079  | -111.5505 | 2400 m | LDP       | this study |
| 632f             | BRY-<br>55081 | TLM-<br>5    | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (5)                 | 38.5076  | -111.4904 | 2725 m | LDP       | this study |
| 633f             | BRY-<br>55082 | TLM-<br>5    | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (5)                 | 38.5076  | -111.4904 | 2725 m | LDP       | this study |
| 634f             | BRY-<br>55083 | TLM-<br>5    | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (5)                 | 38.5076  | -111.4904 | 2725 m | LDP       | this study |
| 635f             | BRY-<br>55084 | TLM-<br>5    | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (5)                 | 38.5076  | -111.4904 | 2725 m | LDP       | this study |
| 636f             | BRY-<br>55085 | TLM-<br>5    | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (5)                 | 38.5076  | -111.4904 | 2725 m | LDP       | this study |
| 649f             | BRY-<br>55086 | TLM-<br>8    | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (8)                 | 38.4557  | -111.4581 | 3175 m | LDP       | this study |
| 657f             | BRY-<br>55087 | TLM-<br>10   | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (10)                | 38.44317 | -111.4703 | 3400 m | LDP       | this study |
| 664f             | BRY-<br>55088 | -            | USA, NM, San Juan Co.: vicinity of Aztec<br>Ruins National Monument | 36.83479 | -108.0002 | 1721 m | SDL, HCL  | this study |
| 698f                  | BRY-<br>55089               | -          | MT, Deer Lodge Co.: southwest of<br>Anaconda Copper Smelter | 46.05645 | -112.9820 | 1890 m | EA 21-166     | this study            |
|-----------------------|-----------------------------|------------|-------------------------------------------------------------|----------|-----------|--------|---------------|-----------------------|
| 718f                  | BRY-<br>55090               | -          | MT, Sanders Co.: Cabinet Mountains                          | 48.06068 | -115.6894 | 1939 m | SDL, LLS, GS  | this study            |
| -                     | EF095278<br>((ITS<br>only)) | -          | China, Xianjiang ProvinceTianshan<br>Mountains              | -        | -         | -      | -             | Zheng et al. 2007     |
| -                     | EF095280<br>(ITS only)      | -          | China, Xianjiang ProvinceTianshan<br>Mountains              | -        | -         | -      | -             | Zheng et al. 2007     |
| -                     | EF095283<br>(ITS only)      | -          | China, Xianjiang ProvinceTianshan<br>Mountains              | -        | -         | -      | -             | Zheng et al. 2007     |
| -                     | EF095285<br>(ITS only)      | -          | China, Xianjiang ProvinceTianshan<br>Mountains              | -        | -         | -      | -             | Zheng et al. 2007     |
| -                     | EF095287<br>(ITS only)      | -          | China, Xianjiang ProvinceTianshan<br>Mountains              | -        | -         | -      | -             | Zheng et al. 2007     |
| -                     | EF095290<br>(ITS only)      | -          | China, Xianjiang ProvinceTianshan<br>Mountains              | -        | -         | -      | -             | Arup and<br>Grub 2000 |
| clade IVc – $R$ . $n$ | nelanophthalma              | sensu lato | )                                                           |          |           |        |               |                       |
| 554f                  | BRY-<br>55091               | TLM-<br>4  | USA, Utah, Wayne Co.: Thousand Lake Mountain (4)            | 38.5079  | -111.5161 | 2550 m | LDP           | this study            |
| 556f                  | BRY-<br>55092               | TLM-<br>3  | USA, Utah, Wayne Co.: Thousand Lake Mountain (3)            | 38.5079  | -111.5505 | 2400 m | LDP           | this study            |
| 668f                  | BRY-<br>55093               | -          | USA, ID, Owynee Co.: McBride Creeks<br>Badlands             | 43.32021 | -116.9795 | 1291 m | SDL, HCL, JHL | this study            |
| 669f                  | BRY-<br>55094               | -          | USA, ID, Owynee Co.: McBride Creeks<br>Badlands             | 43.32021 | -116.9795 | 1291 m | SDL, HCL, JHL | this study            |
| 670f                  | BRY-<br>55095               | -          | USA, ID, Owynee Co.: McBride Creeks<br>Badlands             | 43.32021 | -116.9795 | 1291 m | SDL, HCL, JHL | this study            |
| clade IVd – R. n      | nelanophthalma              | sensu lato | )                                                           |          |           |        |               |                       |
| 541f                  | BRY-<br>55096               | TLM-<br>10 | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (10)        | 38.44317 | -111.4703 | 3400 m | LDP           | this study            |
| 542f                  | BRY-<br>55097               | TLM-<br>10 | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (10)        | 38.44317 | -111.4703 | 3400 m | LDP           | this study            |
| 545f                  | BRY-<br>55098               | TLM-<br>8  | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (8)         | 38.4557  | -111.4581 | 3175 m | LDP           | this study            |
| 546f                  | BRY-<br>55099               | TLM-<br>8  | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (8)         | 38.4557  | -111.4581 | 3175 m | LDP           | this study            |
| 547f                  | BRY-<br>55100               | TLM-<br>7  | USA, Utah, Wayne Co.: Thousand Lake Mountain (7)            | 38.4557  | -111.4497 | 3000 m | LDP           | this study            |

| 548f BRY- TLM- USA, Utah, Wayne Co.: Thousand Lake 38.4557 -111.4497 3000 m                                                       | LDP                 | this study                             |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------------------------------|
| 55101 7 Mountain (7)                                                                                                              |                     |                                        |
| 549f BRY- TLM- USA, Utah, Wayne Co.: Thousand Lake 38.5111 -111.4732 2875 m                                                       | LDP                 | this study                             |
| 55102 6 Mountain (6)                                                                                                              |                     |                                        |
| 553f BRY- TLM- USA, Utah, Wayne Co.: Thousand Lake 38.5079 -111.5161 2550 m                                                       | LDP                 | this study                             |
| 55103 4 Mountain (4)                                                                                                              |                     |                                        |
| 555f BRY- TLM- USA, Utah, Wayne Co.: Thousand Lake 38.5079 -111.5505 2400 m                                                       | LDP                 | this study                             |
| 551()4 3 Mountain (3)                                                                                                             |                     |                                        |
| 557f BRY- TLM- USA, Utah, Wayne Co.: Thousand Lake $38.431 - 111.6119 2285  m$                                                    | LDP                 | this study                             |
| 55105 2 Mountain (2)                                                                                                              | 100                 |                                        |
| 558f BRY- TLM- USA, Utah, Wayne Co.: Thousand Lake $38.431 - 111.6119 2285 \text{ m}$                                             | LDP                 | this study                             |
| 55106 2 Mountain (2)                                                                                                              |                     |                                        |
| 559f BRY- 1LM- USA, Utah, Wayne Co.: Thousand Lake $38.4243 - 111.6446 2220 \text{ m}$                                            | LDP                 | this study                             |
| 55107 1 Mountain (1)                                                                                                              |                     |                                        |
| 560f BRY- TLM- USA, Utah, Wayne Co.: Thousand Lake 38.4243 -111.6446 2220 m                                                       | LDP                 | this study                             |
| 55108 1 Mountain (1)                                                                                                              |                     |                                        |
| 567f BRY- BM-2 USA, Wayne Co.: Boulder Mountain (BM- 38.17228 -111.5785 2809 m                                                    | SDL, HCL, JHL, PAR  | this study                             |
| 55109 <i>2)</i>                                                                                                                   |                     |                                        |
| 568f BRY- BM-2 USA, wayne Co.: Boulder Mountain (BM- $38.1/228 - 111.5/85 - 2809 \text{ m}$                                       | SDL, HCL, JHL, PAR  | this study                             |
| 55110 4)<br>5046 DDN DN 2 USA W C D 11 M (* (DM 2017200 1115705 2000                                                              |                     | 4.1                                    |
| 5961 BRY- BM-2 USA, wayne Co.: Boulder Mountain (BM- $38.1/228 -111.5/85 -2809 \text{ m}$                                         | SDL, HCL, JHL, PAK  | this study                             |
| $5070 \qquad DNA \qquad DNA \qquad UCA NU \qquad C \qquad D \qquad 11 \qquad M \qquad (1 \ (DM \ 20 \ 17000 \ 111 \ 5705 \ 2000)$ |                     | 41.1                                   |
| 59/1 BRY- BM-2 USA, wayne Co.: Boulder Mountain (BM- $38.1/228 - 111.5/85 - 2809  m$                                              | SDL, HCL, JHL, PAK  | this study                             |
| 50112 $4)$                                                                                                                        |                     | 41.1                                   |
| 5981 BRY- BM-2 USA, wayne Co.: Bouider Mountain (BM- 38.1/228 -111.5/85 2809 m                                                    | SDL, HCL, JHL, PAK  | this study                             |
| 500f DDV DM 2 USA Wayna Ca ( Dauldar Mauntain (DM 29, 17029, 111, 5785, 2800 m)                                                   | SDI LICI IIII DAD   | this study.                            |
| 5991 BR I - $58.17226 -111.5765 2009  III$                                                                                        | SDL, HCL, JHL, PAK  | uns study                              |
| 55114                                                                                                                             | SDI HCI IHI PAR     | this study                             |
| 55115 2)                                                                                                                          | SDE, HCE, JHE, I MK | uns study                              |
| 613f BDV TIM- USA Utah Wayne Co.: Thousand Lake 38 4243 -111 6446 2220 m                                                          | ערו ז               | this study                             |
| 55116 1 Mountain (1)                                                                                                              | LDI                 | uns study                              |
| 616f BRV- TLM- USA Utah Wayne Co · Thousand Lake 38 4243 -111 6446 2220 m                                                         | LDP                 | this study                             |
| 55117 1 Mountain (1)                                                                                                              |                     | uns study                              |
| 617f BRY- TLM- USA Utah Wayne Co.: Thousand Lake 38,4243 -111,6446 2220 m                                                         | LDP                 | this study                             |
| 55118 2 Mountain (1)                                                                                                              |                     | · ···································· |
| 618f BRY- TLM- USA, Utah, Wayne Co.: Thousand Lake 38.431 -111.6119 2285 m                                                        | LDP                 | this study                             |
| 55119 2 Mountain (2)                                                                                                              |                     | 2                                      |

| 619f | BRY-<br>55120 | TLM-<br>2 | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (2) | 38.431  | -111.6119 | 2285 m | LDP | this study |
|------|---------------|-----------|-----------------------------------------------------|---------|-----------|--------|-----|------------|
| 620f | BRY-<br>55121 | TLM-<br>2 | USA, Utah, Wayne Co.: Thousand Lake<br>Mountain (2) | 38.431  | -111.6119 | 2285 m | LDP | this study |
| 621f | BRY-<br>55122 | TLM-<br>2 | USA, Utah, Wayne Co.: Thousand Lake Mountain (2)    | 38.431  | -111.6119 | 2285 m | LDP | this study |
| 622f | BRY-<br>55123 | TLM-<br>3 | USA, Utah, Wayne Co.: Thousand Lake Mountain (3)    | 38.5079 | -111.5505 | 2400 m | LDP | this study |
| 623f | BRY-<br>55124 | TLM-<br>3 | USA, Utah, Wayne Co.: Thousand Lake Mountain (3)    | 38.5079 | -111.5505 | 2400 m | LDP | this study |
| 624f | BRY-<br>55125 | TLM-<br>3 | USA, Utah, Wayne Co.: Thousand Lake Mountain (3)    | 38.5079 | -111.5505 | 2400 m | LDP | this study |
| 625f | BRY-<br>55126 | TLM-<br>3 | USA, Utah, Wayne Co.: Thousand Lake Mountain (3)    | 38.5079 | -111.5505 | 2400 m | LDP | this study |
| 627f | BRY-<br>55127 | TLM-<br>4 | USA, Utah, Wayne Co.: Thousand Lake Mountain (4)    | 38.5079 | -111.5161 | 2550 m | LDP | this study |
| 628f | BRY-<br>55128 | TLM-<br>4 | USA, Utah, Wayne Co.: Thousand Lake Mountain (4)    | 38.5079 | -111.5161 | 2550 m | LDP | this study |
| 629f | BRY-<br>55129 | TLM-<br>4 | USA, Utah, Wayne Co.: Thousand Lake Mountain (4)    | 38.5079 | -111.5161 | 2550 m | LDP | this study |
| 630f | BRY-<br>55130 | TLM-<br>4 | USA, Utah, Wayne Co.: Thousand Lake Mountain (4)    | 38.5079 | -111.5161 | 2550 m | LDP | this study |
| 631f | BRY-<br>55131 | TLM-<br>4 | USA, Utah, Wayne Co.: Thousand Lake Mountain (4)    | 38.5079 | -111.5161 | 2550 m | LDP | this study |
| 637f | BRY-<br>55132 | TLM-<br>6 | USA, Utah, Wayne Co.: Thousand Lake Mountain (6)    | 38.5111 | -111.4732 | 2875 m | LDP | this study |
| 639f | BRY-<br>55133 | TLM-<br>6 | USA, Utah, Wayne Co.: Thousand Lake Mountain (6)    | 38.5111 | -111.4732 | 2875 m | LDP | this study |
| 640f | BRY-<br>55134 | TLM-<br>6 | USA, Utah, Wayne Co.: Thousand Lake Mountain (6)    | 38.5111 | -111.4732 | 2875 m | LDP | this study |
| 641f | BRY-<br>55135 | TLM-<br>6 | USA, Utah, Wayne Co.: Thousand Lake Mountain (6)    | 38.5111 | -111.4732 | 2875 m | LDP | this study |
| 642f | BRY-<br>55136 | TLM-<br>7 | USA, Utah, Wayne Co.: Thousand Lake Mountain (7)    | 38.4557 | -111.4497 | 3000 m | LDP | this study |
| 643f | BRY-<br>55137 | TLM-<br>7 | USA, Utah, Wayne Co.: Thousand Lake Mountain (7)    | 38.4557 | -111.4497 | 3000 m | LDP | this study |
| 644f | BRY-<br>55138 | TLM-<br>7 | USA, Utah, Wayne Co.: Thousand Lake Mountain (7)    | 38.4557 | -111.4497 | 3000 m | LDP | this study |

| 645f               | BRY-           | TLM-              | USA, Utah, Wayne Co.: Thousand Lake | 38.4557  | -111.4497 | 3000 m   | LDP                | this study |
|--------------------|----------------|-------------------|-------------------------------------|----------|-----------|----------|--------------------|------------|
|                    | 55139          | 1                 | Mountain (7)                        |          |           |          |                    |            |
| 646f               | BRY-           | TLM-              | USA, Utah, Wayne Co.: Thousand Lake | 38.4557  | -111.4497 | 3000 m   | LDP                | this study |
|                    | 55140          | 7                 | Mountain (7)                        |          |           |          |                    |            |
| 647f               | BRY-           | TLM-              | USA, Utah, Wayne Co.: Thousand Lake | 38.4557  | -111.4581 | 3175 m   | LDP                | this study |
|                    | 55141          | 8                 | Mountain (8)                        |          |           |          |                    |            |
| 648f               | BRY-           | TLM-              | USA, Utah, Wayne Co.: Thousand Lake | 38.4557  | -111.4581 | 3175 m   | LDP                | this study |
|                    | 55142          | 8                 | Mountain (8)                        |          |           |          |                    |            |
| 650f               | BRY-           | TLM-              | USA, Utah, Wayne Co.: Thousand Lake | 38.4557  | -111.4581 | 3175 m   | LDP                | this study |
|                    | 55143          | 8                 | Mountain (8)                        |          |           |          |                    |            |
| 651f               | BRY-           | TLM-              | USA. Utah. Wavne Co.: Thousand Lake | 38.4557  | -111.4581 | 3175 m   | LDP                | this study |
|                    | 55144          | 8                 | Mountain (8)                        |          |           |          |                    | j          |
| 658f               | BRY-           | TLM-              | USA, Utah, Wayne Co.: Thousand Lake | 38,44317 | -111.4703 | 3400 m   | LDP                | this study |
| 0001               | 55570          | 10                | Mountain (10)                       | 20111217 | 111111000 | 5100 III | 201                | lins study |
| 659f               | BRV-           | TI M-             | USA Utah Wayne Co : Thousand Lake   | 38 44317 | -111 4703 | 3400 m   | I DP               | this study |
| 0071               | 551/6          | 10                | Mountain (10)                       | 50.11517 | 111.1705  | 5100 m   |                    | this study |
| 661f               | BPV            | TI M-             | USA Utah Wayne Co : Thousand Lake   | 38 44317 | -111 4703 | 3400 m   | I DP               | this study |
| 0011               | 55147          | 10                | Mountain (10)                       | 50.77517 | 111.4705  | 5400 m   |                    | this study |
| 686f               | BDV            | -                 | USA Utah Iron County                | 38 07714 | -112 6841 | 1813 m   | SDI HCI IHI GDI    | this study |
| 0001               | 551/8          |                   | obri, otali, non county             | 50.07714 | 112.0041  | 1015 11  | SDE, HEE, JHE, ODE | this study |
| 713f               | <b>BDV</b>     | _                 | USA NV White Pine Co : Humboldt-    | 38 54642 | -114 6385 | 2744 m   | SIDUS              | this study |
| /151               | 55140          | _                 | Toivabe National Forest             | 50.54042 | -114.0505 | 2744 111 | SED, EES           | this study |
| 723f               | 55149<br>BDV   |                   | USA UT Uintah Co : Snake John Reef  | 40 20250 | -100 1208 | 1631 m   | SDL LLS GS         | this study |
| 7231               | DK 1-<br>55150 | -                 | USA, UT, Unitali Co Shake John Keel | 40.27237 | -107.1208 | 1051 III | SDL, LLS, US       | uns study  |
| Vagrant taxa in t  | JJIJU          | thalma or         | paging complex (alada IV)           |          |           |          |                    |            |
|                    | (1,1,1,1,1)    | <i>ւուսուս</i> sբ | eeles complex (clade 1 v )          |          |           |          |                    |            |
| R. cerebriformis   | (clade Iva)    |                   |                                     |          |           |          |                    |            |
| -                  | AF159942       | -                 | USA, Idaho                          | -        | -         | -        | -                  | Arup and   |
| D                  | (ITS only)     |                   |                                     |          |           |          |                    | Grub 2000  |
| R. cylinarica - (C |                |                   |                                     |          |           |          |                    |            |
|                    | AF159941       | -                 | USA, Idaho                          | -        | -         | -        | -                  | Arup and   |
| Dhandomii          | (ITS only)     |                   |                                     |          |           |          |                    | Grub 2000  |
| K. nayaenn         | 1 51 500.05    |                   |                                     |          |           |          |                    |            |
|                    | AF159937       | -                 | USA, Idaho                          | -        | -         | -        | -                  | Arup and   |
| C04£               | (IIS only)     |                   | UCA WX Linesh Country               | 41 (2077 | 110 5000  | 2019     |                    | Grub 2000  |
| 0841               | BK I -         | -                 | USA, w 1, Lincoln County            | 41.038// | -110.3099 | 2018 m   | SDL, JHL           | uns study  |
| (956               | 55029<br>DDV   |                   | UCA WV Lincoln Country              | 41 (2077 | 110 5000  | 2019     | CDI IIII           | 41         |
| 0801               | BKY-           | -                 | USA, w I, Lincoln County            | 41.038// | -110.5699 | 2018 m   | SDL, JHL           | unis study |
|                    | 55030          |                   |                                     |          |           |          |                    |            |

| 728f               | BRY-       | - | USA, WY, Sweetwater County             | 42.23702 | -109.1712 | 2112 m | SDL           | this study |
|--------------------|------------|---|----------------------------------------|----------|-----------|--------|---------------|------------|
|                    | 55032      |   |                                        |          |           |        |               |            |
| 729f               | BRY-       | - | USA, WY, Sweetwater County             | 42.23702 | -109.1712 | 2112 m | SDL           | this study |
|                    | 55033      |   |                                        |          |           |        |               |            |
| 715f*              | BRY-       | - | USA, MT, Deerlodge Co.:                | 46.10273 | -113.2326 | 2382 m | SDL, LLS, GS  | this study |
|                    | 55031      |   | Beaverhead/Deerlodge National Forest   |          |           |        |               |            |
| R. haydenii spp. a | rbuscula   |   |                                        |          |           |        |               |            |
| 092f               | BRY-       | - | USA, ID, Lemhi Co.: city of Leadore    | 44.68116 | -113.3623 | 1819 m | SDL, LLS, KBK | this study |
|                    | 55027      |   |                                        |          |           |        |               |            |
| 727f               | BRY-       | - | ID, Lemhi Co.: Salmon Challis National | 44.37694 | -113.2719 | 2987 m | LLS, KBK      | this study |
|                    | 55028      |   | Forest                                 |          |           |        |               |            |
| R. idahoensis      |            |   |                                        |          |           |        |               |            |
| -                  | AF159943   | - | USA, Idaho                             | -        | -         | -      | -             | Arup and   |
|                    | (ITS only) |   |                                        |          |           |        |               | Grub 2000  |
| 093f               | BRY-       | - | USA, ID, Lemhi Co.: city of Leadore    | 44.68116 | -113.3623 | 1819 m | SDL, LLS, KBK | this study |
|                    | 55034      |   |                                        |          |           |        |               |            |
| 094f               | BRY-       | - | USA, ID, Lemhi Co.: city of Leadore    | 44.68116 | -113.3623 | 1819 m | SDL, LLS, KBK | this study |
|                    | 55035      |   |                                        |          |           |        |               |            |
| 103f               | BRY-       | - | USA, ID, Lemhi Co.: city of Leadore    | 44.68116 | -113.3623 | 1819 m | SDL, LLS, KBK | this study |
|                    | 55036      |   |                                        |          |           |        |               |            |
| R. subidahoensis ( | clade IVa) |   |                                        |          |           |        |               |            |
| -                  | AF159944   | - | USA, Idaho                             | -        | -         | -      | -             | Arup and   |
|                    | (ITS only) |   |                                        |          |           |        |               | Grub 2000  |

Supplementary data 1.2. GenBank accession numbers for all sequence include in the present study. Specimen ID, lineage and identification number (*L. no., Lecanora novomexicana; R. ce., Rhizoplaca cerebriformis; R. cy., R. cylindrical; R. h.* spp. *ar., R. haydenii* ssp. *arbuscula; R. ha., R. haydenii; R. id., R. idahoensis; R. me, R. melanophthalma*; and *R. su, R. subidahoensis*), Herbarium Acc. No., location and number of deposited voucher specimen; GenBank Accession numbers.

| Specimen ID                                | Herbarium Acc. No. | ITS      | IGS      | intron   | Mcm7     | β-tubulin |
|--------------------------------------------|--------------------|----------|----------|----------|----------|-----------|
| R. chrysoleuca 561f                        | BRY-55000          | HM577233 | -        | HM577158 | HM577385 | HM576891  |
| R. chrysoleuca 562f                        | BRY-55001          | HM577234 | HM577027 | -        | -        | HM576892  |
| R. chrysoleuca 565f                        | BRY-55002          | HM577235 | HM577028 | -        | HM577386 | -         |
| R. chrysoleuca 566f                        | BRY-55003          | HM577236 | HM577029 | -        | HM577387 | -         |
| R. chrysoleuca 569f                        | BRY-55004          | HM577237 | HM577030 | -        | -        | HM576893  |
| R. chrysoleuca 570f                        | BRY-55005          | HM577238 | -        | -        | -        | -         |
| R. chrysoleuca 581f                        | BRY-55570          | HM577239 | -        | -        | -        | -         |
| R. chrysoleuca 582f                        | BRY-55006          | HM577240 | -        | -        | -        | -         |
| R. chrysoleuca 583f                        | BRY-55007          | HM577241 | -        | -        | -        | -         |
| R. chrysoleuca 584f                        | BRY-55008          | HM577242 | -        | -        | -        | -         |
| R. chrysoleuca 585f                        | BRY-55009          | HM577243 | -        | -        | -        | -         |
| R. chrysoleuca 591f                        | BRY-55010          | HM577244 | -        | -        | -        | -         |
| R. chrysoleuca 592f                        | BRY-55011          | HM577245 | HM577031 | -        | HM577388 | HM576894  |
| R. chrysoleuca 593f                        | BRY-55012          | HM577246 | -        | -        | -        | -         |
| R. chrysoleuca 594f                        | BRY-55571          | HM577247 | -        | -        | -        | -         |
| R. chrysoleuca 595f                        | BRY-55013          | HM577248 | -        | -        | -        | -         |
| R. chrysoleuca 602f                        | BRY-55014          | HM577249 | -        | HM577159 | -        | -         |
| R. chrysoleuca 603f                        | BRY-55015          | HM577250 | -        | -        | -        | HM576895  |
| R. chrysoleuca 604f                        | BRY-55016          | HM577251 | -        | -        | -        | HM576896  |
| R. chrysoleuca 605f                        | BRY-55017          | HM577252 | HM577032 | -        | HM577389 | HM576897  |
| R. chrysoleuca 606f                        | BRY-55018          | HM577253 | -        | -        | -        | -         |
| R. chrysoleuca 676f                        | BRY-55019          | HM577254 | -        | HM577160 | HM577390 | HM576898  |
| R. subdiscrepans 1023f                     | BRY-55020          | HM577232 | -        | HM577157 | HM577384 | -         |
| R. subdiscrepans 734f                      | BRY-55021          | HM577230 | HM577026 | HM577155 | HM577382 | HM576889  |
| R. subdiscrepans 735f                      | BRY-55022          | HM577231 | -        | HM577156 | HM577383 | HM576890  |
| L. no. clade I 730f                        | BRY-55023          | -        | HM577033 | -        | -        | HM576899  |
| <i>L. no.</i> clade I 731f                 | BRY-55024          | HM577255 | HM577034 | HM577161 | HM577391 | HM576900  |
| <i>L. no.</i> clade I 732f                 | BRY-55025          | HM577256 | HM577035 | HM577162 | -        | HM576901  |
| L. no. clade I 733f                        | BRY-55026          | HM577257 | HM577036 | HM577163 | HM577392 | HM576902  |
| L. no. clade V AF159923                    | NA                 | AF159923 | -        | -        | -        | -         |
| L. no. clade V AF159945                    | NA                 | AF159945 | -        | -        | -        | -         |
| R. ce. clade IVa AF159942                  | NA                 | AF159942 | -        | -        | -        | -         |
| R. cy. clade IVd AF159941                  | NA                 | AF159941 | -        | -        | -        | -         |
| <i>R. h.</i> spp. <i>ar.</i> clade IV 092f | BRY-55027          | HM577303 | HM577077 | -        | HM577437 | HM576948  |
| <i>R. h.</i> spp. <i>ar.</i> clade IV 727f | BRY-55028          | HM577304 | HM577078 | HM577207 | HM577438 | HM576949  |
| <i>R. ha.</i> clade IV 684f                | BRY-55029          | HM577298 | HM577073 | HM577202 | HM577432 | HM576943  |
| <i>R. ha.</i> clade IV 685f                | BRY-55030          | HM577299 | HM577074 | HM577203 | HM577433 | HM576944  |
| R. ha. clade IV 715f                       | BRY-55031          | HM577300 | HM577075 | HM577204 | HM577434 | HM576945  |
| R. ha. clade IV 728f                       | BRY-55032          | HM577301 | HM577076 | HM577205 | HM577435 | HM576946  |
| R. ha. clade IV 729f                       | BRY-55033          | HM577302 | -        | HM577206 | HM577436 | HM576947  |
| R. ha. clade IV AF159937                   | NA                 | AF159937 | -        | -        | -        | -         |

| R. id. clade IV 093f            | BRY-55034 | HM577295 | HM577071 | -        | HM577429 | HM576940 |
|---------------------------------|-----------|----------|----------|----------|----------|----------|
| R. id. clade IV 094f            | BRY-55035 | HM577296 | HM577072 | HM577200 | HM577430 | HM576941 |
| R. id. clade IV 103f            | BRY-55036 | HM577297 | -        | HM577201 | HM577431 | HM576942 |
| R. id. clade IV AF159943        | NA        | AF159943 | -        | -        | -        | -        |
| R. me. clade II 563f            | BRY-55037 | HM577258 | HM577037 | HM577164 | HM577393 | HM576903 |
| R. me. clade II 564f            | BRY-55038 | HM577259 | -        | HM577165 | HM577394 | HM576904 |
| R. me. clade II 587f            | BRY-55039 | HM577260 | HM577038 | HM577166 | HM577395 | HM576905 |
| <i>R. me.</i> clade II 607f     | BRY-55040 | HM577261 | HM577039 | HM577167 | HM577396 | HM576906 |
| <i>R. me.</i> clade II 608f     | BRY-55041 | HM577262 | HM577040 | HM577168 | HM577397 | HM576907 |
| <i>R. me.</i> clade II 609f     | BRY-55042 | HM577263 | HM577041 | HM577169 | HM577398 | HM576908 |
| <i>R. me.</i> clade II 610f     | BRY-55043 | HM577264 | HM577042 | HM577170 | HM577399 | HM576909 |
| R. me. clade II 611f            | BRY-55044 | HM577265 | HM577043 | HM577171 | HM577400 | HM576910 |
| <i>R. me.</i> clade II 612f     | BRY-55045 | HM577266 | HM577044 | HM577172 | HM577401 | HM576911 |
| R. me. clade II 614f            | BRY-55046 | HM577267 | HM577045 | HM577173 | HM577402 | HM576912 |
| <i>R. me.</i> clade II 615f     | BRY-55047 | HM577268 | HM577046 | HM577174 | HM577403 | HM576913 |
| R. me. clade II 660f            | BRY-55048 | HM577269 | HM577047 | HM577175 | HM577404 | HM576914 |
| <i>R. me.</i> clade II 677f     | BRY-55049 | HM577270 | HM577048 | HM577176 | HM577405 | HM576915 |
| R. me. clade II 678f            | BRY-55050 | HM577271 | HM577049 | HM577177 | HM577406 | HM576916 |
| R. me. clade II 693f            | BRY-55051 | HM577272 | HM577050 | -        | HM577407 | HM576917 |
| R. me. clade II 696f            | BRY-55052 | HM577273 | -        | HM577178 | HM577408 | HM576918 |
| <i>R. me.</i> clade II 697f     | BRY-55053 | HM577274 | HM577051 | HM577179 | HM577409 | HM576919 |
| <i>R. me.</i> clade II 699f     | BRY-55054 | HM577275 | -        | HM577180 | HM577410 | HM576920 |
| R. me. clade II 708f            | BRY-55055 | HM577276 | HM577052 | HM577181 | HM577411 | HM576921 |
| R. me. clade II 720f            | BRY-55056 | HM577277 | HM577053 | HM577182 | HM577412 | HM576922 |
| R. me. clade II 721f            | BRY-55057 | HM577278 | HM577054 | HM577183 | -        | HM576923 |
| R. me. clade II 722f            | BRY-55058 | HM577279 | HM577055 | HM577184 | HM577413 | HM576924 |
| R. me. clade II 724f            | BRY-55059 | HM577280 | HM577056 | HM577185 | HM577414 | HM576925 |
| R. me. clade II 725f            | BRY-55060 | HM577281 | HM577057 | HM577186 | HM577415 | HM576926 |
| R. me. clade II AF159929        | NA        | AF159929 | -        | -        | -        | -        |
| R. me. clade II AF159934        | NA        | AF159934 | -        | -        | -        | -        |
| R. me. clade II AF159935        | NA        | AF159935 | -        | -        | -        | -        |
| R. me. clade II AY509791        | NA        | AY509791 | -        | -        | -        | -        |
| <i>R. me.</i> clade II EF095282 | NA        | EF095282 | -        | -        | -        | -        |
| R. me. clade II EF095286        | NA        | EF095286 | -        | -        | -        | -        |
| R. me. clade II EF095297        | NA        | EF095297 | -        | -        | -        | -        |
| R. me. clade III 543f           | BRY-55061 | HM577282 | HM577058 | HM577187 | HM577416 | HM576927 |
| R. me. clade III 544f           | BRY-55062 | HM577283 | HM577059 | HM577188 | HM577417 | HM576928 |
| R. me. clade III 571f           | BRY-55063 | HM577284 | HM577060 | HM577189 | HM577418 | HM576929 |
| R. me. clade III 572f           | BRY-55064 | HM577285 | HM577061 | HM577190 | HM577419 | HM576930 |
| R. me. clade III 586f           | BRY-55065 | HM577286 | HM577062 | HM577191 | HM577420 | HM576931 |
| R. me. clade III 588f           | BRY-55066 | HM577287 | HM577063 | HM577192 | HM577421 | HM576932 |
| R. me. clade III 589f           | BRY-55067 | HM577288 | HM577064 | HM577193 | HM577422 | HM576933 |
| R. me. clade III 590f           | BRY-55068 | HM577289 | HM577065 | HM577194 | HM577423 | HM576934 |
| R. me. clade III 652f           | BRY-55069 | HM577290 | HM577066 | HM577195 | HM577424 | HM576935 |
| R. me. clade III 653f           | BRY-55070 | HM577291 | HM577067 | HM577196 | HM577425 | HM576936 |
| R. me. clade III 654f           | BRY-55071 | HM577292 | HM577068 | HM577197 | HM577426 | HM576937 |
| R. me. clade III 655f           | BRY-55072 | HM577293 | HM577069 | HM577198 | HM577427 | HM576938 |
| R. me. clade III 656f           | BRY-55073 | HM577294 | HM577070 | HM577199 | HM577428 | HM576939 |
| <i>R. me.</i> clade IVa 695f    | BRY-55074 | HM577305 | HM577079 | HM577208 | HM577439 | HM576950 |

| R. me. clade IVa 706f            | BRY-55075 | HM577306 | HM577080 | HM577209 | HM577440 | HM576951 |
|----------------------------------|-----------|----------|----------|----------|----------|----------|
| R. me. clade IVa 714f            | BRY-55076 | HM577307 | HM577081 | HM577210 | HM577441 | HM576952 |
| R. me. clade IVb 550f            | BRY-55077 | HM577308 | HM577082 | HM577211 | HM577442 | HM576953 |
| R. me. clade IVb 551f            | BRY-55078 | HM577309 | HM577083 | HM577212 | HM577443 | HM576954 |
| R. me. clade IVb 552f            | BRY-55079 | HM577310 | HM577084 | HM577213 | HM577444 | HM576955 |
| R. me. clade IVb 626f            | BRY-55080 | HM577311 | HM577085 | HM577214 | HM577445 | HM576956 |
| R. me. clade IVb 632f            | BRY-55081 | HM577312 | HM577086 | HM577215 | HM577446 | HM576957 |
| R. me. clade IVb 633f            | BRY-55082 | HM577313 | HM577087 | HM577216 | HM577447 | HM576958 |
| R. me. clade IVb 634f            | BRY-55083 | HM577314 | HM577088 | HM577234 | HM577448 | HM576959 |
| R. me. clade IVb 635f            | BRY-55084 | HM577315 | HM577089 | HM577218 | HM577449 | HM576960 |
| R. me. clade IVb 636f            | BRY-55085 | HM577316 | HM577090 | HM577219 | HM577450 | HM576961 |
| R. me. clade IVb 649f            | BRY-55086 | HM577317 | HM577091 | HM577220 | HM577451 | HM576962 |
| R. me. clade IVb 657f            | BRY-55087 | HM577318 | -        | HM577221 | HM577452 | HM576963 |
| R. me. clade IVb 664f            | BRY-55088 | HM577319 | HM577092 | HM577222 | HM577453 | HM576964 |
| R. me. clade IVb 698f            | BRY-55089 | HM577320 | HM577093 | HM577223 | HM577454 | HM576965 |
| R. me. clade IVb 718f            | BRY-55090 | HM577321 | HM577094 | HM577224 | HM577455 | -        |
| R. me. clade IVb EF095278        | NA        | EF095278 | -        | -        | -        | -        |
| R. me. clade IVb EF095280        | NA        | EF095280 | -        | -        | -        | -        |
| R. me. clade IVb EF095283        | NA        | EF095283 | -        | -        | -        | -        |
| R. me. clade IVb EF095285        | NA        | EF095285 | -        | -        | -        | -        |
| <i>R. me.</i> clade IVb EF095287 | NA        | EF095287 | -        | -        | -        | -        |
| R. me. clade IVb EF095290        | NA        | EF095290 | -        | -        | -        | -        |
| R. me. clade IVc 554f            | BRY-55091 | HM577322 | HM577095 | HM577225 | HM577456 | HM576966 |
| R. me. clade IVc 556f            | BRY-55092 | HM577323 | HM577096 | HM577226 | HM577457 | HM576967 |
| R. me. clade IVc 668f            | BRY-55093 | HM577324 | HM577097 | HM577227 | HM577458 | HM576968 |
| R. me. clade IVc 669f            | BRY-55094 | HM577325 | HM577098 | HM577228 | HM577459 | HM576969 |
| R. me. clade IVc 670f            | BRY-55095 | HM577326 | HM577099 | HM577229 | HM577460 | HM576970 |
| R. me. clade IVd 541f            | BRY-55096 | HM577327 | HM577100 | -        | HM577461 | HM576971 |
| R. me. clade IVd 542f            | BRY-55097 | HM577328 | HM577101 | -        | HM577462 | HM576972 |
| R. me. clade IVd 545f            | BRY-55098 | HM577329 | HM577102 | -        | HM577463 | HM576973 |
| R. me. clade IVd 546f            | BRY-55099 | HM577330 | HM577103 | -        | HM577464 | HM576974 |
| R. me. clade IVd 547f            | BRY-55100 | HM577331 | HM577104 | -        | HM577465 | HM576975 |
| R. me. clade IVd 548f            | BRY-55101 | HM577332 | HM577105 | -        | HM577466 | HM576976 |
| R. me. clade IVd 549f            | BRY-55102 | HM577333 | HM577106 | -        | HM577467 | HM576977 |
| R. me. clade IVd 553f            | BRY-55103 | HM577334 | HM577107 | -        | HM577468 | HM576978 |
| R. me. clade IVd 555f            | BRY-55104 | HM577335 | HM577108 | -        | HM577469 | HM576979 |
| R. me. clade IVd 557f            | BRY-55105 | HM577336 | HM577109 | -        | HM577470 | HM576980 |
| R. me. clade IVd 558f            | BRY-55106 | HM577337 | HM577110 | -        | HM577471 | HM576981 |
| R. me. clade IVd 559f            | BRY-55107 | HM577338 | HM577111 | -        | HM577472 | HM576982 |
| R. me. clade IVd 560f            | BRY-55108 | HM577339 | HM577112 | -        | HM577473 | HM576983 |
| R. me. clade IVd 567f            | BRY-55109 | HM577340 | HM577113 | -        | HM577474 | HM576984 |
| R. me. clade IVd 568f            | BRY-55110 | HM577341 | HM577114 | -        | HM577475 | HM576985 |
| R. me. clade IVd 596f            | BRY-55111 | HM577342 | HM577115 | -        | HM577476 | HM576986 |
| R. me. clade IVd 597f            | BRY-55112 | HM577343 | HM577116 | -        | HM577477 | HM576987 |
| R. me. clade IVd 598f            | BRY-55113 | HM577344 | HM577117 | -        | HM577478 | HM576988 |
| R. me. clade IVd 599f            | BRY-55114 | HM577345 | HM577178 | -        | HM577479 | HM576989 |
| R. me. clade IVd 600f            | BRY-55115 | HM577346 | HM577119 | -        | HM577480 | HM576990 |
| R. me. clade IVd 613f            | BRY-55116 | HM577347 | HM577120 | -        | HM577481 | HM576991 |
| <i>R. me.</i> clade IVd 616f     | BRY-55117 | HM577348 | HM577121 | -        | HM577482 | HM576992 |

| R. me. clade IVd 617f     | BRY-55118 | HM577349 | HM577122 | - | HM577483 | HM576993 |
|---------------------------|-----------|----------|----------|---|----------|----------|
| R. me. clade IVd 618f     | BRY-55119 | HM577350 | HM577123 | - | HM577484 | HM576994 |
| R. me. clade IVd 619f     | BRY-55120 | HM577351 | HM577124 | - | HM577485 | HM576995 |
| R. me. clade IVd 620f     | BRY-55121 | HM577352 | HM577125 | - | HM577486 | HM576996 |
| R. me. clade IVd 621f     | BRY-55122 | HM577353 | HM577126 | - | HM577487 | HM576997 |
| R. me. clade IVd 622f     | BRY-55123 | HM577354 | HM577127 | - | HM577488 | HM576998 |
| R. me. clade IVd 623f     | BRY-55124 | HM577355 | HM577128 | - | HM577489 | HM576999 |
| R. me. clade IVd 624f     | BRY-55125 | HM577356 | HM577129 | - | HM577490 | HM577000 |
| R. me. clade IVd 625f     | BRY-55126 | HM577357 | HM577130 | - | HM577491 | HM577001 |
| R. me. clade IVd 627f     | BRY-55127 | HM577358 | HM577131 | - | HM577492 | HM577002 |
| R. me. clade IVd 628f     | BRY-55128 | HM577359 | HM577132 | - | HM577493 | HM577003 |
| R. me. clade IVd 629f     | BRY-55129 | HM577360 | HM577133 | - | HM577494 | HM577004 |
| R. me. clade IVd 630f     | BRY-55130 | HM577361 | HM577134 | - | HM577495 | HM577005 |
| R. me. clade IVd 631f     | BRY-55131 | HM577362 | HM577135 | - | HM577496 | HM577006 |
| R. me. clade IVd 637f     | BRY-55132 | HM577363 | HM577136 | - | HM577497 | HM577007 |
| Rme. clade IVd 639f       | BRY-55133 | HM577364 | HM577137 | - | HM577498 | HM577008 |
| R. me. clade IVd 640f     | BRY-55134 | HM577365 | HM577138 | - | HM577499 | HM577009 |
| R. me. clade IVd 641f     | BRY-55135 | HM577366 | HM577139 | - | HM577500 | HM577010 |
| R. me. clade IVd 642f     | BRY-55136 | HM577367 | HM577140 | - | HM577501 | HM577011 |
| R. me. clade IVd 643f     | BRY-55137 | HM577368 | HM577141 | - | HM577502 | HM577012 |
| R. me. clade IVd 644f     | BRY-55138 | HM577369 | HM577142 | - | HM577503 | HM577013 |
| R. me. clade IVd 645f     | BRY-55139 | HM577370 | HM577143 | - | HM577504 | HM577014 |
| R. me. clade IVd 646f     | BRY-55140 | HM577371 | HM577144 | - | HM577505 | HM577015 |
| R. me. clade IVd 647f     | BRY-55141 | HM577372 | HM577145 | - | HM577506 | HM577016 |
| R. me. clade IVd 648f     | BRY-55142 | HM577373 | HM577146 | - | HM577507 | HM577017 |
| R. me. clade IVd 650f     | BRY-55143 | HM577374 | HM577147 | - | HM577508 | HM577018 |
| R. me. clade IVd 651f     | BRY-55144 | HM577375 | HM577148 | - | HM577509 | HM577019 |
| R. me. clade IVd 658f     | BRY-55145 | HM577376 | HM577149 | - | HM577510 | HM577020 |
| R. me. clade IVd 659f     | BRY-55146 | HM577377 | HM577150 | - | HM577511 | HM577021 |
| R. me. clade IVd 661f     | BRY-55147 | HM577378 | HM577151 | - | HM577512 | HM577022 |
| R. me. clade IVd 686f     | BRY-55148 | HM577379 | HM577152 | - | HM577513 | HM577023 |
| R. me. clade IVd 713f     | BRY-55149 | HM577380 | HM577153 | - | HM577514 | HM577024 |
| R. me. clade IVd 723f     | BRY-55150 | HM577381 | HM577154 | - | HM577515 | HM577025 |
| R. su. clade IVa AF159944 | NA        | AF159944 | -        | - | -        | -        |



Supplementary data 1.3a (on previous page). Maximum likelihood topology of concatenated ribosomal loci (IGS, ITS, and group I intron), with bootstrap support indicated at nodes. Accessions found to be in conflict with other markers are **bolded**.



**Supplementary data 1.3b** (on previous page). Maximum likelihood topology of the  $\beta$ -tubulin fragment, with bootstrap support indicated at nodes. Accessions found to be in conflict with other markers are **bolded**.



**Supplementary data 1.3c.** Maximum likelihood topology of the *MCM7* fragment, with bootstrap support indicated at nodes. Accessions found to be in conflict with other markers are **bolded**.

## **CHAPTER TWO**

# New insights into phylogenetic relationships and character evolution in the species-rich lichen-forming fungal genus *Xanthoparmelia* (Parmeliaceae) in western North America

Steven D. Leavitt<sup>1,2\*</sup>, Leigh A. Johnson<sup>1</sup>, and Larry L. St. Clair<sup>1</sup>

<sup>1</sup>Department of Biology and M. L. Bean Life Science Museum, Brigham Young University, 401 WIDB, Provo, Utah, 84602 USA

<sup>2</sup>Present address: Department of Botany, Field Museum of Natural History, 1400 S. Lake Shore Dr, Chicago, IL 60605-2496

\*Corresponding author:

Steven D. Leavitt. Department of Botany, Field Museum of Natural History, 1400 S. Lake Shore Dr, Chicago, IL 60605-2496, USA, Phone: 801-380-9293, Fax: 801-422-0093, email: leavitt.steven@gmail.com

## Abstract

The lichen-forming ascomycete genus *Xanthoparmelia* includes over 800 described species displaying a considerable range of morphological and chemical variation. Traditionally, species delimitations have been based on morphological characters, medullary chemistry, and various reproductive features. However, the evolution of these characters has remained unclear, and many traditional classifications have been shown to be highly artificial. Using sequence data from four nuclear ribosomal markers, IGS, ITS, LSU and a group I intron, and fragments from two nuclear loci,  $\beta$ -tubulin, and *MCM7*, we reconstructed a phylogenetic hypothesis from 422 individuals representing 20 putative species to assess the evolution of taxonomically important characters. Most sampled species as currently circumscribed were recovered as polyphyletic and major diagnostic characters have evolved in a highly homoplasious manner. The vagrant growth form, distinct medullary chemistries, and production of vegetative diaspores appear to have evolved independently multiple times. These results are consistent with other studies of lichenized fungi indicating that traditional morphological and chemistry-based species delimitations fail to accurately represent fungal diversity.

**Keywords:** Character evolution, convergence, lichens, Parmeliaceae, secondary metabolites, speciation, vagrant lichens, *Xanthoparmelia* 

#### Introduction

Lichens are obligate symbiotic associations consisting of a fungus (the mycobiont), a green alga and/or cyanobacterium (the photobiont), and, at least in some cases, nonphotosynthetic bacteria (Cardinale, Puglia, and Grube, 2006; Cardinale et al., 2008; Hodkinson and Lutzoni, 2009; Selbmann et al., 2010). Lichen systems have been very successful from an evolutionary perspective and include approximately one-fifth of all known extant fungal species (Lutzoni, Pagel, and Reeb, 2001). The co-evolution of lichen symbionts has resulted in a wide array of morphological and metabolic adaptations unique to lichen systems, termed symbiotic phenotypes (Honegger, 2001), which promote the overall success of the symbionts (Rikkinen, 1995; Clark et al., 2001; Sanders, 2001). Traditionally anatomical, morphological and chemical characters of the complete lichen association have been employed to characterize taxonomy of the mycobiont (the taxonomy of the other symbionts, e.g. algae and cyanobacteria, has no official nomenclatural status relative to the intact lichen). However, key taxonomic characters within lichenized ascomycetes appear to have evolved independently or changed character states frequently over the course of lichen evolution (Printzen, 2009), and the value of these characters for defining taxonomic boundaries appears to be overestimated in many groups (Arup and Grube, 2000; Blanco et al., 2004a; Reeb, Lutzoni, and Roux, 2004; Buschbom and Mueller, 2006; Lumbsch et al., 2007; Reese Næsborg, Ekman, and Tibell, 2007; Nelsen et al., 2009; Schmitt et al., 2009a).

The ascomycete family Parmeliaceae represents the largest and best studied family of lichenized-fungi within the Lecanorales (Ascomycota), and includes approximately 2000 species in 90 genera (Crespo et al., 2007). In some cases, morphological and chemical characters used to define species within the Parmeliaceae are not useful taxonomic discriminators at an intrageneric

level (Louwhoff and Crisp, 2000; Velmala et al., 2009), and cryptic phylogenetic lineages have been identified within several species defined by morphological characters (Kroken and Taylor, 2001; Crespo et al., 2002; Blanco et al., 2004b; Molina et al., 2004; Argüello et al., 2007; Wirtz, Printzen, and Lumbsch, 2008). On the other hand, both chemistry and morphology based taxonomic boundaries may appropriately represent species diversity in some groups within the Parmeliaceae (Tehler and Källersjö, 2001; McCune and Schoch, 2009; Truong, Naciri, and Clerc, 2009). However, the utility of traditional characters used to define species within most genera in the Parmeliaceae has not been evaluated in a molecular context.

Within the Parmeliaceae, Xanthoparmelia (Vainio) Hale is the largest genus, including more than 800 species characterized by the presence of usnic or iosusnic acid and the polysaccharide Xanthoparmelia-type lichenan in the hyphal cell walls (Elix, 1993; Blanco et al., 2004a; Crespo et al., 2007). The use of molecular data has revised the generic circumspection of Xanthoparmelia and suggests chemical and morphological characters previously used to define taxonomic groups within the genus have been overemphasized (Crespo, Blanco, and Hawksworth, 2001; Blanco et al., 2004a; Blanco et al., 2006; Thell et al., 2006; Arup et al., 2007; Crespo et al., 2007; Del Prado et al., 2007; Gutiérrez et al., 2007; Hodkinson and Lendemer, in press). Congeners in *Xanthoparmelia* display great morphological and chemical diversity, which traditionally have been used to differentiate species. The current classification has been problematic and many of the current groupings are disputed (Esslinger, 1977, 1978; Elix, 1986; Hawksworth and Crespo, 2002; Blanco et al., 2004a; Ahti and Hawksworth, 2005; Crespo et al., 2007; Thell, Elix, and Søchting, 2009). Contrasting reproductive modes have also been important characters for diagnosing species within Xanthoparmelia (Hale, 1990). Sexual reproduction occurs through the production of ascospores produced through meiosis in sexual

fruiting bodies (the apothecia), and these are dispersed independent of the photobiont partner and require de novo acquisition of the appropriate photobiont partner. In contrast, specialized vegetative reproductive propagules (the isidia or soredia) contain both symbionts, eliminating the requirement of acquiring the appropriate photobiont partner de novo.

In spite of the recognized importance of molecular data for effectively investigating deeper phylogenetic relationships in the Parmeliaceae, relatively little has been done to investigate α-level patterns of morphological and chemical diversity within and between *Xanthoparmelia* species in a framework incorporating molecular data (Thell, Elix, and Søchting, 2009; Hodkinson and Lendemer, in press; Leavitt, Johnson, and St. Clair, submitted). Recent studies of some *Xanthoparmelia* species suggest that several distinct lineages may be hidden within nominal species defined on chemical and morphological grounds (Del-Prado et al., 2010).

*Xanthoparmelia* contains the greatest number of vagrant species with the greatest geographic distributions (Rosentreter, 1993). Vagrant forms of lichenized fungi represent an interesting phenomenon seen in diverse lichen clades, including *Aspicilia* (Megasporaceae), *Masonhalea* (Parmeliaceae), *Rhizoplaca* (Lecanoraceae), and *Xanthoparmelia*. The term "vagrant" is used for obligatory unattached taxa that grow, persist, and reproduce without attachment to a substrate (Rosentreter, 1993). These are generally conspicuous lichens found growing unattached on soils in many deserts, steppes, and high plain areas of North America, Eastern Europe, Russia, Mongolia, Australia, and South Africa. The occurrence of vagrant lichens in multiple lineages leads to questions concerning the evolutionary advantages and ecological factors that have given rise to vagrancy.

A high degree of morphological variation in most vagrant forms of *Xanthoparmelia* has resulted in species boundaries often based on variation in the expression of signature secondary

metabolites (Hale, 1990; Rosentreter, 1993). Unspecialized vegetative fragments are generally the only method of reproduction for vagrant *Xanthoparmelia* species, limiting dispersal and genetic exchange between populations (Bailey, 1976; Rosentreter, 1993), although it has been proposed that some long distance dispersal may be mediated by migrating pronghorn antelope and other ungulates which transport unspecialized thallus fragments (Thomas and Rosentreter, 1992; Rosentreter, 1993; St. Clair et al., 2007). Although sexual reproductive structures (apothecia) are extremely rare in vagrant *Xanthoparmelia* species, they have occasionally been found on *X. chlorochroa* and *X. camtschadalis* (Hale, 1990), and methods of dispersal and the role of sexual reproduction in vagrant growth-forms have not been explicitly tested.

The lichen genus *Xanthoparmelia* provides a model system for assessing problems caused by homoplasy of morphological and chemical characters in lichenized fungi (Del-Prado et al., 2010). Furthermore, morphologically and chemically diverse vagrant *Xanthoparmelia* taxa in North America offer an excellent opportunity to evaluate patterns of vagrancy, identify divergent vagrant lineages, and assess the evolution of taxonomically important secondary metabolites and reproductive modes within a comprehensive molecular phylogenetic context. Blanco et al. (2004b) recovered some taxa included in the present study within a single well-supported monophyletic lineages, sister to *X. brachinaensis*, and other recent studies suggest that most North American taxa belong to this lineage (Thell, Elix, and Søchting, 2009; Hodkinson and Lendemer, in press). The objectives of this research are to: 1) estimate a robust phylogenetic hypothesis concerning the relationship of vagrant growth-forms to attached saxicolous forms of *Xanthoparmelia* in North America; 2) identify divergent lineages of vagrant forms within their North American distribution; and 3) assess the evolution of morphological, chemical, and reproductive characters, with an emphasis on those important for the effective and consistent

treatment of this group. To this end, we obtained samples of *Xanthoparmelia* specimens representing morphologically and chemically diverse taxa, including all described North American vagrant *Xanthoparmelia* species, throughout their known distributions in western North America, and accessions of other divergent *Xanthoparmelia* lineages to assess monophyly of the focal group. We used sequence data from 4 nuclear ribosomal markers (ITS, IGS, LSU, group I intron) and two low-copy nuclear protein-coding fragments (β-tubulin and *MCM7*) to recover a well-supported phylogenetic hypothesis for this group.

#### **Materials and Methods**

*Taxon sampling*—Over 4000 *Xanthoparmelia* specimens were collected between 2005 and 2009 from locations throughout western North America for initial analyses of morphological and chemical variation. Sampling emphasized: 1) described vagrant *Xanthoparmelia* taxa, 2) the known distribution of *X. chlorochroa* sensu lato (s. l.), 3) any co-occuring saxicolous attached species of *Xanthoparmelia*; and 4) included all specimens presented in Leavitt et al. (submitted-b). Additionally, limited sampling was included to assess relationships within a broader taxonomic and phylogeographic context to confirm the monophyly of the focal group. Specimens were selected to represent the ecological range of these taxa, with effective sampling across the morphological and biochemical variation of the collection, including both vagrant and saxicolous attached species. Material from the Herbarium of Nonvascular Cryptogams, Brigham Young University (BRY), Snake River Plains Herbarium, Boise State University (SRP), Oregon State University Herbarium (OSC), University of Nebraska at Omaha Herbarium (OMA), and Theodore Esslinger's personal collection (North Dakota) was included to improve taxonomic sampling and represent unsampled localities. Although *Xanthoparmelia* has been relatively well studied from a generic perspective, uncertainty in the outgroup relationships between species within the genus is potentially problematic in determining basal relationships within the ingroup. Major lineages identified in Blanco et al. (2004) were represented by ITS and LSU sequence data from 18 individuals to identify the phylogenetic position within the genus and assess monophyly, and *Karoowia saxeti* was selected as the outgroup (Blanco et al., 2004a; Crespo et al., 2007). The geographical distribution of a total 414 specimens representing 20 species (focal group) is shown in Figure 1. Collection information for all material used in this study is summarized in Supplementary Data S1, and all new voucher material generated from this study is maintained at the Brigham Young University Herbarium of Nonvascular Cryptogams, Provo, Utah, U.S.A.

**Morphology and chemistry**—We evaluated all taxonomically important characters, with emphasis on the vagrant growth-form, the production of distinct secondary metabolites, and reproductive mode. Secondary metabolite data were generated for all vouchers using thin layer chromatography (TLC). Lichen compounds were extracted in acetone using 0.02 grams of thallus material; the acetone wash was subsequently used for chromatography in solvents C and G following the methods of Orange, James, and White (2001). Taxonomic assignments were based on morphological and chemical data following Hale (1990) and Nash and Elix (2004). However, confusion surrounding the *diagnosability* and significance of most vegetative morphological characters has been documented (Blanco et al., 2004a; Thell, Elix, and Søchting, 2009; Del-Prado et al., 2010; Leavitt, 2010; Hodkinson and Lendemer, in press), and we chose to represent all taxonomic assignments sensu lato. Some of the morphological variation typical of sampled taxa is shown in Figure 2.

*DNA isolation, PCR and sequencing*—Total genomic DNA was extracted using either the DNeasy Plant Mini Kit (Qiagen, Valencia, CA) according to manufacturer's instructions, or the Prepease DNA Isolation Kit (USB, Cleveland, OH), following the plant leaf extraction protocol. Fungal specific primers were used to amplify six fungal nuclear markers, including four nuclear ribosomal loci: the entire internal transcribed spacer (ITS: ITS1, 5.8S, ITS2), a fragment of the intergenic spacer (IGS), a fragment of the large subunit (LSU), and a group I intron located in the small subunit (Gutiérrez et al., 2007); and fragments from two low-copy protein coding loci,  $\beta$ -tubulin and MCM7. The nuRNA gene tandem repeat exists in large copy numbers (100-200 copies) facilitating the amplification of the selected markers from herbarium specimens. Although low levels of intragenomic variation in fungal rDNA repeats suggests convergent evolution in which homogenization effectively maintains highly similar repeat arrays (Ganley and Kobayashi, 2007), previous studies have confirmed the utility of the sampled ribosomal loci for species and population-level studies in lichenized ascomycetes (Thell, 1999; Kroken and Taylor, 2001; Blanco et al., 2004a; Blanco O and et al., 2004; Buschbom and Mueller, 2006; Lindblom and Ekman, 2006; Brunauer et al., 2007; Gutiérrez et al., 2007; Wirtz, Printzen, and Lumbsch, 2008; O'Brien, Miadlikowska, and Lutzoni, 2009; Wedin et al., 2009). Although a duplication of the β-tubulin gene has occurred within Ascomycota, the paralogs are easily distinguishable within the analyzed group and the marker has been successfully employed to investigate  $\alpha$ -level relationships in other lichenized ascoymycetes (Buschborn and Mueller, 2006; O'Brien, Miadlikowska, and Lutzoni, 2009; Wedin et al., 2009).

Standard polymerase chain reactions (PCR) were used to amplify targeted loci. Fungalspecific primers used in PCR amplifications and in the cycle sequencing reactions are shown in <u>Table 1</u>. PCR cycling parameters used for amplifying the ITS, group I intron, LSU, and  $\beta$ tubulin loci followed the methods of Blanco et al (2004); cycling parameters for amplifying the IGS followed the 66-56° touchdown reaction described in Lindblom and Ekman (2006); and PCR cycling parameters for amplifying the MCM7 fragment followed Schmitt et al. (2009b). PCR products were quantified on 1% agrose gel and stained with ethidium bromide. In cases where no PCR product was visualized for the  $\beta$ -tubulin, *MCM7*, and IGS fragments, internally nested PCR reactions were performed using 0.3 ul of the PCR product from the original reaction with recently developed internal primers 'BT-RhizoF' and 'BT-RhizoR' (Leavitt et al., submitted), for the β-tubulin fragment, 'XMCM7f' and 'X MCM7r' (Leavitt, 2010), for the MCM7 fragment, and IGS rDNA: IGS12a-5' (Carbone and Kohn, 1999) and 'XIGSr' (Leavitt, 2010), for the IGS fragment, using the same touchdown PCR cycling parameters described above used to amplify the IGS marker. PCR fragments were cleaned using the PrepEase PCR Purification Kit, following the manufacturer's protocol (USB, Cleveland, OH), and complementary strands were sequenced using the same primers used for amplification. Sequencing reactions were performed using the Big Dye3 Termination Sequencing Kit (Applied Biosystems, Foster City, CA) at 1/8 the standard reaction volume. Products were run on an AB 3730xl automated sequencer at the DNA Sequencing Center at Brigham Young University, Provo, Utah, USA.

*Sequence alignment*—Sequences were assembled and edited using Sequencher version 4.2 (Gene Codes Corporation, Ann Arbor, MI) and Se-Al v2.0a11 (Rambault, 1996), and sequence identity was checked using the 'megablast' search option in GenBank (Wheeler et al., 2006). All sequences were aligned using defaults settings in Muscle version 3.7 because of the improved speed and alignment accuracy compared with currently available programs (Edgar, 2004; Edgar and Botzoglou, 2006), and minor manual adjustments were made to maximize sequence similarity at a single position in the IGS alignment.

*Individual gene tree reconstruction*—Preliminary phylogenetic reconstructions were performed independently for each sampled marker, and individual gene trees from all loci recovered generally weak phylogenetic signal. We preferred to concatenate all markers for phylogenetic reconstructions to improve topology and increase nodal support (Wiens, 1998). Although potential pitfalls of concatenating independent nuclear genes in phylogenetic analyses exist (Degnan and Rosenberg, 2009; Edwards, 2009), coalescent-based methods using multilocus data to simultaneously indentify independently evolving lineages and infer relationships among these are limited (O'Meara, 2010), and coalescent-based phylogenetic methods are still very sensitive to deviations from assumptions, especially post-divergence introgression (Leache, 2009; Liu et al., 2009). Given that the ribosomal genome behaves as a single linked region the four ribosomal markers (ITS, IGS, LSU, and group I intron) were concatenated a priori; but before combining the ribosomal and protein-coding datasets we assessed heterogeneity in the phylogenetic signal between sampled markers (Lutzoni et al., 2004). Maximum likelihood (ML) analyses were performed for the concatenated ribosomal dataset, β-tubulin, and MCM7 markers separately using the program RAxML 7.0.4 (Stamatakis, 2006; Stamatakis, Hoover, and Rougemont, 2008), and robustness of the gene trees were assessed using 1000 "fastbootstrap" replicates to evaluate support for each node as implemented in the CIPRES Web Portal. Although RAxML allows analyses of partitioned data, we chose to treat the entire fragment under a single model of evolution because exploratory analyses did not improve topologies or nodal support under more complex partitions (i.e. codon positions in protein-coding fragments). We implemented the GTRGAMMA model, which includes a parameter ( $\Gamma$ ) for rate heterogeneity among sites, but chose not to include a parameter for estimating the proportion of invariable sites because  $\Gamma$  accounts for this source of rate heterogeneity by using 25 rate

categories (Stamatakis, 2006). Support values for the ribosomal,  $\beta$ -tubulin, and *MCM7* phylogenies were examined for well-supported ( $\geq$ 70%) conflicts between data sets (Lutzoni et al., 2004).

*Tree reconstruction*—Because of the large size of the combined dataset (432 individuals and ~ 3600 bp) we implemented RAxML to analyze the data due to a combination of speed, accuracy, and scalability across numerous processors (Stamatakis, 2006; Stamatakis, Hoover, and Rougemont, 2008; Arnold et al., 2009). We conducted a ML analysis of the combined dataset using locus-specific model partitions (Stamatakis, 2006; Stamatakis, Hoover, and Rougemont, 2008). Each ribosomal marker was treated as a separate partition, and for proteincoding gene fragments we compared two partition strategies. First, we treated the entire marker as a single partition. Second, we used a 3-partition approach using the first, second and third codon positions as separate model partitions for the MCM7 marker, and a 4-partition strategy for the  $\beta$ -tubulin marker using the first, second and third codon positions and an 55 base pair (bp) non-coding intron located within the fragment as separate model partitions, assuming that partitions within genes had the same overall model as the entire gene, as simulations have shown that there may be frequent errors in supporting complex models from a sample of limited characters (Posada and Crandall, 2001). We used the GTRGAMMA model, which includes a parameter ( $\Gamma$ ) for rate heterogeneity among sites. Following the recommendations of Stamatakis (2008) we did not include a parameter for the proportion of invariable sites. A search combining 200 separate ML searches (to find the optimal tree) and 1000 "fastbootstrap" replicates to evaluate support for each node was conducted on the complete dataset. Bootstrap values  $\geq 70$  % were assumed to indicate strong support (Felsenstein, 2004).

We also estimated phylogenetic relationships using mixed-model Bayesian inference (BI) as implemented in Mr.Bayes ver. 3.1.2 (Huelsenbeck and Ronquist, 2001). We used MrModeltest ver. 2.3 (Nylander et al., 2004) to identify the appropriate model of evolution for each marker using the Akaike Information Criterion (AIC) see (Posada and Buckley, 2004). We compared the two partition strategies described for the ML analyses (section 2.3.3). Four independent replicate searches were executed with eight Metropolis-coupled Markov chains (MCMC) for both partition strategies; each run started with randomly generated trees and involved sampling every 1000 generations for 20,000,000 generations. To evaluate stationarity and convergence between runs we evaluated log-likelihood scores and effective sample size statistics (ESS) using TRACER ver. 1.5 (Drummond et al., 2003), and assessed the average standard deviation in split frequencies. Under both partition strategies independent runs failed to converge, and we initiated four additional independent replicate searches, starting each with a randomly selected tree taken from the post-burnin sample of the previous run with the highest mean likelihood score, identical to those described above for both partition strategies. Postburnin trees generated from runs executed from starting topologies from the original analyses were summarized with a 50% majority-rule consensus tree based (Huelsenbeck et al., 2001; Huelsenbeck and Rannala, 2004). Bayesian posterior probabilities (PP) were assessed at all nodes and clades with PP values  $\geq 0.95$  were considered strongly supported (Huelsenbeck and Rannala, 2004).

Topologies from the full dataset were compared to those from a reduced ML analysis consisting of 54 accessions, containing 5-8 divergent representatives for each recovered lineage, to assess the exploration of parameter space. The reduced dataset generally recovered the same lineages, but some relationships were ambiguous or lacked strong nodal support, suggesting the robust taxon sampling is important for resolving relationships (Zwickl and Hillis, 2002), and analyses of the full dataset adequately explores parameter space.

*Clade-specific analyses*—Because of the large size of the complete data set and given the problem with convergence, we chose to assess relationships within monophyletic lineages identified in the ML analyses described in 2.3.3 individually to facilitate computation of parameters during ML and Bayesian analyses and incorporate tree reconstruction under maximum parsimony (MP) criterion. A total of six clades were identified in the ML topology for independent phylogenetic reconstructions (see below), and all individuals assigned membership to each given clade were realigned with a single outgroup taxon, X. mougeotii 907f, in Muscle version 3.7 using the identical parameters described in 2.4.1. Maximum likelihood and BI analyses were conducted for each individually defined clade as described in 2.4.3 under the less complex partitioning strategy. However, independent Bayesian analyses were sampled every 1000 generations for 10,000,000 generations, and independent runs converged from random starting trees. MP heuristic searches were performed in PAUP\* v4.0b10 (Swofford, 2002) with tree bisection-reconnection (TBR) branch swapping and 1000 random-addition sequence replicates. All characters were equally weighted, and gaps were treated as missing data. Branch support was evaluated via fast bootstrapping with 10,000 replicates.

Ancestral character state reconstruction—The program Mesquite version 2.72 (Maddison and Maddison, 2007) was implement to reconstruct ancestral character states. Both ML and MP character states reconstruction methods were used with the complete ML phylogeny. Maximum likelihood optimization used the Markov k-state one-parameter model (Lewis, 2001). In parsimony calculations, character states were treated as unordered. Characters considered were growth-form (coded as 0 = saxicolous attached and 1 = vagrant), expressed major secondary metabolites (coded as 0 = salazinic acid complex, 1 = stictic acid, 2 = norstictic acid, and 3 = psoromic acid), and production of vegetative reproductive structures (isidia) (coded as 0 = not observed and 1 = present).

#### Results

*Sequence statistics*—The resulting molecular dataset representing 432 operational taxonomic units (OTU) was comprised of 2,262 new sequences from a total of six loci consisting of 3583 aligned nucleotide positions. <u>Table 2</u> summarizes patterns of variation in sampled loci and the resulting best-fit model of evolution selected using the AIC. All ribosomal markers showed length heterogeneity (IGS, 372-381 bp; ITS, 352-541; LSU, 781-842; and group I intron, 293-383), although in some cases trimmed ambiguous nucleotide positions at the 5' or 3' end of ribosomal markers exaggerated length heterogeneity. All representative haplotypes from the six gene fragments were submitted to GenBank under accession numbers HM577516-HM579777 (<u>Supplementary data S2</u>).

*Phylogenetic analyses*—Individual gene trees generally showed weak genetic structure (Supplementary data S3), and phylogenetic reconstructions of single genes were insufficient to resolve topological relationships with strong support. No incongruence was identified between datasets using method identifying conflict with  $\geq$  70 ML boostrap values (section 2.4.2), and all loci were combined for subsequent phylogenetic analyses. A comparison of partitioning strategies for the combined dataset indicated that the more complex strategy of the protein-coding fragments generally did not improve nodal support across the topology. Therefore, we opted to present results from the less complex partitioning strategy in order to minimize potential effects of over-parameterization on topological reconstruction and nodal support values (Sullivan

and Joyce, 2005). Partitioned ML analysis of the combined ribosomal and protein-coding genes yielded a single best-score tree ( $-\ln = 24,596.17$ ) presented in a simplified form shown in Figure 3. An expanded version of the same tree is presented in Supplementary data 4. The Bayesian analysis executed from starting topologies yielded a consensus tree with a negative harmonic mean likelihood = 26,024.594, which was summed from four convergent runs. Likelihood scores, ESS statistics, and standard deviation of split frequencies showed independent runs converged within the first 50% of sampled generations, leaving a posterior distribution estimated from 10,000 trees per run (40,000 total post-burn-in sampled trees). Both analyses produced essentially the same topology and no conflict between well-supported clades was identified. Nodal support values for major clades are presented in Figure 3 (support values at all nodes are presented in the expanded tree presented in Supplementary data 4). Focal group taxa from western North America formed a well-supported monophyletic lineage, with high ML bootstrap (BS) and Bayesian posterior probabilities (PP) (BS = 94 and PP = 1.00). The focal group's relationship to major Xanthoparmelia lineages is presented in Figure 4. X. brachinaensis was recovered with high support (BS = 84; PP = 0.96) as sister to all focal group samples.

Our results do not support the monophyly of sampled vagrant and saxicolous attached species as defined by traditional taxonomic characters. Six major clades were identified within the focal group: X-I, X-II, X-III, X-IV, X-V, and X-VI (Fig. 3), although relationships between some strongly supported clades lack support. Table 3 summarizes patterns of variation in the concatenated dataset (IGS, ITS, LSU, group I intron,  $\beta$ -tubulin, and *MCM7*) across the six recovered major clades. All individuals assigned to clade X-VI were identified in previous work and are treated comprehensively in Leavitt, Johnson, and St. Clair (submitted). Two minor well-supported groups were recovered as sister to clades X-III, X-IV, X-V, and X-VI (BS  $\leq$  50; PP =

0.63), and were not included in the reduced clade-specific analyses. One minor clade (clade A, Fig. 3) represents *X. idahoensis* s. l. (318f and 319f) collected from the type locality in Lemhi County, Idaho, U.S.A., and the other clade (clade B, Fig. 3) contains two vagrant individuals representing *X. camtschadalis* s. l. (205f and 206f) collected from a single location in Saskatchewan, Canada.

Clade X-I was recovered as a monophyletic clade with strong nodal support (BS = 75 and PP = 0.98) in both ML and BI analyses estimated from the complete dataset. Partitioned ML analysis of the combined clade X-1 dataset yielded a single best-scoring tree ( $-\ln = 5,430.461$ ) shown in Figure 5A. The Bayesian analyses yielded a consensus tree with a negative harmonic mean of likelihood = 5,520.389, summed from four convergent runs, and simultaneous runs were met with an average standard deviation of split frequencies of 0.006678. All parameters converged within the first 25% of sampled generations, leaving a posterior distribution estimated from 7,500 trees per run (30,000 total post-burn-in sampled trees). The combined MP analysis resulted in the 30 most parsimonious trees (L = 201) with a consistency index (CI) of 0.90 and a retention index (RI) of 0.95. The overall topologies recovered from ML, BI, and MP analyses were identical at all well-supported nodes and generally similar across the topology. OTUs representing vagrant X. camtschadalis s. l. and X. idahoensis s. l., and attached saxicolous X. stenophylla s. l. were recovered within clade X-I. Morphologically, all vagrant individuals (X. camtschadalsis s. l.) with membership in this clade were characterized by a strongly white maculate upper cortex, light-colored spots on the upper surface caused by differences in thickness of the cortex or clumping of algae beneath the cortex; while the upper cortex of the saxicolous attached samples (X. stenophylla s. l.) were emaculate to weakly maculate. All individuals recovered in this lineage expressed the salazinic acid complex. Multiple wellsupported lineages representing *X. camtschadalis* s. l. and two well-supported lineages representing *X. stenophylla s. l.* were recovered. Although saxicolous *X. stenophylla* s. l. were recovered as monophyletic in the ML analysis (BS  $\leq$  50), both Bayesian and MP analyses recovered a well-supported clade (ML BS = 100; PP = 1.0; and MP BS = 99) containing *X. stenophylla* 934f, 940f, and 957f as sister to all *X. camtschadalis* s. l. specimens (excluding 334f and 335f) with weak nodal support (PP  $\leq$  0.50 and MP BS  $\leq$  50). *X. camtschadalis* s. l. was not recovered as monophyletic.

Clade X-II was recovered as a monophyletic lineage with strong nodal support in both ML and BI analyses estimated from the complete dataset (ML BS = 87 and PP = 1.00). Partitioned ML analysis of the clade X-II dataset yielded a single best-scoring tree (-ln =6,717.653) presented in Figure 5B. The Bayesian analyses yielded a consensus tree with a negative harmonic mean of likelihood = 6,801.186, which was summed from four convergent runs. All parameters converged within the first 25% of sampled generations, leaving a posterior distribution estimated from 7,500 trees per run (30,000 total post-burn-in sampled trees), and simultaneous runs were met with an average standard deviation of split frequencies of 0.004095. The combined MP analysis resulted in 2 most parsimonious trees (L = 319) with CI = 0.87 and RI = 0.87. The overall topologies recovered from ML, BI, and MP analyses were identical at all well-supported nodes and nearly identical across the topology. OTUs representing X. camtschadalis s. l., X. dierythra s. l., X. idahoensis s. l., X. mexicana s. l., and X. plittii s. l. were recovered within clade X-II. Generally, individuals assigned membership in clade X-II were morphologically characterized by weakly to strongly maculate upper surfaces; both vagrant and saxicolous attached taxa; norstic, salazinic, and stictic acid complexes; and two distinct reproductive modes (unspecialized vegetative fragments or production of isidia) were recovered

within this clade. The vagrant taxa (*X. camtschadalis* s. l. and *X. idahoensis* s. l.) were all characterized by a strongly maculate upper cortex, while the isidiate saxicolous taxa (*X. dierythra* s. l., *X. mexicana* s. l., and *X. plittii* s. l.) were characterized by an emaculate to weakly maculate upper cortex. Although some topological relationships were recovered with strong nodal support, relationships between most well-supported lineages generally lacked support.

Clade X-III was also recovered as a monophyletic lineage with strong nodal support in both ML and BI analyses estimated from the complete dataset (BS = 99 and PP = 1.00). Partitioned ML analysis of the combined clade X-III dataset yielded a single best-scoring tree (- $\ln = 7,371.576$ ) presented in Figure 5C. The Bayesian analyses yielded a consensus tree with a negative harmonic mean of likelihood = 7,444.990, which was summed from four convergent runs. Likelihood scores, ESS statistics, and standard deviations of split frequencies indicated that independent runs converged within the first 25% of sampled generations, leaving a posterior distribution estimated from 7,500 trees per run (30,000 total post-burn-in sampled trees). The combined MP analysis resulted in the 52 most parsimonious trees (L = 410) with CI = 0.72 and RI = 0.68. The overall topologies recovered from ML, BI, and MP analyses provided a generally unresolved view of relationships within this clade, although relationships for all well-supported nodes were identical across all methods. Both salazinic and stictic acid complexes were recovered within this group as polyphyletic. OTUs representing X. chlorochroa s. l., X. dierythra s. 1., X. lineola s. 1., X. mexicana s. 1., X. plittii s. 1., and X. subplittii s. 1. were recovered within clade X-III. Saxicolous attached specimens with an emaculate to weakly maculate upper surface and the production of isidia generally characterized individuals assigned membership in clade X-III. However, four individuals (070f, 170f, 285f, and 509f) lacked isidia and produced sexual reproductive structures (apothecia); reproductive structures (apothecia or isidia) were not

observed in three individuals (442f, 580f, and 786f); and a single vagrant individual (*X. chlorochroa* s. l., 157f) was also assigned membership in this clade.

Clade X-IV was recovered as a monophyletic lineage with strong nodal support in both ML and BI analyses estimated from the complete dataset (BS = 88 and Pp = 1.00). Partitioned ML analysis of the clade X-IV dataset yielded a single best-scoring tree ( $-\ln = 10.950.703$ ) shown in Figure 6. The Bayesian analyses yielded a consensus tree with a negative harmonic mean of likelihood = 11,255.0624, which was summed from three convergent runs. A single run failed to converge and was not included. Likelihood scores, ESS statistics, and standard deviation of split frequencies indicated that independent runs converged within the first 25% of sampled generations, leaving a posterior distribution estimated from 7,500 trees per run (22,500 total post-burn-in sampled trees). The combined MP analysis resulted in 53,918 most parsimonious trees (L = 929) with CI = 0.52 and RI = 0.82. The overall topologies recovered from ML, BI, and MP analyses were identical at all well-supported nodes and generally similar across the topology. Clade X-IV is a large and diverse group represented by X. angustiphylla s. 1., X. chlorochroa s. l., X. dierythra s. l., X. lineola s. l., X. mexicana s. l., X. neochlorochroa s. l., X. norchlorochroa s. l., X. plittii s. l., X. psoromifera s. l., X. subplittii s. l., and X. wyomingica s.l. Individuals assigned membership in clade X-IV were morphologically and chemically diverse, but characterized by specimens with an emaculate to weakly maculate upper surface.

Clade X-V was recovered as a monophyletic lineage with moderate nodal support in both ML and BI analyses estimated from the combined ribosomal and protein-coding loci dataset (BS = 57 and Pp = 1.0). Partitioned ML analysis of the combined dataset yielded a single best-scoring tree (-ln=7,512.385) presented in Figure 5D. The Bayesian analyses yielded a consensus tree with a negative harmonic mean of likelihood = 7,627.553, which was summed from four

convergent runs. All parameters converged within the first 25% of sampled generations, leaving a posterior distribution estimated from 7,500 trees per run (30,000 total post-burn-in sampled trees). Simultaneous runs were met with an average standard deviation of split frequencies of 0.005652. The combined MP analysis resulted in 5,062 most parsimonious trees (L = 350) with CI = 0.79 and RI = 0.84. The overall topologies recovered from ML, BI, and MP analyses were identical at all well-supported nodes and nearly identical across the topology. Clade *X*-Va was recovered without support as a monophyletic lineage and with morphologically and chemically similar specimens representing *X. coloradoënsis* s. 1. and *X. lineola* s. 1. However, clade *X*-Vb was recovered with strong nodal support in both ML and BI analyses. Two specimens representing *X. coloradoënsis* were recovered with high support (ML BS = 74; PP = 0.99; and MP BS  $\leq$  50) as sister to a well-supported (ML BS = 97; PP = 1.0; Mp BS = 85) monophyletic lineage represented exclusively by *X. chlorochroa* s. 1.

*Ancestral state reconstruction*—Parsimony-based ancestral state reconstruction results for major chemotypes are shown in <u>Figure 7</u>. Both parsimony and maximum likelihood ancestral character state reconstructions are similar and suggest multiple independent origins of vagrancy, major secondary metabolite complexes, and reproductive patterns.

## Discussion

Species delimitations in the morphologically, bio-chemically, and reproductively diverse lichen genus *Xanthoparmelia* in western North America are notoriously challenging. Molecular data from the present study strongly suggest that the current classification system does not reflect natural lineages. Phylogenetic relationships estimated from the analysis of four nuclear ribosomal markers and two low-copy protein-coding fragments reveal a generally well-supported
hypothesis of relationships between *Xanthoparmelia* lineages in western North America (Fig. 3). However, relationships inferred from individual gene topologies generally lacked support or remained unresolved. The lack of a clear phylogenetic signal in individual datasets suggests a recent divergence of sampled lineages (incomplete lineage sorting) or historic or rare ongoing gene flow. Only with concatenation of six loci were we able to provide a robust hypothesis of relationships within the focal group. Repeated evolution of similar morphological and chemical traits and modes of reproduction in *Xanthoparmelia* inhabiting similar environments provides evidence of adaptation, suggesting that environmentally induced selection pressures may generate parallel patterns of diversification within the genus (Endler, 1986; Schluter, 2000). The results presented here, within a molecular phylogenetic framework, provide the most detailed evaluation to date of character evolution and  $\alpha$ -level relationships in one of the largest genera of lichenized fungi.

*Evolution of the vagrant form*—Evolutionary relationships between saxicolous attached and vagrant growth-forms in lichenized ascomycetes have long been disputed. It has been proposed that vagrant forms represent self-perpetuating populations, genetically distinct from those growing on rocks (Mereschkowsky, 1918). Later thinking suggested that vagrant taxa were originally derived from attached forms but have since achieved some level of genetic divergence through reproductive isolation and now represent distinct species (Klement, 1950). However, some vagrant lichen species appear to represent ecomorphs with the same genetic composition as species generally attached to rock substrates (Weber, 1967, 1977; Rosentreter and McCune, 1992). The co-occurrence of vagrant and erratic taxa within higher level taxonomic groups (i.e. genera) provides some evidence for a mechanism which ultimately yields vagrant taxa; a pattern where erratic individuals may reproduce through fragmentation, subsequently achieving some level of genetic isolation (Rosentreter and McCune, 1992).

Our results provide strong evidence for multiple independent origins of vagrancy in the *Xanthoparmelia* of western North America. Vagrant forms were identified in multiple wellsupported monophyletic lineages, most with relatively broad geographic distributions. Specific morphological adaptations to ecological conditions common in habitats supporting vagrant *Xanthoparmelia* (Modenesi et al., 2000; Clark et al., 2001), suggest a similar genetic architecture exhibited within widespread *Xanthoparmelia* populations that could give rise to similar patterns of phenotypic evolution among local populations, thus resulting in parallel morphological evolution under common selective pressures.

Analytical expectations indicate that a substantial amount of time is required after the initial divergence of species before there will be a high probability of observing reciprocal monophyly at a sample of multiple loci (Hudson and Coyne, 2002; Hudson and Turelli, 2003). A direct consequence of clonal reproduction is that each new individual is essentially identical to its parent, and current theory suggests that exclusive asexuality is not viable in the long term. High haplotype diversity (relative to expected haplotype diversity in strictly clonal organisms) and well-supported monophyletic vagrant clades suggest that vagrant lineages in *Xanthoparmelia* may be relatively long lived. The occasional occurrence of sexual reproductive structures (apothecia) in some vagrant *Xanthoparmelia* species, generally characterized by unspecialized vegetative reproduction, suggests that cyclical parthenogenesis, the alternation between sexual and asexual reproduction, may provide an important mechanism for generating genotypic diversity essential for long-term viability. However, additional investigations are required to

explicitly assess the evolutionary significance of gene flow in typically clonal vagrant *Xanthoparmelia* species.

In spite of the wide distribution of most identified vagrant *Xanthoparmelia* lineages, others appear to be threatened with extinction (Rosentreter, 1993). Habitat fragmentation poses a significant threat to vagrant species adapted to relatively continuous open spaces. Agriculture, livestock overgrazing, altered fire frequencies, and invasive plant species have already reduced or extirpated many significant vagrant lichen populations in both North American and the Russian steppe (Rosentreter, 1993), including the type localities of *X. chlorochroa*, *X. neochlorochroa*, and *X. wyomingica* (personal observation).

## Extensive homoplasy in morphological, chemical, and reproductive modes—

Traditionally, species descriptions in *Xanthoparmelia* have relied heavily on chemical characters due to confusion surrounding the consistent *diagnosability* and significance of most morphological characters. These results indicate that extensive homoplasy in most characters traditionally used to delimit *Xanthoparmelia* species obscures recognition of natural lineages. Our data indicate that there is not a simple dichotomy between expressed biochemical complexes or reproductive modes in *Xanthoparmelia*. Our data suggest repeated evolution of both the stictic acid and the norstictic acid only (or loss of salazinic and stictic acids) complexes in *Xanthoparmelia*. Nearly all sampled individuals expressed norsticic acid regardless of other expressed major compounds (stictic or salazinic acid), but the expression of both salazinic and stictic acid chemotypes in a single individual was never identified. Our limited sampling of the psoromic acid complex is inadequate to assess the evolution of this compound within *Xanthoparmelia*. However, all diagnostic major secondary metabolites identified in this study are closely related  $\beta$ -orcinal depsidones, and genetic and biological mechanisms influencing the expression of distinct compounds are uncertain (Asplund and Gauslaa, 2007; Asplund, Solhaug, and Gauslaa, 2009).

Although phylogenetic analyses recovered some well-supported monophyletic lineages exclusively containing individuals expressing the stictic acid complex, other individuals with identical chemotypes were recovered in well-supported lineages intermixed with individuals expressing the salazinic acid complex. Leavitt, Johnson, and St. Clair (submitted) found that although the stictic acid complex was not recovered as monophyletic, population-level analyses recovered most individuals containing stictic acid in a single inferred population cluster. These data suggest that incomplete lineage sorting or rare or historic recombination may obscure phylogenetic signal. Coupled with independent changes of chemical character states, the role of medullary chemistry in identifying natural groups within *Xanthoparmelia* is particularly challenging. Furthermore, the relationship of unsampled major secondary metabolites, including: atranorin, barbatic, dehydroconstipatic, diffractaic, fumaroprotocetraric, hypoprotocetraric, lecanoric, lichesteric, subdecipienic, succinprotocetraric,  $3-\alpha$ -hydroxybarbatic, 4-O-demethylnotatic and the evolution of minor and trace compounds also remains unclear (Nash III and Elix, 2004).

Morphological and chemical characters generally employed to infer taxonomic boundaries between vagrant forms appear to have been overemphasized, as multiple independent changes of most diagnostic characters are revealed across the topology. Vagrant samples expressing the salazinic acid complex with an emaculate to weakly maculate upper cortex, treated here as *X. chlorochroa* s. l., were recovered in four major clades identified in this study (*X*-III, *X* -IV, *X* -V, and *X* -VI); furthermore, evidence of multiple independent origins of vagrancy within some major clades was also identified. The discovery that *X. chlorochroa*  comprises multiple independent lineages in western North America suggests that the true number of vagrant species may be seriously underestimated. However, we were unable to identify fixed morphological or chemical characters corroborating independent X. chlorochroa s. l. lineages. In contrast, both the absence of rhizines (X. norchlorochroa) and the expression of norstictic acid only (X. neochlorochroa) in vagrant growth forms were found to be homoplasious, suggesting that the more conspicuous chemical and morphological characters currently used to differentiate vagrant species do not reflect natural groupings. Adding to the challenge of understanding the role of morphology in defining taxonomic boundaries, vagrant specimens with a strongly maculate upper cortex (X. camtschadalis s. l. and X. idahoensis s. l.) were restricted to the more basal clades X - I and X – II and the two minor clades A and B in our analyses, although the phylogenetic position of the two minor clades remains obscure. The absence of vagrant individuals with a maculate upper cortex in other lineages suggests that upper cortical features may provide limited taxonomic utility. The lack of congruence between molecular data and the current classification of vagrant Xanthoparemlia species suggest the need for significant taxonomic revision.

Although our sampling strategy emphasized vagrant growth forms, this study provides some insight into the evolution of reproductive patterns in saxicolous *Xanthoparmelia*. The reproductive pattern in nearly two thirds (129) of all sampled attached saxicolous individuals was not observed (sexual or asexual). Isidiate forms were represented by 46 OTUs overall, and the expression of sexual structures (apothecia) was observed in only 40 of the sampled accessions, including four vagrant specimens.

Our results suggest that transitions between reproductive modes within sampled *Xanthoparmelia* occurred several times independently of each other. Taylor et al. (1993)

reported that multigene systems underlie sexual and asexual reproduction in nonlichenized ascomycetes, and our data suggest that reproductive systems in lichenized ascomycetes may also be determined by similar complex genetic systems. The occurrence of perennial structures of multiple reproductive strategies were occasionally found on a single thallus (apothecia/isidia and apothecia/unspecialized fragmentation) and indicate, that at least in some cases, the underlying genetic structure controlling the expression of reproductive modes is maintained across reproductively diverse groups. Other recent molecular studies also suggest that complex evolutionary patterns in reproductive modes exist across many lichenized ascomycete groups (Lohtander et al., 1998; Myllys et al., 1999; Kroken and Taylor, 2001; Myllys, Lohtander, and Tehler, 2001; Printzen and Ekman, 2003). It has been proposed that the sexual reproductive mode can be considered the baseline reproductive mode found in all species (Buschbom and Barker, 2006) but predominantly vegetative taxa appear to maintain the capacity to periodically reproduce sexually which may accommodate long-term viability. Isidia occur in nearly a third of Xanthoparmelia species (Hale, 1990), with significant variation in isidial structure (Kurokawa and Filson, 1975; Elix, 1981). Generally, isidiate specimens included in the present study had morphologically similar subglobose to cylindrical and irregularly branched isidia, although variation in isidial structure was only superficially evaluated in this study. A more detailed investigation of the evolutionary relationships and genetic structure controlling the expression of distinct reproductive modes in lichenized ascomycetes is clearly needed to better understand the underlying mechanisms controlling reproduction.

## Conclusions

These results highlight some of the challenges with species delimitation in this notoriously difficult and variable group of lichens. The traditional use of morphological and chemical characters in *Xanthoparmelia*, in particular vagrancy, biochemical variation, and reproductive mode, are obscured by extensive homoplasy, rendering them of limited suitability for species delimitation, and clearly indicate that the interpretation of morphological and chemical diversity found within one of the most speciose genera of lichenized fungi has been too superficial. More detailed investigations of potential mechanisms driving the evolution of morphological, chemical, and reproductive patterns in *Xanthoparmelia* are needed to better understand the biological mechanisms influencing these characters.

## Acknowledgements

We are indebted to various colleagues for providing valuable material and field assistance, notably J. Belnap, C. Björk, S. Crawford, A. DeBolt, M. DeVito, R. Egan, T. Esslinger, M. Felix, R. Fuller, T. Goward, T, Hardle, S. Hardle, B. Hardle, J. Hertz, J. Hollinger, Howell family, K. Knight, G. Lind, Leavitt family, J. Marsh, J. Muscha, B. McCune, M. Robinson, R. Rosentreter, G. Shrestha, T. Wheeler. We wished to thank B. Adams, D. Leavitt, R. Rosentreter, and J. Sites for conceptual help and valuable comments on early versions of the manuscript, and L. Leavitt, P. Ririe, G. Shrestha for help in the lab and preparing figures. This project was supported in part by grants from the California Lichen Society, The Ruth L. Glacy Foundation, and the Brigham Young University Office of Research and Creative Activities. The funding sources had no involvement in study design, collection or analysis of data, writing the report, or in the decision to submit the paper for publication.

## **Literature Cited**

- AHTI, T., and D. L. HAWKSWORTH. 2005. *Xanthoparmelia stenophylla*, the correct name for *X. somloënsis*, one of the most widespread usnic acid containing species of the genus. *The Lichenologist* 37: 363-366.
- ARGÜELLO, A., R. DEL PRADO, P. CUBAS, and A. CRESPO. 2007. Parmelina quercina (Parmeliaceae, Lecanorales) includes four phylogenetically supported morphospecies. Biological Journal of the Linnean Society 91: 455-467.
- ARNOLD, A. E., J. MIADLIKOWSKA, K. L. HIGGINS, S. D. SARVATE, P. GUGGER, A. WAY, V. HOFSTETTER, et al. 2009. A Phylogenetic Estimation of Trophic Transition Networks for Ascomycetous Fungi: Are Lichens Cradles of Symbiotrophic Fungal Diversification? Systematic Biology 58: 283-297.
- ARUP, U., and M. GRUBE. 2000. Is *Rhizoplaca* (Lecanorales, lichenized Ascomycota) a monophyletic genus? *Canadian Journal of Botany* 78: 318-327.
- ARUP, U., S. EKMAN, M. GRUBE, J. E. MATTSSON, and M. WEDIN. 2007. The sister group relation of Parmeliaceae (Lecanorales, Ascomycota). *Mycologia* 99: 42-49.
- ASPLUND, J., and Y. GAUSLAA. 2007. Content of secondary compounds depends on thallus size in the foliose lichen *Lobaria pulmonaria*. *The Lichenologist* 39: 273-278.
- ASPLUND, J., K. A. SOLHAUG, and Y. GAUSLAA. 2009. Fungal depsidones an inducible or constitutive defence against herbivores in the lichen *Lobaria pulmonaria? Basic and Applied Ecology* 10: 273-278.
- BAILEY, R. H. 1976. Ecological aspects of dispersal and establishment in lichens. *In* D. H. Brown, D. L. Hawksworth, AND R. H. Bailey [eds.], Lichenology: Progress and Problems, 215-247. Academic Press, New York, New York, USA.
- BLANCO, O., A. CRESPO, R. H. REE, and H. T. LUMBSCH. 2006. Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. *Molecular Phylogenetics and Evolution* 39: 52-69.
- BLANCO, O., A. CRESPO, J. A. ELIX, D. L. HAWKSWORTH, and H. T. LUMBSCH. 2004a. A Molecular Phylogeny and a New Classification of Parmelioid Lichens Containing *Xanthoparmelia*-Type Lichenan (Ascomycota: Lecanorales). *Taxon* 53: 959-975.
- BLANCO, O., A. CRESPO, P. K. DIVAKAR, T. L. ESSLINGER, D. L. HAWKSWORTH, and H. THORSTEN LUMBSCH. 2004b. *Melanelixia* and *Melanohalea*, two new genera segregated from *Melanelia* (Parmeliaceae) based on molecular and morphological data. *Mycological Research* 108: 873-884.

- BRUNAUER, G., A. HAGER, M. GRUBE, R. TÜRK, and E. STOCKER-WÖRGÖTTER. 2007. Alterations in secondary metabolism of aposymbiotically grown mycobionts of *Xanthoria elegans* and cultured resynthesis stages. *Plant Physiology and Biochemistry* 45: 146-151.
- BUSCHBOM, J., and G. M. MUELLER. 2006. Testing "Species Pair" Hypotheses: Evolutionary Processes in the Lichen-Forming Species Complex *Porpidia flavocoerulescens* and *Porpidia melinodes*. *Molecular Biology and Evolution* 23: 574-586.
- BUSCHBOM, J., and D. BARKER. 2006. Evolutionary History of Vegetative Reproduction in *Porpidia* s.l. (Lichen-Forming Ascomycota). *Systematic Biology* 55: 471-484.
- CARBONE, I., and L. M. KOHN. 1999. A Method for Designing Primer Sets for Speciation Studies in Filamentous Ascomycetes. *Mycologia* 91: 553-556.
- CARDINALE, M., A. M. PUGLIA, and M. GRUBE. 2006. Molecular analysis of lichen-associated bacterial communities. *FEMS Microbiology Ecology* 57: 484-495.
- CARDINALE, M., J. V. D. C. JR, H. MÜLLER, G. BERG, and M. GRUBE. 2008. *In situ* analysis of the bacterial community associated with the reindeer lichen *Cladonia arbuscula* reveals predominance of *Alphaproteobacteria*. *FEMS Microbiology Ecology* 66: 63-71.
- CLARK, B. M., L. L. ST. CLAIR, N. F. MANGELSON, L. B. REES, P. G. GRANT, and G. S. BENCH. 2001. Characterization of mycobiont adaptations in the foliose lichen *Xanthoparmelia chlorochroa* (Parmeliaceae). *American Journal of Botany* 88: 1742-1749.
- CRESPO, A., O. BLANCO, and D. L. HAWKSWORTH. 2001. The Potential of Mitochondrial DNA for Establishing Phylogeny and Stabilising Generic Concepts in the Parmelioid Lichens. *Taxon* 50: 807-819.
- CRESPO, A., M. C. MOLINA, O. BLANCO, B. SCHROETER, L. G. SANCHO, and D. L. HAWKSWORTH. 2002. rDNA ITS and β-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen *Parmelia saxatilis*. *Mycological Research* 106: 788-795.
- CRESPO, A., H. T. LUMBSCH, J.-E. MATTSSON, O. BLANCO, P. K. DIVAKAR, K. ARTICUS, E. WIKLUND, et al. 2007. Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. *Molecular Phylogenetics and Evolution* 44: 812-824.
- DEGNAN, J. H., and N. A. ROSENBERG. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. *Trends in Ecology & Evolution* 24: 332-340.
- DEL-PRADO, R., P. CUBAS, H. T. LUMBSCH, P. K. DIVAKAR, O. BLANCO, G. A. DE PAZ, M. C. MOLINA, et al. Genetic distances within and among species in monophyletic lineages of

Parmeliaceae (Ascomycota) as a tool for taxon delimitation. *Molecular Phylogenetics and Evolution* 56: 125-133.

- DEL PRADO, R., Z. FERENCOVÁ, V. ARMAS-CRESPO, G. AMO DE PAZ, P. CUBAS, and A. CRESPO. 2007. The arachiform vacuolar body: an overlooked shared character in the ascospores of a large monophyletic group within Parmeliaceae (*Xanthoparmelia* clade, Lecanorales). *Mycological Research* 111: 685-692.
- DRUMMOND, A., O. PYBUS, A. RAMBAUT, R. FORSBERG, and A. RODRIGO. 2003. Measurably evolving populations. *Trends in Ecology & Evolution* 18: 481 488.
- EDGAR, R. C. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics* 5: 1-19.
- EDGAR, R. C., and S. BOTZOGLOU. 2006. Multiple sequence alignment. *Current Opinion in Structural Biology* 16: 1-6.
- EDWARDS, S. V. 2009. Is a new and general theory of molecular systematics emerging? *Evolution* 63: 1-19.
- ELIX, J. A. 1981. New species of Parmelia Subgen. *Xanthoparmelia* (Lichens) from Australia and New Zealand. *Australian Journal of Botany* 29: 349-376.
   \_\_\_\_\_. 1986. *Canoparmelia, Paraparmelia* and *Relicinopsis*, three new genera in the Parmeliaceae (lichenized Ascomycotina) *Mycotaxon* 27: 271-282.
- \_\_\_\_\_. 1993. Progress in the Generic Delimitation of *Parmelia* Sensu Lato Lichens (Ascomycotina: Parmeliaceae) and a Synoptic Key to the Parmeliaceae. *The Bryologist* 96: 359-383.

ENDLER, J. A. 1986. Natural selection in the wild. Princeton University Press, Princeton.

ESSLINGER, T. L. 1977. A chemosytematic revision of the brown Parmeliae. *Journal of Hattori Botanical Laboratory* 42: 1-211.

- FELSENSTEIN, J. 2004. Inferring phylogenies. Sunderland, Mass. : Sinauer Associates, Sunderland, Massachusetts, USA..
- GANLEY, A. R. D., and T. KOBAYASHI. 2007. Highly efficient concerted evolution in the ribosomal DNA repeats: Total rDNA repeat variation revealed by whole-genome shotgun sequence data. *Genome Research* 17: 184-191.

\_\_\_\_\_. 1978. A new status for brown Parmeliae. *Mycotaxon* 7: 45-54.

- GARDES, M., and T. D. BRUNS. 1993. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. *Molecular Ecology Notes* 2: 113-118.
- GUTIÉRREZ, G., O. BLANCO, P. DIVAKAR, H. LUMBSCH, and A. CRESPO. 2007. Patterns of Group I Intron Presence in Nuclear SSU rDNA of the Lichen Family Parmeliaceae. *Journal of Molecular Evolution* 64: 181-195.
- HALE, M. E. 1990. A synopsis of the lichen genus *Xanthoparmelia* (Vainio) Hale (Ascomycotina, Parmeliaceae), vol. Book, Whole. Smithsonian Institution Press, Washington D.C., USA.
- HAWKSWORTH, D. L., and A. CRESPO. 2002. Proposal to conserve the name *Xanthoparmelia* against *Chondropsis* nom. cons, (Parmeliaceae). *Taxon* 51: 437-466.
- HODKINSON, B., and F. LUTZONI. 2009. A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhizobiales. *Symbiosis* 49: 163-180.
- HODKINSON, B. P., and J. C. LENDEMER. in press. Molecular analyses reveal semi-cryptic species in *Xanthoparmelia tasmanica*. *Bibliotheca Lichenologica*.
- HONEGGER, R. 2001. The symbiotic phenotype of lichen-forming ascomyces. *In* B. Hock [ed.], The Mycota; IX Fungal Associations, 165-188. Springer Verlag, Berlin, Germany.
- HUDSON, R. R., and J. A. COYNE. 2002. Mathematical Consequences of the Genealogical Species Concept. *Evolution* 56: 1557-1565.
- HUDSON, R. R., and M. TURELLI. 2003. Stochasticity Overrules the "Three-Times Rule": Genetic Drift, Genetic Draft, and Coalescence Times for Nuclear Loci versus Mitochondrial DNA. *Evolution* 57: 182-190.
- HUELSENBECK, J. P., and F. RONQUIST. 2001. MrBayes: Bayesian inference of phylogenetic trees. *Bioinformatics* 17: 754 755.
- HUELSENBECK, J. P., and B. RANNALA. 2004. Frequentist Properties of Bayesian Posterior Probabilities of Phylogenetic Trees Under Simple and Complex Substitution Models. *Systematic Biology* 53: 904 - 913.
- HUELSENBECK, J. P., F. RONQUIST, R. NIELSEN, and J. P. BOLLBACK. 2001. Bayesian Inference of Phylogeny and Its Impact on Evolutionary Biology. *Science* 294: 2310-2314.
- KLEMENT, O. 1950. Über die Artberechtigung einiger Parmelien. Berichten der Deutschen Botanischen Gesellschaft, Jahrgang 63: 47-52.

- KROKEN, S., and J. W. TAYLOR. 2001. A Gene Genealogical Approach to Recognize Phylogenetic Species Boundaries in the Lichenized Fungus Letharia. *Mycologia* 93: 38-53.
- KUROKAWA, S., and R. B. FILSON. 1975. New species of *Parmelia* from South Australia. *Bulletin* of the National Science Museum (Tokyon) series B: 35-48.
- LEACHE, A. D. 2009. Species Tree Discordance Traces to Phylogeographic Clade Boundaries in North American Fence Lizards (*Sceloporus*). *Systematic Biology* 58: 547-559.
- LEAVITT, S. D. 2010. Assessing traditional morphology- and chemistry-based species circumspections in lichenized ascomycetes: character evolution and species delimitation in common western North American lichens. PhD, Brigham Young University, Provo, Utah, USA.
- LEAVITT, S. D., L. A. JOHNSON, and L. L. ST. CLAIR. submitted. Assessing species diversity and evolution in morphologically and chemically diverse communities of the lichen-forming genus *Xanthoparmelia* (Parmeliaceae, Ascomycota) in western North America.
- LEAVITT, S. D., J. D. FANKHAUSER, D. H. LEAVITT, and L. D. PORTER. submitted. Complex patterns of speciation in cosmopolitan "rock posy" lichens an integrative approach to discovering and delimiting fungal species in the lichen-forming *Rhizoplaca melanophthalma* species complex (Lecanoraceae, Lecanorales).
- LEWIS, P. O. 2001. A Likelihood Approach to Estimating Phylogeny from Discrete Morphological Character Data. *Systematic Biology* 50: 913-925.
- LINDBLOM, L., and S. EKMAN. 2006. Genetic variation and population differentiation in the lichen-forming ascomycete *Xanthoria parietina* on the island Storfosna, central Norway. *Molecular Ecology* 15: 1545-1559.
- LIU, L., L. YU, L. KUBATKO, D. K. PEARL, and S. V. EDWARDS. 2009. Coalescent methods for estimating phylogenetic trees. *Molecular Phylogenetics and Evolution* 53: 320-328.
- LOHTANDER, K., L. MYLLYS, R. SUNDIN, M. KÄLLERSJÖ, and A. TEHLER. 1998. The Species Pair Concept in the Lichen *Dendrographa leucophaea* (Arthoniales): Analyses Based on ITS Sequences. *The Bryologist* 101: 404-411.
- LOUWHOFF, S. H. J. J., and M. D. CRISP. 2000. Phylogenetic Analysis of *Parmotrema* (Parmeliaceae: Lichenized Ascomycotina). *The Bryologist* 103: 541-554.
- LUMBSCH, H. T., I. SCHMITT, A. MANGOLD, and M. WEDIN. 2007. Ascus types are phylogenetically misleading in Trapeliaceae and Agyriaceae (Ostropomycetidae, Ascomycota). *Mycological Research* 111: 1133-1141.

- LUTZONI, F., M. PAGEL, and V. REEB. 2001. Major fungal lineages are derived from lichen symbiotic ancestors. *Nature* 411: 937-940.
- LUTZONI, F., F. KAUFF, C. J. COX, D. MCLAUGHLIN, G. CELIO, B. DENTINGER, M. PADAMSEE, et al. 2004. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. *American Journal of Botany* 91: 1446-1480.
- MADDISON, W. P., and D. R. MADDISON. 2007. Mesquite: A modular system for evolutionary analysis, version 2.01. Website <a href="http://mesquiteproject.org">http://mesquiteproject.org</a>>.
- MCCUNE, B., and C. SCHOCH. 2009. *Hypogymnia minilobata* (Parmeliaceae), a new lichen from coastal California. *The Bryologist* 112: 94-100.
- MERESCHKOWSKY, C. 1918. Note sur une nouvelle forme de *Parmelia* vivant à l'état libre. Bulletin de la Société Botanique de Genève, series 2 10:26-34.
- MODENESI, P., M. PIANA, P. GIORDANI, A. TAFANELLI, and A. BARTOLI. 2000. Calcium Oxalate and Medullary Architecture in *Xanthomaculina convoluta*. *The Lichenologist* 32: 505-512.
- MOLINA, M. D. C., A. CRESPO, O. BLANCO, H. T. LUMBSCH, and D. L. HAWKSWORTH. 2004. Phylogenetic relationships and species concepts in Parmelia s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and β-tubulin sequences. *The Lichenologist* 36: 37-54.
- MYLLYS, L., K. LOHTANDER, and A. TEHLER. 2001. β-Tubulin, ITS and Group I Intron Sequences Challenge the Species Pair Concept in *Physcia aipolia* and *P. caesia*. *Mycologia* 93: 335-343.
- MYLLYS, L., K. LOHTANDER, M. KÄLLERSJÖ, and A. TEHLER. 1999. Sequence Insertions and ITS Data Provide Congruent Information on Roccella canariensis and R. tuberculata (Arthoniales, Euascomycetes) Phylogeny. *Molecular Phylogenetics and Evolution* 12: 295-309.
- NASH III, T. H., and J. A. ELIX. 2004. Xanthoparmelia. In T. H. Nash III, B. D. Ryan, P. Diederich, C. Gries, AND F. BUNGARTZ [eds.], Lichen Flora of the Greater Sonoran Desert Region, vol. 2. Lichens Unlilmited, Tempe, Arizona, USA.
- NELSEN, M. P., R. LUCKING, M. GRUBE, J. S. MBATCHOU, L. MUGGIA, E. R. PLATA, and H. T. LUMBSCH. 2009. Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta. *Studies in Mycology* 64: 135-1444.
- NYLANDER, J. A. A., F. RONQUIST, J. P. HUELSENBECK, and J. NIEVES-ALDREY. 2004. Bayesian Phylogenetic Analysis of Combined Data. *Systematic Biology* 53: 47-67.

- O'BRIEN, H. E., J. MIADLIKOWSKA, and F. LUTZONI. 2009. Assessing reproductive isolation in highly diverse communities of the lichen-forming funal genus *Peltigera*. *Evolution* 63: 2076-2086.
- O'MEARA, B. C. 2010. New Heuristic Methods for Joint Species Delimitation and Species Tree Inference. *Systematic Biology* 59: 59-73.
- ORANGE, A., P. W. JAMES, and F. J. WHITE. 2001. Microchemical methods for the identification of lichens, 1-101. British Lichen Society, London, UK.
- POSADA, D., and K. A. CRANDALL. 2001. Selecting the Best-Fit Model of Nucleotide Substitution. *Systematic Biology* 50: 580-601.
- POSADA, D., and T. R. BUCKLEY. 2004. Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches Over Likelihood Ratio Tests. *Systematic Biology* 53: 793-808.
- PRINTZEN, C. 2009. Lichen Systematics: The Role of Morphological and Molecular Data to Reconstruct Phylogenetic Relationships, Progress in Botany 71, vol. 71, 233-275. Springer Berlin Heidelberg, Berlin, Germany.
- PRINTZEN, C., and S. EKMAN. 2003. Local population subdivision in the lichen *Cladonia subcervicornis* as revealed by mitochondrial cytochrome oxidase subunit 1 intron sequences. *Mycologia* 95: 399-406.
- RAMBAULT, A. 1996. Sequence Alignment Editor Available from: <a href="http://tree.bio.ed.ac.uk/software/seal/">http://tree.bio.ed.ac.uk/software/seal/</a>>.
- REEB, V., F. LUTZONI, and C. ROUX. 2004. Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. *Molecular Phylogenetics and Evolution* 32: 1036-1060.
- REESE NÆSBORG, R., S. EKMAN, and L. TIBELL. 2007. Molecular phylogeny of the genus Lecania (Ramalinaceae, lichenized Ascomycota). *Mycological Research* 111: 581-591.
- RIKKINEN, J. 1995. What's beind the pretty colours? A study of the photobiology of lichens. *Bryobrothera* 4: 1-239.
- ROSENTRETER, R. 1993. Vagrant Lichens in North America. The Bryologist 96: 333-338.
- ROSENTRETER, R., and B. MCCUNE. 1992. Vagrant *Dermatocarpon* in Western North America. *The Bryologist* 95: 15-19.

- SANDERS, W. B. 2001. Lichens: The Interface between Mycology and Plant Morphology. *Bioscience* 51: 1025-1035.
- SCHLUTER, D. 2000. The ecology of adaptive radiations. Oxford University Press, Oxford, UK.
- SCHMITT, I., R. D. PRADO, M. GRUBE, and H. T. LUMBSCH. 2009a. Repeated evolution of closed fruiting bodies is linked to ascoma development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota). *Molecular Phylogenetics and Evolution* 52: 34-44.
- SCHMITT, I., A. CRESPO, P. K. DIVAKAR, J. D. FANKHAUSER, E. HERMAN-SACKETT, K. KALB, M. P. NELSEN, et al. 2009b. New primers for promising single-copy genes in fungal phylogenies and systematics. *Persoonia* 23: 35-40.
- SELBMANN, L., L. ZUCCONI, S. RUISI, M. GRUBE, M. CARDINALE, and S. ONOFRI. 2010. Culturable bacteria associated with Antarctic lichens: affiliation and psychrotolerance. *Polar Biology* 33: 71-83.
- ST. CLAIR, L., J. JOHANSEN, S. ST. CLAIR, and K. KNIGHT. 2007. The Influence of Grazing and Other Environmental Factors on Lichen Community Structure along an Alpine Tundra Ridge in the Uinta Mountains, Utah, U.S.A. Arctic, Antarctic, and Alpine Research 39: 603-613.
- STAMATAKIS, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22: 2688-2690.
- STAMATAKIS, A., P. HOOVER, and J. ROUGEMONT. 2008. A Rapid Bootstrap Algorithm for the RAxML Web Servers. *Systematic Biology* 57: 758-771.
- SULLIVAN, J., and P. JOYCE. 2005. Model selection in phylogenetics. *Annual Review of Ecology, Evolution, and Systematics* 36: 445-466.
- SWOFFORD, D. L. 2002. PAUP\*: Phylogenetic Analysis Using Parsimony (\*and Other Methods), Ver. 4.0.
- TEHLER, A., and M. KÄLLERSJÖ. 2001. *Parmeliopsis ambigua* and *P. hyperopta* (Parmeliaceae): species or chemotypes? *The Lichenologist* 33: 403-408.
- THELL, A. 1999. Group I Intron Versus its Sequences in Phylogeny of Cetrarioid Lichens. *The Lichenologist* 31: 441-449.
- THELL, A., J. A. ELIX, and U. SØCHTING. 2009. *Xanthoparmelia lineola* s. l. in Australia and North America. *Bibliothecia Lichenologica* 99: 393-404.

- THELL, A., T. FEUERER, J. A. ELIX, and I. KÄRNEFELT. 2006. A contribution to the phylogeny and taxonomy of *Xanthoparmelia* (Ascomycota, Parmeliaceae). *Journal of the Hattori Botanical Laboratory* 100: 797-807.
- THOMAS, A., and R. ROSENTRETER. 1992. Antelope utilization of lichen in the Birch Creek Valley of Idaho. *In* E. Raper [ed.], Proceedings - Symposium of the 15th Biennial Pronghorn Antelope Workshop, Rocksprings Wyoming, June 9-11, 1992., 6-12.
  Wyoming Game and Fish Department, Rock Springs, Wyoming, USA.
- TRUONG, C., Y. NACIRI, and P. CLERC. 2009. Multivariate analysis of anatomical characters confirms the differentiation of two morphologically close species, *Melanohalea olivacea* (L.) O. Blanco et al. and *M. septentrionalis* (Lynge) O. Blanco et al. *The Lichenologist* 41: 649-661.
- VELMALA, S., L. MYLLYS, P. HALONEN, T. GOWARD, and T. AHTI. 2009. Molecular data show that *Bryoria fremontii* and *B. tortuosa* (Parmeliaceae) are conspecific. *The Lichenologist* 41: 231-242.
- WEBER, W. A. 1967. Environmental modification in crustose lichens II. Fruticose growth forms in *Aspicilia*. *Aquile, Ser. Botanica* 6: 43-51.

\_\_\_\_\_. 1977. Environmental Modifications. *In* M. R. D. Seaward [ed.], Lichen Ecology, 9-29. Academic Press, New York, New York, USA.

- WEDIN, M., M. WESTBERG, A. T. CREWE, A. TEHLER, and O. W. PURVIS. 2009. Species delimitation and evolution of metal bioaccumulation in the lichenized *Acarospora smaragdula* (Ascomycota, Fungi) complex. *Cladistics* 25: 161-172.
- WHEELER, D. L., T. BARRETT, D. A. BENSON, S. H. BRYANT, K. CANESE, V. CHETVERNIN, D. M. CHURCH, et al. 2006. Database resources of the National Center for Biotechnology Information. *Nucleic Acids Research*: gkl1031.
- WHITE, T. J., T. D. BRUNS, S. LEE, and J. TAYLOR. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic Press, San Diego, California, USA.
- WIENS, J. J. 1998. Combining Data Sets with Different Phylogenetic Histories. *Systematic Biology* 47: 568-581.
- WIRTZ, N., C. PRINTZEN, and H. T. LUMBSCH. 2008. The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. Mycological Research 112: 472-484.

ZWICKL, D. J., and D. M. HILLIS. 2002. Increased Taxon Sampling Greatly Reduces Phylogenetic Error. *Systematic Biology* 51: 588-598.

| Marker             | Primer name         | Forward primer sequence                  | Annealing temperature (°C) | Reference                       |
|--------------------|---------------------|------------------------------------------|----------------------------|---------------------------------|
| IGS                | IGS12               | 5'-AGTCTGTGGATTAGTGGCCG-3'               | 66-56 (touchdown)          | Carbone & Kohn 1999             |
|                    | NS1R                | 5'-GAGACAAGCATATGACTAC-3'                |                            | Carbone & Kohn 1999             |
|                    | X_IGS_R             | 5'-TAC TGG CAG AAT CAR CCA GG-3'         |                            | Leavitt (2010)                  |
| ITS/group I intron | ITS1F               | 5'-CTT GGT CAT TTA GAG GAA GTA A-3'      | 55-60                      | (Gardes and Bruns, 1993)        |
|                    | ITS4                | 5'- TCC TCC GCT TAT TGA TAT GC-3'        |                            | (White et al., 1990)            |
| LSU                | LROR                | 5'-ACC CGC TGA ACT TAA GC-3'             | 55-60                      | Vilgalys unpublished            |
|                    | LR5                 | 5'-ATC CTG AGG GAA ACT TC-3'             |                            | Vilgalys unpublished            |
| β-tubulin          | Bt3-LM              | 5'-GAACGTCTACTTCAACGAG-3'                | 55-60                      | (Myllys, Lohtander, and Tehler, |
| -                  |                     |                                          |                            | 2001)                           |
|                    | Bt10-LM             | 5'-TCGGAAGCAGCCATCATGTTCTT-3'            |                            | (Myllys, Lohtander, and Tehler, |
|                    |                     |                                          |                            | 2001)                           |
|                    | BT_rhizo_F          | 5'-GCA ACA AGT ATG TTC CTC GTG C-3'      | 66-56 (touchdown)          | Leavitt (2010)                  |
|                    | BT_rhizo_R          | 5'-GTAAGAGGTGCGAAGCCAACC-3'              |                            | Leavitt (2010)                  |
| MCM7               | <i>MCM7</i> -709for | 5'-ACI MGI GTI TCV GAY GTH AARCC-3'      | 56                         | Schmitt et al., 2009a           |
|                    | MCM7-1348rev        | 5'-GAY TTD GCI ACI CCI GGR TCW CCC AT-3' |                            | Schmitt et al., 2009a           |
|                    | X_ <i>MCM7</i> _F   | 5'- CGT ACA CYT GTG ATC GAT GTG -3'      | 66- 56 (touchdown)         | Leavitt (2010)                  |
|                    | X_ <i>MCM7</i> _R   | 5'- GTC TCC ACG TAT TCG CAT TCC-3'       |                            | Leavitt (2010)                  |

Table 2.1. Primers used for PCR amplification and sequencing of the nuclear ribosomal IGS, ITS, and group I intron markers and low-copy protein-coding markers  $\beta$ -tubulin and *MCM7*.

| Locus          | Ν   | aligned bp | # of variable sites | # PI sites | Model selected |
|----------------|-----|------------|---------------------|------------|----------------|
| ITS            | 427 | 598        | 224                 | 166        | GTR+I+G        |
| LSU            | 422 | 851        | 116                 | 72         | GTR+I+G        |
| IGS            | 391 | 389        | 148                 | 102        | GTR+G          |
| group I intron | 311 | 417        | 121                 | 80         | SYM+G          |
| β-tubulin      | 389 | 787        | 180                 | 108        | GTR+I+G        |
| МСМ7           | 353 | 541        | 156                 | 104        | GTR+I+G        |
| Total          | 432 | 3583       | 945                 | 632        | na             |

Table 2.2. Genetic variability of sampled loci - N, number of sequences; aligned basepairs (bp), total alignment length; number of variable sites and parsimony informative (PI) sites for each sampled locus; and model of evolution selected for each locus.

| Clade      | N   | aligned bp | # of variable sites | # PI sites |
|------------|-----|------------|---------------------|------------|
| X-I        | 34  | 3074       | 77                  | 55         |
| X-II       | 23  | 3457       | 167                 | 126        |
| X-III      | 34  | 3459       | 195                 | 87         |
| X-IV       | 120 | 3487       | 376                 | 231        |
| X-V        | 52  | 3476       | 216                 | 119        |
| X-VI       | 146 | 3493       | 299                 | 161        |
| Total tree | 432 | 3583       | 945                 | 632        |

Table 2.3. Genetic variability of defined clades: N, number of OTUs assigned membership in each define clade; aligned basepairs (bp), total clade-specific alignment length; number of variable sites and parsimony informative (PI) sites for each sampled locus.



Figure 2.1. Geographic distribution of sampled *Xanthoparmelia* specimens in western North America. Sampled localities not shown include: Cherokee and Rutherford counties, North Carolina and Puebla, Mexico.



Figure 2.2. Variation in morphology and habit within sampled *Xanthoparmelia* in western North America. (A) saxicolous attached taxon *X. cumberlandia* sensu lato (s. l.) with sexual reproductive structures (apothecia) producing ascospores (B) saxicolous attached taxon *X. mexicana* with specialized vegetative reproductive structures (isidia) containing propagules of both symbionts, (C) terricolous taxon *X. wyomingica* s. l., an intermediate growth-form between attached and vagrant forms, (D) vagrant taxon *X. chlorochroa* s. l., (E) unique morphology of rare vagrant or semi-attached taxon *X. idahoensis* s. l. known from fine calcareous soils, (F) white-maculate upper cortex on *X. camtschadalis* s. l., (G) lobe morphology and emaculate surface on *X. stenophylla*, (H) erhizinate lower surface of vagrant taxon *X. norchlorochroa* s. l., (I) rhizine characters on vagrant taxon *X. chlorochroa* s. l.



Figure 2.3 (on previous page). Simplified ML topology indicating relationships of *Xanthoparmelia* taxa inferred from a combined analysis of nuclear ribosomal markers ITS, IGS, LSU, and intron and protein-coding fragments from  $\beta$ -tubulin and *MCM7* genes representing 432 OTUs. Values at each major node indicate maximum likelihood non-parametric –bootstrap support (BS) / Bayesian posterior probability (PP); only BS values  $\geq$  50 and PP  $\geq$  0.5 are shown; and scale indicates substitutions per site. Clades *X*-I through *X*-V are discussed in the text, and detailed relationships within each defined clade are shown in Figures 5 and 6.



Figure 2.4. ML topology indicting the intrageneric relationship of western North America *Xanthoparmelia* focal group to outgroup taxa. Values at each node indicate maximum likelihood non-parametric bootstrap support (BS) / Bayesian posterior probability (PP); only BS values  $\geq$  50 and PP  $\geq$  0.5 are shown; and scale bar indicates substitutions per site.



Figure 2.5 (on previous page). ML topology indicating relationships in clade X-I (Fig. 5A), X-II (Fig. 5B), X-III (Fig. 5C), and X-V (Fig. 5D). Values at each node indicate maximum likelihood (ML) non-parametric bootstrap support (BS) / Bayesian posterior probability (PP) / maximum parsimony (MP) non-parametric bootstrap (BS); only ML and MP BS values  $\geq$  50 and Bayesian PP  $\geq$  0.5 are shown; and scale bar indicates substitutions per site.



Figure 2.6 (on previous page). ML topology indicating relationships in clade X-IV. Values at each node indicate maximum likelihood (ML) non-parametric bootstrap support (BS) / Bayesian posterior probability (PP) / maximum parsimony (MP) non-parametric bootstrap (BS); only ML and MP BS values  $\geq$  50 and Bayesian PP  $\geq$  0.5 are shown; and scale bar indicates substitutions per site.



Figure 2.7. Evolution of morphological and chemical characters in the vagrant *Xanthoparmelia* complex mapped on ML topology inferred from a combined analysis of nuclear ribosomal markers ITS, IGS, LSU, and intron and protein-coding fragments from  $\beta$ -tubulin and *MCM7* genes representing 432 OTU. Thickened branches indicate BS and PP values  $\geq 70/0.95$ ; thickened branches marked with '\*' indicate PP values  $\geq 0.95$  and BS < 70; clades highlighted in yellow indicate independent origins of vagrant lineages.

| ID   | Species<br>(sensu lato) | Herbarium<br>Accession | Major<br>Acid | Reproductive<br>mode | Location  | Lat.                    | Lon.      | Ele.         | Collector (s)      |
|------|-------------------------|------------------------|---------------|----------------------|-----------|-------------------------|-----------|--------------|--------------------|
| 001f | Y coloradoänsis         | BRV-55151              | salazinic     | not observed         | USA UT    | 38 1325                 | -111 4710 | 3300 m       | Leavitt et al      |
| 0011 | A. Coloradoensis        | <b>DR1</b> -33131      | Salazinic     | not observed         | Wayne Co  | 36.1323                 | -111.4/10 | 5500 III     | Leavillet al.      |
| 002f | X. cumberlandia         | BRY-55152              | stictic       | not observed         | USA, UT,  | 38.1325                 | -111.4710 | 3300 m       | Leavitt et al.     |
|      |                         |                        |               |                      | Wayne Co. |                         |           |              |                    |
| 003f | X. cumberlandia         | BRY-55153              | stictic       | not observed         | USA, UT,  | 38.1325                 | -111.4710 | 3300 m       | Leavitt et al.     |
|      |                         |                        |               |                      | Wayne Co. |                         |           |              |                    |
| 004f | X. chlorochroa          | BRY-55154              | salazinic     | fragmentation        | USA, UT,  | 38.1325                 | -111.4710 | 3300 m       | Leavitt et al.     |
| ~~~~ | ** ** *                 |                        |               |                      | Wayne Co. | <b>2</b> 0 <b>1 6 7</b> |           | <b>22</b> 00 | <b>- - - - - -</b> |
| 005f | X. chlorochroa          | BRY-55155              | salazinic     | fragmentation        | USA, UT,  | 38.1625                 | -111.5358 | 3300 m       | Leavitt et al.     |
| 0076 | <b>X</b> 1 1 ··· ·      | DDV 55156              | 1 • •         | . 1 1                | Wayne Co. | 29,1000                 | 111 5071  | 2200         | T                  |
| 0001 | X. coloradoensis        | BKY-33130              | salazinic     | not observed         | USA, UI,  | 38.1202                 | 111.50/1  | 3300 m       | Leavitt et al.     |
| 007£ | V norchlorochroa        | DDV 55157              | colozinio     | fragmontation        | Wayne Co. | 28 1626                 | 111 5252  | 2200 m       | Loovitt at al      |
| 0071 | А. потстотосттои        | DK1-33137              | Salazinic     | magnientation        | Wayne Co  | 38.1020                 | -111.5552 | 5500 III     | Leavin et al.      |
| 008f | X chlorochroa           | BRY-55158              | salazinic     | fragmentation        | USA UT    | 38 1626                 | -111 5352 | 3300 m       | Leavitt et al      |
| 0001 | А. стотостой            | DR1-55150              | Salazinie     | inaginentation       | Wayne Co  | 50.1020                 | -111.5552 | 5500 m       | Leavitt et al.     |
| 009f | X. chlorochroa          | BRY-55159              | salazinic     | fragmentation        | USA, UT.  | 38.1202                 | 111.5071  | 3300 m       | Leavitt et al.     |
| 0071 | iii chilorochilota      |                        | 5             |                      | Wavne Co. | 0011202                 | 11100/1   | 0000 m       | 2000 100 00 ull    |
| 010f | X. chlorochroa          | BRY-55160              | salazinic     | fragmentation        | USA, UT,  | 38.1202                 | 111.5071  | 3300 m       | Leavitt et al.     |
|      |                         |                        |               | 8                    | Wayne Co. |                         |           |              |                    |
| 011f | X. chlorochroa          | BRY-55161              | salazinic     | fragmentation        | USĂ, UT,  | 38.1230                 | -111.5086 | 3300 m       | Leavitt et al.     |
|      |                         |                        |               | -                    | Wayne Co. |                         |           |              |                    |
| 012f | X. coloradoënsis        | BRY-55162              | salazinic     | not observed         | USA, UT,  | 38.1230                 | -111.5086 | 3300 m       | Leavitt et al.     |
|      |                         |                        |               |                      | Wayne Co. |                         |           |              |                    |
| 013f | X. norchlorochroa       | BRY-55163              | salazinic     | fragmentation        | USA, UT,  | 38.1309                 | -111.4695 | 3300 m       | Leavitt et al.     |
|      |                         |                        |               |                      | Wayne Co. |                         |           |              |                    |
| 014f | X. chlorochroa          | BRY-55164              | salazinic     | fragmentation        | USA, UT,  | 38.1309                 | -111.4695 | 3300 m       | Leavitt et al.     |
|      | ¥7 11 1                 | DD1/ 551 55            |               | C                    | Wayne Co. | 20 1225                 |           | 2200         | <b>•</b> • •       |
| 015f | X. chlorochroa          | BKY-22162              | salazinic     | tragmentation        | USA, UT,  | 38.1325                 | -111.4/10 | 3300 m       | Leavitt et al.     |
|      |                         |                        |               |                      | wayne Co. |                         |           |              |                    |

Supplementary data 2.1. Collection information for all *Xanthoparmelia* specimens included in the present study: ID, individual code; species; Brigham Young University Herbarium of Non-vascular Cryptogams voucher accession number; major acid, diagnostic secondary chemistry; Location; Lat., latitude; Lon., longitude; Ele., altitude in meters a.s.l.; collector(s).

| 016f           | X. chlorochroa         | BRY-55166  | salazinic                  | fragmentation | USA, UT.             | 38,1625   | -111.5358 | 3300 m   | Leavitt et al. |
|----------------|------------------------|------------|----------------------------|---------------|----------------------|-----------|-----------|----------|----------------|
| 0101           |                        | 2111 00100 | 541421110                  |               | Wavne Co.            | 0011020   | 1110000   | 0000 m   |                |
| 017f           | X. coloradoënsis       | BRY-55167  | salazinic                  | not observed  | USA. UT.             | 38.1625   | -111.5358 | 3300 m   | Leavitt et al. |
| •              |                        |            |                            |               | Wavne Co.            |           |           |          |                |
| 018f           | X. coloradoënsis       | BRY-55168  | salazinic                  | not observed  | USĂ, UT,             | 38.1626   | -111.5352 | 3300 m   | Leavitt et al. |
|                |                        |            |                            |               | Wayne Co.            |           |           |          |                |
| 019f           | X. coloradoënsis       | BRY-55169  | salazinic                  | not observed  | USA, UT,             | 38.1626   | -111.5352 | 3300 m   | Leavitt et al. |
|                |                        |            |                            |               | Wayne Co.            |           |           |          |                |
| 020f           | X. coloradoënsis       | BRY-55170  | salazinic                  | not observed  | USA, UT,             | 38.1202   | 111.5071  | 3300 m   | Leavitt et al. |
|                |                        |            |                            |               | Wayne Co.            |           |           |          |                |
| 022f           | X. coloradoënsis       | BRY-55171  | salazinic                  | not observed  | USA, UT,             | 38.1309   | -111.4695 | 3300 m   | Leavitt et al. |
|                |                        |            |                            |               | Wayne Co.            |           |           |          |                |
| 023f           | X. coloradoënsis       | BRY-55172  | salazinic                  | not observed  | USA, UT,             | 38.1325   | -111.4710 | 3300 m   | Leavitt et al. |
|                |                        |            |                            |               | Wayne Co.            |           |           |          |                |
| 024f           | X. cumberlandia        | BRY-55173  | stictic                    | not observed  | USA, UT,             | 38.1625   | -111.5358 | 3300 m   | Leavitt et al. |
|                |                        |            |                            |               | Wayne Co.            |           |           |          |                |
| 025f           | X. camtschadalis       | BRY-55174  | salazinic                  | fragmentation | USA, MT,             | 45.9584   | -111.6108 | 1440 m   | B. McCune      |
|                |                        |            |                            |               | Broadwater Co.       |           |           |          | 29230          |
| 027f           | X. chlorochroa         | BRY-55175  | salazinic                  | fragmentation | USA, UT,             | 38.1309   | -111.4695 | 3300 m   | Leavitt et al. |
|                |                        |            |                            |               | Wayne Co.            |           |           |          |                |
| 028f           | X. chlorochroa         | BRY-55176  | salazinic                  | fragmentation | USA, UT,             | 38.1626   | -111.5352 | 3300 m   | Leavitt et al. |
|                |                        |            |                            |               | Wayne Co.            |           |           |          |                |
| 029f           | X. cumberlandia*       | BRY-55177  | stictic                    | not observed  | USA, UT,             | 38.1230   | -111.5086 | 3300 m   | Leavitt et al. |
|                |                        |            |                            |               | Wayne Co.            |           |           |          |                |
| 030f           | X. coloradoënsis       | BRY-55178  | salazinic                  | not observed  | USA, UT,             | 38.1309   | -111.4695 | 3300 m   | Leavitt et al. |
|                | ** ** *                |            |                            | <u> </u>      | Wayne Co.            | 00.4.60.6 |           | 2200     | <b>-</b>       |
| 031f           | X. chlorochroa         | BRY-55179  | salazinic                  | fragmentation | USA, UT,             | 38.1626   | -111.5352 | 3300 m   | Leavitt et al. |
|                | <b>X</b> Z Z Z X X X X | DDV 55100  |                            |               | Wayne Co.            | 20 1005   | 111 4710  | 2200     | <b>T 1 1</b>   |
| 0321           | X. coloradoensis       | BRY-55180  | salazinic                  | not observed  | USA, UT,             | 38.1325   | -111.4/10 | 3300 m   | Leavitt et al. |
| 0226           | <b>X</b> 1 1           | DDV 55101  | $1 \cdot \cdot \cdot \psi$ | . 1 1         | wayne Co.            | 20 1225   | 111 4710  | 2200     | T '44 4 1      |
| 0331           | X. coloradoensis       | BKY-55181  | salazinic*                 | not observed  | USA, UI,             | 38.1325   | -111.4/10 | 3300 m   | Leavitt et al. |
| 0246           | V                      | DDV 55102  | 1:-:*                      |               | wayne Co.            | 29 1200   | 111 4605  | 2200     | T:44 -4 -1     |
| 0341           | A. coloradoensis       | BK 1-55182 | salazinic*                 | not observed  | USA, UI,             | 38.1309   | -111.4095 | 5500 m   | Leavitt et al. |
| 0.2 <i>5</i> £ | V oolongdoöneie*       | DDV 55102  | colozinia                  | not obcomund  | wayne Co.            | 28 1202   | 111 5071  | 2200 m   | Loovitt at al  |
| 0331           | л. coloradoensis*      | DK1-33183  | salazinic                  | notobserved   | USA, UI,<br>Wayna Ca | 36.1202   | 111.30/1  | 3300 III | Leavin et al.  |
| 026£           | V aumharland:          | DDV 55104  | stiatia                    | not observed  | Wayne Co.            | 38 1202   | 111 5071  | 2200 m   | Loowitt at al  |
| 0301           | A. cumbertanala        | DK1-JJ104  | sucue                      | not observed  | USA, UI,             | 30.1202   | 111.30/1  | 5300 m   | Leavill et al. |

|      |                   |           |            |               | Wayne Co. |         |           |        |                |
|------|-------------------|-----------|------------|---------------|-----------|---------|-----------|--------|----------------|
| 037f | X. californica*   | BRY-55185 | norstictic | not observed  | USA, UT,  | 38.1230 | -111.5086 | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |
| 038f | X. cumberlandia   | BRY-55186 | stictic    | not observed  | USA, UT,  | 38.1230 | -111.5086 | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |
| 039f | X. cumberlandia*  | BRY-55187 | stictic    | not observed  | USA, UT,  | 38.1220 | 111.5071  | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |
| 040f | X. cumberlandia   | BRY-55188 | stictic    | not observed  | USA, UT,  | 38.1308 | -111.4695 | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |
| 041f | X. cumberlandia   | BRY-55189 | stictic    | not observed  | USA, UT,  | 38.1325 | -111.4710 | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |
| 042f | X. cumberlandia*  | BRY-55190 | stictic    | not observed  | USA, UT,  | 38.1202 | 111.5071  | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |
| 043f | X. cumberlandia   | BRY-55191 | stictic    | not observed  | USA, UT,  | 38.1202 | 111.5071  | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |
| 044f | X. cumberlandia   | BRY-55192 | stictic    | apothecia     | USA, UT,  | 38.1230 | -111.5086 | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |
| 045f | X. cumberlandia   | BRY-55193 | stictic    | not observed  | USA, UT,  | 38.1625 | -111.5358 | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |
| 046f | Х.                | BRY-55194 | stictic    | not observed  | USA, UT,  | 38.1230 | -111.5086 | 3300 m | Leavitt et al. |
|      | neowyomingica*    |           |            |               | Wayne Co. |         |           |        |                |
| 047f | X. cumberlandia   | BRY-55195 | stictic    | not observed  | USA, UT,  | 38.1202 | 111.5071  | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |
| 048f | X. chlorochroa    | BRY-55196 | salazinic  | fragmentation | USA, UT,  | 38.1202 | 111.5071  | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |
| 049f | X. cumberlandia   | BRY-55197 | stictic    | apothecia     | USA, UT,  | 38.1202 | 111.5071  | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |
| 052f | X. chlorochroa    | BRY-55198 | salazinic  | fragmentation | USA, UT,  | 38.1625 | -111.5358 | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |
| 053f | X. chlorochroa    | BRY-55199 | salazinic  | fragmentation | USA, UT,  | 38.1230 | -111.5086 | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |
| 054f | X. coloradoënsis  | BRY-55200 | salazinic  | apothecia     | USA, UT,  | 38.1230 | -111.5086 | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |
| 055f | X. coloradoënsis* | BRY-55201 | salazinic  | not observed  | USA, UT,  | 38.1625 | -111.5358 | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |
| 056f | X. cumberlandia   | BRY-55202 | stictic    | not observed  | USA, UT,  | 38.1626 | -111.5352 | 3300 m | Leavitt et al. |
|      |                   |           |            |               | Wayne Co. |         |           |        |                |

| 057f          | X. cumberlandia   | BRY-55203        | stictic   | not observed   | USA, UT,             | 38.1626   | -111.5352  | 3300 m       | Leavitt et al. |
|---------------|-------------------|------------------|-----------|----------------|----------------------|-----------|------------|--------------|----------------|
|               |                   |                  |           |                | Wayne Co.            |           |            |              |                |
| 058f          | X. cumberlandia   | BRY-55204        | stictic   | not observed   | USA, UT,             | 38.1202   | 111.5071   | 3300 m       | Leavitt et al. |
|               |                   |                  |           |                | Wayne Co.            |           |            |              |                |
| 059f          | X. coloradoënsis  | BRY-55205        | salazinic | apothecia      | USA, UT,             | 38.1202   | 111.5071   | 3300 m       | Leavitt et al. |
|               |                   |                  |           |                | Wayne Co.            |           |            |              |                |
| 061f          | X. cumberlandia   | BRY-55206        | stictic   | not observed   | USA. UT.             | 38.1230   | -111.5086  | 3300 m       | Leavitt et al. |
|               |                   |                  | ~         |                | Wayne Co             |           |            |              |                |
| 062f          | X cumberlandia    | BRY-55207        | stictic   | not observed   | USA UT               | 38 1309   | -111 4695  | 3300 m       | I eavitt et al |
| 0021          | A. cumbertanata   | DR1 55207        | stiette   | not observed   | Wayne Co             | 50.1507   | 111.4075   | 5500 III     | Louvitt of di. |
| 06 <b>2</b> £ | V annah anlan dia | DDV 55200        | atiatia   | mot choomied   | Wayne CO.            | 29 1200   | 111 46045  | 2200         | Loovitt at al  |
| 0031          | A. cumberianaia   | BK I -33208      | stictic   | not observed   | USA, UI,             | 38.1309   | -111.40943 | 5500 m       | Leavitt et al. |
|               | ** * * * * * *    |                  |           |                | Wayne Co.            | 00 1 60 5 |            | <b>aa</b> aa | - · · · ·      |
| 064f          | X. coloradoënsis* | BRY-55209        | salazinic | not observed   | USA, UT,             | 38.1625   | -111.53581 | 3300 m       | Leavitt et al. |
|               |                   |                  |           |                | Wayne Co.            |           |            |              |                |
| 065f          | X. cumberlandia   | BRY-55210        | stictic   | not observed   | USA, UT,             | 40.7743   | -109.82444 | 3410 m       | EA 80-1103     |
|               |                   |                  |           |                | Summit Co.           |           |            |              |                |
| 066f          | X. cumberlandia   | BRY-55211        | stictic   | not observed   | USA, UT,             | 40.7743   | -109.82444 | 3410 m       | EA 80-1104     |
|               |                   |                  |           |                | Summit Co.           |           |            |              |                |
| 067f          | X. coloradoënsis  | BRY-55212        | salazinic | not observed   | USA, UT.             | 40.8047   | -110.0213  | 3360 m       | EA 80-1108     |
| 0071          | 111 0010100001000 | 2111 00212       | Swinching | 100 00001 000  | Summit Co            | 1010017   | 11010210   | 0000 m       | 21100 1100     |
| 068f          | Y chlorochroa     | BRV-55213        | salazinic | fragmentation  | USA WV Uinta         | 11 3769   | -110 6621  | 2057 m       | SDI IIS        |
| 0001          | х. стотосттой     | DK1-55215        | Salazinie | magniciliation | Co                   | 41.5707   | -110.0021  | 2037 111     | SDL, LLS       |
| 0706          | Valilanailanan    | DDV 55214        | 1:-:-     | £              | UT Deetherne         | 40.2000   | 110 41270  | 2005         |                |
| 0091          | X. chlorochroa    | BRY-55214        | salazinic | tragmentation  | UI, Duchesne         | 40.3699   | -110.41279 | 2005 m       | SDL, MFR       |
|               |                   |                  |           |                | Co.                  |           |            |              |                |
| 070f          | X. lineola        | BRY-55215        | salazinic | Apothecia      | UT, Duchesne         | 40.3698   | -110.41282 | 2005 m       | SDL, MFR       |
|               |                   |                  |           |                | Co.                  |           |            |              |                |
| 071f          | X. cumberlandia   | BRY-55216        | stictic   | not observed   | USA, UT,             | 38.5812   | -111.7700  | 3040 m       | Leavitt et al. |
|               |                   |                  |           |                | Wayne Co.            |           |            |              |                |
| 072f          | X. cumberlandia   | BRY-55217        | stictic   | not observed   | USA, UT,             | 38.5812   | -111.7700  | 3040 m       | Leavitt et al. |
|               |                   |                  |           |                | Wayne Co.            |           |            |              |                |
| 073f          | X coloradoënsis   | BRY-55218        | salazinic | not observed   | USA UT               | 38 4097   | -111 4757  | 3300 m       | Leavitt et al  |
| 0701          | 11. 0010100001010 | BILL 00210       | Suluzinie | not observed   | Wayne Co             | 2011077   | 111.1707   | 5500 m       | Louvitt of un  |
| 074f          | Y cumberlandia    | BRV-55210        | sticitic  | not observed   | USA UT               | 38 /007   | -111 4757  | 3300 m       | Leavitt et al  |
| 0/41          | A. cumbertanata   | DK1-33219        | suctue    | not observed   | USA, UI,<br>Wayna Ca | 38.4097   | -111.4737  | 5500 III     | Leavill et al. |
| 0756          | V and a land      | DDV 55000        | atiotic   | not obcoment   | Wayne CO.            | 20 1007   | 111 4757   | 2200         | L              |
| 0/51          | л. cumperiandia   | <b>БКТ-33220</b> | suctic    | not observed   | USA, UI,             | 38.4097   | -111.4/5/  | 5300 m       | Leavitt et al. |
| o <b>-</b> o  | ** * * *          |                  |           |                | Wayne Co.            | 20 400-   |            | <b>22</b> 00 | - · · ·        |
| 076f          | X. cumberlandia   | BRY-55221        | stictic   | apothecia      | USA, UT,             | 38.4097   | -111.4757  | 3300 m       | Leavitt et al. |

|      |                      |                   |            |                  | Wayne Co.            |         |           |          |                |
|------|----------------------|-------------------|------------|------------------|----------------------|---------|-----------|----------|----------------|
| 079f | X. vagans            | BRY-55222         | stictic    | fragmentation    | USA, UT,             | 38.4097 | -111.4757 | 3300 m   | Leavitt et al. |
|      |                      |                   |            |                  | Wayne Co.            |         |           |          |                |
| 080f | X. vagans            | BRY-55223         | stictic    | fragmentation    | USA, UT,             | 38.4097 | -111.4757 | 3300 m   | Leavitt et al. |
|      |                      |                   |            |                  | Wayne Co.            |         |           |          |                |
| 081f | X. chlorochroa       | BRY-55224         | salazinic  | fragmentation    | USA, UT,             | 38.4097 | -111.4757 | 3300 m   | Leavitt et al. |
|      |                      |                   |            |                  | Wayne Co.            |         |           |          |                |
| 082f | X. chlorochroa       | BRY-55225         | salazinic  | fragmentation    | USA, UT,             | 38.2757 | -111.6081 | 2347 m   | Leavitt et al. |
|      | ** ** *              |                   |            | <u> </u>         | Wayne Co.            |         | 111 4001  |          | <b>.</b>       |
| 083f | X. chlorochroa       | BRY-55226         | salazinic  | fragmentation    | USA, UT,             | 38.2757 | -111.6081 | 2347 m   | Leavitt et al. |
| 0040 | X7 11 1              | DD1/ 55005        |            | <b>c</b>         | Wayne Co.            | 00 0757 | 111 (001  | 00.47    | <b>T 1 1</b>   |
| 084f | X. chlorochroa       | BRY-55227         | salazinic  | fragmentation    | USA, UT,             | 38.2757 | -111.6081 | 2347 m   | Leavitt et al. |
| 0050 | X 1 1 ·              | DDV 55000         | 1 • •      | . 1 1            | Wayne Co.            | 20.0757 | 111 (001  | 0247     | T '44 4 1      |
| 0851 | X. coloradoensis     | BRY-55228         | salazinic  | not observed     | USA, UI,             | 38.2757 | -111.6081 | 2347 m   | Leavitt et al. |
| 0076 | V                    | DDV 55220         | 1          |                  | wayne Co.            | 20 2757 | 111 (001  | 0247     | T:'44 - 4 - 1  |
| 0901 | A. coloradoensis     | BK I -33229       | salazinic  | not observed     | USA, UI,<br>Waxma Ca | 38.2737 | -111.0081 | 2347 m   | Leavitt et al. |
| 007£ | V laviaola           | DDV 55220         | ncoromio   | icidio           | Wayne Co.            | 20 7757 | 111 6001  | 2247 m   | Loovitt at al  |
| 00/1 | л. шисош             | <b>DK1-</b> 33230 | psoronne   | Isiula           | Wayna Co             | 36.2737 | -111.0081 | 2347 111 | Leavill et al. |
| NOUŁ | V chlorochroa        | BBV 55231         | colozinic  | fragmentation    | USA ID Lembi         | 11 6812 | 113 3673  | 1820 m   | Loovitt at al  |
| 0901 | <b>л.</b> стотосттой | DK1-33231         | Salazinic  | magmentation     | Co                   | 44.0012 | -115.5025 | 1620 111 | Leavill et al. |
| 001f | X chlorochroa        | BRY-55232         | salazinic  | fragmentation    | USA ID Lembi         | 44 6812 | -113 3623 | 1820 m   | Leavitt et al  |
| 0711 | A. emorochrou        | DR1 55252         | Suluzinie  | maginemation     | Co                   | 44.0012 | 115.5025  | 1020 III | Leavitt et al. |
| 097f | X mexicana           | BRY-55233         | salazinic  | isidia           | Mex Puebla           | 19 2990 | -97 1193  | 1740 m   | Leavitt et al  |
| 098f | X. diervthra         | BRY-55234         | norstictic | isidia/apothecia | Mex. Puebla          | 19.2990 | -97.1193  | 1740 m   | Leavitt et al. |
| 102f | X. chlorochroa       | BRY-55235         | salazinic  | fragmentation    | USA. ID. Lemhi       | 44.6811 | -113.3623 | 1820 m   | Leavitt et al. |
|      |                      |                   |            |                  | Co:                  |         |           |          |                |
| 110f | X. chlorochroa       | BRY-55236         | salazinic  | fragmentation    | USA, WY, Uinta       | 41.3769 | -110.6621 | 2057 m   | Leavitt et al. |
|      |                      |                   |            | C                | Co.                  |         |           |          |                |
| 111f | X. chlorochroa       | BRY-55237         | salazinic  | fragmentation    | USA, WY, Uinta       | 41.3769 | -110.6621 | 2057 m   | Leavitt et al. |
|      |                      |                   |            |                  | Co.                  |         |           |          |                |
| 112f | X. chlorochroa       | BRY-55238         | salazinic  | fragmentation    | USA, ID,             | 43.3202 | -116.9795 | 1271 m   | Leavitt et al. |
|      |                      |                   |            |                  | Owyhee Co.           |         |           |          |                |
| 113f | X. chlorochroa       | BRY-55239         | salazinic  | fragmentation    | USA, ID,             | 43.3202 | -116.9795 | 1271 m   | Leavitt et al. |
|      |                      |                   |            |                  | Owyhee Co.           |         |           |          |                |
| 118f | X. coloradoënsis     | BRY-55240         | salazinic  | not observed     | USA, ID, Lemhi       | 44.6812 | -113.3623 | 1820 m   | SDL, LLS,      |
|      |                      |                   |            |                  | Co.                  |         |           |          | KBK            |
| 120f          | X. coloradoënsis | BRY-55241         | salazinic | not observed   | USA. UT.              | 40.8581 | -110.5012 | 3600 m   | Leavitt et al. |
|---------------|------------------|-------------------|-----------|----------------|-----------------------|---------|-----------|----------|----------------|
|               |                  |                   |           |                | Summit Co.            |         |           |          |                |
| 121f          | X. neowyomingica | BRY-55242         | stictic   | not observed   | USA, UT,              | 40.8581 | -110.5012 | 3600 m   | Leavitt et al. |
|               |                  |                   |           |                | Summit Co.            |         |           |          |                |
| 122f          | X. neowyomingica | BRY-55243         | stictic   | not observed   | USA, UT,              | 40.8581 | -110.5012 | 3600 m   | Leavitt et al. |
|               |                  |                   |           |                | Summit Co.            |         |           |          |                |
| 123f          | X. neowyomingica | BRY-55244         | stictic   | not observed   | USA, UT,              | 40.8581 | -110.5012 | 3600 m   | Leavitt et al. |
|               |                  |                   |           |                | Summit Co.            |         |           |          |                |
| 124f          | X. neowyomingica | BRY-55245         | stictic   | not observed   | USA, UT,              | 40.8581 | -110.5012 | 3600 m   | Leavitt et al. |
|               |                  |                   |           |                | Summit Co.            |         |           |          |                |
| 125f          | X. neowyomingica | BRY-55246         | stictic   | not observed   | USA, UT,              | 40.8581 | -110.5012 | 3600 m   | Leavitt et al. |
| 10/0          | ¥7 11 1          | DD1/ 550/5        |           | c              | Summit Co.            | 40.0501 | 110 5010  | 2 (00)   | <b>T 1 1</b>   |
| 126f          | X. chlorochroa   | BRY-55247         | salazinic | fragmentation  | USA, UT,              | 40.8581 | -110.5012 | 3600 m   | Leavitt et al. |
| 1050          | V 11 1           | DDX 55040         | 1 • •     | c , .:         | Summit Co.            | 40.0501 | 110 5012  | 2000     | T '44 4 1      |
| 12/1          | X. chlorochroa   | BRY-55248         | salazinic | tragmentation  | USA, UI,              | 40.8581 | -110.5012 | 3600 m   | Leavitt et al. |
| 1 <b>7</b> 0£ | V ablana abna a  | DDV 55240         | colozinio | fragmantation  |                       | 10 9591 | 110 5012  | 2600 m   | Loovitt at al  |
| 1201          | A. chiorochroa   | DK I -33249       | salazinic | Inaginemation  | USA, UI,<br>Summit Co | 40.8381 | -110.3012 | 5000 III | Leavitt et al. |
| 120f          | X chlorochroa    | BRV-55250         | salazinic | fragmentation  | IISA IIT              | 40 8581 | -110 5012 | 3600 m   | Leavitt et al  |
| 1271          | х. стотосттой    | <b>DR1-</b> 33230 | salazinie | inaginentation | Summit Co             | 40.0501 | -110.3012 | 5000 III | Leavin et al.  |
| 130f          | X chlorochroa    | BRY-55251         | salazinic | fragmentation  | USA UT                | 40 8581 | -110 5012 | 3600 m   | Leavitt et al  |
| 1501          | A. entorochrou   | BICT 55251        | Suluzinie | inuginentation | Summit Co.            | 10.0201 | 110.5012  | 5000 III | Louvier of ui. |
| 131f          | X. chlorochroa   | BRY-55252         | salazinic | fragmentation  | USA. UT.              | 40.8581 | -110.5012 | 3600 m   | Leavitt et al. |
|               |                  |                   |           | 8              | Summit Co.            |         |           |          |                |
| 132f          | X. chlorochroa   | BRY-55253         | salazinic | fragmentation  | USA, UT,              | 40.8581 | -110.5012 | 3600 m   | Leavitt et al. |
|               |                  |                   |           | U              | Summit Co.            |         |           |          |                |
| 133f          | X. chlorochroa   | BRY-55254         | salazinic | fragmentation  | USA, UT,              | 40.8581 | -110.5012 | 3600 m   | Leavitt et al. |
|               |                  |                   |           |                | Summit Co.            |         |           |          |                |
| 135f          | X. coloradoënsis | BRY-55255         | salazinic | not observed   | USA, UT,              | 40.8581 | -110.5012 | 3600 m   | Leavitt et al. |
|               |                  |                   |           |                | Summit Co.            |         |           |          |                |
| 136f          | X. wyominigica   | BRY-55256         | salazinic | not observed   | USA, UT,              | 40.8581 | -110.5012 | 3600 m   | Leavitt et al. |
|               |                  |                   |           |                | Summit Co.            |         |           |          |                |
| 138f          | X. cumberlandia  | BRY-55257         | stictic   | not observed   | USA, UT, Utah         | 40.0847 | -111.3401 | 1750 m   | SDL, MJF       |
|               |                  |                   |           |                | Co.                   |         |           |          |                |
| 147f          | X. mexicana      | BRY-55258         | salazinic | isidia         | USA, AZ,              | 36.9739 | -113.6444 | 890 m    | Leavitt et al. |
| 1 100         | ¥7 ·             | DD1/ 55050        |           |                | Mojave Co.            | 260720  | 110 6455  | 000      | <b>T 1 1</b>   |
| 148f          | X. mexicana      | BRY-55259         | salazinic | isidia         | USA, AZ,              | 36.9739 | -113.6444 | 890 m    | Leavitt et al. |

|              |                  |              |           |               | Malana C              |                        |           |        |                |
|--------------|------------------|--------------|-----------|---------------|-----------------------|------------------------|-----------|--------|----------------|
| 1 40£        | V                | DDV 55060    |           | iaidia        | Mojave Co.            | 26 0720                | 112 6444  | 800    | L              |
| 1491         | A. mexicana      | вкт-ээ260    | salazinic | 181018        | USA, AZ,<br>Maiawa Ca | 30.9/39                | -113.6444 | 890 m  | Leavitt et al. |
| 150£         | V mania and      | DDV 55061    | aalazizia | icidio        | Mojave Co.            | 26 0720                | 112 6444  | 800    | Loovitt at al  |
| 150I<br>1516 | л. mexicana<br>V | DK I - 33201 | salazinic |               | USA, AZ,              | 30.9/39                | -113.0444 | 890 m  | Leavitt et al. |
| 1211         | A. mexicana      | вкт-55262    | salazinic | 181018        | USA, AZ,              | 30.9/39                | -113.6444 | 890 m  | Leavitt et al. |
| 1 500        | v ·              | DDV 55062    | 1 • •     | 1.            | Mojave Co.            | 26.0720                | 112 6444  | 000    | T '44 4 1      |
| 1521         | X. mexicana      | вкү-55263    | salazinic | 18101a        | USA, AZ,              | 36.9/39                | -113.6444 | 890 m  | Leavitt et al. |
| 1 5 3 8      | v ·              | DDV 55064    | 1 • •     | 1.            | Mojave Co.            | 26.0720                | 110 6444  | 000    | T '44 4 1      |
| 153f         | X. mexicana      | вкү-55264    | salazinic | 181d1a        | USA, AZ,              | 36.9739                | -113.6444 | 890 m  | Leavitt et al. |
|              |                  |              |           |               | Mojave Co.            | 0.0000                 | 110       | 000    | <b>T</b>       |
| 154f         | X. mexicana      | BRY-55265    | salazinic | isidia        | USA, AZ,              | 36.9739                | -113.6444 | 890 m  | Leavitt et al. |
|              | <b>** 1</b>      | <b>DDT</b>   |           |               | Mojave Co.            | <b>20 2 2 -</b>        |           |        | <b>.</b>       |
| 155f         | X. plittii       | BRY-55266    | stictic   | isidia        | USA, UT,              | 38.2879                | -111.2274 | 1641 m | Leavitt et al. |
|              | <b>**</b>        |              |           |               | Wayne Co.             | <b>a</b> a <b>a</b> a= |           |        | <b>.</b>       |
| 156f         | X. mexicana      | BRY-55267    | salazinic | isidia        | USA, UT,              | 38.2879                | -111.2274 | 1641 m | Leavitt et al. |
|              |                  |              |           |               | Wayne Co.             |                        |           |        |                |
| 157f         | X. chlorochroa   | BRY-55268    | salazinic | fragmentation | USA, NM,              | 35.5500                | -107.6666 | 2060 m | BRY-           |
|              |                  |              |           |               | McKinley Co.          |                        |           |        | SL10275        |
| 163f         | X. chlorochroa   | BRY-55269    | salazinic | fragmentation | USA, AZ,              | 35.8083                | -112.0325 | 1950 m | BRY-C21648     |
|              |                  |              |           |               | Coconino Co.          |                        |           |        |                |
| 168f         | X. chlorochroa   | BRY-55270    | salazinic | fragmentation | USA, WY,              | 41.9861                | 110.0417  | 1950 m | BRY-C18517     |
|              |                  |              |           |               | Sweetwater Co.        |                        |           |        |                |
| 169f         | X. coloradoënsis | BRY-55271    | salazinic | not observed  | USA, NM, Grant        | 33.2187                | -108.7988 | 1560 m | BRY-C32565     |
|              |                  |              |           |               | Co.                   |                        |           |        |                |
| 170f         | X. lineola       | BRY-55272    | salazinic | apothecia     | USA, NM, Grant        | 33.1915                | -108.6682 | 1770 m | BRY-C32565     |
|              |                  |              |           |               | Co.                   |                        |           |        |                |
| 171f         | X. lineola       | BRY-55273    | salazinic | apothecia     | USA, NM, Grant        | 33.1797                | -108.0465 | 2048 m | EA49-519       |
|              |                  |              |           |               | Co.                   |                        |           |        |                |
| 173f         | X. mexicana      | BRY-55274    | salazinic | isidia        | USA, UT,              | 37.2047                | -113.6417 | 1030 m | EA49-525       |
|              |                  |              |           |               | Washington Co.        |                        |           |        |                |
| 175f         | X. cumberlandia  | BRY-55275    | stictic   | apothecia     | USA, ID, Elmore       | 43.8167                | -115.0861 | 1682 m | EA69-949       |
|              |                  |              |           |               | Co.                   |                        |           |        |                |
| 179f         | X. cumberlandia  | BRY-55276    | stictic   | not observed  | USA, UT,              | 40.7882                | -110.6982 | 3060 m | EA80-1118      |
|              |                  |              |           |               | Summit Co.            |                        |           |        |                |
| 180f         | X. chlorochroa   | BRY-55277    | salazinic | fragmentation | USA, UT, Toole        | 40.2967                | -112.2785 | 1653 m | EA50-535       |
|              |                  |              |           |               | Co.                   |                        |           |        |                |

| 181f | X. chlorochroa   | BRY-55278  | salazinic | fragmentation | USA, UT, Toole            | 40.2967 | -112.2785 | 1653 m            | EA50-544         |
|------|------------------|------------|-----------|---------------|---------------------------|---------|-----------|-------------------|------------------|
| 1011 |                  | 2111 002/0 | Sum       |               | Co.                       |         | 11212700  | 1000 111          | 211000           |
| 189f | X. chlorochroa   | BRY-55279  | salazinic | fragmentation | USA, CO,                  | 38.4377 | -107.9560 | 1880 m            | EA49-526         |
|      |                  |            |           | 0             | Montrose Co.              |         |           |                   |                  |
| 190f | X. chlorochroa   | BRY-55280  | salazinic | fragmentation | USA, CO,                  | 38.4377 | -107.9560 | 1880 m            | EA49-526         |
|      |                  |            |           | C C           | Montrose Co.              |         |           |                   |                  |
| 191f | X. cumberlandia  | BRY-55281  | stictic   | not observed  | USA, CO,                  | 37.6939 | -108.3233 | 2622 m            | EA53-602         |
|      |                  |            |           |               | Dolores Co.               |         |           |                   |                  |
| 192f | X. cumberlandia  | BRY-55282  | stictic   | not observed  | USA, CO,                  | 37.6939 | -108.3233 | 2622 m            | EA53-598         |
|      |                  |            |           |               | Dolores Co.               |         |           |                   |                  |
| 194f | X. cumberlandia  | BRY-55283  | stictic   | apothecia     | USA, CO,                  | 37.8564 | -105.4317 | 3030 m            | EA55-634         |
|      |                  |            |           |               | Saguache Co.              |         |           |                   |                  |
| 195f | X. cumberlandia  | BRY-55284  | stictic   | not observed  | USA, CO,                  | 37.3884 | -107.0918 | 2657 m            | EA57-681         |
|      |                  |            |           |               | Archuleta Co:             |         |           |                   |                  |
| 197f | X. mexicana      | BRY-55285  | salazinic | isidia        | USA, UT, San              | 37.7807 | -109.8587 | 2133 m            | EA67-899         |
|      |                  |            |           |               | Juan Co.                  |         |           |                   |                  |
| 198f | X. cumberlandia  | BRY-55286  | stictic   | not observed  | USA, UT, San              | 37.7807 | -109.8587 | 2133 m            | EA67-893         |
|      | X7 11 1          | DDV 55007  |           | c · · · ·     | Juan Co.                  | 11 (225 | 110.0500  | 0715              |                  |
| 2011 | X. chlorochroa   | BRY-5528/  | salazinic | fragmentation | USA, MI,                  | 44.6225 | -113.0520 | 2/15 m            | St. Clair et al. |
| 2026 | Vallenselense    | DDV 55000  | 1         | £             | Beavernead Co.            | 14 (225 | 112 0520  | 0715              | St. Claimet al   |
| 2021 | A. cniorocnroa   | BR 1-55288 | salazinic | rragmentation | USA, MI,<br>Pagyarhand Co | 44.6225 | -113.0520 | 2/15 m            | St. Clair et al. |
| 203£ | V ahloroahroa    | DDV 55280  | colozinio | fragmontation | USA ID Lombi              | 11 6516 | 112 2228  | 1071 m            | St. Clair at al  |
| 2031 | л. стотосттой    | DK1-JJ209  | Salazinic | magmentation  | Co                        | 44.0310 | -113.2236 | 19/1 111          | St. Claif et al. |
| 204f | X chlorochroa    | BRY-55290  | salazinic | fragmentation | USA ID Lembi              | 44 6516 | -113 2238 | 1971 m            | St. Clair et al  |
| 2041 | А. стотосттои    | BRT 55270  | Salazinie | inaginemation | Co                        | 44.0510 | 115.2250  | 1 <i>7/</i> 1 III | St. Cluir et ul. |
| 205f | X. camtschadalis | BRY-55291  | salazinic | fragmentation | Canada.                   | 50.6432 | -107.9702 | 569 m             | de Vries, B.,    |
|      |                  |            |           | 8             | Saskatchewan.             |         |           | • • • • • • • • • | s.n.             |
| 206f | X. camtschadalis | BRY-55292  | salazinic | fragmentation | Canada,                   | 50.6432 | -107.9702 | 569 m             | de Vries, B.,    |
|      |                  |            |           | C             | Saskatchewan.             |         |           |                   | s.n.             |
| 207f | X. chlorochroa   | BRY-55293  | salazinic | fragmentation | USA, WY,                  | 41.7708 | -107.4778 | 2040 m            | s.n.             |
|      |                  |            |           | C             | Carbon Co.                |         |           |                   |                  |
| 208f | X. chlorochroa   | BRY-55294  | salazinic | fragmentation | USA, WY,                  | 41.7708 | -107.4778 | 2040 m            | s.n.             |
|      |                  |            |           | -             | Carbon Co.                |         |           |                   |                  |
| 219f | X. chlorochroa   | BRY-55295  | salazinic | fragmentation | USA, UT,                  | 38.4097 | -111.4757 | 3300 m            | SDL              |
|      |                  |            |           |               | Wayne Co.                 |         |           |                   |                  |
| 220f | X. chlorochroa   | BRY-55296  | salazinic | fragmentation | USA, UT,                  | 38.4097 | -111.4757 | 3300 m            | SDL              |

|              |                          |                  |            |                 | Wayne Co.            |           |           |               |                |
|--------------|--------------------------|------------------|------------|-----------------|----------------------|-----------|-----------|---------------|----------------|
| 221f         | X. chlorochroa           | BRY-55297        | salazinic  | fragmentation   | USA, UT,             | 38.4097   | -111.4757 | 3300 m        | SDL            |
|              |                          |                  |            |                 | Wayne Co.            |           |           |               | ~~ ·           |
| 222f         | X. vagans                | BRY-55298        | stictic    | fragmentation   | USA, UT,             | 38.4097   | -111.4757 | 3300 m        | SDL            |
|              |                          | DD1/ 55000       |            |                 | Wayne Co.            | 22 7 40 1 | 116 7146  | 1.000         | <b>T 1 1 1</b> |
| 224f         | X. mexicana              | BRY-55299        | salazinic  | 181d1a          | USA, CA,             | 33.7491   | -116./146 | 1660 m        | Leavitt et al. |
| 22/0         | <b>X</b> Z <b>1</b> , .1 | DDX 55200        |            |                 | Riverside Co.        | 20.2726   | 111 (10)  | 0040          | CDI            |
| 2261         | X. dierythra             | BRY-55300        | norstictic | 181018          | USA, UI,             | 38.2736   | -111.6106 | 2340 m        | SDL            |
| 2276         | V ann hanlan dia         | DDV 55201        | atiatia    | iaidia          | wayne Co.            | 20 2726   | 111 6106  | <b>2240</b> m | CDI            |
| 22/1         | A. cumberianaia          | BR 1-33301       | sucue      | Isiala          | USA, UI,<br>Warma Ca | 38.2730   | -111.0100 | 2340 m        | SDL            |
| 2206         | V ahlana ahna a          | DDV 55202        | colozinia  | fragmantation   | wayne Co.            | 28 1011   | 111 5257  | 2471 m        | CDI            |
| 2291         | A. Chiorochroa           | DK I-33302       | salazinic  | magmentation    | USA, UI,<br>Wayna Co | 36.4941   | -111.3537 | 24/1 111      | SDL            |
| 221f         | V naachlarachraa         | <b>DDV 55202</b> | norstiatia | fragmontation   | Wayne CO.            | 28 4041   | 111 5257  | 2471 m        | SDI            |
| 2311         | л. пеостогостои          | DK1-33303        | norstictic | magmentation    | USA, UI,<br>Wayna Co | 30.4941   | -111.3337 | 24/1 111      | SDL            |
| <b>737</b> f | V chlorochroa            | BBV 55304        | salazinio  | fragmentation   | Wayne CO.            | 38 1317   | 111 6002  | 2330 m        | SDI            |
| 2321         | А. стотосттои            | DK1-55504        | salazinie  | magnicilitation | Wayne Co             | 50.4547   | -111.0772 | 2330 m        | SDL            |
| 233f         | X chlorochroa            | BRY-55305        | salazinic  | fragmentation   | USA UT               | 38 4347   | -111 6992 | 2330 m        | SDL            |
| 2001         | n entereenteu            |                  | Suluzinie  | maginemation    | Wayne Co.            | 2011217   | 111.0772  | 2000 m        | SDL            |
| 245f         | X. lineola               | BRY-55306        | salazinic  | apothecia       | USA. AZ.             | 32.0055   | -109.3610 | 5400 m        | EA31-259       |
|              | 111 11100101             | 2111 00000       | 5          | uponioona       | Cochise Co.          | 02.00000  | 10,10010  | 0.000 III     | 2.101 209      |
| 247f         | X. cumberlandia          | BRY-55307        | stictic    | apothecia       | USA, ID, Idaho       | 46.3353   | -115.3145 | 640 m         | EA32-280       |
|              |                          |                  |            | 1               | Co.                  |           |           |               |                |
| 258f         | X. coloradoënsis         | BRY-55308        | salazinic  | not observed    | USA, ID, Custer      | 44.7833   | -114.6875 | 2479 m        | EA46-467       |
|              |                          |                  |            |                 | Co.                  |           |           |               |                |
| 261f         | X. vagans                | BRY-55309        | stictic    | fragmentation   | USA, ID, Lemhi       | 44.1578   | -113.8794 | 2069 m        | EA47-485       |
|              |                          |                  |            |                 | Co.                  |           |           |               |                |
| 269f         | X. coloradoënsis         | BRY-55310        | salazinic  | not observed    | USA, UT,             | 37.2845   | -113.0966 | 1540 m        | SDL            |
|              |                          |                  |            |                 | Washington Co.       |           |           |               |                |
| 271f         | X. lineola               | BRY-55311        | salazinic  | not observed    | USA, UT,             | 37.3474   | -113.1010 | 2110 m        | Leavitt et al. |
|              |                          |                  |            |                 | Washington Co.       |           |           |               |                |
| 272f         | X. coloradoënsis         | BRY-55312        | salazinic  | not observed    | USA, UT,             | 37.3474   | -113.1010 | 2110 m        | Leavitt et al. |
|              |                          |                  |            |                 | Washington Co.       |           |           |               |                |
| 274f         | X. psoromifera           | BRY-55313        | psoromic   | not observed    | USA, UT,             | 38.2757   | -111.6081 | 2347 m        | Leavitt et al. |
|              |                          |                  |            |                 | Wayne Co.            |           |           |               |                |
| 275f         | X. psoromifera           | BRY-55314        | psoromic   | not observed    | USA, UT,             | 38.2757   | -111.6081 | 2347 m        | Leavitt et al. |
|              |                          |                  |            |                 | Wayne Co.            |           |           |               |                |

| 276f | X chlorochroa         | BRY-55315   | salazinic   | fragmentation | USA WY         | 41 6257  | -110 6270   | 2050 m   | SDL JHL        |
|------|-----------------------|-------------|-------------|---------------|----------------|----------|-------------|----------|----------------|
| 2701 | A. emorochrou         | DR1 55515   | Suluzinie   | muginemution  | Lincoln Co     | 11.0257  | 110.0270    | 2050 m   | 50L, 11L       |
| 278f | X. neochlorochroa     | BRY-55316   | norstictic  | fragmentation | USA, WY.       | 41.6387  | -110.5699   | 2018 m   | SDL. JHL       |
| 2701 | 11. 11000111010011100 | BRI 55510   | noibilette  | muginemution  | Lincoln Co.    | 11.0507  | 110.0077    | 2010 111 | 502,0112       |
| 279f | X. neochlorochroa     | BRY-55317   | norstictic  | fragmentation | USA, WY.       | 41.6254  | -110.6270   | 2050 m   | SDL. JHL       |
|      |                       |             |             | 8             | Lincoln Co.    |          |             |          | ~,             |
| 280f | X.                    | BRY-55318   | fatty acids | fragmentation | USA, WY.       | 41.6388  | -110.5699   | 2018 m   | SDL. JHL       |
|      | lipochlorochroa       | 2111 00010  | integ actus |               | Lincoln Co.    |          | 11010 0777  | 2010 11  |                |
|      | *type locality        |             |             |               |                |          |             |          |                |
| 281f | X.                    | BRY-55319   | fatty acids | fragmentation | USA. WY.       | 41.6388  | -110.5699   | 2018 m   | SDL. JHL       |
|      | lipochlorochroa       |             | ,           |               | Lincoln Co.    |          |             |          |                |
|      | *type locality        |             |             |               |                |          |             |          |                |
| 282f | X.                    | BRY-55320   | fatty acids | fragmentation | USA, WY,       | 41.6254  | -110.6270   | 2050 m   | SDL, JHL       |
|      | lipochlorochroa       |             | 2           | C             | Lincoln Co.    |          |             |          |                |
|      | *type locality        |             |             |               |                |          |             |          |                |
| 283f | X. mexicana           | BRY-55321   | salazinic   | isidia        | USA, CA,       | 38.5309  | -122.8947   | 99 m     | Leavitt et al. |
|      |                       |             |             |               | Sonoma Co.     |          |             |          |                |
| 284f | X. lineola            | BRY-55322   | salazinic   | apothecia     | USA, CA,       | 38.5309  | -122.8947   | 99 m     | Leavitt et al. |
|      |                       |             |             |               | Sonoma Co.     |          |             |          |                |
| 285f | X. lineola            | BRY-55323   | salazinic   | apothecia     | USA, CA,       | 38.5309  | -122.8947   | 99 m     | Leavitt et al. |
|      |                       |             |             |               | Sonoma Co.     |          |             |          |                |
| 286f | X. plittii            | BRY-55324   | stictic     | isidia        | USA, CA,       | 38.5309  | -122.8947   | 99 m     | SDL            |
|      |                       |             |             |               | Sonoma Co.     |          |             |          |                |
| 287f | X. cumberlandia       | BRY-55325   | stictic     | not observed  | USA, CA,       | 38.5309  | -122.89465  | 99 m     | SDL            |
|      |                       |             |             |               | Sonoma Co.     |          |             |          |                |
| 288f | X. cumberlandia       | BRY-55326   | stictic     | not observed  | USA, CA,       | 38.5309  | -122.89465  | 99 m     | SDL            |
|      |                       |             |             |               | Sonoma Co.     |          |             |          |                |
| 290f | X. cumberlandia       | BRY-55327   | stictic     | not observed  | USA, WA,       | 47.6385  | -117.37667  | 99 m     | HCL, JHL,      |
|      | <b>.</b>              |             |             |               | Spokane Co.    | 44 0 404 | 111 6000000 | 1        | DJH            |
| 291f | X. mexicana           | BRY-55328   | salazinic   | 181d1a        | USA, NV, Elko  | 41.9421  | 114.688278  | 1569 m   | SDL            |
| 2026 | X7 11                 | DDV 55220   | ,• ,•       |               |                | 41.0401  | 114 (00.070 | 1500     | CDI            |
| 292f | X. dierythra          | BRY-55329   | norstictic  | 181d1a        | USA, NV, Elko  | 41.9421  | 114.688278  | 1569 m   | SDL            |
| 2026 | V 11 1                | DDV 55220   | 1           | с <i>.</i>    | Co.            | 41.0404  | 114 60104   | 1 - 77   | CDI            |
| 2951 | л. cniorochroa        | BK I -33330 | salazinic   | rragmentation | USA, INV, EIKO | 41.9494  | -114.68194  | 15// m   | SDL            |
| 204£ | V ablana abna c       | DDV 55221   | colozinio   | fragmantation | UU.            | 41.0404  | 111 69104   | 1577 m   | CDI            |
| 294I | л. спиогоспгоа        | BK I -33331 | salazinic   | magmentation  | USA, INV, EIKO | 41.9494  | -114.08194  | 13// m   | SDL            |
|      |                       |             |             |               | C0.            |          |             |          |                |

| $\frac{2751}{C0.}$                                                                                                         |               |
|----------------------------------------------------------------------------------------------------------------------------|---------------|
| C0.                                                                                                                        |               |
| 2066 V nachlanghung DDV 55222 nonstigtion fragmentation USA NV Elles 41.0404 114.68104 1577                                | m CDI         |
| <b>2901</b> A. <i>neochiorochrou</i> <b>DK1</b> -55555 horsticuc fragmentation USA, $NV$ , Elko 41.9494 -114.06194 1577    | III SDL       |
| CO.<br>2076 V wasshlawshuar DDV 55224 nonstitution frommantation USA NV White 20,0600 114,4472 1760                        | m CDI         |
| <b>29</b> /I X. <i>neochiorochroa</i> BK1-55554 horsticuc fragmentation USA, NV, while $59.0099$ -114.44/2 1/00<br>Dire Ce | III SDL       |
| Pine Co.                                                                                                                   |               |
| <b>2981</b> X. neochlorochroa BRY-55335 norstictic fragmentation USA, NV, white 39.0699 -114.44/2 1/60                     | m SDL         |
| Pine Co.                                                                                                                   |               |
| <b>2991</b> X. chlorochroa BRY-55336 salazinic fragmentation USA, NV, White $39.0699 -114.44/2 1/60$                       | m SDL         |
| Pine Co.                                                                                                                   | ~~ .          |
| <b>300f</b> X. chlorochroa BRY-55337 salazinic fragmentation USA, NV, White 39.0699 -114.4472 1760                         | m SDL         |
| Pine Co                                                                                                                    |               |
| <b>301f</b> X. chlorochroa BRY-55338 salazinic fragmentation USA, ID, Lemhi 44.1944 -112.9424 1951                         | m A. DeBolt   |
| Co.                                                                                                                        | 754           |
| <b>304f</b> <i>X.chlorochroa</i> BRY-55339 salazinic fragmentation USA, ID, Custer 44.3323 -114.0501 2490                  | m Rosentreter |
| Co.                                                                                                                        | 4385          |
| <b>307f</b> <i>X. chlorochroa</i> BRY-55340 salazinic fragmentation USA, UT, San 37.9346 -109.8296 1524                    | m A. DeBolt   |
| Juan Co.                                                                                                                   | 754           |
| <b>308f</b> <i>X. chlorochroa</i> BRY-55341 salazinic fragmentation USA, MT, 44.4876 -112.8269 2120                        | m McCune      |
| Beaverhead Co.                                                                                                             | 21280         |
| <b>309f</b> <i>X. chlorochroa</i> BRY-55342 salazinic fragmentation USA, MT, 44.4876 -112.8269 2120                        | m McCune      |
| Beaverhead Co.                                                                                                             | 21280         |
| <b>310f</b> <i>X. chlorochroa</i> BRY-55343 salazinic fragmentation USA, WY, Park 44.9779 -110.7047 1920                   | m Rosentreter |
| Co.                                                                                                                        | 13610         |
| <b>311f</b> <i>X. chlorochroa</i> BRY-55344 salazinic fragmentation USA, WY, 43.5774 -109.73670 2469                       | m Rosentreter |
| Fremont Co.                                                                                                                | 15445         |
| <b>312f</b> <i>X. chlorochroa</i> BRY-55345 salazinic fragmentation USA, WY, 43.5774 -109.7370 2469                        | m Rosentreter |
| Fremont Co.                                                                                                                | 15445         |
| 314f X. chlorochroa BRY-55346 salazinic fragmentation USA, WY, Park 44.9779 -110.7047 1920                                 | m Rosentreter |
| Co.                                                                                                                        | 13610         |
| <b>315f</b> <i>X. idahoensis</i> BRY-55347 salazinic fragmentation USA, ID, Lemhi 44.9316 -113.7674 1858                   | m Rosentreter |
| Co.                                                                                                                        | 13897         |
| 316f X. camtschadalis BRY-55348 salazinic fragmentation USA, ID, Lemhi 45.0536 -113.7065 1420                              | m Rosentreter |
| Co.                                                                                                                        | 4520          |
| 317f X. camtschadalis BRY-55349 salazinic fragmentation USA, ID, Lemhi 45.0536 -113.7065 1420                              | m Rosentreter |
| Co.                                                                                                                        | 4520          |
| <b>318f</b> X. idahoensis BRY-55350 salazinic fragmentation USA, ID, Lemhi 45.1204 -113.8624 1219                          | m Rosentreter |

|      | *type locality                         |           |            |               | Co.                       |         |           |        | 3828                 |
|------|----------------------------------------|-----------|------------|---------------|---------------------------|---------|-----------|--------|----------------------|
| 319f | X. <i>idahoensis</i><br>*type locality | BRY-55351 | salazinic  | fragmentation | USA, ID, Lemhi<br>Co.     | 45.1204 | -113.8624 | 1219 m | Rosentreter<br>3828  |
| 323f | X. idahoensis                          | BRY-55352 | salazinic  | fragmentation | USA, CO, Grand            | 40.1093 | -106.4262 | 2320 m | Rosentreter<br>9339  |
| 324f | X. idahoensis                          | BRY-55353 | salazinic  | fragmentation | Canada,<br>Saskatchewan   | 49.2666 | -107.6369 | 8310 m | Rosentreter,         |
| 325f | X. idahoensis                          | BRY-55354 | salazinic  | fragmentation | Canada,                   | 49.2666 | -107.6369 | 8310 m | Rosentreter,         |
| 326f | X. chlorochroa                         | BRY-55355 | salazinic  | fragmentation | USA, ID, Twin             | 42.0340 | -114.7219 | 1888 m | Rosentreter          |
| 327f | X. chlorochroa                         | BRY-55356 | salazinic  | fragmentation | USA, CO, Weld             | 40.4249 | -104.7092 | 1420 m | Rosentreter          |
| 328f | X. neochlorochroa                      | BRY-55357 | norstictic | fragmentation | USA, CO, Weld             | 40.4249 | -104.7092 | 1420 m | Rosentreter          |
| 329f | X. camtschadalis                       | BRY-55358 | salazinic  | fragmentation | USA, Lemhi Co.            | 45.1738 | -113.8064 | 1340 m | Rosentreter          |
| 330f | X. camtschadalis                       | BRY-55359 | salazinic  | fragmentation | USA, Lemhi Co.            | 45.1738 | -113.8064 | 1340 m | Rosentreter<br>16240 |
| 331f | X. camtschadalis                       | BRY-55360 | salazinic  | fragmentation | USA, MT,<br>Jefferson Co. | 45.8385 | -111.8674 | 1620 m | Rosentreter<br>14671 |
| 332f | X. camtschadalis                       | BRY-55361 | salazinic  | fragmentation | USA, MT,<br>Jefferson Co. | 45.8385 | -111.8674 | 1620 m | Rosentreter<br>14671 |
| 333f | X. camtschadalis                       | BRY-55362 | salazinic  | fragmentation | USA, CO, Grand            | 40.4058 | -105.6246 | 2600 m | Rosentreter<br>14787 |
| 334f | X. camtschadalis                       | BRY-55363 | salazinic  | fragmentation | USA, ID,<br>Owyhee Co.    | 42.4737 | -116.6630 | 1600 m | Rosentreter          |
| 335f | X. camtschadalis                       | BRY-55364 | salazinic  | fragmentation | USA, ID,<br>Owyhee Co     | 42.4737 | -116.6630 | 1600 m | Rosentreter          |
| 336f | X. norchlorochroa                      | BRY-55365 | salazinic  | fragmentation | USA, WY,<br>Sweetwater Co | 41.4193 | -108.0524 | 2100 m | Rosentreter,         |
| 337f | X. neochlorochroa                      | BRY-55366 | norstictic | fragmentation | USA, WY,                  | 41.2916 | -105.5245 | 2137 m | Rosentreter,         |
| 338f | X. norchlorochroa                      | BRY-55367 | salazinic  | fragmentation | USA, ID, Clark            | 44.1567 | -112.9093 | 1860 m | Rosentreter,         |
| 339f | X. norchlorochroa                      | BRY-55368 | salazinic  | fragmentation | USA, ID, Clark<br>Co.     | 44.1567 | -112.9093 | 1860 m | Rosentreter, s.n.    |

| 340f | X. norchlorochroa | BRY-55369        | salazinic  | fragmentation | USA, UT, San    | 38.3291  | -109.4298 | 1780 m            | Belnap, J.,    |
|------|-------------------|------------------|------------|---------------|-----------------|----------|-----------|-------------------|----------------|
|      |                   |                  |            | U             | Juan Co.        |          |           |                   | s.n.           |
| 341f | X. norchlorochroa | BRY-55370        | salazinic  | fragmentation | USA, UT, San    | 38.3291  | -109.4298 | 1780 m            | Belnap, J.,    |
|      |                   |                  |            |               | Juan Co.        |          |           |                   | s.n.           |
| 342f | X. norchlorochroa | BRY-55371        | salazinic  | fragmentation | USA, UT, San    | 38.3839  | -109.4529 | 1580 m            | Rosentreter    |
|      |                   |                  |            |               | Juan Co.        |          |           |                   | 8230           |
| 343f | X. chlorochroa    | BRY-55372        | salazinic  | fragmentation | USA, ID, Lemhi  | 45.0237  | -113.9190 | 1280 m            | Rosentreter    |
|      |                   |                  |            |               | Co.             |          |           |                   | 8230           |
| 345f | X. chlorochroa    | BRY-55373        | salazinic  | fragmentation | USA, ID, Custer | 44.3590  | -114.0649 | 1646 m            | Rosentreter    |
|      |                   |                  |            |               | Co.             |          |           |                   | 4974           |
| 410f | X. camtschadalis  | BRY-55374        | salazinic  | fragmentation | USA, MT,        | 46.1364  | -111.4045 | 1200 m            | B. McCune      |
|      |                   |                  |            |               | Broadwater Co.  |          |           |                   | 29198          |
| 424f | X. chlorochroa    | BRY-55375        | salazinic  | fragmentation | USA, ID, Lemhi  | 44.6812  | -113.3623 | 1820 m            | BRY-34402      |
|      |                   |                  |            |               | Co.             |          |           |                   |                |
| 431f | X. chlorochroa    | BRY-55376        | salazinic  | fragmentation | USA, UT, Toole  | 40.2967  | -112.2785 | 1650 m            | SDL, LLS       |
| 1200 | X7 11 1           | DD1/ 55077       |            | c             | Co.             | 10 00 67 | 110 0505  | 1 ( 50            | <b>T 1 1</b>   |
| 432f | X. chlorochroa    | BRY-553//        | salazinic  | fragmentation | USA, UT, Toole  | 40.2967  | -112.2785 | 1650 m            | Leavitt et al. |
| 4226 | Vallenselense     | DDV 55270        | 1:-:-      | £             |                 | 40 2077  | 110 0795  | 1650              | T:44 - 4 -1    |
| 4331 | A. chlorochroa    | BK1-333/8        | salazinic  | rragmentation | USA, UI, Ioole  | 40.2967  | -112.2785 | 1650 m            | Leavitt et al. |
| 121f | V aumharlandia    | DDV 55270        | stiatia    | not observed  | USA ID Idaho    | 45 4540  | 115 0448  | 602 m             | Loovitt at al  |
| 4341 | A. cumbertanata   | DK1-33379        | sucue      | not observed  | Co              | 43.4349  | -113.9440 | 005 111           | Leavin et al.  |
| /35f | V cumberlandia    | BBV 55380        | stictic    | not observed  | USA ID Idaho    | 15 1510  | 115 0448  | 603 m             | Leowitt et al  |
| 4331 | A. cumbertanata   | DK1-33380        | sucue      | not observed  | Co              | 43.4349  | -115.9440 | 005 111           | Leavin et al.  |
| 437f | X chlorochroa     | BRV-55381        | salazinic  | fragmentation | USA UT          | 40 2039  | -110 7130 | 2088 m            | SDI IIS        |
| 43/1 | A. chiorochrou    | <b>DR1</b> 55501 | Suluzinie  | Indementation | Duchesne Co     | 40.2037  | 110.7150  | 2000 III          | GS             |
| 438f | X chlorochroa     | BRY-55382        | salazinic  | fragmentation | USA UT          | 40 2039  | -110 7130 | 2088 m            | SDL LLS        |
| 1001 |                   | 2111 00002       | 541421110  |               | Duchesne Co.    | 1012002  | 1100/100  | <b>_</b> 0000 III | GS             |
| 439f | X. diervthra      | BRY-55383        | norstictic | isidia        | USA, UT, near   | 40.2039  | -110.7130 | 2060 m            | Leavitt et al. |
|      |                   |                  |            |               | Weasel Point    |          |           |                   |                |
| 440f | X. chlorochroa    | BRY-55384        | salazinic  | fragmentation | USA. UT.        | 40.5444  | -110.2852 | 2517 m            | Leavitt et al. |
|      |                   |                  |            |               | Duchesne Co.    |          |           |                   |                |
| 441f | X. chlorochroa    | BRY-55385        | salazinic  | fragmentation | USA, UT,        | 40.5444  | -110.2852 | 2517 m            | Leavitt et al. |
|      |                   |                  |            | 0             | Duchesne Co.    |          | ·         |                   |                |
| 442f | X. lineola        | BRY-55386        | salazinic  | not observed  | USA, UT,        | 40.5260  | -110.3529 | 2426 m            | Leavitt et al. |
|      |                   |                  |            |               | Duchesne Co.    |          |           |                   |                |
| 443f | X. californica    | BRY-55387        | norstictic | not observed  | USA, UT,        | 40.2052  | -110.7133 | 2088 m            | Leavitt et al. |

| 444f | X. coloradoënsis*     | BRY-55388 | stictic   | not observed  | Duchesne Co.<br>USA, UT,                 | 40.5351 | -110.2233 | 2413 m | Leavitt et al. |
|------|-----------------------|-----------|-----------|---------------|------------------------------------------|---------|-----------|--------|----------------|
| 445f | X. coloradoënsis*     | BRY-55389 | salazinic | not observed  | Duchesne Co.<br>USA, UT,<br>Duchesne Co. | 40.5351 | -110.2233 | 2413 m | Leavitt et al. |
| 446f | X. coloradoënsis*     | BRY-55390 | salazinic | not observed  | USA, UT,<br>Duchesne Co                  | 40.5351 | -110.2233 | 2413 m | Leavitt et al. |
| 448f | X. cumberlandia       | BRY-55391 | stictic   | apothecia     | USA, ID, Idaho<br>Co.                    | 46.4301 | -115.1341 | 814 m  | Leavitt et al. |
| 449f | X. cumberlandia       | BRY-55392 | stictic   | apothecia     | USA, ID, Idaho<br>Co.                    | 46.4301 | -115.1341 | 814 m  | Leavitt et al. |
| 450f | X.<br>subcumberlandia | BRY-55393 | stictic   | apothecia     | USA, ID, Idaho<br>Co.                    | 46.0425 | -115.2767 | 750 m  | Leavitt et al. |
| 451f | X. cumberlandia       | BRY-55394 | stictic   | apothecia     | USA, ID, Idaho<br>Co.                    | 46.0425 | -115.2767 | 750 m  | Leavitt et al. |
| 452f | X. cumberlandia       | BRY-55395 | stictic   | not observed  | USA, ID, Idaho<br>Co.                    | 45.9254 | -116.1305 | 974 m  | Leavitt et al. |
| 453f | X. cumberlandia       | BRY-55396 | stictic   | not observed  | USA, ID, Idaho<br>Co.                    | 45.9254 | -116.1305 | 974 m  | Leavitt et al. |
| 454f | X. plittii            | BRY-55397 | stictic   | isidia        | USA, ID, Idaho<br>Co.                    | 45.4549 | -115.9448 | 603 m  | Leavitt et al. |
| 455f | X. cumberlandia       | BRY-55398 | stictic   | apothecia     | USA, ID, Idaho<br>Co.                    | 45.4549 | -115.9448 | 603 m  | Leavitt et al. |
| 456f | X. cumberlandia       | BRY-55399 | stictic   | apothecia     | USA, CA, Marin<br>Co.                    | 38.0929 | -122.8860 | 308 m  | Leavitt et al. |
| 457f | X. cumberlandia       | BRY-55400 | stictic   | apothecia     | USA, CA, Marin<br>Co.                    | 38.0929 | -122.8860 | 308 m  | Leavitt et al. |
| 458f | X. mexicana           | BRY-55401 | salazinic | isidia        | USA, ID, Lemhi<br>Co.                    | 45.0611 | -113.7130 | 1362 m | Leavitt et al. |
| 459f | X. mexicana           | BRY-55402 | salazinic | isidia        | USA, ID, Lemhi<br>Co.                    | 45.0611 | -113.7130 | 1362 m | Leavitt et al. |
| 460f | X. chlorochroa        | BRY-55403 | salazinic | fragmentation | USA, ID, Lemhi<br>Co.                    | 45.0611 | -113.7130 | 1362 m | Leavitt et al. |
| 461f | X. chlorochroa        | BRY-55404 | salazinic | fragmentation | USA, ID, Lemhi<br>Co.                    | 45.0611 | -113.7130 | 1362 m | Leavitt et al. |
| 462f | X. chlorochroa        | BRY-55405 | salazinic | fragmentation | USA, ID, Lemhi<br>Co.                    | 45.0611 | -113.7130 | 1362 m | Leavitt et al. |

| /63f        | Y chlorochroa    | BRV-55/06         | salazinic | fragmentation   | USA ID Lembi            | 45.0611   | -113 7130 | 1362 m        | Leavitt et al   |
|-------------|------------------|-------------------|-----------|-----------------|-------------------------|-----------|-----------|---------------|-----------------|
| 4031        | х. стотосттой    | DIX 1-55400       | Salazinie | magniciliation  | Co                      | 45.0011   | -115./150 | 1502 11       | Leavin et al.   |
| 4646        | V                | DDV 55407         | _4: _4: _ |                 |                         | 40.9591   | 110 5012  | 2645          | T:'44 - 4 - 1   |
| 4041        | $\Lambda$ .      | BK 1-33407        | sucue     | not observed    | USA, UI,                | 40.8381   | -110.3012 | 3043 III      | Leavitt et al.  |
|             | neowyomingica*   | DD1/ 55400        |           | 6               | Summit Co.              | 261167    | 107 0000  | 10.40         | DD1/ 10070      |
| 465f        | X. chlorochroa   | BRY-55408         | salazinic | fragmentation   | USA, NM, San            | 36.1167   | -107.8333 | 1940 m        | BRY-102/2       |
|             |                  |                   |           |                 | Juan Co.                |           |           |               |                 |
| 466f        | X. chlorochroa   | BRY-55409         | salazinic | fragmentation   | USA, NM,                | 36.3833   | -108.2167 | 1910 m        | BRY-10274       |
|             |                  |                   |           |                 | Navajo Indian           |           |           |               |                 |
|             |                  |                   |           |                 | Reservation.            |           |           |               |                 |
| <b>481f</b> | X. lineola       | BRY-55410         | salazinic | not observed    | USA, UT, Utah           | 40.4897   | -111.7747 | 1740 m        | Leavitt et al.  |
|             |                  |                   |           |                 | Co.                     |           |           |               |                 |
| 482f        | X. plittii       | BRY-55411         | stictic   | isidia          | USA, UT, Utah           | 40.4897   | 111.7747  | 1740 m        | Leavitt et al.  |
|             | 1                |                   |           |                 | Co.                     |           |           |               |                 |
| <b>486f</b> | X lineola        | BRY-55412         | salazinic | apothecia       | USA AZ Gila             | 34 1437   | -111 5646 | 1650 m        | EA7-58          |
| 1001        | 11. 1110010      | BRI 00112         | Suluzinie | upotiteetu      | Co                      | 5 111 157 | 111.0010  | 1020 11       |                 |
| <b>480f</b> | X chlorochroa    | BRY-55413         | salazinic | fragmentation   | USA MT                  | 48 0100   | -106 3888 | 732 m         | B McCune        |
| -071        | A. chiorochrou   | DR1-55415         | Salazinie | magmentation    | McCone Co               | 40.0100   | -100.5000 | 7 <i>52</i> m | 20218           |
| 400£        | V unominaiaa     | DDV 55414         | solozinia | not observed    | USA MT                  | 18 1568   | 107 6567  | 720 m         | D MCCupo        |
| 4901        | A. wyomingicu    | DK1-JJ414         | Salazinic | not observed    | DoA, MI,<br>Dhilling Co | 40.4500   | -107.0507 | 720 III       | D. MCCulle      |
| 401£        | V ahlanaahnaa    | DDV 55415         | aalaainia | fue amountation | Fininps CO.             | 16 5050   | 104 1770  | 1026 m        | 29317<br>McCuno |
| 4911        | A. chiorochroa   | BK1-33413         | salazinic | fragmentation   | USA, MT, Fallon         | 40.3030   | -104.1770 | 1030 III      | McCune<br>20170 |
| 40.00       | X7 11 1          | DDV 55416         |           | <b>C</b>        |                         | 20.0426   | 111 1000  | 0000          | 28170           |
| <b>492f</b> | X. chlorochroa   | BRY-55416         | salazinic | fragmentation   | USA, UT, Utah           | 39.8426   | -111.1298 | 2393 m        | SDL & JHL       |
|             |                  |                   |           |                 | Co.                     |           |           |               |                 |
| 493f        | X. chlorochroa   | BRY-55417         | salazinic | fragmentation   | USA, UT, Utah           | 39.8426   | -111.1298 | 2393 m        | SDL & JHL       |
|             |                  |                   |           |                 | Co.                     |           |           |               |                 |
| 494f        | X. angustiphylla | BRY-55418         | stictic   | not observed    | USA, NC,                | 35.0316   | -83.2387  | 1029 m        | SDL             |
|             |                  |                   |           |                 | Cherokee Co.            |           |           |               |                 |
| 495f        | X. angustiphylla | BRY-55419         | stictic   | not observed    | USA, NC,                | 35.0316   | -83.2387  | 1029 m        | SDL             |
|             |                  |                   |           |                 | Cherokee Co.            |           |           |               |                 |
| 496f        | X. plittii       | BRY-55420         | stictic   | isidiate        | USA, NC,                | 35.4327   | -82.2505  | 680 m         | Leavitt et al.  |
|             | -                |                   |           |                 | Rutherford Co.          |           |           |               |                 |
| 497f        | X. plittii       | BRY-55421         | stictic   | isidiate        | USA, NC,                | 35.4327   | -82.2505  | 680 m         | Leavitt et al.  |
|             | Ĩ                |                   |           |                 | Rutherford Co.          |           |           |               |                 |
| 498f        | X. plittii       | BRY-55422         | stictic   | isidiate        | USA, NC, Averv          | 36.0953   | -81.8292  | 1530 m        | Leavitt et al.  |
|             | <b>I</b>         | ···- •• · <b></b> |           |                 | Co.                     |           |           |               |                 |
| <b>499f</b> | X nlittii        | BRY-55423         | stictic   | isidiate        | USA NC Avery            | 36 0953   | -81 8292  | 1530 m        | Leavitt et al   |
| 7771        | <b>1.</b> puuu   | DIX1-33723        | sucue     | 1510100         | $C_{0}$                 | 50.0755   | -01.0272  | 1550 11       |                 |
|             |                  |                   |           |                 | C0.                     |           |           |               |                 |

| 501f | X. wyomingica    | BRY-55424   | salazinic | not observed    | USA, WA,              | 47.3894 | -117.8357 | 689 m     | HCH, DJH            |
|------|------------------|-------------|-----------|-----------------|-----------------------|---------|-----------|-----------|---------------------|
|      | 2 0              |             |           |                 | Lincoln Co.           |         |           |           | ,                   |
| 502f | X. wyomingica    | BRY-55425   | salazinic | not observed    | USA, WA,              | 47.3894 | -117.8357 | 689 m     | HCH, DJH            |
|      |                  |             |           |                 | Lincoln Co.           |         |           |           |                     |
| 504f | X. mexicana      | BRY-55426   | salazinic | isidia          | USA, AZ,              | 37.7117 | -111.5944 | 1955 m    | J. Hollinger        |
|      |                  |             |           |                 | Coconino Co.          |         |           |           | 20080608.18         |
| 505f | X. coloradoënsis | BRY-55427   | salazinic | not observed    | USA, AZ,              | 35.1534 | -111.7409 | 2220 m    | J. Hollinger        |
|      |                  |             |           |                 | Coconino Co.          |         |           |           | 20080624.27         |
| 508f | X. mexicana      | BRY-55428   | salazinic | isidia          | USA, UT,              | 38.2454 | -111.3768 | 2127 m    | J. Hollinger        |
|      |                  |             |           |                 | Wayne Co.             |         |           |           | 20080606.64         |
| 509f | X. lineola       | BRY-55429   | salazinic | apothecia       | USA, UT,              | 38.2454 | -111.3768 | 2127 m    | J. Hollinger        |
|      |                  |             |           |                 | Wayne Co.             |         |           |           | 20080606.63         |
| 516f | X. chlorochroa   | BRY-55430   | salazinic | fragmentation   | USA, ND, Slope        | 46.4564 | -103.9277 | 830 m     | J. Hertz 2075       |
|      |                  |             |           |                 | Co.                   |         |           |           |                     |
| 517f | X. chlorochroa   | BRY-55431   | salazinic | fragmentation   | USA, ND, Slope        | 46.4564 | -103.9277 | 830 m     | J. Hertz 2075       |
|      | X7 11 1          | DD1/ 55/00  |           | <b>c</b>        | Co.                   | 17 0701 | 100 00 60 | (10       |                     |
| 525f | X. chlorochroa   | BRY-55432   | salazinic | fragmentation   | USA, ND, Dunn         | 47.3721 | -102.9963 | 610 m     | Esslinger           |
| 50(f | Vahlanaahnaa     | DDV 55422   | aalazinia | fue amountation | USA ND Durr           | 47 2721 | 102 0062  | 610 m     | 1001/<br>Eastingeon |
| 5201 | A. chiorochroa   | DK I -33433 | salazinic | magmentation    | OSA, ND, Duilli<br>Co | 47.3721 | -102.9903 | 010 111   |                     |
| 527f | V camtschadalis  | BDV 55/3/   | salazinio | fragmentation   | USA MT                | 45 6011 | 100 0660  | 1110 m    | Feelinger           |
| 5411 | A. cumischuuulis | DK1-33434   | Salazinic | magmentation    | Stillwater Co         | 45.0011 | -109.0000 | 1110 111  | 12685               |
| 534f | X camtschadalis  | BRY-55435   | salazinic | fragmentation   | USA ND Dunn           | 47 5048 | -102 6341 | 730 m     | G L ind 1213        |
| 5541 | A. cumischuuuns  | DR1-33-35   | Salazinie | magmentation    | Co                    | +7.50+0 | -102.0541 | 750 III   | 0. Lind 1215        |
| 535f | X. camtschadalis | BRY-55436   | salazinic | fragmentation   | USA, ND, Dunn         | 47.5048 | -102.6341 | 730 m     | G. Lind 1213        |
| 0001 |                  |             | 5         |                 | Co.                   |         | 10210011  | , e o 111 | 0. 2                |
| 536f | X. chlorochroa   | BRY-55437   | salazinic | fragmentation   | USA, ND, Dunn         | 47.5048 | -102.6341 | 730 m     | G. Lind 1213        |
|      |                  |             |           | C               | Co.                   |         |           |           |                     |
| 574f | X. chlorochroa   | BRY-55438   | salazinic | fragmentation   | USA, UT,              | 38.5945 | -113.7430 | 760 m     | Leavitt et al.      |
|      |                  |             |           | •               | Millard Co.           |         |           |           |                     |
| 575f | X. cumberlandia  | BRY-55439   | stictic   | not observed    | USA, CA, San          | 32.9185 | -117.2553 | 90 m      | SDL, DHL,           |
|      |                  |             |           |                 | Diego Co.             |         |           |           | AB                  |
| 576f | X. plittii       | BRY-55440   | stictic   | isidia          | USA, CA, San          | 32.9185 | -117.2553 | 90 m      | Leavitt et al.      |
|      |                  |             |           |                 | Diego Co.             |         |           |           |                     |
| 577f | X cumberlandia   | BRY-55441   | stictic   | not observed    | USA, CA, Marin        | 37.9111 | -122.6243 | 592 m     | SDL                 |
|      |                  |             |           |                 | Co.                   |         |           |           |                     |
| 578f | X. mexicana      | BRY-55442   | salazinic | not observed    | USA, CA, Marin        | 37.9111 | -122.6243 | 605 m     | SDL                 |

| 579f          | X. cumberlandia                 | BRY-55443                           | stictic    | not observed    | Co.<br>USA, CA, Marin    | 37.9978 | -123.0118 | 142 m                | SDL         |
|---------------|---------------------------------|-------------------------------------|------------|-----------------|--------------------------|---------|-----------|----------------------|-------------|
|               |                                 |                                     |            |                 | Co.                      |         |           |                      |             |
| 580f          | X. lineola                      | BRY-55444                           | salazinic  | not observed    | USA, AZ,                 | 33.8474 | -111.4720 | 1150 m               | R. Fuller   |
| ((56          | Vahlanaahnaa                    | DDV 55445                           |            | fue an entetion | Maricopa Co.             | 27 2051 | 107 2274  | 1005 m               |             |
| 0051          | A. chiorochroa                  | BR I -33443                         | salazinic  | fragmentation   | USA, CO,<br>Archuleta Co | 37.2031 | -107.3274 | 1995 III             | SDL & HCL   |
| 666f          | X chlorochroa                   | BRY-55446                           | salazinic  | fragmentation   | USA CO                   | 37 2051 | -107 3274 | 1995 m               | SDL & HCL   |
| 0001          | A. chiorochrou                  | DRI 55110                           | Suluzinie  | nuginentation   | Archuleta Co.            | 57.2051 | 107.5271  | 1775 m               | SDL & HeL   |
| 771f          | X. norchlorochroa               | BRY-55447                           | norstictic | fragmentation   | USA, CO, Rio             | 39.8278 | -107.2985 | 3020 m               | SDL, LLS,   |
|               |                                 |                                     |            | •               | Blano Co.                |         |           |                      | GS          |
| 772f          | X. chlorochroa                  | BRY-55448                           | salazinic  | fragmentation   | USA, UT,                 | 38.2328 | -112.3652 | 3035 m               | М.          |
|               |                                 |                                     |            | _               | Piute/Beaver Co.         |         |           |                      | Greenwood   |
| 773f          | X. wyomingica                   | BRY-55449                           | salazinic  | not observed    | USA, MT, Lewis           | 46.8206 | -111.8160 | 1280 m               | LLS, RCS,   |
| <b>77 4</b> 0 | V · ·                           | DDV 55450                           | 1 • •      | 1.              | and Clark Co.            | 46.8206 | 111.01/0  | 1000                 | GS, SDL     |
| 774 <b>f</b>  | X. mexicana*                    | вкү-55450                           | salazinic  | 181018          | USA, MT, Lewis           | 46.8206 | -111.8160 | 1280 m               | LLS, KCS,   |
| 775f          | X chlorochroa                   | BRY-55451                           | salazinic  | fragmentation   |                          | 39 8790 | -106 2781 | 2447 m               | SDI         |
| 1151          | 21. <i>Chiorochrou</i>          | <b>DN I</b> -55 <b>T</b> 5 <b>I</b> | Salazinie  | magmentation    | Summit Co.               | 57.0770 | 100.2701  | עדד/ III <i>בדר⊿</i> | 5DL         |
| 776f          | X. chlorochroa                  | BRY-55452                           | salazinic  | apothecia/frag  | USA, CO, Teller          | 38.9275 | -106.2824 | 2545 m               | SDL         |
|               | (apotheciate)                   |                                     |            | mentation       | Co.                      |         |           |                      |             |
| 777f          | X. camtschadalis                | BRY-55453                           | salazinic  | fragmentation   | USA, SD.                 | 45.9230 | -102.3628 | 760 m                | SDL         |
|               |                                 |                                     |            |                 | Perkins Co.              |         |           |                      |             |
| 778f          | X. chlorochroa                  | BRY-55454                           | salazinic  | fragmentation   | USA, SD,                 | 45.3998 | -103.1636 | 991 m                | SDL         |
|               | ** 11 1                         |                                     |            | <b>a b</b>      | Harding Co.              |         | 100 0010  | 000                  |             |
| 77 <b>9</b> f | X. chlorochroa                  | BRY-55455                           | salazinic  | tragmentation   | USA, SD, Butte           | 45.0651 | -103.3813 | 890 m                | SDL         |
| 780f          | V chlorochroc                   | BDV 55156                           | salazinic  | anothecia/frag  | UO.<br>USA ND Durn       | 17 3578 | 103 0523  | 751 m                | SDI         |
| / 001         | A. Chiorochrod<br>(anotheciate) | DK I -33430                         | Salazinic  | mentation       | $C_0$                    | 47.5578 | -105.0525 | / 31 111             | SUL         |
| 781f          | X. chlorochroa                  | BRY-55457                           | salazinic  | fragmentation   | USA. ND.                 | 46.7874 | -103.3164 | 847 m                | SDL         |
|               |                                 |                                     |            |                 | Billings Co.             |         | 100.0101  |                      |             |
| 782f          | X. chlorochroa                  | BRY-55458                           | salazinic  | fragmentation   | USA, NV, White           | 39.3035 | -114.3727 | 1706 m               | SDL and LLS |
|               |                                 |                                     |            | -               | Pine Co.                 |         |           |                      |             |
| 783f          | X. chlorochroa                  | BRY-55459                           | salazinic  | apothecia/frag  | USA, NE, Souix           | 42.1191 | -103.6791 | 1431 m               | SDL         |
|               | (apotheciate)                   |                                     |            | mentation       | Co.                      |         |           |                      |             |
| 784f          | X. chlorochroa                  | BRY-55460                           | salazinic  | fragmentation   | USA, NE, Souix           | 42.4657 | -103.7942 | 1423 m               | SDL         |
|               |                                 |                                     |            |                 | C0.                      |         |           |                      |             |

| 785f | X. chlorochroa    | BRY-55461  | salazinic | fragmentation  | USA, ND,        | 46.8908  | 101.4294  | 650 m    | SDL       |
|------|-------------------|------------|-----------|----------------|-----------------|----------|-----------|----------|-----------|
|      |                   |            |           |                | Morton Co.      |          |           |          |           |
| 786f | X. mexicana       | BRY-55462  | salazinic | isidia         | USA, ND,        | 47.4202  | -101.6317 | 641 m    | SDL       |
|      |                   |            |           |                | Mercer Co.      |          |           |          |           |
| 787f | X. idahoensis     | BRY-55463  | salazinic | not observed   | USA, WY,        | 41.3240  | -105.7434 | 2240 m   | SDL       |
|      |                   |            |           |                | Albany Co.      |          |           |          |           |
| 788f | X. norchlorochroa | BRY-55464  | salazinic | fragmentation  | USA, WY,        | 41.0765  | -108.1540 | 1576 m   | J. Munsha |
| -    | ¥7 11 1           |            |           | c              | Sweetwater Co.  | 10 501 6 | 107 0000  | 1 5 7 6  | T 1 7 1   |
| 789f | X. chlorochroa    | BRY-55465  | salazinic | fragmentation  | USA, WY, Hot    | 43.5916  | -107.8383 | 1576 m   | J. Munsha |
| 7006 | V                 | DDV 55466  | 1         |                | Springs Co.     | 44 2295  | 100 7050  | 1501     | CDI       |
| 7901 | X. wyomingica     | BKY-55466  | salazinic | not observed   | USA, WY,        | 44.3385  | -106./656 | 1581 m   | SDL       |
| 701f | V chlorochroa     | BDV 55467  | salazinio | fragmentation  | JOHNSON CO.     | 11 8246  | 110 7632  | 2010 m   | SDI       |
| /911 | А. стотосттой     | DK1-33407  | Salazinic | magnientation  | Lincoln Co      | 41.8240  | -110.7032 | 2019 111 | SDL       |
| 792f | X chlorochroa     | BRY-55468  | salazinic | fragmentation  | USA MT Custer   | 46 3748  | -105 8818 | 673 m    | I Munsha  |
| // 1 | n. entoroenrou    | DR1 55 100 | Suluzinie | inaginentation | Co.             | 10.5710  | 105.0010  | 075 m    | 5. Mansha |
| 793f | X. chlorochroa    | BRY-55469  | salazinic | fragmentation  | USA, MT, Custer | 46.3955  | -105.7800 | 853 m    | J. Munsha |
|      |                   |            |           | 0              | Co.             |          |           |          |           |
| 794f | X. chlorochroa    | BRY-55470  | salazinic | fragmentation  | USA, MT,        | 45.1064  | -106.7873 | 1058 m   | SDL       |
|      |                   |            |           |                | Bighorn Co.     |          |           |          |           |
| 795f | X. chlorochroa    | BRY-55471  | salazinic | fragmentation  | USA, MT, Custer | 46.3187  | -105.9884 | 814 m    | SDL       |
|      |                   |            |           |                | Co.             |          |           |          |           |
| 796f | X. chlorochroa    | BRY-55472  | salazinic | fragmentation  | USA, CO,        | 39.7319  | -103.9356 | 1585 m   | SDL       |
|      | ¥7 . 1 1 1        | DD1/ 55450 |           | c              | Arapahoe Co.    | 10.0522  | 105 05 60 | 1020     |           |
| 797f | X. camtschadalis  | BRY-55473  | salazinic | fragmentation  | USA, CO,        | 40.8532  | -105.2568 | 1920 m   | SDL       |
| 700£ | V ahlanaahnaa     | DDV 55474  | colozinio | fragmantation  | Larimie Co.     | 20 4477  | 102 0247  | 1674 m   | CDI       |
| /981 | A. Chiorochrou    | DK1-334/4  | salazinic | Inaginemation  | Co.             | 39.4477  | -105.9247 | 10/4 111 | SDL       |
| 799f | X chlorochroa     | BRY-55475  | salazinic | fragmentation  | USA CO Elbert   | 39 3425  | -104 5777 | 2013 m   | SDI       |
| ///  | A. entorochrou    | DR1 55475  | Suluzinie | Indementation  | Co.             | 57.5425  | 104.5777  | 2015 III | SDL       |
| 800f | X. chlorochroa    | BRY-55476  | salazinic | fragmentation  | USA. CO. Weld   | 40.6403  | -104.4489 | 1519 m   | SDL       |
|      |                   |            |           | 8              | Co.             |          |           |          | ~         |
| 801f | X. chlorochroa    | BRY-55477  | salazinic | fragmentation  | USA, WY,        | 42.2370  | -109.1712 | 2112 m   | SDL       |
|      |                   |            |           | C              | Sweetwater Co.  |          |           |          |           |
| 802f | X. chlorochroa    | BRY-55478  | salazinic | fragmentation  | USA, WY,        | 44.2751  | -104.9885 | 1293 m   | SDL       |
|      |                   |            |           |                | Crook Co.       |          |           |          |           |
| 804f | X. chlorochroa    | BRY-55479  | salazinic | fragmentation  | USA, WY,        | 43.2021  | -107.9202 | 1569 m   | SDL       |

|               |                      |             |           |               | Fremont Co.     |         |           |          |     |
|---------------|----------------------|-------------|-----------|---------------|-----------------|---------|-----------|----------|-----|
| 805f          | X. chlorochroa       | BRY-55480   | salazinic | fragmentation | USA, WY,        | 43.0346 | -106.8668 | 1713 m   | SDL |
| 0076          | Valilanailana        | DDV 55401   | 1:-:-     | £             | Natroma Co.     | 41 7410 | 104 0054  | 1661     | CDI |
| 8001          | A. chiorochroa       | BK I -35481 | salazinic | iragmentation | USA, WY,        | 41./412 | -104.8854 | 1001 m   | SDL |
| 807£          | V ablarachroa        | DDV 55482   | colozinio | fragmontation | Albany Co.      | 12 7062 | 105 6146  | 1581 m   | SDI |
| 00/1          | <b>л.</b> стотосттой | DK1-33462   | Salazinic | magmentation  | OSA, W1,        | 42.7903 | -105.0140 | 1364 11  | SDL |
| 808f          | X chlorochroa        | BRV-55483   | salazinic | fragmentation | USA WY          | 41 9526 | -110 2440 | 2046 m   | SDI |
| 0001          | А. стотостой         | DR1-55405   | Salazinie | magmentation  | Lincoln Co      | 41.9520 | -110.2440 | 2040 III | SDL |
| 809f          | X. chlorochroa       | BRY-55484   | salazinic | fragmentation | USA. WY.        | 44.2165 | -106.3028 | 1418 m   | SDL |
| 0071          |                      |             |           | 8             | Johnson Co.     |         |           |          | ~   |
| 810f          | X. chlorochroa       | BRY-55485   | salazinic | fragmentation | USA, WY,        | 44.2854 | -105.1447 | 1304 m   | SDL |
|               |                      |             |           | C             | Cambell Co.     |         |           |          |     |
| 811f          | X. chlorochroa       | BRY-55486   | salazinic | fragmentation | USA, WY,        | 42.7607 | -104.9120 | 1535 m   | SDL |
|               |                      |             |           |               | Niobara Co.     |         |           |          |     |
| 812f          | X. chlorochroa       | BRY-55487   | salazinic | fragmentation | USA, WY,        | 42.9370 | -108.4622 | 1576 m   | SDL |
|               |                      |             |           |               | Fremont Co.     |         |           |          |     |
| 813f          | X. camtschadalis     | BRY-55488   | salazinic | fragmentation | USA, WY,        | 40.9999 | -105.4130 | 2310 m   | SDL |
| 0148          | X7 11 1              | DD11 55400  |           | <b>c</b>      | Albany Co.      | 44.0050 | 105 0 150 | 1.417    |     |
| 8141          | X. chlorochroa       | BRY-55489   | salazinic | fragmentation | USA, WY,        | 44.2052 | -105.8470 | 1417 m   | SDL |
| 01 <i>5</i> £ | V ahlanaahnaa        | DDV 55400   | colozinio | fragmantation | Cambell Co.     | 41 2220 | 105 7424  | 2225 m   | CDI |
| 0121          | A. chiorochroa       | DK I -33490 | salazinic | magmentation  | OSA, WI,        | 41.5259 | -105.7454 | 2255 III | SDL |
| 816f          | X chlorochroa        | BRV-55491   | salazinic | fragmentation | LISA WY         | 43 6905 | -105 4714 | 1497 m   | SDI |
| 0101          | A. emorochrou        | DR1 55471   | Suluzinie | magmentation  | Converse Co     | 45.0705 | 105.4714  | 1477 111 | SDL |
| 817f          | X. camtschadalis     | BRY-55492   | salazinic | not observed  | USA, WY, Platte | 41.8191 | -105.2622 | 2150 m   | SDL |
|               |                      |             |           |               | Co.             |         |           |          |     |
| 818f          | X. chlorochroa       | BRY-55493   | salazinic | fragmentation | USA, WY,        | 43.0836 | -107.2107 | 1862 m   | SDL |
|               |                      |             |           |               | Natroma Co.     |         |           |          |     |
| 819f          | X. chlorochroa       | BRY-55494   | salazinic | fragmentation | USA, WY,        | 41.5827 | -105.6372 | 2177 m   | SDL |
|               |                      |             |           |               | Albany Co.      |         |           |          |     |
| 820f          | X. chlorochroa       | BRY-55495   | salazinic | fragmentation | USA, CO, Weld   | 40.6097 | -103.8026 | 1431 m   | SDL |
| 0010          | X7 11 1              | DDV 55406   | 1 • •     | 6             | Co.             | 20.0254 | 105 0125  | 0700     | CDI |
| 821f          | X. chlorochroa       | вкт-55496   | salazinic | tragmentation | USA, CO, Park   | 39.0254 | -105.8137 | 2/33 m   | SDL |
| 877f          | V chlorochroc        | BDV 55407   | calazinic | fragmentation |                 | 38 8/11 | 106 0050  | 2673 m   | SDI |
| 0441          | A. CHIOIOCHIOU       | DK1-33497   | Salazinic | maginemation  | Chaffee Co      | 30.0411 | 100.0039  | 2073 III | SDL |
|               |                      |             |           |               | Charles CO.     |         |           |          |     |

| 823f | X. wvominigica         | BRY-55498  | salazinic | apothecia     | USA, CO.                     | 38.8411 | -106.0059 | 2673 m               | SDL                      |
|------|------------------------|------------|-----------|---------------|------------------------------|---------|-----------|----------------------|--------------------------|
| 0201 | (with apothecia)       | Bitl 00100 | Suluzinie | upoullociu    | Chaffee Co.                  | 5010111 | 100.0027  | 2075 m               | 50L                      |
| 824f | X. chlorochroa         | BRY-55499  | salazinic | fragmentation | USA, CO,                     | 40.6206 | -107.4658 | 1942 m               | SDL                      |
|      |                        |            |           | U             | Moffat Co.                   |         |           |                      |                          |
| 825f | X. chlorochroa         | BRY-55500  | salazinic | fragmentation | USA, CO,                     | 40.4252 | -106.5233 | 2553 m               | SDL                      |
|      |                        |            |           |               | Jackson Co.                  |         |           |                      |                          |
| 826f | X. wyomingica          | BRY-55501  | salazinic | not observed  | USA, WY,                     | 44.3394 | -106.9768 | 2462 m               | SDL                      |
|      | (type)                 |            |           |               | Johnson Co.                  |         |           |                      |                          |
| 827f | X. wyomingica          | BRY-55502  | salazinic | not observed  | USA, WY,                     | 44.3394 | -106.9768 | 2462 m               | SDL                      |
|      | (type)                 |            |           |               | Johnson Co.                  |         |           |                      |                          |
| 828f | X. mexicana            | BRY-55503  | salazinic | isidia        | USA, WY,                     | 44.3394 | -106.9768 | 2462 m               | SDL                      |
|      |                        |            |           |               | Johnson Co.                  |         |           |                      |                          |
| 829f | X. camtschadalis       | BRY-55504  | salazinic | fragmentation | USA, ND,                     | 47.6020 | -103.4499 | 740 m                | SDL                      |
|      |                        |            |           |               | Billings Co.                 |         |           |                      |                          |
| 830f | X. mexicana            | BRY-55505  | salazinic | isidia        | USA, NV, White               | 39.2478 | -114.1195 | 2326 m               | LLS and SDL              |
|      |                        |            |           |               | Pine Co.                     |         |           |                      |                          |
| 901f | X. camtschadalis       | BRY-55506  | salazinic | not observed  | Canada, BC,                  | 50.7607 | -118.8457 | 2080 m               | C. Bjork                 |
|      |                        |            |           |               | Kamloops.                    |         |           |                      | 2008, s. n.              |
| 902f | X. camtschadalis       | BRY-55507  | salazinic | not observed  | Canada, BC,                  | 50.7607 | -118.8457 | 2080 m               | T. Goward                |
|      | ·· · · · ·.            |            |           |               | Kamloops.                    | 10.0000 | 110 1000  | 1000                 | 2008, s.n.               |
| 903f | X. cumberlandia        | BRY-55508  | stictic   | apothecia     | Canada, BC,                  | 49.0320 | -119.4660 | 1300'                | C. Bjork                 |
| 0048 | X7 1 1 1.              | DD1/ 55500 |           |               | Osoyoos                      | 51.0642 | 110 0000  | 1005                 | 2007-15213               |
| 904f | X. cumberlandia        | BRY-55509  | sticitic  | not observed  | Canada, BC,                  | 51.8643 | -119.9833 | 1027  m              | T. Goward                |
| 0050 | X 1 1 1                | DDV 55510  | ,· ·,·    | .1            | Table Mountain               | 51 9654 | 120.0405  | (02                  | 2008, s.n.               |
| 9051 | X. cumberlandia        | BK 1-22210 | sticitic  | apotnecia     | Canada, BC,                  | 51.8654 | -120.0405 | 692 m                | 1. Goward                |
| 0076 | V at an an heall a     | DDV 55511  | aalazinia | not obcomind  | Frogpond Trail               | 51 9696 | 120 0215  | 714 m                | 2008, s.n.<br>T. Coward  |
| 9001 | л. sienopnyiia         | DK1-33311  | salazinic | not observed  | Edgewood                     | 31.0000 | -120.0213 | /14 111              | 1. Gowaru                |
| 008£ | V stanonhylla          | BBV 55512  | salazinic | not observed  | Canada BC                    | 51 8600 | 120 0257  | 715 m                | 2008, S.II.<br>T. Goward |
| 9001 | л. sienopnyiiu         | DK1-33312  | Salazinic | not observed  | Callada, DC,<br>Boulder City | 51.0099 | -120.0237 | /15 111              | 2008 s n                 |
| 000f | Y cumberlandia         | BRV-55513  | sticitic  | not observed  | Canada BC                    | 51 86/3 | -110 0833 | 1027 m               | T Goward                 |
| 9091 | A. cumbertunutu        | DK1-55515  | sticitic  | not observed  | Callaua, DC,<br>Table Mtn    | 51.6045 | -119.9055 | 1027 111             | 2008 s n                 |
| 011f | X stenophylla          | BRV-55514  | salazinic | not observed  | Canada BC                    | 51 8024 | -120 0295 | 640 m                | T Goward                 |
| /111 | 21. <i>Stenophytia</i> | BK1-33314  | Salazinie |               | Fage Bluffs                  | 51.0027 | 120.0275  | 0 <del>1</del> 0 III | 2008 s n                 |
| 912f | X nlittii              | BRY-55515  | stictic   | Isidia        | Canada BC                    | 50 7607 | -118 8457 | 2080 m               | T Goward                 |
| /1#1 | 1                      | DICI 00010 | stictic   | 101414        | Kamloons                     | 20.1001 | 110.0107  | 2000 m               | 2008 s n                 |
| 913f | X. cumberlandia        | BRY-55516  | sticitic  | not observed  | Canada, BC.                  | 51.8024 | -120.0295 | 640 m                | T. Goward                |

|       |                  |                    |           | _             | Fage Bluffs     |         |           |        | 2008, s.n.              |
|-------|------------------|--------------------|-----------|---------------|-----------------|---------|-----------|--------|-------------------------|
| 914f  | X. cumberlandia  | BRY-55517          | sticitic  | apothecia     | Canada, BC,     | 51.8686 | -120.0215 | 714 m  | T. Goward               |
|       |                  |                    |           | _             | Edgewood        |         |           |        | 2008, s.n.              |
| 915f  | X. stenophylla   | BRY-55518          | salazinic | not observed  | Canada, BC,     | 51.8024 | -120.0295 | 640 m  | T. Goward               |
|       |                  |                    |           |               | Fage Bluffs     |         |           |        | 2008, s.n.              |
| 916f  | X. mexicana      | BRY-55519          | salazinic | isidia        | WA, Spokane     | 47.4189 | -117.5688 | 700 m  | C. Bjork                |
|       |                  |                    |           |               | Co.             |         |           |        | 17714                   |
| 917f  | X. stenophylla   | BRY-55520          | salazinic | apothecia     | Canada, BC,     | 51.8706 | -120.0305 | 714 m  | J. Hollinger            |
|       |                  |                    |           |               | Edgewood West   |         |           |        | 17714                   |
| 918f  | X. stenophylla   | BRY-55521          | salazinic | apothecia     | Canada, BC,     | 51.8686 | -120.0215 | 714 m  | T. Goward               |
|       |                  |                    |           |               | WGP: Edgewood   |         |           |        | 2008, s.n.              |
| 919f  | X. plittii       | BRY-55522          | stictic   | isidia        | USA, MT,        | 47.2254 | -114.9657 | 820 m  | T. Goward               |
|       |                  |                    |           |               | Mineral Co.     |         |           |        | 2008, s.n.              |
| 920f  | X. mexicana      | BRY-55523          | salazinic | isidia        | USA, MT, Carter | 45.8192 | -104.4400 | 1100 m | T. Wheeler              |
|       | <b>.</b>         |                    |           |               | Co.             | 10.0    |           |        | 1875                    |
| 922f  | X. coloradoënsis | BRY-55524          | salazinic | not observed  | USA, MT,        | 48.0413 | -115.7517 | 1630 m | T. Wheeler              |
|       | <b>.</b>         |                    |           |               | Sanders Co.     |         | 110 0010  | 0050   | 1371                    |
| 923f  | X. coloradoënsis | BRY-55525          | salazinic | not observed  | USA, MT, Lake   | 47.2952 | -113.8312 | 2370 m | T. Wheeler              |
|       | <b>.</b>         |                    |           | <u> </u>      | Co.             |         | 100 00 55 |        | 1409                    |
| 924f  | X. camtschadalis | BRY-55526          | salazinic | tragmentation | Canada, BC,     | 55.1945 | -123.2966 | 970 m  | C. Bjork                |
|       | ** . 1 1 1       |                    |           | c             |                 |         | 100 00 65 | 1000   | 16372                   |
| 925f  | X. camtschadalis | BRY-55527          | salazinic | tragmentation | Canada,         | 55.5717 | -123.2966 | 1280 m | McCintosh               |
| 0.0.0 | ¥7 · ·           | DDM SSSC           |           |               | Saskatchewan    |         | 110 0001  | 0.20   | 8828e                   |
| 926f  | X. wyomingica    | BRY-55528          | salazınıc | not observed  | USA, MT,        | 47.7561 | -110.8991 | 830 m  | T. Wheeler              |
| 0.050 | ¥7 · ·           | DDV 55500          | 1 • •     |               | Kussell Co      | 47 7561 | 110 0001  | 020    | 2006, s.n.              |
| 927f  | A. wyomingica    | вкү-55529          | salazinic | not observed  | USA, MT,        | 47.7561 | -110.8991 | 830 m  | 1. Wheeler              |
| 0206  | XZ 1 1 1.        | DDW 55520          | ,· ·,·    | . 1 1         | Kussell Co      | 51 0000 | 100 0000  | 100    | 2006, s.n.              |
| 9281  | A. cumberlandia  | вкт-22230          | sticitic  | not observed  | Canada, BC,     | 51.8000 | -120.0203 | 496 m  | 1. Goward               |
| 0.206 | V and and and a  | DDV 55521          | atiaitia  | not obcomio i | Diue Bluffs     | 51 9706 | 120 0205  | 714 m  | 2008, s.n.<br>T. Coward |
| 929I  | л. cumberiandia  | <b>БКТ-3333</b> 1  | sucitic   | not observed  |                 | 31.8/00 | -120.0305 | /14 m  | 1. Goward               |
| 0.20£ | V and and and a  | DDV 55522          | atiaitia  | not obcomio i | WGP: Eugewood   | 47 4190 | 117 5600  | 700 m  | $200\delta$ , s.n.      |
| 9301  | л. cumperiandia  | <b>БКТ-3333</b> 2  | sucitic   | not observed  | USA, WA,        | 47.4189 | -11/.3088 | 700 m  | C. BJOIK                |
| 021£  | V auch and and a | DDV 55522          | stigitio  | not obcomind  | Spokane Co.     | 50 7607 | 110 0157  | 2000 m | 1//19<br>T. Coward      |
| 9311  | л. cumpertanata  | <b>ВК I -33333</b> | suciue    | not observed  | Callada, BC,    | 30.7007 | -118.843/ | 2080 m | 1. Goward               |
| 0225  | Voumberlandia    | DDV 55524          | stigitio  | not obcomind  | Kannoops        | 17 2621 | 117 5004  | 700    | 2008, S.II.             |
| 932I  | л. cumperiandia  | <b>БКІ-33334</b>   | sucitic   | not observed  | USA, WA,        | 47.3031 | -11/.3804 | 700 m  | C. BJOIK                |
|       |                  |                    |           |               | spokane Co.     |         |           |        | 100/1                   |

| 933f         | X stenophylla    | BRY-55535         | salazinic | not observed  | Canada BC      | 51 8686 | -120 0215 | 714 m     | T Goward      |
|--------------|------------------|-------------------|-----------|---------------|----------------|---------|-----------|-----------|---------------|
| 7551         | A. stenophytic   | <b>DRT</b> 555555 | Suluzinie | not observed  | Edgewood       | 51.0000 | 120.0215  | / 1 4 111 | 2008 s n      |
| 934f         | X stenophylla    | BRY-55536         | salazinic | not observed  | Canada BC      | 51 8699 | -120 0257 | 715 m     | T Goward      |
| 7541         | A. stenophytic   | <b>DRT</b> 55550  | Suluzinie | not observed  | Boulder City   | 51.0077 | 120.0257  | /15 III   | 2008 s n      |
| 935f         | X cumberlandia   | BRY-55537         | sticitic  | apothecia     | Canada BC      | 51 8024 | -120 0295 | 640 m     | T Goward      |
| 7551         | n. cumbertanata  | DRI 55557         | stientie  | upotiteetu    | Eage Bluffs    | 51.0021 | 120.0295  | 010 11    | 2008 s n      |
| 936f         | X mexicana       | BRY-55538         | salazinic | isidia        | IISA WA        | 47 9449 | -119 0282 | 510 m     | C Biork       |
| 2001         | n. menteunu      | DR1 55550         | Suluzinie | Isidiu        | Grand Co       | 17.5115 | 119.0202  | 510 m     | 17707         |
| 937f         | X cumberlandia   | BRY-55539         | sticitic  | anothecia     | Canada BC      | 51 8654 | -120 0405 | 692 m     | I Hollinger   |
| <i>)</i> 5/1 | n. cumbertanata  | DR1 55557         | stientie  | upotiteetu    | Frognond Trail | 51.0051 | 120.0105  | 072 m     | s n           |
| 938f         | X cumberlandia   | BRY-55540         | sticitic  | not observed  | Canada BC      | 51 8686 | -120 0215 | 714 m     | T Goward      |
| 2001         | n. cumbertanata  | DR1 55510         | stientie  | not observed  | Edgewood       | 51.0000 | 120.0215  | / 1 / 111 | 2008 s n      |
| 939f         | X. cumberlandia  | BRY-55541         | sticitic  | not observed  | Canada, BC.    | 51.8699 | -120.0257 | 715 m     | T. Goward     |
| <i>,,,,</i>  |                  | 2111 000 11       | 5         | 100 00001 000 | Boulder City   | 0110077 | 12010207  | , 10 11   | 2008. s.n.    |
| 940f         | X. stenophylla   | BRY-55542         | salazinic | not observed  | Canada, BC.    | 51.8699 | -120.0257 | 715 m     | T. Goward     |
|              |                  |                   |           |               | Boulder City   |         |           |           | 2008. s.n.    |
| 941f         | X. stenophylla   | BRY-55543         | salazinic | not observed  | Canada, BC,    | 51.8699 | -120.0257 | 715 m     | T. Goward     |
|              | 1 2              |                   |           |               | Boulder City   |         |           |           | 2008, s.n.    |
| 942f         | X. stenophylla   | BRY-55544         | salazinic | not observed  | Canada, BC,    | 51.8686 | -120.0215 | 714 m     | T. Goward     |
|              | 1 2              |                   |           |               | Edgewood       |         |           |           | 2008, s.n.    |
| 943f         | X. stenophylla   | BRY-55545         | salazinic | not observed  | Canada, BC,    | 51.8699 | -120.0257 | 715 m     | T. Goward     |
|              | 1 2              |                   |           |               | Boulder City   |         |           |           | 2008, s.n.    |
| 944f         | X. cumberlandia  | BRY-55546         | sticitic  | not observed  | Canada, BC,    | 51.8654 | -120.0405 | 692 m     | J. Hollinger, |
|              |                  |                   |           |               | Frogpond Trail |         |           |           | s.n.          |
| 945f         | X. stenophylla   | BRY-55547         | salazinic | not observed  | Canada, BC,    | 51.8654 | -120.0405 | 692 m     | T. Goward     |
|              |                  |                   |           |               | Frogpond Trail |         |           |           | 2008, s.n.    |
| 946f         | X. stenophylla   | BRY-55548         | salazinic | not observed  | Canada, BC,    | 51.8706 | -120.0305 | 714 m     | T. Goward     |
|              |                  |                   |           |               | Edgewood West  |         |           |           | 2008, s.n.    |
| 947f         | X. subplittii    | BRY-55549         | stictic   | isidia        | Canada, BC,    | 51.8024 | -120.0295 | 640 m     | T. Goward     |
|              |                  |                   |           |               | Fage Bluffs    |         |           |           | 2008, s.n.    |
| 948f         | X. camtschadalis | BRY-55550         | salazinic | not observed  | Canada, BC,    | 50.6880 | -120.4685 | 410 m     | T. Goward     |
|              |                  |                   |           |               | Kamloops.      |         |           |           | 2008, s.n.    |
| 949f         | X. camtschadalis | BRY-55551         | salazinic | not observed  | Canada, BC,    | 50.6880 | -120.4685 | 410 m     | T. Goward     |
|              |                  |                   |           |               | Kamloops.      |         |           |           | 2008, s.n.    |
| 950f         | X. wyomingica    | BRY-55552         | salazinic | not observed  | USA, WA,       | 47.5902 | -118.5359 | 670 m     | C. Bjork      |
|              |                  |                   |           |               | Lincoln Co.    |         |           |           | 2008 15542    |
| 951f         | X. stenophylla   | BRY-55553         | salazinic | not observed  | Canada, BC,    | 50.6880 | -120.4685 | 670 m     | T. Goward     |

| Kamloops.                                                                                          | 2008, s.n.       |
|----------------------------------------------------------------------------------------------------|------------------|
|                                                                                                    |                  |
| <b>952f</b> X. stenophylla BRY-55554 salazinic not observed Canada, BC, 51.8686 -120.0215 7        | 715 m T. Goward  |
| Edgewood                                                                                           | 2008, s.n.       |
| <b>953f</b> X. stenophylla BRY-55555 salazinic not observed Canada, BC, 51.8706 -120.0305 7        | 714 m T. Goward  |
| Edgewood West                                                                                      | 2008, s.n.       |
| <b>954f</b> <i>X. cumberlandia</i> BRY-55556 sticitic not observed Canada, BC, 51.8643 -119.9833 1 | 1027 m T. Goward |
| Table Mtn                                                                                          | 2008, s.n.       |
| <b>955f</b> <i>X. wyomingica</i> BRY-55557 salazinic not observed USA, MT, 47.7561 -110.8991 8     | 830 m T. Wheeler |
| Russell Co.                                                                                        | 2006 s.n.        |
| <b>956f</b> X. stenophylla BRY-55558 salazinic apothecia Canada, BC, 51.8706 -120.0305 7           | 714 m T. Goward  |
| Edgewood West                                                                                      | 2008, s.n.       |
| 957f X. stenophylla BRY-55559 salazinic not observed Canada, BC, 51.8706 -120.0305 7               | 714 m T. Goward  |
| Edgewood West                                                                                      | 2008, s.n.       |
| 1026f X. cumberlandia* BRY-55560 stictic not observed USA, CA, San 35.3566 -120.6558 7             | 710 m SDL & LG   |
| Luis Obispo Co.                                                                                    |                  |
| 1027f X. lineola BRY-55561 salazinic apothecia USA, CA, San 35.3566 -120.6558 7                    | 710 m SDL & LG   |
| Luis Obispo Co.                                                                                    |                  |
| 1028f X. mexicana BRY-55562 salazinic isidia/apothecia USA, CA, San 35.4778 -120.9923 2            | 20 m SDL & LG    |
| Luis Obispo Co.                                                                                    |                  |
| <b>1029f</b> X. mexicana BRY-55563 salazinic isidia USA, CA, San 35.4778 -120.9923 2               | 20 m SDL & LG    |
| Luis Obispo Co.                                                                                    |                  |
| 1030f X. coloradoënsis BRY-55564 salazinic not observed USA, CA, San 35.4778 -120.9923 2           | 20 m SDL & LG    |
| Luis Obispo Co.:                                                                                   |                  |
| 1031f X. cumberlandia BRY-55565 stictic apothecia USA, CA, San 35.4778 -120.9923 2                 | 20 m SDL & LG    |
| Luis Obispo Co.                                                                                    |                  |
| 1032f X. cumberlandia BRY-55566 stictic apothecia USA, CA, San 35.4778 -120.9923 2                 | 20 m SDL & LG    |
| Luis Obispo Co.                                                                                    |                  |
| Outgroup taxa                                                                                      |                  |
| Karoowia saxeti Taiwan, Pingtung                                                                   | -                |
| Co.                                                                                                |                  |
| <b>538f</b> Karoowia saxeti BRY-55567 Uruguay, Florida 34.20576 -55.97073                          | Leavitt et al.   |
| 540f Karoowia saxeti BRY-55568 Uruguay, Florida 34.20576 -55.97073                                 | Leavitt et al.   |
| - X. brachinaensis CANB Australia,                                                                 | - GenBank        |
| Flinders Ranges                                                                                    |                  |
| - X. convoluta GZU 46511 Namibia,                                                                  | - GenBank        |
| Swakopmund                                                                                         |                  |
| - X. crespoae MAF 7524 Australia, New                                                              | - GenBank        |

|      |                   |           |   |   | south Wales       |          |            |       |           |
|------|-------------------|-----------|---|---|-------------------|----------|------------|-------|-----------|
| _    | Y lithophila      | MAE 6900  | _ | _ | Australia New     | _        | _          | _     | GenBank   |
| -    | <i>Α. шпорши</i>  | WIM 0500  | _ | - | South Wales       | _        | _          | _     | Genibalik |
| -    | X. loxodes        | MAF 6206  | - | - | Spain. Zamora     | _        | -          | -     | GenBank   |
| 907f | X. mougeotii      | BRY-55569 | - | - | USA. WA.          | 47.41892 | -117.56883 | 700 m | C. Biork  |
|      |                   |           |   |   | Spokane Co.       |          |            |       | 17756     |
| -    | X. murina         | MAF 9915  | - | - | Australia. Norton | -        | -          | -     | GenBank   |
|      |                   |           |   |   | National Park     |          |            |       |           |
| -    | X. notata         | CANB      | - | - | Australia,        | -        | -          | -     | GenBank   |
|      |                   |           |   |   | Australian        |          |            |       |           |
|      |                   |           |   |   | Capital           |          |            |       |           |
|      |                   |           |   |   | Territories       |          |            |       |           |
| -    | X. scotophylla    | CANB      | - | - | Australia, Mount  | -        | -          | -     | GenBank   |
|      |                   |           |   |   | Remarkable        |          |            |       |           |
|      |                   |           |   |   | National Park     |          |            |       |           |
| -    | X. semiviridis    | MAF 6876  | - | - | Australia, New    | -        | -          | -     | GenBank   |
|      |                   |           |   |   | South Wales       |          |            |       |           |
| -    | X. subprolixa     | MAF 7667  | - | - | Australia,        | -        | -          | -     | GenBank   |
|      |                   |           |   |   | Australian        |          |            |       |           |
|      |                   |           |   |   | Capital Territory |          |            |       |           |
| -    | X. tegeta         | MAF 7523  | - | - | Australia,        | -        | -          | -     | GenBank   |
|      |                   |           |   |   | Australian        |          |            |       |           |
|      |                   |           |   |   | Capital           |          |            |       |           |
|      |                   |           |   |   | Territories       |          |            |       |           |
| -    | X. tinctina       | MAF 6070  | - | - | Spain, Gerona     | -        | -          | -     | GenBank   |
| -    | X. transvaalensis | MAF 9841  | - | - | Spain, Zaragoza   | -        | -          | -     | GenBank   |
| -    | X. verrucigera    | MAF 9920  | - | - | Spain, Gerona     | -        | -          | -     | GenBank   |

**Supplementary data 2.2.** GenBank accession numbers for all *Xanthoparmelia* specimens included in the present study: ID, individual code; Brigham Young University Herbarium of Non-vascular Cryptogams (BRY) voucher accession number; GenBank accession numbers for LSU, ITS, IGS, group I intron, *MCM7*, and  $\beta$ -tubulin markers.

| ID           | Species (sensu lato)                 | Herbarium               | LSU        | ITS                   | IGS                      | intron                   | MCM7                    | β-tubulin     |
|--------------|--------------------------------------|-------------------------|------------|-----------------------|--------------------------|--------------------------|-------------------------|---------------|
|              | 1 ( )                                | Acc. No.                |            |                       |                          |                          |                         |               |
| 001f         | X. coloradoënsis                     | BRY-55151               | HM579019   | HM578607              | HM577905                 | HM578296                 | HM579426                | HM577516      |
| 002f         | X. cumberlandia                      | BRY-55152               | HM579020   | HM578608              | HM577906                 | HM578297                 | HM579427                | HM577517      |
| 003f         | X. cumberlandia                      | BRY-55153               | HM579021   | HM578609              | HM577907                 | HM578298                 | HM579428                | HM577518      |
| 004f         | X. chlorochroa                       | BRY-55154               | HM579022   | HM578610              | HM577908                 | HM578299                 | HM579429                | HM577519      |
| 005f         | X. chlorochroa                       | BRY-55155               | HM579023   | HM578611              | HM577909                 | HM578300                 | HM579430                | HM577520      |
| 006f         | X. coloradoënsis                     | BRY-55156               | HM579024   | HM578612              | HM577910                 | HM578301                 | HM579431                | HM577521      |
| 007f         | X. norchlorochroa                    | BRY-55157               | HM579025   | HM578613              | HM577911                 | HM578302                 | HM579432                | HM577522      |
| 008f         | X. chlorochroa                       | BRY-55158               | HM579026   | HM578614              | HM577912                 | HM578303                 | HM579433                | HM577523      |
| 009f         | X. chlorochroa                       | BRY-55159               | HM579027   | HM578615              | HM577913                 | HM578304                 | HM579434                | HM577524      |
| 010f         | X. chlorochroa                       | BRY-55160               | HM579028   | HM578616              | HM577914                 | HM578305                 | HM579435                | HM577525      |
| 011f         | X. chlorochroa                       | BRY-55161               | HM579029   | HM578617              | HM577915                 | HM578306                 | HM579436                | HM577526      |
| 012f         | X. coloradoënsis                     | BRY-55162               | HM579030   | HM578618              | HM577916                 | HM578307                 | HM579437                | HM577527      |
| 013f         | X. norchlorochroa                    | BRY-55163               | HM579031   | HM578619              | HM577917                 | HM578308                 | HM579438                | HM577528      |
| 014f         | X. chlorochroa                       | BRY-55164               | HM579032   | HM578620              | HM577918                 | HM578309                 | HM579439                | HM577529      |
| 015f         | X. chlorochroa                       | BRY-55165               | HM579033   | HM578621              | HM577919                 | -                        | HM579440                | HM577530      |
| 016f         | X. chlorochroa                       | BRY-55166               | HM579034   | HM578622              | HM577920                 | HM578310                 | HM579441                | HM577531      |
| 017f         | X. coloradoënsis                     | BRY-55167               | HM579035   | HM578623              | HM577921                 | HM578311                 | HM579442                | HM577532      |
| 018f         | X. coloradoënsis                     | BRY-55168               | HM579036   | HM578624              | HM577922                 | HM578312                 | HM579443                | HM577533      |
| 019f         | X. coloradoënsis                     | BRY-55169               | HM579037   | HM578625              | -                        | HM578313                 | HM579444                | HM577534      |
| 020f         | X. coloradoënsis                     | BRY-55170               | HM579038   | HM578626              | HM577923                 | HM578314                 | HM579445                | HM577535      |
| 022f         | X. coloradoënsis                     | BRY-55171               | HM579039   | HM578627              | HM577924                 | HM578315                 | HM579446                | HM577536      |
| 023f         | X. coloradoënsis                     | BRY-55172               | HM579040   | HM578628              | HM577925                 | HM578316                 | HM579447                | HM577537      |
| 024f         | X. cumberlandia                      | BRY-55173               | HM579041   | HM578629              | HM577926                 | -                        | HM579448                | HM577538      |
| 025f         | X. camtschadalis                     | BRY-55174               | HM579042   | HM578630              | HM577927                 | -                        | HM579449                | HM577539      |
| 027f         | X. chlorochroa                       | BRY-55175               | HM579043   | HM578631              | HM577928                 | HM578317                 | HM579450                | HM577540      |
| 028f         | X. chlorochroa                       | BRY-55176               | HM579044   | HM578632              | HM577929                 | HM578318                 | HM579451                | HM577541      |
| 029f         | X. cumberlandia                      | BRY-55177               | HM579045   | HM578633              | HM577930                 | -                        | HM579452                | HM577542      |
| 030f         | X. coloradoënsis                     | BRY-55178               | HM579046   | HM578634              | HM577931                 | HM578319                 | HM579453                | HM577543      |
| 031f         | X. chlorochroa                       | BRY-55179               | HM579047   | HM578635              | HM577932                 | HM578320                 | HM579454                | HM577544      |
| 032f         | X. coloradoënsis                     | BRY-55180               | HM579048   | HM578636              | HM577933                 | HM578321                 | HM579455                | HM577545      |
| 033f         | X. coloradoënsis                     | BRY-55181               | HM579049   | HM578637              | HM577934                 | HM578322                 | HM579456                | HM577546      |
| 034f         | X. coloradoënsis                     | BRY-55182               | HM579050   | HM578638              | HM577935                 | HM578323                 | HM579457                | HM577547      |
| 035f         | X. coloradoënsis                     | BRY-55183               | HM579051   | HM578639              | HM577936                 | HM578324                 | HM579458                | HM577548      |
| 036f         | X. cumberlandia                      | BRY-55184               | HM579052   | HM578640              | HM577937                 | HM578325                 | HM579459                | HM577549      |
| 037f         | X. californica                       | BRY-55185               | HM579053   | HM578641              | HM577938                 | HM578326                 | HM579460                | HM577550      |
| 038f         | X. cumberlandia                      | BRY-55186               | HM579054   | HM578642              | HM577939                 | -                        | HM579461                | HM577551      |
| 039f         | X. cumberlandia                      | BRY-55187               | HM579055   | HM578643              | HM577940                 | HM578327                 | HM579462                | HM577552      |
| 040f         | X. cumberlandia                      | BRY-55188               | HM579056   | HM578644              | HM577941                 | -                        | HM579463                | HM577553      |
| 041f         | X. cumberlandia                      | BRY-55189               | HM579057   | HM578645              | HM577942                 | HM578328                 | HM579464                | HM577554      |
| 042f         | X. cumberlandia                      | BRY-55190               | HM5/9058   | HM5/8646              | HM577943                 | -                        | -                       | HM5//555      |
| 0431         | X. cumberlandia                      | BRY-55191               | HM579059   | HM578647              | HM577944                 | HM578329                 | HM579465                | HM577556      |
| 0441         | X. cumberlandia                      | BRY-55192               | HM579060   | HM578648              | -                        | HM578330                 | HM579466                | HM5//55/      |
| 0451         | X. cumberlandia                      | BRY-55193               | HM5/9061   | HM5/8649              | -                        | -                        | HM5/946/                | -             |
| 0401         | X. neowyomingica                     | BKY-55194               | HM579062   | HM5/8650              | HM577945                 | HM578331                 | HM579468                | HM5//558      |
| 04/1         | X. cumberlanala                      | BK 1-55195              | HM579063   | HM578651              | HM577940                 | HM578352                 | HM579409                | HM5//559      |
| 0481         | X. chlorochrod<br>X. cumb and an dia | BK 1-55190              | HM579064   | HM3/8032              | HM577049                 | HM578333                 | HM579470                | HM577561      |
| 0491<br>052f | X. cumbertanata<br>V. ahloroahroa    | DR 1-33197              | HM570066   | HM378033              | HM577040                 | HNJ70334                 | HNJ79471                | HM577562      |
| 0521<br>052£ | A. CHIOTOCHFOU<br>Y. chlorochrog     | DN 1-33198<br>DDV 55100 | HM570067   | пиіз/8034<br>ЦМ579455 | 11WIJ / /949<br>UM577050 | 111113/0333<br>LIM570226 | HM570472                | HN1377562     |
| 0531         | A. CHIOTOCHFOU<br>Y coloradoänsis    | DR 1-33199<br>BDV 55200 | HM570069   | HNJ/8033<br>HM579454  | 11WIJ / /930<br>UM577051 | 11111J/0330              | 111113/94/3<br>UM570/7/ | HIVI3//303    |
| 0341<br>055f | A. coloradoänsis                     | BRV-55200               | HM570060   | HM578657              | HM577057                 | HM578229                 | HM570475                | HM577565      |
| 0551<br>056f | A. COLOTUUDENSIS<br>Y cumbarlandia   | BRV-55201               | HM570070   | HM578659              | HM577052                 | HM578220                 | HM570/76                | 11113//303    |
| 0501<br>057f | л. ситьениний<br>X cumberlandia      | BRY-55202               | HM570071   | HM578650              | HM57705/                 | HM5783/0                 | HM570/77                | -<br>HM577566 |
| 03/1         | A. cumbertanata                      | DICI-33203              | 11013/30/1 | 11113/0039            | 111113//204              | 11013/0340               | 111113/74//             | 11113//300    |

| 058f         | X. cumberlandia                | BRY-55204               | HM579072   | HM578660      | HM577955   | HM578341   | HM579478    | HM577567   |
|--------------|--------------------------------|-------------------------|------------|---------------|------------|------------|-------------|------------|
| 059f         | X. coloradoënsis               | BRY-55205               | HM579073   | HM578661      | HM577956   | HM578342   | HM579479    | HM577568   |
| 061f         | X. cumberlandia                | BRY-55206               | -          | HM578662      | -          | -          | -           | -          |
| 063f         | X. cumberlandia                | BRY-55208               | HM579074   | HM578663      | HM577957   | HM578343   | HM579480    | HM577569   |
| 064f         | X coloradoënsis                | BRY-55209               | HM579075   | HM578664      | HM577958   | HM578344   | HM579481    | -          |
| 065f         | X cumberlandia                 | BRY-55210               | HM579076   | HM578665      | -          | HM578345   | -           | HM577570   |
| 0051<br>066f | X. cumberlandia                | DR1-55210               | 1101379070 | LIM578666     | _          | 1111370345 | _           | UM577571   |
| 0001         | X. cumbertanata                | DR I-JJ211<br>DDV 55212 | -          | HNIJ / 8000   | -          | -          | -           | HNI377371  |
| U0/I         | X. coloradoensis               | BK 1-55212              | HM5/90//   | HM5/800/      | HM577959   | HM5/8340   | HM579482    | HM577572   |
| 0681         | X. chlorochroa                 | BRY-55213               | HM5/90/8   | HM5/8668      | HM5//960   | HM5/834/   | HM5/9483    | HM5//5/3   |
| 069f         | X. chlorochroa                 | BRY-55214               | HM579079   | HM578669      | HM577961   | HM578348   | HM579484    | HM577569   |
| 070f         | X. lineola                     | BRY-55215               | HM579080   | HM578670      | HM577962   | -          | HM579485    | HM577575   |
| 071f         | X. cumberlandia                | BRY-55216               | HM579081   | HM578671      | -          | HM578349   | HM579486    | -          |
| 072f         | X. cumberlandia                | BRY-55217               | HM579082   | HM578672      | HM577963   | HM578350   | HM579487    | -          |
| 073f         | X. coloradoënsis               | BRY-55218               | HM579083   | HM578673      | HM577964   | HM578351   | HM579488    | HM577576   |
| 074f         | X. cumberlandia                | BRY-55219               | HM579084   | HM578674      | -          | HM578352   | HM579489    | -          |
| 075f         | X. cumberlandia                | BRY-55220               | HM579085   | HM578675      | HM577965   | HM578353   | HM579490    | HM577577   |
| 076f         | X cumberlandia                 | BRY-55220               | HM579086   | HM578676      | HM577966   | HM578354   | HM579491    | HM577578   |
| 070f         | Y vagans                       | BRV-55221               | HM570087   | HM578677      | HM577967   | -          | HM570402    | HM577570   |
| 0731         | X. vagans                      | DR 1-55222              | 1111570089 | 1111570677    | IIM577069  | -          | IIN1570402  | IIN1577590 |
| 0001         | A. Vagans                      | DR 1-33223              | HNJ / 9000 | HNIJ / 60 / 6 | HNI377908  | -          | HNJ /9493   | HNI377501  |
| 0811         | X. chlorochroa                 | BRY-55224               | HM5/9089   | HM5/86/9      | HM5//969   | HM5/8355   | HM5/9494    | HM5//581   |
| 0821         | X. chlorochroa                 | BRY-55225               | HM5/9090   | HM5/8680      | HM5//9/0   | HM5/8356   | HM5/9495    | HM577582   |
| 083f         | X. chlorochroa                 | BRY-55226               | HM579091   | HM578681      | HM577971   | HM578357   | HM579496    | HM577583   |
| 084f         | X. chlorochroa                 | BRY-55227               | HM579092   | HM578682      | HM577972   | HM578358   | HM579497    | HM577584   |
| 085f         | X. coloradoënsis               | BRY-55228               | HM579093   | HM578683      | HM577973   | -          | HM579498    | HM577585   |
| 086f         | X. coloradoënsis               | BRY-55229               | HM579094   | HM578684      | HM577974   | -          | HM579499    | HM577586   |
| 087f         | X. lavicola                    | BRY-55230               | HM579095   | HM578685      | HM577975   | HM578359   | HM579500    | HM577587   |
| 090f         | X. chlorochroa                 | BRY-55231               | HM579096   | HM578686      | HM577976   | HM578360   | HM579501    | HM577588   |
| 091f         | X. chlorochroa                 | BRY-55232               | HM579097   | HM578687      | HM577977   | HM578361   | HM579502    | HM577589   |
| 097f         | X mexicana                     | BRY-55233               | HM579098   | HM578688      | HM577978   | HM578362   | HM579503    | HM577590   |
| 0971<br>008f | X dierythra                    | BRY-55234               | HM579099   | HM578689      | HM577979   | HM578363   | HM579504    | HM577591   |
| 102f         | X. aleryinia<br>V. chlorochrog | BDV 55234               | HM570100   | HM578600      | HM577080   | нм578364   | 1101377504  | HM577502   |
| 1021         | X. chlorochrod                 | DR 1-33233              | HNI379100  | HNIJ / 6090   | HNI377900  | HIVI3/0304 | -           | HNI377592  |
| 1101         | X. cniorocnroa                 | BK I -35230             | HM579101   | HM578691      | HM577981   | HM578305   | HM5/9505    | HM577593   |
| 1111         | A. chiorochroa                 | BK 1-55257              | HM579102   | HM578092      | HM577982   | HM5/8300   | HM5/9506    | HM577594   |
| 112f         | X. chlorochroa                 | BRY-55238               | HM579103   | HM578693      | HM577983   | HM578367   | HM579507    | HM577595   |
| 113f         | X. chlorochroa                 | BRY-55239               | HM579104   | HM578694      | HM577984   | HM578368   | HM579508    | HM577596   |
| 118f         | X. coloradoënsis               | BRY-55240               | HM579105   | HM578695      | HM577985   | -          | HM579509    | HM577597   |
| 120f         | X. coloradoënsis               | BRY-55241               | HM579106   | HM578696      | HM577986   | HM578369   | HM579510    | HM577598   |
| 121f         | X. neowyomingica               | BRY-55242               | HM579107   | HM578697      | HM577987   | -          | HM579511    | HM577599   |
| 122f         | X. neowyomingica               | BRY-55243               | HM579108   | HM578698      | HM577988   | HM578370   | HM579512    | HM577600   |
| 123f         | X. neowyomingica               | BRY-55244               | HM579109   | HM578699      | HM577989   | HM578371   | HM579513    | HM577601   |
| 124f         | X. neowyomingica               | BRY-55245               | HM579110   | HM578700      | HM577990   | HM578372   | HM579514    | HM577602   |
| 125f         | X. neowyomingica               | BRY-55246               | HM579111   | HM578701      | HM577991   | HM578373   | HM579515    | HM577603   |
| 126f         | X chlorochroa                  | BRY-55247               | HM579112   | HM578702      | HM577992   | HM578374   | HM579516    | HM577604   |
| 127f         | X chlorochroa                  | BRY-55248               | HM579112   | HM578703      | HM577993   | HM578375   | HM579517    | HM577605   |
| 12/1<br>128f | Y chlorochroa                  | BRV-55240               | HM570114   | HM578704      | HM577004   | HM578376   | HM570518    | HM577606   |
| 1201<br>120f | X. chlorochrod                 | DR 1-33249<br>DDV 55250 | LIM570115  | LIM578704     | LIM577005  | LIM578277  | LIM570510   | HM577607   |
| 1291         | X. chlorochrod                 | DR I - 33230            | HNI379113  | HNI378703     | HNI377993  | HIVIJ/03// | HNI379319   | HNI377007  |
| 1301         | A. chiorochroa                 | BK 1-55251              | HM5/9116   | HM5/8/06      | HM5//990   | HM5/85/8   | HM579520    | HM577608   |
| 131f         | X. chlorochroa                 | BRY-55252               | HM579117   | HM578707      | HM577997   | HM578379   | HM579521    | HM577609   |
| 132f         | X. chlorochroa                 | BRY-55253               | HM579118   | HM578708      | HM57/998   | HM578380   | HM579522    | HM577610   |
| 133f         | X. chlorochroa                 | BRY-55254               | HM579119   | HM578709      | HM577999   | HM578381   | HM579523    | HM577611   |
| 135f         | X. coloradoënsis               | BRY-55255               | HM579120   | HM578710      | HM578000   | HM578382   | HM579524    | HM577612   |
| 136f         | X. wyominigica                 | BRY-55256               | HM579121   | HM578711      | HM578001   | HM578383   | HM579525    | HM577613   |
| 138f         | X. cumberlandia                | BRY-55257               | HM579122   | HM578712      | HM578002   | HM578384   | HM579526    | HM577614   |
| 147f         | X. mexicana                    | BRY-55258               | HM579123   | HM578713      | HM578003   | HM578385   | HM579527    | HM577615   |
| 148f         | X. mexicana                    | BRY-55259               | HM579124   | HM578714      | HM578004   | HM578386   | HM579528    | HM577616   |
| 149f         | X. mexicana                    | BRY-55260               | HM579125   | HM578715      | HM578005   | HM578387   | HM579529    | HM577617   |
| 150f         | X mexicana                     | BRV_55260               | HM570126   | HM578716      | HM578006   | HM578388   | HM570530    | HM577618   |
| 1501         | A. mentunu                     | DR1-33201               | IN1379120  | IN1370710     | 1111370000 | 11113/0300 | IIIII 17550 |            |
| 1511         | л. mexicana                    | ВК 1-55262              | HM5/912/   | HM5/8/17      | HM5/800/   | HM5/8389   | HM5/9531    | HM5//619   |
| 152f         | X. mexicana                    | ВКҮ-55263               | HM579128   | HM578718      | HM578008   | HM578390   | HM579532    | HM57/620   |
| 153f         | X. mexicana                    | BRY-55264               | HM579129   | -             | HM578009   | -          | HM579533    | HM577621   |

| 1 7 4 8                        |                                    | DDV 55065   | 10 4570120  | 111/270710               | 111 1570010  | 10 (570201           | 111 4570524 | 111 1577 (00      |
|--------------------------------|------------------------------------|-------------|-------------|--------------------------|--------------|----------------------|-------------|-------------------|
| 1541                           | X. mexicana                        | BRY-55265   | HM5/9130    | HM5/8/19                 | HM5/8010     | HM5/8391             | HM5/9534    | HM577622          |
| 155f                           | X. plittii                         | BRY-55266   | HM579131    | HM578720                 | HM578011     | HM578392             | HM579535    | HM577623          |
| 156f                           | X. mexicana                        | BRY-55267   | HM579132    | HM578721                 | HM578012     | HM578393             | HM579536    | HM577624          |
| 157f                           | X. chlorochroa                     | BRY-55268   | HM579133    | HM578722                 | HM578013     | HM578394             | HM579537    | HM577625          |
| 163f                           | X. chlorochroa                     | BRY-55269   | HM579134    | HM578723                 | HM578014     | HM578395             | HM579538    | HM577626          |
| 168f                           | X chlorochroa                      | BRY-55270   | HM579135    | HM578724                 | HM578015     | HM578396             | HM579539    | HM577627          |
| 160f                           | X coloradoënsis                    | BRY-55271   | HM579136    | HM578725                 | HM578016     | HM578397             | HM579540    | -                 |
| 170f                           | Y lineola                          | BRV-55271   | HM570137    | HM578726                 | HM578017     | HM578308             | HM570541    | HM577628          |
| 1716                           | X. lineola                         | DR1-55272   | IIM570129   | 1111578720               | 1111570017   | IIN1578200           | IIN1570542  | IIM577620         |
| 1711                           | A. lineola                         | DR 1-33273  | HNI379130   | HNI370727                | HNI370010    | HWJ/0399             | HNJ 79342   | HNI377029         |
| 1/31                           | X. mexicana                        | BRY-55274   | HM579139    | -                        | HM5/8019     | -                    | HM5/9543    | HM577630          |
| 175f                           | X. cumberlandia                    | BRY-55275   | HM579140    | HM5/8/28                 | HM578020     | HM5/8400             | HM5/9544    | HM577631          |
| 179f                           | X. cumberlandia                    | BRY-55276   | HM579141    | HM578729                 | HM578021     | HM578401             | HM579545    | HM577632          |
| 180f                           | X. chlorochroa                     | BRY-55277   | HM579142    | HM578730                 | HM578022     | HM578402             | HM579546    | HM577633          |
| 181f                           | X. chlorochroa                     | BRY-55278   | HM579143    | HM578731                 | HM578023     | HM578403             | HM579547    | HM577634          |
| 189f                           | X. chlorochroa                     | BRY-55279   | HM579144    | HM578732                 | HM578024     | HM578404             | HM579548    | -                 |
| 190f                           | X. chlorochroa                     | BRY-55280   | HM579145    | HM578733                 | -            | HM578405             | HM579549    | -                 |
| 191f                           | X cumberlandia                     | BRY-55281   | HM579146    | HM578734                 | _            | HM578406             | HM579550    | -                 |
| 102f                           | X cumberlandia                     | BRY-55282   | HM579147    | HM578735                 | _            | HM578407             | HM579551    | _                 |
| 1 <i>72</i> 1<br>10 <i>4</i> f | V aumborlandia                     | DR1-55202   | LIM570149   | LIM570736                | _            | 1101370407           | LIM570552   | UM577625          |
| 1941                           | A. cumbertanata                    | DR 1-55205  | 11NIJ79140  | 11111378730              | -            | -                    | 11111579552 | IIN1577035        |
| 1951                           | X. cumberlanaia                    | BRY-55284   | HM5/9149    | HM5/8/3/                 | -            | HM5/8408             | HM5/9553    | HM577636          |
| 197f                           | X. mexicana                        | BRY-55285   | HM5/9150    | HM5/8/38                 | -            | HM5/8409             | HM5/9554    | HM577637          |
| 198f                           | X. cumberlandia                    | BRY-55286   | HM579151    | HM578739                 | HM578025     | HM578410             | HM579555    | HM577638          |
| 201f                           | X. chlorochroa                     | BRY-55287   | HM579152    | HM578740                 | HM578026     | -                    | HM579556    | HM577639          |
| 202f                           | X. chlorochroa                     | BRY-55288   | HM579153    | HM578741                 | HM578027     | -                    | HM579557    | HM577640          |
| 203f                           | X. chlorochroa                     | BRY-55289   | HM579154    | HM578742                 | HM578028     | HM578411             | HM579558    | HM577641          |
| 204f                           | X. chlorochroa                     | BRY-55290   | HM579155    | HM578743                 | HM578029     | HM578412             | HM579559    | HM577642          |
| 205f                           | X. camtschadalis                   | BRY-55291   | HM579156    | HM578744                 | HM578030     | _                    | HM579560    | HM577643          |
| 206f                           | X camtschadalis                    | BRY-55292   | HM579157    | HM578745                 | HM578031     | _                    | HM579561    | HM577644          |
| 2001<br>207f                   | Y chlorochrog                      | BRV 55202   | HM570158    | HM578746                 | HM578032     | <b>НМ578/13</b>      | HM570562    | HM577645          |
| 2071                           | X. chlorochrod                     | DR 1-55295  | LIM570150   | LIM578740                | LIM578032    | LIM578413            | LIM570562   | UM577646          |
| 2001                           | A. Chlorochrou<br>X. shlava shua v | DR 1-JJ294  | HNI379139   | HNJ/0/4/                 | HNI370033    | HIVIJ/0414           | HNJ 79303   | HNI377040         |
| 2191                           | X. chlorochroa                     | BKY-55295   | HM5/9160    | HM5/8/48                 | HM5/8034     | HM5/8415             | HM5/9564    | HM5//64/          |
| 220f                           | X. chlorochroa                     | BRY-55296   | HM579161    | HM578749                 | HM578035     | HM578416             | HM579565    | HM577648          |
| 221f                           | X. chlorochroa                     | BRY-55297   | HM579162    | HM578750                 | HM578036     | HM578417             | HM579566    | HM577649          |
| 222f                           | X. vagans                          | BRY-55298   | HM579163    | HM578751                 | HM578037     | -                    | HM579567    | HM577650          |
| 224f                           | X. mexicana                        | BRY-55299   | HM579164    | HM578752                 | HM578038     | HM578418             | HM579568    | HM577651          |
| 226f                           | X. dierythra                       | BRY-55300   | HM579165    | HM578753                 | HM578039     | HM578419             | HM579569    | HM577652          |
| 227f                           | X. cumberlandia                    | BRY-55301   | HM579166    | HM578754                 | HM578040     | HM578420             | HM579570    | HM577653          |
| 229f                           | X. chlorochroa                     | BRY-55302   | HM579167    | HM578755                 | HM578041     | HM578421             | HM579571    | HM577654          |
| 231f                           | X. neochlorochroa                  | BRY-55303   | HM579168    | HM578756                 | HM578042     | HM578422             | HM579572    | HM577655          |
| 232f                           | X chlorochroa                      | BRY-55304   | HM579169    | HM578757                 | HM578043     | HM578423             | HM579573    | HM577656          |
| 233f                           | X chlorochroa                      | BRY-55305   | HM579170    | HM578758                 | HM578045     | HM578424             | HM579574    | HM577657          |
| 2331<br>245f                   | X. imeola                          | BRV 55306   | HM570171    | HM578750                 | HM578046     | HM578425             | HM570575    | 1111377037        |
| 2431                           | A. tineota<br>V. south and and in  | DR 1-55500  | 111113/91/1 | 11111370733              | 1111378040   | 11111376423          | 11111379373 | -                 |
| 24/1                           | A. cumbertanata                    | DK I -33307 | -           | -                        | HM3/804/     | -                    | -           | -                 |
| 2581                           | X. coloradoensis                   | BRY-55308   | HM5/91/2    | HM5/8/60                 | HM5/8048     | HM5/8426             | HM5/9546    | HM577658          |
| 261f                           | X. vagans                          | BRY-55309   | HM579173    | HM5/8/61                 | HM5/8047     | -                    | HM579577    | HM577659          |
| 269f                           | X. coloradoënsis                   | BRY-55310   | HM579174    | HM578762                 | HM578048     | HM578427             | HM579578    | HM577660          |
| 271f                           | X. lineola                         | BRY-55311   | HM579175    | HM578763                 | HM578049     | -                    | HM579579    | HM577661          |
| 272f                           | X. coloradoënsis                   | BRY-55312   | HM579176    | HM578764                 | HM578050     | HM578428             | HM579580    | HM577660          |
| 274f                           | X. psoromifera                     | BRY-55313   | HM579177    | HM578765                 | HM578051     | HM578429             | HM579581    | HM577663          |
| 275f                           | X. psoromifera                     | BRY-55314   | HM579178    | HM578766                 | HM578052     | -                    | HM579582    | HM577664          |
| 276f                           | X. chlorochroa                     | BRY-55315   | HM579179    | HM578767                 | HM578053     | HM578430             | HM579583    | HM577665          |
| 278f                           | X neochlorochroa                   | BRY-55316   | HM579180    | HM578768                 | HM578054     | HM578431             | HM579584    | HM577666          |
| 270f                           | X neochlorochroa                   | BRY-55317   | HM579181    | HM578769                 | HM578055     | HM578432             | HM579585    | HM577667          |
| 2771<br>780f                   | Y lineshloreshrea                  | BRV 55210   | HM570100    | HM579770                 | HM578056     | HM578422             | HM570504    | HM577660          |
| 2001<br>201£                   | X. upochiorochrod                  | DR1-33310   | LINIJ/9102  | LINIS / 0 / / U          | LIM570057    | 1111J/0433           | 11111J/9300 | LIM577660         |
| 2011                           | л. upocniorocnroa                  | DK 1-33319  | nivi3/9183  | $\pi W J / \delta / / 1$ | FIND / 800 / | nivi <i>3</i> / 8434 | nivi3/938/  | mw <i>3</i> //009 |
| 282f                           | X. upochlorochroa                  | вкү-55320   | HM5/9184    | HM5/8//2                 | HM5/8058     | HM5/8435             | HM5/9588    | HM5//6/0          |
| 283f                           | X. mexicana                        | BRY-55321   | HM579185    | HM578773                 | HM578059     | HM578436             | HM579589    | HM577671          |
| 284f                           | X. lineola                         | BRY-55322   | HM579186    | HM578774                 | HM578060     | HM578437             | HM579590    | HM577672          |
| 285f                           | X. lineola                         | BRY-55323   | HM579187    | HM578775                 | HM578061     | HM578438             | HM579591    | HM577673          |
| 00/0                           | $\mathbf{V} = 1$                   | BRY-55324   | HM579188    | HM578776                 | HM578062     | HM578438             | HM579592    | -                 |

| 187     X. cumberlandia     BRY-5322     FMA57108     FMA57108     FMM57806                                                                                                                                                                                                               |              |                                      |                         |               |               |             |           |               |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------|-------------------------|---------------|---------------|-------------|-----------|---------------|------------|
| 288     X. camberlandia     BRY-5532     HM57190     HM57876     HM57806     HM578441     HM57994     HM577676       2907     X. ameleraladia     BRY-5532     HM579192     HM57806     HM578442     HM579956     HM57956       2917     X. anteraladia     BRY-55329     HM579193     HM57806     HM578444     HM579596     HM577637       2917     X. anteraladia     BRY-55330     HM579194     HM578781     HM578068     HM57444     HM579598     HM577690       2967     X. neechlorachrora     BRY-55333     HM579199     HM578786     HM578071     HM578446     HM579000     HM577680       2976     X. neechlorachrora     BRY-55336     HM579020     HM578786     HM578071     HM578449     HM579002     HM577663       2976     X. neechlorachrora     BRY-55336     HM579200     HM578778     HM578071     HM57844     HM579002     HM577663       2977     X. chlorachrora     BRY-55338     HM579201     HM578787     HM57807     HM578445     HM579004     HM578454     HM579004     HM578454                                                                                                                                                                                                                                                       | 287f         | X. cumberlandia                      | BRY-55325               | HM579189      | HM578777      | HM578063    | HM578440  | HM579593      | HM577674   |
| 2901     X. camberlandia     BRY-55322     HM579191     HM57806     HM578421     HM579955     HM577975       2911     X. mexicanat     BRY-55328     HM579193     HM578780     HM57866     HM578441     HM579957     HM577977       2937     X. chiorachraa     BRY-5533     HM579193     HM57878     HM57806     HM578445     HM579999     HM577679       2947     X. chiorachraa     BRY-55333     HM579193     HM578067     HM578445     HM579999     HM577680       2977     X. meachlarachraa     BRY-55333     HM579199     HM578787     HM578071     HM578448     HM579001     HM577683       2997     X. chiorachraa     BRY-55333     HM579201     HM578787     HM578071     HM578448     HM579006     HM577687       3001     X. chiorachraa     BRY-55334     HM579201     HM578787     HM578073     HM57845     HM579067     HM57845       3017     X. chiorachraa     BRY-55344     HM579201     HM578787     HM578078     HM57845     HM579067       3016     X. cakiorachraa     BRY-                                                                                                                                                                                                                                                              | 288f         | X. cumberlandia                      | BRY-55326               | HM579190      | HM578778      | HM578064    | HM578441  | HM579594      | HM577675   |
| 911     X. mexicanat     BRY-55328     HM579123     HM57806     HM578043     HM578063       9217     X. divarchara     BRY-55329     HM579194     HM578781     HM57806     HM578444     HM579998     HM577053       9214     X. chlorachara     BRY-55331     HM579194     HM578783     HM578068     HM574446     HM579998     HM577060       2957     X. nechlorachara     BRY-55333     HM579196     HM578784     HM578070     HM578446     HM579000     HM577682       2976     X. nechlorachara     BRY-55334     HM579199     HM578784     HM578071     HM578449     HM579002     HM577684       2976     X. nechlorachara     BRY-55336     HM579201     HM578071     HM578071     HM578449     HM5790061     HM577663       3007     X. chlorachara     BRY-55338     HM579201     HM578071     HM578454     HM579060     HM5776453       3007     X. chlorachara     BRY-55334     HM579201     HM5787071     HM578454     HM579060     HM5776453       3017     X. chlorachara     BRY-55334                                                                                                                                                                                                                                                             | 290f         | X. cumberlandia                      | BRY-55327               | HM579191      | HM578779      | HM578065    | HM578442  | HM579595      | HM577676   |
| 2921     X. dicryahra     BRY -55320     FMASTP1919     FMASTP81     -     IMASTP845     FMASTP859     FMASTP859       2947     X. chlorochroa     BRY -55331     FMASTP1919     FMASTP865     IMASTP864     FMASTP865       2956     X. neochlorochroa     BRY -55332     FMASTP190     FMASTP860     FMASTP860     FMASTP860       2977     X. neochlorochroa     BRY -55333     FMASTP1919     FMASTR864                                                                                                                                                                                                 | 291f         | X. mexicana                          | BRY-55328               | HM579192      | HM578780      | HM578066    | HM578443  | HM579596      | HM577677   |
| 294f     X. chlorochroa     BRY 55330     HM579194     HM57882     HM578907     HM578464     HM579898     HM577693       294f     X. chorochroa     BRY 55333     HM579196     -     HM57808     HM578444     HM579090     HM577695       296f     X. nochhorochroa     BRY 55333     HM579197     HM578784     HM578070     HM578447     HM578020     HM577843       298f     X. nochhorochroa     BRY 55333     HM579109     HM578785     HM5781071     HM578444     HM578061     HM577865       300f     X. chorochroa     BRY 55333     HM579109     HM5787071     HM578451     HM579006     HM577865       300f     X. chorochroa     BRY 55333     HM579203     HM5787071     HM578452     HM579006     HM577863       300f     X. chorochroa     BRY 55341     HM579204     HM5787971     HM578454     HM579006     HM577893       301f     X. chorochroa     BRY 55344     HM579204     HM578797     HM578454     HM579006     HM577873       311f     X. chohorochroa     BRY 55344     HM5                                                                                                                                                                                                                                                              | 292f         | X. dierythra                         | BRY-55329               | HM579193      | HM578781      | -           | HM578444  | HM579597      | HM577653   |
| 2947     X. chlorochroa     BRY 55331     HMS79195     HMS78080     HMS78464     HMS77850       2967     X. neochlorochroa     BRY 55333     HMS79197     HMS78070     HMS78448     HMS77860       2977     X. neochlorochroa     BRY 55334     HMS79199     HMS787087     HMS78448     HMS79001     HMS78448     HMS79001     HMS78448     HMS79001     HMS78448     HMS79003     HMS77850       2997     X. chlorochroa     BRY 55335     HMS791901     HMS78073     HMS78450     HMS77860     HMS77867       3017     X. chlorochroa     BRY 55334     HMS787901     HMS78077     HMS78454     HMS77600     HMS77860       3067     X. chlorochroa     BRY 55343     HMS78791     HMS78077     HMS78454     HMS77600     HMS77860       3067     X. chlorochroa     BRY 55344     HMS787979     HMS78077     HMS78454     HMS79608     HMS77687       3067     X. chlorochroa     BRY 55344     HMS78797     HMS78077     HMS78454     HMS79601     HMS77687       3117     X. chlorochroa     BRY 55345                                                                                                                                                                                                                                                       | 293f         | X. chlorochroa                       | BRY-55330               | HM579194      | HM578782      | HM578067    | HM578445  | HM579598      | HM577679   |
| 2957     X. neochlaroskrova     BRY >5332     HMS79190     HMS7800     HMS7800     HMS77895       2967     X. neochlaroskrova     BRY >5333     HMS79191     HMS78070     HMS78447     HMS77863       2987     X. neochlaroskrova     BRY >5333     HMS79108     HMS78070     HMS78444     HMS77863       2986     X. neochlaroskrova     BRY >5333     HMS79100     HMS78074     HMS78444     HMS77865       2006     X. chlaroskrova     BRY >5333     HMS79100     HMS78074     HMS78454     HMS79606     HMS77865       2006     X. chlaroskrova     BRY >5333     HMS79001     HMS78076     HMS78454     HMS79606     HMS777689       2006     X. chlaroskrova     BRY >53342     HMS79793     HMS78071     HMS78454     HMS79608     HMS77890       2017     X. chlaroskrova     BRY >53342     HMS797901     HMS78797     HMS78454     HMS79608     HMS778901       2016     X. chlaroskrova     BRY >53347     HMS78797     HMS78081     HMS79608     HMS77864     HMS79608     HMS77864     HMS79601 <td< th=""><th>294f</th><th>X. chlorochroa</th><th>BRY-55331</th><th>HM579195</th><th>HM578783</th><th>HM578068</th><th>HM578446</th><th>HM579599</th><th>HM577680</th></td<>                                                                       | 294f         | X. chlorochroa                       | BRY-55331               | HM579195      | HM578783      | HM578068    | HM578446  | HM579599      | HM577680   |
| 2967     X. neochkoroskova     BRY -5533     FIMS79197     FIMS78844     HMS77969     HMS77884     HMS77969     LMS77854       2997     X. neochkoroskova     BRY -55335     HMS79199     HMS78766     HMS78001     HMS77864     HMS77803     HMS77804       2997     X. chloroskova     BRY -55335     HMS797091     HMS78786     HMS78073     HMS787861     HMS78607     HMS78454     HMS78607     HMS78454     HMS77860     HMS77861     HMS78814     HMS78454     HMS79601     HMS77867     HMS78454     HMS79610                                                                                                                                                                                                           | 295f         | X. neochlorochroa                    | BRY-55332               | HM579196      | -             | HM578069    | -         | HM579600      | HM577695   |
| 2977     X. neachlorochroa     BRY-5533     HMS77049     HMS77875     HMS78071     HMS77845     HMS77090     HMS77684       2967     X. neachlorochroa     BRY-55335     HMS77090     HMS77877     HMS78071     HMS77805     HMS77900     HMS77685       3007     X. chlorochroa     BRY-55335     HMS79201     HMS78777     HMS78071     HMS78071     HMS78071     HMS78070     HMS77805       3007     X. chlorochroa     BRY-55336     HMS79201     HMS78777     HMS78076     HMS77835     HMS77807       3007     X. chlorochroa     BRY-55340     HMS79205     HMS787971     HMS78077     HMS78453     HMS77680       3007     X. chlorochroa     BRY-55341     HMS79205     HMS787971     HMS78077     HMS78454     HMS77690     HMS77680       3107     X. chlorochroa     BRY-55344     HMS79200     HMS787807     HMS78081     HMS78484     HMS79610     HMS776901     HMS776901       3117     X. chlorochroa     BRY-55344     HMS79204     HMS787807     HMS78083     -     HMS776911     HMS77691                                                                                                                                                                                                                                                    | 296f         | X. neochlorochroa                    | BRY-55333               | HM579197      | HM578784      | HM578070    | HM578447  | HM579601      | HM577682   |
| 298f     X. maachlorachroa     BRY-55335     HMS79199     HMS77864     HMS78072     HMS78072     HMS78072     HMS78072     HMS78072     HMS78072     HMS78072     HMS78072     HMS77804     HMS77864       299f     X. chlorochroa     BRY-55336     HMS79200     HMS78787     HMS78073     HMS78073     HMS78076     HMS778087     HMS778076     HMS77807     HMS78076     HMS77807     HMS78076     HMS77807     HMS78076     HMS77807     HMS77807     HMS78076     HMS77807                                                                                                                                                                                                                 | 297f         | X. neochlorochroa                    | BRY-55334               | HM579198      | HM578785      | HM578071    | HM578448  | HM579602      | HM577683   |
| 2997     X. chlorochroa     BRY-55336     HMS79200     HMS77877     HMS78073     HMS78075     HMS77867       3007     X. chlorochroa     BRY-55338     HMS79202     HMS77878     HMS70764     HMS77878       3007     X. chlorochroa     BRY-55338     HMS79202     HMS78788     HMS7807     HMS78451     HMS79005     HMS77878       3007     X. chlorochroa     BRY-55334     HMS79102     HMS78070     HMS78451     HMS77686       3007     X. chlorochroa     BRY-55344     HMS79205     HMS787970     HMS78070     HMS77680       3107     X. chlorochroa     BRY-55344     HMS79205     HMS78070     HMS78070     HMS78050     HMS77690       3117     X. chlorochroa     BRY-55344     HMS79207     HMS78081     HMS79610     HMS77690       3121     X. chlorochroa     BRY-55344     HMS79207     HMS78081     HMS79610     HMS776961       3147     X. chlorochroa     BRY-55344     HMS79204     HMS78084     -     HMS77686       3147     X. chlorochroa     BRY-55348     HMS79204                                                                                                                                                                                                                                                                  | 298f         | X neochlorochroa                     | BRY-55335               | HM579199      | HM578786      | HM578072    | HM578449  | HM579603      | HM577684   |
| 300f     X. chlorochroa     BRY-55337     HM579201     HM578788     HM578074     HM578451     HM579605     HM577686       301f     X. chlorochroa     BRY-55338     HM579202     HM578789     HM578075     HM578075     HM578076     HM578451     HM577686       300f     X. chlorochroa     BRY-55334     HM579203     HM5787791     HM578451     HM5776866       300f     X. chlorochroa     BRY-55344     HM579204     HM5787791     HM578455     HM577690     HM5776876       300f     X. chlorochroa     BRY-55344     HM579204     HM5787078     HM578456     HM577690     HM577691       311f     X. chlorochroa     BRY-55345     HM579200     HM578797     HM578080     HM577691     HM577691       314f     X. chlorochroa     BRY-55345     HM579201     HM578789     HM578083     HM579611     HM577691       314f     X. ichlorochroa     BRY-55349     HM579210     HM5780805     HM579613     HM577691       314f     X. ichlorochroa     BRY-55359     HM579210     HM5780805     HM5796161                                                                                                                                                                                                                                                       | 299f         | X. neoenioroeniou<br>X. chlorochroa  | BRY-55336               | HM579200      | HM578787      | HM578073    | HM578450  | HM579604      | HM577685   |
| 3011     X. chlorochroa     BRY-55338     HMS79202     HMS78075     HMS78075     HMS78076     HMS78158       3041     X. chlorochroa     BRY-55339     -     HMS78070     HMS78152     HMS79607     HMS77687       3061     X. chlorochroa     BRY-55340     -     HMS78790     HMS78453     -     HMS77687       3061     X. chlorochroa     BRY-55344     HMS79204     HMS78077     HMS78455     -     HMS76807       3101     X. chlorochroa     BRY-55342     HMS79204     HMS78079     HMS78456     HMS79610     HMS77691       3111     X. chlorochroa     BRY-55344     HMS79204     HMS78078     HMS78458     HMS79611     HMS77697       3147     X. chlorochroa     BRY-55344     HMS79208     HMS78081     -     HMS79614     HMS77697       3167     X. camtschadalits     BRY-55349     HMS79210     HMS78084     -     HMS79614     HMS77697       3167     X. idahoensis(type)     BRY-55351     -     HMS78014     HMS79614     HMS79614     HMS79614     HMS79614                                                                                                                                                                                                                                                                                | 200f         | X. chlorochroa                       | BRY-55337               | HM579201      | HM578788      | HM578074    | HM578451  | HM579605      | HM577686   |
| Solit X. Chlorochroa     BRY-55349     HMS7907     HMS7907     HMS77808       300f X. chlorochroa     BRY-55340     HMS79203     HMS78791     -     -     HMS78453       300f X. chlorochroa     BRY-55340     HMS79203     HMS78797     HMS78454     HMS77868       300f X. chlorochroa     BRY-55342     HMS79201     HMS787787     HMS78455     -     HMS77601       311f X. chlorochroa     BRY-55344     HMS79202     HMS787795     HMS78078     HMS78455     HMS79610     HMS77693       314f X. chlorochroa     BRY-55345     HMS79200     HMS78797     HMS78082     HMS78455     HMS79611     HMS77693       316f X. camrschadalis     BRY-55348     HMS79210     HMS78083     -     HMS79612     HMS77695       317f X. camrschadalis     BRY-55348     HMS79211     HMS78084     -     HMS79616     HMS77695       318f X. idahoensis (type)     BRY-55355     HMS79212     HMS78080     -     HMS79616     HMS77601       321f X. idahoensis (type)     BRY-55355     HMS79214     HMS78080     -     HMS79621                                                                                                                                                                                                                                         | 301f         | X. chlorochroa                       | BRY-55338               | HM579202      | HM578789      | HM578075    | -         | HM579606      | HM577687   |
| Soft X. chlorochroa     BRY-55340     HMS7903     HMS7807     HMS7843     HMS7963     HMS77690       3007 X. chlorochroa     BRY-55341     -     HMS78792     HMS78077     HMS78454     HMS79608     HMS77690       3107 X. chlorochroa     BRY-55342     HMS79204     HMS78079     HMS78454     HMS79609     HMS77690       3111 X. chlorochroa     BRY-55342     HMS79204     HMS78079     HMS78455     HMS79609     HMS77691       3121 X. chlorochroa     BRY-55344     HMS79200     HMS78787     HMS78455     HMS79611     HMS77696       3141 X. chlorochroa     BRY-55344     HMS79200     HMS78787     HMS78455     HMS79611     HMS77696       3147 X. chlorochroa     BRY-55344     HMS79211     HMS78081     -     HMS79613     HMS77696       3147 X. clahoensis (sppe)     BRY-55351     HMS79211     HMS78080     -     HMS79616     HMS77696       3147 X. idahoensis (sppe)     BRY-55351     HMS79211     HMS78080     -     HMS79618     HMS777698       3147 X. idahoensis (sppe)     BRY-55351     HMS79215     HMS                                                                                                                                                                                                                           | 304f         | X. chlorochroa                       | BRV-55330               | 1111079202    | HM578790      | HM578076    | HM578452  | HM579607      | HM577688   |
| Solif     A. Chlorochroa     BR 125341     Ind 12007     HM578792     HM578077     HM578455     IND57609       3007     X. chlorochroa     BR Y-55342     HM579204     HM578793     HM578079     HM578455     IND578455     IND57609       3107     X. chlorochroa     BR Y-55344     HM579206     HM578797     HM578457     HM578457     HM577691       3147     X. chlorochroa     BR Y-55345     HM579207     HM578081     HM578457     HM579611     HM577653       3147     X. chlorochroa     BR Y-55346     HM579210     HM578798     HM578081     IM578457     HM579613     HM577661     HM577697       3147     X. chlorochroa     BR Y-55348     HM579210     HM578086     -     HM579615     HM577697       3187     X. idahoensis type)     BR Y-55350     HM579217     HM578086     -     HM579616     HM577699       3247     X. idahoensis     BR Y-55351     HM579217     HM578088     -     HM579619     HM5777699       3247     X. idahoensis     BR Y-55353     HM579216     HM57                                                                                                                                                                                                                                                              | 307f         | X.chlorochroa                        | BRY-55340               | HM579203      | HM578791      | -           | HM578453  | -             | -          |
| 3007     X. Chlorochroa     BRY-55342     HM579204     HM578793     HM578075     HM578456     HM577860       3107     X. chlorochroa     BRY-55342     HM579206     HM578793     HM578456     HM5778960       3111     X. chlorochroa     BRY-55344     HM579206     HM578795     HM578407     HM578458     HM579601       3142     X. chlorochroa     BRY-55346     HM579208     HM578797     HM578081     HM5778457       3141     X. chlorochroa     BRY-55346     HM579208     HM578082     HM578458     HM579613     HM577695       3161     X. cantschadalis     BRY-55349     HM579210     HM578080     HM578085     -     HM579616     HM577695       3171     X. cantschadalis     BRY-55334     HM579211     HM578086     -     HM579616     HM577709       3181     X. idahoensis (type)     BRY-55351     -     HM578080     -     HM579617     HM577709       3241     X. idahoensis     BRY-55351     HM579216     HM578089     -     HM579620     HM577703       324                                                                                                                                                                                                                                                                               | 3071<br>308f | X. chlorochroa                       | BRV-553/1               | -             | HM578792      | HM578077    | HM578454  | HM579608      | HM577680   |
| 3007     X. Chlorochroa     BRY-55343     HM579205     HM578794     HM578079     HM578457     HM578457     HM578457     HM578457     HM578457     HM578609     HM577691     HM577692       3141     X. chlorochroa     BRY-55343     HM579206     HM578796     HM578081     HM578457     HM579610     HM577691       3141     X. chlorochroa     BRY-55345     HM579207     HM578081     HM578459     HM579612     HM577691       3167     X. cantschadalis     BRY-55348     HM579210     HM57899     HM578084     -     HM579614     HM577691       3167     X. cantschadalis     BRY-55335     HM579211     HM578086     -     HM579616     HM577699       3187     X. idahoensis     BRY-55335     HM579215     HM578086     -     HM579619     HM577769       3231     X. idahoensis     BRY-55335     HM579218     HM578088     -     HM579619     HM577699       32324     X. idahoensis     BRY-55354     HM579217     HM578080     HM578090     -     HM579619     HM5777702                                                                                                                                                                                                                                                                             | 200f         | X. chlorochroa                       | BDV 55342               | -<br>HM570204 | HM578792      | HM578078    | LIM578454 | 111013/9008   | HM577600   |
| JIII     X. Chlorochroa     BRY 52344     HMS79206     HMS78795     HMS78080     HMS78457     HMS77692       JIII     X. Chlorochroa     BRY 55344     HMS79206     HMS78795     HMS78080     HMS78457     HMS776921     HMS77692       JIII     X. Chlorochroa     BRY 55346     HMS79206     HMS78081     HMS78457     HMS796112     HMS77692       JIII     X. Chlorochroa     BRY 55346     HMS79208     HMS78084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 210f         | X. chlorochroa                       | BDV 55342               | HM570204      | HM578704      | HM578070    | HM578455  | -<br>HM570600 | HM577601   |
| 111     X. Chlorochroa     BRY -5334     HMS 79207     HMS 7876     HMS 78458     HMS 77691     HMS 77693       3141     X. Chlorochroa     BRY -55346     HMS 79207     HMS 78766     HMS 78458     HMS 77691     HMS 77693       3167     X. Idahoensis     BRY -55347     HMS 79209     HMS 78708     HMS 78083     -     HMS 79614     HMS 77693       3167     X. camtschadalis     BRY -55349     HMS 79210     HMS 78085     -     HMS 79614     HMS 77693       3187     X. idahoensis (type)     BRY -55350     HMS 79211     HMS 78086     -     HMS 79617     HMS 77693       3187     X. idahoensis     BRY -55351     HMS 79214     HMS 78080     HMS 78088     -     HMS 79617     HMS 77603       3247     X. idahoensis     BRY -55355     HMS 79216     HMS 78080     HMS 78080     HMS 78080     HMS 78080     HMS 78060     HMS 78061     HMS 77062     HMS 77703       3257     X. idahoensis     BRY -55356     HMS 79219     HMS 78080     HMS 78090     -     HMS 77062     HMS 77703 <t< th=""><th>3101<br/>211£</th><th>X. chlorochrod<br/>V. chlorochrod</th><th>DR 1-55545</th><th>HM570206</th><th>UM578705</th><th>LIM578079</th><th>LIM579457</th><th>HM570610</th><th>HM577602</th></t<>                                           | 3101<br>211£ | X. chlorochrod<br>V. chlorochrod     | DR 1-55545              | HM570206      | UM578705      | LIM578079   | LIM579457 | HM570610      | HM577602   |
| 114     X. Chlorochroa     BRY -53340     HIND 79209     HIND 78708     HIND 78708     HIND 78708     HIND 787011     HIND 77011     HIND 77011       3151     X. ichiorochroa     BRY -53346     HIND 77020     HIND 78708     HIND 770512     HIND 77057       3167     X. camtschadalis     BRY -55348     HIND 77021     HIND 77057     HIND 77057       3167     X. camtschadalis     BRY -55350     HIND 77021     HIND 77057     HIND 77057       3187     X. idahoensis(type)     BRY -55351     HIND 77021     HIND 77057     HIND 770517       3241     X. idahoensis     BRY -55354     HIND 77021     HIND 77021     HIND 77021       3245     X. idahoensis     BRY -55354     HIND 79216     HIND 77021     HIND 77020       3267     X. idahoensis     BRY -55356     HIND 79211     HIND 78050     HIND 78062     HIND 77021       3271     X. idahoensis     BRY -55356     HIND 79221     HIND 78050     HIND 78062     HIND 77022       3307     X. camtschadalis     BRY -55361     HIND 79224     HIND 78050     HIND 79022 <th>3111<br/>212f</th> <th>A. chiorochroa<br/>V. chiorochroa</th> <th>DR 1-33344<br/>DDV 55245</th> <th>HM570207</th> <th>HM578706</th> <th>HM578080</th> <th>HNIJ/04J/</th> <th>HM570611</th> <th>HM577602</th> | 3111<br>212f | A. chiorochroa<br>V. chiorochroa     | DR 1-33344<br>DDV 55245 | HM570207      | HM578706      | HM578080    | HNIJ/04J/ | HM570611      | HM577602   |
| 1141     X. charochroad     BRY-53347     HMS/79209     HMS/7809     HMS/78093     HMS/78013     HMS/78014       316f     X. camtschadadis     BRY-55344     HMS/79209     HMS/78093     -     HMS/79613     HMS/77695       316f     X. camtschadadis     BRY-55344     HMS/79201     HMS/78084     -     HMS/79615     HMS/77697       318f     X. idahoensis     BRY-55350     HMS/79212     HMS/78085     -     HMS/79616     HMS/77697       318f     X. idahoensis     BRY-55351     HMS/78014     HMS/78086     -     HMS/79617     HMS/77699       324f     X. idahoensis     BRY-55354     HMS/79216     HMS/78080     -     HMS/79618     HMS/77000       325f     X. idahoensis     BRY-55354     HMS/79216     HMS/78090     -     -     HMS/7703       326f     X. idahoensis     BRY-55355     HMS/79219     HMS/78093     -     -     HMS/77042       327f     X. camtschadadis     BRY-55360     HMS/79220     HMS/78094     -     HMS/77052     HMS/77704                                                                                                                                                                                                                                                                                        | 3121<br>2146 | A. Chiorochroa<br>V. chiorochroa     | DR 1-33343              | HIVI379207    | HNIJ / 8 / 90 | HNIJ / 6061 | HNIJ/04J0 | HM570612      | HNI377604  |
| 3161     X. acamischadalis     BRY-5334     HM37920     HM57809     -     HM578083     -     HM577696       3171     X. camischadalis     BRY-55348     HM579210     HM578084     -     HM579614     HM577696       3187     X. idahoensis(type)     BRY-55350     HM578081     -     HM578085     -     HM579616     HM577699       3231     X. idahoensis(type)     BRY-55351     -     HM578080     HM578088     -     HM579617     HM577699       3241     X. idahoensis     BRY-55352     HM579215     HM578080     HM578089     -     HM579617     HM577699       3247     X. idahoensis     BRY-55354     HM579216     HM578090     -     HM579617     HM577014       32567     X. chlorochroa     BRY-55356     HM579218     HM578091     HM578406     HM579621     HM577036       3297     X. camtschadalis     BRY-55356     HM579221     HM578091     HM578094     -     -     HM577703       3307     X. camtschadalis     BRY-55364     HM579222     HM578811                                                                                                                                                                                                                                                                                        | 3141<br>2156 | A. Chiorochroa<br>V idahoomaia       | DK I -33340             | HIVI379208    | HNI3/8/9/     | HNJ/6062    | ПМ3/8439  | HM579612      | HIVI377694 |
| Joint     X. camtschadalis     BRY -53349     HMS 19211     HMS 7800     HMS 78085     -     HMS 79615     HMS 77697       3187     X. camtschadalis     BRY -55350     HMS 79211     HMS 78086     -     HMS 79616     HMS 77697       3191     X. idahoensis (type)     BRY -55351     -     HMS 78087     -     HMS 79617     HMS 77697       3241     X. idahoensis     BRY -55351     HMS 79211     HMS 78088     -     HMS 79618     HMS 77700       3247     X. idahoensis     BRY -55354     HMS 79217     HMS 78090     -     HMS 79620     HMS 77703       3257     X. idahoensis     BRY -55355     HMS 79217     HMS 78090     HMS 78401     HMS 79622     HMS 77703       3287     X. encochlorochroa     BRY -55356     HMS 79212     HMS 78094     -     HMS 79624     HMS 77703       3307     X. camtschadalis     BRY -55359     HMS 79220     HMS 78094     -     HMS 79624     HMS 77707       3311     X. camtschadalis     BRY -55361     HMS 79222     HMS 7811     HMS 78096                                                                                                                                                                                                                                                              | 3151         | X. taanoensis<br>X. suustaaluu dulla | BK I -5554/             | HM579209      | HM578790      | HM5/8085    | -         | HM5/9015      | HM577695   |
| 318     X. camtschadalis     BR 1-33.49     HM3 79211     HM3 78010     HM3 78013     HM3 79013     HM3 77691       318     X. idahoensis(type)     BR Y-55351     HM5 78021     HM5 78086     -     HM5 77609       324     X. idahoensis     BR Y-55352     HM5 79215     HM5 78088     -     HM5 79617     HM5 77699       324     X. idahoensis     BR Y-55352     HM5 79216     HM5 78089     -     HM5 79610     HM5 77700       326     X. idahoensis     BR Y-55355     HM5 79216     HM5 78000     -     HM5 79620     HM5 77703       327     X. chlorochroa     BR Y-55356     HM5 79218     HM5 78001     HM5 78460     HM5 79622     HM5 77703       3287     X. camtschadalis     BR Y-55356     HM5 79221     HM5 78093     -     -     HM5 79624     HM5 77703       3307     X. camtschadalis     BR Y-55361     HM5 79221     HM5 7809     -     HM5 79625     HM5 77707       3318     X. camtschadalis     BR Y-55361     HM5 79224     HM5 78069     -     HM5 79627     HM5 77                                                                                                                                                                                                                                                              | 3101<br>2176 | A. camischadalls                     | DK I -33340             | HNI379210     | HM3/8/99      | HNJ/0004    | -         | HNI3/9014     | HM577690   |
| JBI     X. idahoensis(type)     BRT-53530     HMS/9212     HMS/8801     HMS/8805     -     HMS/9616     HMS/79617       JBI     X. idahoensis(type)     BRY-55351     -     HMS/78087     -     HMS/78087     -     HMS/78087     -     HMS/78087     -     HMS/79618     HMS/7701       JZI     X. idahoensis     BRY-55353     HMS/79216     HMS/78090     -     HMS/79618     HMS/7701       JZI     X. idahoensis     BRY-55355     HMS/79217     HMS/78091     HMS/78460     HMS/79621     HMS/7703       JZI     X. chlorochroa     BRY-55357     HMS/79219     HMS/78091     HMS/78461     HMS/79621     HMS/7703       JMS     X. neochlorochroa     BRY-55357     HMS/79219     HMS/78094     -     HMS/79623     HMS/7705       JMS     X. camtschadalis     BRY-55360     HMS/79224     HMS/78095     -     HMS/79623     HMS/7707       JMI     X. camtschadalis     BRY-55361     HMS/9222     HMS/78097     -     HMS/79626     HMS/7707       JMI     X. camtschadalis </th <th>31/I<br/>2100</th> <th>X. camischadalis</th> <th>BK 1-55549</th> <th>HM579211</th> <th>HM578800</th> <th>HM5/8085</th> <th>-</th> <th>HM5/9015</th> <th>HM577697</th>                                                                                              | 31/I<br>2100 | X. camischadalis                     | BK 1-55549              | HM579211      | HM578800      | HM5/8085    | -         | HM5/9015      | HM577697   |
| 3191   X. tdathoensis   BRY-53521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3181         | X. idanoensis(type)                  | BRY-55350               | HM5/9212      | HM578801      | HM5/8086    | -         | HM5/9616      | HM577698   |
| 324f     X. idahoensis     BKY-5352     HMS/9214     HMS/808     HMS/8088     -     HMS/9108     HMS/7101       325f     X. idahoensis     BRY-55354     HMS79216     HMS78004     HMS78090     -     HMS79610     HMS77701       326f     X. idahoensis     BRY-55355     HMS79217     HMS78001     HMS78091     HMS78460     HMS77620     HMS77702       326f     X. chlorochroa     BRY-55357     HMS79219     HMS78091     HMS78093     -     -     HMS77702       328f     X. neochlorochroa     BRY-55358     HMS79210     HMS78094     -     HMS77022     HMS778097     -     HMS77024     HMS77707       330f     X. camtschadalis     BRY-55360     HMS79222     HMS7810     -     HMS79625     HMS77708       333f     X. camtschadalis     BRY-55361     HMS79223     HMS78181     HMS78097     -     HMS79627     HMS77711       334f     X. camtschadalis     BRY-55363     HMS79226     HMS77811     HMS7809     -     HMS79627     HMS77711       334f                                                                                                                                                                                                                                                                                             | 3191         | X. idanoensis(type)                  | BRY-55351               | -             | HM578802      | HM5/808/    | -         | HM5/961/      | HM577699   |
| 3.241     X. talahoensis     BRY-55353     HMS/79215     HMS/78094      HMS/78020     HMS/7702       3267     X. chlorochroa     BRY-55355     HMS79217     HMS78090      HMS778020     HMS778091     HMS78460     HMS778021     HMS77703       3271     X. chlorochroa     BRY-55355     HMS79217     HMS78090      HMS77703       3287     X. cantochadalis     BRY-55354     HMS79219     HMS78094      HMS77705       3307     X. cantschadalis     BRY-55358     HMS79220     HMS78094      HMS77706       3311     X. cantschadalis     BRY-55361     HMS79222     HMS78096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3231         | X. idahoensis                        | BRY-55352               | HM5/9214      | HM5/8803      | HM5/8088    | -         | HM5/9618      | HM5///00   |
| Josephanesis     BRY-55353     HMS/9216     HMS/8805     HMS/8805     HMS/8805     HMS/8805     HMS/8806     HMS/8807     HMS/8806     HMS/8807     HMS/78461     HMS/78021     HMS/77703       327f     X. chlorochroa     BRY-55356     HMS/79218     HMS/78091     HMS/78091     HMS/78092     HMS/78061     HMS/79621     HMS/77704       328f     X. neochlorochroa     BRY-55358     HMS/79219     HMS/78091     HMS/78094     -     HMS/79621     HMS/77703       330f     X. camtschadalis     BRY-55350     HMS/79221     HMS/78095     -     HMS/79624     HMS/77707       331f     X. camtschadalis     BRY-55361     HMS/79223     HMS/7811     HMS/78097     -     HMS/79626     HMS/77710       334f     X. camtschadalis     BRY-55363     HMS/79227     HMS/78112     HMS/78097     -     HMS/79628     HMS/77711       336f     X. camtschadalis     BRY-55364     HMS/79227     HMS/78101     HMS/78630     HMS/79630     HMS/77713       336f     X. norchlorochroa     BRY-55366     HMS/79220 <t< th=""><th>3241</th><th>X. idahoensis</th><th>BRY-55353</th><th>HM579215</th><th>HM578804</th><th>HM578089</th><th>-</th><th>HM579619</th><th>HM577701</th></t<>                                                                            | 3241         | X. idahoensis                        | BRY-55353               | HM579215      | HM578804      | HM578089    | -         | HM579619      | HM577701   |
| 326f     X. chlorochroa     BRY-55355     HM5 /9217     HM5 /8001     HM5 /8001     HM5 /8460     HM5 /9621     HM5 /9621     HM5 /9621     HM5 /9621     HM5 /9622     HM5 /9621     HM5 /9622     HM5 /9621     HM5 /9621     HM5 /9621     HM5 /9623     HM5 /97623     HM5 /97623     HM5 /97633       328f     X. camtschadalis     BRY-55358     HM5 /9220     HM5 /8809     HM5 /8009     -     HM5 /9624     HM5 /9703       331f     X. camtschadalis     BRY-55360     HM5 /9223     HM5 /8811     HM5 /8009     -     HM5 /9626     HM5 /9703       333f     X. camtschadalis     BRY-55361     HM5 /9223     HM5 /8813     HM5 /8009     -     HM5 /9626     HM5 /9703       334f     X. camtschadalis     BRY-55364     HM5 /9225     HM5 /8813     HM5 /8609     -     HM5 /9626     HM5 /971710       335f     X. camtschadalis     BRY-55364     HM5 /9227     HM5 /8816     HM5 /8810     HM5 /8463     HM5 /9630     HM5 /77113       336f     X. norchlorochroa     BRY -55366     HM5 /9220     HM5 /8810     HM5                                                                                                                                                                                                                             | 3251         | X. idahoensis                        | BRY-55354               | HM5/9216      | HM5/8805      | HM5/8090    | -         | HM5/9620      | HM577702   |
| 327f   X. chorochroa   BRY-55356   HMS /9218   HMS /8092   HMS /8092   HMS /8461   HMS /9622   HMS /9622   HMS /9632   -   -   HMS /7703     329f   X. camtschadalis   BRY-55358   HMS 79220   HMS 78809   HMS 78093   -   -   HMS 7706     330f   X. camtschadalis   BRY-55359   HMS 79221   HMS 78809   HMS 78095   -   HMS 79624   HMS 77706     331f   X. camtschadalis   BRY-55360   HMS 79223   HMS 78810   HMS 78097   -   HMS 79626   HMS 77708     333f   X. camtschadalis   BRY-55362   HMS 79223   HMS 78810   HMS 78097   -   HMS 79628   HMS 77710     336f   X. camtschadalis   BRY-55364   HMS 79226   HMS 78810   -   HMS 79628   HMS 77711     336f   X. norchlorochroa   BRY-55365   HMS 79228   HMS 78810   HMS 78461   HMS 79630   HMS 771713     337f   X. norchlorochroa   BRY-55365   HMS 79220   HMS 78810   HMS 78463   HMS 79630   HMS 771713     338f   X. norchlorochroa   BRY -55364   HMS 792                                                                                                                                                                                                                                                                                                                                       | 326f         | X. chlorochroa                       | BRY-55355               | HM579217      | HM578806      | HM578091    | HM578460  | HM579621      | HM577703   |
| 328f   X. neochlorochroa   BRY-55357   HM579219   HM578009   HM578094   -   -   HM577706     330f   X. camtschadalis   BRY-55358   HM579220   HM578094   -   HM579623   HM577706     331f   X. camtschadalis   BRY-55350   HM579221   HM578810   HM578095   -   HM579625   HM577708     332f   X. camtschadalis   BRY-55361   HM579222   HM578813   HM578096   -   HM579626   HM577708     333f   X. camtschadalis   BRY-55361   HM579224   HM578813   HM578098   -   HM579627   HM577711     334f   X. camtschadalis   BRY-55364   HM579226   HM578816   HM578100   -   HM579628   HM577713     336f   X. norchlorochroa   BRY-55366   HM579220   HM578810   HM578463   HM579630   HM577713     338f   X. norchlorochroa   BRY-55366   HM579230   HM578102   HM578464   HM579631   HM577715     396f   X. norchlorochroa   BRY-55370   HM579230   HM578104   HM578466   HM579633   HM577716                                                                                                                                                                                                                                                                                                                                                                      | 327f         | X. chlorochroa                       | BRY-55356               | HM579218      | HM578807      | HM578092    | HM578461  | HM579622      | HM577704   |
| 329f   X. camtschadalis   BRY-55358   HMS 79220   HMS 78094   -   HMS 78095   -   HMS 7707     3310f   X. camtschadalis   BRY-55360   HMS 79222   HMS 78810   HMS 78095   -   HMS 79624   HMS 77707     3321f   X. camtschadalis   BRY-55360   HMS 79222   HMS 78811   HMS 78096   -   HMS 79625   HMS 77709     3334f   X. camtschadalis   BRY-55361   HMS 79224   HMS 78812   HMS 78098   -   HMS 79626   HMS 77710     334f   X. camtschadalis   BRY-55364   HMS 79226   HMS 78813   HMS 78098   -   HMS 79628   HMS 77711     336f   X. camtschadalis   BRY-55364   HMS 79226   HMS 78816   HMS 78100   -   HMS 79629   HMS 77713     336f   X. norchlorochroa   BRY-55365   HMS 79229   HMS 78810   HMS 78464   HMS 79630   HMS 77713     337f   X. norchlorochroa   BRY-55368   HMS 79230   HMS 78810   HMS 78463   HMS 79632   HMS 77715     338f   X. norchlorochroa   BRY-55370   HMS 79230   HMS 78810   HMS 78466                                                                                                                                                                                                                                                                                                                                      | 328f         | X. neochlorochroa                    | BRY-55357               | HM579219      | HM578808      | HM578093    | -         | -             | HM577705   |
| 330f     X. camtschadalis     BRY-55359     HM579221     HM57810     HM578095     -     HM579624     HM577707       331f     X. camtschadalis     BRY-55361     HM579223     HM578811     HM578096     -     HM579626     HM577708       332f     X. camtschadalis     BRY-55361     HM579223     HM578813     HM578097     -     HM579626     HM577710       333f     X. camtschadalis     BRY-55361     HM579223     HM578813     HM578098     -     HM579627     HM577710       334f     X. camtschadalis     BRY-55363     HM579226     HM578815     HM578100     -     HM579629     HM577711       336f     X. norchlorochroa     BRY-55366     HM579226     HM578810     HM578463     HM579630     HM577714       338f     X. norchlorochroa     BRY-55368     HM579230     HM578810     HM578464     HM579632     HM577716       340f     X. norchlorochroa     BRY-55370     HM579233     -     HM578105     HM578467     HM579632     HM577710       341f <x. norchlorochroa<="" td="">     BRY-55371<!--</th--><th>329f</th><th>X. camtschadalis</th><th>BRY-55358</th><th>HM579220</th><th>HM578809</th><th>HM578094</th><th>-</th><th>HM579623</th><th>HM577706</th></x.>                                                                             | 329f         | X. camtschadalis                     | BRY-55358               | HM579220      | HM578809      | HM578094    | -         | HM579623      | HM577706   |
| 331f     X. camtschadalis     BRY-55360     HM5/9222     HM5/811     HM5/8096     -     HM5/9625     HM5/7/08       332f     X. camtschadalis     BRY-55361     HM579223     HM57812     HM578097     -     HM579626     HM577710       334f     X. camtschadalis     BRY-55362     HM579224     HM57811     HM578098     -     HM579627     HM577710       334f     X. camtschadalis     BRY-55363     HM579225     HM57811     HM578099     -     HM579629     HM577711       336f     X. norchlorochroa     BRY-55365     HM579227     HM578816     HM578100     -     HM577713       338f     X. norchlorochroa     BRY-55366     HM579229     HM578101     HM578463     HM579630     HM577714       340f     X. norchlorochroa     BRY-55370     HM579230     HM578104     HM578464     HM579631     HM577716       340f     X. norchlorochroa     BRY-55371     HM579231     HM578106     -     HM579634     HM577719       341f     X. chlorochroa     BRY-55371     HM579233 <t< th=""><th>330f</th><th>X. camtschadalis</th><th>BRY-55359</th><th>HM579221</th><th>HM578810</th><th>HM578095</th><th>-</th><th>HM579624</th><th>HM577707</th></t<>                                                                                                       | 330f         | X. camtschadalis                     | BRY-55359               | HM579221      | HM578810      | HM578095    | -         | HM579624      | HM577707   |
| 3321   X. camtschadalis   BRY-55361   HM579223   HM578812   HM578097   -   HM579626   HM577710     3331   X. camtschadalis   BRY-55363   HM579224   HM578813   HM578098   -   HM579627   HM579627   HM579711     3351   X. camtschadalis   BRY-55363   HM579226   HM578815   HM578009   -   HM579629   HM577711     3361   X. norchlorochroa   BRY-55365   HM579227   HM578816   HM578100   -   HM579630   HM577713     3371   X. norchlorochroa   BRY-55366   HM579228   HM578101   HM578463   HM579630   HM577715     3391   X. norchlorochroa   BRY-55368   HM579230   HM578819   HM578104   HM578465   HM579631   HM577717     3411   X. norchlorochroa   BRY-55370   HM579231   HM578820   -   HM57866   HM579633   HM577710     3421   X. norchlorochroa   BRY-55371   HM579234   HM578821   HM578107   HM57868   HM579637   HM577720     3435   X. chlorochroa   BRY-55375   HM579235   HM578823   HM57                                                                                                                                                                                                                                                                                                                                                    | 331f         | X. camtschadalis                     | BRY-55360               | HM579222      | HM578811      | HM578096    | -         | HM579625      | HM577708   |
| 333f     X. camtschadalis     BRY-55362     HM5/9224     HM5/8813     HM5/8098     -     HM5/9627     HM5/7/10       334f     X. camtschadalis     BRY-55363     HM579225     HM578814     HM578099     -     HM579627     HM579628     HM577711       336f     X. camtschadalis     BRY-55364     HM579227     HM578816     HM578100     -     HM579629     HM577711       336f     X. norchlorochroa     BRY-55366     HM579228     HM578816     HM578102     HM578463     HM579630     HM577714       339f     X. norchlorochroa     BRY-55366     HM579229     HM578817     HM578102     HM578463     HM579631     HM577715       340f     X. norchlorochroa     BRY-55369     HM579232     HM578819     HM578105     HM578464     HM579632     HM577718       342f     X. norchlorochroa     BRY-55371     HM579232     HM578821     HM578105     HM578468     HM579636     HM577719       343f     X. chlorochroa     BRY-55371     HM579236     HM578105     HM578468     HM579636     HM577721                                                                                                                                                                                                                                                            | 332f         | X. camtschadalis                     | BRY-55361               | HM579223      | HM578812      | HM578097    | -         | HM579626      | HM577709   |
| 334f     X. camtschadalis     BRY-55363     HMS79225     HMS78814     HMS78099     -     HMS79628     HMS77711       335f     X. camtschadalis     BRY-55364     HMS79226     HMS78815     HM578100     -     HMS79629     HMS77711       336f     X. norchlorochroa     BRY-55365     HMS79228     HMS78101     HMS78463     HMS79630     HMS77711       338f     X. norchlorochroa     BRY-55366     HMS79229     HMS78102     HMS78464     HMS79631     HMS777116       339f     X. norchlorochroa     BRY-55368     HMS79231     HMS788104     HMS78465     HMS79632     HMS777116       340f     X. norchlorochroa     BRY-55370     HMS79231     HMS78820     -     HMS78466     HMS79634     HMS777118       342f     X. norchlorochroa     BRY-55370     HMS79233     -     HMS78105     HMS78467     HMS79636     HMS777119       343f     X. chlorochroa     BRY-55371     HMS79234     HMS78822     HMS78107     HMS78468     HMS79637     HMS77720       345f     X. chlorochroa     BRY                                                                                                                                                                                                                                                              | 333f         | X. camtschadalis                     | BRY-55362               | HM579224      | HM578813      | HM578098    | -         | HM579627      | HM577710   |
| 336f   X. camtschadalis   BRY-55364   HM579226   HM578815   HM578100   -   HM579629   HM577712     336f   X. norchlorochroa   BRY-55365   HM579227   HM578816   HM578101   HM578463   HM579630   HM577713     337f   X. norchlorochroa   BRY-55366   HM579228   HM578817   HM578102   HM578463   HM579630   HM577714     338f   X. norchlorochroa   BRY-55366   HM579229   HM578818   HM578103   HM578464   HM579632   HM577716     340f   X. norchlorochroa   BRY-55370   HM579231   HM578820   -   HM578467   HM579634   HM577718     342f   X. norchlorochroa   BRY-55371   HM579234   HM578821   HM578106   -   HM579636   HM577719     343f   X. chlorochroa   BRY-55373   HM579234   HM578823   HM578108   HM578468   HM579637   HM577722     345f   X. chlorochroa   BRY-55375   HM579236   HM578823   HM578109   -   HM579638   HM577723     410f   X. camtschadalis   BRY-55376   HM579237   HM578825   <                                                                                                                                                                                                                                                                                                                                                | 334f         | X. camtschadalis                     | BRY-55363               | HM579225      | HM578814      | HM578099    | -         | HM579628      | HM577711   |
| 336f     X. norchlorochroa     BRY-55365     HM579227     HM578101     HM578462     -     HM577713       337f     X. neochlorochroa     BRY-55366     HM579228     HM578102     HM578463     HM579630     HM577714       338f     X. norchlorochroa     BRY-55367     HM579229     HM578818     HM578103     HM578464     HM579631     HM577715       340f     X. norchlorochroa     BRY-55367     HM579230     HM578819     HM578104     HM578465     HM579631     HM577715       340f     X. norchlorochroa     BRY-55370     HM579231     HM578810     HM578105     HM578467     HM579634     HM577718       342f     X. norchlorochroa     BRY-55371     HM579233     -     HM578106     -     HM579636     HM577710       343f     X. chlorochroa     BRY-55373     HM579233     -     HM578107     HM578468     HM579636     HM5777120       345f     X. chlorochroa     BRY-55374     HM579237     HM578108     HM578470     HM579638     HM577723       410f     X. camschadalis     BRY-553                                                                                                                                                                                                                                                              | 335f         | X. camtschadalis                     | BRY-55364               | HM579226      | HM578815      | HM578100    | -         | HM579629      | HM577712   |
| 337f     X. neochlorochroa     BRY-55366     HM579228     HM578817     HM578102     HM578463     HM579630     HM577114       338f     X. norchlorochroa     BRY-55367     HM579220     HM578818     HM578103     HM578464     HM579631     HM577714       339f     X. norchlorochroa     BRY-55368     HM579230     HM578819     HM578104     HM578465     HM579632     HM577717       340f     X. norchlorochroa     BRY-55369     HM579232     HM578820     -     HM578466     HM579634     HM577718       342f     X. norchlorochroa     BRY-55371     HM579232     HM578821     HM578105     HM578468     HM579636     HM577719       343f     X. chlorochroa     BRY-55371     HM579234     HM578822     HM578107     HM578468     HM579636     HM577720       345f     X. chlorochroa     BRY-55373     HM579236     HM578823     HM578109     -     HM579637     HM577722       424f     X. chlorochroa     BRY-55375     HM579236     HM578823     HM578110     HM578470     HM579639     HM577722 <                                                                                                                                                                                                                                                      | 336f         | X. norchlorochroa                    | BRY-55365               | HM579227      | HM578816      | HM578101    | HM578462  | -             | HM577713   |
| 338f     X. norchlorochroa     BRY-55367     HM579229     HM578103     HM578464     HM579631     HM577715       339f     X. norchlorochroa     BRY-55368     HM579230     HM578819     HM578104     HM578465     HM579632     HM577716       340f     X. norchlorochroa     BRY-55369     HM579230     HM578820     -     HM578466     HM579633     HM577717       341f     X. norchlorochroa     BRY-55370     HM579232     HM578821     HM578105     HM578466     HM579634     HM577718       342f     X. norchlorochroa     BRY-55371     HM579233     -     HM578106     -     HM579636     HM577720       343f     X. chlorochroa     BRY-55371     HM579234     HM578822     HM578106     -     HM579636     HM577720       343f     X. chlorochroa     BRY-55373     HM579236     HM578823     HM578107     HM579636     HM577721       410f     X. camtschadalis     BRY-55374     HM579237     HM578825     HM578109     -     HM579639     HM577723       431f     X. chlorochroa                                                                                                                                                                                                                                                                       | 337f         | X. neochlorochroa                    | BRY-55366               | HM579228      | HM578817      | HM578102    | HM578463  | HM579630      | HM577714   |
| 339fX. norchlorochroaBRY-55368HM579230HM578819HM578104HM578465HM579632HM57716340fX. norchlorochroaBRY-55369HM579231HM578820-HM578466HM579633HM577717341fX. norchlorochroaBRY-55370HM579232HM578821HM578105HM578467HM579634HM577718342fX. norchlorochroaBRY-55371HM579233-HM578106-HM579635HM577719343fX. chlorochroaBRY-55372HM579234HM578822HM578107HM578468HM579636HM577720345fX. chlorochroaBRY-55373HM579235HM578823HM578108HM578469HM579637HM57722410fX. camtschadalisBRY-55374HM579236HM578824HM578110HM578470HM579639HM577723424fX. chlorochroaBRY-55376HM579238HM578825HM578110HM578470HM579640HM577724433fX. chlorochroaBRY-55377HM579239HM578827HM578112HM578472HM579641HM577726433fX. chlorochroaBRY-55378HM579240HM578828-HM578473HM579643HM577727435fX. cumberlandiaBRY-55380HM579241HM578830HM578114HM578475-HM577728437fX. chlorochroaBRY-55381HM579243HM578831HM578116HM578476-HM577730438fX. chlorochroaBRY-55381HM579244HM578832                                                                                                                                                                                                                                                                                                                | 338f         | X. norchlorochroa                    | BRY-55367               | HM579229      | HM578818      | HM578103    | HM578464  | HM579631      | HM577715   |
| 340f   X. norchlorochroa   BRY-55369   HM579231   HM578820   -   HM578466   HM579633   HM577717     341f   X. norchlorochroa   BRY-55370   HM579232   HM578821   HM578105   HM578467   HM579634   HM577718     342f   X. norchlorochroa   BRY-55371   HM579233   -   HM578106   -   HM579635   HM577719     343f   X. chlorochroa   BRY-55372   HM579234   HM57822   HM578107   HM578468   HM579636   HM577720     345f   X. chlorochroa   BRY-55373   HM579235   HM57823   HM578108   HM578469   HM579637   HM577721     410f   X. camtschadalis   BRY-55374   HM579236   HM578823   HM578109   -   HM579638   HM577722     424f   X. chlorochroa   BRY-55376   HM579237   HM578825   HM578110   HM578470   HM579639   HM577723     431f   X. chlorochroa   BRY-55377   HM579239   HM578827   HM578111   HM578471   HM579640   HM577724     433f   X. chlorochroa   BRY-55378   HM579240   HM578812   HM57811                                                                                                                                                                                                                                                                                                                                                    | 339f         | X. norchlorochroa                    | BRY-55368               | HM579230      | HM578819      | HM578104    | HM578465  | HM579632      | HM577716   |
| 341f   X. norchlorochroa   BRY-55370   HM579232   HM578821   HM578105   HM578467   HM579634   HM577118     342f   X. norchlorochroa   BRY-55371   HM579233   -   HM578106   -   HM579635   HM57719     343f   X. chlorochroa   BRY-55372   HM579234   HM578822   HM578107   HM578468   HM579636   HM57770     345f   X. chlorochroa   BRY-55373   HM579235   HM578823   HM578108   HM578469   HM579637   HM577120     410f   X. cantschadalis   BRY-55374   HM579236   HM578823   HM578108   HM578470   HM579638   HM577722     424f   X. chlorochroa   BRY-55376   HM579237   HM578825   HM578110   HM578470   HM579639   HM577723     431f   X. chlorochroa   BRY-55377   HM579238   HM578826   HM578111   HM578471   HM579640   HM577724     433f   X. chlorochroa   BRY-55378   HM579240   HM578827   HM578112   HM578473   HM579642   HM577726     433f   X. chlorochroa   BRY-55379   HM579240   HM578828                                                                                                                                                                                                                                                                                                                                                   | 340f         | X. norchlorochroa                    | BRY-55369               | HM579231      | HM578820      | -           | HM578466  | HM579633      | HM577717   |
| 342f   X. norchlorochroa   BRY-55371   HM579233   -   HM578106   -   HM579635   HM577719     343f   X. chlorochroa   BRY-55372   HM579234   HM578822   HM578107   HM578468   HM579636   HM577720     345f   X. chlorochroa   BRY-55373   HM579235   HM578823   HM578108   HM578669   HM579637   HM577721     410f   X. camtschadalis   BRY-55374   HM579236   HM578824   HM578109   -   HM579638   HM577722     424f   X. chlorochroa   BRY-55375   HM579237   HM578825   HM578110   HM578470   HM579639   HM577723     431f   X. chlorochroa   BRY-55376   HM579238   HM578826   HM578111   HM579640   HM577724     432f   X. chlorochroa   BRY-55377   HM579240   HM578827   HM578112   HM578472   HM579641   HM577726     434f   X. cumberlandia   BRY-55379   HM579240   HM578828   -   HM578473   HM579643   HM577727     435f   X. cumberlandia   BRY-55380   HM579242   HM578830   HM578113   HM578475<                                                                                                                                                                                                                                                                                                                                                    | 341f         | X. norchlorochroa                    | BRY-55370               | HM579232      | HM578821      | HM578105    | HM578467  | HM579634      | HM577718   |
| 343fX. chlorochroaBRY-55372HM579234HM578822HM578107HM578468HM579636HM577720345fX. chlorochroaBRY-55373HM579235HM578823HM578108HM578469HM579637HM577721410fX. camtschadalisBRY-55374HM579236HM578224HM578109-HM579638HM577722424fX. chlorochroaBRY-55375HM579237HM578825HM578110HM578470HM579639HM577723431fX. chlorochroaBRY-55376HM579238HM578826HM578111HM578471HM579640HM577724432fX. chlorochroaBRY-55377HM579239HM578827HM578112HM578472HM579641HM577726433fX. chlorochroaBRY-55378HM579240HM578828-HM578473HM579642HM577726434fX. cumberlandiaBRY-55380HM579241HM578829HM578113HM578474HM579643HM577727435fX. chlorochroaBRY-55381HM579243HM578831HM578115HM578476-HM577728436fX. chlorochroaBRY-55382HM579244HM578831HM578116HM578476-HM577729438fX. chlorochroaBRY-55383HM579246HM578833HM578117HM578478-HM577730439fX. chlorochroaBRY-55384HM579246HM578834HM578117HM578478-HM577731440fX. chlorochroaBRY-55384HM579246HM578834H                                                                                                                                                                                                                                                                                                                         | 342f         | X. norchlorochroa                    | BRY-55371               | HM579233      | -             | HM578106    | -         | HM579635      | HM577719   |
| 345fX. chlorochroaBRY-55373HM579235HM578823HM578108HM578469HM579637HM577721410fX. camtschadalisBRY-55374HM579236HM578824HM578109-HM579638HM577722424fX. chlorochroaBRY-55375HM579237HM578825HM578110HM578470HM579639HM577723431fX. chlorochroaBRY-55376HM579238HM578826HM578111HM578471HM579640HM577724432fX. chlorochroaBRY-55377HM579239HM578827HM578112HM578472HM579641HM577725433fX. chlorochroaBRY-55378HM579240HM578828-HM578473HM579642HM577726434fX. cumberlandiaBRY-55380HM579241HM578829HM578113HM578474HM579643HM577727435fX. cumberlandiaBRY-55381HM579243HM578831HM578115HM578476-HM577728438fX. chlorochroaBRY-55382HM579244HM578831HM578116HM578477HM579644HM577730439fX. dierythraBRY-55384HM579246HM578834HM578117HM578478-HM577731440fX. chlorochroaBRY-55384HM579246HM578834HM578118HM578479HM579645HM57732                                                                                                                                                                                                                                                                                                                                                                                                                                    | 343f         | X. chlorochroa                       | BRY-55372               | HM579234      | HM578822      | HM578107    | HM578468  | HM579636      | HM577720   |
| 410fX. camtschadalisBRY-55374HM579236HM578824HM578109-HM579638HM577722424fX. chlorochroaBRY-55375HM579237HM578825HM578110HM578470HM579639HM577723431fX. chlorochroaBRY-55376HM579238HM578826HM578111HM578471HM579640HM577724432fX. chlorochroaBRY-55377HM579239HM578827HM578112HM578472HM579641HM577725433fX. chlorochroaBRY-55378HM579240HM578828-HM578473HM579642HM577726434fX. cumberlandiaBRY-55379HM579241HM578829HM578113HM578474HM579643HM577727435fX. cumberlandiaBRY-55380HM579242HM578830HM578114HM578476-HM577728437fX. chlorochroaBRY-55381HM579244HM578831HM578115HM578476-HM577729438fX. chlorochroaBRY-55382HM579244HM578833HM578116HM578477HM579644HM577730439fX. dierythraBRY-55384HM579246HM578834HM578117HM578478-HM577731440fX. chlorochroaBRY-55384HM579246HM578834HM578118HM578479HM579645HM57732                                                                                                                                                                                                                                                                                                                                                                                                                                           | 345f         | X. chlorochroa                       | BRY-55373               | HM579235      | HM578823      | HM578108    | HM578469  | HM579637      | HM577721   |
| 424fX. chlorochroaBRY-55375HM579237HM578825HM578110HM578470HM579639HM577723431fX. chlorochroaBRY-55376HM579238HM578826HM578111HM578471HM579640HM577724432fX. chlorochroaBRY-55377HM579239HM578827HM578112HM578472HM579641HM577725433fX. chlorochroaBRY-55378HM579240HM578828-HM578473HM579642HM577726434fX. cumberlandiaBRY-55379HM579241HM578829HM578113HM578474HM579643HM577727435fX. cumberlandiaBRY-55380HM579242HM578830HM578114HM578475-HM577728437fX. chlorochroaBRY-55381HM579244HM578831HM578115HM578476-HM577729438fX. chlorochroaBRY-55382HM579244HM578832HM578116HM578477HM579644HM577730439fX. dierythraBRY-55384HM579246HM578833HM578117HM578478-HM577731440fX. chlorochroaBRY-55384HM579246HM578834HM578118HM578479HM579645HM57731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 410f         | X. camtschadalis                     | BRY-55374               | HM579236      | HM578824      | HM578109    | -         | HM579638      | HM577722   |
| 431fX. chlorochroaBRY-55376HM579238HM578826HM578111HM578471HM579640HM577724432fX. chlorochroaBRY-55377HM579239HM578827HM578112HM578472HM579641HM577725433fX. chlorochroaBRY-55378HM579240HM578828-HM578473HM579642HM577726434fX. cumberlandiaBRY-55379HM579241HM578829HM578113HM578474HM579643HM577727435fX. cumberlandiaBRY-55380HM579242HM578830HM578114HM578475-HM577728437fX. chlorochroaBRY-55381HM579243HM578831HM578115HM578476-HM577729438fX. chlorochroaBRY-55382HM579244HM578832HM578116HM578477HM579644HM577730439fX. dierythraBRY-55384HM579246HM578833HM578117HM578478-HM577731440fX. chlorochroaBRY-55384HM579246HM578834HM578118HM578479HM579645HM57732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 424f         | X. chlorochroa                       | BRY-55375               | HM579237      | HM578825      | HM578110    | HM578470  | HM579639      | HM577723   |
| 432fX. chlorochroaBRY-55377HM579239HM578827HM578112HM578472HM579641HM577725433fX. chlorochroaBRY-55378HM579240HM578828-HM578473HM579642HM577726434fX. cumberlandiaBRY-55379HM579241HM578829HM578113HM578474HM579643HM577727435fX. cumberlandiaBRY-55380HM579242HM578830HM578114HM578475-HM577728437fX. chlorochroaBRY-55381HM579243HM578831HM578115HM578476-HM577729438fX. chlorochroaBRY-55382HM579244HM578832HM578116HM578477HM579644HM577730439fX. dierythraBRY-55384HM579246HM578833HM578117HM578478-HM577731440fX. chlorochroaBRY-55384HM579246HM578834HM578118HM578479HM579645HM57732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 431f         | X. chlorochroa                       | BRY-55376               | HM579238      | HM578826      | HM578111    | HM578471  | HM579640      | HM577724   |
| 433fX. chlorochroaBRY-55378HM579240HM578828-HM578473HM579642HM577726434fX. cumberlandiaBRY-55379HM579241HM578829HM578113HM578474HM579643HM577727435fX. cumberlandiaBRY-55380HM579242HM578830HM578114HM578475-HM577728437fX. chlorochroaBRY-55381HM579243HM578831HM578115HM578476-HM577729438fX. chlorochroaBRY-55382HM579244HM578832HM578116HM578477HM579644HM577730439fX. dierythraBRY-55383HM579245HM578833HM578117HM578478-HM577731440fX. chlorochroaBRY-55384HM579246HM578834HM578118HM578479HM579645HM577732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 432f         | X. chlorochroa                       | BRY-55377               | HM579239      | HM578827      | HM578112    | HM578472  | HM579641      | HM577725   |
| 434fX. cumberlandiaBRY-55379HM579241HM578829HM578113HM578474HM579643HM577727435fX. cumberlandiaBRY-55380HM579242HM578830HM578114HM578475-HM577728437fX. chlorochroaBRY-55381HM579243HM578831HM578115HM578476-HM577729438fX. chlorochroaBRY-55382HM579244HM578832HM578116HM578477HM579644HM577730439fX. dierythraBRY-55383HM579245HM578833HM578117HM578478-HM577731440fX. chlorochroaBRY-55384HM579246HM578834HM578118HM578479HM579645HM57732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 433f         | X. chlorochroa                       | BRY-55378               | HM579240      | HM578828      | -           | HM578473  | HM579642      | HM577726   |
| 435fX. cumberlandiaBRY-55380HM579242HM578830HM578114HM578475-HM577728437fX. chlorochroaBRY-55381HM579243HM578831HM578115HM578476-HM577729438fX. chlorochroaBRY-55382HM579244HM578832HM578116HM578477HM579644HM577730439fX. dierythraBRY-55383HM579245HM578833HM578117HM578478-HM577731440fX. chlorochroaBRY-55384HM579246HM578834HM578118HM578479HM579645HM577732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 434f         | X. cumberlandia                      | BRY-55379               | HM579241      | HM578829      | HM578113    | HM578474  | HM579643      | HM577727   |
| 437fX. chlorochroaBRY-55381HM579243HM578831HM578115HM578476-HM577729438fX. chlorochroaBRY-55382HM579244HM578832HM578116HM578477HM579644HM577730439fX. dierythraBRY-55383HM579245HM578833HM578117HM578478-HM577731440fX. chlorochroaBRY-55384HM579246HM578834HM578118HM578479HM579645HM577732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 435f         | X. cumberlandia                      | BRY-55380               | HM579242      | HM578830      | HM578114    | HM578475  | -             | HM577728   |
| 438f     X. chlorochroa     BRY-55382     HM579244     HM578832     HM578116     HM578477     HM579644     HM577730       439f     X. dierythra     BRY-55383     HM579245     HM578833     HM578117     HM578478     -     HM577731       440f     X. chlorochroa     BRY-55384     HM579246     HM578834     HM578118     HM578479     HM579645     HM577732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 437f         | X. chlorochroa                       | BRY-55381               | HM579243      | HM578831      | HM578115    | HM578476  | -             | HM577729   |
| 439f     X. dierythra     BRY-55383     HM579245     HM578833     HM578117     HM578478     -     HM577731       440f     X. chlorochroa     BRY-55384     HM579246     HM578834     HM578118     HM578479     HM579645     HM577732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 438f         | X. chlorochroa                       | BRY-55382               | HM579244      | HM578832      | HM578116    | HM578477  | HM579644      | HM577730   |
| 440f     X. chlorochroa     BRY-55384     HM579246     HM578834     HM578118     HM578479     HM579645     HM577732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 439f         | X. dierythra                         | BRY-55383               | HM579245      | HM578833      | HM578117    | HM578478  | -             | HM577731   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 440f         | X. chlorochroa                       | BRY-55384               | HM579246      | HM578834      | HM578118    | HM578479  | HM579645      | HM577732   |

| 441f         | X. chlorochroa                   | BRY-55385               | HM579247    | HM578835    | HM578119   | HM578480    | HM579646    | HM577733          |
|--------------|----------------------------------|-------------------------|-------------|-------------|------------|-------------|-------------|-------------------|
| 442f         | X. lineola                       | BRY-55386               | HM579248    | HM578836    | HM578120   | HM578481    | -           | HM577734          |
| 443f         | X. californica                   | BRY-55387               | HM579249    | HM578837    | -          | HM578482    | HM579647    | HM577735          |
| 444f         | X. coloradoënsis*                | BRY-55388               | HM579250    | HM578838    | HM578121   | HM578483    | HM579648    | HM577736          |
| 445f         | X. coloradoënsis*                | BRY-55389               | HM579251    | HM578839    | HM578122   | HM578484    | HM579649    | HM577737          |
| 446f         | X. coloradoënsis*                | BRY-55390               | HM579252    | HM578840    | HM578123   | HM578485    | HM579650    | HM577738          |
| 448f         | X. cumberlandia                  | BRY-55391               | HM579253    | HM578841    | HM578124   | HM578486    | HM579651    | HM577739          |
| 449f         | X. cumberlandia                  | BRY-55392               | HM579254    | HM578842    | HM578125   | HM578487    | HM579652    | HM577740          |
| 450f         | X. cumberlandia                  | BRY-55393               | HM579255    | HM578843    | HM578126   | HM578488    | HM579653    | HM577741          |
| 451f         | X. cumberlandia                  | BRY-55394               | HM579256    | HM578844    | HM578127   | HM578489    | HM579654    | HM577742          |
| 452f         | X. cumberlandia                  | BRY-55395               | HM579257    | HM578845    | HM578128   | HM578490    | HM579655    | HM577743          |
| 453f         | X. cumberlandia                  | BRY-55396               | HM579258    | HM578846    | HM578129   | HM578491    | HM579656    | HM577744          |
| 454f         | X. plittii                       | BRY-55397               | HM579259    | HM578847    | HM578130   | HM578492    | -           | HM577745          |
| 455f         | X. cumberlandia                  | BRY-55398               | HM579260    | HM578848    | HM578131   | HM578493    | HM579657    | HM577746          |
| 456f         | X cumberlandia                   | BRY-55399               | HM579261    | HM578849    | HM578132   | HM578494    | HM579658    | HM577747          |
| 4501<br>457f | X. cumberlandia                  | BRY-55400               | HM579262    | HM578850    | HM578132   | HM578495    | HM579659    | HM577748          |
| 4571<br>458f | X. cumbertanata<br>X. mexicana   | BRY-55401               | HM579262    | HM578851    | HM578134   | HM578496    | HM579660    | HM577749          |
| 450f         | X. mexicana<br>X. mexicana       | BRY-55402               | HM579264    | HM578852    | HM578135   | HM578497    | HM579661    | HM577750          |
| 4391<br>460f | X. mexicunu<br>X. chlorochroa    | BRV 55402               | HM570265    | HM578852    | HM578135   | LIM578408   | HM570662    | HM577751          |
| 4001         | X. chiorochroa                   | DR1-55405               | LIM570266   | LIM578853   | LIM579127  | LIM578400   | HM570662    | UM577752          |
| 4011<br>462f | A. Chiorochroa<br>V. chlorochroa | DR 1-33404<br>DDV 55405 | HM579200    | HNIJ / 8634 | HM570137   | HM578500    | HM570664    | HM377752          |
| 4021         | A. CHIOTOCHTOU<br>V. shlawashwaw | DN 1-33403              | HNI379207   | HNIJ / 00JJ | ПNI370130  | HNI370500   | HN1379004   | $\Pi WIJ / / JJJ$ |
| 4031         | X. cniorocnroa                   | BR 1-55400              | HM579268    | HM578850    | -          | HM578501    | HM5/9005    | HM577754          |
| 4641         | X. neowyomingica                 | BRY-55407               | HM579269    | HM5/885/    | HM578139   | HM578502    | HM5/9666    | HM5///55          |
| 4051         | X. cniorocnroa                   | BR 1-55408              | HM579270    | HM578858    | HM578140   | HM578505    | HM5/900/    | HM5///50          |
| 4001         | X. chlorochroa                   | BRY-55409               | HM579271    | HM578859    | HM578141   | HM578504    | HM5/9668    | HM5///5/          |
| 4811         | X. lineola                       | BRY-55410               | HM579272    | HM5/8860    | HM5/8142   | HM5/8505    | HM5/9669    | HM5///58          |
| 482f         | X. plittii                       | BRY-55411               | HM579273    | HM5/8861    | HM5/8143   | HM5/8506    | HM5/96/0    | HM5///59          |
| 486f         | X. lineola                       | BRY-55412               | HM579274    | HM578862    | HM578144   | -           | HM579671    | -                 |
| 4891         | X. chlorochroa                   | BRY-55413               | -           | HM578863    | HM578145   | -           | HM579672    | HM577760          |
| 490f         | X. wyomingica                    | BRY-55414               | HM579275    | HM578864    | HM578146   | HM578507    | HM579673    | HM577761          |
| 491f         | X. chlorochroa                   | BRY-55415               | HM579276    | HM578865    | HM578147   | -           | HM579674    | HM577762          |
| 492f         | X. chlorochroa                   | BRY-55416               | HM579277    | HM578866    | HM578148   | HM578508    | HM579675    | HM577763          |
| 493f         | X. chlorochroa                   | BRY-55417               | HM579278    | HM578867    | HM578149   | HM578509    | HM579676    | HM577764          |
| 494f         | X. angustiphylla                 | BRY-55418               | HM579279    | HM578868    | HM578150   | HM578510    | -           | HM577765          |
| 495f         | X. angustiphylla                 | BRY-55419               | HM579280    | HM578869    | HM578151   | HM578511    | HM579677    | HM577766          |
| 496f         | X. plittii                       | BRY-55420               | HM579281    | HM578870    | HM578152   | -           | -           | HM577767          |
| 497f         | X. plittii                       | BRY-55421               | HM579282    | HM578871    | HM578153   | -           | HM579678    | -                 |
| 498f         | X. plittii                       | BRY-55422               | HM579283    | HM578872    | HM578154   | -           | HM579679    | HM577768          |
| 499f         | X. plittii                       | BRY-55423               | HM579284    | HM578873    | HM578155   | -           | HM579680    | HM577769          |
| 501f         | X. wyomingica                    | BRY-55424               | HM579285    | HM578874    | HM578156   | HM578512    | HM579681    | HM577770          |
| 502f         | X. wyomingica                    | BRY-55425               | HM579286    | HM578875    | HM578157   | HM578513    | -           | HM577771          |
| 504f         | X. mexicana                      | BRY-55426               | HM579287    | HM578876    | HM578158   | HM578514    | -           | HM577772          |
| 505f         | X. coloradoënsis                 | BRY-55427               | HM579288    | HM578877    | HM578159   | HM578515    | -           | HM577773          |
| 508f         | X. mexicana                      | BRY-55428               | HM579289    | HM578878    | HM578160   | HM578516    | HM579682    | HM577774          |
| 509f         | X. lineola                       | BRY-55429               | HM579290    | HM578879    | HM578161   | HM578517    | -           | -                 |
| 516f         | X. chlorochroa                   | BRY-55430               | HM579291    | HM578880    | HM578162   | HM578518    | HM579683    | HM577775          |
| 517f         | X. chlorochroa                   | BRY-55431               | HM579292    | HM578881    | HM578163   | HM578519    | HM579684    | HM577776          |
| 525f         | X. chlorochroa                   | BRY-55432               | HM579293    | HM578882    | HM578164   | HM578520    | HM579685    | HM577777          |
| 526f         | X. chlorochroa                   | BRY-55433               | HM579294    | HM578883    | HM578165   | HM578521    | HM579686    | HM577778          |
| 527f         | X. camtschadalis                 | BRY-55434               | HM579295    | HM578884    | -          | -           | -           | -                 |
| 534f         | X. camtschadalis                 | BRY-55435               | HM579296    | HM578885    | HM578166   | -           | HM579687    | HM577779          |
| 535f         | X. camtschadalis                 | BRY-55436               | HM579297    | HM578886    | HM578167   | -           | -           | HM577780          |
| 536f         | X. chlorochroa                   | BRY-55437               | HM579298    | HM578887    | HM578168   | HM578522    | HM579688    | HM577781          |
| 574f         | X. chlorochroa                   | BRY-55438               | HM579301    | HM578890    | HM578170   | HM578523    | M7-574      | HM577783          |
| 575f         | X. cumberlandia                  | BRY-55439               | -           | HM578891    | HM578171   | HM578524    | -           | -                 |
| 576f         | X. plittii                       | BRY-55440               | -           | HM578892    | HM578172   | HM578525    | -           | -                 |
| 577f         | X cumberlandia                   | BRY-55441               | HM579302    | HM578893    | HM578173   | HM578526    | _           | HM577784          |
| 578f         | X mexicana                       | BRY-55442               | HM579303    | HM578894    | HM578174   | HM578527    | _           | -                 |
| 580f         | X lineola                        | BRY-55444               | HM579304    | HM578896    | HM578175   | HM578528    | HM579690    | HM577785          |
| 665f         | X chlorochroa                    | BRV-55445               | HM570305    | HM578807    | HM578176   | HM578520    | HM570601    | HM577786          |
| 0051         | л. стотостной                    | DIX 1-33443             | 111113/9303 | 111113/007/ | 11013/01/0 | 111113/0330 | 111113/9091 | 11111.3///00      |

| 666f          | X. chlorochroa                   | BRY-55446   | HM579306      | HM578898   | HM578166      | HM578531    | HM579692                 | HM577787                                         |
|---------------|----------------------------------|-------------|---------------|------------|---------------|-------------|--------------------------|--------------------------------------------------|
| 771f          | X. norchlorochroa                | BRY-55447   | HM579307      | HM578899   | HM578178      | HM578532    | HM579693                 | HM577788                                         |
| 772f          | X. chlorochroa                   | BRY-55448   | HM579308      | HM578900   | HM578179      | HM578533    | HM579694                 | HM577789                                         |
| 773f          | X. wyomingica                    | BRY-55449   | HM579309      | HM578901   | HM578180      | HM578534    | HM579695                 | HM577790                                         |
| 774f          | X. mexicana*                     | BRY-55450   | HM579310      | HM578902   | HM578181      | -           | HM579696                 | HM577791                                         |
| 775f          | X. chlorochroa                   | BRY-55451   | HM579311      | HM578903   | HM578182      | HM578535    | HM579697                 | HM577792                                         |
| 776f          | X. chlorochroa                   | BRY-55452   | HM579312      | HM578904   | HM578183      | HM578536    | HM579698                 | HM577793                                         |
| 777f          | X camtschadalis                  | BRY-55453   | HM579313      | HM578905   | HM578184      | -           | HM579699                 | HM577794                                         |
| 778f          | X chlorochroa                    | BRY-55454   | HM579314      | HM578906   | HM578185      | HM578537    | HM579700                 | HM577795                                         |
| 770f          | X. chlorochrod                   | DR1-55454   | LIM570215     | LIM578007  | LIM570105     | LIM570520   | LIM570701                | LIM577706                                        |
| 7791          | A. chlorochrou<br>V. chlorochrou | DN 1-33433  | HNI379313     | HNIJ/090/  | HNIJ / 0100   | HNIJ70JJ0   | HNI379701                | HNI377790                                        |
| / 801<br>7016 | A. Chiorochroa                   | DK I -33430 | HM3/9310      | HM378908   | HNI3/010/     | HNI378530   | HM379702                 | ПМ <i>3///9/</i>                                 |
| 7811          | A. chlorochroa                   | BK 1-55457  | HM5/931/      | HM5/8909   | HM578188      | HM578540    | -                        | HM5///98                                         |
| 7821          | X. chlorochroa                   | BRY-55458   | HM5/9318      | HM5/8910   | HM5/8189      | HM5/8541    | HM579703                 | HM5///99                                         |
| 783f          | X. chlorochroa                   | BRY-55459   | HM579319      | HM578911   | HM578190      | HM578542    | HM579704                 | HM577800                                         |
| 784f          | X. chlorochroa                   | BRY-55460   | HM579320      | HM578912   | HM578191      | HM5785543   | HM579705                 | HM577801                                         |
| 785f          | X. chlorochroa                   | BRY-55461   | HM579321      | HM578913   | HM578192      | -           | HM579706                 | HM577802                                         |
| 786f          | X. mexicana                      | BRY-55462   | HM579322      | HM578914   | HM578193      | HM578544    | HM579707                 | HM577803                                         |
| 787f          | X. idahoensis                    | BRY-55463   | HM579323      | HM578915   | HM578194      | -           | HM579708                 | HM577804                                         |
| 788f          | X. norchlorochroa                | BRY-55464   | HM579324      | HM578916   | HM578195      | HM578545    | HM579709                 | HM577805                                         |
| 789f          | X. chlorochroa                   | BRY-55465   | HM579325      | HM578917   | HM578196      | HM578546    | HM579710                 | HM577806                                         |
| 790f          | X. wyomingica                    | BRY-55466   | HM579326      | HM578918   | HM578197      | HM578547    | HM579711                 | HM577807                                         |
| 791f          | X. chlorochroa                   | BRY-55467   | HM579327      | HM578919   | HM578198      | HM578548    | HM579712                 | HM577808                                         |
| 792f          | X. chlorochroa                   | BRY-55468   | HM579328      | HM578920   | HM578199      | -           | HM579713                 | HM577809                                         |
| 793f          | X. chlorochroa                   | BRY-55469   | HM579329      | HM578921   | HM578200      | -           | HM579714                 | HM577810                                         |
| 794f          | X. chlorochroa                   | BRY-55470   | HM579330      | HM578922   | HM578201      | HM578549    | HM579715                 | HM577811                                         |
| 795f          | X. chlorochroa                   | BRY-55471   | HM579331      | HM578923   | HM578202      | -           | HM579716                 | HM577812                                         |
| 796f          | X chlorochroa                    | BRY-55472   | HM579332      | HM578924   | HM578203      | HM578550    | HM579717                 | HM577813                                         |
| 7901<br>707f  | X camtschadalis                  | BRY-55473   | HM579333      | HM578925   | HM578204      | -           | HM579718                 | HM577814                                         |
| 798f          | X chlorochroa                    | BRV-55474   | -             | HM578026   | HM578204      | HM578551    | HM570710                 | HM577815                                         |
| 700f          | X. chlorochrod                   | BRV 55475   | -<br>HM570334 | HM578027   | HM578205      | HM578557    | HM570720                 | HM577816                                         |
| 7991<br>2006  | X. chlonochnod                   | DR1-55475   | IIN1579334    | IIM578028  | 11N1578200    | 11N1578552  | IINI579720               | 11N1577010                                       |
| 8001          | A. chlorochroa                   | BR 1-554/0  | HM5/9335      | HM5/8928   | HM578207      | HM578555    | HM579721                 | HM5//81/                                         |
| 8011          | X. chlorochroa                   | BRY-554//   | HM5/9336      | HM5/8929   | HM578208      | HM578554    | HM579722                 | HM5//818                                         |
| 802f          | X. chlorochroa                   | BRY-554/8   | HM5/933/      | HM5/8930   | HM578209      | HM5/8555    | HM579723                 | HM5//819                                         |
| 804f          | X. chlorochroa                   | BRY-55479   | HM579338      | HM578931   | HM578210      | HM578556    | HM579724                 | HM577820                                         |
| 805f          | X. chlorochroa                   | BRY-55480   | HM579339      | HM578932   | HM578211      | HM578557    | HM579725                 | HM577821                                         |
| 806f          | X. chlorochroa                   | BRY-55481   | HM579340      | HM578933   | HM578212      | HM578558    | HM579726                 | HM577822                                         |
| 807f          | X. chlorochroa                   | BRY-55482   | HM579341      | HM578934   | HM578213      | -           | HM579727                 | HM577823                                         |
| 808f          | X. chlorochroa                   | BRY-55483   | HM579342      | HM578935   | HM578214      | HM578559    | HM579728                 | HM577824                                         |
| 809f          | X. chlorochroa                   | BRY-55484   | HM579343      | HM578936   | HM578215      | -           | HM579729                 | HM577825                                         |
| 810f          | X. chlorochroa                   | BRY-55485   | HM579344      | HM578937   | HM578216      | -           | HM579730                 | HM577826                                         |
| 811f          | X. chlorochroa                   | BRY-55486   | HM579345      | HM578938   | HM578217      | HM578560    | HM579731                 | HM577827                                         |
| 812f          | X. chlorochroa                   | BRY-55487   | HM579346      | HM578939   | HM578218      | HM578561    | HM579732                 | HM577828                                         |
| 813f          | X. camtschadalis                 | BRY-55488   | HM579347      | HM578940   | HM578219      | -           | HM579733                 | HM577829                                         |
| 814f          | X. chlorochroa                   | BRY-55489   | HM579348      | HM578941   | HM578220      | -           | HM579734                 | HM577830                                         |
| 815f          | X. chlorochroa                   | BRY-55490   | HM579349      | HM578942   | HM578221      | HM578562    | HM579735                 | -                                                |
| 816f          | X. chlorochroa                   | BRY-55491   | HM579350      | HM578943   | HM578222      | HM578563    | HM579736                 | HM577831                                         |
| 817f          | X. camtschadalis                 | BRY-55492   | HM579351      | HM578944   | HM578223      | -           | HM579737                 | HM577832                                         |
| 818f          | X. chlorochroa                   | BRY-55493   | HM579352      | HM578945   | HM578224      | -           | HM579738                 | HM577833                                         |
| 819f          | X. chlorochroa                   | BRY-55494   | HM579353      | HM578946   | HM578225      | HM578564    | HM579739                 | HM577834                                         |
| 820f          | X. chlorochroa                   | BRY-55495   | HM579354      | HM578947   | HM578226      | HM578565    | HM579740                 | HM577835                                         |
| 821f          | X chlorochroa                    | BRY-55496   | HM579355      | HM578948   | HM578227      | HM578566    | HM579741                 | HM577836                                         |
| 822f          | X chlorochroa                    | BRY-55497   | HM579356      | HM578949   | HM578228      | HM578567    | HM579742                 | HM577837                                         |
| 872f          | X wyominaica                     | BRV_55/08   | HM570257      | HM578050   | HM578220      | HM578568    | HM5707/3                 | HM577838                                         |
| 0431<br>Q74f  | Y chlorochrog                    | BRV 55400   | HM570250      | HM578051   | HM578720      | HM578540    | HM570744                 | HM577020                                         |
| 0441<br>0255  | A. CHIOTOCHFOU<br>Y. chlorochron | DR 1-33499  | HNJ/9338      | HNJ/8931   | 111VIJ / 823U | 11WIJ/0309  | 111113/9/44<br>LIM570745 | 11111 <i>3   1</i> 839<br>11111 <i>5   1</i> 839 |
| 0201          | $\mathbf{A}$ . Childrochirod     | DR 1-33300  | HNJ/9339      | 11WIJ/8932 | 111VIJ/0231   | 111VIJ/0J/U | 111VIJ /9/43             | 111VIJ / / 04U                                   |
| 8261          | л. wyomingica (type)             | BK I -33301 | HNI3/9360     | HND /8953  | пivi5/8232    | пиз/85/1    | піміз /9 /40             | піміз / /841                                     |
| 827f          | A. wyomingica (type)             | BRY-55502   | HM5/9361      | HM5/8954   | -             | HM5/8572    | HM5/9/4/                 | HM577842                                         |
| 828f          | <i>A. mexicana</i>               | вкү-55503   | HM5/9362      | HM5/8955   | HM5/8233      | HM5/85/3    | HM5/9748                 | HM5//843                                         |
| 829f          | X. camtschadalis                 | BRY-55504   | HM579363      | HM578956   | HM578234      | -           | HM579729                 | HM577844                                         |
| 830f          | X. mexicana                      | BRY-55505   | HM579364      | HM578957   | HM578235      | HM578574    | HM579750                 | HM577845                                         |

| 901f         | X. camtschadalis                     | BRY-55506              | HM579365            | HM578958    | HM578236            | -                 | HM579751    | HM577846            |
|--------------|--------------------------------------|------------------------|---------------------|-------------|---------------------|-------------------|-------------|---------------------|
| 902f         | X. camtschadalis                     | BRY-55507              | HM579366            | HM578959    | -                   | -                 | HM579752    | HM577847            |
| 903f         | X. cumberlandia                      | BRY-55508              | HM579367            | HM578960    | HM578237            | HM578575          | HM579753    | HM577848            |
| 904f         | X. cumberlandia                      | BRY-55509              | HM579368            | HM578961    | HM578238            | HM578576          | -           | -                   |
| 905f         | X cumberlandia                       | BRY-55510              | HM579369            | HM578962    | HM578239            | HM578577          | _           | HM577849            |
| 0075         | X. cumbertanata                      | DR1-55510              | IIM570270           | 1111578062  | 1111570257          | 1101370377        | 1111570754  | 11N1577050          |
| 9001         | A. stenophytia                       | DK1-33311              | HW379370            | HNJ/6903    | HIVI378240          | -                 | HN1379734   | HNI377630           |
| 9081         | X. stenophylla                       | BRY-55512              | HM5/93/2            | HM5/8965    | HM5/8242            | -                 | HM5/9/56    | HM577852            |
| 909f         | X. cumberlandia                      | BRY-55513              | HM579373            | HM578966    | -                   | HM578578          | -           | HM577853            |
| 911f         | X. stenophylla                       | BRY-55514              | HM579374            | HM578967    | HM578243            | -                 | -           | HM577854            |
| 912f         | X.plittii                            | BRY-55515              | HM579375            | HM578968    | HM578244            | HM578579          | HM579757    | HM577855            |
| 913f         | X. cumberlandia                      | BRY-55516              | HM579376            | HM578969    | HM578245            | HM578580          | -           | HM577856            |
| 914f         | X. cumberlandia                      | BRY-55517              | HM579377            | HM578970    | HM578246            | HM578581          | -           | -                   |
| 915f         | X stenonhylla                        | BRY-55518              | HM579378            | HM578971    | HM578247            | _                 | -           | HM577857            |
| 016f         | X. stenopnytta<br>V. mariaana        | BRY 55510              | HM570370            | HM578072    | UM578248            | UM578582          | UM570758    | HM577858            |
| 9101<br>0176 | A. mexicana<br>V. stan subsilis      | DR1-33319              | 1111579379          | 11111370972 | 1111378248          | 11111370302       | 11111379738 | 1111377858          |
| 91/1         | X. stenopnylla                       | BR 1-55520             | HM579380            | HM5/89/5    | HM5/8249            | -                 | -           | HM577859            |
| 9181         | X. stenophylla                       | BRY-55521              | HM5/9381            | HM5/89/4    | HM5/8250            | -                 | -           | HM5//860            |
| 919f         | X. plittii                           | BRY-55522              | HM579382            | HM578975    | HM578251            | HM578583          | HM579759    | HM577861            |
| 920f         | X. mexicana                          | BRY-55523              | -                   | HM578976    | HM578252            | HM578584          | HM579760    | -                   |
| 922f         | X. coloradoënsis                     | BRY-55524              | HM579383            | HM578977    | HM578253            | HM578585          | HM579761    | HM577862            |
| 923f         | X. coloradoënsis                     | BRY-55525              | HM579384            | HM578978    | HM578254            | HM578586          | HM579762    | HM577863            |
| 924f         | X. camtschadalis                     | BRY-55526              | HM579385            | HM578979    | HM578255            | -                 | HM579763    | HM577864            |
| 925f         | X camtschadalis                      | BRY-55527              | HM579386            | HM578980    | HM578256            | -                 | HM579764    | HM577865            |
| 026f         | V www.ingiga                         | BDV 55528              | HM570387            | HM578081    | им578257            | UM578587          | HM570765    | HM577866            |
| 9201<br>027£ | X. wyomingica<br>X. wyomingica       | DR1-55520              | 1111570200          | 1111570000  | 11111378237         | 11111570500       | 11111379703 | 111VI377800         |
| 94/1         | A. wyomingica                        | DR 1-33329             | HNJ/9300            | HNJ/0902    | HNIJ / 6236         | HNJ/0300          | -           | HNI377007           |
| 9281         | X. cumberlanala                      | BKY-55530              | HM5/9389            | HM5/8983    | HM5/8259            | HM5/8589          | -           | HM5//868            |
| 929f         | X. cumberlandia                      | BRY-55531              | HM579390            | HM578984    | HM578260            | HM578590          | HM579766    | HM577869            |
| 930f         | X. cumberlandia                      | BRY-55532              | HM579391            | HM578985    | HM578261            | HM578591          | -           | HM577870            |
| 931f         | X. cumberlandia                      | BRY-55533              | HM579392            | HM578986    | HM578262            | HM578592          | -           | HM577871            |
| 932f         | X. cumberlandia                      | BRY-55534              | HM579393            | HM578987    | HM578263            | HM578593          | -           | HM577872            |
| 933f         | X. stenophylla                       | BRY-55535              | HM579394            | HM578988    | HM578264            | -                 | HM579767    | HM577873            |
| 934f         | X. stenophylla                       | BRY-55536              | HM579395            | HM578989    | HM578265            | -                 | HM579768    | HM577874            |
| 935f         | X. cumberlandia                      | BRY-55537              | HM579396            | HM578990    | HM578266            | HM578594          | -           | HM577875            |
| 936f         | X mexicana                           | BRY-55538              | HM579397            | HM578991    | HM578267            | HM578595          | _           | HM577876            |
| 937f         | X cumberlandia                       | BRY-55539              | HM579398            | HM578992    | HM578268            | HM578596          | _           | HM577877            |
| 028f         | X. cumbertandia<br>V. aumbarlandia   | DR1-55555<br>DDV 55540 | HM570200            | LIM578002   | UM578260            | LIM578507         |             | UM577070            |
| 9301<br>020£ | X. cumbertanata<br>V. sumberlandia   | DR 1-55540             | IIN1579399          | 1111578993  | 11W1578209          | 1111570509        | -           | IINI577878          |
| 9391         | A. cumberianaia                      | DR 1-33341             | HNI379400           | HNI378994   | HM378270            | ПМ <i>3</i> /8398 | -           | HM377879            |
| 940f         | X. stenophylla                       | BRY-55542              | HM5/9401            | HM5/8995    | HM5/82/1            | -                 | HM5/9/69    | HM5//880            |
| 941f         | X. stenophylla                       | BRY-55543              | HM5/9402            | HM578996    | HM578272            | -                 | -           | HM577881            |
| 942f         | X. stenophylla                       | BRY-55544              | HM579403            | HM578997    | HM578273            | -                 | -           | HM577882            |
| 943f         | X. stenophylla                       | BRY-55545              | HM579404            | HM578998    | HM578274            | -                 | -           | HM577883            |
| 944f         | X. cumberlandia                      | BRY-55546              | HM579405            | HM578999    | HM578275            | HM578599          | -           | HM577884            |
| 945f         | X. stenophylla                       | BRY-55547              | HM579406            | HM579000    | HM578276            | -                 | -           | HM577885            |
| 946f         | X. stenophylla                       | BRY-55548              | HM579407            | HM579001    | HM578277            | -                 | -           | HM577886            |
| 947f         | X. subplittii                        | BRY-55549              | HM579408            | HM579002    | HM578278            | HM578600          | -           | HM577887            |
| 948f         | X camtschadalis                      | BRY-55550              | HM579409            | HM579003    | HM578279            | _                 | _           | HM577888            |
| 0/0f         | X camtschadalis                      | BRY-55551              | HM579410            | HM579004    | HM578280            | _                 | _           | HM577889            |
| 050f         | X. cumischadans<br>X. wyominging     | BDV 55557              | HM570411            | HM570005    | HM578281            |                   |             | HM577800            |
| 9501         | A. wyomingicu<br>X. store see hall s | DR 1-55552             | IIN1579411          | 1111579005  | 1111378281          | -                 | -           | IINI377890          |
| 9511         | X. stenophylia                       | BK I - 55555           | HM579412            | HM579000    | HM5/8282            | -                 | -           | HM577891            |
| 952f         | X. stenophylla                       | BK Y-55554             | HM579413            | HM5/900/    | HM5/8283            | -                 | -           | HM577892            |
| 953f         | X. stenophylla                       | BRY-55555              | HM579414            | HM579008    | HM578284            | -                 | -           | HM577893            |
| 954f         | X. cumberlandia                      | BRY-55556              | HM579415            | HM579009    | HM578285            | HM578601          | -           | HM577894            |
| 955f         | X. wyomingica                        | BRY-55557              | HM579416            | HM579010    | HM578286            | HM578602          | HM579770    | HM577895            |
| 956f         | X. stenophylla                       | BRY-55558              | HM579417            | HM579011    | HM578287            | -                 | -           | HM577896            |
| 957f         | X. stenophylla                       | BRY-55559              | HM579418            | HM579012    | HM578288            | -                 | -           | HM577897            |
| 1026f        | X. cumberlandia*                     | BRY-55560              | HM579419            | HM579013    | HM578289            | HM578603          | HM579771    | HM577898            |
| 1027f        | X. lineola                           | BRY-55561              | HM579420            | HM579014    | HM578290            | -                 | HM579772    | HM577899            |
| 1028f        | X. mexicana                          | BRY-55562              | HM579421            | HM579015    | HM578291            | HM578604          | HM579773    | HM577900            |
| 1020f        | X mexicana                           | BRY-55563              | HM579422            | HM579016    | HM578292            | HM578605          | HM579774    | HM577901            |
| 1020f        | Y coloradoänsis                      | BRY-55564              | HM570/22            | HM570017    | HM578202            | -                 | HM570775    | HM577002            |
| 10216        | Y aumharlandia                       | DR 1-55504             | LIM570424           | 11113/301/  | LIM570273           | -                 | UM570772    | LIM577002           |
| 10311        | л. cumbertanala                      | DK I - J J J J J       | rivi <i>379</i> 424 | -           | пivi <i>3</i> 78294 | -                 | ПNI3/9//0   | пи <i>з / 1</i> 903 |

| 1032f   | X. cumberlandia      | BRY-55566 | HM579425 | HM579018 | HM578295 | HM578506 | HM579777 | HM577904 |
|---------|----------------------|-----------|----------|----------|----------|----------|----------|----------|
| Outgrou | <u>Dutgroup taxa</u> |           |          |          |          |          |          |          |
| -       | Karoowia saxeti      | ABL       | AY578926 | AY581063 | -        | -        | -        | -        |
| 538f    | Karoowia saxeti      | BRY-55567 | -        | HM579299 | HM578888 | HM578169 |          | HM579689 |
| 540f    | Karoowia saxeti      | BRY-55568 | HM579300 | HM578889 |          |          |          |          |
| -       | X. brachinaensis     | CANB      | AY578925 | AY581062 | -        | -        | -        | -        |
| -       | X. convoluta         | GZU 6511  | AY578956 | AY581094 | -        | -        | -        | -        |
| -       | X. lithophila        | MAF 6900  | AY578941 | AY581077 | -        | -        | -        | -        |
| -       | X. loxodes           | MAF7072   | AY578940 | AY581076 | -        | -        | -        | -        |
| 907f    | X. mougeotii         | BRY-55569 | HM579371 | HM578964 | HM578241 |          | HM579755 | HM577851 |
| -       | X. murina            | MAF 9915  | AY578943 | AY581079 | -        | -        | -        | -        |
| -       | X. notata            | CANB      | AY578968 | AY581101 | -        | -        | -        | -        |
| -       | X. scotophylla       | CANB      | AY578945 | AY581081 | -        | -        | -        | -        |
| -       | X. semiviridis       | MAF 6876  | AY578921 | AY581058 | -        | -        | -        | -        |
| -       | X. subprolixa        | MAF 7667  | AY578938 | AY581074 | -        | -        | -        | -        |
| -       | X. tegeta            | MAF 7523  | AY578975 | AY581107 | -        | -        | -        | -        |
| -       | X. tinctina          | MAF6070   | AY578976 | AY581108 | -        | -        | -        | -        |
| -       | X. verrucigera       | MAF 9920  | AY578979 | AY581111 | -        | -        | -        | -        |

Supplementary data 2.3 (subsequent 13 pages). (A) Maximum likelihood topology of the concatenated nuclear ribosomal (IGS, ITS, LSU, and group I intron) topology, with bootstrap support indicated at nodes; (B) maximum likelihood topology estimated from the  $\beta$ -tubulin fragment, with bootstrap support indicated at nodes; and (C) maximum likelihood topology estimated from the *MCM7* fragment, with bootstrap support indicated at nodes.



**Supplementary Figure 2.3a-1.** Maximum likelihood topology of the concatenated nuclear ribosomal (IGS, ITS, LSU, and group I intron) topology, with bootstrap support indicated at nodes.



**Supplementary Figure 2.3a-2.** Maximum likelihood topology of the concatenated nuclear ribosomal (IGS, ITS, LSU, and group I intron) topology, with bootstrap support indicated at nodes.



**Supplementary Figure 2.3a-3.** Maximum likelihood topology of the concatenated nuclear ribosomal (IGS, ITS, LSU, and group I intron) topology, with bootstrap support indicated at nodes.



**Supplementary Figure 2.3a-4.** Maximum likelihood topology of the concatenated nuclear ribosomal (IGS, ITS, LSU, and group I intron) topology, with bootstrap support indicated at nodes.



**Supplementary Figure 2.3a-5.** Maximum likelihood topology of the concatenated nuclear ribosomal (IGS, ITS, LSU, and group I intron) topology, with bootstrap support indicated at nodes



**Supplementary Figure 2.3b-1.** Maximum likelihood topology estimated from the  $\beta$ -tubulin fragment, with bootstrap support indicated at nodes.



**Supplementary Figure 2.3b-2.** Maximum likelihood topology estimated from the  $\beta$ -tubulin fragment, with bootstrap support indicated at nodes.



**Supplementary Figure 2.3b-3.** Maximum likelihood topology estimated from the  $\beta$ -tubulin fragment, with bootstrap support indicated at nodes.


**Supplementary Figure 2.3b-4.** Maximum likelihood topology estimated from the  $\beta$ -tubulin fragment, with bootstrap support indicated at nodes.



**Supplementary Figure 2.3c-1.** Maximum likelihood topology estimated from the *MCM7* fragment, with bootstrap support indicated at nodes.



**Supplementary Figure 2.3c-2.** Maximum likelihood topology estimated from the *MCM7* fragment, with bootstrap support indicated at nodes.



**Supplementary Figure 2.3c-3.** Maximum likelihood topology estimated from the *MCM7* fragment, with bootstrap support indicated at nodes.



**Supplementary Figure 2.3c-4.** Maximum likelihood topology estimated from the *MCM7* fragment, with bootstrap support indicated at nodes.

Supplementary data 2.4 (subsequent five pages). Full ML tree with Bayesian posterior probabilities (PP) and maximum likelihood bootstrap values (BS) > 0.50/50 indicated at nodes.



**Supplementary data 2.4-1.** Full ML tree with Bayesian posterior probabilities (PP) and maximum likelihood bootstrap values (BS) > 0.50/50 indicated at nodes.



**Supplementary Figure 2.4-2.** Full ML tree with Bayesian posterior probabilities (PP) and maximum likelihood bootstrap values (BS) > 0.50/50 indicated at nodes.



**Supplementary Figure 2.4-3.** Full ML tree with Bayesian posterior probabilities (PP) and maximum likelihood bootstrap values (BS) > 0.50/50 indicated at nodes.



**Supplementary Figure 2.4-4.** Full ML tree with Bayesian posterior probabilities (PP) and maximum likelihood bootstrap values (BS) > 0.50/50 indicated at nodes.



**Supplementary Figure 2.4-5.** Full ML tree with Bayesian posterior probabilities (PP) and maximum likelihood bootstrap values (BS) > 0.50/50 indicated at nodes.

# **CHAPTER THREE**

# Species delimitation and evolution in morphologically and chemically diverse communities of the lichen-forming genus *Xanthoparmelia* (Parmeliaceae, Ascomycota) in western North America<sup>1</sup>

Steven D. Leavitt2<sup>,3,4</sup> Leigh Johnson<sup>2</sup> and Larry L. St. Clair<sup>2</sup>

<sup>2</sup>Department of Biology and the M. L. Bean Life Science Museum Brigham Young University Provo, Utah, 84602 USA

<sup>3</sup>Current Address: Department of Botany, Field Museum of Natural History, 1400 S. Lake Shore Dr, Chicago, IL 60605-2496, USA

<sup>4</sup> Author for correspondence: <u>leavitt.steven@gmail.com</u>

# Abstract

## Premise of the study

Accurate species delimitation is important for understanding the factors that drive the diversification of biota and has critical implications for ecological and conservation studies. However, a growing body of evidence indicates that morphology-based species circumspection in lichenized fungi misrepresents fungal diversity. The foliose lichen genus *Xanthoparmelia* (Vainio) Hale. includes over 800 described species displaying a complex array of morphological and secondary metabolite diversity, and provides a model system to assess lichen species delimitation

# Methods

In this study we used a multifaceted approach, applying phylogenetic, population genetic, and genealogical analyses to delimit species in a single well-supported monophyletic clade containing ten morphologically and chemically diverse *Xanthoparmelia* species in western North America. Specifically, sequence data from 4 ribosomal and 2 nuclear loci, along with chemical and morphological were used to assess species diversity.

# Key results

We find that traditionally circumscribed species were not supported by molecular data. Rather, all sampled taxa were better represented by three polymorphic population clusters supported, in part, by multiple analytical approaches. Our results suggest that secondary metabolite variation may have limited utility in diagnosing lineages within this group, while identified populations clusters did not reflect major phylogeographic or ecological patterns.

## Conclusions

In contrast to other studies revealing previously undiscovered fungal lineages masked within lichen species circumscribed by traditional morphological and chemical concepts, the present study suggests that species diversity has been overestimated in the species rich genus *Xanthoparmelia*. A concordance approach using multiple lines of evidence and analytical tools provides an effective approach to delimit lichenized fungi species in notoriously challenging groups.

**Key words**: character evolution; morphology, secondary metabolites; species delimitation, vagrant lichens; *Xanthoparmelia*.

#### Introduction

Lichens are stable, self-supporting, and self-reproducing obligate symbiotic associations consisting of an alga and/or cyanobacterium inhabiting the extracellular cavities within a fungal partner (DePriest, 2004). Evolutionarily and ecologically diverse, lichens involve one-fifth of all known extant fungal species globally distributed from tropic to the polar regions (Brodo, 2001; Lutzoni, Pagel, and Reeb, 2001). The co-evolution of lichen symbionts has resulted in the expression of a wide array of secondary metabolites and morphological structures not found in non-lichenized fungi that promote the overall success of the lichen association (Elix, 1996; Sanders, 2001). Morphological and chemical characters of the complete lichen structure have traditionally been used to delimit species boundaries in lichenized fungi. However, many of these characters provide little basis for inferring evolutionary histories, and the possibility of convergence poses a substantial problem for studies based solely on morphological and chemical data (Myllys, Lohtander, and Tehler, 2001; Gaya et al., 2003; Søchting and Lutzoni, 2003; Lumbsch et al., 2007; Amtoft, Lutzoni, and Miadlikowska, 2008). The widespread use of molecular data for testing current morphology- and chemistry-based species classifications in lichenized fungi has generally indicated that traditional taxonomic boundaries are in conflict with molecular reconstructions at all taxonomic levels (Crespo and Pérez-Ortega, 2009; Printzen, 2009). Here, we present a multifaceted approach, using multiple independent lines of data and various analytical methods to empirically delimit species within a common, conspicuous lichenforming fungal genus in western North America. Diversification processes in lichenized fungi are not yet well understood, and these data provide important insights into challenges in assessing and delimiting lichen species boundaries.

Although the systematic value of morphological and chemical characters delimiting lichen-forming fungal species has been evaluated within a molecular context in only a limited number of cases, these studies suggest that lichen species diversity has been greatly misrepresented (Kroken and Taylor, 2001; Molina et al., 2004; Divakar et al., 2005; Buschbom and Mueller, 2006; Argüello et al., 2007; Wirtz, Printzen, and Lumbsch, 2008; O'Brien, Miadlikowska, and Lutzoni, 2009; Wedin et al., 2009). Incongruence between traditional lichen species boundaries and molecular phylogenetic reconstructions suggests that one of the greatest challenges in empirical species delimitation of lichenized fungi is finding and using the appropriate character sets and analytical tools (Crespo and Pérez-Ortega, 2009). In spite of the contentious efforts to conceptually define species, an apparent consensus has formed around the view that species are segments of separately evolving metapopulation lineages, termed the general lineage concept (GLC; de Queiroz, 1998, 1999, 2007). This approach allows investigators to delimit species using different operational criteria, data sets, and analytical methods (Sites and Marshall, 2004; de Queiroz, 2007). Under the GLC, the use of multiple operational criteria to delimit species can be used as lines of evidence to corroborate putative lineages (Sites and Marshall, 2004; de Queiroz, 2007). Furthermore, a rapidly growing interest in species delimitation methods has resulted in novel approaches to assess species boundaries (Knowles and Carstens, 2007; Groeneveld et al., 2009; Liu et al., 2009; O'Brien, Miadlikowska, and Lutzoni, 2009; Vieites et al., 2009; O'Meara, 2010; Weisrock et al., 2010; Yang and Rannala, 2010). An integrative approach to species delimitation using multiple independent data sets and analytical methods has been increasingly recognized as essential for rigorously testing species boundaries, particularly in the case of recent speciation events (Will, Mishler, and

Wheeler, 2005; Roe and Sperling, 2007; Groeneveld et al., 2009; Ruiz-Sanchez and Sosa, 2010; Weisrock et al., 2010).

Xanthoparmelia (Vainio) Hale is one of the best-studied and most species-rich genera in the Parmeliaceae (Ascomycota), including more than 800 described species worldwide (Crespo et al., 2007). The diversity of this genus is manifest in a wide array of morphological characters as well as the production of distinct secondary metabolite patterns, which traditionally have been used to diagnose species (Hale 1990). This approach has been problematic and many of the current groupings are disputed (Blanco et al., 2004a; Blanco, Crespo, and Elix, 2005; Blanco et al., 2006; Thell, Elix, and Søchting, 2009; Del-Prado et al., 2010). In recent years, systematic revisions within the Parmeliaceae have broadened the generic circumspection of Xanthoparmelia, and several major clades have been identified (Blanco et al., 2004a; Crespo et al., 2007; Del Prado et al., 2007). However, within this well-studied genus,  $\alpha$ -level diversity and population-level dynamics remain relatively unexplored (Thell, Elix, and Søchting, 2009; Del-Prado et al., 2010; Hodkinson and Lendemer, 2010). Extensive species diversity within *Xanthoparmelia* provides a model system for evaluating current morphology and chemistrybased species boundaries in lichenized ascomycetes. In addition, many Xanthoparmelia species are broadly distributed both geographically and ecologically; and by defining population structure, identifying dispersal barriers, and characterizing ecological preference within these broadly distributed lineages will aid in identifying mechanisms that generated and maintain genetic diversity within the genus.

In this study we investigated  $\alpha$ -level relationships in commonly occurring *Xanthoparmelia* species containing  $\beta$ -orcinol depsidone compounds in western North America as individuals with distinct chemistries and morphologies often co-occur in a wide range of

ecological settings, including, shrub-steppe, subalpine, and alpine communities (Hale, 1990; Rosentreter, 1993; Leavitt and St. Clair, 2008). Species within this complex differ markedly in vegetative morphology (Hale, 1990). The genus is generally characterized by various saxicolous species with some taxa showing some degree of attachment to soil surfaces, while other species are vagrant, or obligatory unattached. Vagrant taxa are commonly found in many deserts, steppes, and high plain areas of western North America. The relationship between vagrant and attached Xanthoparmelia species has long been in question (Mereschkowsky, 1918; Klement, 1950; Hale, 1990; Rosentreter, 1993). Recent studies indicate that the vagrant growth form has evolved multiple times independently in *Xanthoparmelia* (Leavitt, 2010). Although in some cases vegetative morphology provides important diagnostic characters, other species may be morphologically indistinguishable, and the expression of distinct secondary metabolites has traditionally been used to delimit both saxicolous and vagrant species within this group (Hale, 1990). Three major chemotypes are commonly used to delimit species within the  $\beta$ -orcinol depsidone containing complex in western North America: taxa containing stictic and accessory acids; taxa containing salazinic and accessory acids; and less commonly, taxa lacking both stictic and salazinc acid, but expressing norstictic acid. Chemical characters have also been shown to be highly homoplasious within Xanthoparmelia (Blanco et al., 2004a; Thell, Elix, and Søchting, 2009; Leavitt, 2010). However, reproductive barriers between different chemotypes in closely related Xanthoparmelia species have not been explicitly tested.

The primary focus of this study is on the delimitation of closely related lichen-forming fungal species, and here we present our analyses of species delimitation in the species-rich genus *Xanthoparmelia* as a working example typifying some of the inherent challenges related to the process of speciation in a complex and problematic taxonomic group. The current study

involves evaluating current species boundaries within the lichen genus *Xanthoparmelia*, while ultimately providing a basic knowledge about the evolution of those morphological and chemical characters commonly used to delimit species. Specifically we investigate the relationship between ten chemically and morphologically diverse Xanthoparmelia species from a single, well-supported clade (Leavitt, 2010). We are particularly interested in: 1) empirically delimiting species within this diverse clade using multiple analytical methods; 2) evaluating character evolution and the utility of morphological and chemical characters for delimiting species; 3) inferring distribution patterns, dispersal barriers, and ecological preferences within this group; and 4) providing insights into the origins of the vagrant life form at a local scale. Using the general metapopulation lineage concept (de Queiroz, 1998; Mayden, 1999; de Queiroz, 2007) and multiple sources of data, we apply multiple analytical methods to empirically assess species boundaries and evolution of major diagnostic characters within the focal group. We evaluate putative lineages, including currently accepted Xanthoparmelia species and two alternative classifications, within a population-level framework designed to assess gene flow and genetic differentiation (O'Brien, Miadlikowska, and Lutzoni, 2009). We also analyze molecular data within a phylogenetic framework to assess monophyly of currently accepted taxa; assess putative lineages across gene haplotype networks to identify groups that exhibitgenealogical exclusivity (an expected pattern for divergent lineages; (Avise and Ball, 1990; Baum and Shaw, 1995; Hudson and Coyne, 2002a). Furthermore, we use multi-locus sequence data to identify genetic clusters without a priori assignment of individuals (Groeneveld et al., 2009; Weisrock et al., 2010). The use of multiple datasets, along with the specified combination of analytical methods, provides a robust approach for assessing putative lineages and delimiting species within closely related Xanthoparmelia lineages.

### **Materials and Methods**

*Taxon sampling*—We investigated the relationship between a total of 146 morphologically, chemically, and ecologically diverse *Xanthoparmelia* accessions collected from 47 populations in the Intermountain western United States. Samples were limited to a single, well-supported lineage identified in Leavitt (2010). To more specifically assess potential gene flow between sympatric congeners, and infer distribution patterns and dispersal barriers between populations, we sampled individuals from six sites distributed across the summit of Boulder Mountain Plateau, Garfield and Wayne Counties, and eight locations in the Uinta Mountain Range in Duchesne and Summit Counties, Utah, USA. A total of 1528 specimens were collected from these sites for initial morphological, chemical, and molecular analyses. Fifty-nine individuals from Boulder Mountain Plateau and 30 from the Uintah Mountain Range were selected to represent the overall chemical and morphological diversity of the baseline sample. In addition, 57 accessions recovered in the same monophyletic lineage in Leavitt (2010), were also included in this study. The geographic distribution of the ingroup accessions is shown in Fig. 1. Eleven closely related individuals indentified in Leavitt (2010), were chosen as outgroups, and detailed collection information for all accessions included in the present study are listed in Appendix S1. Voucher material used for this study is housed at the Brigham Young University Herbarium of Nonvascular Cryptogams, Brigham Young University, Provo, Utah.

Secondary metabolite data were generated for all vouchers using thin layer chromatography (TLC). Lichen compounds were extracted in acetone using 0.02 grams of thallus material; an acetone wash was subsequently used for chromatography in solvents C and G (Orange, James, and White, 2001). Taxonomic assignments were based on morphological and chemical data following Hale (1990) and Nash and Elix (2004) and are summarized in <u>Table 1</u>. Based on current taxonomy, these individuals represent ten described taxa, including five vagrant taxa: *X. chlorochroa* (Tuck.) Hale (51 individuals), *X. lipochlorochroa* Hale & Elix (3), *X. neochlorochroa* Hale (4), *X. norcholorochroa* Hale (3), *and X. vagans* (Nyl.) Hale (4); and five saxicolous (or terricolous) taxa: *X. californica* Hale (2), *X. coloradoënsis* (Gyelnik) Hale (28), *X. cumberlandia* (Gyelnik) Hale (40), *X. neowyomingica* Hale (7), and *X. wyomingica* (Gyelnik) Hale (6). However, confusion surrounding the *diagnosability* and significance of most vegetative morphological characters has been reported (Blanco et al., 2004a; Thell, Elix, and Søchting, 2009; Del-Prado et al., 2010; Leavitt, 2010), and we therefore chose to represent all taxonomic assignments sensu lato (s. l.).

*Molecular data*—Total genomic DNA was extracted using either the DNeasy Plant Mini Kit (Qiagen, Valencia, California, USA) according to the manufacturer's instructions, or the Prepease DNA Isolation Kit (USB, Cleveland, Ohio, USA), following the plant leaf extraction protocol. Fungal specific primers were used to amplify six nuclear markers, including four nuclear ribosomal loci: the entire internal transcribed spacer (ITS: ITS1, 5.8S, ITS2), a fragment of the intergenic spacer (IGS), a fragment of the large subunit (LSU), and a group I intron located in the small subunit (Gutiérrez et al., 2007). In addition, fragments from two low-copy protein coding loci,  $\beta$ -tubulin and *MCM7* were amplified. While low levels of intragenomic variation in fungal rDNA repeats suggests convergent evolution in which homogenization effectively maintaining highly similar repeat arrays (Ganley and Kobayashi, 2007), previous studies have confirmed the utility of the sampled ribosomal loci for species and population-level studies in lichenized ascomycetes (Thell, 1999; Kroken and Taylor, 2001; Blanco et al., 2004a; Blanco O and et al., 2004; Buschbom and Mueller, 2006; Lindblom and Ekman, 2006; Brunauer et al., 2007; Gutiérrez et al., 2007; Wirtz, Printzen, and Lumbsch, 2008; O'Brien, Miadlikowska, and Lutzoni, 2009; Wedin et al., 2009). Although a duplication of the  $\beta$ -tubulin gene has occurred within Ascomycota, the paralogs are easily distinguishable within the analyzed group and the marker has been successfully used to investigate  $\alpha$ -level relationships in lichenized ascoymycetes (Buschbom and Mueller, 2006; O'Brien, Miadlikowska, and Lutzoni, 2009; Wedin et al., 2009).

Standard polymerase chain reactions (PCR) were used to amplify targeted loci. Fungalspecific primers used in PCR amplifications and in the cycle sequencing reactions are shown in Table 2. PCR cycling parameters used for amplifying the ITS, group I intron, LSU, and  $\beta$ tubulin loci followed the methods of Blanco et al. (2004a); while cycling parameters for amplifying the IGS followed the 66-56° touchdown reaction described in (Lindblom and Ekman, 2006). PCR cycling parameters for amplifying the MCM7 fragment followed (Schmitt et al., 2009). PCR products were quantified on 1% agrose gel and stained with ethidium bromide. In those cases where no PCR products were visualized for the  $\beta$ -tubulin, *MCM7*, and IGS fragments, internally nested PCR reactions were performed using 0.3 ul of the PCR product from the original reaction with newly designed primers; namely, 'BT-RhizoF' and 'BT-RhizoR' for the β-tubulin fragment, 'XMCM7f' and 'XMCM7r' for the MCM7 fragment, and IGS rDNA: IGS12a-5' (Carbone and Kohn, 1999) and 'XIGSr' for the IGS fragment, using the touchdown PCR cycling parameters described above used to amplify the IGS marker. PCR fragments were cleaned using the PrepEase PCR Purification Kit, following the manufacturer's protocol (USB, Cleveland, OH), and complementary strands were sequenced using the same primers used for amplification. Sequencing reactions were performed using the Big Dye3 Termination Sequencing Kit (Applied Biosystems, Foster City, California) at 1/8 the standard reaction

volume. Products were run on an AB 3730xl automated sequencer at the DNA Sequencing Center at Brigham Young University, Provo, Utah, USA.

Sequences were assembled and edited using Sequencher version 4.2 (Gene Codes Corporation, Ann Arbor, Michigan) and Se-Al v2.0a11 (Rambault, 1996). Sequence identity was checked using the 'megablast' search option in GenBank (Wheeler et al., 2006). All sequences were aligned with outgroup taxa identified in preliminary phylogenetic analyses using defaults settings in Muscle v3.7 because of the improved speed and alignment accuracy as compared with other currently available programs (Edgar, 2004).

*Nucleotide diversity and gene-flow estimation*—Basic nucleotide polymorphism statistics, including number of polymorphic sites and estimates of  $\theta$  (Watterson, 1975) and average pairwise differences ( $\pi$ ; Nei, 1987) were calculated using DnaSP version 5.10.01 (Librado and Rozas, 2009) for each putative species, three major chemotypes (norstictic, salazinic, and stictic), and populations clusters recovered in the STRUCTURE analyses (see below). Genetic differentiation between putative species, chemotypes, and population clusters was assessed by counting the number of fixed nucleotide differences (O'Brien, Miadlikowska, and Lutzoni, 2009) and calculating  $F_{ST}$  values using Arelequin v 3.11 (Laurent, Guillaume, and Stefan, 2005), with 10,000 permutations to determine significance. Pairwise species comparisons were limited to the seven most common putative species recovered in this clade, *X. chlorochroa* (51 individuals), *X. coloradöensis* (28), *X. cumberlandia* (40), *X. neochlrochroa* (4), *X. neowyomingica* Hale (7), *X. vagans* (4), and *X. wyomingica* (6).

*Phylogenetic analysis*—Preliminary phylogenetic reconstructions were performed independently for each sampled marker. However, a weak phylogenetic signal was generally identified across all markers, and we opted to concatenate all markers for phylogenetic reconstructions to resolve important relationships and improve nodal support (Wiens, 1998; Rokas and Carroll, 2005). Heterogeneity in phylogenetic signal between sampled markers was assessed before combining the six datasets (Lutzoni et al., 2004). Maximum likelihood (ML) analyses were performed for the concatenated ribosomal dataset (ITS, IGS, LSU, and group I intron), while  $\beta$ -tubulin, and *MCM7* markers separately using the program RAxML 7.0.4 (Stamatakis, 2006). Support was assessed using 1000 "fastbootstrap" replicates implemented in the CIPRES Web Portal (Stamatakis, 2006; Stamatakis, Hoover, and Rougemont, 2008). RAxML allows partitioned analyses implementing the general time reversible (GTR) substitution model for all partitions (Stamatakis, 2006). We compared two partition strategies for proteincoding gene fragments. First, we treated the entire marker as a single partition. Second, we used a 3-partition approach using the first, second, and third codon positions as separate model partitions for the *MCM7* marker, and a 4-partition strategy for the  $\beta$ -tubulin marker using the first, second, and third codon positions and a 55 base pair intron located within the fragment as separate model partitions. We assumed that partitions within genes had the same overall model as the entire gene, as simulations show there may be frequent errors in supporting complex models from a sample of limited characters (Posada and Crandall, 2001a). We implemented the GTRGAMMA model, which includes a parameter ( $\Gamma$ ) for rate heterogeneity among sites, but chose not to include a parameter for estimating the proportion of invariable sites following the recommendations of Stamatakis (2006). Support values for the ribosomal,  $\beta$ -tubulin, and MCM7 phylogenies were examined for well-supported (≥70% bootstrap values) conflict between datasets (Lutzoni et al., 2004). Given no conflict was identified; we combined all datasets for subsequent phylogenetic analyses.

Phylogenetic relationships were estimated from the combined dataset using mixed-model Bayesian Inference (BI) as implemented in Mr.Bayes ver. 3.1.2 (Huelsenbeck and Ronquist, 2001). We used MrModeltest2 version 2.3 (Nylander et al., 2004) to identify the appropriate model of evolution for each marker using the Akaike Information Criterion (AIC) see (Posada and Buckley, 2004). The combined dataset was analyzed using locus-specific model partitions. Exploratory analyses indicated that nodal support was generally improved across the topology (comparisons not shown), and each ribosomal marker was treated as a separate partition, and protein-coding markers were partitioned using the 3-partition strategy for the MCM7 marker, and the 4-partition strategy for the  $\beta$ -tubulin marker as described above. Four independent replicate searches were executed with eight chains; each run started from randomly generated trees and involved sampling every 1000 generations for 20,000,000 generations. To evaluate stationarity and convergence between runs, log-likelihood scores were plotted using TRACER version. 1.5 (Drummond et al., 2003), effective sample size (ESS) statistics were evaluated, and the average standard deviation in split frequencies was assessed at the end of the run. Trees generated prior to stationarity were discarded as burn-in (Huelsenbeck et al., 2001), and results were summarized with a majority-rule consensus tree from the remaining trees from the four independent runs. Bayesian posterior probabilities (PP) were assessed at all nodes and clades with  $PP \ge 95$  were considered strongly supported (Huelsenbeck and Rannala, 2004).

Because BI may resolve bifurcations with strong support when relationships are really unresolved (Kolaczkowski and Thornton, 2007), we conducted a ML analysis implemented RAxML 7.0.4 using the concatenated data set (ITS, LSU, group I intron, IGS, *MCM7* and  $\beta$ tubulin loci). Data were partitioned as described for the BI analysis. We used the GTRGAMMA model, which includes a parameter ( $\Gamma$ ) for rate heterogeneity among sites. Following the recommendations of Stamatakis (2008) we did not include a parameter for the proportion of invariable sites because  $\Gamma$  accounts for this source of rate heterogeneity by using 25 rate categories. Analyses proceeded by combining 200 separate maximum likelihood searches (to find the optimal tree) and 1000 bootstrap pseudoreplicates to evaluate support for each node was conducted.

*Testing alternative hypotheses*—We compared three alternative topologies to the best ML hypothesis generated in this study; specifically: 1) constraining the tree search to recover each putative species as monophyletic; 2) constraining the search to recover the three diagnostic chemotypes recovered in this lineage, norstictic, salazinic, and stictic acids respectively, as monophyletic; and 3) constraining the search to recover each population detected in the STRUCTURE analysis (described below) as monophyletic. In the second alternative topology we left the relationship of *X. lipochlorochroa* unresolved because this taxon does not contain any of the three diagnostic chemotypes, but rather is characterized by the occurrence of fatty acids. In the third alternative topology we left relationship of individuals assigned to a population cluster with < 0.70 probability unresolved. Alternative hypotheses were constructed in Mesquite version 4.03 (Maddison and Maddison, 2007). Constrained topologies were estimated in RAxML using the partitioning strategies described above. We used the Shimodaira and Hasegawa (SH; 1999) likelihood comparison test as implemented in RAxML to test our best-scoring ML topology against the three alternative topologies.

*Haplotype networks*—Phylogenetic reconstruction methods, such as maximum likelihood (ML), maximum parsimony (MP), and Bayesian inference (BI), estimate interspecific relationships and often lead to poor resolution or inadequate portrayals of genealogical relationships in cases of low divergence, extant ancestral nodes, multifurcations, and reticulations (Templeton, Crandall, and Sing, 1992; Posada and Crandall, 2001b). Therefore, we used statistical parsimony to assess the genealogical relationships of every individual and to compare the relationships of putative lineages between genes. Because recombination within nuclear genes can lead to errors in the estimated topology (Posada, Crandall, and Holmes, 2002), we tested for recombination events in the low-copy protein-coding markers using methods implemented in Recombination Detection Program (RPD3; (Martin, Williamson, and Posada, 2005; Heath et al., 2006). Networks were constructed from the concatenated ribosomal sequences (ITS, LSU, IGS, intron), as well as the  $\beta$ -tubulin and the *MCM7* fragments under a 95% statistical parsimony criteria using the program TCS version 1.21 (Clement, Posada, and Crandall, 2000). In order to reduce network uncertainties due to missing data, individuals missing one of the four ribosomal markers were removed, and gaps within markers were treated as missing data for the ribosomal network reconstruction. All protein-coding sequences were trimmed to the length of the fragment generated by the nested PCR reactions in the network calculations. Network uncertainties (i.e., closed loops) were treated following Templeton and Sing (1993). Relationships of putative species, chemotypes, and population clusters were evaluated within and between individual gene trees to identify lineages that exhibited genealogical exclusivity across multiple loci (Avise and Ball, 1990; Hudson and Coyne, 2002b). The presence of the same groups in the majority of single-locus genealogies can be taken as evidence that the groups represent reproductively isolated lineages (Dettman et al., 2003; Pringle et al., 2005).

**Population genetic clustering**—Individual-based approaches provide an alternative for identifying genetic structure and barriers to gene flow, as analyses based on predefined delineations of groups can obscure patterns of differentiation (Latch et al., 2006; Rowe and

Beebee, 2007). We used a multilocus Bayesian population assignment test implemented in STRUCTURE 2.32 (Pritchard, Stephens, and Donnelly, 2000; Falush, Stephens, and Pritchard, 2003) to determine the most likely number of population clusters within the focal group. Studies suggest that STRUCTURE can provide an accurate portrayal of the uppermost level of hierarchical structure in a wide array of scenarios, and 'populations' inferred by STRUCTURE should be viewed as networks of local populations connected by patterns of gene flow over long timescales (Evanno, Regnaut, and Goudet, 2005). This approach had been useful in identifying lineages in the early stages of species divergence (Weisrock et al., 2010). The six sampled loci in our study were estimated to be sufficient to provide an overview of the highly differentiated groups (Saisho and Purugganan, 2007; Groeneveld et al., 2009; Weisrock et al., 2010). Based on our exploratory studies, we implemented ten replicate runs for each K value, from 1-12, with burn-in generations set to 15,000, followed by 30,000 iterations for each run using the admixture options. The median log likelihood of each K value was calculated from the 10 runs. Following the procedure outlined by Evanno et al. (2005), the modal value ( $\Delta K$ ) based on the second order rate of change of the likelihood function, with respect to K, was used to estimate the most likely number of clusters within the sample. We classified individuals with posterior probabilities < 0.70 to any cluster into an "admixed" group.

# Results

*Molecular data*—Over the course of this study we obtained 885 new sequences from six loci. Variation in the six sampled loci consist of 3503 aligned nucleotide positions in the combined analyses representing 157 individuals is summarized in <u>Table 3</u>. All representative haplotypes of the six gene fragments were submitted to GenBank (<u>Appendix 1</u>).

*Nucleotide diversity and gene-flow estimation*—Nucleotide diversity statistics for putative lineages are reported in <u>Table 4</u>. Pairwise  $F_{ST}$  comparisons indicate that generally population structure is not maintained between putative species, although statistically significant  $F_{ST}$  values were estimated between *X. chlorochroa* and *X. cumberlandia*; *X. neochlorochroa* and *X. neowyomingica*; *X. neowyomingica* and *X. vagans*; and *X. neowyomingica* and *X. wyomingica* (<u>Table 5</u>). Significant  $F_{ST}$  values reveal genetic differentiation between the two most common major chemotypes (i.e. salazinic and stictic acids) and also between population clusters inferred in the STRUCTURE analyses (<u>Table 6</u>). However, fixed nucleotide differences were not identified between putative species, chemotypes, or population clusters.

*Phylogenetic analyses*—Individual gene trees generally showed only weak genetic structure, particularly for the protein-coding and the group I intron topologies (see <u>Appendix S2</u>). Preliminary analyses indicated that nodal support generally improved across the topology when the data set was considered with additional partitioning of the protein-coding fragments. We opted to use the more complex partitioning strategy in subsequent analyses to provide a better estimate of the phylogeny (Ronquist and Deans, 2009). No incongruence was identified between loci using the  $\geq$  70 ML support incongruence test; therefore all loci were combined for phylogenetic analyses.

The partitioned Bayesian analyses, summed from four independent runs, yielded a negative harmonic mean ln likelihood=11 517.6284. All parameters converged within the first 25% of sampled generations, leaving a posterior distribution estimated from 15 000 trees per run (60 000 total post-burn-in sampled trees). Partitioned ML analyses yielded a single best-score tree –ln likelihood=11 156.9153. The ML and BI topologies from the combined datset of six gene regions were highly similar, exceptions being restricted to minor differences in the

arrangement of some terminals, but relationships at all deeper nodes and well-supported clades were identical. We chose to present the ML topology (Fig. 2). A single well-supported clade (bootstrap support BS=99, Bayesian posterior probability PP=1.00) with 146 individuals, representing ten taxa was identified as the focal group for this study, called hereafter the Intermountain *Xanthoparmelia* group. Species assigned to this group include five described vagrant taxa, *X. chlorochroa*, *X. lipochlorochroa*, *X. neochlorochroa*, *X. norchlorochroa*, and *X. vagans*; and five saxicolous taxa *X. californica*, *X. coloradoënsis*, *X. cumberlandia*, *X. neowyomigica*, and *X. wyomingica*. A well-supported lineage (BS=93, PP=1.00), comprised of geographically broadly distributed representatives of *X. cumberlandia*, *X. mexicana*, and *X. wyomingica*, was recovered as sister to the focal group with weak support (BS=50, PP=0.73). Within the Intermountain *Xanthoparmelia* group, *X. coloradoënsis* 030f was supported as sister to the remaining group with a high PP value (1.00), although BS support was < 50. Many relationships within this group lacked strong statistical support and were unresolved, and all putative species were found to be poly- or paraphyletic.

<u>Table 7</u> shows the results of the SH tests comparing our best topology to three potential alternative classifications. Both constrained topologies representing currently accepted species and chemotypes represented significantly worse alternatives to our best tree. However, the constrained topology representing population clusters identified in the STRUCTURE analysis was not significantly different from the best unconstrained topology recovered in this study. Therefore, we determined that the population clusters defined in this study a serve as a reasonable working hypothesis of relationships among the sampled individuals representing the Intermountain *Xanthoparmelia* group.

Haplotype network analyses—Evidence of recombination was not detected in the nuclear genes and genealogical relationships inferred by statistical parsimony are shown in Fig. 3. Thirty-one individuals missing at least one of the ribosomal markers were removed from the dataset and the ribosomal network with the remaining 114 Xanthoparmelia individuals grouped in 74 unique haplotypes within a single network. The  $\beta$ -tubulin network with 137 individuals was grouped in 22 unique haplotypes within a single network, while the MCM7 network including 138 individuals was grouped in 58 unique haplotypes within a single network. The most common haplotypes for all sampled loci were found in the most commonly represented taxa, X. chlorochroa, X. coloradöensis, and X. cumberlandia. Individuals representing X. californica, X. lipochlorochroa, X. neochlorochroa, and X. vagans shared haplotypes with representatives of the more common taxa or were separated by a single mutation event in all haplotype networks. Individuals (0-3 individuals/locus) beyond the 95% statistical parsimony confidence limit were not identical across loci and were not represented in haplotype networks. The genealogical concordance criterion was not fulfilled for putative species, chemotypes, or population clusters. However, apart from a single individual in the ribosomal haplotype network, population cluster No. 1 exhibited genealogical exclusivity in both the ribosomal and  $\beta$ tubulin haplotype networks, and general concordance was found between the ribosomal haplotype network and the population clusters inferred from the STRUCTURE analysis.

**Population genetic clustering**—The median ML values of the Bayesian clustering analysis using STRUCTURE with estimates of K=1-12 are shown in Fig. 4a, and the  $\Delta K$  method (Evanno et al. 2005) indicates that a K=3 model best fits the data ( $\Delta K=30.00$  for K=3;  $\Delta K=<12.0$ for all other K values; Fig. 4b). STRUCTURE plots for K>3 generally did not yield additional population clusters with high membership coefficients for more exclusive sets of populations or clusters. Therefore, we examined the phenotypic expressions and geographic distributions of population clusters within the K=3 model. The identified groupings were not consistent with any of the putative species, nor is there clear phylogeographic pattern in the distribution of the inferred population cluster. The assignment of current species to inferred population clusters and the geographic distributions of individual assignments are shown in Fig. 1. In the K=3 model, individuals assigned to population cluster No. 1 generally expressed the stictic acid chemotype, although a few individuals representing salazinic acid chemotypes were also assigned to this cluster. However, none of the vagrant taxa were assigned to this group. Individual accessions containing salazinic acid chemotypes (X. chlorochroa, X. coloradoënsis, and X. wyomingica) were primarily assigned to population clusters No. 2 and 3; although multiple representatives of the most common species, X. chlorochroa, X. coloradoënsis, and X. cumberlandia, were recovered within both population clusters No. 2 and 3. Vagrant specimens representing X. chlorochroa with membership in cluster No. 2 were generally collected in the vicinity of the Uinta Mountain Range in northeastern Utah, including both the northern slopes in southwestern Wyoming and the south slopes in Duchesne County, Utah. However, X. chlorochroa from western Idaho (Owyhee County), and two locations in Colorado (Moffat and Summit Counties) were also included in this cluster. Individuals representing X. neochlorochroa, X. norchlorochroa, X. vagans, and X. wyomingica were also assigned to population cluster No. 2 with posterior probabilities  $\geq 0.95$ . The majority of individuals assigned to population cluster No. 3 represent vagrant taxa, including individuals of X. chlorochroa, X. lipochlorochroa, X. norchlorochroa, X. neochlorochroa, X. vagans, and X. wyomingica. Although all vagrant taxa sampled on Boulder Mountain, Utah were assigned to population cluster No. 3, this group showed the greatest geographic distribution of vagrant taxa with individuals collected from

Colorado, Montana, Utah, Washington, and Wyoming. Relatively few saxicolous individuals (7 of 38) were assigned membership to this group. Individuals from all inferred population clusters were found across the geographic distribution of the Intermountain *Xanthoparmelia* group; although those assigned to population cluster No. 2 generally occurred in areas with geographic proximity to the Uinta Mountain Range in northeastern Utah (Fig. 1). Admixed individuals included *X. chlorochroa* (004f and 009f), *X. coloradoënsis* (055f and 118f), and *X. wyomingica* collected from the type locality in the Bighorn Mountains, Wyoming, USA (826f and 827f).

#### Discussion

In contrast to recent molecular studies showing previously undiscovered fungal lineages masked within lichen species circumscribed by traditional morphological and chemical concepts (Kroken and Taylor, 2001; Goffinet, Miadlikowska, and Goward, 2003; Blanco et al., 2004b; Molina et al., 2004; Argüello et al., 2007; Wirtz, Printzen, and Lumbsch, 2008; O'Brien, Miadlikowska, and Lutzoni, 2009; Vondrák et al., 2009; Wedin et al., 2009), the present study suggests that species diversity has been overestimated in the large and species diverse lichen genus *Xanthoparmelia*. Our analysis of 146 morphologically and chemically diverse *Xanthoparmelia* specimens using six nuclear loci did not support any of the currently described species reported for western North America. The application of species delimitation criteria to identify lineages in the early stages of divergence suggests that the Intermountain *Xanthoparmelia* species complex may be more appropriately represented by three polymorphic lineages. Although previous studies have indicated that *Xanthoparmelia* species diversity has been misrepresented (Blanco et al., 2004a; Thell, Elix, and Søchting, 2009; Del-Prado et al.,

2010; Hodkinson and Lendemer, 2010), our results provide one of the first empirical investigations into species delimitation in closely related species complexes in the genus.

*Species delimitation*—We used a multifaceted approach, combining molecular systematics with methods derived from population genetics to identify lineages in the early stages of divergence (Groeneveld et al., 2009; O'Brien, Miadlikowska, and Lutzoni, 2009; Weisrock et al., 2010). By examining populations in the earlier stages of speciation mechanisms driving divergence become more evident and informative (Wiens, 2004; Knowles and Carstens, 2007; Weisrock et al., 2010).

Although the results of this study did not support currently described *Xanthoparmelia* species, our data do show strong partitioning into three differentiated population clusters inferred from the STRUCTURE analysis. These three groups were supported, in part, from other lines of evidence assembled from the analysis of multi-locus sequence data and chemical and morphological characters. Generally, basic polymorphisms statistics, including number of polymorphic sites and estimates of  $\theta$  and  $\pi$ , show that the population clusters inferred in this showed similar or less nucleotide diversity within groups, compared to values calculated from the ten putative species. This pattern suggests that the more inclusive population clusters may more accurately portray natural groupings with less taxonomic subdivision. Population cluster No. 2 was concordant with a well-supported, monophyletic lineage recovered in the both the ML and BI phylogenetic reconstructions (Fig. 2B), while clusters No. 1 and 3 did not correspond to monophyletic lineages recovered in either topology. However, SH tests of alternative hypotheses indicate that population clusters inferred from STRUCTURE provide a reasonable working hypothesis of relationships within the Intermountain Xanthoparmelia group, relative to the best-scoring ML topology. In contrast, currently accepted species boundaries or a simple

subdivision of chemotypes provided significantly weaker alternative hypotheses of relationships, and were therefore not considered as reasonable alternatives. Generally, population clusters were concordant with the ribosomal haplotype network (Fig. 3), and general concordance was identified between the ribosomal and  $\beta$ -tubulin haplotype networks for population cluster No. 1.

Although boundaries between these population clusters are often 'fuzzy', lacking distinct discordance between characters sets (Sites and Marshall, 2004; Cardoso and Vogler, 2005), some level of concordance between methods and independent datasets indicates these clusters represent species-level lineages in the early stages of divergence. The assignment of taxonomic rank to a given lineage is not straightforward, particularly in cases where diagnostic morphological or chemical characters and phylogeographic patterns are ambiguous. In our study, traditional diagnostic characters were somewhat variable within population clusters, and the concordance approach did not unambiguously support any of the putative lineages. A potential criticism is that these methods excessively subdivide a single lineage, or, in contrast, it may be argued that molecular taxonomic approaches may fail to uncover genetic variation that correlates with the phenotypic variation used to diagnose species, particularly when closely related species co-occur or have diverged only recently (Wood and Nakazato, 2009). We contend that based on the general metapopulation lineage concept and multiple sources of data, this approach exhibits at least one layer of evidence for lineage divergence within the Intermaountain Xanthoparmelia group (Sites and Marshall, 2004; de Queiroz, 2007; Weisrock et al., 2010).

*Importance of biochemical characters*—Morphological and secondary chemical patterns offered limited supported for inferred lineages, and these characters were polymorphic within each of the inferred population clusters. However, general trends in the expression of secondary

metabolites suggest at least some level of reproductive isolation between salazinic and stictic acid chemotypes. Population cluster No. 1 was primarily characterized by specimens expressing stictic acid, while clusters No. 2 and 3 were characterized by specimens expressing salazinic acid. However, each population cluster also contained some accessions expressing the opposing chemotype. Average individual cluster memberships coefficients for conflicting chemotypes in each population cluster were relatively high (>0.90), showing limited signs of admixture. Whether polymorphic accessions in the inferred population clusters indicate ongoing or recent gene flow rather than incomplete lineage sorting remains unclear.

Chemically variable *Xanthoparmelia* species complexes have shown a strong correlation of chemotypes with ecological preferences (Nash and Zavada, 1977; Benedict and Nash, 1990). However, a chemically distinct group of *Xanthoparmelia* specimens collected across a relatively homogenous environment on Boulder Mountain, Utah demonstrated a level of reproductive isolation, suggesting microhabitat variation may be an important factor driving divergence rather than broad ecological preferences (Beard and Depriest, 1996; Chunco et al., 2009). Various functions for these secondary compounds have been suggested, including protection from UV-B radiation, herbivory defense, and antifungal and antibiotic activity (Huneck, 1999; Gauslaa et al., 2006; Solhaug et al., 2009). Furthermore, carbon source and photobiont have been shown to influence the secondary metabolism of the mycobiont (Brunauer et al., 2007). In spite of some uncertainty, our data suggests that species delimitation based on the expression of stictic acid within the Intermountain *Xanthoparmelia* clade may be warranted.

*Ecological and geographic distributions*—Inferred population clusters and identical haplotypes were often found distributed across relatively broad geographical and ecological landscapes, indicating wide ecological amplitude for these lineages. Individuals containing

salazinic acid sampled from the Uinta Mountain Range and vicinity were generally inferred to belong to a single population cluster (cluster No. 2 of the K = 3 model) regardless of putative species assignment, while individuals collected from the more geographically and ecologically restricted Aquarius Plateau were generally equally distributed between the three population clusters. The geographic and ecological distributions of saxicolous forms within all inferred population clusters suggests that geographic or ecological constraints do not effectively maintain barriers to gene flow at this scale. Sexual reproductive structures (apothecia) were observed in only 7 of the 146 individuals assigned to the Intermountain *Xanthoparmelia* group, and specialized asexual diaspores (isidia) were not observed. Fertile individuals were found in each of the three population clusters, and reproductive strategies within this group remain unclear. More extensive sampling and analysis will be essential in order to more fully characterize saxicolous population structure and distribution as a function of sexual reproduction.

*Evolution of vagrancy at a local level*—Representatives of vagrant taxa were identified in multiple well-supported lineages in ML and Bayesian topologies (although relationships between these lineages generally were not supported), suggesting multiple independent origins of the vagrant condition. Additionally, statistical parsimony networks suggest multiple independent origins of the vagrant habit as haplotypes representing vagrant specimens are generally found throughout all haplotype networks. The K = 3 STRUCUTRE model suggests two distinct groups containing vagrant *Xanthoparmelia*. Vagrant accessions did not occur in population No. 1, while membership in population cluster No. 3 was dominated by vagrant specimens, and population cluster No. 2 contained a mixture of both saxicolous and vagrant specimens. Vagrant individuals in population cluster No. 2 are generally limited to northeastern Utah and southwestern Wyoming. Relatively few individuals beyond this limited distribution were assigned to
population cluster No. 2; this group included individuals from western Idaho (X. chlorochroa 112f and 113f), northwestern Colorado (X. chlorochroa 775f, 824f; and X. norchlorochroa 771f), southeastern Wyoming (X. neochlorochroa 337f), and southern Utah (X. neochlorochroa 231f). In contrast, vagrant individuals with membership in population cluster No. 3 showed a much broader geographic distribution. Unspecialized vegetative fragments have been proposed as the major, if not exclusive, method of reproduction for most vagrant Xanthoparmelia species, limiting dispersal and genetic exchange between populations (Bailey, 1976; Rosentreter, 1993). It has been proposed that some long distance dispersal may be accomplished by migrating pronghorn antelope and other wild and domesticated ungulates (Thomas and Rosentreter, 1992; Rosentreter, 1993; St. Clair et al., 2007). The occurrence of similar haplotypes across a broad geographic range supports the grazing ungulate-mediated dispersal of vagrant forms. However, they may have also been independently derived from a common widespread attached haplotype. In spite of the inherent reproductive limitations of unspecialized vegetative fragments, vagrant accessions exhibited high haplotype diversity, and two of the admixed individuals identified in the STRUCTURE analysis were vagrant forms. These results suggest that sexual reproduction may be more common in vagrant *Xanthoparmelia* than previously thought.

*Speciation in Xanthoparmelia*—Accurate species delimitation is essential, as species are fundamental units for various sub-disciplines of biology. Following the GLC using multiple datasets and analytical tools we have been able to show that species diversity in *Xanthoparmelia* has been greatly misrepresented. These results emphasize the need to re-evaluate species boundaries in the large and diverse genus *Xanthoparmelia*. We conclude that that the concordance-based approach presented in this study is well-suited for species delimitation in lichenized ascomycetes where traditional morphological and chemical characters are apparently

misleading with respect to species diversity. However, at this point we are hesitant to make any taxonomic revisions in order to avoid unwarranted and confounding taxonomic changes until we have sampled and analyzed specimens from the type localities of the currently accepted species identified within this group. The next phase in our research will include analysis of molecular data, as well as additional morphological and chemical characters. At present, it remains unclear whether an accurate and consistent definition based on morphological characters can be found for the three population clusters. Furthermore, lichenized fungi typically display few taxonomically useful morphological characters, when compared to vascular plants and vertebrates. Furthermore, the general absence of reproductive characters in specimens collected as part of the Intermountain *Xanthoparmelia* complex pose a significant limitation in identifying putatively diagnostic morphological traits. Due to these challenges, a molecular taxonomy may provide the most practical approach to a consistent treatment of species within this group.

## Conclusions

This study also suggests several avenues for ongoing investigation: 1) what are the barriers to reproduction that would maintain divergent lineages occurring in sympatry? 2) How are these sympatric populations partitioning resources? 3) What events may have led to the diversification, dispersal, and establishment of recently diverged lineages? 4) Is there a role for sexual reproduction in vagrant forms? Given these questions are tractable, we suggest *Xanthoparmelia* provides a model system for investigating the processes of speciation in lichenized ascomycetes.

## Acknowledgements

The authors wish to thank B. Adams, Jesse Breinholt, E. Green, T. Goward, D. Leavitt, R. Rosentreter, and J. Sites for invaluable discussion and comments on early versions of this manuscript. We also extend heartfelt appreciation to C. Björk, S. Crawford, M. DeVito, T. Esslinger, T. Goward, J. Hollinger, C. and D. Howell, J. Marsh, B. McCune, J. Munsha, R. Rosentreter, and the late S. Sushan for contributing material for this study. We thank L. Leavitt, P. Ririe, and G. Shrestha for invaluable help in the lab and preparing figures. This study would not have been possible without the support of the entire Leavitt family. The work was funded, in part, by a mentoring research grant through Brigham Young University, the Ruth L. Glacy Foundation, and the California Lichen Society.

## **Literature Cited**

- AMTOFT, A., F. LUTZONI, and J. MIADLIKOWSKA. 2008. Dermatocarpon (Verrucariaceae) in the Ozark Highlands, North America. *The Bryologist* 111: 1-40.
- ARGÜELLO, A., R. DEL PRADO, P. CUBAS, and A. CRESPO. 2007. Parmelina quercina (Parmeliaceae, Lecanorales) includes four phylogenetically supported morphospecies. Biological Journal of the Linnean Society 91: 455-467.
- AVISE, J. C., and A. S. BALL. 1990. Principles of genealogical concordance in species concepts and biological taxonomy. *In* D. Futuyma AND Antonovics [eds.], Oxford Surveys in Evolutionary Biology. Oxford University Press, Oxford, UK.
- BAILEY, R. H. 1976. Ecological aspects of dispersal and establishment in lichens. *In* D. H. Brown, D. L. Hawksworth, AND R. H. Bailey [eds.], Lichenology: Progress and Problems, 215-247. Academic Press, New York, New York, USA.
- BAUM, D. A., and K. L. SHAW. 1995. Genealogical perspectives on the species problem. *In* P. C. Hoch AND A. G. Stephenson [eds.], Experimental and Molecular Approaches to Plant Biosystematics, 289-303. Missouri Botanical Garden, St. Louis, Missouri, USA.
- BEARD, K. H., and P. T. DEPRIEST. 1996. Genetic Variation Within and Among Mats of the Reindeer Lichen, *Cladina subtenuis*. *The Lichenologist* 28: 171-182.
- BENEDICT, J. B., and T. H. NASH III. 1990. Radial Growth and Habitat Selection by Morphologically Similar Chemotypes of *Xanthoparmelia*. *The Bryologist* 93: 319-327.
- BLANCO, O., A. CRESPO, and J. A. ELIX. 2005. Two new species of *Xanthoparmelia* (Ascomycota: Parmeliaceae) from Spain. *The Lichenologist* 37: 97-100.
- BLANCO, O., A. CRESPO, R. H. REE, and H. T. LUMBSCH. 2006. Major clades of parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. *Molecular Phylogenetics and Evolution* 39: 52-69.
- BLANCO, O., A. CRESPO, J. A. ELIX, D. L. HAWKSWORTH, and H. T. LUMBSCH. 2004a. A Molecular Phylogeny and a New Classification of Parmelioid Lichens Containing *Xanthoparmelia*-Type Lichenan (Ascomycota: Lecanorales). *Taxon* 53: 959-975.
- BLANCO, O., A. CRESPO, P. K. DIVAKAR, T. L. ESSLINGER, D. L. HAWKSWORTH, and H. THORSTEN LUMBSCH. 2004b. *Melanelixia* and *Melanohalea*, two new genera segregated from *Melanelia* (Parmeliaceae) based on molecular and morphological data. *Mycological Research* 108: 873-884.
- BRODO, I. M. 2001. Lichens of North America. Yale University Press, New Haven, Connetecuit, USA.

- BRUNAUER, G., A. HAGER, M. GRUBE, R. TÜRK, and E. STOCKER-WÖRGÖTTER. 2007. Alterations in secondary metabolism of aposymbiotically grown mycobionts of *Xanthoria elegans* and cultured resynthesis stages. *Plant Physiology and Biochemistry* 45: 146-151.
- BUSCHBOM, J., and G. M. MUELLER. 2006. Testing "Species Pair" Hypotheses: Evolutionary Processes in the Lichen-Forming Species Complex *Porpidia flavocoerulescens* and *Porpidia melinodes*. *Molecular Biology and Evolution* 23: 574-586.
- CARBONE, I., and L. M. KOHN. 1999. A Method for Designing Primer Sets for Speciation Studies in Filamentous Ascomycetes. *Mycologia* 91: 553-556.
- CARDOSO, A., and A. P. VOGLER. 2005. DNA taxonomy, phylogeny and Pleistocene diversification of the *Cicindela hybrida* species group (Coleoptera: Cicindelidae). *Molecular Ecology* 14: 3531-3546.
- CHUNCO, A. J., J. S. MCKINNON, M. R. SERVEDIO, and T. HANSEN. 2009. Microhabitat variation and sexual selection can maintain male color polymorphisms. *Evolution* 61: 2504-2515.
- CLEMENT, M., D. POSADA, and K. A. CRANDALL. 2000. TCS: a computer program to estimate gene genealogies. *Molecular Ecology* 9: 1657-1659.
- CRESPO, A., and S. PÉREZ-ORTEGA. 2009. Cryptic species and species pairs in lichens: A discussion on the relationship between molecular phylogenies and morphological characters. *Anales del Jardin Botanico de Madrid* 66: 71-81.
- CRESPO, A., H. T. LUMBSCH, J.-E. MATTSSON, O. BLANCO, P. K. DIVAKAR, K. ARTICUS, E. WIKLUND, et al. 2007. Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. *Molecular Phylogenetics and Evolution* 44: 812-824.
- DE QUEIROZ, K. 1998. The general lineage concept of species, species criteria, and the process of speciation: a conceptual unification and terminological recommendations, 57-75. Oxford University Press, Oxford, UK.

\_\_\_\_\_. 1999. The general lineage concept of species and the defining properties of the species category. *Species, New Interdisciplinary Essays*: 49-89.

- \_\_\_\_\_. 2007. Species Concepts and Species Delimitation. *Systematic Biology* 56: 879-886.
- DEL-PRADO, R., P. CUBAS, H. T. LUMBSCH, P. K. DIVAKAR, O. BLANCO, G. A. DE PAZ, M. C. MOLINA, et al. 2010. Genetic distances within and among species in monophyletic lineages of Parmeliaceae (Ascomycota) as a tool for taxon delimitation. *Molecular Phylogenetics and Evolution* 56: 125-133.

- DEL PRADO, R., Z. FERENCOVÁ, V. ARMAS-CRESPO, G. AMO DE PAZ, P. CUBAS, and A. CRESPO. 2007. The arachiform vacuolar body: an overlooked shared character in the ascospores of a large monophyletic group within Parmeliaceae (*Xanthoparmelia* clade, Lecanorales). *Mycological Research* 111: 685-692.
- DEPRIEST, P. T. 2004. Early Molecular Investigations of Lichen-Forming Symbionts: 1986–2001\*. Annual Review of Microbiology 58: 273-301.
- DETTMAN, J. R., D. J. JACOBSON, E. TURNER, A. PRINGLE, and J. W. TAYLOR. 2003. Reproductive isolation and phylogenetic divergence in *Neurospora*: comparing methods of species recognition in a model eukaryote. *Evolution* 57: 2721.
- DIVAKAR, P. K., O. BLANCO, D. L. HAWKSWORTH, and A. CRESPO. 2005. Molecular phylogenetic studies on the *Parmotrema reticulatum* (syn. *Rimelia reticulata*) complex, including the confirmation of *P. pseudoreticulatum* as a distinct species. *The Lichenologist* 37: 55-65.
- DRUMMOND, A., O. PYBUS, A. RAMBAUT, R. FORSBERG, and A. RODRIGO. 2003. Measurably evolving populations. *Trends in Ecology & Evolution* 18: 481 488.
- EDGAR, R. C. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics* 5: 1-19.
- ELIX, J. A. 1996. Biochemistry and secondary metabolites. *In* T. H. Nash III [ed.], Lichen Biolgy, 154-180. Cambridge University Press, Cambridge, Massachusetts, USA
- EVANNO, G., S. REGNAUT, and J. GOUDET. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. *Molecular Ecology* 14: 2611-2620.
- FALUSH, D., M. STEPHENS, and J. K. PRITCHARD. 2003. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. *Genetics* 164: 1567-1587.
- GANLEY, A. R. D., and T. KOBAYASHI. 2007. Highly efficient concerted evolution in the ribosomal DNA repeats: Total rDNA repeat variation revealed by whole-genome shotgun sequence data. *Genome Research* 17: 184-191.
- GARDES, M., and T. D. BRUNS. 1993. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. *Molecular Ecology Notes* 2: 113-118.
- GAUSLAA, Y., H. HOLIEN, M. OHLSON, and T. SOLHØY. 2006. Does snail grazing affect growth of the old forest lichen Lobaria pulmonaria? *The Lichenologist* 38: 587-593.

- GAYA, E., F. LUTZONI, S. ZOLLER, and P. NAVARRO-ROSINES. 2003. Phylogenetic study of *Fulgensia* and allied *Caloplaca* and *Xanthoria* species (Teloschistaceae, lichen-forming ascomycota). *American Journal of Botany* 90: 1095-1103.
- GOFFINET, B., J. MIADLIKOWSKA, and T. GOWARD. 2003. Phylogenetic Inferences Based on nrDNA Sequences Support Five Morphospecies within the *Peltigera didactyla* Complex (Lichenized Ascomycota). *The Bryologist* 106: 349-364.
- GROENEVELD, L., D. WEISROCK, R. RASOLOARISON, A. YODER, and P. KAPPELER. 2009. Species delimitation in lemurs: multiple genetic loci reveal low levels of species diversity in the genus Cheirogaleus. *BMC Evolutionary Biology* 9: 30.
- GUTIÉRREZ, G., O. BLANCO, P. DIVAKAR, H. LUMBSCH, and A. CRESPO. 2007. Patterns of Group I Intron Presence in Nuclear SSU rDNA of the Lichen Family Parmeliaceae. *Journal of Molecular Evolution* 64: 181-195.
- HALE, M. E. 1990. A synopsis of the lichen genus *Xanthoparmelia* (Vainio) Hale (Ascomycotina, Parmeliaceae), vol. Book, Whole. Smithsonian Institution Press, Washington D.C., USA.
- HEATH, L., E. VAN DER WALT, A. VARSANI, and D. P. MARTIN. 2006. Recombination Patterns in Aphthoviruses Mirror Those Found in Other Picornaviruses. *Journal of Virology*. 80: 11827-11832.
- HODKINSON, B., and J. C. LENDEMER. 2010. Molecular analyses reveal semi-cryptic species in *Xanthoparmelia tasmanica. Bibliotheca Lichenologica*: in press.
- HUDSON, R. R., and J. A. COYNE. 2002a. Mathematical Consequences of the Genealogical Species Concept. *Evolution* 56: 1557-1565.
- \_\_\_\_\_. 2002b. Mathematical consequences of the genealogical species concept. *Evolution* 56: 1557.
- HUELSENBECK, J. P., and F. RONQUIST. 2001. MrBayes: Bayesian inference of phylogenetic trees. *Bioinformatics* 17: 754 755.
- HUELSENBECK, J. P., and B. RANNALA. 2004. Frequentist Properties of Bayesian Posterior Probabilities of Phylogenetic Trees Under Simple and Complex Substitution Models. *Systematic Biology* 53: 904 - 913.
- HUELSENBECK, J. P., F. RONQUIST, R. NIELSEN, and J. P. BOLLBACK. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. *Science* 294: 2310-2314.
- HUNECK, S. 1999. The Significance of Lichens and Their Metabolites. *Naturwissenschaften* 86: 559-570.

- KLEMENT, O. 1950. Über die Artberechtigung einiger Parmelien. Berichten der Deutschen Botanischen Gesellschaft, Jahrgang 63: 47-52.
- KNOWLES, L. L., and B. C. CARSTENS. 2007. Delimiting Species without Monophyletic Gene Trees. *Systematic Biology* 56: 887-895.
- KOLACZKOWSKI, B., and J. W. THORNTON. 2007. Effects of Branch Length Uncertainty on Bayesian Posterior Probabilities for Phylogenetic Hypotheses. *Molecular Biology and Evolution* 24: 2108-2118.
- KROKEN, S., and J. W. TAYLOR. 2001. A Gene Genealogical Approach to Recognize Phylogenetic Species Boundaries in the Lichenized Fungus Letharia. Mycologia 93: 38-53.
- LATCH, E., G. DHARMARAJAN, J. GLAUBITZ, and O. RHODES. 2006. Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. *Conservation Genetics* 7: 295-302.
- LAURENT, E., L. GUILLAUME, and S. STEFAN. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. *Evolutionary Bioinformatics Online* 1: 47-50.
- LEAVITT, S. D. 2010. Assessing traditional morphology- and chemistry-based species circumspections in lichenized ascomycetes: character evolution and species delimitation in common western North American lichens. Ph.D. dissertation, Brigham Young University, Provo, Utah, USA.
- LEAVITT, S. D., and L. L. ST. CLAIR. 2008. Lichens of Boulder Mountain Plateau, Wayne, County, Utah, USA. *Evansia* 26: 85-89.
- LIBRADO, P., and J. ROZAS. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics* 25: 1451-1452.
- LINDBLOM, L., and S. EKMAN. 2006. Genetic variation and population differentiation in the lichen-forming ascomycete *Xanthoria parietina* on the island Storfosna, central Norway. *Molecular ecology* 15: 1545-1559.
- LIU, L., L. YU, L. KUBATKO, D. K. PEARL, and S. V. EDWARDS. 2009. Coalescent methods for estimating phylogenetic trees. *Molecular Phylogenetics and Evolution* 53: 320-328.
- LUMBSCH, H. T., I. SCHMITT, A. MANGOLD, and M. WEDIN. 2007. Ascus types are phylogenetically misleading in Trapeliaceae and Agyriaceae (Ostropomycetidae, Ascomycota). *Mycological Research* 111: 1133-1141.

- LUTZONI, F., M. PAGEL, and V. REEB. 2001. Major fungal lineages are derived from lichen symbiotic ancestors. *Nature* 411: 937-940.
- LUTZONI, F., F. KAUFF, C. J. COX, D. MCLAUGHLIN, G. CELIO, B. DENTINGER, M. PADAMSEE, et al. 2004. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. *American Journal of Botany* 91: 1446-1480.
- MADDISON, W. P., and D. R. MADDISON. 2007. Mesquite: A modular system for evolutionary analysis, version 2.01. Website <u>http://mesquiteproject.org</u>.
- MARTIN, D. P., C. WILLIAMSON, and D. POSADA. 2005. RDP2: recombination detection and analysis from sequence alignments. *Bioinformatics* 21: 260-262.
- MAYDEN, R. L. 1999. Consilience and a hierarchy of species concepts: Advances towards closure on the species puzzle. *The Journal of Nematology* 31: 95-116.
- MERESCHKOWSKY, C. 1918. Note sur une nouvelle forme de *Parmelia* vivant à l'état libre. Bulletin de la Société Botanique de Genève, series 2 10.
- MOLINA, M. D. C., A. CRESPO, O. BLANCO, H. T. LUMBSCH, and D. L. HAWKSWORTH. 2004. Phylogenetic relationships and species concepts in *Parmelia* s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and β;-tubulin sequences. *The Lichenologist* 36: 37-54.
- MYLLYS, L., K. LOHTANDER, and A. TEHLER. 2001. β-Tubulin, ITS and Group I Intron Sequences Challenge the Species Pair Concept in Physcia aipolia and P. caesia. *Mycologia* 93: 335-343.
- NASH III, T. H., and M. ZAVADA. 1977. Population Studies Among Sonoran Desert Species of Parmelia subg. *Xanthoparmelia* (Parmeliaceae). *American Journal of Botany* 64: 664-669.
- NASH III, T. H., and J. A. ELIX. 2004. Xanthoparmelia. In T. H. Nash III, B. D. Ryan, P. Diederich, C. Gries, AND F. BUNGARTZ [eds.], Lichen Flora of the Greater Sonoran Desert Region, vol. 2. Lichens Unlilmited, Tempe.
- NEI, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York, New York, USA.
- NYLANDER, J. A. A., F. RONQUIST, J. P. HUELSENBECK, and J. NIEVES-ALDREY. 2004. Bayesian Phylogenetic Analysis of Combined Data. *Systematic Biology* 53: 47-67.
- O'BRIEN, H. E., J. MIADLIKOWSKA, and F. LUTZONI. 2009. Assessing reproductive isolation in highly diverse communities of the lichen-forming funal genus *Peltigera*. *Evolution* 63: 2076-2086.

- O'MEARA, B. C. 2010. New Heuristic Methods for Joint Species Delimitation and Species Tree Inference. *Systematic Biology* 59: 59-73.
- ORANGE, A., P. W. JAMES, and F. J. WHITE. 2001. Microchemical methods for the identification of lichens, 1-101. British Lichen Society, London.
- POSADA, D., and K. A. CRANDALL. 2001a. Selecting the Best-Fit Model of Nucleotide Substitution. *Systematic Biology* 50: 580-601.
  - \_\_\_\_\_. 2001b. Evaluation of methods for detecting recombination from DNA sequences: Computer simulations. *Proceedings of the National Academy of Sciences of the United States of America* 98: 13757-13762.
- POSADA, D., and T. R. BUCKLEY. 2004. Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches Over Likelihood Ratio Tests. *Systematic Biology* 53: 793-808.
- POSADA, D., K. A. CRANDALL, and E. C. HOLMES. 2002. Recombination in evolutionary genomics. *Annual Review of Genetics* 36: 75-97.
- PRINGLE, A., D. M. BAKER, J. L. PLATT, J. P. WARES, J. P. LATGÉ, and J. W. TAYLOR. 2005. Cryptic Speciation in the Cosmopolitan and Clonal Human Pathogenic Fungus Aspergillus fumigatus. Evolution 59: 1886-1899.
- PRINTZEN, C. 2009. Lichen Systematics: The Role of Morphological and Molecular Data to Reconstruct Phylogenetic Relationships, Progress in Botany 71: 233-275. Springer Berlin Heidelberg, Berlin, Germany.
- PRITCHARD, J. K., M. STEPHENS, and P. DONNELLY. 2000. Inference of population structure using multilocus genotype data. *Genetics* 155: 945-959.
- RAMBAULT, A. 1996. Sequence Alignment Editor *Available from:* <<u>http://tree.bio.ed.ac.uk/software/seal/></u>.
- ROE, A. D., and F. A. H. SPERLING. 2007. Population structure and species boundary delimitation of cryptic *Dioryctria* moths: an integrative approach. *Molecular Ecology* 16: 3617-3633.
- ROKAS, A., and S. B. CARROLL. 2005. More Genes or More Taxa? The Relative Contribution of Gene Number and Taxon Number to Phylogenetic Accuracy. *Molecular Biology and Evolution* 22: 1337-1344.
- RONQUIST, F., and A. R. DEANS. 2009. Bayesian Phylogenetics and Its Influence on Insect Systematics. *Annual Review of Entomology* 55: 189-206.

ROSENTRETER, R. 1993. Vagrant Lichens in North America. The Bryologist 96: 333-338.

- ROWE, G., and T. J. C. BEEBEE. 2007. Defining population boundaries: use of three Bayesian approaches with microsatellite data from British natterjack toads (*Bufo calamita*). *Molecular Ecology* 16: 785-796.
- RUIZ-SANCHEZ, E., and V. SOSA. 2010. Delimiting species boundaries within the Neotropical bamboo Otatea (Poaceae: Bambusoideae) using molecular, morphological and ecological data. *Molecular Phylogenetics and Evolution* 54: 344-356.
- SAISHO, D., and M. D. PURUGGANAN. 2007. Molecular Phylogeography of Domesticated Barley Traces Expansion of Agriculture in the Old World. *Genetics* 177: 1765-1776.
- SANDERS, W. B. 2001. Lichens: The Interface between Mycology and Plant Morphology. *Bioscience* 51: 1025-1035.
- SCHMITT, I., A. CRESPO, P. K. DIVAKAR, J. D. FANKHAUSER, E. HERMAN-SACKETT, K. KALB, M. P. NELSEN, et al. 2009. New primers for promising single-copy genes in fungal phylogenies and systematics. *Persoonia* 23: 35-40.
- SHIMODAIRA, H., and M. HASEGAWA. 1999. Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference. *Molecular Biology and Evolution* 16: 1114-1116
- SITES, J. W., and J. C. MARSHALL. 2004. Operational criteria for delimiting species. *Annual Review of Ecology, Evolution, and Systematics* 35: 199-227.
- SØCHTING, U., and F. LUTZONI. 2003. Molecular phylogenetic study at the generic boundary between the lichen-forming fungi Caloplaca and *Xanthoria* (Ascomycota, Teloschistaceae). *Mycological Research* 107: 1266-1276.
- SOLHAUG, K. A., M. LIND, L. NYBAKKEN, and Y. GAUSLAA. 2009. Possible functional roles of cortical depsides and medullary depsidones in the foliose lichen Hypogymnia physodes. *Flora Morphology, Distribution, Functional Ecology of Plants* 204: 40-48.
- ST. CLAIR, L., J. JOHANSEN, S. ST. CLAIR, and K. KNIGHT. 2007. The Influence of Grazing and Other Environmental Factors on Lichen Community Structure along an Alpine Tundra Ridge in the Uinta Mountains, Utah, U.S.A. Arctic, Antarctic, and Alpine Research 39: 603-613.
- STAMATAKIS, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. *Bioinformatics* 22: 2688-2690.
- STAMATAKIS, A., P. HOOVER, and J. ROUGEMONT. 2008. A Rapid Bootstrap Algorithm for the RAxML Web Servers. *Systematic Biology* 57: 758-771.

- TEMPLETON, A. R., and C. F. SING. 1993. A Cladistic Analysis of Phenotypic Associations with Haplotypes Inferred from Restriction Endonuclease Mapping. IV. Nested Analyses with Cladogram Uncertainty and Recombination. *Genetics* 134: 659-669.
- TEMPLETON, A. R., K. A. CRANDALL, and C. F. SING. 1992. A Cladistic Analysis of Phenotypic Associations With Haplotypes Inferred From Restriction Endonuclease Mapping and DNA Sequence Data. III. Cladogram Estimation. *Genetics* 132: 619-633.
- THELL, A. 1999. Group I Intron Versus its Sequences in Phylogeny of Cetrarioid Lichens. *The Lichenologist* 31: 441-449.
- THELL, A., J. A. ELIX, and U. SØCHTING. 2009. *Xanthoparmelia lineola* s. l. in Australia and North America. *Bibliothecia Lichenologica* 99: 393-404.
- THOMAS, A., and R. ROSENTRETER. 1992. Antelope utilization of lichen in the Birch Creek Valley of Idaho. *In* E. Raper [ed.], Proceedings - Symposium of the 15th Biennial Pronghorn Antelope Workshop, Rocksprings Wyoming, June 9-11, 1992., 6-12.
  Wyoming Game and Fish Department, Rock Springs, Wyoming, USA.
- VIEITES, D. R., K. C. WOLLENBERG, F. ANDREONE, J. KÖHLER, F. GLAW, and M. VENCES. 2009. Vast underestimation of Madagascar's biodiversity evidenced by an integrative amphibian inventory. *Proceedings of the National Academy of Sciences* 106: 8267-8272.
- VONDRÁK, J., P. ŘÍHA, U. ARUP, and U. SØCHTING. 2009. The taxonomy of the Caloplaca citrina group (Teloschistaceae) in the Black Sea region; with contributions to the cryptic species concept in lichenology. *The Lichenologist* 41: 571-604.
- WATTERSON, G. A. 1975. On the number of segregating sites in genetical models without recombination. *Theoretical Population Biology* 7: 256-276.
- WEDIN, M., M. WESTBERG, A. T. CREWE, A. TEHLER, and O. W. PURVIS. 2009. Species delimitation and evolution of metal bioaccumulation in the lichenized *Acarospora smaragdula* (Ascomycota, Fungi) complex. *Cladistics* 25: 161-172.
- WEISROCK, D. W., R. M. RASOLOARISON, I. FIORENTINO, J. M. RALISON, S. M. GOODMAN, P. M. KAPPELER, and A. D. YODER. 2010. Delimiting Species without Nuclear Monophyly in Madagascar's Mouse Lemurs. *PLoS ONE* 5: e9883.
- WHEELER, D. L., T. BARRETT, D. A. BENSON, S. H. BRYANT, K. CANESE, V. CHETVERNIN, D. M. CHURCH, et al. 2006. Database resources of the National Center for Biotechnology Information. *Nucleic Acids Research*: 33: D39-45.
- WHITE, T. J., T. D. BRUNS, S. LEE, and J. TAYLOR. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Academic Press, San Diego, California, USA.

- WIENS, J. J. 1998. Combining Data Sets with Different Phylogenetic Histories. *Systematic Biology* 47: 568-581.
- WIENS, JOHN J. 2004. What Is Speciation and How Should We Study It? *The American Naturalist* 163: 914-923.
- WILL, K. W., B. D. MISHLER, and Q. D. WHEELER. 2005. The Perils of DNA Barcoding and the Need for Integrative Taxonomy. *Systematic Biology* 54: 844-851.
- WIRTZ, N., C. PRINTZEN, and H. T. LUMBSCH. 2008. The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. Mycological Research 112: 472-484.
- WOOD, T. E., and T. NAKAZATO. 2009. Investigating species boundaries in the *Giliopsis* group of *Ipomopsis* (Polemoniaceae): Strong discordance among molecular and morphological markers. *Ameriucan Journal of Botany* 96: 853-861.
- YANG, Z., and B. RANNALA. 2010. Bayesian species delimitation using multilocus sequence data. *Proceedings of the National Academy of Sciences* 107: 9264-9269.

Table 3.1. Summary of diagnostic morphological and chemical characteristics for ingroup taxa; "\*" indicate that erratic, unattached forms were identified in the present study; "\$" indicate specimens identified without sexual reproductive characters were included in nominal taxon.

| Species            | Form        | Diagnostic  | Mode of       | Picnidia | Rhizines          | Undersurface color          | Degree of adnation             |
|--------------------|-------------|-------------|---------------|----------|-------------------|-----------------------------|--------------------------------|
|                    |             | chemistry   | reproduction  |          |                   |                             |                                |
| X. californica     | saxicolous  | norstictic  | apothecia§    | present  | simple            | pale brown                  | adnate                         |
| X. chlorochroa     | vagrant     | salazinic   | fragmentation | rare     | simple to furcate | pale-dark brown             | free growing                   |
| X. coloradoësis    | saxicolous* | salazinic   | apothecia§    | present  | simple            | pale brown                  | adnate to loosley adnate       |
| X. cumberlandia    | saxicolous* | stictic     | apothecia§    | present  | simple            | pale brown or brown         | adnate                         |
| X. lipochlorochroa | vagrant     | fatty acids | fragmentation | absent   | simple            | pale brown                  | free growing                   |
| X. neochlorochroa  | vagrant     | norstictic  | fragmentation | absent   | simple to furcate | pale brown                  | free growing                   |
| X. neowyomingica   | terricolous | stictic     | apothecia§    | present  | simple to tufted  | pale to dark brown          | loosely adnate to free growing |
| X. norchlorochroa  | vagrant     | salazinic   | fragmentation | absent   | absent            | dark brown to black         | free growing                   |
| X. vagans          | vagrant     | stictic     | fragmentation | absent   | simple            | pale brown to dark<br>brown | free growing                   |
| X. wyomingica      | terricolous | salazinic   | apothecia§    | present  | simple            | pale to dark brown          | loosely adnate to free growing |

| ion copy protei    | in county marker | p tuounn una mont, in sumptou nummop     | annientei tuntui           |                                       |
|--------------------|------------------|------------------------------------------|----------------------------|---------------------------------------|
| Marker             | Primer name      | Forward primer sequence                  | Annealing temperature (°C) | Reference                             |
| IGS                | IGS12            | 5'-AGTCTGTGGATTAGTGGCCG-3'               | 66-56 (touchdown)          | Carbone & Kohn, 1999                  |
|                    | NS1R             | 5'-GAGACAAGCATATGACTAC-3'                |                            | Carbone & Kohn, 1999                  |
|                    | XIGS_R           | 5'-TAC TGG CAG AAT CAR CCA GG-3'         |                            | Leavitt, 2010                         |
| ITS/group I intron | ITS1F            | 5'-CTT GGT CAT TTA GAG GAA GTA A-3'      | 55-60                      | (Gardes and Bruns, 1993)              |
|                    | ITS4             | 5'- TCC TCC GCT TAT TGA TAT GC-3'        |                            | (White et al., 1990)                  |
| LSU                | LROR             | 5'-ACC CGC TGA ACT TAA GC-3'             | 55-60                      | Vilgalys unpublished                  |
|                    | LR5              | 5'-ATC CTG AGG GAA ACT TC-3'             |                            | Vilgalys unpublished                  |
| β-tubulin          | Bt3-LM           | 5'-GAACGTCTACTTCAACGAG-3'                | 55-60                      | (Myllys, Lohtander, and Tehler, 2001) |
|                    | Bt10-LM          | 5'-TCGGAAGCAGCCATCATGTTCTT-3'            |                            | (Myllys, Lohtander, and Tehler, 2001) |
|                    | BT_rhizo_F       | 5'-GCA ACA AGT ATG TTC CTC GTG C-3'      | 66-56 (touchdown)          | Leavitt, 2010                         |
|                    | BT_rhizo_R       | 5'-GTAAGAGGTGCGAAGCCAACC-3'              |                            | Leavitt, 2010                         |
| MCM7               | Mcm7-709for      | 5'-ACI MGI GTI TCV GAY GTH AARCC-3'      | 56                         | Schmitt et al., 2009a                 |
|                    | Mcm7-1348rev     | 5'-GAY TTD GCI ACI CCI GGR TCW CCC AT-3' |                            | Schmitt et al., 2009a                 |
|                    | X_Mcm7_F         | 5'- CGT ACA CYT GTG ATC GAT GTG -3'      | 66-56 (touchdown)          | Leavitt, 2010                         |
|                    | X_Mcm7_R         | 5'- GTC TCC ACG TAT TCG CAT TCC-3'       |                            | Leavitt, 2010                         |

Table 3.2. Primers used for PCR amplification and sequencing of the nuclear ribosomal IGS, ITS, and group I intron markers and low-copy protein-coding markers β-tubulin and *MCM7* in sampled *Xanthoparmelia* taxa.

| Locus          | Ν         | Aligned bp  | # of variable sites | # PI sites | Model selected |
|----------------|-----------|-------------|---------------------|------------|----------------|
| ITS            | 158 (145) | 543 (535)   | 108 (68)            | 67 (41)    | SYM+I+G        |
| LSU            | 155 (142) | 843 (843)   | 57 (25)             | 20 (13)    | GTR+I          |
| IGS            | 144 (131) | 380 (380)   | 80 (46)             | 39 (22)    | GTR+I+G        |
| group I intron | 135 (125) | 387 (385)   | 64 (51)             | 35 (29)    | SYM+G          |
| β-tubulin      | 147 (135) | 809 (809)   | 74 (42)             | 27 (17)    | GTR+I          |
| <i>MCM7</i>    | 146 (136) | 541 (541)   | 89 (63)             | 48 (36)    | GTR+I+G        |
| Total          | 158 (145) | 3503 (3493) | 462 (295)           | 236 (158)  | na             |

Table 3.3. Genetic variability of sampled loci, including alignment length and parsimony informative (PI) sites for each sampled; numbers in parentheses indicate the number of variable and parsimony-informative sites for the Intermountain *Xanthoparmelia* group only.

Table 3.4. Polymorphism statistic for *Xanthoparmelia* species examined. Species sampled; *N* total, number of individuals sampled; and loci sampled. Within each locus *N*, number of individuals sampled for that loci/ $N_{poly}$ , number of polymorphic sites/*H*, number of unique haplotypes;  $\pi$ , estimate of  $4N\mu$  per base pair using average pairwise differences /  $\theta$ , estimates of haplotype diversity using the number of pairwise differences.

|                    | Ν          | ITS                |                | LSU                |          | IGS                |                | Intron             |                | β-tubulin          |                | <i>MCM7</i> 7      |              |
|--------------------|------------|--------------------|----------------|--------------------|----------|--------------------|----------------|--------------------|----------------|--------------------|----------------|--------------------|--------------|
|                    | total      | $N/N_{\rm poly}/H$ | $\pi / \theta$ | $N/N_{\rm poly}/H$ | π/θ      | $N/N_{\rm poly}/H$ | $\pi / \theta$ | $N/N_{\rm poly}/H$ | $\pi / \theta$ | $N/N_{\rm poly}/H$ | $\pi / \theta$ | $N/N_{\rm poly}/H$ | $\pi/\theta$ |
| Species 1          |            |                    |                |                    |          |                    |                |                    |                |                    |                |                    |              |
| X. californica     | 2          | 2/4/2              | 0.00800/       | 2/2/2              | 0.00238/ | 1/0/1              | na/na          | 2/5/2              | 0.01348/       | 2/7/2              | 0.00950/       | 2/1/2              | 0.02033/     |
| <b>V</b> 11 1      | <b>5</b> 1 | <b>51/15/15</b>    | 0.00800        | 50/10/0            | 0.00238  | 51/16/14           | 0.00000        | 40/02/17           | 0.01348        | 51 (5 (S           | 0.00950        | 50/20/10           | 0.02033      |
| X. chlorochroa     | 51         | 51/15/15           | 0.00/36/       | 50/10/8            | 0.0011// | 51/16/14           | 0.00603/       | 48/23/17           | 0.01257/       | 51/5/5             | 0.00116/       | 50/28/18           | 0.01161/     |
| v 1 1              | 20         | 20/25/17           | 0.00929        | 20/9/7             | 0.00200  | 27/14/12           | 0.00959        | 20/10/11           | 0.01417        | 29/0/7             | 0.00285        | 28/20/20           | 0.01202      |
| A. coloradoensis   | 29         | 29/23/17           | 0.00840/       | 29/8/1             | 0.00110/ | 2//14/15           | 0.00709/       | 20/10/11           | 0.01265/       | 20/9/1             | 0.00310/       | 28/30/20           | 0.01238/     |
| V aumhanlandia     | 36         | 36/36/20           | 0.01333        | 37/10/12           | 0.00273  | 25/20/15           | 0.00987        | 26/21/16           | 0.01450        | 27/0/              | 0.00548        | 37/34/77           | 0.01487      |
| A. cumper unuu     | 30         | 30/30/20           | 0.01743        | 57/10/12           | 0.00188/ | 23/20/13           | 0.00943/       | 20/21/10           | 0.00744/       | 21131              | 0.00569        | 52/54/22           | 0.01519/     |
| Y linachlarachroa  | 3          | 3/0/1              | 0.0000/        | 3/0/1              | 0.000292 | 1/0/1              | 0/0            | 1/0/1              | 0.00000/       | 3/0/1              | 0.00000/       | 3/5/2              | 0.00616/     |
| А. простогостои    | 5          | 5/0/1              | 0.0000/        | 5/0/1              | 0.00000/ | 1/0/1              | 0/0            | 1/0/1              | 0.00000/       | 5/0/1              | 0.00000/       | 5/5/2              | 0.00616      |
| X neochlorochroa   | 4          | 4/7/2              | 0.00889/       | 4/2/3              | 0.00139/ | 4/4/2              | 0.00705/       | 4/11/3             | 0.01932/       | 4/0/1              | 0.00000/       | 4/11/3             | 0.01109/     |
|                    | •          |                    | 0.00727        |                    | 0.00139  |                    | 0.00705        |                    | 0.01617        |                    | 0.00000        |                    | 0.01109      |
| X. neowvomingica   | 7          | 7/3/3              | 0.0021/        | 7/5/4              | 0.00193/ | 7/4/3              | 0.00307/       | 6/2/3              | 0.00234/       | 7/7/2              | 0.00452/       | 7/15/3             | 0.01074/     |
|                    |            |                    | 0.00245        |                    | 0.00243  |                    | 0.00307        |                    | 0.00236        |                    | 0.00388        |                    | 0.01132      |
| X. norchlorochroa  | 3          | 3/7/2              | 0.00933/       | 2/0/1              | 0.00000/ | 3/1/2              | 0.00179/       | 3/5/1              | 0.00898/       | 3/0/1              | 0.00000/       | 0                  | 0.00616/     |
|                    |            |                    | 0.00933        |                    | 0.00000  |                    | 0.00179        |                    | 0.00898        |                    | 0.00000        |                    | 0.00616      |
| X. vagans          | 4          | 4/11/3             | 0.01133/       | 4/0/1              | 0.00000/ | 4/5/3              | 0.00672/       | 0                  | na/na          | 4/1/2              | 0.00090/       | 4/8/2              | 0.00739/     |
|                    |            |                    | 0.01200        |                    | 0.00000  |                    | 0.00733        |                    |                |                    | 0.00074        |                    | 0.00807      |
| X. wyomingica      | 6          | 6/11/4             | 0.00906/       | 6/5/4              | 0.00261/ | 5/8/5              | 0.00968/       | 5/7/3              | 0.00916/       | 6/6/4              | 0.00301/       | 4/14/4             | 0.01571/     |
|                    |            |                    | 0.00977        |                    | 0.00302  |                    | 0.01032        |                    | 0.00906        |                    | 0.00396        |                    | 0.01412      |
| <u>Chemotype</u>   |            |                    |                |                    |          |                    |                |                    |                |                    |                |                    |              |
| Norstictic         | 6          | 6/8/4              | 0.00853/       | 6/4/4              | 0.00183/ | 5/5/3              | 0.00753/       | 4/11/3             | 0.01932/       | 6/8/3              | 0.00389/       | 6/18/5             | 0.01368/     |
|                    |            |                    | 0.00863        |                    | 0.00183  |                    | 0.00760        |                    | 0.01983        |                    | 0.00391        |                    | 0.01393      |
| Salazinic          | 86         | 86/26/20           | 0.00657/       | 85/20/15           | 0.00137/ | 84/24/23           | 0.00670/       | 81/27/19           | 0.01352/       | 85/10/10           | 0.00196/       | 81/41/35           | 0.01225/     |
| -                  |            |                    | 0.00663        |                    | 0.00137  |                    | 0.00676        |                    | 0.01377        |                    | 0.00197        |                    | 0.01245      |
| Stictic            | 50         | 50/42/26           | 0.00883/       | 48/12/13           | 0.00197/ | 39/27/20           | 0.00824/       | 35/24/20           | 0.00783/       | 41/12/10           | 0.00578/       | 46/45/28           | 0.01493/     |
|                    |            |                    | 0.00893        |                    | 0.00197  |                    | 0.00833        |                    | 0.00792        |                    | 0.00582        |                    | 0.01523      |
| Population cluster |            |                    |                |                    |          |                    |                |                    |                |                    |                |                    |              |
| 1                  | 47         | 47/42/24           | 0.00754/       | 45/12/12           | 0.00166/ | 37/21/19           | 0.00840/       | 35/20/19           | 0.00587/       | 36/18/10           | 0.00514/       | 42/44/27           | 0.01489/     |
|                    |            |                    | 0.00762        |                    | 0.00166  |                    | 0.00849        |                    | 0.00591        |                    | 0.00518        |                    | 0.01519      |
| 2                  | 48         | 47/16/12           | 0.00356/       | 48/10/9            | 0.00126/ | 46/15/12           | 0.00392/       | 47/14/12           | 0.00366/       | 47/4/5             | 0.00101/       | 47/30/22           | 0.01230/     |
|                    |            |                    | 0.00358        |                    | 0.00127  |                    | 0.00394        |                    | 0.00368        |                    | 0.00101        |                    | 0.01250      |
| 3                  | 44         | 45/8/7             | 0.00428/       | 43/5/5             | 0.00038/ | 43/16/12           | 0.00737/       | 37/13/9            | 0.00727/       | 44/6/6             | 0.00153/       | 41/22/12           | 0.01047/     |
|                    |            |                    | 0.00431        |                    | 0.00038  |                    | 0.00744        |                    | 0.00734        |                    | 0.00153        |                    | 0.01062      |

|                     | 1        | 2        | 3          | 4        | 5           | 6        | 7      |
|---------------------|----------|----------|------------|----------|-------------|----------|--------|
| 1 X. chlorochroa    | -        | ns       | 0.0000     | ns       | 0.0811 n.s. | ns       | ns     |
| 2. X. coloradoënsis | 0.00125  | -        | 0.0721 n.s | ns       | ns          | ns       | ns     |
| 3 X. cumberlandia   | 0.11097  | 0.03794  | -          | ns       | ns          | ns       | ns     |
| 4 X. neochlorochroa | -0.10319 | -0.09908 | -0.03473   | -        | 0.02703     | ns       | ns     |
| 5 X. neowyomingica  | 0.05264  | 0.01516  | 0.01692    | 0.50591  | -           | 0.01802. | 0.0000 |
| 6 X. vagans         | -0.11701 | -0.12695 | -0.07955   | 0.17329  | 0.52033     | -        | ns     |
| 7 X. wyomingica     | 0.12696  | 0.06507  | 0.00664    | -0.03751 | 0.08599     | -0.10867 | -      |

Table 3.5. Estimates of pairwise  $F_{ST}$  among putative *Xanthoparmelia* species (below diagonal) and the significance level (above diagonal); ns, not significant (two nonsignificant P-values are show). Numbers on top row correspond to numbered taxa in the first column.

|            | Comparison | $F_{\rm ST}$ | Significance |
|------------|------------|--------------|--------------|
| Structure  | K1-K2      | 0.42285      | 0.0000       |
| Structure  | K1-K3      | 0.35209      | 0.0000       |
| Structure  | K2-K3      | 0.43664      | 0.0000       |
| Chemotypes | Stictic -  | 0.14303      | 0.0000       |
|            | Salzinic   |              |              |

Table 3.6. Estimates of pairwise  $F_{ST}$  between population clusters inferred in STRUCTURE analyses and major chemotypes

Table 3.7. Results of the paired Shimodaira-Hasegawa topological constraint tests of our bestML topology compared to three alternative hypotheses of relationships in the IntermountainXanthoparmelia group proposed in this study.TreeIn LDifferenceSignificantlyTopology

| Tree                  | ln L      | Difference | Significantly | Topology     |
|-----------------------|-----------|------------|---------------|--------------|
|                       |           | ln L       | Worse         | compared     |
| this article (Fig. 2) | -11165.19 | (best)     | -             | This article |
|                       | -12048.58 | 883.39     | yes           | Species      |
|                       | -11645.43 | 480.24     | yes           | Chemotypes   |
|                       | -11175.35 | 10.16      | no            | STRUCTURE    |



Figure 3.1. (A) Geographic distributions of sampled *Xanthoparmelia* specimens and inferred population clusters in the western United States. (B) Population subdivision and the occurrence of putative lineages in each inferred population cluster inferred from the STRUCTURE analysis; each accession is shown by a thin vertical line that is partitioned into three colored segments. The accessions in which members' probability is < 70 % are classified into a mixed category.



Figure 3.2 (on previous page). ML phylogenetic relationships of *Xanthoparmelia* taxa inferred from a combined analysis of nuclear ribosomal markers ITS, IGS, LSU, and intron and protein-coding fragments from  $\beta$ -tubulin and *MCM7* genes. Values at each node indicate non-parametric bootstrap support (BS)/ posterior probability (PP), only values  $\geq$  BS 50/PP 0.5 are listed. The focal group "Intermountain *Xanthoparmelia* group is indicated in Fig. 1A and Fig 1B. Filled circles at the end of taxon labels indicate individuals assigned membership in population cluster one inferred from the STRUCTURE analysis, open circles indicate population cluster two, and circles with cross indicate population cluster three.



Figure 3.3. Unrooted statistical parsimony haplotype networks at 95% probability for (A) ribosomal (ITS, IGS, LSU, and intron), (B)  $\beta$ -tubulin, and (C) *MCM7* loci within the Intermountain *Xanthoparmelia* group. The sizes of the circles in each haplotype networks are proportional to the number of individuals in each given haplotype, and small circles are inferred from haplotypes not sampled. Putative species are color coded in all networks; and outline color signifies membership in population clusters inferred from the STRUCTURE analysis.



Figure 3.4. A) The median likelihoods for 12 runs for each *K* estimate are shown on the likelihood plot for STRUCTURE analysis of sampled *Xanthoparmelia* species. B)  $\Delta K$  calculated as  $\Delta K = m|L''(K)|/s[L(K)]$ . The modal value of this distribution is the uppermost level of structure (*K*).

| ID   | Species        | Herbarium<br>Acc. No. | Major<br>Acid | Form       | Reproductive<br>mode | Structure | Location              | Lat.    | Lon.      | Ele.   | Collector (s)  |
|------|----------------|-----------------------|---------------|------------|----------------------|-----------|-----------------------|---------|-----------|--------|----------------|
| 037f | X. californica | BRY-55185             | norstictic    | erratic    | not observed         | 1         | USA, UT, Wayne        | 38.1230 | -111.5086 | 3300 m | Leavitt et al. |
| 443f | X. californica | BRY-55387             | norstictic    | saxicolous | not observed         | 2         | USA, UT, Duchesne     | 40.526  | -110.3529 | 2088 m | Leavitt et al. |
| 004f | X. chlorochroa | BRY-55154             | salazinic     | vagrant    | fragmentation        | mixed     | USA, UT, Wayne        | 38.1325 | -111.4710 | 3300 m | Leavitt et al. |
| 005f | X. chlorochroa | BRY-55155             | salazinic     | vagrant    | fragmentation        | 3         | USA, UT, Wayne        | 38.1625 | -111.5358 | 3300 m | Leavitt et al. |
| 008f | X. chlorochroa | BRY-55158             | salazinic     | vagrant    | fragmentation        | 3         | USA, UT, Wayne<br>Co. | 38.1626 | -111.5352 | 3300 m | Leavitt et al. |
| 009f | X. chlorochroa | BRY-55159             | salazinic     | vagrant    | fragmentation        | mixed     | USA, UT, Wayne<br>Co. | 38.1202 | -111.5071 | 3300 m | Leavitt et al. |
| 010f | X. chlorochroa | BRY-55160             | salazinic     | vagrant    | fragmentation        | 3         | USA, UT, Wayne<br>Co. | 38.1202 | -111.5071 | 3300 m | Leavitt et al. |
| 011f | X. chlorochroa | BRY-55161             | salazinic     | vagrant    | fragmentation        | 3         | USA, UT, Wayne<br>Co. | 38.1230 | -111.5086 | 3300 m | Leavitt et al. |
| 014f | X. chlorochroa | BRY-55164             | salazinic     | vagrant    | fragmentation        | 3         | USA, UT, Wayne<br>Co. | 38.1309 | -111.4695 | 3300 m | Leavitt et al. |
| 015f | X. chlorochroa | BRY-55165             | salazinic     | vagrant    | fragmentation        | 3         | USA, UT, Wayne<br>Co. | 38.1325 | -111.4710 | 3300 m | Leavitt et al. |
| 016f | X. chlorochroa | BRY-55166             | salazinic     | vagrant    | fragmentation        | 3         | USA, UT, Wayne<br>Co. | 38.1625 | -111.5358 | 3300 m | Leavitt et al. |
| 027f | X. chlorochroa | BRY-55175             | salazinic     | vagrant    | fragmentation        | 3         | USA, UT, Wayne<br>Co. | 38.1309 | -111.4695 | 3300 m | Leavitt et al. |
| 028f | X. chlorochroa | BRY-55176             | salazinic     | vagrant    | fragmentation        | 3         | USA, UT, Wayne<br>Co. | 38.1626 | -111.5352 | 3300 m | Leavitt et al. |
| 031f | X. chlorochroa | BRY-55179             | salazinic     | vagrant    | fragmentation        | 3         | USA, UT, Wayne        | 38.1626 | -111.5352 | 3300 m | Leavitt et al. |
| 048f | X. chlorochroa | BRY-55196             | salazinic     | vagrant    | fragmentation        | 3         | USA, UT, Wayne        | 38.1202 | -111.5071 | 3300 m | Leavitt et al. |
| 052f | X. chlorochroa | BRY-55198             | salazinic     | vagrant    | fragmentation        | 3         | USA, UT, Wayne<br>Co. | 38.1625 | -111.5358 | 3300 m | Leavitt et al. |
| 053f | X. chlorochroa | BRY-55199             | salazinic     | vagrant    | fragmentation        | 3         | USA, UT, Wayne        | 38.1230 | -111.5086 | 3300 m | Leavitt et al. |
| 068f | X. chlorochroa | BRY-55213             | salazinic     | vagrant    | fragmentation        | 2         | USA, WY, Uinta        | 41.3769 | -110.6621 | 2057 m | Leavitt et al. |
| 069f | X. chlorochroa | BRY-55214             | salazinic     | vagrant    | fragmentation        | 2         | USA, UT, Duchesne     | 40.3697 | -110.4128 | 2005 m | Leavitt et al. |
| 081f | X. chlorochroa | BRY-55224             | salazinic     | vagrant    | fragmentation        | 3         | USA, UT, Wayne        | 38.4097 | -111.4757 | 3300 m | Leavitt et al. |
| 110f | X. chlorochroa | BRY-55236             | salazinic     | vagrant    | fragmentation        | 2         | USA, WY, Uinta<br>Co  | 41.3769 | -110.6621 | 2057 m | Leavitt et al. |
| 111f | X. chlorochroa | BRY-55237             | salazinic     | vagrant    | fragmentation        | 3         | USA, WY, Uinta<br>Co. | 41.3769 | -110.6621 | 2057 m | Leavitt et al. |

Supplementary data 3.1. Collection information for specimens included in the present study.

| 112f | X. chlorochroa | BRY-55238 | salazinic | vagrant | fragmentation | 2 | USA, ID, Owyhee          | 43.3202 | -116.9795 | 1271 m | Leavitt et al.   |
|------|----------------|-----------|-----------|---------|---------------|---|--------------------------|---------|-----------|--------|------------------|
| 113f | X. chlorochroa | BRY-55239 | salazinic | vagrant | fragmentation | 2 | USA, ID, Owyhee          | 43.3202 | -116.9795 | 1271 m | Leavitt et al.   |
| 126f | X. chlorochroa | BRY-55247 | salazinic | vagrant | fragmentation | 2 | USA, UT, Summit          | 40.8581 | -110.5012 | 3600 m | Leavitt et al.   |
| 127f | X. chlorochroa | BRY-55248 | salazinic | vagrant | fragmentation | 2 | USA, UT, Summit          | 40.8581 | -110.5012 | 3600 m | Leavitt et al.   |
| 128f | X. chlorochroa | BRY-55249 | salazinic | vagrant | fragmentation | 2 | Co.<br>USA, UT, Summit   | 40.8581 | -110.5012 | 3600 m | Leavitt et al.   |
| 129f | X. chlorochroa | BRY-55250 | salazinic | vagrant | fragmentation | 2 | Co.<br>USA, UT, Summit   | 40.8581 | -110.5012 | 3600 m | Leavitt et al.   |
| 130f | X. chlorochroa | BRY-55251 | salazinic | vagrant | fragmentation | 2 | Co.<br>USA, UT, Summit   | 40.8581 | -110.5012 | 3600 m | Leavitt et al.   |
| 131f | X. chlorochroa | BRY-55252 | salazinic | vagrant | fragmentation | 2 | Co.<br>USA, UT, Summit   | 40.8581 | -110.5012 | 3600 m | Leavitt et al.   |
| 132f | X. chlorochroa | BRY-55253 | salazinic | vagrant | fragmentation | 2 | Co.<br>USA, UT, Summit   | 40.8581 | -110.5012 | 3600 m | Leavitt et al.   |
| 133f | X. chlorochroa | BRY-55254 | salazinic | vagrant | fragmentation | 2 | Co.<br>USA, UT, Summit   | 40.8581 | -110.5012 | 3600 m | Leavitt et al.   |
| 201f | X. chlorochroa | BRY-55287 | salazinic | vagrant | fragmentation | 3 | Co.<br>USA, MT,          | 44.6225 | -113.0520 | 2715 m | St. Clair et al. |
| 202f | X. chlorochroa | BRY-55288 | salazinic | vagrant | fragmentation | 3 | USA, MT,                 | 44.6225 | -113.0520 | 2715 m | St. Clair et al. |
| 219f | X. chlorochroa | BRY-55295 | salazinic | vagrant | fragmentation | 3 | USA, UT, Wayne           | 38.4097 | -111.4757 | 3300 m | Leavitt et al.   |
| 220f | X. chlorochroa | BRY-55296 | salazinic | vagrant | fragmentation | 3 | USA, UT, Wayne           | 38.4097 | -111.4757 | 3300 m | Leavitt et al.   |
| 221f | X. chlorochroa | BRY-55297 | salazinic | vagrant | fragmentation | 3 | USA, UT, Wayne           | 38.4097 | -111.4757 | 3300 m | Leavitt et al.   |
| 276f | X. chlorochroa | BRY-55315 | salazinic | vagrant | fragmentation | 2 | USA, WY, Lincoln         | 41.6254 | -110.6270 | 2050 m | Leavitt et al.   |
| 308f | X. chlorochroa | BRY-55341 | salazinic | vagrant | fragmentation | 3 | MT, Beaverhead           | 44.4876 | -112.8269 | 2120 m | B. McCune        |
| 309f | X. chlorochroa | BRY-55342 | salazinic | vagrant | fragmentation | 3 | MT, Beaverhead           | 44.4876 | -112.8269 | 2120 m | B. McCune        |
| 311f | X. chlorochroa | BRY-55344 | salazinic | vagrant | fragmentation | 3 | USA, WY, Fremont         | 43.5774 | -109.7370 | 2469 m | Rosentreter      |
| 312f | X. chlorochroa | BRY-55345 | salazinic | vagrant | fragmentation | 3 | USA, WY, Fremont         | 43.5774 | -109.7370 | 2469 m | Rosentreter      |
| 437f | X. chlorochroa | BRY-55381 | salazinic | vagrant | fragmentation | 2 | USA, UT, Duchesne<br>Co. | 40.2039 | -110.7130 | 2088 m | Leavitt et al.   |
| 438f | X. chlorochroa | BRY-55382 | salazinic | vagrant | fragmentation | 2 | USA, UT, Duchesne        | 40.2039 | -110.7130 | 2088 m | Leavitt et al.   |
| 440f | X. chlorochroa | BRY-55384 | salazinic | vagrant | fragmentation | 2 | USA, UT, Duchesne        | 40.5444 | -110.2852 | 2517 m | Leavitt et al.   |
| 441f | X. chlorochroa | BRY-55685 | salazinic | vagrant | fragmentation | 2 | USA, UT, Duchesne<br>Co  | 40.5444 | -110.2852 | 2517 m | Leavitt et al.   |

| 492f   | X. chlorochroa     | BRY-55416   | salazinic | vagrant    | fragmentation | 2     | USA, UT, Utah Co. | 39.8426    | -111.1298 | 2393 m   | Leavitt et al. |
|--------|--------------------|-------------|-----------|------------|---------------|-------|-------------------|------------|-----------|----------|----------------|
| 493f   | X chlorochroa      | BRY-55417   | salazinic | vaorant    | fragmentation | 2     | USA UT Utah Co    | 39 8426    | -111 1298 | 2393 m   | Leavitt et al  |
| 7736   | V ahlana ahna a    | DDV 55449   | salazinio | vagrant    | fragmentation | 2     |                   | 20 2220    | 112 2652  | 2025 m   | Creanwood      |
| //21   | A. chiorochroa     | DK I -33446 | salazinic | vagrant    | fragmentation | 3     | USA, UI,          | 36.2326    | -112.3032 | 5055 m   | Greenwood      |
|        |                    |             |           |            |               |       | Beaver/Piute Co.  |            |           |          |                |
| 775f   | X. chlorochroa     | BRY-55451   | salazinic | vagrant    | fragmentation | 2     | USA, CO, Summit   | 39.8790    | -106.2782 | 2447 m   | Leavitt        |
|        |                    |             |           |            |               |       | Co                |            |           |          |                |
| 701£   | V chlorochroa      | BBV 55467   | salazinic | vagrant    | fragmentation | 2     | USA WV Lincoln    | 41 8246    | 110 7632  | 2010 m   | Leovitt        |
| /911   | A. Chiorochrou     | DK1-33407   | Salazinic | vagram     | magnientation | 2     | OSA, WT, Lincolli | 41.0240    | -110.7032 | 2019 m   | Leavin         |
|        |                    |             |           |            |               |       | Co.               |            |           |          |                |
| 824f   | X. chlorochroa     | BRY-55499   | salazinic | vagrant    | fragmentation | 2     | USA, CO, Moffat   | 40.6206    | -107.4658 | 1942 m   | Leavitt        |
|        |                    |             |           |            |               |       | Co.               |            |           |          |                |
| 825f   | X chlorochroa      | BRY-55500   | salazinic | vaorant    | fragmentation | 3     | USA CO Jackson    | 40 4252    | -106 5233 | 2553 m   | Leavitt        |
| 0251   | A. emoroemou       | BR1 55500   | Salazinie | vagrant    | magmentation  | 5     | C-                | 40.4232    | 100.5255  | 23555 m  | Louvitt        |
|        |                    |             |           |            |               |       | Co.               |            |           |          |                |
| 001f   | X. coloradoënsis   | BRY-55151   | salazinic | saxicolous | not observed  | 2     | USA, UT, Wayne    | 38.1325    | -111.4710 | 3300 m   | Leavitt et al. |
|        |                    |             |           |            |               |       | Co.               |            |           |          |                |
| 006f   | X. coloradoënsis   | BRY-55156   | salazinic | saxicolous | not observed  | 2     | USA, UT, Wavne    | 38.1202    | 111.5071  | 3300 m   | Leavitt et al. |
| 0001   |                    |             |           |            |               |       | Co.               |            |           |          |                |
| 0100   | V 1 1              | DDV 55160   | 1         |            | с <i>с</i> .  | 2     |                   | 20 1020    | 111 5006  | 2200     | T 144 4 1      |
| 012f   | X. coloradoensis   | BR 1-55162  | salazinic | sax1colous | tragmentation | 2     | USA, UT, wayne    | 38.1230    | -111.5086 | 3300 m   | Leavitt et al. |
|        |                    |             |           |            |               |       | Co.               |            |           |          |                |
| 017f   | X. coloradoënsis   | BRY-55167   | salazinic | saxicolous | not observed  | 3     | USA, UT, Wayne    | 38.1625    | -111.5358 | 3300 m   | Leavitt et al. |
|        |                    |             |           |            |               |       | Co                |            |           |          |                |
| 010£   | V aalanada suaia   | DDV 55169   | aalaginia | anviantous | not observed  | 2     | USA LIT Wayna     | 20 1625    | 111 5250  | 2200 m   | Loovitt at al  |
| 0101   | A. coloradoensis   | DK 1-33108  | salazinic | saxicolous | not observed  | 2     | USA, UT, wayne    | 56.1025    | -111.3538 | 5500 m   | Leavitt et al. |
|        |                    |             |           |            |               |       | Co.               |            |           |          |                |
| 019f   | X. coloradoënsis   | BRY-55169   | salazinic | saxicolous | not observed  | 2     | USA, UT, Wayne    | 38.1625    | -111.5358 | 3300 m   | Leavitt et al. |
|        |                    |             |           |            |               |       | Co.               |            |           |          |                |
| 020f   | Y coloradoänsis    | BRV-55170   | salazinic | savicolous | not observed  | 2     | USA UT Wayne      | 38 1202    | 111 5071  | 3300 m   | Leavitt et al  |
| 0201   | A. coloradoensis   | DR1 55170   | Salazinie | Suricolous | not observed  | 2     |                   | 50.1202    | 111.5071  | 5500 III | Louvitt of al. |
|        |                    |             |           |            |               |       | C0.               |            |           |          |                |
| 022f   | X. coloradoënsis   | BRY-55171   | salazinic | saxicolous | not observed  | 1     | USA, UT, Wayne    | 38.1309    | -111.4695 | 3300 m   | Leavitt et al. |
|        |                    |             |           |            |               |       | Co.               |            |           |          |                |
| 023f   | X. coloradoënsis   | BRY-55172   | salazinic | saxicolous | not observed  | 2     | USA, UT, Wavne    | 38.1325    | -111.4710 | 3300 m   | Leavitt et al. |
|        |                    |             |           |            |               |       | Co                |            |           |          |                |
| 030£   | V aalanada Smaia   | DDV 55170   | aalaginia | anviantous | not obcomind  |       | USA UT Wayna      | 29 1200    | 111 4605  | 2200 m   | Loovitt at al  |
| 0301   | A. coloradoensis   | DK I-331/8  | salazinic | saxicolous | not observed  | -     | USA, UT, wayne    | 36.1309    | -111.4095 | 5500 III | Leavitt et al. |
|        |                    |             |           |            |               |       | Co.               |            |           |          |                |
| 032f   | X. coloradoënsis   | BRY-55180   | salazinic | saxicolous | not observed  | 2     | USA, UT, Wayne    | 38.1325    | -111.4710 | 3300 m   | Leavitt et al. |
|        |                    |             |           |            |               |       | Co.               |            |           |          |                |
| 033f   | X coloradoënsis    | BRY-55181   | Salazinic | saxicolous | not observed  | 1     | USA UT Wayne      | 38 1325    | -111 4710 | 3300 m   | Leavitt et al  |
| 0001   | A. coloradochisis  | BRI 55101   | Guiuzinie | surreorous | not observed  | 1     | Co                | 50.1525    | 111.1710  | 5500 m   | Bouvitt of ul. |
| 0.2.48 | <b>T</b> 1 1 1 1 1 | DDV 55100   |           |            |               |       |                   | 20 1200    | 111 4605  | 2200     | <b>T</b>       |
| 034f   | X. coloradoensis   | BRY-55182   | salazinic | saxicolous | not observed  | 1     | USA, UT, Wayne    | 38.1309    | -111.4695 | 3300 m   | Leavitt et al. |
|        |                    |             |           |            |               |       | Co.               |            |           |          |                |
| 035f   | X. coloradoënsis*  | BRY-55183   | Salazinic | erratic    | not observed  | 3     | USA, UT, Wayne    | 38.1202    | -111.5071 | 3300 m   | Leavitt et al. |
|        |                    |             |           |            |               |       | Co                |            |           |          |                |
| 054£   | V aalaradaänsis    | DDV 55200   | Salazinia | cavicolous | anothaaia     | 2     | USA LIT Wayna     | 28 1220    | 111 5096  | 2200 m   | Loovitt of al  |
| 0541   | л. coloradoensis   | DK I -33200 | Salazinic | saxicolous | apomecia      | L     | USA, UI, wayne    | 36.1230    | -111.3080 | 5500 m   | Leavin et al.  |
|        |                    |             |           |            |               |       | Co.               |            |           |          |                |
| 055f   | X. coloradoënsis*  | BRY-55201   | Salazinic | saxicolous | not observed  | mixed | USA, UT, Wayne    | 38.1625    | -111.5358 | 3300 m   | Leavitt et al. |
|        |                    |             |           |            |               |       | Co.               |            |           |          |                |
| 059f   | X coloradoënsis    | BRY-55205   | salazinic | saxicolous | anothecia     | 3     | USA UT Wayne      | 38 1202    | -111 5071 | 3300 m   | Leavitt et al  |
| 0071   | 21. COLOTAUOCIISIS | DR1 55205   | Saluzinie | Saricolous | upoulooiu     | 5     |                   | 50.1202    | 111.5071  | 5500 m   | Louvin or ui.  |
| 0      | <b>1</b> 7 1 1 1   | DD1/ 55000  |           |            |               | ~     |                   | 20 1 - 2 - | 111 5350  | 2202     | • • •          |
| 064f   | X. coloradoënsis   | BRY-55209   | salazinic | erratic    | not observed  | 2     | USA, UT, Wayne    | 38.1625    | -111.5358 | 3300 m   | Leavitt et al. |
|        |                    |             |           |            |               |       | Co                |            |           |          |                |

| 067f | X. coloradoënsis  | BRY-55212 | salazinic | saxicolous | not observed | 2     | USA, UT, Summit            | 40.8047 | -110.0213 | 3360 m | EA 80-1108                  |
|------|-------------------|-----------|-----------|------------|--------------|-------|----------------------------|---------|-----------|--------|-----------------------------|
| 073f | X. coloradoënsis  | BRY-55218 | salazinic | saxicolous | not observed | 2     | USA, UT, Wayne             | 38.4097 | -111.4757 | 3360 m | Leavitt et al.              |
| 118f | X. coloradoënsis  | BRY-55240 | salazinic | saxicolous | not observed | mixed | USA, ID, Lemhi             | 44.6812 | -113.3623 | 1820 m | Leavitt et al.              |
| 120f | X. coloradoënsis  | BRY-55241 | salazinic | saxicolous | not observed | 1     | USA, UT, Summit            | 40.8581 | -110.5012 | 3600 m | Leavitt et al.              |
| 135f | X. coloradoënsis  | BRY-55255 | salazinic | saxicolous | not observed | 1     | USA, UT, Summit            | 40.8581 | -110.5012 | 3600 m | Leavitt et al.              |
| 258f | X. coloradoënsis  | BRY-55308 | salazinic | saxicolous | not observed | 1     | USA, ID, Custer            | 44.7833 | -114.6875 | 2479 m | St. Clair et al.            |
| 272f | X. coloradoënsis  | BRY-55312 | salazinic | saxicolous | not observed | 2     | USA, UT,<br>Washington Co. | 37.3474 | -113.1010 | 2110 m | Leavitt et al.              |
| 444f | X. coloradoënsis* | BRY-55388 | salazinic | erratic    | not observed | 2     | USA, UT, Duchesne<br>Co.   | 40.5351 | -110.2233 | 2413 m | Leavitt et al.              |
| 445f | X. coloradoënsis  | BRY-55389 | salazinic | erratic    | not observed | 2     | USA, UT, Duchesne<br>Co.   | 40.5351 | -110.2233 | 2413 m | Leavitt et al.              |
| 446f | X. coloradoënsis  | BRY-55390 | salazinic | saxicolous | not observed | 2     | USA, UT, Duchesne<br>Co.   | 40.5351 | -110.2233 | 2413 m | Leavitt et al.              |
| 505f | X. coloradoënsis  | BRY-55427 | salazinic | saxicolous | not observed | 3     | USA, AZ, Coconino<br>Co.   | 35.1534 | -111.7409 | 2220 m | J. Hollinger<br>20080624.27 |
| 922f | X. coloradoënsis  | BRY-55524 | salazinic | saxicolous | not observed | 1     | USA, MT, Carter<br>Co.     | 48.0413 | -115.7517 | 1630 m | T. Wheeler 1371             |
| 923f | X. coloradoënsis  | BRY-55525 | salazinic | saxicolous | not observed | 1     | USA, MT, Lake Co.          | 47.2952 | -113.8312 | 2370 m | T. Wheeler 1409             |
| 002f | X. cumberlandia   | BRY-55152 | stictic   | saxicolous | not observed | 1     | USA, UT, Wayne             | 38.1325 | -111.4710 | 3300 m | Leavitt et al.              |
| 003f | X. cumberlandia   | BRY-55153 | stictic   | saxicolous | not observed | 1     | USA, UT, Wayne<br>Co.      | 38.1325 | -111.4710 | 3300 m | Leavitt et al.              |
| 024f | X. cumberlandia   | BRY-55173 | stictic   | saxicolous | not observed | 1     | USA, UT, Wayne<br>Co.      | 38.1625 | -111.5358 | 3300 m | Leavitt et al.              |
| 029f | X. cumberlandia*  | BRY-55177 | stictic   | erratic    | not observed | 1     | USA, UT, Wayne<br>Co.      | 38.1230 | -111.5086 | 3300 m | Leavitt et al.              |
| 036f | X. cumberlandia   | BRY-55184 | stictic   | saxicolous | not observed | 3     | USA, UT, Wayne<br>Co.      | 38.1202 | 111.5071  | 3300 m | Leavitt et al.              |
| 038f | X. cumberlandia   | BRY-55186 | stictic   | saxicolous | not observed | 1     | USA, UT, Wayne<br>Co.      | 38.1230 | 111.5086  | 3300 m | Leavitt et al.              |
| 039f | X. cumberlandia*  | BRY-55187 | stictic   | erratic    | not observed | 1     | USA, UT, Wayne<br>Co.      | 38.1202 | -111.5071 | 3300 m | Leavitt et al.              |
| 040f | X. cumberlandia   | BRY-55188 | stictic   | saxicolous | not observed | 1     | USA, UT, Wayne<br>Co.      | 38.1309 | -111.4695 | 3300 m | Leavitt et al.              |
| 041f | X. cumberlandia   | BRY-55189 | stictic   | saxicolous | not observed | 1     | USA, UT, Wayne<br>Co.      | 38.1325 | -111.4710 | 3300 m | Leavitt et al.              |
| 042f | X. cumberlandia*  | BRY-55190 | stictic   | erratic    | not observed | 1     | USA, UT, Wayne<br>Co.      | 38.1202 | -111.5071 | 3300 m | Leavitt et al.              |
| 043f | X. cumberlandia   | BRY-55191 | stictic   | saxicolous | not observed | 1     | USA, UT, Wayne<br>Co.      | 38.1202 | -111.5071 | 3300 m | Leavitt et al.              |
| 044f | X. cumberlandia   | BRY-55192 | stictic   | saxicolous | apothecia    | 1     | USA, UT, Wayne             | 38.1230 | -111.5086 | 3300 m | Leavitt et al.              |

| 045f | X. cumberlandia | BRY-55193 | stictic | saxicolous | not observed | 1  | Co.<br>USA, UT, Wayne    | 38.1625 | -111.5358 | 3300 m | Leavitt et al.   |
|------|-----------------|-----------|---------|------------|--------------|----|--------------------------|---------|-----------|--------|------------------|
| 047f | X. cumberlandia | BRY-55195 | stictic | saxicolous | not observed | 1  | Co.<br>USA, UT, Wayne    | 38.1202 | -111.5071 | 3300 m | Leavitt et al.   |
| 049f | X. cumberlandia | BRY-55197 | stictic | saxicolous | apothecia    | 1  | USA, UT, Wayne           | 38.1202 | -111.5071 | 3300 m | Leavitt et al.   |
| 056f | X. cumberlandia | BRY-55202 | stictic | saxicolous | not observed | 1  | USA, UT, Wayne           | 38.1626 | -111.5352 | 3300 m | Leavitt et al.   |
| 057f | X. cumberlandia | BRY-55203 | stictic | saxicolous | not observed | 2  | USA, UT, Wayne           | 38.1626 | -111.5352 | 3300 m | Leavitt et al.   |
| 058f | X. cumberlandia | BRY-55204 | stictic | saxicolous | not observed | 1  | USA, UT, Wayne           | 38.1202 | -111.5071 | 3300 m | Leavitt et al.   |
| 061f | X. cumberlandia | BRY-55206 | stictic | saxicolous | not observed | 1  | USA, UT, Wayne           | 38.1230 | -111.5086 | 3300 m | Leavitt et al.   |
| 062f | X. cumberlandia | BRY-55207 | stictic | saxicolous | not observed | 1  | USA, UT, Wayne           | 38.1309 | -111.4695 | 3300 m | Leavitt et al.   |
| 063f | X. cumberlandia | BRY-55208 | stictic | saxicolous | not observed | 1  | USA, UT, Wayne           | 38.1309 | -111.4695 | 3300 m | Leavitt et al.   |
| 065f | X. cumberlandia | BRY-55210 | stictic | saxicolous | not observed | 1  | USA, UT, Summit          | 40.7743 | -109.8244 | 3410 m | Leavitt et al.   |
| 066f | X. cumberlandia | BRY-55211 | stictic | saxicolous | not observed | 1  | USA, UT, Summit          | 40.7743 | -109.8244 | 3410 m | Leavitt et al.   |
| 071f | X. cumberlandia | BRY-55216 | stictic | saxicolous | not observed | 1  | USA, UT, Wayne<br>Co.    | 38.5812 | -111.7700 | 3040 m | Leavitt et al.   |
| 072f | X. cumberlandia | BRY-55217 | stictic | saxicolous | not observed | 1  | USA, UT, Wayne<br>Co.    | 38.5812 | -111.7700 | 3040 m | Leavitt et al.   |
| 074f | X. cumberlandia | BRY-55219 | stictic | saxicolous | not observed | 1  | USA, UT, Wayne<br>Co.    | 38.4097 | -111.4757 | 3300 m | Leavitt et al.   |
| 075f | X. cumberlandia | BRY-55220 | stictic | saxicolous | not observed | 1  | USA, UT, Wayne<br>Co.    | 38.4097 | -111.4757 | 3300 m | Leavitt et al.   |
| 076f | X. cumberlandia | BRY-55221 | stictic | saxicolous | apothecia    | 1  | USA, UT, Wayne<br>Co.    | 38.4097 | -111.4757 | 3300 m | Leavitt et al.   |
| 138f | X. cumberlandia | BRY-55257 | stictic | saxicolous | not observed | 2  | USA, UT, Utah Co.        | 40.0847 | -111.3401 | 1750 m | Leavitt et al.   |
| 175f | X. cumberlandia | BRY-55275 | stictic | saxicolous | not observed | na | USA, ID, Elmore          | 43.8167 | -115.0861 | 1682 m | Leavitt et al.   |
| 179f | X. cumberlandia | BRY-55276 | stictic | saxicolous | not observed | na | USA, UT, Summit          | 40.7882 | -110.6981 | 3060 m | St. Clair et al. |
| 191f | X. cumberlandia | BRY-55281 | stictic | saxicolous | not observed | 1  | USA, CO, Dolores         | 37.6939 | -108.3234 | 2622 m | Leavitt et al.   |
| 192f | X. cumberlandia | BRY-55282 | stictic | saxicolous | not observed | 1  | USA, CO, Dolores         | 37.6939 | -108.3234 | 2622 m | St. Clair et al. |
| 194f | X. cumberlandia | BRY-55283 | stictic | saxicolous | apothecia    | 3  | USA, CO, Saguache        | 37.8564 | -105.4317 | 3030 m | St. Clair et al. |
| 195f | X. cumberlandia | BRY-55284 | stictic | saxicolous | not observed | 1  | USA, CO, Mineral         | 37.3884 | -107.0918 | 2657 m | St. Clair et al. |
| 198f | X. cumberlandia | BRY-55286 | stictic | saxicolous | not observed | 1  | USA, CO, San Juan<br>Co. | 37.7807 | -109.8587 | 2133 m | St. Clair et al. |

| 903f  | X. cumberlandia                                          | BRY-55508  | stictic    | saxicolous  | apothecia     | 2 | CAN. British                 | 49.032  | -119.466  | 396 m  | Biork 15213      |
|-------|----------------------------------------------------------|------------|------------|-------------|---------------|---|------------------------------|---------|-----------|--------|------------------|
| 2001  | n. camber and d                                          | Bitl 55500 | stiette    | sumeorous   | upouloolu     | 2 | Columbia.                    | 19.052  | 119.100   | 570 m  | Djolk 15215      |
| 280ff | X. lipochlorochroa<br>(type locality)                    | BRY-55318  | fatty acid | vagrant     | fragmentation | 3 | USA, WY, Lincoln<br>Co       | 41.6388 | -110.5699 | 2018 m | Leavitt et al.   |
| 281f  | (type locality)<br>X. lipochlorochroa                    | BRY-55319  | fatty acid | vagrant     | fragmentation | 3 | USA, WY, Lincoln             | 41.6388 | -110.5699 | 2018 m | Leavitt et al.   |
| 282f  | (type locality)<br>X. lipochlorochroa<br>(type locality) | BRY-55320  | fatty acid | vagrant     | fragmentation | 3 | USA, WY, Lincoln             | 41.6254 | -110.6270 | 2050 m | Leavitt et al.   |
| 231f  | X. neochlorochroa                                        | BRY-55303  | norstictic | vagrant     | fragmentation | 2 | USA, UT, Wayne               | 38.4941 | -111.5357 | 2471 m | Leavitt et al.   |
| 278f  | X. neochlorochroa                                        | BRY-55316  | norstictic | vagrant     | fragmentation | 3 | USA, WY, Lincoln             | 41.6388 | -110.5699 | 2018 m | Leavitt et al.   |
| 279f  | X. neochlorochroa                                        | BRY-55317  | norstictic | vagrant     | fragmentation | 3 | USA, WY, Lincoln             | 41.6254 | -110.6270 | 2050 m | Leavitt et al.   |
| 337f  | X. neochlorochroa                                        | BRY-55366  | norstictic | vagrant     | fragmentation | 2 | USA, WY, Laramie             | 41.2916 | -105.5247 | 2137 m | Rosentreter s.n. |
| 046f  | X. neowyomingica                                         | BRY-55194  | stictic    | erratic     | not observed  | 1 | USA, UT, Wayne               | 38.1230 | -111.5086 | 3300 m | Leavitt et al.   |
| 121f  | X. neowyomingica                                         | BRY-55242  | stictic    | vagrant     | not observed  | 1 | USA, UT, Summit              | 40.8581 | -110.5012 | 3600 m | Leavitt et al.   |
| 122f  | X. neowyomingica                                         | BRY-55243  | stictic    | vagrant     | not observed  | 1 | USA, UT, Summit              | 40.8581 | -110.5012 | 3600 m | Leavitt et al.   |
| 123f  | X. neowyomingica                                         | BRY-55244  | stictic    | vagrant     | not observed  | 1 | USA, UT, Summit              | 40.8581 | -110.5012 | 3600 m | Leavitt et al.   |
| 124f  | X. neowyomingica                                         | BRY-55245  | stictic    | vagrant     | not observed  | 1 | USA, UT, Summit              | 40.8581 | -110.5012 | 3600 m | Leavitt et al.   |
| 125f  | X. neowyomingica                                         | BRY-55246  | stictic    | vagrant     | not observed  | 1 | USA, UT, Summit              | 40.8581 | -110.5012 | 3600 m | Leavitt et al.   |
| 464f  | X. neowyomingica                                         | BRY-55407  | stictic    | erratic     | not observed  | 1 | USA, UT, Summit<br>Co.       | 40.8581 | -110.5012 | 3645 m | Leavitt et al.   |
| 007f  | X. norchlorochroa                                        | BRY-55157  | salazinic  | vagrant     | fragmentation | 3 | USA, UT, Wayne<br>Co.        | 38.1626 | -111.5352 | 3300 m | Leavitt et al.   |
| 013f  | X. norchlorochroa                                        | BRY-55163  | salazinic  | vagrant     | fragmentation | 3 | USA, UT, Wayne               | 38.1309 | -111.4695 | 3300 m | Leavitt et al.   |
| 771f  | X. norchlorochroa                                        | BRY-55447  | norstictic | vagrant     | fragmentation | 2 | USA, CO, Indian<br>Camp Pass | 39.8278 | -107.2985 | 3020 m | Leavitt et al.   |
| 079f  | X. vagans                                                | BRY-55222  | stictic    | vagrant     | fragmentation | 3 | USA, UT, Wayne               | 38.4097 | -111.4757 | 3300m  | Leavitt et al.   |
| 080f  | X. vagans                                                | BRY-55223  | stictic    | vagrant     | fragmentation | 3 | USA, UT, Wayne               | 38.4097 | -111.4757 | 3300m  | Leavitt et al.   |
| 222f  | X. vagans                                                | BRY-55298  | stictic    | vagrant     | fragmentation | 3 | USA, UT, Wayne               | 38.4097 | -111.4757 | 3300m  | Leavitt et al.   |
| 261f  | X. vagans                                                | BRY-55309  | stictic    | vagrant     | fragmentation | 2 | USA, ID, Lemhi               | 44.1578 | -113.8794 | 2069 m | St. Clair et al. |
| 136f  | X. wyomingica                                            | BRY-55256  | salazinic  | terricolous | not observed  | 2 | USA, UT, Summit              | 40.8581 | -110.5012 | 3600m  | Leavitt et al.   |
| 501f  | X. wyomingica                                            | BRY-55424  | salazinic  | terricolous | not observed  | 3 | USA, WA, Lincoln             | 47.3894 | -117.8357 | 689m   | Leavitt et al.   |

| 502f | X. wyomingica           | BRY-55425 | salazinic | terricolous       | not observed | 3     | USA, WA, Lincoln        | 47.3894 | -117.8357 | 689m  | Leavitt et al. |
|------|-------------------------|-----------|-----------|-------------------|--------------|-------|-------------------------|---------|-----------|-------|----------------|
| 826f | X. wyomingica           | BRY-55501 | salazinic | semi-             | not observed | Mixed | Co.<br>USA, WY, Johnson | 44.3394 | -106.9768 | 2462m | Leavitt        |
| 827f | (type)<br>X. wyomingica | BRY-55502 | salazinic | attached semi-    | not observed | Mixed | Co.<br>USA, WY, Johnson | 44.3394 | -106.9768 | 2462m | Leavitt        |
| 950f | (type)<br>X. wyomingica | BRY-55552 | salazinic | attached<br>semi- | not observed | 1     | Co.<br>USA, WA, Lincoln | 47.5902 | -118.5359 | 670 m | Leavitt et al. |
|      |                         |           |           | attached          |              |       | Co.                     |         |           |       |                |

Supplementary data 3.2. Species, taxon and study identification number; Herbarium Acc. No., voucher specimen in the Herbarium of Non-vascular cryptogams (BRY); and GenBank accession numbers for all sequences included in the present study (LSU, ITS, IGS, group I intron, *MCM7*, and  $\beta$ -tubulin).

| Species                                    | Herbarium              | LSU       | ITS       | IGS      | Intron         | MCM7      | β-tubulin |
|--------------------------------------------|------------------------|-----------|-----------|----------|----------------|-----------|-----------|
|                                            | Acc. No.               |           |           |          |                |           |           |
| X. californica 037f                        | BRY-55185              | HM579053  | HM578641  | HM57738  | HM578326       | HM579460  | HM577550. |
| X. californica 443f                        | BRY-55387              | HM579294  | HM578837  | -        | HM578482       | HM579647  | HM577735. |
| X. chlorochroa 004f                        | BRY-55154              | HM579022  | HM578610  | HM577908 | HM578299       | HM579492  | HM577519. |
| X. chlorochroa 005f                        | BRY-55155              | HM579023  | HM578611  | HM577909 | HM578300       | HM579430  | HM577520. |
| X. chlorochroa 008f                        | BRY-55158              | HM579026  | HM5786164 | HM577912 | HM578303       | HM579433  | HM577523. |
| X. chlorochroa 009f                        | BRY-55159              | HM579027  | HM578615  | HM577913 | HM578304       | HM579443  | HM577524. |
| X. chlorochroa 010f                        | BRY-55160              | HM579028  | HM578616  | HM577914 | HM578305       | HM579465  | HM577525. |
| X. chlorochroa 011f                        | BRY-55161              | HM579029  | HM578617  | HM577915 | HM578306       | HM579436  | HM577526. |
| X. chlorochrod 0141                        | BRY-55164              | HM579032  | HM578620  | HM5//918 | HM5/8309       | HM579469  | HM577529. |
| X. chlorochrod 0151                        | BKY-55165              | HM579033  | HM578621  | HM577919 | -              | HM579440  | HM577530. |
| A. chlorochrod 0101                        | DK I - 33100           | HNI379034 | HNI378022 | HM577028 | HNI378310      | HN1379441 | HNI377540 |
| X. chlorochrod 02/1<br>V. chlorochrod 028f | BRV 55175              | HM579043  | HM578632  | HM577020 | HM578318       | HM579027  | HM577540. |
| X. chlorochrog 0201                        | BRV 55170              | HM570047  | HM578635  | HM577032 | HM578320       | HM570454  | HM577544  |
| X. chlorochrog 048f                        | BRV-55196              | HM579064  | HM578652  | HM577947 | HM578333       | HM579470  | HM577545  |
| X chlorochrog 052f                         | BRY-55198              | HM579066  | HM578654  | HM577949 | HM578335       | HM579472  | HM577562  |
| X chlorochrog 053f                         | BRY-55199              | HM579067  | HM578655  | HM577950 | HM578336       | HM579472  | HM577563  |
| X chlorochrog 068f                         | BRY-55213              | HM579078  | HM578668  | HM577960 | HM578347       | HM579483  | HM577573  |
| X. chlorochroa 069f                        | BRY-55214              | HM579079  | HM578669  | HM577961 | HM578348       | HM579484  | HM577574  |
| X. chlorochroa 081f                        | BRY-55224              | HM579089  | HM578679  | HM577969 | HM578355       | HM579494  | HM577581. |
| X. chlorochroa 110f                        | BRY-55236              | HM579101  | HM578691  | HM577981 | HM578365       | HM579505  | HM577593. |
| X. chlorochroa 111f                        | BRY-55237              | HM579102  | HM578692  | HM577982 | HM578366       | HM579506  | HM577594. |
| X. chlorochroa 112f                        | BRY-55238              | HM579103  | HM578693  | HM577983 | HM578367       | HM579107  | HM577595. |
| X. chlorochroa 113f                        | BRY-55239              | HM579104  | HM578694  | HM577984 | HM578368       | HM579168  | HM577596. |
| X. chlorochroa 126f                        | BRY-55247              | HM579123  | HM578702  | HM577992 | HM578374       | HM579516  | HM577604. |
| X. chlorochroa 127f                        | BRY-55248              | HM579113  | HM578703  | HM577993 | HM578375       | HM579517  | HM577605. |
| X. chlorochroa 128f                        | BRY-55249              | HM579114  | HM578704  | HM577994 | HM578376       | HM579518  | HM577606. |
| X. chlorochroa 129f                        | BRY-55250              | HM579115  | HM578705  | HM577995 | HM578377       | HM579519  | HM577607. |
| X. chlorochroa 130f                        | BRY-55251              | HM579996  | HM578706  | HM577996 | HM578378       | HM579520  | HM577608. |
| X. chlorochroa 131f                        | BRY-55252              | HM579117  | HM578707  | HM577997 | HM578379       | HM579521  | HM577609. |
| X. chlorochroa 132f                        | BRY-55253              | HM579118  | HM578708  | HM577998 | HM578380       | HM579622  | HM577610. |
| X. chlorochroa 1331                        | BRY-55254              | HM5/9119  | HM578709  | HM57/999 | HM5/8381       | HM5/9523  | HM577611. |
| X. chlorochrod 2011                        | BRY-5528/              | HM579152  | HM578740  | HM578026 | -              | HM579556  | HM577640  |
| A. chlorochrod 2021<br>V. chlorochrog 210f | DR 1-33200             | HM570160  | HN1378741 | HM578027 | -<br>LIM579415 | HM579557  | HM577647  |
| X. chlorochrog 2191<br>Y. chlorochrog 220f | BRY-55296              | HM579161  | HM578749  | HM578034 | HM578416       | HM579565  | HM577648  |
| X chlorochroa 2201                         | BRY-55297              | HM579162  | HM578750  | HM578036 | HM578417       | HM579566  | HM577649  |
| X. chlorochroa 276f                        | BRY-55315              | HM579179  | HM578767  | HM578053 | HM578430       | HM579583  | HM577665. |
| X. chlorochroa 308f                        | BRY-55341              | -         | HM578792  | HM578077 | HM578454       | HM579608  | HM577689. |
| X. chlorochroa 309f                        | BRY-55342              | HM579204  | HM578793  | HM578078 | HM578455       | -         | HM577690. |
| X. chlorochroa 311f                        | BRY-55344              | HM579206  | HM578795  | HM578080 | HM578457       | HM579610  | HM577692. |
| X. chlorochroa 312f                        | BRY-55345              | HM579207  | HM578796  | HM578081 | HM578458       | HM579611  | HM577693. |
| X. chlorochroa 437f                        | BRY-55381              | HM579243  | HM578831  | HM578115 | HM578476       | -         | HM577729. |
| X. chlorochroa 438f                        | BRY-55382              | HM579244  | HM578832  | HM578116 | HM578477       | HM579644  | HM577730. |
| X. chlorochroa 440f                        | BRY-55384              | HM579246  | HM578834  | HM578118 | HM578479       | HM579465  | HM577732. |
| X. chlorochroa 441f                        | BRY-55685              | HM579247  | HM578835  | HM578119 | HM578480       | HM579646  | HM577733. |
| X. chlorochroa 492f                        | BRY-55416              | HM579277  | HM578866  | HM578148 | HM578508       | HM579661  | HM577709. |
| X. chlorochroa 493f                        | BRY-55417              | HM579278  | HM578867  | HM578149 | HM578509       | HM579676  | HM577710. |
| X. chlorochroa 7/21                        | BRY-55448              | HM5/9308  | HM578900  | HM5/81/9 | HM5/8533       | HM5/9694  | HM5///89. |
| A. chlorochrod 7/51                        | BK 1-55451             | HM579311  | HM578903  | HM578182 | HND/8555       | HM5/909/  | HM577708  |
| X. chlorochrod 7911<br>V. chlorochrod 824f | BRT-55407<br>BRV 55400 | HM570358  | HM578051  | HM578230 | HM578560       | HM579712  | HM577830  |
| A. CHIOTOCHTOU 0241<br>X. chlorochrog 825f | BRY-55500              | HM570350  | HM578057  | HM578231 | HM578570       | HM5707/5  | HM577840  |
| X coloradoönsis 001                        | BRY-55151              | HM579019  | HM578607  | HM577905 | HM578296       | HM579426  | HM577516  |
| X. coloradoënsis 006f                      | BRY-55156              | HM579024  | HM578612  | HM577910 | HM578301       | HM579431  | HM577521  |
| X. coloradoënsis 012f                      | BRY-55162              | HM579030  | HM578618  | HM577916 | HM578307       | HM579437  | HM577527. |
| X. coloradoënsis 017f                      | BRY-55167              | HM579035  | HM578623  | HM577921 | HM578311       | HM579442  | HM577532. |
| X. coloradoënsis 018f                      | BRY-55168              | HM579036  | HM578624  | HM577922 | HM578312       | HM579443  | HM577533. |
| X. coloradoënsis 019f                      | BRY-55169              | HM579037  | HM5786265 | -        | HM578313       | HM579444  | HM577534. |
| X. coloradoënsis 020f                      | BRY-55170              | HM579038  | HM578626  | HM577923 | HM578314       | HM579445  | HM577535. |

| X. coloradoinsi 0221         BKY-S5171         HMS79049         HMS77822         HMS77815         HMS77815         HMS77815         HMS77817           X. coloradoinsi 0237         BKY-S517         HMS779404         HMS77854         HMS77815         HMS77816         HM                                                                                                                                                                                                                          |                         |            |            |            |                    |             |                  |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|------------|------------|--------------------|-------------|------------------|-------------|
| X. colorado:mis 024         PRY: 5517         PMS77040         PMS77023         PMS778316         PMS77843         PMS77844                                                                                                                                                                                                                  | X. coloradoënsis 022f   | BRY-55171  | HM579039   | HM578627   | HM577924           | HM578315    | HM579446         | HM577536.   |
| x. columaticity         BBY -58179         FMAST9032         FMAST9032         FMAST9101         FMAST9102                                                                                                                                                                                                | V solongdoëngig 022f    | DDV 55172  | 1111270040 | 1111570620 | 1111677921         | 1111570216  | 1111570447       | IIM577527   |
| L. coloradoi:nsi 031         BKY >318         BKX >318<                                                                                                                                                                                                                  | A. coloradoensis 0231   | DK 1-33172 | HWI379040  | HIVI378028 | HNI377923          | HN1378310   | HN13/944/        | HN1377337.  |
| X. coloradoinsi 0337         BPX '5518         HMS79048         HMS77936         HMS77933         HMS77935         HMS77936                                                                                                                                                                                                                  | X. coloradoënsis 030f   | BRY-55178  | HM579046   | HM578634   | HM577931           | HM578319    | HM579453         | HM577543.   |
| X. colorado:isi 0347         BKY-5518         IMMS79049         IMMS7827         IMMS7822         IMMS7827         IMMS7828         IMMS7947         IMMS7847         IMMS7847         IMMS7847         IMMS7847         IMMS7847         IMMS7847         IMMS7847         IMMS7848         IMMS79487         IMMS7848         IMMS77845         IMMS7848         IMMS78                                                                                                                                                                                                                  | X. coloradoënsis 032f   | BRY-55180  | HM579048   | HM578636   | HM577933           | HM578321    | HM579455         | HM577545.   |
| X. coloradoristi 0347         BFY. 5518         HMS77050         HMS77053         HMS77823         HMS7823         HMS78243         HMS77848         HMS77948           X. coloradoristi 0357         BFY. 55201         IMS779061         IMS77855         IMS77934         IMS77843         IMS77948         IMS77948           X. coloradoristi 0557         BFY. 55201         IMS779061         IMS77855         IMS77957         IMS77836         IMS77947         IMS77947         IMS77947           X. coloradoristi 0507         BFY. 55201         IMS79075         IMS77866         IMS77956         IMS77948         IMS77945         IMS77948                                                                                                                                                                                                                                 | Y coloradoënsis 033f    | BRY-55181  | HM579049   | HM578637   | HM577934           | HM578322    | HM579456         | HM577546    |
| A. columaleris 0.41         BK1 2518         BK1 2518 </th <th>X. coloradoensis 0551</th> <th>DRI 55101</th> <th>1111579049</th> <th>1111570057</th> <th>1111577025</th> <th>111/1570322</th> <th>1111579450</th> <th>IIM577540.</th>                                    | X. coloradoensis 0551   | DRI 55101  | 1111579049 | 1111570057 | 1111577025         | 111/1570322 | 1111579450       | IIM577540.  |
| X. coloradočasis 0451         BKY 5518         HMS79065         HMS77836         HMS77836         HMS77836         HMS77836         HMS77836         HMS77836         HMS77836         HMS77836         HMS77837         HMS77847         HMS77847         HMS77847         HMS77847         HMS77847         HMS77847         HMS77848         HMS77856         HMS77856         HMS77856         HMS77857         HMS77857         HMS77857         HMS77857         HMS77857         HMS77857         HMS77857         HMS77857         HMS77856         HMS77856         HMS77856         HMS77856         HMS77958         HMS77858         HMS77950         HMS77856         HMS77957         HMS77857         HMS77857         HMS77950         HMS77858         LMS77950         HMS77858         LMS77756         LMS77858         LMS777560         LMS77858         LMS777950         HMS77858         LMS777950         HMS77858         LMS777560 <thlms777568< th="">         LMS777561         LMS</thlms777568<>                                                                                                                                                                                               | A. coloradoensis 0541   | BK 1-55182 | HM5/9050   | HM3/8038   | HM5//935           | HM5/8525    | HM5/945/         | HM5//54/.   |
| X. coloradožnisi 054         BY.+5520         HM57906         HM577857         HM577857         HM577857         HM577857           X. coloradožnisi 057         BY.+5520         HM57906         HM5778567         HM577856         HM577856         HM577857         HM577857           X. coloradožnisi 0647         BY.+5520         HM57906         HM577856         HM577858         HM577848         HM577846         HM577859         HM577857         HM577846         HM577859         HM577857         HM577846         HM577859         HM577858         LM577858         LM577858 <thlm577868< th="">         LM5778576         <thl< th=""><th>X. coloradoënsis 035f</th><th>BRY-55183</th><th>HM579051</th><th>HM578639</th><th>HM577936</th><th>HM578324</th><th>HM579458</th><th>HM577548.</th></thl<></thlm577868<>                                      | X. coloradoënsis 035f   | BRY-55183  | HM579051   | HM578639   | HM577936           | HM578324    | HM579458         | HM577548.   |
| X. coloradožnisi 0557         BK Y-55201         HM57907         HM578661         HM577952         HM577838         HM577475         HM577588           X. coloradožnisi 0647         BK Y-55209         HM579071         HM578661         HM577958         HM578344         HM577948         HM577578           X. coloradožnisi 0677         BK Y-55212         HM579071         HM578667         HM577959         HM578344         HM577948         HM577575.           X. coloradožnisi 1018         BK Y-55214         HM579105         HM578667         HM577950         HM577895         HM5779510         HM577957           X. coloradožnisi 1201         BKY S5234         HM579101         HM578695         HM577806         HM577850         HM577950         HM5775910         HM577850         HM577850         HM577850         HM577856         HM577856         HM577864         HM578461         HM578462         HM577856         HM577856         HM577864         HM578461         HM578461         HM578661         HM577856         HM577856         HM577856         HM577856         HM577857         HM578564         HM578461         HM578461         HM578461         HM578461         HM578461         HM578461         HM578461         HM578461         HM577856         HM577761         HM577857           X. col                                                                                                                                                                                                                                                 | X. coloradoënsis 054f   | BRY-55200  | HM579068   | HM578656   | HM577951           | HM578337    | HM579474         | HM577564.   |
| X. coloradonizii 0827         PRV-55203         FMX77007         FMX77864         FMX77955         FMX57842         FMX77757           X. coloradonizii 0617         RXV-55203         FMX7707         FMX77864         FMX77958         FMX77834         FMX77757           X. coloradonizii 071         RXV-55212         FMX79063         FMX77856         FMX77958         FMX77836         FMX77757           X. coloradonizii 071         RXV-55214         FMX79073         FMX77956         FMX77956         FMX77956         FMX77956         FMX77956         FMX77956         FMX7775786         FMX7775786         FMX7775786         FMX7775786         FMX7775796         FMX7775796         FMX7775796         FMX7775786         FMX7775796         FMX7775796         FMX7775798         FMX77768         FMX77788         FMX777788         FMX777788         FMX777798         FMX777788         FMX777788         FMX777788         FMX777788         FMX7777788         FMX7777788         FMX77778                                                                                                                                                                                                                        | V coloradoänsis 055f    | BBV 55201  | HM570060   | HM578657   | HM577052           | HM578338    | HM570475         | HM577565    |
| x. coloradoensis 0947         BKX 1-52.03         HMS 19905         HMS 17866         HMS 17958         HMS 17842         HMS 17949         IMS 17866           x. coloradoensis 0071         BKX 1-552.02         HMS 19905         HMS 17866         HMS 17959         HMS 17848         HMS 17948         HMS 17857           x. coloradoensis 1071         BKX 1-552.01         HMS 17950         HMS 17866         HMS 17959         HMS 17848         HMS 17959         HMS 17866         HMS 17956         HMS 17866         HMS 17786         HMS 17866         <                                                                                                                                                                                                   |                         | DR1-55201  | IIWI379009 | IIWI378037 | IIWI377952         | IIWI378338  | IIWIJ7947J       | IIW1377303. |
| X. coloradožnisi 0647         BY-5520         HM57907         HM578664         HM577958         HM578344         HM577948         HM577572.           X. coloradožnisi 077         BY-5521         HM579007         HM578667         HM577959         HM577351         HM577394         HM577357.           X. coloradožnisi 120         BY-5521         HM579105         HM577860         HM577864         HM577860         HM577864         HM577864         HM577864         HM577864         HM577641         HM577864         HM577864         HM577648         HM577648         HM577864         HM577784         HM577864         HM577864         HM577784         HM577864         HM577864         HM577864         HM577874         HM57864         HM577864         HM577874         HM57864         HM                                                                                                                                                                                                                                  | X. coloradoensis 0591   | BK 1-55205 | HM5/90/3   | HM2/8001   | HM5//956           | HM5/8342    | HM5/94/9         | HM5//568.   |
| X. coloradoinsis 0071         BRY-55212         HM579074         HM577964         HM577854         HM579452         HM579452           X. coloradoinsis 1071         BRY-55218         HM579063         HM577964         HM577851         HM579458         HM579509         HM5779764           X. coloradoinsis 1207         BRY-55218         HM579101         HM578064         HM577861         HM579524         HM579524         HM579524         HM579524         HM579526           X. coloradoinsis 2587         BRY-55218         HM579172         HM5787060         HM578426         HM579540         HM579540         HM579540         HM579548         HM579549         HM579546         HM579542         HM579651         HM57964         HM579843         HM579644         HM579645         HM579644         HM579645         HM579644         HM579424         HM579424         HM579424         HM579424         HM579424         HM579424 <th>X. coloradoënsis 064f</th> <th>BRY-55209</th> <th>HM579075</th> <th>HM578664</th> <th>HM577958</th> <th>HM578344</th> <th>HM579481</th> <th></th>                                                                              | X. coloradoënsis 064f   | BRY-55209  | HM579075   | HM578664   | HM577958           | HM578344    | HM579481         |             |
| X. coloradoinsis UM7         BRY-55218         IMS79083         IMS77957         IMS79081         IMS77957           X. coloradoinsis LM7         BRY-55241         IMS791050         IMS77957         IMS79951         IMS79951         IMS79951         IMS79951         IMS79951         IMS79951         IMS79951         IMS79101         IMS79212         IMS79121         IMS7800         IMS78122         IMS79121         IMS79161         IMS79768.         IMS791768.         IMS791768.         IMS791768.         IMS791769.         IMS791769.         IMS791769.         IMS791768.         IMS791768.         IMS791769.         IMS791769.         IMS791769.         IMS791768.         IMS791768.         IMS791768.         IMS791768.         IMS791768.         IMS791768.         IMS791768.         IMS791768.         IMS791768.         IMS791778.         IMS79178.         IMS79178.         IMS791778.         IMS79178.         IMS79178.         IMS791778.         IMS79178.         IMS79178.         IMS79178.         IMS79178.         IMS79178.         IMS79178.         IMS79178.         IMS791778.         IMS791778.         IMS791778.                                                                                                                                                                                                  | X coloradoënsis 067f    | BRY-55212  | HM579077   | HM578667   | HM577959           | HM578346    | HM579482         | HM577572    |
| L. columberisin         BR 1-23-10         BR                                                                                                                                                                     | V coloradoënsis 072f    | DDV 55212  | LIM570082  | LIM578672  | LIM577064          | LIM579251   | LIM570499        | LIM577576   |
| X. coloradobinsi 1101         BRY-55240         HMS79105         HMS77986         HMS77986         HMS79105         HMS7910                                                                                                                                                                                                                  | A. coloradoensis 0751   | DK1-JJ210  | HWI379083  | HWI376073  | HWI377904          | HWI378331   | HWIJ/9400        | HW377370.   |
| X. coloradobrsis 1357         BRY-55251         HM579100         HM577800         HM577882         HM579510         HM579510         HM579510         HM579510         HM579576           X. coloradobrsis 2527         BRY-55253         HM579121         HM578000         HM578428         HM579576         HM579576           X. coloradobrsis 4447         BRY-55312         HM579250         HM578000         HM579428         HM579648         HM579648           X. coloradobrsis 4457         BRY-55328         HM579251         HM578838         HM5781212         HM578484         HM579650         HM579761         HM5797851           X. coloradobrsis 9237         BRY-55523         HM579383         HM578123         HM5798851         -         HM5797676         HM5797851           X. coloradobrsis 9237         BRY-55512         HM579383         HM578244         HM579886         HM5794727         HM577824         HM579488         HM5791716           X. cumberlandia 0017         BRY-55137         HM579020         HM57869         HM579248         HM579424         HM579444         HM579424         HM579444                                                                                                                                                                                                                                                           | X. coloradoënsis 118f   | BRY-55240  | HM579105   | HM578695   | HM577985           | -           | HM579509         | HM577597.   |
| X. coloradoinsis 1387         BRY-55308         HMS79120         HMS7810         HMS78040         HMS78244         HMS77628.           X. coloradoinsis 13287         BRY-55308         HMS79121         HMS78041         HMS78042         HMS78264         HMS78264         HMS78276         HMS776788.           X. coloradoinsis 4467         BRY-55388         HMS79251         HMS78438         HMS78433         HMS778448         HMS778448         HMS778448         HMS778458           X. coloradoinsis 4467         BRY-55388         HMS79251         HMS78838         HMS78435         HMS778458         HMS778478         HMS778458         HMS778427         HMS778428         HMS778427         HMS778428         HMS778438         HMS778438         HMS778438                                                                                                                                                                                                                      | X. coloradoënsis 120f   | BRY-55241  | HM579106   | HM578696   | HM577986           | HM578369    | HM579510         | HM577598.   |
| X. coloradomini: 288         BRY-55308         HMST9172         HMST9700         HMST9404         HMST9476         HMST97576         HMST9762           X. coloradomisi 2721         BRY-55312         HMST9172         HMST9700         HMST9428         HMST9763         HMST9762           X. coloradomisi 441         BRY-55388         HMST9125         HMST9838         HMST9121         HMST9843         HMST9428         HMST97648         HMST77662           X. coloradomis 4461         BRY-55388         HMST9225         HMST8121         HMST8448         HMST9649         HMST77737.           X. coloradomis 4051         BRY-55324         HMST9228         HMST97862         HMST77862.         HMST77862.           X. coloradomis 9221         BRY-5515         HMST97847         HMST8237         HMST8237         HMST8237         HMST8428         HMST9746         HMST7862.           X. cumberlandia 0037         BRY-5515         HMST97021         HMST8237         HMST8237         HMST8237         HMST8448         HMST9428         HMST9748.           X. cumberlandia 0381         BRY-55151         HMST97021         HMST8428         HMST97494         HMST7843.           X. cumberlandia 0407         BRY-55151         HMST9045         HMST97464         HMST97459         HMST77549.                                                                                                                                                                                                                                                                      | X coloradoënsis 135f    | BRY-55255  | HM579120   | HM578710   | HM578000           | HM578382    | HM579524         | HM577612    |
| L. Cultoradionis 2721         BR1 / 533-98         BR1 / 711-2         BR1 / 711-2         BR1 / 703-6         BR1 / 703-6           K. coloradoinsis 2721         BRY - 5533         BRY - 5533         BRY - 5533         BRY - 573-7         BRY - 573-7 <th>V</th> <th>DRY 55200</th> <th>IIM570172</th> <th>1111570760</th> <th>1111570000</th> <th>1111570302</th> <th>1111570576</th> <th>IIM577650</th> | V                       | DRY 55200  | IIM570172  | 1111570760 | 1111570000         | 1111570302  | 1111570576       | IIM577650   |
| X. coloradoinsis 3441         BRY-5538         HM579176         HM578463         HM579864         HM577864           X. coloradoinsis 4451         BRY-5538         HM579251         HM578483         HM579454         HM577864           X. coloradoinsis 4451         BRY-5538         HM579251         HM578483         HM578483         HM577862           X. coloradoinsis 9221         BRY-55524         HM579837         HM578453         HM577862           X. coloradoinsis 9221         BRY-55524         HM579837         HM578455         HM577862           X. coloradoinsis 9221         BRY-55525         HM579034         HM578454         HM578648         HM577862           X. comberlandia 0013         BRY-55153         HM5790021         HM578609         HM577930         HM579247         HM577548           X. cumberlandia 0361         BRY-55173         HM579045         HM577930         HM579424         HM577549           X. cumberlandia 0306         BRY-55184         HM579052         HM577930         HM579424         HM577549           X. cumberlandia 0307         BRY-55184         HM5790451         HM577944         HM5779461         HM577553           X. cumberlandia 0411         BRY-55184         HM5790451         HM5779444         HM577553         HM5779461                                                                                                                                                                                                                                                                                | X. coloradoensis 2581   | BK 1-55508 | HM5/91/2   | HM3/8/00   | HM3/8040           | HM3/8420    | HM3/95/0         | HM3//038.   |
| X. coloradoinsis 444f         BRY-55388         HM579250         HM578838         HM578121         HM578484         HM577648         HM577737.           X. coloradoinsis 46f         BRY-55390         HM579252         HM578840         HM578121         HM578454         HM577857.           X. coloradoinsis 505f         BRY-55320         HM579252         HM578877         HM578353         HM578575         HM577773.           X. coloradoinsis 502f         BRY-55524         HM579020         HM5787070         HM578536         HM5779701         HM577863.           X. cumberlandia 0012         BRY-55152         HM579020         HM578608         HM577926         HM578428         HM577924         HM5778428         HM577924         HM578428         HM577542           X. cumberlandia 002f         BRY-55173         HM579052         HM577962         HM577925         HM578428         HM577542           X. cumberlandia 036f         BRY-55184         HM579052         HM5779460         HM577937         HM578328         HM579459         HM577551.           X. cumberlandia 040f         BRY-55184         HM579051         HM5779467         HM577832         HM577842         HM577552.           X. cumberlandia 040f         BRY-55190         HM579056 <thm577947< th="">         HM577843</thm577947<>                                                                                                                                                                                                                                                        | X. coloradoënsis 272f   | BRY-55312  | HM579176   | HM578764   | HM578050           | HM578428    | HM579580         | HM577662.   |
| X. coloradoimsis 445f         BRY-55389         HM579251         HM578812         HM578122         HM577812         HM577812         HM577823         HM577738.           X. coloradoimsis 923f         BRY-55394         HM579238         HM578159         HM577835         HM5778515         HM577853           X. coloradoimsis 923f         BRY-55525         HM579238         HM5787716         HM577853         HM577855         HM577862           X. coloradoimsis 923f         BRY-55512         HM579003         HM578678         HM578254         HM579421         HM577862           X. cumberlandia 0021         BRY-55173         HM579011         HM578629         HM577906         HM579421         HM577428           X. cumberlandia 024f         BRY-5518         HM579052         HM577930         HM579428         HM577542           X. cumberlandia 036f         BRY-5518         HM579057         HM579439         HM579461         HM577542           X. cumberlandia 041f         BRY-5518         HM579057         HM578423         HM577542         HM579461         HM577545           X. cumberlandia 041f         BRY-5518         HM579066         HM577944         HM579464         HM577545           X. cumberlandia 041f         BRY-5519         HM5790704         HM5779464         HM                                                                                                                                                                                                                                                                        | X. coloradoënsis 444f   | BRY-55388  | HM579250   | HM578838   | HM578121           | HM578483    | HM579648         | HM577736.   |
| X. contradictionsis 4461         BRY 25300         HM579225         HM578840         HM579121         HM579428         HM577733.           X. coloradoensis 921         BRY 25524         HM579288         HM578815         HM578815         HM577815           X. coloradoensis 9221         BRY 25524         HM579288         HM578877         HM5788254         HM579761         HM577862.           X. cumberlandia 0031         BRY 25512         HM579021         HM578809         HM579707         HM579288         HM579742         HM577842           X. cumberlandia 0291         BRY 25517         HM579024         HM577903         HM579424         HM577549           X. cumberlandia 0381         BRY 25517         HM579054         HM577903         HM579424         HM577542           X. cumberlandia 0381         BRY 255184         HM579054         HM577943         HM579424         HM577542           X. cumberlandia 0411         BRY 255184         HM579056         HM577944         HM577945         HM579464         HM577545           X. cumberlandia 0411         BRY 25519         HM579060         HM578646         HM577944         HM579464         HM577553.           X. cumberlandia 0411         BRY 255190         HM579060         HM577848         HM579464         HM577555.     <                                                                                                                                                                                                                                                                    | Y coloradoënsis 445f    | BRV-55380  | HM570251   | HM578830   | HM578122           | HM578/8/    | HM579649         | HM577737    |
| A. coloradoensis S05         BRY. 5527         HMS7922         HMS78810         HMS7950         HMS77773.           C. coloradoinsis S021         BRY. 55524         HMS797833         HMS78877         HMS78253         HMS79851         HMS77863.           C. coloradoinsis S023         BRY. 55512         HMS79020         HMS788253         HMS792762         HMS77863.           C. coloradoinsis S023         BRY. 55152         HMS79020         HMS7870706         HMS77927         HMS77242         HMS77863.           C. cumberlandia 0021         BRY. 55153         HMS79020         HMS78629         HMS77926         HMS77944         HMS77424         HMS77542           K. cumberlandia 0366         BRY. 55173         HMS79052         HMS79030         HMS79452         HMS77542           K. cumberlandia 0366         BRY. 55186         HMS79054         HMS77939         HMS79463         HMS77542           K. cumberlandia 0401         BRY. 55186         HMS79056         HMS77943         HMS79464         HMS77554.           K. cumberlandia 0417         BRY. 5519         HMS790574         HMS79464         HMS77553.           K. cumberlandia 0421         BRY. 55191         HMS790704         HMS79464         HMS77553.           K. cumberlandia 0457         BRY. 55219         HM                                                                                                                                                                                                                                                                       |                         | DR1-55500  | IIWI579251 | IN(57003)  | IIWI570122         | 1101570404  | IN(57)(4)        | IIW1577757. |
| X. coloradoimsis 921         BRY-555427         HMS79288         HMS78817         HMS78159         HMS778159         HMS777815           X. coloradoimsis 921         BRY-55525         HMS790384         HMS78978         HMS788254         HMS779761         HMS77862           X. cumberlandia 003f         BRY-55153         HMS79001         HMS78609         HMS77907         HMS79288         HMS779427         HMS77517.           X. cumberlandia 024f         BRY-55153         HMS79011         HMS78629         HMS77937         HMS79424         HMS77518.           X. cumberlandia 024f         BRY-55173         HMS79021         HMS77960         HMS77937         HMS79425         HMS77542.           X. cumberlandia 026f         BRY-55184         HMS79055         HMS797939         HMS79425         HMS77542.           X. cumberlandia 040f         BRY-55184         HMS79057         HMS78643         HMS79464         HMS77553.           X. cumberlandia 041f         BRY-55189         HMS79066         HMS77944         HMS79464         HMS77555.           X. cumberlandia 041f         BRY-55193         HMS790661         HMS78648         HMS79464         HMS77545.           X. cumberlandia 041f         BRY-55193         HMS790651         HMS78631         HMS79464         HMS79464                                                                                                                                                                                                                                                                      | A. coloradoensis 4461   | BKY-55390  | HM5/9252   | HM5/8840   | HM5/8123           | HM5/8485    | HM5/9650         | HM5///38.   |
| X. coloradoiensis 9221         BRY-55524         HM579283         HM578253         HM5778253         HM5778253         HM577863         HM577863           X. comberlandia 0021         BRY-55152         HM579001         HM578608         HM577906         HM577927         HM577824         HM577863           X. cumberlandia 021         BRY-55153         HM579011         HM578629         HM577906         HM577927         HM579428         HM577548           X. cumberlandia 0211         BRY-55153         HM579041         HM578633         HM577926         HM579428         HM577542           X. cumberlandia 0361         BRY-55184         HM579041         HM577863         HM579459         HM577542           X. cumberlandia 0401         BRY-55184         HM579056         HM578642         HM577941         HM579461         HM577553.           X. cumberlandia 0411         BRY-55184         HM579058         HM578644         HM577943         HM579461         HM577553.           X. cumberlandia 0412         BRY-55193         HM579058         HM578646         HM577943         HM579461         HM577553.           X. cumberlandia 0417         BRY-55197         HM579057         HM57863         HM577943         HM579461         HM577555.           X. cumberlandia 0507         B                                                                                                                                                                                                                                                                        | X. coloradoënsis 505f   | BRY-55427  | HM579288   | HM578877   | HM578159           | HM578515    | -                | HM577773.   |
| X. coloradoënsis 923r         BRY-5525         FIMS79384         FIMS7978         FIMS7924         FIMS79762         FIMS79763         FIMS79763         FIMS79763         FIMS79763         FIMS79763         FIMS79744         FIMS7944         FIMS7944         FIMS7944         FIMS79464         FIMS797553.         K. cumberlandia 041f         BRY-55189         FIMS79060         FIMS78648         FIMS79742         FIMS797462         FIMS797553.         FIMS797464         FIMS797553.         FIMS797464         FIMS797553.         FIMS797464         FIMS797553.         FIMS797464         FIMS797563.         FIMS797464         FIMS797563.         FIMS797464         FIMS797563. <th>X. coloradoënsis 922f</th> <th>BRY-55524</th> <th>HM579383</th> <th>HM578977</th> <th>HM578253</th> <th>HM578585</th> <th>HM579761</th> <th>HM577862.</th>                  | X. coloradoënsis 922f   | BRY-55524  | HM579383   | HM578977   | HM578253           | HM578585    | HM579761         | HM577862.   |
| A. Combrainerina         DEI         DEI <thdei< th="">         DEI         <thdei< th=""></thdei<></thdei<>                                                                                                                                                                                                                                                                                                                                                                | V coloradoänsis 022f    | BDV 55525  | HM570384   | HM578078   | HM578254           | HM578586    | HM570762         | HM577863    |
| 1. Cumberlandia 0021       BRY -5312       HMS 79020       HMS 7806       HMS 77037       HMS 78297       HMS 78297       HMS 79427       HMS 771317         2. cumberlandia 024f       BRY -55173       HMS 79041       HMS 78628       HMS 77930       HMS 78428       HMS 79424       HMS 77538.         3. cumberlandia 036f       BRY -55184       HMS 79052       HMS 77930       HMS 77930       HMS 779459       HMS 779459.         4. cumberlandia 038f       BRY -55184       HMS 79055       HMS 77643       HMS 77930       HMS 779459.       HMS 779459.       HMS 779461       HMS 779459.       HMS 779461       HMS 779461       HMS 779463       HMS 779464       HMS 77946                                                                                                                                                                                                                                                  |                         | DR 1-55525 | IIWIJ79304 | IIWIJ70970 | IIWIJ78234         | IIWI378380  | IIWI379702       | IIW1377803. |
| X. cumberlandia         003f         BRY-55153         HMS79021         HMS77809         HMS77907         HMS778288         HMS79428         HMS77918.           X. cumberlandia         003f         BRY-55173         HMS79045         HMS77926         -         HMS79442         HMS77542.           X. cumberlandia         038f         BRY-55187         HMS79045         HMS77642         HMS77930         -         HMS79442         HMS77542.           X. cumberlandia         039f         BRY-55187         HMS79056         HMS77642         HMS77940         HMS77827         HMS79462         HMS77551.           X. cumberlandia         0401f         BRY-55188         HMS79056         HMS78644         HMS77941         -         HMS79462         HMS77552.           X. cumberlandia         O41f         BRY-55188         HMS79056         HMS78646         HMS77943         -         -         -         HMS79466         HMS77557.           X. cumberlandia         O44f         BRY-55193         HMS79066         HMS78648         -         HMS79466         HMS77557.         -         -         -         HMS79466         HMS77957.           X. cumberlandia         O40f         BRY-55197         HMS790651         HMS779533         HMS79474                                                                                                                                                                                                                                                                                                               | X. cumberlandia 002f    | BRY-55152  | HM5/9020   | HM5/8608   | HM5//906           | HM5/829/    | HM5/942/         | HM5//51/.   |
| X. cumberlandia 024f         BRY-55173         HMS7041         HMS7R629         HMS77926         -         HMS77942           X. cumberlandia 036f         BRY-55187         HMS70952         HMS78630         HMS77930         -         HMS79454         HMS77542.           X. cumberlandia 036f         BRY-55187         HMS70952         HMS78640         HMS77930         -         HMS79459         HMS77542.           X. cumberlandia 040f         BRY-55187         HMS79055         HMS78644         HMS77940         HMS77940         HMS77942         HMS79454         HMS77554.           X. cumberlandia 041f         BRY-55187         HMS79057         HMS78645         HMS77942         HMS78328         HMS77554.           X. cumberlandia 042f         BRY-55192         HMS79066         HMS78648         -         HMS78330         HMS79467         -         HMS77554.           X. cumberlandia 045f         BRY-55197         HMS79066         HMS77954         HMS78334         HMS794767         -         HMS794767         -         -         HMS79467         -         -         -         HMS794767         -         -         HMS794767         HMS79554         HMS794783         HMS794767         HMS77554.         HMS794767         HMS77556.         HMS797954         <                                                                                                                                                                                                                                                                                | X. cumberlandia 003f    | BRY-55153  | HM579021   | HM578609   | HM577907           | HM578298    | HM579428         | HM577518.   |
| X. cumberlandia 039f         BRY-55177         HMS79045         HMS77803         HMS77930         HMS77942         HMS77942           X. cumberlandia 030f         BRY-55186         HMS79054         HMS78643         HMS77937         HMS78325         HMS79459         HMS77542.           X. cumberlandia 039f         BRY-55186         HMS79055         HMS78643         HMS779401         HMS77842.         HMS77542.           X. cumberlandia 041f         BRY-55188         HMS79055         HMS78644         HMS77941         -         HMS77843         HMS77943           X. cumberlandia 041f         BRY-55199         HMS79060         HMS78646         HMS77943         -         HMS77855.           X. cumberlandia 041f         BRY-55190         HMS79060         HMS78646         HMS77943         HMS79466         HMS77555.           X. cumberlandia 041f         BRY-55195         HMS79060         HMS78651         HMS77948         HMS78334         HMS79476         -         -         HMS77551.           X. cumberlandia 057f         BRY-55203         HMS79071         HMS78658         HMS77953         HMS78344         HMS79476         HMS77566.           X. cumberlandia 063f         BRY-55207         HMS797956         HMS78434         HMS779476         HMS77576.      <                                                                                                                                                                                                                                                                              | X. cumberlandia 024f    | BRY-55173  | HM579041   | HM578629   | HM577926           | -           | HM579448         | HM577538.   |
| A. cumberlandia 0201       BRY-55184       HMS79052       HMS78640       HMS77937       HMS78323       HMS79454       HMS77549.         X. cumberlandia 038f       BRY-55186       HMS79055       HMS78641       HMS77937       HMS78422       HMS79464       HMS777537         X. cumberlandia 040f       BRY-55188       HMS79055       HMS78643       HMS77940       HMS78328       HMS79402       HMS77552.         X. cumberlandia 040f       BRY-55188       HMS79056       HMS78644       HMS77940       HMS78328       HMS79464       HMS77553.         X. cumberlandia 041f       BRY-55190       HMS79057       HMS78648       -       HMS77833       HMS79466       HMS77555.         X. cumberlandia 041f       BRY-55193       HMS79061       HMS78649       -       HMS77834       HMS77847         X. cumberlandia 041f       BRY-55195       HMS79070       HMS78653       HMS77948       HMS77843       HMS77844       HMS77844       HMS77844       HMS77844       HMS77844       HMS77844       HMS77947       HMS77647         X. cumberlandia 050f       BRY-55205       HMS79072       HMS78660       HMS77955       HMS78444       HMS79476       -       -       -       -       -       -       -       -       -       -<                                                                                                                                                                                                                                                                                                                                                 | V aumhandia 020f        | BRV 55177  | HM570045   | HM578633   | HM577030           |             | HM570452         | HM577542    |
| X. cumberlandia 0301       BR Y-55184       HMS /9052       HMS /8040       HMS /9239       HMS /9439       HMS /9436       HMS /9436       HMS /9436       HMS /9436       HMS /9459       HMS /9456       HMS /9457       HMS /9456       HMS /9457       HMS /9451       HMS /9457       HMS                                                                                                                                                                                                                                                     |                         | DR1-33177  | IIWIJ7904J | IIWI378033 | IIWI377930         | -           | IIWIJ794J2       | IIW1377342. |
| X. cumberlandia 038f       BRY-55187       HMS79054       HMS778643       HMS77940       HMS779462       HMS77552.         X. cumberlandia 040f       BRY-55187       HMS79055       HMS78643       HMS77940       HMS787482       HMS779462       HMS77552.         X. cumberlandia 040f       BRY-55189       HMS79055       HMS78645       HMS77942       HMS77832       HMS79464       HMS77555.         X. cumberlandia 044f       BRY-55190       HMS79061       HMS78646       HMS77948       HMS79330       HMS79467       HMS779476       HMS79467       HMS77953.         X. cumberlandia 049f       BRY-55195       HMS79061       HMS78651       HMS77953       HMS79330       HMS79469       HMS779546       HMS78330       HMS79476       -       -       HMS79467       -       -       -       HMS795467       -       -       -       HMS79476       -       -       -       HMS79476       -       -       -       HMS79476       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       <                                                                                                                                                                                                                                                                                                                                                                                                               | X. cumberlandia 036f    | BRY-55184  | HM5/9052   | HM5/8640   | HM5//93/           | HM5/8325    | HM5/9459         | HM577549.   |
| X. cumberlandia 039r         BRY-55187         HM579055         HM578643         HM577940         HM578327         HM579463         HM577553.           X. cumberlandia 040r         BRY-55189         HM579056         HM578645         HM577942         HM578328         HM579464         HM577553.           X. cumberlandia 042r         BRY-55190         HM579060         HM578645         HM577942         HM578330         HM579464         HM577557.           X. cumberlandia 043r         BRY-55192         HM579060         HM578648         -         HM578330         HM579467          -         HM5779466         HM577557.           X. cumberlandia 043r         BRY-55195         HM579061         HM578651         HM577946         HM5778332         HM579467           HM5779467         HM577551.           X. cumberlandia 056r         BRY-55203         HM5790701         HM578653         HM577954         HM578340         HM57794777561.         M578340         HM5779477         HM577854.           X. cumberlandia 059r         BRY-55208         HM579075         HM578663         HM577955         HM578340         HM577477561.           X. cumberlandia 062r         BRY-55208         HM579076         HM578663         HM5779558         HM579487        <                                                                                                                                                                                                                                                                                                  | X. cumberlandia 038f    | BRY-55186  | HM579054   | HM578642   | HM577939           | -           | HM579461         | HM577551.   |
| X. cumberlandia 040f         BRY-55188         HM579056         HM578644         HM577941         HM572           X. cumberlandia 041f         BRY-55189         HM579057         HM578645         HM577943         HM579463         HM577553.           X. cumberlandia 044f         BRY-55190         HM579058         HM578646         HM577943         HM579466         HM577555.           X. cumberlandia 044f         BRY-55192         HM579060         HM578648         HM577946         HM579467         HM577559.           X. cumberlandia 049f         BRY-55197         HM579061         HM578658         HM577954         HM578320         HM579476         HM577559.           X. cumberlandia 057f         BRY-55202         HM5790701         HM578658         HM577954         HM578340         HM579477         HM579476           X. cumberlandia 058f         BRY-55206         HM579071         HM578660         HM577955         HM578341         HM579478         HM577568.           X. cumberlandia 061f         BRY-55206         HM579076         HM578663         HM577957         HM578344         HM579480         HM5775769.           X. cumberlandia 063f         BRY-55206         HM579076         HM578663         HM5779577         HM578343         HM579480         HM577570. <tr< th=""><th>X. cumberlandia 039f</th><th>BRY-55187</th><th>HM579055</th><th>HM578643</th><th>HM577940</th><th>HM578327</th><th>HM579462</th><th>HM577552.</th></tr<>                                                                                                      | X. cumberlandia 039f    | BRY-55187  | HM579055   | HM578643   | HM577940           | HM578327    | HM579462         | HM577552.   |
| X. cumberlandia 040i         BRY-55189         HM579057         HM578645         HM577942         HM579420         HM579450         HM577953           X. cumberlandia 042i         BRY-55190         HM579057         HM578644         HM577942         HM578284         HM5779450         HM577555.           X. cumberlandia 042f         BRY-55192         HM579060         HM578648         -         HM578330         HM579466         HM577557.           X. cumberlandia 047f         BRY-55197         HM579061         HM578651         HM577946         HM578331         HM579476         -         -         HM577476           X. cumberlandia 056f         BRY-55203         HM579070         HM578659         HM577953         HM578341         HM579476         -         -         -         -         -         -         -         -         HM579476         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                              | V cumberlandia 040f     | BDV 55188  | HM570056   | HM578644   | HM577041           |             | HM570463         | HM577553    |
| A. cumberlandia 0411         BR Y-55189         HM5/9057         HM5/943         HM5/943         HM5/944         HM5/9546         HM5/9557.           X. cumberlandia 049f         BRY-55195         HM5/9063         HM5/8651         HM5/97946         HM5/9467         HM5/9467         HM5/9467         HM5/9467         HM5/9467         HM5/9467         HM5/9471         HM5/9471         HM5/9467         HM5/9471         HM5/9471         HM5/9471         HM5/9471         HM5/9471         HM5/9471         HM5/9471         HM5/9471         HM5/9471         HM5/9473         HM5/9473         HM5/9473         HM5/9473         HM5/9473         HM5/9473         HM5/9473         HM5/9473         HM5/9474         HM5/9478         HM5/9481         L         Cumberlan                                                                                                                                                                                                                          |                         | DR1-55100  | IIWI379030 | IIWIJ70044 | IIWIJ77941         | -           | IINI379403       | IIW1377333. |
| X. cumberlandia 042f         BRY-55190         HM579068         HM578648         -         HM578330         HM579466         HM577555.           X. cumberlandia 045f         BRY-55192         HM579060         HM578648         -         HM578330         HM579466         HM577557.           X. cumberlandia 047f         BRY-55193         HM579061         HM578651         HM577948         HM578334         HM579469         HM577559.           X. cumberlandia 045f         BRY-55197         HM579006         HM578651         HM577954         HM578334         HM579476         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <t< th=""><th>X. cumberlandia 0411</th><th>BK 1-22189</th><th>HM5/905/</th><th>HM5/8645</th><th>HM577942</th><th>HM5/8328</th><th>HM5/9464</th><th>HM5//554.</th></t<>                                                                                                                                                                                                                          | X. cumberlandia 0411    | BK 1-22189 | HM5/905/   | HM5/8645   | HM577942           | HM5/8328    | HM5/9464         | HM5//554.   |
| X. cumberlandia 044f       BRY-55193       HM579060       HM578648       -       HM578300       HM578370         X. cumberlandia 045f       BRY-55195       HM579061       HM578649       -       -       HM579467       -       -         X. cumberlandia 049f       BRY-55195       HM579065       HM578653       HM577948       HM578334       HM579471       HM577551.         X. cumberlandia 056f       BRY-55203       HM579071       HM578658       HM577953       HM578339       HM579476           X. cumberlandia 058f       BRY-55204       HM579072       HM578660       HM577955       HM578434       HM579478       HM577567.         X. cumberlandia 058f       BRY-55206       -       HM578661       HM577955       HM57842       HM579479       HM577567.         X. cumberlandia 061f       BRY-55207       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                           | X. cumberlandia 042f    | BRY-55190  | HM579058   | HM578646   | HM577943           | -           | -                | HM577555.   |
| X. cumberlandia 045f       BRY-55193       HM579061       HM578649       HM579467       HM579467         X. cumberlandia 047f       BRY-55193       HM579063       HM578651       HM577946       HM578332       HM579469       HM577559.         X. cumberlandia 056f       BRY-55197       HM579070       HM578658       HM577953       HM578339       HM579476          X. cumberlandia 057f       BRY-55202       HM579071       HM578659       HM577954       HM578339       HM579477       HM577561.         X. cumberlandia 059f       BRY-55204       HM579073       HM578661       HM577955       HM578342       HM579479       HM577568.         X. cumberlandia 061f       BRY-55207       -       -       -       -       -       -         X. cumberlandia 063f       BRY-55208       HM579075       HM578663       HM577957       HM578343       HM579480       HM577570.         X. cumberlandia 064f       BRY-55210       HM579075       HM578665       -       HM578343       HM579480       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                             | X. cumberlandia 044f    | BRY-55192  | HM579060   | HM578648   | -                  | HM578330    | HM579466         | HM577557.   |
| X. cumberlandia 0471       BRY-55195       HM570061       HM57069       HM577461       HM577332       HM577464         X. cumberlandia 0491       BRY-55195       HM570065       HM577853       HM577946       HM5778334       HM5779469       HM577551         X. cumberlandia 0561       BRY-55202       HM579005       HM578658       HM577954       HM578340       HM579476          X. cumberlandia 0571       BRY-55203       HM579071       HM578660       HM577955       HM578341       HM579477       HM577566.         X. cumberlandia 0611       BRY-55206       HM579072       HM578660       HM577956       HM578342       HM579479       HM577567.         X. cumberlandia 0631       BRY-55206       HM579075       HM578661       HM577958       HM578343       HM579480       HM577569.         X. cumberlandia 0631       BRY-55209       HM579075       HM578664       HM577958       HM578343       HM579480       HM577569.         X. cumberlandia 0661       BRY-55210       HM579071       HM578666       -       -       -       -       HM577570.         X. cumberlandia 0661       BRY-55217       HM579081       HM578671       -       HM578350       HM579489       -       -       -       -       HM577571.                                                                                                                                                                                                                                                                                                                                                        | X cumberlandia 045f     | BRV-55193  | HM579061   | HM578649   | _                  |             | HM579467         |             |
| A. clumberlandia 0471       BRY-52195       HMS79005       HMS78651       HMS79149       HMS78322       HMS79499       HMS77531.         X. cumberlandia 056f       BRY-55202       HMS79070       HMS78658       HMS77953       HMS78339       HMS79471       HMS77561.         X. cumberlandia 058f       BRY-55203       HMS79070       HMS78669       HMS77954       HMS78340       HMS79477       HMS77566.         X. cumberlandia 058f       BRY-55205       HMS79073       HMS78661       HMS77956       HMS78342       HMS77478       HMS77567.         X. cumberlandia 062f       BRY-55206       -       HMS78662       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | DR1-55175  | IN 15700(2 | IN(570(51  | ID 1577046         | ID (570222  | IN1579407        |             |
| X. cumberlandia 049f       BRY-55107       HM579065       HM578563       HM577938       HM578334       HM579471       HM577561.         X. cumberlandia 05ff       BRY-55203       HM579071       HM578658       HM577953       HM578334       HM579476          X. cumberlandia 05ff       BRY-55203       HM579072       HM578661       HM577955       HM578341       HM579477       HM577567.         X. cumberlandia 05ff       BRY-55206       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | X. cumberlandia 04/1    | BK 1-22162 | HM5/9063   | HM2/8021   | HM5//946           | HM5/8332    | HM5/9469         | HM5//559.   |
| X. cumberlandia 050f       BRY-55202       HMS79070       HMS78658       HMS77953       HMS77953       HMS77954       HMS79476          X. cumberlandia 051f       BRY-55203       HMS79071       HMS78659       HMS77955       HMS78340       HMS79477       HM577566.         X. cumberlandia 059f       BRY-55205       HMS79073       HMS78661       HMS77955       HMS78341       HMS779478       HMS77568.         X. cumberlandia 061f       BRY-55206       -       HM578661       HMS77957       HMS78342       HMS79479       HMS77568.         X. cumberlandia 063f       BRY-55208       HMS79076       HMS78663       HMS77957       HMS78343       HMS79480       HMS77569.         X. cumberlandia 063f       BRY-55209       HMS79076       HMS78663       HMS77958       HMS78343       HMS79480       HMS77570.         X. cumberlandia 066f       BRY-55210       HMS79082       HMS78671       -       HMS78435       -       HMS79486          X. cumberlandia 071f       BRY-55217       HMS79082       HMS78671       -       HMS78438       HMS79488          X. cumberlandia 073f       BRY-55220       HMS79085       HMS78676       HMS77855       HMS78457       HMS79488 <t< th=""><th>X. cumberlandia 049f</th><th>BRY-55197</th><th>HM579065</th><th>HM578653</th><th>HM577948</th><th>HM578334</th><th>HM579471</th><th>HM577561.</th></t<>                                                                                                                                                                                                                         | X. cumberlandia 049f    | BRY-55197  | HM579065   | HM578653   | HM577948           | HM578334    | HM579471         | HM577561.   |
| X. cumberlandia 057f         BRY-55203         HM579071         HM578659         HM577954         HM578340         HM579477         HM577566.           X. cumberlandia 058f         BRY-55204         HM579072         HM578660         HM577955         HM578341         HM579478         HM577567.           X. cumberlandia 061f         BRY-55206         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -           X. cumberlandia 066f                                                                                                                                                                                                                                                                                                                                                                                                                                 | X. cumberlandia 056f    | BRY-55202  | HM579070   | HM578658   | HM577953           | HM578339    | HM579476         |             |
| X. cumberlandia 058f       BRY -55205       HM579072       HM578660       HM577955       HM578341       HM579474       HM577567.         X. cumberlandia 058f       BRY -55205       HM579073       HM578661       HM577955       HM578341       HM579479       HM577567.         X. cumberlandia 061f       BRY -55206       -       HM578662       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - <t< th=""><th>X cumberlandia 057f</th><th>BRY-55203</th><th>HM579071</th><th>HM578659</th><th>HM577954</th><th>HM578340</th><th>HM579477</th><th>HM577566</th></t<>                                                                                                                                                                                                                                                                                                                                                                  | X cumberlandia 057f     | BRY-55203  | HM579071   | HM578659   | HM577954           | HM578340    | HM579477         | HM577566    |
| A. cumberlandia 059       BRY-53204       FINJ 79072       FINJ 78000       FINJ 78073       FINJ 78073       FINJ 78074       FINJ 78075       FINJ 78074       FINJ 7807571       FINJ 78074       FINJ 78074       FINJ 78074       FINJ 7807571       FINJ 7807571       FINJ 7807571       FINJ 78074       <                                                                                                                                                                                                                      | V aumhanlandia 059f     | DRY 55203  | 1111570072 | 1111570660 | 1111577055         | 1111570241  | 1111570479       | IIM577567   |
| X. cumberlandia 059f         BRY-55205         HM579073         HM578661         HM577956         HM578322         HM579479         HM577568.           X. cumberlandia 061f         BRY-55206         -         HM578662         -         -         -         -         -           X. cumberlandia 062f         BRY-55208         HM579074         HM578664         HM577957         HM578343         HM579480         HM577569.           X. cumberlandia 063f         BRY-55210         HM579076         HM578665         -         HM578344         HM579480         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                          | A. cumberianaia 0581    | BK 1-55204 | HM579072   | HM5/8000   | HM5//955           | HM5/8341    | HM5/94/8         | HM5//50/.   |
| X. cumberlandia 061f       BRY-55206       -       HM578662       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X. cumberlandia 059f    | BRY-55205  | HM579073   | HM578661   | HM577956           | HM578342    | HM579479         | HM577568.   |
| X. cumberlandia 062f         BRY-55207         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X. cumberlandia 061f    | BRY-55206  | -          | HM578662   | -                  | -           | -                |             |
| X. cumberlandia 063f       BRY-55208       HM579074       HM578663       HM577957       HM578343       HM579480       HM577569.         X. cumberlandia 064f       BRY-55209       HM579076       HM578664       HM577958       HM578344       HM579480          X. cumberlandia 065f       BRY-55210       HM579076       HM578666        HM578345        HM577570.         X. cumberlandia 071f       BRY-55216       HM579081       HM578671        HM578349       HM579486          X. cumberlandia 071f       BRY-55219       HM579082       HM578672       HM577963       HM578350       HM579487          X. cumberlandia 071f       BRY-55219       HM579084       HM578675       HM577965       HM578350       HM579490       HM577577         X. cumberlandia 138f       BRY-55227       HM579086       HM578728       HM579606       HM578344       HM579490       HM577631         X. cumberlandia 175f       BRY-55275       HM579140       HM578736       HM578002       HM578400       HM579550         HM577631         X. cumberlandia 191f       BRY-55284       HM579147       HM578736        HM579551         HM579555 <th>X cumberlandia 062f</th> <th>BRY-55207</th> <th>_</th> <th>_</th> <th>_</th> <th>_</th> <th>-</th> <th>_</th>                                                                                                                                                                                                                                                                                                                                       | X cumberlandia 062f     | BRY-55207  | _          | _          | _                  | _           | -                | _           |
| X. cumberlandia 064f       BRY-55209       HMS79075       HMS78664       HMS77957       HMS78343       HMS79480       FMS79480         X. cumberlandia 065f       BRY-55210       HMS79075       HMS78666       -       HMS78344       HMS779481       -         X. cumberlandia 065f       BRY-55210       HMS79076       HMS78666       -       -       HMS778345       -       HMS77570.         X. cumberlandia 071f       BRY-55216       HMS79081       HMS78671       -       HMS78350       HMS79486       -         X. cumberlandia 072f       BRY-55217       HMS79082       HMS78671       -       HMS78350       HMS79486       -       -         X. cumberlandia 075f       BRY-55219       HMS79085       HMS78676       HMS77965       HMS78353       HMS79490       HMS77577         X. cumberlandia 076f       BRY-55227       HMS79085       HMS78766       HMS77966       HMS78354       HMS79526       HMS7757614         X. cumberlandia 175f       BRY-55275       HMS79140       HMS78729       HMS78020       HMS78401       HMS79551       -         X. cumberlandia 179f       BRY-55281       HMS79144       HMS78736       -       HMS78401       HMS79551       -       -         X. cumberlandia 191f                                                                                                                                                                                                                                                                                                                                                                 | V oumboulandia 062f     | DDV 55209  | 1111570074 | 1111570662 | 1111577057         | 1111570242  | 111/570/00       | UM577560    |
| X. cumberlandia 064f       BRY-55209       HM579075       HM578664       HM577958       HM578344       HM579481       -         X. cumberlandia 065f       BRY-55210       HM579076       HM578665       -       HM578345       -       HM577570.         X. cumberlandia 066f       BRY-55211       -       HM578666       -       -       -       HM577571.         X. cumberlandia 071f       BRY-55216       HM579081       HM578671       -       HM578350       HM579486          X. cumberlandia 071f       BRY-55219       HM579082       HM578672       HM577963       HM578350       HM579487          X. cumberlandia 075f       BRY-55211       HM579086       HM578675       HM577963       HM578353       HM579490       HM577577         X. cumberlandia 076f       BRY-55221       HM579086       HM578676       HM577966       HM578354       HM579491       HM577578         X. cumberlandia 175f       BRY-55277       HM579122       HM578729       HM578020       HM578400       HM579544       HM577631         X. cumberlandia 179f       BRY-55281       HM579140       HM578734       -       HM578401       HM5795551       -         X. cumberlandia 191f       BRY-55282       HM579148                                                                                                                                                                                                                                                                                                                                                                                 |                         | DK1-33208  | HWI379074  | HWI378003  | HWI377937          | HN1378343   | HWIJ/9460        | HWG77509.   |
| X. cumberlandia 065f       BRY-55210       HM579076       HM578665       -       HM578345       -       HM577570.         X. cumberlandia 071f       BRY-55211       -       HM579866       -       -       -       HM577570.         X. cumberlandia 071f       BRY-55216       HM579081       HM578671       -       HM578349       HM579486          X. cumberlandia 072f       BRY-55217       HM579082       HM578672       HM57765       HM578353       HM579489          X. cumberlandia 075f       BRY-55220       HM579085       HM578675       HM577765       HM578353       HM579490       HM577577         X. cumberlandia 076f       BRY-55221       HM579086       HM578676       HM577866       HM578354       HM579490       HM577578         X. cumberlandia 138f       BRY-55275       HM579122       HM578729       HM578020       HM578400       HM579546       HM577631         X. cumberlandia 175f       BRY-55281       HM579140       HM578734       -       HM578400       HM579550       -       -         X. cumberlandia 191f       BRY-55281       HM579148       HM578736       -       HM578400       HM579550       -         X. cumberlandia 192f       BRY-55281       HM579148<                                                                                                                                                                                                                                                                                                                                                                                 | X. cumberlandia 064f    | BRY-55209  | HM579075   | HM578664   | HM577958           | HM578344    | HM579481         |             |
| X. cumberlandia 066f         BRY-55211         HM578666         HM578671         HM578349         HM579486         HM577971.           X. cumberlandia 071f         BRY-55216         HM579081         HM578671         HM5778349         HM579486            X. cumberlandia 072f         BRY-55217         HM579082         HM578672         HM577963         HM578350         HM579487            X. cumberlandia 074f         BRY-55219         HM579082         HM578672         HM577965         HM578352         HM579490         HM577577           X. cumberlandia 076f         BRY-55221         HM579086         HM578675         HM577966         HM578354         HM579490         HM577578           X. cumberlandia 138f         BRY-55277         HM579122         HM578728         HM578002         HM578384         HM579526         HM577614           X. cumberlandia 175f         BRY-55275         HM579140         HM578728         HM578020         HM578400         HM579550         -           X. cumberlandia 191f         BRY-55281         HM579147         HM578734         -         HM578401         HM579550         -           X. cumberlandia 192f         BRY-55283         HM579148         HM578737         -         HM578408         HM579553                                                                                                                                                                                                                                                                                                             | X. cumberlandia 065f    | BRY-55210  | HM579076   | HM578665   | -                  | HM578345    | -                | HM577570.   |
| X. cumberlandia 071f       BRY-55216       HM579081       HM578671       -       HM578349       HM579486          X. cumberlandia 072f       BRY-55217       HM579082       HM578672       HM577963       HM578350       HM579487          X. cumberlandia 074f       BRY-55219       HM579084       HM578674       -       HM578352       HM579489          X. cumberlandia 076f       BRY-55220       HM579085       HM578675       HM577966       HM578353       HM579490       HM577577         X. cumberlandia 076f       BRY-55221       HM579086       HM578676       HM578020       HM578354       HM579491       HM577578         X. cumberlandia 175f       BRY-55277       HM579122       HM57812       HM578020       HM578340       HM579544       HM577631         X. cumberlandia 179f       BRY-55276       HM579141       HM578736       -       HM578400       HM579550       -         X. cumberlandia 191f       BRY-55281       HM579148       HM578736       -       HM578406       HM579550       -         X. cumberlandia 192f       BRY-55283       HM579148       HM578737       -       HM578407       HM579555       -         X. cumberlandia 193f       BRY-55284       HM579148                                                                                                                                                                                                                                                                                                                                                                                     | X. cumberlandia 066f    | BRY-55211  | -          | HM578666   | -                  | -           | -                | HM577571.   |
| X. cumberlandia 0711       BRY-55217       HM579081       HM579081       HM570671       FT       HM570349       HM579480          X. cumberlandia 072f       BRY-55219       HM579082       HM578672       HM578352       HM579489          X. cumberlandia 075f       BRY-55219       HM579085       HM578675       HM578533       HM579490       HM577577         X. cumberlandia 076f       BRY-55221       HM579086       HM578676       HM578002       HM578354       HM579491       HM577578         X. cumberlandia 138f       BRY-55257       HM579122       HM578020       HM578400       HM579526       HM577631         X. cumberlandia 175f       BRY-55275       HM579140       HM578728       HM578020       HM578400       HM579544       HM577632         X. cumberlandia 191f       BRY-55281       HM579146       HM578734       -       HM579455       -       -         X. cumberlandia 192f       BRY-55281       HM579148       HM578736       -       -       HM579550       -       -       -       HM579550       -       -       -       HM579551       -       -       -       -       HM579551       -       -       -       HM579553       HM577635       -       -                                                                                                                                                                                                                                                                                                                                                                                                    | V aumhandia 071f        | BBV 55216  | HM570081   | HM578671   |                    | HM578340    | HM570486         |             |
| A. cumberlanda 0721       BKY-53217       HM579082       HM578072       HM578074       HM578352       HM579487          X. cumberlandia 075f       BRY-55219       HM579084       HM578674       -       HM578352       HM579489          X. cumberlandia 075f       BRY-55220       HM579085       HM578675       HM577965       HM578353       HM579490       HM577577         X. cumberlandia 138f       BRY-55221       HM579086       HM578676       HM578002       HM578354       HM579491       HM577578         X. cumberlandia 138f       BRY-55257       HM579122       HM578712       HM578002       HM578400       HM579526       HM577614         X. cumberlandia 179f       BRY-55275       HM579140       HM578728       HM578020       HM578400       HM579544       HM577632         X. cumberlandia 191f       BRY-55281       HM579146       HM578734       -       HM578407       HM579550       -         X. cumberlandia 192f       BRY-55284       HM579148       HM578737       -       HM578407       HM579553       HM577636         X. cumberlandia 194f       BRY-55284       HM579149       HM578737       -       HM578408       HM579553       HM577636         X. cumberlandia 198f       BRY-55286 </th <th>A. cumber and 0/11</th> <th>DR1-33210</th> <th>IN 1570002</th> <th>1111570071</th> <th>-</th> <th>11113/0349</th> <th>IN 1570 407</th> <th></th>                                                                                                                                                                                                       | A. cumber and 0/11      | DR1-33210  | IN 1570002 | 1111570071 | -                  | 11113/0349  | IN 1570 407      |             |
| X. cumberlandia 074fBRY-55219HM579084HM578674-HM578352HM579489X. cumberlandia 075fBRY-55220HM579085HM578675HM577655HM578353HM579490HM577577X. cumberlandia 076fBRY-55221HM579086HM578676HM577666HM578354HM579491HM577578X. cumberlandia 138fBRY-55257HM579122HM578712HM578002HM578384HM579526HM577614X. cumberlandia 175fBRY-55275HM579140HM578728HM578020HM578400HM579544HM577631X. cumberlandia 191fBRY-55281HM579146HM578734-HM578400HM579550-X. cumberlandia 191fBRY-55282HM579147HM578735-HM578407HM579550-X. cumberlandia 192fBRY-55283HM579148HM578736HM578407HM579553HM577635X. cumberlandia 198fBRY-55284HM579149HM578737-HM578408HM579553HM577636X. cumberlandia 198fBRY-55286HM579151HM578739HM578025HM578410HM579555HM577638X. cumberlandia 198fBRY-55318HM579182HM578770HM578056HM578433HM579586HM577668X. lipochlorochroa 280fBRY-55319HM579184HM578771HM578056HM578434HM579577HM579577667X. lipochlorochroa 231fBRY-55303HM579168HM578766HM578054HM578434HM579578HM577666X. neochloro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X. cumberlandia 0/21    | BKY-55217  | HM5/9082   | HM5/86/2   | HM5//963           | HM5/8350    | HM5/948/         |             |
| X. cumberlandia 075f         BRY-55220         HM579085         HM578675         HM577965         HM578353         HM579490         HM577577           X. cumberlandia 076f         BRY-55221         HM579086         HM578676         HM577966         HM578354         HM579491         HM577578           X. cumberlandia 138f         BRY-55257         HM579122         HM578076         HM578002         HM578384         HM579526         HM577614           X. cumberlandia 175f         BRY-55275         HM579140         HM578728         HM578002         HM578400         HM579544         HM577631           X. cumberlandia 179f         BRY-55276         HM579140         HM578728         HM578020         HM578400         HM579545         HM577632           X. cumberlandia 191f         BRY-55281         HM579146         HM578736         -         HM578406         HM579550         -           X. cumberlandia 192f         BRY-55283         HM579147         HM578736         -         HM578407         HM579550         -           X. cumberlandia 192f         BRY-55284         HM579149         HM578737         -         HM578408         HM579553         HM577636           X. cumberlandia 198f         BRY-55286         HM579151         HM578739         HM578055                                                                                                                                                                                                                                                                                      | X. cumberlandia 074f    | BRY-55219  | HM579084   | HM578674   | -                  | HM578352    | HM579489         |             |
| X. cumberlandia 076f         BRY-55221         HM579086         HM578676         HM577966         HM578354         HM579491         HM577578           X. cumberlandia 138f         BRY-55257         HM579122         HM578712         HM578002         HM578384         HM579526         HM577614           X. cumberlandia 175f         BRY-55275         HM579140         HM578728         HM578020         HM578400         HM579544         HM577631           X. cumberlandia 179f         BRY-55276         HM579140         HM578729         HM578020         HM578400         HM579545         HM577632           X. cumberlandia 191f         BRY-55281         HM579146         HM578734         -         HM578406         HM579550         -           X. cumberlandia 192f         BRY-55282         HM579147         HM578735         -         HM578407         HM579551         -           X. cumberlandia 194f         BRY-55283         HM579149         HM578737         -         HM578408         HM579553         HM577636           X. cumberlandia 198f         BRY-55286         HM579151         HM578739         HM578025         HM578408         HM579555         HM577638           X. cumberlandia 198f         BRY-55308         HM579171         HM578739         HM578757                                                                                                                                                                                                                                                                                      | X. cumberlandia 075f    | BRY-55220  | HM579085   | HM578675   | HM577965           | HM578353    | HM579490         | HM577577    |
| X. cumberlandia 0701       BRY-55221       HM579000       HM57700       HM57700       HM57700       HM577010       HM577011       HM577010       HM578000       HM5779540       HM577631       X. cumberlandia 1916       BRY-55206       HM579141       HM578732       HM578001       HM578400       HM579550       -       -       -       HM579550       -       -       -       HM579550       -       -       -       HM579551       -       -       -       -       HM579550                                                                                                                                                                                                                                                                                                                                                                                    | Y cumberlandia 076f     | BRV-55221  | HM579086   | HM578676   | HM577966           | HM578354    | HM579/91         | HM577578    |
| X. cumberlandia 1381       BRY-55257       HM579122       HM578712       HM578002       HM578384       HM579526       HM577614         X. cumberlandia 175f       BRY-55275       HM579140       HM578728       HM578020       HM578400       HM579544       HM577631         X. cumberlandia 179f       BRY-55276       HM579141       HM578729       HM578021       HM578400       HM579544       HM577632         X. cumberlandia 191f       BRY-55281       HM579146       HM578734       -       HM578406       HM579550       -         X. cumberlandia 192f       BRY-55282       HM579147       HM578735       -       HM578406       HM579551       -         X. cumberlandia 194f       BRY-55283       HM579148       HM578736       -       -       HM578408       HM579553       HM577635         X. cumberlandia 198f       BRY-55286       HM579151       HM578737       -       HM578408       HM579555       HM577636         X. cumberlandia 198f       BRY-55286       HM579167       HM578739       HM578025       HM578410       HM579555       HM577638         X. cumberlandia 903f       BRY-55318       HM579182       HM578770       HM578056       HM578433       HM579586       HM577668         X. lipochlorochroa 281f<                                                                                                                                                                                                                                                                                                                                               |                         | DR 1-55221 | IIWI379000 | IN1570070  | IIWI377900         | 11111370334 | IIWIJ79491       | IIN1577576  |
| X. cumberlandia 175f       BRY-55275       HM579140       HM578728       HM578020       HM578400       HM579544       HM577631         X. cumberlandia 179f       BRY-55276       HM579141       HM578729       HM578021       HM578401       HM579545       HM577632         X. cumberlandia 191f       BRY-55281       HM579146       HM578734       -       HM578406       HM579550       -         X. cumberlandia 192f       BRY-55282       HM579147       HM578735       -       HM578407       HM579551       -         X. cumberlandia 194f       BRY-55283       HM579148       HM578736       -       -       HM579552       HM577635         X. cumberlandia 195f       BRY-55284       HM579148       HM578737       -       HM578408       HM579553       HM577636         X. cumberlandia 198f       BRY-55286       HM579151       HM578739       HM578025       HM578408       HM579553       HM577636         X. cumberlandia 198f       BRY-55308       HM579167       HM578739       HM578025       HM578431       HM579555       HM577638         X. cumberlandia 903f       BRY-55318       HM579182       HM578770       HM578056       HM578433       HM579586       HM579586       HM577668         X. lipochlorochroa 281f<                                                                                                                                                                                                                                                                                                                                               | X. cumberlandia 138f    | BK 1-35257 | HM5/9122   | HM5/8/12   | HM5/8002           | HM5/8384    | HM5/9526         | HM5//614    |
| X. cumberlandia 179f       BRY-55276       HM579141       HM578729       HM578021       HM578401       HM579545       HM577632         X. cumberlandia 191f       BRY-55281       HM579146       HM578734       -       HM578406       HM579550       -         X. cumberlandia 192f       BRY-55282       HM579147       HM578735       -       HM578407       HM579550       -         X. cumberlandia 192f       BRY-55282       HM579147       HM578735       -       HM578407       HM579551       -         X. cumberlandia 194f       BRY-55283       HM579148       HM578736       -       -       HM579552       HM577635         X. cumberlandia 198f       BRY-55284       HM579149       HM578737       -       HM578408       HM579555       HM577636         X. cumberlandia 198f       BRY-55286       HM579151       HM578739       HM578025       HM578408       HM579555       HM577638         X. cumberlandia 903f       BRY-55318       HM579182       HM578770       HM578056       HM578433       HM579586       HM579588       HM579586                                                                                                                                                                                                                                                                                                                                                 | X. cumberlandia 175f    | BRY-55275  | HM579140   | HM578728   | HM578020           | HM578400    | HM579544         | HM577631    |
| X. cumberlandia 191f       BRY-55281       HM579146       HM578734       -       HM578406       HM579550       -         X. cumberlandia 192f       BRY-55282       HM579147       HM578735       -       HM578407       HM579550       -         X. cumberlandia 194f       BRY-55283       HM579147       HM578735       -       HM578407       HM579550       -         X. cumberlandia 194f       BRY-55283       HM579148       HM578736       -       -       HM579552       HM577635         X. cumberlandia 195f       BRY-55284       HM579149       HM578737       -       HM578408       HM579553       HM577636         X. cumberlandia 198f       BRY-55286       HM579151       HM578739       HM578025       HM578410       HM579555       HM577638         X. cumberlandia 903f       BRY-55508       HM579367       HM578770       HM578056       HM579753       HM577668         X. lipochlorochroa 280f       BRY-55318       HM579183       HM578771       HM578056       HM578434       HM579587       HM577669         X. lipochlorochroa 281f       BRY-55303       HM579168       HM578756       HM578435       HM579572       HM577657         X. neochlorochroa 278f       BRY-55316       HM579160       HM578768                                                                                                                                                                                                                                                                                                                                                        | X. cumberlandia 179f    | BRY-55276  | HM579141   | HM578729   | HM578021           | HM578401    | HM579545         | HM577632    |
| X. cumberlandia 1911       BRY-55281       HM579140       HM578735       -       HM578400       HM579500         X. cumberlandia 194f       BRY-55282       HM579147       HM578735       -       HM578407       HM579552       HM579553         X. cumberlandia 194f       BRY-55283       HM579148       HM578736       -       -       HM579552       HM577635         X. cumberlandia 195f       BRY-55284       HM579149       HM578737       -       HM578408       HM579553       HM577636         X. cumberlandia 198f       BRY-55286       HM579151       HM578739       HM578025       HM578410       HM579555       HM577638         X. cumberlandia 903f       BRY-55508       HM579367       HM578770       HM578055       HM579575       HM5777848         X. lipochlorochroa 280f       BRY-55318       HM579182       HM578770       HM578056       HM578433       HM579586       HM577668         X. lipochlorochroa 281f       BRY-55319       HM579184       HM578772       HM578057       HM578434       HM579587       HM577669         X. lipochlorochroa 231f       BRY-55316       HM579184       HM578756       HM578422       HM579572       HM577655         X. neochlorochroa 278f       BRY-55316       HM579180       HM578768<                                                                                                                                                                                                                                                                                                                                      | Y cumberlandia 191f     | BRV-55281  | HM579146   | HM578734   | _                  | HM578406    | HM579550         |             |
| A. cumberlandia 1921       BK 1-35282       HM579147       HM578735       -       HM578407       HM579551       -         X. cumberlandia 194f       BRY-55283       HM579148       HM578736       -       -       HM579552       HM577635         X. cumberlandia 195f       BRY-55284       HM579148       HM578737       -       HM578408       HM579553       HM577636         X. cumberlandia 198f       BRY-55286       HM579151       HM578739       HM578025       HM578410       HM579553       HM577638         X. cumberlandia 903f       BRY-55286       HM579167       HM578960       HM578237       HM578410       HM579555       HM577638         X. lipochlorochroa 280f       BRY-55318       HM579182       HM578770       HM578056       HM578433       HM579586       HM577668         X. lipochlorochroa 281f       BRY-55303       HM579184       HM578772       HM578455       HM579588       HM579588       HM577670         X. lipochlorochroa 281f       BRY-55303       HM579168       HM578756       HM578422       HM579572       HM577655         X. neochlorochroa 278f       BRY-55316       HM579180       HM578768       HM578431       HM579584       HM577666         X. neochlorochroa 279f       BRY-55317       HM57918                                                                                                                                                                                                                                                                                                                                      | V august J 1026         | DDV 55202  | IIM 570147 | IIM 570735 | -                  | 1111570407  | IIME70551        |             |
| X. cumberlandia 194f       BRY-55283       HM579148       HM578736       -       -       HM579552       HM577635         X. cumberlandia 195f       BRY-55284       HM579149       HM578737       -       HM578408       HM579553       HM577636         X. cumberlandia 198f       BRY-55286       HM579151       HM578737       -       HM578408       HM579555       HM577636         X. cumberlandia 198f       BRY-55286       HM579151       HM578739       HM578025       HM578410       HM579555       HM577638         X. cumberlandia 903f       BRY-55308       HM579367       HM578739       HM578237       HM578575       HM579753       HM577848         X. lipochlorochroa 280f       BRY-55318       HM579182       HM578770       HM578056       HM578433       HM579586       HM577668         X. lipochlorochroa 281f       BRY-55319       HM579183       HM578772       HM578454       HM579578       HM579578       HM579578       HM577670         X. neochlorochroa 231f       BRY-55316       HM579168       HM578766       HM578422       HM579572       HM577655         X. neochlorochroa 278f       BRY-55316       HM579180       HM578769       HM578055       HM578432       HM579585       HM577666         X. neochlorochroa                                                                                                                                                                                                                                                                                                                                      | A. cumberianaia 1921    | BK 1-35282 | HNI5/914/  | HND/8/35   | -                  | HIVI3/840/  | HNI3/9351        | -           |
| X. cumberlandia 195f         BRY-55284         HM579149         HM578737         -         HM578408         HM579553         HM577636           X. cumberlandia 198f         BRY-55286         HM579151         HM578739         HM578025         HM578410         HM579555         HM577638           X. cumberlandia 903f         BRY-55286         HM579367         HM578739         HM578025         HM578410         HM579555         HM577638           X. cumberlandia 903f         BRY-55508         HM579367         HM578760         HM578237         HM578575         HM579753         HM577848           X. lipochlorochroa 280f         BRY-55318         HM579182         HM578770         HM578056         HM578433         HM579586         HM577668           X. lipochlorochroa 281f         BRY-55319         HM579183         HM578772         HM578057         HM578434         HM579587         HM577669           X. lipochlorochroa 281f         BRY-55303         HM579184         HM578772         HM578058         HM578435         HM579572         HM577670           X. neochlorochroa 231f         BRY-55316         HM579180         HM578768         HM578422         HM579572         HM577555           X. neochlorochroa 278f         BRY-55317         HM579180         HM578769         HM5780                                                                                                                                                                                                                                                                | X. cumberlandia 194f    | BRY-55283  | HM579148   | HM578736   | -                  | -           | HM579552         | HM577635    |
| X. cumberlandia 198f         BRY-55286         HM579151         HM578739         HM578025         HM578410         HM579555         HM577638           X. cumberlandia 903f         BRY-55286         HM579367         HM578739         HM578025         HM578410         HM579555         HM577638           X. lipochlorochroa 280f         BRY-55318         HM579182         HM578770         HM578056         HM578433         HM579586         HM577668           X. lipochlorochroa 281f         BRY-55319         HM579183         HM578771         HM578057         HM578434         HM579587         HM577669           X. lipochlorochroa 282f         BRY-55303         HM579184         HM578772         HM578058         HM578435         HM579588         HM577670           X. neochlorochroa 231f         BRY-55303         HM579168         HM578756         HM578054         HM578431         HM579572         HM577655           X. neochlorochroa 278f         BRY-55316         HM579180         HM578768         HM578054         HM578431         HM579584         HM577666           X. neochlorochroa 279f         BRY-55317         HM579181         HM578769         HM578055         HM578432         HM579585         HM577667                                                                                                                                                                                                                                                                                                                                        | X. cumberlandia 195f    | BRY-55284  | HM579149   | HM578737   | -                  | HM578408    | HM579553         | HM577636    |
| X. cumberlandia 903f       BRY-55205       HM579157       HM576759       HM578025       HM5780410       HM579535       HM579535         X. cumberlandia 903f       BRY-55208       HM579367       HM578759       HM578057       HM578575       HM579535       HM5797848         X. lipochlorochroa 280f       BRY-55318       HM579182       HM578770       HM578056       HM578433       HM579586       HM579668         X. lipochlorochroa 281f       BRY-55319       HM579183       HM578771       HM578057       HM578434       HM579587       HM577669         X. lipochlorochroa 281f       BRY-55300       HM579184       HM578772       HM578455       HM579588       HM577670         X. neochlorochroa 231f       BRY-55303       HM579168       HM578756       HM578422       HM579572       HM577655         X. neochlorochroa 278f       BRY-55316       HM579180       HM578769       HM578055       HM578431       HM579584       HM577666         X. neochlorochroa 279f       BRY-55317       HM579181       HM578769       HM578055       HM578432       HM579585       HM577667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Y cumberlandia 108f     | BRY-55286  | HM570151   | HM578730   | HM578025           | HM578410    | HM579555         | HM577638    |
| A. cumberianiai 9031       BK 1-35308       HM57/9307       HM57/8500       HM57/8237       HM57/8575       HM57/9753       HM57/848         X. lipochlorochroa 280f       BRY-55318       HM579182       HM578770       HM578056       HM578433       HM579586       HM577668         X. lipochlorochroa 281f       BRY-55319       HM579183       HM578771       HM578057       HM578434       HM579587       HM577669         X. lipochlorochroa 282f       BRY-55303       HM579164       HM578772       HM578058       HM578435       HM579588       HM577670         X. neochlorochroa 231f       BRY-55303       HM579168       HM578756       HM578422       HM579572       HM577655         X. neochlorochroa 278f       BRY-55317       HM579180       HM578769       HM578055       HM578432       HM579585       HM577667         X. neochlorochroa 279f       BRY-55317       HM579181       HM578769       HM578055       HM578432       HM579585       HM577667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V aumberturutt 1701     | DDV 55500  | IIM570267  | IIM570020  | 1111570025         | IIM 570575  | IIM570752        | 1111577040  |
| X. lipochlorochroa 280f         BRY-55318         HM579182         HM578770         HM578056         HM578433         HM579586         HM577668           X. lipochlorochroa 281f         BRY-55319         HM579183         HM578771         HM578057         HM578434         HM579587         HM577669           X. lipochlorochroa 282f         BRY-55320         HM579184         HM578772         HM578058         HM578434         HM579588         HM577670           X. neochlorochroa 231f         BRY-55303         HM579168         HM578756         HM578042         HM578422         HM579572         HM577655           X. neochlorochroa 278f         BRY-55316         HM579180         HM578768         HM578054         HM578431         HM579584         HM577666           X. neochlorochroa 279f         BRY-55317         HM579181         HM578769         HM578055         HM578432         HM579585         HM577667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A. cumberianaia 9031    | ык 1-55508 | HIM5/936/  | HIVI578960 | HM5/823/           | HM2/82/2    | HM5/9/53         | HIVI3//848  |
| X. lipochlorochroa 281f         BRY-55319         HM579183         HM578771         HM578057         HM578434         HM579587         HM577669           X. lipochlorochroa 282f         BRY-55320         HM579184         HM578772         HM578058         HM578435         HM579588         HM577670           X. neochlorochroa 231f         BRY-55303         HM579168         HM578756         HM578042         HM578422         HM579572         HM577655           X. neochlorochroa 278f         BRY-55316         HM579180         HM578768         HM578054         HM578431         HM579584         HM577666           X. neochlorochroa 279f         BRY-55317         HM579181         HM578769         HM578055         HM578432         HM579585         HM577667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X. lipochlorochroa 280f | BRY-55318  | HM579182   | HM578770   | HM578056           | HM578433    | HM579586         | HM577668    |
| X. lipochlorochroa         282f         BRY-55320         HM579184         HM578772         HM578058         HM578435         HM579588         HM577670           X. neochlorochroa         231f         BRY-55303         HM579168         HM578756         HM578042         HM578422         HM579572         HM577655           X. neochlorochroa         278f         BRY-55316         HM579180         HM578768         HM578054         HM578431         HM579584         HM577666           X. neochlorochroa         279f         BRY-55317         HM579181         HM578769         HM578055         HM578432         HM579585         HM577667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | X. lipochlorochroa 281f | BRY-55319  | HM579183   | HM578771   | HM578057           | HM578434    | HM579587         | HM577669    |
| X. neochlorochroa 231f         BRY-55303         HM579164         HM578756         HM578042         HM578422         HM579572         HM577655           X. neochlorochroa 278f         BRY-55316         HM579180         HM578768         HM578054         HM578431         HM579584         HM577666           X. neochlorochroa 279f         BRY-55317         HM579181         HM578769         HM578055         HM578432         HM579585         HM577667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | X linochlarachrog 282f  | BRY-55320  | HM570184   | HM578772   | HM578058           | HM578435    | HM570588         | HM577670    |
| A. neochiorochroa 2511         BK 1-35303         HM5/9108         HM5/8/30         HM5/8042         HM5/8422         HM5/95/2         HM5//655           X. neochlorochroa 278f         BRY-55316         HM579180         HM578768         HM578054         HM578431         HM579584         HM577666           X. neochlorochroa 279f         BRY-55317         HM579181         HM578769         HM578055         HM578432         HM579585         HM577667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V naaahlarii - 1        | DDV 55202  | IIM570160  | IIM570757  | 1111570040         | 1111570400  | 1111579500       | IIM57765    |
| X. neochlorochroa 278f         BRY-55316         HM579180         HM578768         HM578054         HM578431         HM579584         HM577666           X. neochlorochroa 279f         BRY-55317         HM579181         HM578769         HM578055         HM578432         HM579585         HM577667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A. neocniorocnroa 2511  | DK 1-33303 | ПNI3/9108  | пиз/8/30   | пиі <i>3</i> 78042 | mwi378422   | пи <i>5/95/2</i> | CC0//CIVIT  |
| <i>X. neochlorochroa</i> <b>279f</b> BRY-55317 HM579181 HM578769 HM578055 HM578432 HM579585 HM577667                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X. neochlorochroa 278f  | BRY-55316  | HM579180   | HM578768   | HM578054           | HM578431    | HM579584         | HM577666    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | X. neochlorochroa 279f  | BRY-55317  | HM579181   | HM578769   | HM578055           | HM578432    | HM579585         | HM577667    |

| X. neochlorochroa 337f | BRY-55366 | HM579228 | HM578816 | HM578102 | HM578463 | HM579630 | HM577714 |
|------------------------|-----------|----------|----------|----------|----------|----------|----------|
| X. neowyomingica 046f  | BRY-55194 | HM579062 | HM578650 | HM577945 | HM578331 | HM579468 | HM577558 |
| X. neowyomingica 121f  | BRY-55242 | HM579107 | HM578697 | HM577987 | -        | HM579511 | HM577599 |
| X. neowyomingica 122f  | BRY-55243 | HM579108 | HM578698 | HM577988 | HM578370 | HM579512 | HM577600 |
| X. neowyomingica 123f  | BRY-55244 | HM579109 | HM578699 | HM577989 | HM578371 | HM579513 | HM577601 |
| X. neowyomingica 124f  | BRY-55245 | HM579110 | HM578700 | HM577990 | HM578372 | HM579514 | HM577602 |
| X. neowyomingica 125f  | BRY-55246 | HM579111 | HM578701 | HM577991 | HM578373 | HM579515 | HM577603 |
| X. neowyomingica 464f  | BRY-55407 | HM579269 | HM578857 | HM578139 | HM578502 | HM579666 | HM577755 |
| X. norchlorochroa 007f | BRY-55157 | HM579025 | HM578613 | HM577911 | HM578302 | HM579432 | HM577522 |
| X. norchlorochroa 013f | BRY-55163 | HM579031 | HM578619 | HM577917 | HM578308 | HM579438 | HM577528 |
| X. norchlorochroa 771f | BRY-55447 | HM579307 | HM578899 | HM578178 | HM578532 | HM579693 | HM577788 |
| X. vagans 079f         | BRY-55222 | HM579087 | HM578677 | HM577967 | -        | HM579492 | HM577579 |
| X. vagans 080f         | BRY-55223 | HM579088 | HM578678 | HM577968 | -        | HM579493 | HM577580 |
| X. vagans 222f         | BRY-55298 | HM579163 | HM578751 | HM578037 | -        | HM579567 | HM577650 |
| X. vagans 261f         | BRY-55309 | HM579173 | HM578761 | HM578047 | -        | HM579577 | HM577659 |
| X. wyomingica 136f     | BRY-55256 | HM579121 | HM578711 | HM578001 | HM578383 | HM579525 | HM577613 |
| X. wyomingica 501f     | BRY-55424 | HM579285 | HM578874 | HM578156 | HM578512 | HM579681 | HM577770 |
| X. wyomingica 502f     | BRY-55425 | HM579286 | HM578875 | HM578157 | -        | -        | HM577771 |
| X. wyomingica 826f     | BRY-55501 | HM579360 | HM578953 | HM578232 | HM578571 | HM579746 | HM577841 |
| X. wyomingica 827f     | BRY-55502 | HM579316 | HM578964 | -        | HM578572 | HM579747 | HM577842 |
| X. wyomingica 950f     | BRY-55552 | HM579411 | HM579005 | HM578281 | -        | -        | HM577890 |

Supplementary data 3.3 (three subsequent pages). Concatenated ribosomal (LSU, ITS, IGS, group I intron),  $\beta$ -tubulin, and *MCM7* gene trees.


**Supplementary data 3.3a.** ML topology estimated from concatenated ribosomal markers (LSU, ITS, IGS, and group I intron), with bootstrap values > 50 indicated at nodes.



**Supplementary data 3.3b.** ML topology estimated from  $\beta$ -tubulin fragment, with bootstrap values > 50 indicated at nodes.



**Supplementary data 3.3c.** ML topology estimated from *MCM7* fragment, with bootstrap values > 50 shown at nodes.