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abstract

Topics Pertaining to the Group Matrix: k-Characters and Random Walks

Randall D. Reese
Department of Mathematics, BYU

Master of Science

Linear characters of finite groups can be extended to take k operands. The basics of such
a k-fold extension are detailed. We then examine a proposition by Johnson and Sehgal [29]
pertaining to these k-characters and disprove its converse.

Probabilistic models can be applied to random walks on the Cayley groups of finite order.
We examine random walks on dihedral groups which converge after a finite number of steps
to the random walk induced by the uniform distribution. We present both sufficient and
necessary conditions for such convergence and analyze aspects of algebraic geometry related
to this subject.

Keywords: k-characters, group determinant, random walks, branched covering
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Chapter 1. Introduction

1.1 Introduction and History

Following preliminary work by C.F. Gauss and R. Dedekind, representation theory was

formalized by F.G. Frobenius about 120 years ago in a series of seminal papers published in

1896 and 1897 (See [5, p. 41,59],[12]). Frobenius’ work focused on the factorization of the

group determinant and generalized the representation theory of finite abelian groups to that

of any finite group. Scholars such as Burnside, Maschke, Schur,1 and Brauer furthered the

field of representation theory leading into the twentieth century.

In this thesis we consider several topics relevant to the group matrix, namely factoring

the group determinant (Chapters 2 to 4) and random walks on finite groups (Chapter 5).

The thesis concludes with suggestions for further research (Chapter 6).

1.2 Representations

Throughout this work, G is an arbitrary finite group. R and C represent the real and complex

numbers respectively. Unless otherwise noted, p can be taken to be a prime integer. We use

ρ to denote a representation, as defined below.

Definition 1.1. A representation of a group G over a finite-dimensional complex vector

space V is a homomorphism % from G to GL(V ).

The degree of ρ is the dimension of V . We say that ρ is irreducible if the corresponding

CG-module given by vg = v·ρ(g) (with v ∈ V, g ∈ G) is non-zero and has no CG-submodules

besides {0} and V . As is seen by this notation our action will be on the right.

Proposition 1.2. Any representation of degree 1 is irreducible.

Proof. Let ρ be a degree 1 representation. Then ρ must correspond to a CG module of

1A student of Frobenius!
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dimension 1 over C. As the only submodules of such a CG module are {0} and the whole

module, ρ must be irreducible.

Proposition 1.3. [25, p. 82] If G is abelian, every irreducible representation of G has

dimension 1.

Definition 1.4. Two representations ρ1 : G → GL(V ) and ρ2 : G → GL(V ) are said to

be equivalent (or similar) if there is a T ∈ GL(V ) such that T ◦ ρ1(g) ◦ T−1 = ρ2(g) for all

g ∈ G. This is equivalent to the associated CG modules of ρ1 and ρ2 being isomorphic (see

[8, p. 846–847].)

Definition 1.5. One fundamental representation is the trivial representation. The trivial

representation takes all elements of G to the identity element of GL(C).

Definition 1.6. Another important representation is the regular representation. The regular

representation is given by the natural action of G on the group algebra CG. Explicitly,

G = {g1, g2, . . . , gn} (these forming the basis of CG), g · gi = ggi.

1.3 Characters

Unless otherwise noted, χ denotes a character of G, as defined below.

Definition 1.7. Given a representation ρ of G, we associate to ρ a function χ : G → C

defined by χ(g) = tr ρ(g). Here tr is the trace function. We refer to χ as the character

afforded by ρ.

As with representations, the degree of a character is the degree of the associated rep-

resentation and module. Furthermore, an irreducible character is one associated with an

irreducible representation. The set of irreducible characters of G is denoted Irr(G). Any

character is a class function on G, meaning that for all g, h ∈ G, χ(g) = χ(hgh−1). Charac-

ters of a number of groups will play a critical role in the first portion of this thesis.

2



Theorem 1.8. [25, p. 246] If χ is a character of G and g ∈ G, then χ(g) is an algebraic

integer.

The most rudimentary of characters is the trivial character, the character afforded by

the trivial representation (Definition 1.5). The trivial character has degree 1, and for each

g ∈ G, χ(g) = 1. A character of particular interest is the regular character, the character

afforded by the regular representation (Definition 1.6). Here we denote the regular character

by π : G → C. The regular character has values as described in Table 1.1, where |G| = n.

The next theorem is an alternate version of a theorem found on [25, p. 127] (the proof of

Table 1.1: Regular Character for G

id g 6= id

π n 0

which employs module theory and will not be discussed herein).

Theorem 1.9. For a finite group G, let Irr(G) = {χ1, χ2, . . . , χk}. The regular character

π can be decomposed into a sum of irreducible characters of G, with summand multiplicity

being given by the degree, di, of the irreducible character in question. (With χ1 being the

trivial character, d1 = 1 of course.) Thus

π = χ1 + d2χ2 + · · ·+ dkχk.

Corollary 1.10. [31, p. 18]

(a) The degrees di satisfy
∑k

i=1 d
2
i = |G|;

(b) If s ∈ G is not the identity, then
∑k

i=1 diχi(s) = 0.

Theorem 1.11. [31, p. 19] The number of irreducible characters of a group G is equal to the

number of conjugacy classes of G. That is, |Irr(G)| = k, where k is the number of conjugacy

classes of G.

3



Characters for arbitrary finite groups were first defined by Frobenius in his 1896 work

Über Gruppencharaktere [12] (as cited in [3]) for use in factoring the group determinant.

Chapter 2 will further explicate this topic. Character values for different characters of G can

be summarized in a character table.

Definition 1.12. [25, p. 159] Let Irr(G) = {χ1, χ2, . . . , χk} and let g1, g2, . . . , gk be conju-

gacy class representatives. The k × k matrix with ij-entry χi(gj) is the character table of

G.

Theorem 1.13. [25, p. 160] The character table of a group G is an invertible matrix.

Example. A group of relative importance in this thesis is the dihedral group of order 10,

denoted herein as D10 = 〈r, s | r5 = s2 = id, s−1rs = r−1〉. D10 has four conjugacy classes:

{id}, {r, r4}, {r2, r3}, and {s, sr, sr2, sr3, sr4}. The associated character table of D10 is

given in Table 1.2 with columns designated by conjugacy class representative. See also [25,

p. 182]. Let ζ = e2πi/5.

Table 1.2: Character Table D10

id r r2 s

χ1 1 1 1 1

χ2 1 1 1 -1

χ3 2 ζ + ζ4 ζ2 + ζ3 0

χ4 2 ζ2 + ζ3 ζ + ζ4 0

4



Chapter 2. k-Characters: The Preliminaries

As previously mentioned in Chapter 1, attempts to factor the group determinant provided

a major impetus for the development of character theory. We begin this chapter with a

collection of definitions and theorems relevant to this pursuit.

2.1 The Group Matrix

Definition 2.1. [26] Let G = {g1, g2, . . . , gn} be a finite group of order n. We define the

group matrix as the n × n matrix
[
ξgig−1

j

]
, where the ξgk are indeterminates in the ring

C[ξg1 , ξg2 , . . . , ξgn ] corresponding to the gk ∈ G, and the rows and columns of the matrix are

indexed by the elements of G. We denote the group matrix by XG.

Example. [27] Let G = S3. We label the elements of S3:

id = g1, (123) = g2, (132) = g3, (12) = g4, (13) = g5, (23) = g6.

We can then write the 6× 6 matrix XS3 as below:



ξ1 ξ3 ξ2 ξ4 ξ5 ξ6

ξ2 ξ1 ξ3 ξ6 ξ4 ξ5

ξ3 ξ2 ξ1 ξ5 ξ6 ξ4

ξ4 ξ6 ξ5 ξ1 ξ2 ξ3

ξ5 ξ4 ξ6 ξ3 ξ1 ξ2

ξ6 ξ5 ξ4 ξ2 ξ3 ξ1


.

Here ξi = ξgi .

We will see later in this work that the ξk can be associated with probability distributions

if desired. The results given in this chapter will, however, treat the ξk as indeterminates.

The following proposition relates the group matrix to the group algebra.

5



Proposition 2.2. Let G be a finite group of order n. Define the following map

ϕ : CG→Mn(C) where
n∑
k=1

xgkgk 7→
[
xgig−1

j

]
.

Then ϕ is a ring monomorphism.

Proof. Take x, y ∈ CG. We can first write

x =
n∑
i=1

xgigi and y =
n∑
i=1

ygigi.

Observe that

x+ y =
n∑
i=1

(xgi + ygi)gi,

so that

ϕ(x+ y) = [(x+ y)gig−1
j

]

=
[
xgig−1

j
+ ygig−1

j

]

=
[
xgig−1

j

]
+
[
ygig−1

j

]

= ϕ(x) + ϕ(y).

This establishes that ϕ is an additive homomorphism.

Now write x =
∑

G xigi and y =
∑

G yjg
−1
j . Note that in the case of y, cycling through

G by inverses is done for later convenience.

Let ξij = xgig−1
j

and υij = ygig−1
j

. Let XG = [ξij] and YG = [υij]. Then the ijth entry of

XGYG, call it λij, is given by
n∑
k=1

ξikυkj.

For any fixed i, j pair, as the index k in the above sum ranges from 1 to n, the product

6



gig
−1
k gkg

−1
j gives all instances of the element gig

−1
j occurring in

xy =
n∑

`,m=1

x`ymg`g
−1
m . (2.1)

So indeed the total or “collected” coefficient of the element gig
−1
j in (2.1) is

n∑
k=1

xikykj = λij,

where λij is as above. Thus ϕ(xy) is an n × n matrix with ij entry λij, the same as the ij

entry of XGYG = ϕ(x)ϕ(y). We can conclude that ϕ(xy) = ϕ(x)ϕ(y), which shows that ϕ is

a ring homomorphism.

We now show the injectivity of ϕ. Again take x, y ∈ CG. Suppose that ϕ(x) = ϕ(y).

Then for any i, j pair xgig−1
j

= ygig−1
j

. Specifically this implies that if we let gj = id then we

have xgi = ygi for 1 ≤ i ≤ n. We have in turn that x = y. Hence ϕ is injective.

This proposition is utilized without proof in the results presented in [3, p. 375–380].

Of particular importance to our immediate discussion is the group determinant.

Definition 2.3. The group determinant of G is defined as

ΘG = det(XG),

where XG denotes the group matrix of G.

The group determinant will be a polynomial over the entries of XG.

Theorem 2.4. [30] The group determinant ΘG is independent from the indexing of the

elements of G.

Proof. We assume that G is a finite group of order n. Suppose we index the elements of G

in a different way; this means you take an element σ of the symmetric group Sn, and you

7



order your element as gσ(1), gσ(2), . . . , gσ(n). With this new ordering, the matrix becomes

Xσ
G = [xgσ(i)g−1

σ(j)
].

Now, let P be the permutation matrix associated to σ, that is, P = [δσ(i),j], where δk,` is 1

if k = ` and 0 else. If M is any n×n matrix, then the matrix PM is obtained by reordering

the rows of M by applying σ; similarly, MP−1 is obtained by reordering the columns of M

by applying σ. Combining these two observations, you get that Xσ
G = PXGP

−1. Taking the

determinant, you have det(Xσ
G) = det(XG).

2.2 Factoring the Group Determinant

2.2.1 Prefacing the result. The following definition is used in a subsequent proposition

and is provided for the understanding thereof.

Definition 2.5. [9, p. 62] Let G be an abelian group. Let Ĝ denote the set of irreducible

characters of G (we have Ĝ = Irr(G) since G is abelian). We refer to Ĝ as the character

group of G. Note that Ĝ is an abelian group of order |G|, as each element of G forms its

own conjugacy class.

Theorem 2.6. Assume that G is abelian. For any χ ∈ Ĝ and g ∈ G, χ(g) is a root of unity.

Proof. Since G is abelian, all representations of G are of dimension 1 by Corollary 1.3. Hence

if χ ∈ Ĝ, then χ(gh) = χ(g)χ(h). This comes from the fact that the trace of a 1×1 matrix is

equal to the sole entry of that matrix. As every element of G has order divisible by n = |G|,

then 1 = χ(id) = χ(gn) = (χ(g))n. Hence the desired result has been obtained.

Remark. Definition 2.5 can be expanded to include non-abelian groups by defining Ĝ as the

set of all mappings χ : G→ C× such that

χ(gh) = χ(g)χ(h), g, h ∈ G

8



Such mappings are called linear characters of G. It is in general then not the case that

Ĝ = Irr(G). See [19] for further development of this topic. In this light, Theorem 2.6 can be

relaxed to include non-abelian groups.

In the latter half of the nineteenth century a significant pursuit among algebraists was

the factorization of the group determinant. Chief among these were Dedekind and Burnside,

both of whom independently proved (using distinct methods) the following proposition for

finite abelian groups.

Proposition 2.7. [3] Let G be a finite abelian group. Then we have the following factoriza-

tion of ΘG:

ΘG =
∏
χ∈Ĝ

(∑
g∈G

χ(g)xg

)
.

Of note here is that when G is abelian, the group determinant factors as a product of

linear factors in C[x1, x2, . . . , xn] with every coefficient of the factors being (by Theorem 2.6)

a root of unity.

The establishment of the above proposition led Dedekind to broaden his examination to

include that of non-abelian groups. After obtaining the factorization of the group determi-

nant of S3 and Q8, he found that in the case that G is non-abelian, some of the irreducible

factors of ΘG may not be linear [6, p. 423–425] (See also [3, p. 368–370] & [5, p. 52]).

Dedekind’s results are summarized below.

Example. The first group considered by Dedekind was the symmetric group on three el-

ements. Label the elements of S3 as in the previous example in Section 2.1.1 Let ω be

a primitive third root of unity. We then have the relationship ω2 + ω = −1. Define the

1Dedekind labeled the elements of S3 in an alternative manner, but mutatis mutandis his results are as
given here.

9



following polynomials in C[x1, . . . , x6]:

u = x1 + x2 + x3; v = x4 + x5 + x6;

u1 = x1 + ωx2 + ω2x3; v1 = x4 + ωx5 + ω2x6;

u2 = x1 + ω2x2 + ωx3; v2 = x4 + ω2x5 + ωx6.

Dedekind found that

ΘS3 = (u+ v)(u− v)(u1u2 − v1v2)2.

The final factor (u1u2 − v1v2) can be expanded as

x21 + x22 + x23 − x24 − x25 − x26 − x1x2 − x1x3 − x2x3 + x4x5 + x4x6 + x5x6.

In C[u, u1, u2, v, v1, v2] the polynomial u1u2− v1v2 is irreducible. Hence we have a nonlinear,

irreducible factor of ΘS3 . Also of note is the fact that this nonlinear factor is of degree 2 and

occurs twice in the factorization. This is not a mere coincidence.

Example. The second group considered by Dedekind was Q8, the quaternion group

〈−1, i, j, k | (−1)2 = 1, i = j = k = ijk = −1〉.

Label the elements of Q8 as follows, with the lower index being associated with the + element:

±1 = g1, g2; ± i = g3, g4; ± j = g5, g6; ± k = g7, g8.

Dedekind then defines the following polynomials:

u1, v1 = x1 ± x2, u2, v2 = x3 ± x4, u3, v3 = x5 ± x6, u4, v4 = x7 ± x8.

10



Then ΘQ8 has four linear factors and one repeated nonlinear factor as follows:

ΘQ8 = (u1+u2+u3+u4)(u1+u2−u3−u4)(u1−u2+u3−u4)(u1−u2−u3+u4)(v
2
1+v22+v23+v24)2.

One can verify that the last factor is indeed irreducible over C. Moreover, note that the

degree of the factor matches its multiplicity in the factorization, which again is not by

happenstance.

After being apprised of these examples by Dedekind in 1896, Frobenius sought to develop

a more generalized result for the factorization of ΘG for general finite groups. In a rather

short length of time, just three months, Frobenius solved the problem and published his

results in a series of three papers [13], [12], [11] (in that order). These results are discussed

in the proceeding section.

2.2.2 k-Characters. We now extend Definition 1.7 to create from a unary function on

G a k-nary function on Gk.

Definition 2.8. Let G be a finite group of order n. Let χ be in Irr(G). We then define the

k-character in a recursive manner by

χ(1)(g) = χ(g),

and for k ≥ 2

χ(k)(g1, g2, . . . , gk) = χ(g1)χ
(k−1)(g2, . . . , gk)− χ(k−1)(g1g2, . . . , gk)

−χ(k−1)(g2, g1g3, . . . , gk)− · · · − χ(k−1)(g2, g3, . . . , g1gk).

Many times the superscript is omitted when it is clear what is being discussed.

Example. Given a finite group G and an irreducible character χ, we have the 2- and 3-

characters

χ(2)(g1, g2) = χ(g1)χ(g2)− χ(g1g2),

χ(3)(g1, g2, g3) = χ(g1)χ
(2)(g2, g3)− χ(2)(g1g2, g3)− χ(2)(g2, g1g3).

11



Example. Let G = D8 = 〈r, s | r4 = s2 = 1, srs = r3〉. Let χ be the irreducible character

of degree 2 given in Table 2.1.

Table 2.1: Irreducible Characters of D8

id r2 {r, r3} {s, r2s} {rs, r3s}

χ 2 -2 0 0 0

We then have values of the associated 2-character such as the following:

χ(2)(r, r) = χ(r)χ(r)− χ(r2) = 0− (−2) = 2

χ(2)(r, s) = χ(r)χ(s)− χ(rs) = 0− 0 = 0

A question proposed by R. Brauer relating to k-characters that remained unanswered for

some time dealt with the possibility of uniquely determining the structure of a given group

from the character table and a requisite set of k-characters (see, for example, [22] & [26]).

Hoehnke and Johnson [21] prove the following theorem:

Theorem 2.9. Let G be a finite group. Then G is determined up to isomorphism by the

regular 3-character π(3).

Johnson and Sehgal further show in [28] that the 1- and 2-characters alone are not

sufficient for determining the group. A later paper [29] by the same authors shows that

the two non-isomorphic and non-abelian groups of order 27 provide a pair of such groups

whose 1- and 2-characters are identical. Moreover, it can be verified by inspection that these

groups form the smallest pair of nonisomorphic groups with identical 1- and 2-characters

[29, p. 624]. Section 4.2 explores these groups further.

2.2.3 Frobenius factors ΘG. The original utility of k-characters, and the central result

discussed in this chapter, is that of factoring the group determinant ΘG for any finite group.
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In [12], Frobenius proved the following theorem, which employs k-characters to factor the

group determinant (See also [26, p. 301]):

Theorem 2.10. Let G be a finite group. Let Irr(G) = {χ1, χ2, . . . , χr} be the irreducible

characters of G. For each χi, define the following polynomial, where fi is the degree of χi:

φi = (1/fi!)
∑
Gfi

χ
(fi)
i (g1, g2, . . . , gfi)xg1xg2 . . . xgfi

where the sum runs over all fi-tuples of G. We then have that the group determinant factors

in C[xg1 , xg2 , . . . , xgfi ] into irreducible factors as follows:

ΘG =
r∏
i=1

φfii .

The next two chapters explore further results pertaining to k-characters.
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Chapter 3. A Conjecture on k-Characters

3.1 Proposal and Conjecture

In [29] Johnson and Sehgal present and prove the following proposition:

Proposition 3.1. Let π be the regular character of the group G. Fix k ≥ 1. Suppose that for

g1, g2, . . . , gk in G, no product of the form gµ(1) · · · gµ(k) is the identity for any permutation

µ of {1, . . . , k}. Then π(k)(g1, g2, . . . , gk) = 0.

Proof. The proposition is clearly true for k = 1. Suppose that the result is true for k < r.

Let {g1, g2, . . . , gr} be such that no product of the form gµ(1) · · · gµ(r) is the identity for any

permutation µ. We have the following:

π(r)(g1, g2, . . . , gr) = π(g1)π
(r−1)(g2, . . . , gr)−π(r−1)(g1g2, . . . , gr)−· · ·−π(r−1)(g2, g3 . . . , g1gr).

Under the inductive assumption, a term on the right hand side of the above equality is 0

unless both g1 and gτ(2) · · · gτ(r) are the identity for some permutation τ (in the case of the

first term) or a product of g2, g3, . . . , g1gj, . . . , gr (in some order) is the identity. In any case,

if no product gµ(1) · · · gµ(r) is the identity, all the terms on the right hand side will be zero.

They then make the following conjecture:

Conjecture 3.2. The converse of Proposition 3.1 also holds. That is, if

π(k)(g1, g2, . . . , gk) = 0, then no product of the form gµ(1) · · · gµ(k) is the identity for any

permutation µ of {1, . . . , k}.

However, it is extremely easy to find a counter example among abelian groups: All that

is required is the trivial group. If we let id be the identity and G be the group generated by

it, then the regular 2-character provides a counter example.

π(2)(id, id) = π(id)π(id)− π(id · id) = 1 · 1− 1 = 0,
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yet there was a permutation of the arguments of π(2) whose product was the identity. In light

of this, we will restrict our examination to non-abelian groups. We restate the conjecture,

this time including this small caveat.

Conjecture 3.3. The converse of Proposition 3.1 also holds if G is non-abelian. That is, if

π(k)(g1, g2, . . . , gk) = 0, then no product of the form gµ(1) · · · gµ(k) is the identity for any

permutation µ of {1, . . . , k}.

Throughout this work we will speak of “admissible” polynomials. Because the regular

character takes on values of either n or 0, a given k-character will be a polynomial in n with

integer coefficients. We call these polynomials admissible polynomials.

As a matter of notation, let |G| = n and g1, g2, . . . , gn be the elements of G in no particular

order. In line with determining the validity of Conjecture 3.3 we can ask several questions,

to wit,

(1) What are the admissible polynomials for π(k)?

(2) Do these admissible polynomials factor into linear polynomials over Z?

(3) If the conjecture fails in general, are there specific classes of groups for which it still

holds (e.g. Dihedral groups, p-groups, etc.)?

We will examine (1) and (2) in this chapter. Question (3) will not be discussed in this

work and will be left for examination at a future date. It is a relatively simple exercise to

determine the following table (Table 3.1) of admissible polynomials for π(2).

Table 3.1: Admissible Polynomials for π(2)

π(2)(g1, g2) Admissible Polynom. Factors

g1 = g2 = id n2 − n n(n− 1)

g1 6= id, g1g2 = id −n −n
g1 6= id, g1g2 6= id 0 0
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Note here that these three distinct admissible polynomials all factor in Z into linear

factors. Linear factors are of course especially nice in that they explicitly indicate the

roots of the admissible polynomial in question. Another noteworthy observation to make

is the relation between products of operands of π(k) being equal to the identity and the

resulting admissible polynomial under π(k) associated with these operands. When we speak

of operands of π(k), we are speaking of the elements of G which are placed into π(k) as

arguments.

As discussed above, we are only considering non-abelian groups in our examination. We

assume that the reader is familiar with the fact that the smallest non-abelian group is of

order 6. As the nonzero admissible polynomials for π(2) only have roots 1 or 0, this actually

proves Conjecture 3.3 for k = 2. That is, the roots of the non-zero admissible polynomials for

π(2) are strictly smaller than the order of the smallest non-abelian group, so the conjecture

must hold for k = 2.

In order to further investigate the admissible polynomials for π(k) for general k, we use

the group Sk, the symmetric group on k objects, as we now describe.

3.2 The Sk Filigree

3.2.1 Determining admissible polynomials. As previously alluded to, a significant

amount of information on the admissible polynomials of π(k) can be found by examining the

products of operands which are the identity.

We first establish notation used throughout this thesis. Let k be a positive integer. Take

a permutation σ = (a11a12 · · · a1s1)(a21a22 · · · a2s2) · · · (ar1ar2 · · · arsr) ∈ Sk here written in

disjoint cycle notation. If we include cycles of length 1 in σ (which we always will), then

r∑
i=1

si = k.

Take any k elements of G and index them as g11, g12, . . . , g1s1 , g21, . . . , g2s2 , . . . , grsr . In this
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way we can correspond the products (g11 · · · g1s1), (g21 · · · g2s2), . . . , (gr1 · · · grsr) with the

cycles of σ by replacing aij with gij. That is,

(ai1ai2 · · · aisi)←→ (gi1gi2 · · · gisi)

for each cycle of σ. We similarly associate the product (g11 · · · g1s1)(g21 · · · g2s2) · · · (gr1 · · · grsr)

of these elements with σ.

When we speak of an identity product we are indicating a product of one or more elements

of G whose product is the identity of G.

Example. For k = 7 and σ = (16)(254)(37) we can associate the products g1g6, g2g5g4, g3g7

with σ. Extending the cycle notation, we denote these products as (g1g6)(g2g5g4)(g3g7).

In general, for σ ∈ Sk, let Zσ be the associated products, written in cycle notation, of

the g1, g2, . . . , gk corresponding to σ for a given set of k elements in G.

Theorem 3.4. Let G be a group of order n, and let 1 ≤ k ≤ n. Take any g1, g2, . . . , gk in

G (not necessarily distinct). Then

π(k)(g1, g2, . . . , gk) = ckn
k − ck−1nk−1 + ck−2n

k−2 + . . .+ (−1)k−2c2n
2 + (−1)k−1c1n,

where the cj are defined in the proceeding manner. Take any σ ∈ Sk and let ν(σ) designate

the number of disjoint cycles in σ.

Let Cj be the set of all elements σ of Sk such that ν(σ) = j and each product of Zσ equals

the identity of G. Then the coefficient cj is given by cj = |Cj|. In other words, the coefficient

cj is the number of permutations in Sk with precisely j disjoint cycles, each cycle of which

being associated with an identity product using the g1, g2, . . . , gk.

Theorem 3.4 can perhaps best be elucidated by several examples. The proof of the

theorem will be postponed until further results have been established (see Section 3.3). As

a matter of notation, I will let e designate the identity of the group G and I will let id

designate the identity permutation of Sk.
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Example. Perhaps the simplest of examples is for k = 2. Let g1 and g2 be non-identity

elements of a group G. Further suppose that g1g2 = id. We have two coefficients to consider:

c2 and c1.

Here Sk = S2 is just the cyclic group of order 2. There is a single permutation,

(1)(2) = id, with two disjoint cycles. But, since (g1), (g2) are not both id, we have c2 = 0.

There is also a single permutation, (12), of length one in S2. The corresponding product

(g1g2) is the identity (in G), so c1 = 1. Hence the associated admissible polynomial is −n

(taking note to observe the requisite sign change). It can be confirmed in Table 3.1 that when

g1 and g2 are both not the identity, but their product is the identity, then the corresponding

minimal polynomial is indeed −n.

Example. As an extension of the previous example, take g1 = g2 = e. Now the single

products (g1)(g2) associated with (1)(2)=id in S2 are both the identity, so c2 = 1. As

before, c1 = 1. Now the corresponding admissible polynomial is n2 − n. This again agrees

with Table 3.1.

Example. Here let k = 3. Take g1, g2, g3 with g1 = e being the only operand equal to the

identity. Assume however that g2g3 = e. We examine the six permutations in S3, where

trivial cycles are included for emphasis.

id→ (g1)(g2)(g3), (123)→ (g1g2g3), (132)→ (g1g3g2),

(12)(3)→ (g1g2)(g3), (13)(2)→ (g1g3)(g2), (1)(23)→ (g1)(g2g3).

There is one element of S3 comprised of three disjoint cycles (viz. the identity). The corre-

sponding terms of the product (g1)(g2)(g3) (i.e. g1 by itself, g2 by itself, and g3 by itself) are

not the identity however. So c3 = 0. Continuing, we note that S3 contains three elements

with precisely two disjoint cycles. Among the associated products (g1g2)(g3), (g1g3)(g2), and

(g1)(g2g3), only the last set (which we can refer to as Z(1)(23) in the notation of the theorem)

is a set of identity products. Hence c2 = 1. There are two elements of S3 with a single cycle.
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The corresponding products (g1g2g3) and (g1g3g2) are both identity products, so c1 = 2. All

told we have the associated admissible polynomial −n2 + 2n.

As an aside, note that this polynomial factors over Z into all linear factors and that none

of the roots is 6 or larger. Hence in this case, Conjecture 3.3 still holds. Although g1g2g3 = e,

π(g1, g2, g3) = −n2 + 2n will never equal zero, as |G| = n > 2.

It should be pointed out that our association of products of elements of G with the

elements of Sk is sufficiently well defined with respect to cycle representation, as we are

only truly interested in products equal to the identity. (If a product of elements equals the

identity, any permutation of the order of multiplication of those elements also results in the

identity).

3.2.2 The Sk filigree defined. In order to obtain more general results in our pursuit of

proving Theorem 3.4 and obtaining admissible polynomials, we give the following definitions.

Definition 3.5. Take a permutation σ in Sk. Let σ = α1α2 · · ·αr, where the αi are the

disjoint cycles of σ. A consequence of coalescence, αi � αj, of disjoint cycles αi and αj is a

cycle obtained by concatenating a cycle representative for αi with a cycle representative for

αj. This is best illustrated by the following example.

Example. Below are three ways that two disjoint cycles of S5 can be coalesced.

(12) � (354)→ (12354),

(12) � (354)→ (13542),

(12) � (354)→ (31254) = (12543).

The notation here is rather loose in that αi �αj can represent either a single consequence

of coalescence or the set of all such consequences of coalescence. This ambiguity of notation

will be of relatively small significance.
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Proposition 3.6. Let α and β be disjoint cycles in Sk. If both Zα and Zβ are the identity

in G, then Zα�β is also the identity. In other words, if the products associated with α and β

are both equal to the identity in G, then any consequence of coalescence of α and β will also

correspond to an identity product in G.

Proof. Assume that α both and β correspond to identity products in G. Then any con-

sequence of coalescence of α and β will either be a product of two identity products or

one identity product surrounded by two products whose combined product is the identity,

yielding in turn the identity.

Proposition 3.7. Let α and β be disjoint cycles in Sk. Define α � β to be the set of all

consequences of coalescence of α and β. The size of α � β as a set is |α| · |β|, where | · |

indicates the length of the cycle in question.

Proof. Write α = (a1a2 · · · ar) and β = (b1b2 · · · bt). So |α| = r and |β| = t. Note that we

have r options up to permutation of where we can place β among the entries of α. That is

to say, we can create the following consequences of coalescence:

(a1βa2 · · · ar), (a1a2β · · · ar), . . . , (a1a2 · · · βar), (a1a2 · · · arβ)

We have t ways to write β as a cycle. Thus we have all told |α| · |β| = rt distinct ways of

coalescing α and β.

As a means of depicting consequences of coalescence for Sk, we introduce the concept of

the Sk filigree.

Definition 3.8. We define the Sk filigree to be the graph whose nodes are the elements of

Sk, ordered in levels by cycle number, and whose edges indicate consequences of coalescence.

In this sense we can describe Sk as a poset with ordering based on coalescence, making the

Sk filigree a Hasse Diagram (see [16, p. 508] for example).
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Remark. We will sometimes refer to the filigree condition. The filigree condition is the

premise on which the filigree is constructed. In Chapter 3, the filigree condition is products

of operands which are the identity. In Chapter 4, we will see other conditions used. When

the filigree condition is satisfied, this indicates that the associated k-character will not be

identically zero.

As an example, if k = 5 and if our filigree condition is products which are the identity in

G, then (g1g3g5)(g2g4) would indicate that the products g1g3g5 and g2g4 yield the identity.

This would be associated with (135)(24) in the filigree. As another example, let k = 6.

Now let our filigree condition be products which lie in a certain subgroup of G. We will see

such a filigree condition in later results. Then (g1)(g5)(g2g3)(g4g6) means that g1, g5 are both

themselves in the given subgroup, as are the products g2g3 and g4g6. This is associated with

(1)(5)(23)(46) in the corresponding S6 filigree.

Figure 3.1 gives the filigree for S3 as well as the associated products in G among the

arbitrary operands g1, g2, and g3 of π(3). Note the leveling based on number of cycles. An-

other aspect of the S3 filigree to observe is that any term on a lower level of the filigree is a

consequence of coalescence of everything above it. This is not the case for general k, as we

will see with k = 4.

Note that we can use the filigree for S3 and Theorem 3.4 to calculate different admissible

polynomials for π(3). Figures 3.2 and 3.3 demonstrate this procedure. The dark red indicates

a product that is the identity. First assume that all operands are the identity e:
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Figure 3.1: The S3 filigree

(1)(2)(3)

(1)(23)(13)(2)(12)(3)

(123) (132)

(g1)(g2)(g3)

(g1)(g2g3)(g1g3)(g2)(g1g2)(g3)

(g1g2g3) (g1g3g2)

3 Cycles:

2 Cycles:

1 Cycle:

Figure 3.2: Using the S3 filigree to find an admissible polynomial (I)

(g1)(g2)(g3)

(g1)(g2g3)(g1g3)(g2)(g1g2)(g3)

(g1g2g3) (g1g3g2)

n3:

−3n2:

+2n:

π(3)(e, e, e) = n3 − 3n2 + 2n

Now assume that of the three operands g1, g2, g3, only the last is the identity. Assume as

well, however, that the product of the first two is the identity (i.e. g1g2 = e).
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Figure 3.3: Using the S3 filigree to find an admissible polynomial (II)

(g1)(g2)(g3)

(g1)(g2g3)(g1g3)(g2)(g1g2)(g3)

(g1g2g3) (g1g3g2)

−n2:

+2n:

π(3)(g1, g
−1
1 , e) = −n2 + 2n

Using a process similar to that of Figures 3.2 and 3.3, we can find all of the admissible

polynomials for π(3). The admissible polynomials for π(3) are summarized in Table 3.2.

Table 3.2: Admissible Polynomials for π(3)

Identity Product Admissible Polynomials Factors

(g1)(g2)(g3) n3 − 3n2 + 2n n(n− 1)(n− 2)

(g1)(g2g3) −n2 + 2n −n(n− 2)

(g1g2g3) n n

(g1g2g3) & (g1g3g2) 2n 2n

None 0 0

Note that here also all of the polynomials factor completely over Z, but that none of the
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nonzero admissible polynomials have a root larger than 2. In a similar vein to the comments

given at the end of Section 3.1, the factoring in Table 3.2 proves Conjecture 3.3 for k = 3.

In general, as k increases, constructing the Sk filigree becomes significantly more diffi-

cult. Figure 3.4 gives a partial filigree for k = 4. The lowest level depicts consequences of

coalescence for a single double transposition and for a 3-cycle. The complete filigree would

show consequences of coalescence for each double transposition as well as for each 3-cycle.

Note also that trivial cycles have in many cases been removed for pictorial simplicity.

Figure 3.4: The S4 Filigree

(1)(2)(3)(4)

(12) (13) (14)(23) (24) (34)

(123) (132) (12)(34) (124) (142) (13)(24) (134) (143) (14)(23) (234) (243)

(1234) (1243) (1324) (1342) (1423) (1432)

As with k = 2, 3, when k = 4 we can use the filigree of S4 to get the admissible polynomials

for π(4). These results are summarized in Table 3.3 on the following page. The left hand

column provides one way to get the associated admissible polynomial, however multiple

operand combinations could, and often will, yield the same polynomial. Again note that

each admissible polynomial factors linearly over Z. We will see for k = 5, however, that not

every admissible polynomial for π(k) factors linearly over Z.
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Table 3.3: Admissible Polynomials for π(4)

Ident. Product Admissible Polynom. Factors

(g1)(g2)(g3)(g4) n4 − 6n3 + 11n2 − 6n n(n− 1)(n− 2)(n− 3)

(g1g2)(g3)(g4) −n3 + 5n2 − 6n −n(n− 2)(n− 3)

All double transpositions 3n2 − 6n 3n(n− 2)

(g1g2g3) & (g1g3g2) 2n2 − 6n 2n(n− 3)

(g1g2)(g3g4) & All 4-cycles n2 − 6n n(n− 6)

(g1g2g3) & (g1g2g4) n2 − 4n n(n− 4)

(g1g2g3) n2 − 3n n(n− 3)

All 4-cycles −6n −6n

2 pairs (inverses) of 4-cycles −4n −4n

(g1g2g3g4), (g1g3g4g2) & (g1g4g2g3) −3n −3n

(g1g2g3g4) & (g1g4g2g3) −2n −2n

Only (g1g2g3) −n −n

None 0 0

One important item to take note of is that we have an admissible polynomial n2 − 6n

which has 6 as a root. However, we can show that when G is S3, π
(4) never admits the

polynomial n2 − 6n.

Corollary 3.9. If G ∼= S3, then the admissible polynomial n2− 6n is never obtained by π(4).

Thus Conjecture 3.3 holds for k = 4.

Proof. Let g1, g2, g3, and g4 be the operands of π(4) selected from G. From Table 3.3, the

polynomial n2 − 6n is only1 obtained when we have operands satisfying (without loss of

generality) g1g2 = e, g3g4 = e, as well as any product of all four operands being the identity,

and for which no simpler relationship exists. That is to say, no smaller product of operands is

1Any use of 3-cycles will fail.
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the identity, nor is any other element of two disjoint cycles associated with identity products

in G.

Since we have g1g2 = e and g3g4 = e, then g2 = g−11 and g4 = g−13 . Furthermore we

know that g1g3 6= e, since this would otherwise imply that g2g4 = e, giving an additional

relationship (13)(24) not previously accounted for. Similarly, g1g4 6= e. It is thus impossible

to have both g1 and g3 be 3-cycles in S3. It is a simple exercise to find that any choice of

distinct 2-cycles for g1 and g3 does not satisfy g1g3g2g4 = e, as it otherwise must if we are

to obtain the admissible polynomial in question. It is also quite easy to verify that letting

g1 be any 2-cycle in S3 and g3 be any 3-cycle fails to satisfy g1g3g2g4 = e. This exhausts the

possible combinations of operands. Hence if G ∼= S3, then the admissible polynomial n2−6n

is never obtained by π(4).

This corollary is significant in that it shows that while π(4) can in general admit the

polynomial n2 − 6n, this polynomial is never obtained when G ∼= S3. As every other admis-

sible polynomial has roots smaller than 6, this proves that indeed Conjecture 3.3 holds when

k = 4.

3.3 Proof of Theorem 3.4

We begin with a notational definition.

Definition 3.10. Let k ≥ 2 be fixed and G a group. Take σ ∈ Sk and g1, g2, . . . , gk ∈

G. Write σ = α1α2 · · ·αr in disjoint cycle notation. Let π(σ(g1, g2, . . . , gk)) indicate the

product π(α1)π(α2) · · · π(αr) where the entries of αi are taken to correspond with the relevant

elements among g1, . . . , gk and where π(αi) is the regular character of G applied to the

product of the operands corresponding to αi.

Example. Let k = 3 and take g1, g2, g3 in G. If σ = (132), then

π(σ(g1, g2, g3)) = π(g1g3g2).
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Example. Let k = 5 and take g1, . . . , g5 in G. If σ = (145)(23), then

π(σ(g1, . . . , g5)) = π(g1g4g5)π(g2g3).

Example. Let k = 8 and take g1, . . . , g8 in G. If σ = (1357)(24)(68), then

π(σ(g1, . . . , g8)) = π(g1g3g5g7)π(g2g4)π(g6g8).

We now provide a lemma on the decomposition of π(k) as a function of π.

Lemma 3.11. Let k be a positive integer. Then π(k) can be written as

∑
σ∈Sk

sgn(σ)π(σ(g1, g2, . . . , gk))

where σ(g1, g2, . . . , gk) is as above.

Proof. First notice that for k = 2, we have π(2)(g1, g2) = π(g1)π(g2)−π(g1g2), a product and

sum of the regular character. In a similar vein, we can decompose π(3) into a product and

sum of the regular character as follows:

π(3)(g1, g2, g3) = π(g1)π(g2)π(g3)

− π(g1)π(g2g3)− π(g2)π(g1g3)− π(g3)π(g1g2)

+ π(g1g2g3) + π(g1g3g2).

Note how each element of S3 can be associated with one of the above summands (e.g. (1)(23)

can be associated with π(g1)π(g2g3) in the sum).

In general π(k) comes from ∑
σ∈Sk

sgn(σ)σ.

We have seen this for k = 2, 3 above. We now prove the general result by induction on k ≥ 2.
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Assume, for some positive integer k, that the lemma holds for π(k−1). We can write π(k) as

below:

π(k)(g1, g2, . . . , gk) = π(g1)π
(k−1)(g2, . . . , gk)− π(k−1)(g1g2, g3, . . . , gk)

− π(k−1)(g2, g1g3, . . . , gk)− · · · − π(k−1)(g2, g3, . . . , g1gk).

Note that here g1 is either fixed (as in the case of the first summand) or is not fixed (as in

the remaining cases). We can rewrite π(k) as

π(k)(g1, g2, . . . , gk) = π(g1)
∑

σ∈Sk−1

π(σ(g2, g3, . . . , gk))−
∑

σ∈Sk−1

π(σ(g1g2, g3 . . . , gk))

−
∑

σ∈Sk−1

π(σ(g2, g1g3, . . . , gk))− · · · −
∑

σ∈Sk−1

π(σ(g2, g3, . . . , g1gk)).

Each permutation of Sk will either have a trivial cycle, (1), containing 1 or will take 1 to

some other index between 2 and k both inclusive (i.e. permutations of form (1i . . .), where

2 ≤ i ≤ k).

We similarly can associate with each summand of π(k), as given in the expansion directly

above, a permutation of Sk. This is done as follows: Each summation is indexed by the

elements of Sk−1. The summands in the first summation are associated with all permutations

of Sk that have 1 as a trivial cycle. Such elements of Sk are in one-to-one correspondence

with the elements of Sk−1. The summands in the second summation are associated with

all permutations of Sk that have 1 and 2 appearing consecutively in the same cycle. This

second summation is indexed by Sk−1. Note that the elements of Sk which have 1 and 2

appearing consecutively in the same cycle are in one-to-one correspondence with the elements

of Sk−1. To wit, taking “12” as a single “letter” and 3, 4, . . . , k as “letters,” we can take

Sk−1 as the group of permutations on this set of k− 1 “letters.” Similarly, the summands in

the third summation are associated with all permutations of Sk that have 1 and 3 appearing

consecutively in the same cycle. This association is done up and through the k-th summation,
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where the summands there are associated with the elements of Sk which have 1 and k

appearing consecutively. Thus we have shown that every element of Sk is represented in the

given expansion of π(k). Indeed we can write this as

∑
σ∈Sk

sgn(σ)π(σ(g1, g2, . . . , gk)).

We now have the terminology and tools required to prove Theorem 3.4. The proof is

again by induction.

Proof of Theorem 3.4. By Lemma 3.11, we know that we can write π(k) as a product and

sum of the standard regular character. The same lemma indicated a method of matching

the elements of S3 with the terms of π(3) when written in terms of the regular character.

This concept can be extended to matching Sk with the terms of the decomposition of π(k)

in the following manner.

Considering the Sk filigree, the first summand π(g1)π
(k−1)(g2, . . . , gk) of π(k)(g1, . . . , gk)

decomposes into a product and sum of the regular character whose summands correspond to

the entries of the filigree which leave (1) as a trivial cycle (i.e. all those that correspond to

g1 = e). The remaining terms of π(k)(g1, . . . , gk) are all of the form π(k−1)(g2, . . . , g1gj, . . . , gk).

Each of these terms will have a decomposition into a product and sum of the regular character

whose summands correspond to the entries of the filigree where 1 and j are found in cycle

with one another (i.e. all those entries of the filigree that have the product g1gj associated

with them).

In this manner we can associate with each entry of the Sk filigree a term of the decom-

position of π(k)(g1, . . . , gk). Take an arbitrary entry of the filigree, say with disjoint cycles

α1α2 · · ·αr. This entry of the filigree will correspond to the term

(−1)k−rπ(α1)π(α2) · · · π(αr)
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in the decomposition of π(k)(g1, . . . , gk), where π(αj) is the regular character applied to the

product of the operands corresponding to αj, as seen in Definition 3.10. Hence if each of

α1, α2, . . . , αr corresponds to an identity product in G, then π(α1)π(α2) · · · π(αr) gives us a

(−1)k−rnr term in the admissible polynomial. Per the recursive definition of π(k), we can

write the regular k-character as a product and sum of the regular character. A decomposition

of the regular k-character into a product and sum of the regular character π will yield the

result given pertaining to the sign of the coefficient. This completes the proof.

3.4 The Cases k = 5, 6 and Conjecture 3.3

3.4.1 Counterexample to Conjecture 3.3. The previous sections have established

Conjecture 3.3 for k = 2, 3, 4. However, for k = 5, a counterexample can be produced.

Let G = S3, and take h = (123) and g = (13) as elements of S3. Now consider the S5

filigree associated with g1 = g2 = g3 = h and g4 = g5 = g. The element (123)(45) in S5

corresponds to the set of identity products Z(123)(45) = {(hhh), (gg)}. Note as well that since

the first three operands are the same, the permutation (132)(45) in S5 also corresponds to an

identity product among the operands. Hence Z(132)(45) = {(hhh), (gg)} will also correspond

to an identity product of the operands. By Theorem 3.4, we will have a term −2n2 in

the admissible polynomial associated with these operands. Further calculation finds that

exactly 12 of the 24 5-cycles in S5 correspond to identity products among the operands. So

by Theorem 3.4 we have the following:

π(5)(h, h, h, g, g) = −2n2 + 12n = −2n(n− 6) = 0.

A counter example to the conjecture has been found. We have π(5)(h, h, h, g, g) = 0, yet

clearly h · h · h · g · g = e. So indeed we have a set of operands for which the 5-character is

equal to 0, but for which there exists a product of all the operands which equals the identity

in G.
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3.4.2 Factoring admissible polynomials. Another finding to take note of is the fac-

torization of the admissible polynomials for π(k). While we have seen that for small k (viz.

k = 1, 2, 3, 4 are confirmed) the admissible polynomials for π(k) all factor into linear factors

over Z, such is not the case for larger values of k.

Observation 3.12. For k = 6, we can find using MAGMA [1] that we have admissible

polynomials that do not factor completely into linear factors over Z. Some examples of

irreducible nonlinear factors of admissible polynomials are as follows:

n2 − 16n+ 56, n2 − 12n+ 56, n2 − 11n+ 36, n2 − 11n+ 32, n2 − 12n+ 48.

For further questions on this subject see Chapter 6.

The next chapter will examine the k-characters of select classes of groups.
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Chapter 4. k-Characters of Several Groups and the

Associated Group Determinant

4.1 The Dihedral Groups

One class of non-abelian groups that is of ubiquitous importance is the class of dihedral

groups. We have previously seen in Tables 1.2 and 2.1 the irreducible characters of degree 2

for D10 and D8 respectively. In this section we find the 2-character for the general dihedral

group D2n (n ≥ 3), with presentation as follows:

D2n =
〈
r, s | rn = s2 = id, s−1rs = r−1 = rn−1

〉
.

The conjugacy classes of D2n are as follows, with the cases of n odd and n even being distinct.

odd n = 2m+ 1 : {id}, {ra, r−a} (1 ≤ a ≤ m) , {s, sr, . . . , srn−1}.

even n = 2m : {id}, {ra, r−a} (1 ≤ a < m) , {rm}, {srb | b odd}, {srb | b even}.

As with conjugacy classes, the irreducible characters of D2n are determined by the parity

of n. Tables 4.1 (n odd) and 4.2 (n even) summarize the two cases. (See [25, p. 182–183].)

Let ζ = e2πi/n. In the case of n odd, n = 2m+ 1. In the case of n even, n = 2m.

Table 4.1: Character Table D2n for n odd

id ra s

χ1 1 1 1

χ2 1 1 −1

ψj 2 ζaj + ζ−aj 0

(1 ≤ j ≤ m)
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Table 4.2: Character Table D2n for n even

id rm ra (a 6= m) s sr

χ1 1 1 1 1 1

χ2 1 1 1 −1 −1

χ3 1 (−1)m (−1)r 1 −1

χ4 1 (−1)m (−1)r −1 1

ψj 2 2(−1)j ζaj + ζ−aj 0 0

(1 ≤ j ≤ m− 1)

In light of the results presented in Chapter 2, we will find the factors of ΘD2n associated

with the nonlinear irreducible characters of D2n.

4.1.1 The 2-character of ψj for n odd. The first case we consider is the 2-character

associated with the irreducible characters ψj (1 ≤ j ≤ m) for n odd. Within this case there

are multiple subcases to examine. Take general elements sε1rδ1 and sε2rδ2 ∈ D2n, where

0 ≤ ε1, ε2 ≤ 1 and 0 ≤ δ1, δ2 ≤ (n − 1). Let 1 ≤ j ≤ m be arbitrary but fixed. The

2-character of ψj is

ψ
(2)
j (sε1rδ1 , sε2rδ2) = ψj(s

ε1rδ1)ψj(s
ε2rδ2)− ψj(sε1rδ1sε2rδ2)

= ψj(s
ε1rδ1)ψj(s

ε2rδ2)− ψj(s(ε1+ε2)rt(δ1+δ2)),

where t = (−1)ε2 . We have four subcases to consider.

• ε1 = ε2 = 0:

ψ
(2)
j (sε1rδ1 , sε2rδ2) = ψ

(2)
j (rδ1 , rδ2)

= (ζjδ1 + ζ−jδ1)(ζjδ2 + ζ−jδ2)− (ζj(δ1+δ2) + ζ−j(δ1+δ2))

= ζj(δ1−δ2) + ζ−j(δ1−δ2).
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• ε1 = 1, ε2 = 0 : Then ψ
(2)
j (sε1rδ1 , sε2rδ2) = ψ

(2)
j (sε1rδ1 , rδ2) = 0.

• ε1 = 0, ε2 = 1 : Then ψ
(2)
j (sε1rδ1 , sε2rδ2) = ψ

(2)
j (rδ1 , sε2rδ2) = 0.

• ε1 = 1, ε2 = 1 :

ψ
(2)
j (sε1rδ1 , sε2rδ2) = 0− (ζj(δ1−δ2) + ζ−j(δ1−δ2))

= −(ζj(δ1−δ2) + ζ−j(δ1−δ2))

= −ψ(2)
j (rδ1 , rδ2).

Observation 4.1. Note that ψ
(2)
j (sε1rδ1 , sε2rδ2) is invariant under complex conjugation.

Thus we have that ψ
(2)
j (sε1rδ1 , sε2rδ2) is in fact real.

Observation 4.2. Note that if δ1 = δ2 and ε1 = ε2 then ψ
(2)
j (sε1rδ1 , sε2rδ2) = −2.

Corollary 4.3. Let n be odd. Each ψj contributes the following factor of multiplicity 2 to

the group determinant ΘD2n:

∑
0≤δ1,δ2≤n−1

1

2

(
ζj(δ1−δ2) + ζ−j(δ1−δ2)

)
(xrδ1xrδ2 − xsrδ1xsrδ2 )

Proof. By Theorem 2.10 each ψj corresponds to a factor of multiplicity 2 in the factorization

of ΘD2n over C[xg1 , xg2 , . . . , xg2n ] into irreducible factors. (Here assume that the elements of

D2n are ordered as g1 = id, g2 = r, . . . , gn+1 = s, . . . , g2n).

By this theorem, such a factor can be written as

∑
0≤δ1,δ2≤n−1

1

2
ψ

(2)
j (rδ1 , rδ2)(xrδ1xrδ2 ) −

∑
0≤δ1,δ2≤n−1

1

2
ψ

(2)
j (srδ1 , srδ2)(xsrδ1xsrδ2 )

Using the four bulleted subcases given above, this simplifies exactly to the factor claimed in

the statement of the corollary.

Example. Here we use Corollary 4.3 to find the factor of ΘD6 associated with the irreducible
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character of degree 2 for D6. We show this by factoring the group determinant explicitly.

ΘD6 = (xe + xr + xr2 + xs + xsr + xsr2)(xe + xr + xr2 − xs − xsr − xsr2)

·
(
x2e + x2r + x2r2 − x2s − x2sr − x2sr2 − (xexr − xsxsr)− (xexr2 − xsxsr2)− (xrxr2 − xsrxsr2)

)2
.

Remark. The final factor implicitly is scaled by 1
2
. However, due to symmetry, each summand

occurs with multiplicity 2. Hence the final factor given above is the result of a cancellization.

Further take note of the fact that this example was previously given in another form (as S3)

in Section 2.2 as a result of Dedekind. The results demonstrated directly above verify his

result.

4.1.2 The 2-character of ψj for n even. The second case we consider is the 2-character

associated with the irreducible characters ψj (1 ≤ j ≤ m) for n even. Within this case there

are multiple subcases to examine. Take general elements sε1rδ1 and sε2rδ2 ∈ D2n, where

0 ≤ ε1, ε2 ≤ 1 and 0 ≤ δ1, δ2 ≤ (n − 1). Let 1 ≤ j ≤ m − 1 be arbitrary but fixed. The

2-character of ψj is

ψ
(2)
j (sε1rδ1 , sε2rδ2) = ψj(s

ε1rδ1)ψj(s
ε2rδ2)− ψj(sε1rδ1sε2rδ2)

= ψj(s
ε1rδ1)ψj(s

ε2rδ2)− ψj(s(ε1+ε2)rt(δ1+δ2)),

where t = (−1)ε2 . We have multiple cases to consider, some with several subcases as we

must make special considerations for when δ1, δ2, or some sum thereof, equals m.

• ε1 = ε2 = 0:

◦ δ1 + δ2 6= m and δ1 6= m and δ2 6= m.

ψ
(2)
j (sε1rδ1 , sε2rδ2) = ψ

(2)
j (rδ1 , rδ2)

= (ζjδ1 + ζ−jδ1)(ζjδ2 + ζ−jδ2)− (ζj(δ1+δ2) + ζ−j(δ1+δ2))

= ζj(δ1−δ2) + ζ−j(δ1−δ2).
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◦ δ1 + δ2 = m and δ1 6= m and δ2 6= m.

ψ
(2)
j (sε1rδ1 , sε2rδ2) = ψ

(2)
j (rδ1 , rδ2)

= (ζjδ1 + ζ−jδ1)(ζjδ2 + ζ−jδ2)− 2(−1)m

= ζj(δ1+δ2) + ζj(δ1−δ2) + ζ−j(δ1−δ2) + ζ−j(δ1+δ2) − 2(−1)m.

◦ δ1 = m and δ2 = 0 (Without Loss of Generality).

ψ
(2)
j (sε1rδ1 , sε2rδ2) = ψ

(2)
j (rm, e) = 2(−1)m · 2− 2(−1)m

= 2(−1)m.

◦ δ1 = δ2 = m.

ψ
(2)
j (sε1rδ1 , sε2rδ2) = ψ

(2)
j (rm, rm) = 2(−1)m · 2(−1)m − 2(−1)2m

= 4(−1)2m − 2(−1)2m = 2.

• ε1 = 1, ε2 = 0 : Then ψ
(2)
j (sε1rδ1 , sε2rδ2) = ψ

(2)
j (sε1rδ1 , rδ2) = 0.

• ε1 = 0, ε2 = 1 : Then ψ
(2)
j (sε1rδ1 , sε2rδ2) = ψ

(2)
j (rδ1 , sε2rδ2) = 0.

• ε1 = 1, ε2 = 1 : Here the value of ψ
(2)
j depends on the value of δ2 − δ1.

ψ
(2)
j (srδ1 , srδ2) = 0− ψj(sε1+ε2r−δ1+δ2

= −ψj(rδ2−δ1).

◦ δ2 − δ1 6= m

ψ
(2)
j (sε1rδ1 , sε2rδ2) = −(ζj(δ2−δ1) + ζ−j(δ2−δ1)).
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◦ δ2 − δ1 = m

ψ
(2)
j (sε1rδ1 , sε2rδ2) = −2(−1)m

= 2(−1)m+1.

Observation 4.4. Note that in the case of ε1 = 1, ε2 = 1 and δ2 − δ1 6= m, if we have that

in fact δ2 − δ1 = 0, then ψ
(2)
j = −2.

Using these results we can produce the factors of multiplicity two in the factorization of

the group determinant of D2n for n even. Take any j as above. By Theorem 2.10, ψj is

associated with the following factor (we call it φj) of ΘD2n . We have

φj =
∑

0≤δ1,δ2≤n−1

1

2
ψ

(2)
j (rδ1 , rδ2)xrδ1xrδ2 +

1

2
ψ

(2)
j (srδ1 , srδ2)xsrδ1xsrδ2

=
∑

0≤δ1,δ2≤n−1
δ1,δ2 6=m
δ1+δ2 6=m

1

2

(
ζj(δ1−δ2) + ζ−j(δ1−δ2)

)
xrδ1xrδ2 +

1

2
(2(−1)m) (xrmxe + xexrm) +

1

2

(
2x2rm

)

+
∑

δ1,δ2 6=m
δ1+δ2=m

1

2

(
ζj(δ1+δ2) + ζj(δ1−δ2) + ζ−j(δ1−δ2) + ζ−j(δ1+δ2) + 2(−1)m+1

)
xrδ1xrδ2

−
∑

δ2−δ1 6=m

1

2

(
ζj(δ2−δ1) + ζ−j(δ2−δ1)

)
xsrδ1xsrδ2 −

∑
δ2−δ1=m

1

2

(
2(−1)m+1xsrδ1

)
xsrδ2

=
∑

0≤δ1,δ2≤n−1
δ1,δ2 6=m
δ1+δ2 6=m

1

2

(
ζj(δ1−δ2) + ζ−j(δ1−δ2)

)
xrδ1xrδ2 + 2(−1)mxexrm + x2rm

+
∑

δ1,δ2 6=m
δ1+δ2=m

1

2

(
ζj(δ1+δ2) + ζj(δ1−δ2) + ζ−j(δ1−δ2) + ζ−j(δ1+δ2) + 2(−1)m+1

)
xrδ1xrδ2

−
∑

δ2−δ1 6=m

1

2

(
ζj(δ2−δ1) + ζ−j(δ2−δ1)

)
xsrδ1xsrδ2 +

∑
δ2−δ1=m

(−1)mxsrδ1xsrδ2 ,
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after combining terms and cancelling coefficients as possible. Thus when n = 2m is even then

for each 1 ≤ j ≤ m− 1 we have a factor φj, as above, of multiplicity two in the factorization

over C of the group determinant of D2n.

This concludes the relevant results on the k-characters and factorization of the group deter-

minant for the dihedral groups.

4.2 The Non-abelian Groups of Order p3

Our next examination deals with non-abelian groups of order p3 where p is an odd prime.

Up to isomorphism there are two non-abelian groups of order p3 [8, pp. 179,183–184]. These

distinct groups have the following presentations [25, p. 304]:

H1 = 〈a, b | ap2 = bp = e, b−1ab = ap+1〉;

H2 = 〈a, b, z | b−1ab = az, az = za, bz = zb, ap = bp = zp = e〉.

For H1 we let z = ap, a generator of the center. For either group, a generic element can

be written in the form arbszt, where 0 ≤ r, s, t < p in either case. Also, for both H1 and H2,

z generates the center of the group. These groups have identical character tables, with all

irreducible characters being distinguished as follows (See [25, p. 302]):

Table 4.3: Character Table for non-abelian groups of order p3

zt arbszt, r, s 6= 0

χv,w ζrv+sw ζrv+sw

ψu pζut 0

where 0 ≤ v, w ≤ p − 1 and 1 ≤ u ≤ p − 1 and ζ = e2πi/p. Hence there are p2 irreducible

characters of degree 1 and p− 1 irreducible characters of degree p.
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4.2.1 The p-character of ψu. Of particular interest is the p-character of the irreducible

character ψu of degree p. (Here u satisfies 1 ≤ u ≤ p− 1 and is arbitrary but fixed.) In light

of the findings presented in Chapter 2, the p-character of ψu allows us to find a factor (of

multiplicity p) of the group determinant ΘG, where G is either H1 or H2. Furthermore, as

shown in [29, p. 625], the 1- and 2- characters alone are not sufficient to distinguish between

the two groups using character tables only. But, for any odd prime p, the 3-character of ψu

will allow us to uniquely determine which non-abelian group (H1 or H2) of order p3 we are

working with. This will especially be of use in the case p = 3.

Let p be a fixed odd prime. We now examine the irreducible group determinant factors

of the group G of order p3, with presentation given as H2 above.1

For 1 ≤ u ≤ p− 1, G has irreducible characters ψu of degree p as given in Table 4.3:

ψu(a
rbszt) =


pζut, if r = s = 0;

0 otherwise.

Then ψu is nonzero on the center of G and is 0 for all noncentral elements.

Given g1, g2, . . . , gp ∈ G, write gi = aribsizti for 0 ≤ ri, si, ti < p. Let t =
∑
ti. We define

the following sets.2 Let Pk be the set of all partitions of the set {1, 2, 3, . . . , p} into k parts

such that each block corresponds to a central product of elements among g1, g2, . . . , gp.
3 We

note that if gi1gi2gi3 · · · gir ∈ Z(Hi) then giσ(1)giσ(2)giσ(3) · · · giσ(r) ∈ Z(Hi) for any σ ∈ Sr.

(This fact is particular to the groups H1 and H2 and is not true for general groups.) We

denote an element of Pk by R = {R1, R2, . . . , Rk}. Then the value of the associated p-

character of ψu is given as follows:

1Many times this group is presented as UT (3, p), the unitriangular matrix group of degree three over the
prime field Fp. For our considerations here, such a presentation will not be of particular utility.

2This is done in hopes of eliminating wildly messy notation in the definition of the associated p-character.
3For example, if g1g4g7, g2g5, g3g6 are central products in G (where p = 7), then these elements would

correspond to the partition {[1, 4, 7], [2, 5], [3, 6]}. This partition would be an element of P3.
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ψ(p)
u (g1, g2, . . . , gp) =

p∑
k=1

∑
R∈Pk

k∑
v=1

∑
Sym(Rv)

pkζutη,

where

η =

 ∑
i,j∈Rv

σv(i)<σv(j)

sσv(i)rσv(j)

 .

The proceeding is an example of the 3-character for a group of order 27 (i.e. a group of order

p3 with p = 3).

4.2.2 The 3-Character for SmallGroup(27,3). Let G refer to SmallGroup(27, 3)

from GAP’s SmallGroup library [14]. This group is H2 from above, with the prime p = 3.

Johnson and Sehgal discuss this group in [29]. Take g1, g2, g3 ∈ G with

g1 = ar1bs1zt1 , g2 = ar2bs2zt2 and g3 = ar3bs3zt3 .

Also let ζ = e2πi/3.

Then for 1 ≤ u ≤ 2 we have the irreducible character of degree 3

φu(a
rbszt) =


3ζut if r = s = 0

0 otherwise

This allows us to construct the 3-character of φu as defined in Chapter 2:

φ(3)
u (g1, g2, g3) = φu(g1)φ

(2)
u (g2g3)− φ(2)

u (g1g2, g3)− φ(2)
u (g2, g1g3).

We can expand the 3-character recursively into a sum of products of φu on different
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elements of G, similar to the proof of Theorem 3.3.

φ(3)
u (g1, g2, g3) = φu(g1)φu(g2)φu(g3) − φu(g1)φu(g2g3)− φu(g2)φu(g1g3)− φu(g3)φu(g1g2).

+ φu(g1g2g3) + φu(g1g3g2)

As we know, this gives rise to using the filigree for S3, where here we examine the

centrality of g1, g2, g3, and products of these, as opposed to using the filigree on identity

products (e.g. (g1g3)(g2) means that the product g1g3 is in Z(G), as well as g2 itself being

central in G). See Figure 4.1.

Figure 4.1: The S3 filigree for φ
(3)
u : Central Products

(1)(2)(3)

(1)(23)(13)(2)(12)(3)

(123) (132)

(g1)(g2)(g3)

(g1)(g2g3)(g1g3)(g2)(g1g2)(g3)

(g1g2g3) (g1g3g2)

3 Cycles:

2 Cycles:

1 Cycle:
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(g1)(g2)(g3) 7→ (p3 − 3p2 + 2p)ζu(t1+t2+t3) = 6(ζu(t1+t2+t3));

(g1g2)(g3) 7→ (−p2 + 2p)(ζt1+t2+t3+s1r2) = −3(ζt1+t2+t3+s1r2);

(g1g3)(g2) 7→ (−p2 + 2p)(ζt1+t2+t3+s1r3) = −3(ζt1+t2+t3+s1r3);

(g2g3)(g1) 7→ (−p2 + 2p)(ζt1+t2+t3+s2r3) = −3(ζt1+t2+t3+s2r3);

(g1g2g3) 7→ p(ζt1+t2+t3+s1r2+s1r3+s3r2) = 3(ζt1+t2+t3+s1r2+s1r3+s3r2);

(g1g3g2) 7→ p(ζt1+t2+t3+s1r2+s1r3+s2r3) = 3(ζt1+t2+t3+s1r2+s1r3+s2r3).

Naturally if no product combination of g1, g2 and g3 is central then φ
(3)
u (g1, g2, g3) = 0.

On the values associated with the transpositions, note that we cannot have two of the

transpositions in the center without all three of g1, g2, g3 themselves being central. Note

that for p = 3 we were able to directly find the 3-character for φu without first finding the

2-character.

4.3 The Group AGL(1, p)

Our next examination will focus on the group AGL(1, p), the affine general linear group for

prime p. The group AGL(1, p) is defined as:

〈a b

0 1

 ∣∣∣∣ a ∈ F×p , b ∈ Fp

〉
.

The order of AGL(1, p) is clearly p(p− 1). We can define the following cyclic subgroups of

AGL(1, p), with multiplicative generator as noted:

K =

〈1 b

0 1

∣∣∣∣ b ∈ Fp

〉
with generator

1 1

0 1

 ;

42



H =

〈a 0

0 1

∣∣∣∣ a ∈ F×p

〉
with generator

h 0

0 1

 , where h generates F×p .

Lemma 4.5. Every element

(
a b

0 1

)
of AGL(1, p) is an invertible matrix with inverse given

by the matrix

(
a−1 a−1(−b)
0 1

)
. Here a−1 is the multiplicative inverse of a in F×p and −b is

the additive inverse of b in Fp.

Proof. This can be directly verified by matrix multiplication.

Lemma 4.6. K is a normal subgroup of AGL(1, p).

Proof. Take matrix θ =

(
1 t

0 1

)
in K. Take an arbitrary matrix β =

(
a b

0 1

)
in AGL(1, p).

Then

β−1θβ =

(
a−1 a−1(−b)
0 1

)(
1 t

0 1

)(
a b

0 1

)

=

(
a−1 a−1(t− b)
0 1

)(
a b

0 1

)
=

(
1 a−1t

0 1

)
∈ K. �

Proposition 4.7. [4, p. 441] AGL(1, p) is isomorphic to the semidirect product of K and

H (where H acts on K by matrix multiplication): AGL(1, p) ∼= K oH.

The above proposition gives us that AGL(1, p) is a Frobenius group. As is noted in [17,

p. 175], G/K ∼= H, so by Isaacs in [24] we can use the induced characters of K to find the

characters of G.

Proposition 4.8. [25, p. 291] Let H be generated by α. The conjugacy classes of AGL(1, p)

are given as follows.

{id}, K − {id}, Kα, Kα2, . . . , Kαp−2.

Note that the conjugacy classes can be expressed as (right) cosets of K in the general

case, with K itself splitting into two conjugacy classes in the case of the identity. Using

this proposition with the results given in [25, p. 291-292] we can find the character table of

AGL(1, p) for p an odd prime. There are p−1 irreducible characters of degree 1 and there is

a single character of degree p− 1. These results are summarized in Table 4.4 below. (Take

ζ = e2π/p):
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Table 4.4: Character Table for AGL(1, p), p an odd prime

id K − {id} Kα Kα2 · · · Kαp−2

χ1 1 1 1 1 · · · 1

χ2 1 1 ζ ζ2 · · · ζp−2

χ3 1 1 ζ2 ζ4 · · · ζ2(p−2)

...
...

...
...

... · · · ...

χp−1 1 1 ζp−2 ζ2(p−2) · · · ζ(p−1)(p−2)

ψ p− 1 −1 0 0 · · · 0

Theorem 4.9. Let ψ(p−1) be the (p− 1)-character of ψ. Take g1, g2, . . . , gp−1 ∈ AGL(1, p).

Then ψ(p−1)(g1, g2, . . . , gp−1) is nonzero if and only if there is some permutation σ ∈ Sp−1

such that gσ(1)gσ(2) · · · gσ(p−1) ∈ K.

Proof. Once again we can use the filigree for the associated symmetric group. Here the

filigree for Sp−1 will be employed and we will use the filigree condition of products in K.

Consider the bottom row of the Sp−1 filigree. Each entry consists of a single cycle of

length p−1 which can be associated with the possible products of the operands g1, . . . , gp−1.

Hence if there is no (p − 1)-cycle σ in Sp−1 such that gσ(1)gσ(2) · · · gσ(p−1) ∈ K then ψ(p−1)

will be zero, as no entry of the filigree satisfies the filigree condition. Note that if there was

some permutation in Sp−1 such that gσ(1)gσ(2) · · · gσ(p−1) was in K, then it would have as a

consequence of coalescence a (p− 1)-cycle in the filigree. So indeed if there is no p− 1-cycle

for which the filigree condition is satisfied, there will be no permutation in general that

satisfies the filigree condition.

Conversely suppose that there does exist some permutation σ in Sp−1 such that

gσ(1)gσ(2) · · · gσ(p−1) is in K. Then we will have that ψ(p−1) is non-zero as the filigree condition

will be satisfied for some element of Sp−1.

This concludes our examination of k-characters.
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Chapter 5. Random Walks on Finite Groups

5.1 Definitions and Preliminaries

5.1.1 Introduction. This subsection is an overview of introductory material found in

[15], [20] and [33]. We let G be a finite group and P a probability distribution on G (P is

sometimes referred to in the literature as just a probability). We specifically designate the

uniform probability distribution by U , where U(g) =
1

|G|
for all g ∈ G. If P is a probability

distribution on G, it must satisfy

∑
g∈G

P (g) = 1 as well as P (g) ≥ 0 ∀g ∈ G.

We let Π(G) be the set of all probabilities on a group G.

Definition 5.1. [15, p. 50] We define a random walk 1 on G as a sequence of G-valued

random variables Y1, Y2, . . . , Ym (for some integer m ≥ 1) where

Ym = X1 ◦X2 ◦ . . . ◦Xm,

with the Xi’s being independent, identically distributed G-valued random variables, and ◦

being the group operation.

When given some P ∈ Π(G), we can write P (Xi = g) as a matter of shorthand P (g) for

any index i. (Since all the Xi are identically distributed, this shorthand is well defined.)

Definition 5.2. We define a convolution of probability distributions P and Q by

(P ∗Q)(s) =
∑
t∈G

P (t)Q(t−1s).

1Hildebrand [20] indicates an alternative definition that always yields identical probability distributions
as the definition given here. The associated Markov chains may differ in the case that G is non-abelian; this
topic, however, lies wholly outside the scope of this work and will not be discussed.
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Of note is the fact that if P and Q are probability distributions associated with G-

valued independent random variables X1 and X2 respectively, then P ∗Q is the probability

distribution of X1X2 as a random variable on G (see [20]). We further can define for the

probability distribution P the k-fold convolution P (k) = P ∗P ∗· · ·∗P (k-times). Of particular

interest in this chapter are those probability distributions for which the sequence {P (k)}k∈N

reaches the limit U after a finite number of convolutions. That is, there is some k ≥ 1 such

that

P (k) = P (k+1) = P (k+2) = · · · = U.

We designate by Ω(G) the set of probability distributions on G satisfying this criterion.

As U ∈ Ω(G), we know that Ω(G) is nonempty. One question that arises is as follows: If

P (k) = U , does it follow that P (k+r) = U for all positive integers r? This is in fact true and

is demonstrated in the following theorem:

Theorem 5.1. If P (k) = U , then P (k+r) = U for all positive integers r.

Proof. Assume that P (k) = U . Then for any g ∈ G

P (k+r)(g) = (P (r) ∗ P (k))(g) = (P (r) ∗ U)(g)

=
∑
t∈G

P (r)(t)U(t−1g) =
1

|G|
∑
t∈G

P (r)(t)

=
1

|G|
.

This last equality comes from the totalness of P (r) as a probability.

Thus the set Ω(G) will consist of all random walks on G whose associated probability

distribution converges to the uniform distribution after some finite number of convolutions.

The set Ω(G) correlates closely with the set of nilpotent elements of the group algebra RG.

To wit, Vyshnevetskiy and Zhmud’ present and prove the following theorem:

Theorem 5.3. [33, pp. 124, 129] For a finite group G, the following conditions are equiva-

lent:
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(a) Ω(G) = {U}.

(b) G is either abelian or a Hamiltonian 2-group. That is, in the case of the latter,

G ∼= E×Q where E is an elementary abelian 2-group and Q is the order 8 quaternion

group.

(c) Zero is the only nilpotent element of RG.

Let x =
∑

g xg · g be an element of RG. We then define |x| =
∑

g xg. If P ∈ Π(G), then

we will let p =
∑

g P (g) · g. As P is a probability, |p| = 1. Let u =
∑

g
1
|G| · g designate the

element of RG associated with U .

The proceeding properties of | · | are given without proof in [33]. These are direct results

of what is called the augmentation map from RG to R. For any x, y in RG

|x+ y| = |x|+ |y|; |x− y| = |x| − |y|; |xy| = |x| · |y|.

Definition 5.4. Let A be an arbitrary ring. We then let Nil(A) designate the set of all

nilpotent elements of A.

Theorem 5.5. [33, p. 124] Let A be as above. For each x ∈ Nil(A), |x| = 0.

Proof. For some k ∈ N, xk = 0. Thus 0 = |xk| = |x|k and hence |x| = 0.

From Proposition 7.2 in [23] we get a theorem pertaining to the relationships between

the coefficients of elements of the conjugacy classes of G. We will employ this theorem at a

later point in this chapter.

Theorem 5.6. Let C1, C2, . . . , C` be the distinct conjugacy classes of G. Define x = p − u

where p is the element of RG associated with some P ∈ Ω(G) and let C̃j =
∑

Cj
xi be the

sum of the coefficients from x of the elements in Cj, for each 1 ≤ j ≤ `. We then have that

C̃j = 0 for each j.

We provide the following easy lemma and corollary without proof.

47



Lemma 5.7. [33, p. 125] If P ∈ Π(G) and x = p−u, with p and u as above, then pn = xn+u

for any n ∈ N.

Corollary 5.8. [33, p. 125] Take P ∈ Π(G). Define x = p − u as above. Then P ∈ Ω(G)

if and only if x ∈ Nil(RG).

This introduces the crux of the remaining pursuits of this chapter, namely the examina-

tion of all such x ∈ Nil(RG) in order to in turn determine the elements of Ω(G). A final

theorem from [33, Theorem 1.4] aids us in this pursuit.

Theorem 5.9. If P ∈ Ω(G), then P (b) = U , where b is the maximal degree among the

irreducible representations of G over C.

5.1.2 Use of the Group Matrix in Random Walks. Let G = {g1, g2, . . . , gn} be a

finite group and let XG = [xk] =
[
xgig−1

j

]
designate the group matrix associated with G (see

Definition 2.1). Here xk = xgig−1
j

is the (i, j) entry of XG with gk = gig
−1
j . The values of

each xk are found in the proceeding manner.

Take P ∈ Π(G). For any gi, gj ∈ G, let pk = pgig−1
j

designate the probability of “walking”

from gi to gj. In this manner we can say that P = (p1, p2, . . . , pn) is a probability distribution

on G. Now let x = p− u as in the previous section, where p is the element of RG associated

with P . Let xk be the associated coefficient on each summand of x in RG.

Per the definition of xk given above, we can place a condition on the xk for all k:

xk ≥ −
1

|G|
.

This follows from the fact that pk ≥ 0 for all k and that uk = 1
|G| . We will find that this

condition may at times be made even more rigid because of relations among the elements of

the group in question.

The following section will contain further work employing the group matrix.
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5.2 The Dihedral Group D2q

5.2.1 Introduction to the examination of D2q. Let G = D2q with q an odd prime.

Then G has the following presentation:

〈r, s | rq = s2 = id, srs = rq−1〉.

Now label the elements of G as follows:

Table 5.1: Labeling the Elements of D2q

id → g1 s → gq+1

r → g2 sr → gq+2

r2 → g3 sr2 → gq+3

r3 → g4 sr3 → gq+4
...

...
...

...
rq−1 → gq srq−1 → g2q

Let m = q−1
2

and let p be the element in RG corresponding to a probability P ∈ Ω(D2q).

We can then let

xi = pi − ui = pi −
1

2q

where pi indicates the coefficient of the ith index coefficient of p as an element in RG.

Associate with each gi the coefficient xi. Define the element e =
∑

G xigi in RG. Since

e was constructed using a probability P in Ω(D2q), Theorem 5.9 gives that e2 = 0 (as an

irreducible representation of D2q has degree at most 2). The remaining pursuit of this chapter

is to establish what values of the coefficients xi of e can be when we know e2 = 0. We have

the following relations on the coefficients by Theorem 5.6:

x1 = 0, x2 = −xq, x3 = −xq−1, · · · , xm+1 = −xm+2,

xq+1 = −(xq+2 + xq+3 + · · ·+ x2q).

We will refer to x1, x2, . . . , xm+1, xm+2, . . . , xq as the lower index variables and
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xq+2, xq+3, . . . , x2q as the higher index variables.

We can rewrite e as follows:

e = 0 · id + xq(r
q−1 − r) + xq−1(r

q−2 + r2) + · · ·+ xm+2(r
m+2 − rm+1)

+ (−xq+2 − xq+3 − · · · − x2q)s+ xq+2sr + · · ·+ x2qsr
q−1.

We now examine the coefficient of the identity element of e2.

Lemma 5.10. The coefficient of g1 = id in e2 is given as follows:

−2

q∑
j=m+2

x2j + 2

2q∑
i=q+2

x2i + 2

2q∑
i,j=q+2
i<j

xixj.

Proof. The only terms in the product e2 that contribute to the coefficient of id are those

products between coefficients xg and xg−1 where g cycles through the elements of G. For

2 ≤ i ≤ m + 1, xgi can be expressed as the negative of the coefficient on g−1i , as given by

the above relations. Hence indeed we have a contribution of −2x2j to the coefficient of id for

m + 2 ≤ j ≤ q. Each of s, sr, sr2, . . . , srq−1 is its own inverse. Hence the square of each of

the coefficients of these elements give the remaining contributions to the coefficient of id in

e2. To wit, we have the following contribution from the coefficient of s:

(−xq+2 − xq+3 − · · · − x2q)2 =

2q∑
i=q+2

x2i + 2

2q∑
i,j=q+2
i<j

xixj.

The coefficients of each of sr, sr2, . . . , srq−1 contribute the remaining square terms, yielding

en totale

−2

q∑
j=m+2

x2j + 2

2q∑
i=q+2

x2i + 2

2q∑
i,j=q+2
i<j

xixj.

This was the desired result. �
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Corollary 5.11. The previous lemma, along with Theorem 5.6 gives us the following:

−2

q∑
j=m+2

x2j + 2

2q∑
i=q+2

x2i + 2

2q∑
i,j=q+2
i<j

xixj = 0.

5.2.2 Results of diagonalization of XG. Let T : D2q → GL2q(C) be the regular rep-

resentation of D2q. The group matrix XG can be associated under the regular representation

of D2q with the element e from above in the following manner [18, p. 143], [26, p. 300]:

• We can write e =
∑

G xigi in CG.

• Replacing each gi with the associated matrix given by T (gi), we then have XG =∑
G xiT (gi).

Definition 5.12. [2, p. 25] [7, p. 7] Let G be any group. Let % be a representation of G.

The Fourier Transform at % of a function f : G→ C is given by

f̂(%) =
∑
G

f(g)%(g).

Hence we can say that XD2q = Ξ̂(T ), where Ξ : D2q → C is defined by Ξ(gi) = xi.

We can block diagonalize XD2q , with blocks corresponding to the irreducible representa-

tions of D2q [7, p. 48-49].

XD2q ∼ B1 ⊕B2 ⊕Ψ1 ⊕Ψ1 ⊕ · · · ⊕Ψm ⊕Ψm,

where B1 and B2 are the matrices associated with the two characters of D2q of degree one

and the Ψj (1 ≤ j ≤ m) are the 2 × 2 blocks associated with the m degree 2 irreducible

representations of D2q. Note that each Ψj occurs with multiplicity two. That is to say, given

any irreducible representation % of D2q, we have a corresponding block in the diagonalization

of XD2q given by Ξ̂(%). Each such block occurs with multiplicity equal to the degree of the

associated representation.
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We further specify the entries of Ψj:

Ψj =


m

(j)
11 m

(j)
12

m
(j)
21 m

(j)
22

 .

When the index (j) is either implied or irrelevant, we will commonly suppress such and

denote the entries of Ψj as merely m11,m12,m21, and m22.

Theorem 5.13. For any 1 ≤ j ≤ m, the matrix Ψj has determinant equal to 0. Furthermore,

both eigenvalues of Ψj are 0.

Proof. As XD2q corresponds to e under the regular representation of D2q and e2 = 0 is known

from [33], we get (XD2q)
2 = 0. The block diagonalization of XD2q gives us that each block

of XD2q must be nilpotent of degree less than or equal to 2. Any nilpotent matrix must

have determinant equal to 0. Thus det Ψj = 0 for each j. Moreover, as each eigenvalue of a

nilpotent matrix must be 0, the only element of the spectrum of Ψj will be 0.

Corollary 5.14. Since the spectrum of Ψj only contains 0, this also tells us that the trace

of Ψj is equal to 0.

Let %j designate the jth irreducible 2-dimensional representation of D2q. There are

m = q−1
2

such representations. Furthermore, %j maps the generators r, s of D2q to elements

of GL2(C) as given in [25, p. 181] and below:

%j(r) =

ζj 0

0 ζ−j

 , %j(s) =

0 1

1 0

 ,

52



where ζ = e2πi/q. We can hence write general elements of D2q under the representation %j

in the following manner (0 ≤ k ≤ q − 1):

%j(r
k) =

ζkj 0

0 ζ−kj

 , %j(sr
k) =

 0 ζ−kj

ζkj 0

 .

We now have the following decomposition of Ψj:

Ψj =

q−1∑
k=0

%j(r
k)xk+1 +

q−1∑
k=0

%j(sr
k)xq+k+1

=



q−1∑
k=0

ζkjxk+1 0

0

q∑
k=0

ζ−kjxk+1


+


0

q−1∑
k=0

ζ−kjxq+k+1

q−1∑
k=0

ζkjxq+k+1 0



=



m∑
k=1

(ζkj − ζ−kj)xk+1

q−1∑
k=0

ζ−kjxq+k+1

q−1∑
k=0

ζkjxq+k+1

m∑
k=1

(ζ−kj − ζkj)xk+1,


where the diagonal entries of the final matrix can be confirmed by observing first that x1 = 0

(by Theorem 5.6) and also that x2+k = −xq−k for 0 ≤ k < q − 2.

Observation 5.15. As each of the xi are real, the above decomposition shows us that

the off-diagonal entries of Ψj are complex conjugates of one another. That is, m12 = m21.

Furthermore, note that m11 = m22 and m11 = −m22 (this latter fact follows from Tr Ψj = 0).

This allows us to conclude that the real part of m11 and m22 is zero.

Let λkj = ζkj − ζ−kj and let Λ = [λkj], an m × m matrix. We know that Ψj has

determinant 0 from Theorem 5.13. Hence we know that m11m22 = m12m21. Furthermore,
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since Tr Ψj = 0 implies m11 = −m22, we have that (m11)
2 = −m12m21. Indeed, in a sufficient

ring extension, we have m11 =
√
−m12m21 = −i|m12|. This final equality follows from the

fact that m12 = m21.

In Table 4.1 we gave a general form of the character table for D2q (q being odd). Here

we provide this character table again, this time in an expanded rendering. This version of

the character table can be confirmed by use of [14]. The utility of such an exposition will

become apparent in the theorem that follows.

Table 5.2: Character Table of D2q

id s r r2 · · · rm

χ1 1 1 1 1 · · · 1

χ2 1 −1 1 1 · · · 1

ψ1 2 0 ζ − ζ−1 ζ2 − ζ−2 · · · ζm − ζ−m

ψ2 2 0 ζ2 − ζ−2 ζ4 − ζ−4 · · · ζ2m − ζ−2m

ψ3 2 0 ζ3 − ζ−3 ζ6 − ζ−6 · · · ζ3m − ζ−3m
...

...
...

...
... · · · ...

ψm 2 0 ζm − ζ−m ζ2m − ζ−2m · · · ζm
2 − ζ−m2

Theorem 5.16. The matrix Λ is invertible.

Proof. The first order of business is to notice that Λ appears in the lower right corner of

Table 5.2. Treating the entries of Table 5.2 as entries of a matrix, we get an invertible

(m+ 2)× (m+ 2) matrix (a character table is always an invertible matrix). Call this matrix

C.

Suppose that Λ has rank less than or equal to m − 2. This would then imply that C is

not an invertible matrix. Hence Λ has rank greater than or equal to m− 1.

Suppose that Λ has rank m − 1. Let C1, C2, . . . , Cm+2 be the columns of C. Since Λ is

supposed to have rank m− 1, there exists scalars β3, β4, . . . , βm+2 not all zero such that

m+2∑
i=3

βiCi = (k, k, 0, . . . , 0)T .
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Since the C3, C4, . . . , Cm+2 are linearly dependent, k 6= 0. This means that in fact

(1, 1, 0, . . . , 0)T is in the span of the columns containing Λ. So we have that in fact C is row

equivalent to the following matrix:

M =



1 1 0 0 · · · 0

1 −1 0 0 · · · 0

2 0 ζ − ζ−1 ζ2 − ζ−2 · · · ζm − ζ−m

2 0 ζ2 − ζ−2 ζ4 − ζ−4 · · · ζ2m − ζ−2m

2 0 ζ3 − ζ−3 ζ6 − ζ−6 · · · ζ3m − ζ−3m
...

...
...

... · · · ...

2 0 ζm − ζ−m ζ2m − ζ−2m · · · ζm
2 − ζ−m2



.

Since we have a zero block in the upper right hand corner, we know that the determinant

of M is −2 det Λ = detC 6= 0. But this implies that det Λ 6= 0 (while we assumed otherwise).

So in fact Λ cannot have rank less than m. Since Λ has rank m, then Λ is invertible.

We will let Λ−1 = [µij]. The above theorem allows us to state a subsequent corollary.

Corollary 5.17. We can write x1, x2, . . . , xq in terms of xq+1, xq+2, . . . x2q.

Proof. For the lower index variables, we have the following aforementioned pairings from

Theorem 5.6. We now write x2, x3, . . . , xm+1 in terms of the higher index variables. Let

v = (x2, x3, . . . , xm+1) be a vector of length m as depicted. Then

ΛvT =



m∑
j=1

λ1jxj

m∑
j=1

λ2jxj

...
m∑
j=1

λmjxj


=



−|m(1)
12 |

−|m(2)
12 |

...

−|m(m)
12 |


.
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Remember that each m
(k)
12 is a polynomial only in terms of the higher index variables.

Since Λ is invertible, this allows us to write the vector v as follows:

Λ−1ΛvT = vT = Λ−1



−|m(1)
12 |

−|m(2)
12 |

...

−|m(m)
12 |


=



−
m∑
j=1

µ1j|m(1)
12 |

−
m∑
j=1

µ2j|m(2)
12 |

...

−
m∑
j=1

µmj|m(m)
12 |


.

We have now written the lower index variables in terms of the higher index variables.

Hence the lower index variables are dependent on the higher index variables.

5.2.3 Finding solutions to the equation e2 = 0. Our main pursuit is now to obtain

results relevant to the set of solutions satisfying e2 = 0, where e is as defined above in Section

5.2.1. We have already seen some efforts in this regard in Corollary 5.17. Let Coeff(e2) be

the set of nonzero coefficients of e2. We will consider the dihedral groups D2q for the primes

q = 3, 5, 7.

Observation 5.18. As xi ≥ −
1

2q
for each i, it follows from Section 5.2.1 that

xq+1 ≤ −
(
− 1

2q
− 1

2q
− · · · − 1

2q

)
=
q − 1

2q
.

5.2.3.1 The case q = 3. We first inspect D6, the dihedral group of order 6. We know

that each of x2, x3, x4, x5, x6 are greater than or equal to −1

6
(and x1 = 0). Furthermore we

have the following relationships between the variables:

x2 = −x3, x4 = −(x5 + x6).
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By Observation 5.18, we have x4 ≤
1

3
. Moreover, we have −1

6
≤ x2, x3 ≤

1

6
. We have a

2-simplex in the variables x5 and x6 since x5, x6 ≥ −1
6

and x5 + x6 ≤ 5
6
. (See Figure 5.1.)

Figure 5.1: The 2-simplex for x5 and x6

x6

x5

(0,0)

(-    ,-    )1
6

1
6

1

1

x5 x6+
6
5=

The variables x5 and x6 comprise the independent variables and the lower index variables

x2 and x3 comprise the dependent variables in the solutions to e2 = 0. All solutions will lie

above this simplex. Finding a Gröbner basis for the ideal generated by the coefficients of e2

and the equations given by Theorem 5.6 gives us the previously found relationships between

the coefficients of e, as well as the following additional relationship:

x23 − x25 − x5x6 − x26 = 0.

This allows us to relate x3 to x5 and x6, which in turn allows us to determine x2.

The 2-simplex above can be improved upon by observing the constraint on the lower

bound of the xi (to wit, xi ≥ −1
6
) and solving explicitly for a 2-simplex for the solutions.

The resulting 2-simplex is given in Figure 5.2 below.
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Figure 5.2: Explicit 2-simplex for x5 and x6 under constraint xi ≥ −1
6

The rounded curve on the top of the figure is given by the equation

x6 = −x5
2

+
1

6

√
1− 27x25 for − 1

6
≤ x5 ≤ 0.

The rounded curve on the bottom left corner of the figure is given by the equation

x6 = −x5
2
− 1

6

√
1− 27x25 for − 1

6
≤ x5 ≤ 0.

The rounded curve on the bottom right corner of the figure is given by two equations:

x6 = −x5
2
± 1

6

√
1− 27x25 for

1

6
≤ x5 ≤

1

3
√

3
.
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The line of negative slope in the first quadrant is given by

x6 =
1

6
− x5,

and the horizontal and vertical lines are given by x5 = −1
6

and x6 = −1
6

respectively.

5.2.3.2 The case q = 5. Our examination turns now to q = 5, the group in question

being D10. We desire here to determine, under certain conditions, the values for the coeffi-

cients on e which yield solutions to e2 = 0. The basic approach which we employ is to set

some of the coefficients of e equal to 0, then seek to find a solution to e2 = 0 among the

remaining variables. An example of this process is described below. But first we provide a

relevant definition.

Definition 5.19. Let I be an ideal in C[x1, x2, . . . , xn], where n is a positive integer. Take a

subset S of {1, 2, . . . , n} consisting of m elements s1, s2, . . . , sm. We can then associate with

S an elimination ideal IS given by

IS = I ∩ C[xs1 , xs2 , . . . , xsm ].

Elimination ideals are commonly used in conjunction with a Gröbner basis.

Example. Here we demonstrate a process for finding a set containing solutions to e2. We

first create the ideal C in the polynomial algebra C[x1, x2, . . . , x10]:

C =

〈
Coeff(e2), x24 + x25 + x27 + x28 + x29 − 1 +

1

10
, x10

〉

Recall that Coeff(e2) is the set of nonzero coefficients of e2. The creation of C allows us to

seek for solutions to e2 = 0 in the quotient ring C[x1, x2, . . . , x10]/C. Seeking for solutions to

e2 = 0 in this quotient ring is equivalent to setting x10 to 0 and finding solutions among the

remaining variables. Furthermore, in order to produce a compact space containing solutions
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to the equation, we intersect the variety of e2 with a 4-sphere of radius 1− 1
10

in the variables

x4, x5, x7, x8, x9. By including x10 itself as a generator C we are effectively setting x10 equal

to 0. This is done to give us a solution space that can be plotted over three variables.2

Overall, we obtain a compact space which contains as a subset a set of solutions to e2 = 0

whose coefficients are at most 1− 1
10

and are determined by the values of x4, x5, x7, x8, and

x9. We calculate a Gröbner basis for C, then find the associated elimination ideal for the

variables x4, x8, x9. This elimination ideal is generated by a single element, as given below:

x84 +
9

10
x64x

2
8 +

4

5
x64x8x9 +

11

10
x64x

2
9 −

6

5
x64 +

181

400
x44x

4
8 +

9

5
x44x

3
8x9 +

539

200
x44x

2
8x

2
9 −

43

50
x44x

2
8

+
23

10
x44x8x

3
9 −

13

10
x44x8x9 +

421

400
x44x

4
9 −

31

25
x44x

2
9 +

23

50
x44 +

3

100
x24x

6
8 +

71

200
x24x

5
8x9

+
103

100
x24x

4
8x

2
9 −

19

100
x24x

4
8 +

369

200
x24x

3
8x

3
9 −

187

200
x24x

3
8x9 +

93

50
x24x

2
8x

4
9 −

311

200
x24x

2
8x

2
9

+
41

200
x24x

2
8 +

63

50
x24x8x

5
9 −

301

200
x24x8x

3
9 +

21

50
x42x8x9 +

12

25
x42x69 −

143

200
x24x

4
9

+
71

200
x24x

2
9 +

3

50
x24 +

1

25
x88 +

9

50
x78x9 +

9

16
x68x

2
9 −

2

25
x68 +

21

20
x58x

3
9 −

7

25
x58x9

+
147

100
x48x

4
9 −

137

200
x48x

2
9 +

3

50
x48 +

27

20
x38x

5
9 −

183

200
x38x

3
9 +

29

200
x38x9 +

9

10
x28x

6
9

− 87

100
x28x

4
9 +

101

400
x28x

2
9 −

1

50
x28 +

9

25
x8x

7
9 −

9

20
x8x

5
9 +

37

200
x8x

3
9 −

1

40
x8x9

+
9

100
x89 −

3

20
x69 +

37

400
x49 −

1

40
x29 +

1

400
.

This polynomial produces a space of solutions as shown in Figures 5.3a and 5.3b (alternate

views of the same space):

2When all of the larger index variables were allowed to take on non-zero values, solution spaces were
described by three or more free variables, making even an implicit plot impossible in only three dimensions.
Further work on D10 should focus on describing these more robust solution sets.
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Figure 5.3: Subspace of solutions to e2 = 0 (D10)

(a) Elimination ideal for x4, x8, and x9 view I (b) Elimination ideal for x4, x8, and x9 view II
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It is again important to note that this space is not the only set of solutions to e2 = 0.

These results are only one sliver of a considerable set of solutions.

The preceding example can be repeated for the following triples of variables:

(x4, x7, x8), (x4, x7, x9), (x4, x7, x10), (x4, x8, x10), (x4, x9, x10)

(x5, x7, x8), (x5, x7, x9), (x5, x7, x10), (x5, x8, x9), (x5, x8, x10), (x5, x9, x10)

Each triple produces results very similar (in terms of geometric considerations) to the triple

(x4, x8, x9) given in the example, although no two spaces are identical.

5.2.3.3 The case q = 7. We now examine the group D14. We can perform a similar

method of examination here as we did with D10. Again we seek to determine, under certain

conditions, the values for the higher index variables which yield solutions to e2 = 0. To

simplify the situation,3 we will set some of the higher index variables to 0, then find solutions

to e2 = 0 among the remaining higher index variables. This is demonstrated below.

Example. Here we will be looking at solutions to e2 = 0 comprised only of the variables

x9, x10, x11. We create the ideal

D =
〈
Coeff(e2), x12, x13, x14

〉
in C[x1, . . . , x14]. This sets the variables x12, x13, x14 equal to zero. We next calculate a

Gröbner basis forD, then find the associated elimination ideal for the variables x7, x9, x10, x11.

In order to produce a compact space containing solutions of e2 = 0, we intersect the variety

of e2 over the variables x7, x9, x10, x11 with a 3-sphere of radius 1 − 1
14

in the variables

x7, x9, x10, x11. This allows us to obtain a compact set of solutions to e2 = 0 for which

none of the coordinates exceeds 1 − 1
14

. This is important due to the fact that e = p − u
restricts the size of the coefficients of e. Finding a Gröbner basis for the resulting ideal, yields

3When all of the higher index variables were allowed to be non-zero, MAGMA was unable to find a
Gröbner basis in any reasonable (∼ 24 hours) amount of time.
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two polynomials in C[x7, x9, x10, x11]. The first of these corresponds to the aforementioned

3-sphere. The second of these is given as follows:

x8
9 +

6788
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Solutions to this polynomial produce a 4-fold cover of a 2-sphere. Figures 5.4a and 5.4b

provide two views of a cut-away of a quarter of this 4-fold cover.
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Figure 5.4: Space containing solutions to e2 = 0 (D14)

(a) 4-fold cover of a 2-sphere (I) (b) 4-fold cover of a 2-sphere (II)
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As with the example given for D10, this space represents a compact space containing

solutions to e2 = 0. In order to further inspect this 4-fold cover (and keeping in mind that

3-dimensional depictions of it, such as above, are ultimately insufficient), we perform several

examinations of its properties.

One of the simplest investigations we can make is that of taking 2-dimensional cross

sections of the 4-fold cover, much as if we were slicing an onion. See Figures A.1a through

A.1q in Appendix A for an example of such a process. This exercise of examining cross

sections allows us to confirm that indeed the cover in general has four distinct sheets, as well

as verify that the 4-fold cover is symmetric with respect to the plane x9 + x10 + x11 = 0.

We can also examine topological aspects of this 4-fold cover. First we provide some

definitions.

Definition 5.20. [10, p. 175] Let S and T be compact Riemann surfaces. Let

γ : S → T

be a nonconstant holomorphic map. For each point p of S, there is a natural number k, and

local coordinates s ∈ S around p and t ∈ T around γ(p) such that γ is given by

s 7→ t = sk.

We call ordp(γ) the order of γ at p and define

υp(γ) := ordp(γ)− 1

to be the branching order of γ at p.

Definition 5.21. [10, p. 175] Let γ, p, S, and T be as in the previous definition. We say

that p ∈ S is a branch point if

υp(γ) ≥ 1.
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Definition 5.22. [10, p. 189] Let ϕ : W → Y be a continuous map. Then ϕ is called

a covering of Y if for every point q ∈ Y , there exists an open neighborhood V with the

following property: if we let

ϕ−1(V ) =
⋃
i∈I

Ui

be the decomposition of ϕ−1(V ) into connected components, then for every i in indexing set

I, the map

ϕ|Ui : Ui → V

is a homeomorphism.

Fischer [10] provides the following lemma without proof.

Lemma 5.23. [10, p. 176] Let M be the set of all branch points (many times called the

branch set) of γ, where γ and its domain and codomain are again as in the first two defini-

tions. Let S ′ = S − γ−1(M) and T ′ = T −M . Then the restriction of γ to S ′ is a covering

in the sense of Definition 5.22.

We many times speak of the map γ as a branched cover, although such a term is, strictly

speaking, nonuniform. For our specific purposes here, we inspect the 4-fold cover as a

branched cover of a 2-sphere. As above, let M denote the branch set of the 4-fold cover. We

note that at a branch point we do not in general have a tangent plane, and so

∂h

∂x9
=

∂h

∂x10
=

∂h

∂x11
= 0,

where h denotes the previously given function yielding the 4-fold cover. Let H be the

following ideal in C[x1, . . . , x14],

H =

〈
h,

∂h

∂x9
,
∂h

∂x10
,
∂h

∂x11

〉
.

The ideal H effectively allows us to find where the gradient of h is zero, which in turn

allows us to locate points where two or more sheets of the 4-fold cover intersect. Such points
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constitute the branch set M of the 4-fold cover. Using MAGMA [1] we find a Gröbner basis

for H. Selecting the final element of the basis calculated by MAGMA we can look at one

subset of M .4

We factor the final basis element over the cyclotomic field Q(ζ42) where ζ42 is a 42nd

root of unity. (Note that 42 is 3 times 14. This was the smallest multiple of 14 for which

h factored over the associated cyclotomic field). This gave three factors of degree 4 which

we discuss in further detail below. We also have 30 quadratic factors of the form x211 − α2

where α is a real number in Q(ζ42). Hence each of these 30 quadratic factors will have two

real roots (viz. x11 = ±α). As h is never constant on x11, this means that each of these

quadratics in the basis of H will only give us finitely many branch points. These points can

be associated with tangential contact between two sheets of the 4-fold cover.

The quartic factors of the final basis element of H give us a subset of M . Figures 5.7a,

5.7b, and 5.7c show the projections of this subset of M respectively onto the x9x10-, x9x11-,

and x10x11-planes in 2-space.

4For this specific example, MAGMA finds six basis elements. The sixth and final element was by far the
simplest to work with from a computational standpoint. All other basis elements proved too computationally
difficult to factor.
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Figure 5.5: Projections of subset of branch points (x9, x10, x11)

(a) Projection of a subset of M onto x9x10 plane
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(b) Projection of a subset of M onto x9x11 plane (c) Projection of a subset of M onto x10x11 plane
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As depicted in the above figures, this subset of M can actually be “factored” as the union

of six distinct closed curves, each of the three quartics giving a symmetric pair of such curves.

These pairs of curves are indicated by the red, green, and black curves in the figure. These

colors are consistent across the images (i.e. green always corresponds to the same quartic,

viewed in various projections). Although there are six distinct closed curves, when we refer

to the “branch curves,” we are speaking of the three pairs of branch curves. Hence the red

curves will be taken as one branch curve, the green pair of curves another branch curve, and

the black pair of curves completing the count of branch curves.

One aspect of these projections that is of interest is what we term the triple points. We

define a triple point to be a point in 3-space where all three of our branch curves intersect.

Triple points are best viewed through the medium of the projections of the branch curves.

Here we will specifically look at the x10, x11 projection of the branch points for this space.

Our aim is to determine where all three branch curves intersect at a single point. In order to

do this, we construct an ideal in MAGMA whose generators are the three branch curves (i.e.

the quartics generating such). Finding a Gröbner basis of this ideal yields two polynomials.

The first of these polynomials is

x10 +
340298005940

5664298913
x711 −

104180396701

2427556677
x511 +

587502029

346793811
x311 +

75025487

49541973
x11.

The second of these two polynomials is a degree 8 polynomial over only the variable x11:

x811 −
217861

405385
x611 −

42336

405385
x411 +

1372

81077
x211 +

2401

405385
.

Thus if we can find all real roots of this second polynomial, we can use the first polynomial

to solve for corresponding values of x10. Using Descartes’ Rule of Signs [32, p. 366], we can

in fact find that this second polynomial has exactly four real roots, two positive and two

negative. We use Maple to find these roots and obtain the following four points in x9, x10, x11
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space. (The x9 slot will momentarily be left unfilled):

(•, 0.5611253609,−0.7979665209); (•, 0.1447894706,−0.4878254662);

(•,−0.1447894706, 0.4878254662); (•,−0.5611253609, 0.7979665209).

Performing a similar analysis with the x9, x11 projection of the branch points, we obtain

the x9 values for the four points given above. The four triple points of this space are as

follows:

(−0.0999664959, 0.5611253609,−0.7979665209);

(−.8127227366, 0.1447894706,−0.4878254662);

(.8127227366,−0.1447894706, 0.4878254662);

(0.0999664959,−0.5611253609, 0.7979665209).

These triple points can be visually confirmed by looking at the images of the projections

of the branch points.

Example. We now examine a solution space to e2 = 0 whose associated branch curves all

intersect at two points. In a process very similar to the one previously described for x9, x10,

and x11 above, we can produce another 4-fold cover of the sphere that represents a solution

space for e2 = 0 only over the variables x9, x11, and x12. Three dimensional depictions of

this space appear to be very similar to the 4-fold cover previously described. However, its

set of branch points is intriguing in that instead of obtaining three quartics describing three

pairs as we previously had, we now obtain six quadratics describing six individual curves.

Furthermore, these six components all intersect at exactly two points. The projections of

the branch curves onto the x9x11-, x9x12-, and x11x12-planes are as follows:
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Figure 5.6: Projections of subset of branch points (x9, x11, x12)

(a) Projection of a subset of branch points onto x9x11 plane
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(b) Projection of a subset of branch points onto x9x12 plane (c) Projection of a subset of branch points onto x11x12 plane
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Using an ideal in MAGMA as we did before, we can find the two points where these six

curves intersect:

(α, α,−α) and (−α,−α, α) where α =

√
7

22
.

Once again, this can visually be confirmed.

Example. The final example that we will look at is the solution set to e2 = 0 over only the

variables x10, x11 and x12. As with the previous two examples, this solution set is topologically

a 4-fold cover. However, distinct from the other examples, the branch curves never intersect.

The projections of the branch curves are given below:

Figure 5.7: Projections of subset of branch points (x10, x11, x12)

(a) Projection of a subset of branch points onto x10x11 plane
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(b) Projection of a subset of branch points onto x10x12 plane
(c) Projection of a subset of branch points onto x11x12 plane
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For every combination of three variables chosen from the higher index variables, we have

examined the branch set for the associated space of solutions to e2 = 0 over only these

three given variables. The branch sets can be classified into three categories, based on the

intersection of their components. These results are summarized in the following table.

Table 5.3: Branch Curve types for D14

Branch Curve Intersections Solutions to e2 = 0 over {xi, xj, xk}

Three Distinct Branch Curves (x9, x10, x11), (x9, x10, x14)
with Four Triple Points (x9, x13, x14), (x12, x13, x14)

Six Distinct Branch Curves (x9, x11, x12), (x9, x12, x13)
with Two Points in Common (x10, x11, x14), (x11, x12, x14)

Three Distinct Branch Curves (x9, x10, x12), (x9, x10, x13)
with No Intersections (x9, x11, x13), (x9, x11, x14)

(x9, x12, x14), (x10, x11, x12)
(x10, x11, x13), (x10, x12, x13)
(x10, x12, x14), (x10, x13, x14)
(x11, x12, x13), (x11, x13, x14)
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Chapter 6. Further Questions for Future Examination

One question worth consideration was brought up in Section 3.1:

• While the converse of 3.1 does not hold in general, are there nevertheless classes of

groups (e.g. Dihedral groups, p-groups, etc.) for which the conjecture does hold?

We can ask several questions pertaining to the admissible polynomials of π(k) for k ≥ 6:

• For every k ≥ 6 are there admissible polynomials which do not factor into linear terms

over Z?

• Can we develop an algorithm for determining the number of distinct admissible poly-

nomials for π(k)?

• In Chapter 3 we established that for k = 6 there are admissible polynomials with

irreducible (over Z) factors of degree 2. Are there values of k ≥ 6 for which there

exists admissible polynomials with irreducible factors of degree strictly larger than 2?

Pertinent questions arise in relation to finding the solution space to e2 = 0 in Chapter 5:

• While we intersect with a sphere to create a compact space containing solutions to

e2 = 0, what are the topological properties of the solution space itself? Is it connected?

Is it open?

• The results that we present on solutions to e2 = 0 only represent a small fraction of

all possible solutions. Further inquiries (viz. those resulting from factoring other basis

elements for the branch set) may yield additional results. Computational limitations

for D14 played a factor in obtaining a complete examination of the solution set to

e2 = 0.

• Computational shortcomings also prevented a sufficient examination for primes larger

than q = 7. Further work could focus on developing results for larger primes.
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Appendix A. Cross Sections of 4-fold Cover Over the

Variables x9, x10, and x11

The following is a sequence of cross sections of the 4-fold cover discussed in Subsection

5.2.3.3. We take cross sections along the x11- axis. There are 17 figures in all. The first

figure begins with x11 = 34
35

and travels along the x11-axis in decreasing increments of 1
35

,

ending with x11 = 18
35

. This allows us to see cross sections of half of the 4-fold cover. Due to

symmetry, the other half of the 4-fold cover will have cross sections that, when inverted, are

identical to the ones depicted below. Because of the tangential nature of the intersection of

some of the sheets of the cover, renderings of these cross sections will have fragmentation on

some of the boundaries. This indicates that two distinct sheets are so close to one another

that they cannot be properly rendered on any reasonable scale.

Figure A.1: Cross sections of 4-fold cover in x9, x10, x11

(a) Cross Section: 4-fold Cover of a 2-sphere (I)
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(b) Cross Section: 4-fold Cover of a 2-sphere (II) (c) Cross Section: 4-fold Cover of a 2-sphere (III)
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(d) Cross Section: 4-fold Cover of a 2-sphere (IV) (e) Cross Section: 4-fold Cover of a 2-sphere (V)
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(f) Cross Section: 4-fold Cover of a 2-sphere (VI) (g) Cross Section: 4-fold Cover of a 2-sphere (VII)
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(h) Cross Section: 4-fold Cover of a 2-sphere (VIII) (i) Cross Section: 4-fold Cover of a 2-sphere (IX)
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(j) Cross Section: 4-fold Cover of a 2-sphere (X) (k) Cross Section: 4-fold Cover of a 2-sphere (XI)
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(l) Cross Section: 4-fold Cover of a 2-sphere (XII) (m) Cross Section: 4-fold Cover of a 2-sphere (XIII)
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(n) Cross Section: 4-fold Cover of a 2-sphere (XIV) (o) Cross Section: 4-fold Cover of a 2-sphere (XV)
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(p) Cross Section: 4-fold Cover of a 2-sphere (XVI) (q) Cross Section: 4-fold Cover of a 2-sphere (XVII)
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Appendix B. MAGMA Code

Here we provide the MAGMA[1] code used to perform the calculations included in this thesis:

B.1 Code for Solving e2 = 0 in D2q

B.1.1 The case q = 3.

g:=SmallGroup(6,1);

F:=RationalField();

P<x1,x2,x3,x4,x5,x6>:=PolynomialAlgebra(F,#g);

ga:=GroupAlgebra(P,g);

e:=&+[P.i*ga.i:i in [1..#g]];

J:=ideal<P|Coefficients(e^2), x1, x2+x3, x4+x5+x6>;

Groebner(J);

B.1.2 The case q = 5.

G:=SmallGroup(10,1);

F:=CyclotomicField(#G);

P<x1,x2,x3,x4,x5,x6,x7,x8,x9,x10>:=PolynomialAlgebra(F,#G);

ga:=GroupAlgebra(P,G);

e:=&+[P.i*ga.i:i in [1..#G]];

eg:=[x:x in G];

PH:=hom<P -> P| [0, -x5, -x4,x4,x5,-x7-x8-x9-x10,x7, x8, x9, x10]>;

co:=Coefficients(e^2);

co1:=PH(co);co1:=Exclude(co1, 0);co1:=Exclude(co1, 0);

co1:=Exclude(co1, 0);co1:=Exclude(co1, 0);

co2:=Setseq(Set(co1));

co2:=Exclude(co2, 0);

C:=ideal<P|co2>;

Groebner(C);

bb:=Basis(C);

CS:=ideal<P|C,&+[P.i^2:i in {4..10} diff {6}]-1>;

Groebner(CS);

CS1:=ideal<P|CS, x10>;//Setting x10 to 0.

Groebner(CS1);

ee:=EliminationIdeal(CS1,{4,8,9});

//Other cases: x4810, x4910, x589, x5810, x5910, x478, x479, x4710, x578, x579, x5710.

//All the other cases produce bullfrogs of some fashion.

B.1.3 The case q = 7.

G:=SmallGroup(14,1);

F:=CyclotomicField(#G);

P<x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14>:=PolynomialAlgebra(F,#G);

groupAlg:=GroupAlgebra(P,G);
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e:=&+[P.i*groupAlg.i:i in [1..#G]];

elementsG:=[x:x in G];

Phom:=hom<P->P|[0,-x7,-x6,-x5,x5,x6,x7,-x9-x10-x11-x12-x13-x14,x9,x10,x11,x12,x13,x14]>;

//No x8.

co:=Coefficients(e^2);

co1:=Phom(co);

co1:=Exclude(co1, 0);co1:=Exclude(co1, 0);co1:=Exclude(co1, 0);co1:=Exclude(co1, 0);

co2:=Setseq(Set(co1));

co2:=Exclude(co2, 0);

//This is the actual 4-fold cover code.

D:=ideal<P|co2,x14,x13,x12>;

//Set x14, x13, x12 to zero. Other cases would look at setting other variables to 0.

Groebner(D);

Elim791011:=EliminationIdeal(D,{7,9,10,11});//

E:=ideal<P|Elim791011,x7^2+x9^2+x10^2+x11^2-1>;

Groebner(E);

hh:=Basis(E)[2];

//Setting x11, x13, x14 to 0.

D:=ideal<P|co2,x14,x13,x11>;//Set x14, x13, x11 to zero.

Groebner(D);

Elim791012:=EliminationIdeal(D,{7,9,10,12});//

E:=ideal<P|Elim791012,x7^2+x9^2+x10^2+x12^2-1>;

Groebner(E);

hh:=Basis(E)[2];

//Setting x14, x13, x10 to 0.

D:=ideal<P|co2,x14,x13,x10>;

Groebner(D);

Elim791112:=EliminationIdeal(D,{7,9,12,11});//

E:=ideal<P|Elim791112,x7^2+x9^2+x12^2+x11^2-1>;

Groebner(E);

hh:=Basis(E)[2];

//Setting x14, x13, x9 to 0.

D:=ideal<P|co2,x14,x13,x9>;

Groebner(D);

Elim7101112:=EliminationIdeal(D,{7,10,12,11});//

E:=ideal<P|Elim7101112,x7^2+x10^2+x12^2+x11^2-1>;

Groebner(E);

hh:=Basis(E)[2];

//Further cases can be considered similarly.
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B.2 Code for Finding Branch Curve Projections

The following code finds the branch curve projections for the solutions over the variables x9,
x10, and x11 to e2 = 0 when q = 7. The branch curve projections for other variable triples
are found in the same way, the necessary changes being made.

G:=SmallGroup(14,1);

//F:=RationalField();

F<zz>:=CyclotomicField(3*#G);

P<x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14>:=PolynomialAlgebra(F,#G);

groupAlg:=GroupAlgebra(P,G);

e:=&+[P.i*groupAlg.i:i in [1..#G]];

elementsG:=[x:x in G];

Phom:=hom<P -> P| [0, -x7, -x6,-x5, x5,x6,x7,-x9-x10-x11-x12-x13-x14,x9, x10, x11, x12, x

13,x14]>;//No x8.

co:=Coefficients(e^2);

co1:=Phom(co);

co1:=Exclude(co1, 0);co1:=Exclude(co1, 0);co1:=Exclude(co1, 0);co1:=Exclude(co1, 0);

co2:=Setseq(Set(co1));

co2:=Exclude(co2, 0);

//This is the actual 4-fold cover code.

D:=ideal<P|co2,x14,x13,x12>;

Groebner(D);

Elim791011:=EliminationIdeal(D,{7,9,10,11});//

E:=ideal<P|Elim791011,x7^2+x9^2+x10^2+x11^2-1>;

Groebner(E);

hh:=Basis(E)[2];

//The 10,11 case.

hh:=Basis(E)[2];

deriv9:=Derivative(hh,x9);

deriv10:=Derivative(hh,x10);

deriv11:=Derivative(hh,x11);

H:=ideal<P|deriv9,deriv10,deriv11,hh>;Groebner(H);

basisH:=Basis(H);

pr:=basisH[6];

factor6:=Factorization(pr);

Phom:=hom<P -> P| [0, -x7, -x6,-x5, x5,x6,x7,-x9-x10-x11-x12-x13-x14,x10, x9, x11, x12, x

13,x14]>;//No x8.

co:=Coefficients(e^2);

co1:=Phom(co);

co1:=Exclude(co1, 0);co1:=Exclude(co1, 0);co1:=Exclude(co1, 0);co1:=Exclude(co1, 0);

co2:=Setseq(Set(co1));

co2:=Exclude(co2, 0);

D:=ideal<P|co2,x14,x13,x12>;

Groebner(D);
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Elim791011:=EliminationIdeal(D,{7,9,10,11});//

E:=ideal<P|Elim791011,x7^2+x9^2+x10^2+x11^2-1>;

Groebner(E);

hh:=Basis(E)[2];

//The 9,11 case.

hh:=Basis(E)[2];

deriv9:=Derivative(hh,x9);

deriv10:=Derivative(hh,x10);

deriv11:=Derivative(hh,x11);

H:=ideal<P|deriv9,deriv10,deriv11,hh>;Groebner(H);//

basisH:=Basis(H);

pr:=basisH[6];//

factor6:=Factorization(pr);//

G:=SmallGroup(14,1);

//F:=RationalField();

F<zz>:=CyclotomicField(3*#G);

P<x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11,x12,x13,x14>:=PolynomialAlgebra(F,#G);

groupAlg:=GroupAlgebra(P,G);

e:=&+[P.i*groupAlg.i:i in [1..#G]];

elementsG:=[x:x in G];

Phom:=hom<P -> P| [0, -x7, -x6,-x5, x5,x6,x7,-x9-x10-x11-x12-x13-x14,x11, x10, x9, x12, x

13,x14]>;//No x8.

co:=Coefficients(e^2);

co1:=Phom(co);

co1:=Exclude(co1, 0);co1:=Exclude(co1, 0);co1:=Exclude(co1, 0);co1:=Exclude(co1, 0);

co2:=Setseq(Set(co1));

co2:=Exclude(co2, 0);

D:=ideal<P|co2,x14,x13,x12>;//Set x14, x13, x12 to zero. Other cases would look at

setting other variables to 0.

Groebner(D);

Elim791011:=EliminationIdeal(D,{7,9,10,11});//

E:=ideal<P|Elim791011,x7^2+x9^2+x10^2+x11^2-1>;

Groebner(E);

hh:=Basis(E)[2];

//The 9,10 case.

hh:=Basis(E)[2];

deriv9:=Derivative(hh,x9);

deriv10:=Derivative(hh,x10);

deriv11:=Derivative(hh,x11);

H:=ideal<P|deriv9,deriv10,deriv11,hh>;Groebner(H);

basisH:=Basis(H);

pr:=basisH[6];//

factor6:=Factorization(pr);
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