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ABSTRACT 
 

Influence of Supraglottal Geometry and Modeling Choices on the 
Flow-Induced Vibration of a Computational 

Vocal Fold Model 
 

Timothy E Shurtz 
Department of Mechanical Engineering, BYU 

Master of Science 
 

Computational models of the flow-induced vibrations of the vocal folds are powerful 
tools that can be used in conjunction with physical experiments to better understand voice 
production. This thesis research has been performed to contribute to the understanding of vocal 
fold dynamics as well as several aspects of computational modeling of the vocal folds. In 
particular, the effects of supraglottal geometry have been analyzed using a computational model 
of the vocal folds and laryngeal airway. In addition, three important computational modeling 
parameters (contact line location, Poisson's ratio, and symmetry assumptions) have been 
systematically varied to determine their influence on model output. Variations in model response 
were quantified by comparing glottal width, frequency, flow rate, open quotient, pressures, and 
wave velocity measures. In addition, the glottal jet was qualitatively analyzed. It was found that 
for various supraglottal geometries (either symmetrically or asymmetrically positioned), there 
was little asymmetry of the vocal fold motion despite significant asymmetry in the glottal jet. In 
addition, the vocal fold motion was most symmetric when consistent jet deflection was present 
(even if asymmetric). Inconsistent deflection of the glottal jet led to slightly larger asymmetries 
in vocal fold motion. The contact line location was found to have minimal impact on glottal 
width, frequency, and flow rate. The largest influence of the contact line location was seen in 
predicted velocity fields during the closed phase and in the pressure profiles along the vocal fold 
surfaces. Variations in Poisson's ratio strongly affected vocal fold motion, with lower Poisson's 
ratios resulting in larger amplitudes. The model did not vibrate when a Poisson's ratio of 0.49999 
was used. The response of a full model (with two vocal folds) was shown to vary slightly from 
that of a half model (one vocal fold and a symmetry boundary condition), the greatest difference 
being in the deflection and dissipation of the glottal jet. It was concluded that for many scenarios 
the half model will be sufficient for modeling vocal fold motion; however, a full model is 
suggested for studies of material asymmetry or glottal jet dynamics. Application of these results 
to computational models of the vocal folds will lead to improved modeling and understanding of 
vocal fold dynamics. 
 
 
 
 
 
 
 
Keywords: vocal folds, computational fluid dynamics, flow-induced vibrations, supraglottal 
geometry, contact line, Poisson's ratio, symmetry, Timothy E. Shurtz 
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1 INTRODUCTION 

1.1 Background 

1.1.1 Motivation 

Most people depend on their voice for daily communication, and many rely on it for their 

careers (e.g., singers, sports announcers, educators, and radio personalities). In addition, many 

individuals suffer from poor voice quality due to voice pathologies. According to the National 

Institute on Deafness and Other Communication Disorders, “approximately 7.5 million people in 

the United States have trouble using their voices” (NIDCD, 2010). One of the goals of voice 

research is to better understand the complex mechanisms of speech production. Even with a large 

body of research already performed, there are still many aspects of voice production that are not 

fully understood. An improved understanding of the physics of voice production will lead to 

better diagnosis and treatment of patients with voice pathologies. 

There are several methods for performing voice research, and there are also many 

complex issues that must be considered when choosing a suitable approach. In vivo experiments 

are difficult to perform, can affect speech production during the experiment, and are very 

restricted in their scope. Excised larynx experiments are difficult to perform, have limited 

potential for parameterization, and must be used in experiments with conditioned air to prevent 

the tissue from degradation. Even with treated air, the tissue in excised larynges rapidly 

degrades. Synthetic vocal fold models can be used to avoid some of the above difficulties; 
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however, they often do not precisely reproduce vocal fold material properties, geometries, or 

motion. In addition, it is often difficult in experiments to characterize details of vocal fold 

motion, airway pressures, and fluid velocities within the glottis (the space between the vocal 

folds). Computational modeling of the vocal folds has been used to simulate vocal fold motion 

and to obtain details of the fluid-structure interaction. By using computational models as a 

complementary tool, some of the above limitations are overcome. In this thesis, research aimed 

towards exploring several aspects of these computational models is presented. 

1.1.2 Voice Production and Anatomy 

Sound for most voiced speech initiates within the larynx (often referred to as the voice 

box). The larynx is located in the front central portion of the neck (see Fig. 1.1). Within the 

larynx, a pair of vocal folds is oriented primarily along an axis from the posterior (rear) to the 

anterior (front) of the body. These folds are comprised of a muscle layer, a ligament, layers of 

soft tissue (lamina propria) which become progressively more flexible towards the vocal fold 

surface, and finally, a thin epithelial layer with higher Young’s modulus. During phonation 

(vocal fold vibration for voice production), the vocal folds are adducted towards the medial plane 

of the body. Air is forced from the lungs, through the trachea, over the vocal folds, and out of the 

mouth and/or nose. A complex coupling of the vocal fold tissue dynamics with the respiratory 

aerodynamics leads to vibrations of the vocal folds. This vibration causes the vocal folds to open 

and close repeatedly, which leads to pulsatile pressure fluctuations in the supraglottal region 

(airway directly above the glottis). This fluctuating pressure is the primary source of sound in 

voice production. The glottal tone is modified as it passes through the vocal tract to produce 

various sounds. 
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The false vocal folds (see Fig. 1.1) are located above, and are somewhat similar in shape 

to, the true vocal folds; however, they do not typically adduct or vibrate during normal voice 

production. Thus, for most cases, their effect on phonation is thought to be passive rather than 

active. 

1.2 Computational Modeling 

Computational vocal fold modeling has the advantage of ease of parameterization and 

availability of data (e.g., pressure and velocity fields) throughout the simulated domain. 

Researchers have used a wide variety of computational models of voice production that vary in 

 

Figure 1.1: Sagittal (left) and coronal (right) views of the larynx (adapted from Gray’s 

Anatomy of the Human Larynx, images public domain, www.bartleby.com). 
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complexity, scope, and accuracy. All generally are centered on a mathematical coupling between 

a model of the vocal folds and some form of airflow simulation. One of the earliest simulations 

used a simple two mass vocal fold model coupled with a Bernoulli flow solver (e.g., Ishizaka and 

Flanagan, 1972). This model concept was expanded upon to include more tissue and solid 

characteristics (e.g., Titze, 1973, 1974; Story and Titze, 1995). Later, continuum models of the 

vocal folds were developed which could more accurately represent tissue shape and material 

properties (e.g., Alipour et al., 2000). Models which incorporate more advanced computational 

fluid dynamics (CFD) approaches have been used (e.g., Alipour and Scherer, 2004; Thomson et 

al., 2005). These have usually been based on finite volume or finite element methods, although 

recently, models using the immersed boundary method have been developed (e.g., Zheng et al., 

2010). These CFD solvers provide reasonably accurate predictions of the airflow and can include 

aspects of fluid dynamics which are not accounted for in more simplistic fluid models. 

1.3 Focus of Research 

As mentioned above, the focus of this research is on computational modeling of the vocal 

folds. The work is concentrated on the effects of (1) supraglottal airway geometry and (2) 

various modeling choices on laryngeal airflow and vocal fold flow-induced vibration. These are 

introduced below, along with a brief overview of relevant research. More in-depth literature 

reviews for each topic are given in each respective chapter. 

1.3.1 Supraglottal Geometry 

The motion of the vocal folds is coupled to the aerodynamics of laryngeal flow. 

Therefore, variations in the supraglottal geometry have the potential to alter vocal fold motion. 

Many researchers have used computational self-oscillating vocal fold models to study various 
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aspects of voice production (e.g., Tao et al., 2007; Luo et al., 2009; Zheng et al., 2010). Several 

of these studies have focused on asymmetry of supraglottal flow and vocal fold motion, as well 

as the effects of including false vocal folds (e.g., Zheng et al., 2009; Zheng et al., 2011a). 

Drechsel and Thomson (2008) used particle image velocimetry (PIV) and synthetic self-

oscillating vocal folds with various supraglottal geometries to study the effect of supraglottal 

airway configuration on jet characteristics. Most of these model vibration patterns lacked a 

significant “mucosal wave,” a key feature of human vocal fold vibration. In addition, the 

physical model could not ensure perfect symmetry of the vocal fold properties or geometry. In 

Chapter 2 a computational model with symmetric vocal folds, a mucosal wave, and various 

supraglottal geometric configurations is explored. 

1.3.2 Computational Modeling Choices 

Prior computational vocal fold models have incorporated a variety of modeling 

assumptions and choices. Three in particular – contact line location, Poisson's ratio, and 

symmetry – were studied in this research, as summarized below and discussed in detail in 

Chapter 3. 

First, during normal phonation, the vocal folds usually collide. However, in a CFD 

approach the mesh cells or elements between the vocal folds must maintain non-zero volume. In 

order to prevent complete collapse of the mesh, researchers have often implemented a contact 

line or plane which prevents the glottis from closing completely (e.g., Luo et al., 2008; Pickup 

and Thomson, 2011). While this contact line is often used, quantification of its effects on model 

response has yet to be evaluated. 

Second, computational vocal fold models can include various material models. In 

particular, a range of Poisson's ratios has been used. Vocal fold tissue is often considered to be 
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incompressible, which would suggest that a Poisson's ratio of 0.5 should be used (at least in an 

isotropic material); however, very few models have incorporated a Poisson's ratio corresponding 

to an incompressible material. Furthermore, it has been observed that the vibration amplitude of 

vocal fold models is significantly diminished as the Poisson's ratio approaches 0.5. The precise 

effects of Poisson's ratio on model response have not been systematically studied. 

In order to reduce computational costs, several previous two-dimensional vocal fold 

simulations have directly modeled only half of the larynx (i.e., one vocal fold) by imposing a 

symmetry boundary condition (e.g., Thomson et al., 2005; Zhang, 2009). However, physical and 

computational models have shown significant asymmetry in the glottal jet (e.g., Triep et al., 

2005; Drechsel and Thomson, 2008; Zheng et al., 2010). Researchers who have studied this 

asymmetry using computational models have quantified the asymmetry in the jet and vocal fold 

motion using a full 2D larynx; however, the differences between a full model and a half model 

have yet to be quantified. 

1.4 Thesis Outline 

The thesis is divided into two main chapters. In Chapter 2, the effect of supraglottal 

geometry on the flow-induced response of a computational vocal fold model is discussed. In 

Chapter 3, the effect of modeling choices on the flow-induced response of a computational vocal 

fold model is considered. 

1.4.1 Effect of Supraglottal Geometry on the Flow-Induced Response of a Computational 

Vocal Fold Model (Chapter 2) 

Two supraglottal geometry types, one with false vocal folds and one without, were used 

to study the effect of supraglottal geometry on the flow-induced vibration of a two-dimensional, 
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self-oscillating vocal fold model. The supraglottal geometries were positioned both 

symmetrically and asymmetrically above the vocal folds. In addition, the width of the parallel 

supraglottal geometry (that which did not include false folds) was systematically varied to study 

the effect of this parameter on the model response. Variations in model output were quantified by 

comparing glottal width, frequency, flow rate, pressures, and wave velocity measures. In 

addition, the glottal jet was qualitatively analyzed. 

1.4.2 Effect of Modeling Choices on the Flow-Induced Response of a Computational 

Vocal Fold Model (Chapter 3) 

The effects of various modeling choices were analyzed by systematically varying contact 

line location and Poisson's ratio. In addition, two models that were geometrically and 

parametrically identical were used to analyze the effect of assuming symmetry; in one model 

only half of the larynx (one vocal fold) with a symmetry assumption was included, and in the 

other, the full larynx with two vocal folds was modeled. Comparison of these two models 

allowed for evaluation of the symmetry assumption. As in the studies of Chapter 2, variations in 

model output were quantified by comparing measures of glottal width, frequency, flow rate, 

pressures, and wave velocity, as well as qualitative comparisons of the glottal jet.  



 8 
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2 EFFECT OF SUPRAGLOTTAL GEOMETRY ON THE FLOW-INDUCED 

RESPONSE OF A COMPUTATIONAL VOCAL FOLD MODEL 

2.1 Introduction 

Phonation is the result of a complex coupling between vocal fold tissue dynamics and 

respiratory aerodynamics. Air pressure from the lungs causes the folds to spread apart. As air is 

accelerated the intraglottal pressure lowers. The elasticity of the vocal fold, as well as the low 

pressure in the glottis, causes the folds to come back together. The process then repeats in a 

nominally periodic fashion. 

As the flow leaves the glottis, it separates from the vocal fold surface and forms a jet in 

the supraglottal region. The glottal jet is an important part of voice production. Simulations and 

experiments have shown that the glottal jet may vary significantly from one cycle to the next 

(e.g., Triep et al., 2005; Erath and Plesniak, 2006a, 2006b, 2010; Tao et al., 2007; Luo et al., 

2009; Zheng et al., 2011a). Several studies have suggested that these variations could have a 

significant impact on speech production (Triep et al., 2005; Drechsel and Thomson, 2008; Zheng 

et al., 2009; 2011a). Because of the highly coupled interaction of the air flow and vocal folds, it 

is important to understand whether these inter-cycle glottal jet variations influence the motion of 

the vocal folds themselves. It is therefore of interest to study factors that influence glottal jet 

dynamics and to quantify their associated impacts on vocal fold vibration. 
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One factor that contributes to the characteristics of the glottal jet is the downstream 

(supraglottal) geometry (Triep et al., 2005; Drechsel and Thomson, 2008; Finnegan and Alipour, 

2009; Zheng et al., 2009). Using PIV data from the supraglottal region of a pair of synthetic self-

oscillating vocal folds, several researchers (Neubauer et al., 2007; Drechsel and Thomson, 2008; 

Becker et al., 2009) have studied the asymmetry in the flow downstream of the glottis. Neubauer 

et al. (2007) focused on the flow structures present and identified vortex generation, vortex 

shedding, and jet flapping. Drechsel and Thomson (2008) showed that asymmetric placement of 

the supraglottal vocal tract with and without false vocal folds (FVF) caused variations in the 

glottal jet and discussed possible explanations for these variations.  

Synthetic vocal fold model-based experiments can lead to many insights, but they have 

some limitations. In their study, Drechsel and Thomson (2008) mentioned that asymmetry 

inherent in the physical model of the vocal folds likely caused some degree of asymmetry in the 

flow; therefore, not all of the features that they observed could be confidently attributed to the 

supraglottal geometry. This was due to general inability to create perfectly symmetric material 

properties, geometries, and positioning using synthetic models. Additionally, while the motion of 

the synthetic vocal folds used in some studies (Neubauer et al., 2007; Drechsel and Thomson, 

2008; Becker et al., 2009) was, in general, similar to that of actual human vocal folds, it lacked a 

significant mucosal wave. Furthermore, as in any physical model, obtaining a great deal of detail 

about the flow within the glottis as well as details of the vocal fold motion is very difficult. 

These limitations can be remedied using a computational model in which a perfectly 

symmetric model (within the numerical limitations of the computer) can be analyzed. Such a 

computational model allows for a detailed view of the vocal fold motion as well as the flow 

within the glottis, and for precise control over geometry and material properties. 
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Some studies have relied on computational models to simulate flow through the glottis; 

however, due to computational costs, many have assumed a symmetrical solution (e.g., Zhang, 

2009; Pickup and Thomson, 2011). By modeling only half of the larynx, these models reduce 

computational cost. They provide insight into vocal fold motion and aerodynamics, but do not 

capture asymmetry in the supraglottal jet or vocal fold vibration.  

Several recent studies have included both vocal folds (e.g., Tao et al., 2007; Luo et al., 

2009; Zheng et al., 2010). This allowed for modeling of the asymmetry in the supraglottal flow 

that has been observed experimentally. Zheng et al. (2009) used a 2D immersed boundary 

method to model fluid structure interaction between vocal folds modeled with a finite element 

approach and an airway modeled with a 2D Navier-Stokes solver. With this model, they studied 

the influence of the presence of FVFs on vocal fold vibration and translaryngeal flow impedance. 

Tao et al. (2007) used a computational two-mass model of the vocal folds with a CFD model of 

the airway to investigate the asymmetry of the glottal jet through symmetric vocal folds as well 

as the pressure profiles through the glottis. Xue et al. (2010) used a similar two-mass model to 

study the effects of asymmetric vocal fold properties on phonation. Zheng et al. (2011a) studied 

the cause of glottal jet asymmetries using an immersed boundary method with prescribed vocal 

fold motion and concluded that glottal jet deflection was mainly initiated by asymmetric 

downstream vortices.  

While these previous computational models have been useful in helping to advance the 

understanding of glottal jet aerodynamics, additional knowledge can be gained from further 

studies. Each of the above-mentioned computational models has utilized a symmetrically-

positioned supraglottal region; therefore, a computational model with off-axis placement of the 

supraglottal geometry is useful to further understand its effect on the glottal jet and vocal fold 



 12 

motion. Additionally, the motion of the computational models previously performed exhibited a 

limited or non-existent mucosal wave. This mucosal wave is an important geometric 

characteristic of vocal fold motion. Therefore, to more fully understand the complex interaction 

of the vocal folds and the glottal jet, it is useful to study a model which exhibits a more 

pronounced self-oscillating mucosal wave.  

In this chapter a computational flow-structure interaction model of the vocal folds and 

airway was used to study the effects of changing supraglottal geometric parameters on the 

motion of the vocal folds, the glottal jet dynamics, separation point locations, and intraglottal 

pressure profiles. A model was created in which both the properties and geometries of the vocal 

folds and subglottal and glottal regions were perfectly symmetric. The model was adjusted to 

incorporate several supraglottal geometric features that were positioned either symmetrically or 

asymmetrically. Importantly, the model exhibited a pronounced mucosal wave. In the following 

sections, the numerical methods are described. The model and cases studies are presented, and 

the results and implications thereof are discussed. 

2.2 Numerical Methods 

The commercially-available finite element program ADINA was used to simulate the 

flow-induced vibration of a two-dimensional vocal fold model. This package has been used in 

previous studies of vocal fold vibration and of other biological flow-structure interaction 

problems (e.g., Thomson et al., 2005; Bertram, 2009; Valencia and Baeza, 2009). As illustrated 

in Fig. 2.1, two basic types of supraglottal duct were modeled to examine the effects of various 

geometries: a parallel walled duct and a duct with FVFs present. Supraglottal ducts were both 

positioned symmetrically above the true vocal folds, as well as offset to one side by a prescribed 

amount. In addition, the width of the symmetrically placed parallel duct was varied. 
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2.2.1 Fluid Domain 

Two basic parametric fluid domains, as can be seen in Fig. 2.1, were used to better 

understand the effects of supraglottal geometry. Each of the fluid domains utilized an identical 

inlet 1 cm long and 1.69 cm wide, an identical glottis, and was coupled to an identical vocal fold 

pair; in each case the supraglottal duct was 8.925 cm long. For cases without FVFs, the 

 

Figure 2.1: Airway geometry and boundary conditions for parallel supraglottal duct cases 

I-VIII (top) and for false vocal fold cases IX-XII (bottom). Note parameters of width (W) 

and offset (O). 
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downstream duct was modeled with parallel walls at various widths (W) and offsets (O) from the 

centerline. The FVFs included were similar to those reported by Lou et al. (2009), and were 

scaled to adjust for the smaller vocal folds used in this study. In order to maintain identical FVF 

geometry while allowing for an offset in the lateral position of the supraglottal duct, the 

ventricles were extended slightly in the lateral direction and were 2.26 cm wide. The gap 

between the FVFs was maintained at 5.32 mm. The geometry was oriented in the yz-plane such 

that flow was primarily in the y-direction (see Fig. 2.1). 

The fluid domain for case V (see Sec. 2.2.4 for discussion of cases) was modeled with 

76,640 quadrilateral elements and 77,443 nodes. The mesh was more refined in the region of the 

vocal folds (see Fig. 2.2). The air density and viscosity values were 1.2 kg/m
3
 and 1.8×10

−5
 Pa·s, 

respectively. As shown in Fig. 2.1, the lateral edges of the inlet and outlet ducts, including the 

FVFs when present, were treated as walls (i.e., no displacement and no slip). The interface 

between the true vocal folds and the airway was treated with the FSI boundary condition that 

enforced consistent stress and displacement of the fluid and solid domains along the wetted 

interface. The inlet was driven with a constant normal traction of 600 Pa, and the outlet 

maintained at 0.0 Pa. The flow was treated as unsteady, laminar, and incompressible. 

 

 

 
 

 

Figure 2.2: Airway mesh from case V. 
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2.2.2 Solid Domain 

The vocal fold model was a symmetric pair of vocal folds, each the same as the model 

which was developed by Smith (2011) and included four separate layers: body (muscle), 

ligament, superficial lamina propria, and epithelium layers. To summarize, the model outer 

geometry was based on the “M5” geometry of Scherer et al. (2001) with a convergent included 

angle of 2° between the medial surface of one fold and the medial plane (see Fig. 2.3), for a total 

included angle of 4° in the glottis. The epithelium layer was a 0.05 mm-thick, linearly elastic 

material. The other layers were modeled as hyperelastic Ogden solids with nonlinear stress-strain 

relations. Dimensions and mechanical property values are given in Fig. 2.3 and were in line with 

physiological ranges for humans (for further details, see Smith, 2011). Each layer had a 

Poisson’s ratio and density of 0.49 and 1070 kg/m
3
, respectively. The high stiffness of the 

epithelium allowed for an extremely soft cover layer that produced a pronounced mucosal wave. 

Rayleigh damping with coefficients of α = 56.549 and β = 3.979×10
−5

 was used, resulting in a 

damping ratio of approximately 0.05 between the frequency range of 100 and 300 Hz. 

 
 

Figure 2.3: Vocal fold model geometry, boundary conditions, and material properties. 

Radii r1, r2, r3, and r4 are 1.5, 0.8, 1.0, and 0.3 mm respectively. 
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The solid domain consisted of two vocal folds with a total of 100,072 quadrilateral 

elements (50,036 per vocal fold) and 101,412 nodes (50,706 per vocal fold). An image of this 

mesh for one of the folds can be seen in Fig. 2.4. The lateral edges of the vocal folds were fixed 

and the inferior, medial, and superior edges were treated with the FSI boundary condition (see 

Fig. 2.3). To prevent complete collapse of the fluid domain, a pair of contact lines was utilized to 

keep the modeled vocal folds from contacting one another. These lines were located at ±0.025 

mm from the centerline of the glottis, maintaining a minimum glottal gap of 0.05 mm. 

2.2.3 Verification and Validation 

Numerical verification was performed using grid and time step independence studies. To 

ensure time step independence, the model was solved using time step sizes of 1.25×10
−5

 s and 

2.5×10
−5

 s. The glottal width waveforms over the first 0.05 seconds were compared and found to 

be nearly graphically indistinguishable (see Fig. 2.5). Cases with 68480 and 259440 elements in 

the fluid domain (double the grid density in each dimension) were run to verify grid 

independence. The plot of glottal width waveform for the refined mesh was indistinguishable 

from that of the original grid spacing (Fig. 2.5). In addition several other output parameters (F0, 

 
 

Figure 2.4: Vocal fold mesh consisting of body (green), ligament (blue), superficial lamina 

propria (red), and epithelium (black). 
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Gmax, Gavg, Oq, Qmax, and Qavg which are defined in Sec. 2.2.5) of the three simulations were 

numerically compared (see Table 2.1). Variations between cases were about 1% for all variables 

except Qmax which decreased by 8.4% with the smaller time step. These results confirmed that 

the coarser grid size and the larger time step of 2.5×10
−5

 s were adequate. 

Each simulation ran for 10,000 time steps of 2.5×10
−5

 s each for a simulation time of 

0.25 s. This required approximately 380 processor hours per simulation on the Brigham Young 

University Fulton Supercomputing hardware (Dell PowerEdge M610 equipped with dual, quad-

core, 2.8 GHz Intel Nehalem processors and 24 GB of memory; simulations each ran on four 

cores of a single processor). 

 
Figure 2.5: Grid and time step independence study results. (  = Original grid and time 

step, ‾ ‾ ‾ = finer grid, ···· = smaller time step). Note that all three curves are nearly directly on 

top of one another. 

 

 

Table 2.1: Measured values of frequency (F0), maximum glottal width (Gmax), average 

glottal width (Gavg), open quotient (Oq), maximum flow rate (Qmax), and average 

flow rate (Qavg) in the grid and time step independence studies. 

Case F0 (Hz) 
Gmax 

(mm) 

Gavg 

(mm) 
Oq 

Qmax 

(ml/s) 

Qavg 

(ml/s) 

Original 234.7 0.829 0.298 0.744 368.1 136.6 

Finer grid 234.2 0.827 0.300 0.746 367.0 138.9 

Smaller time step 235.0 0.832 0.298 0.740 337.2 136.8 
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Validation was done by comparing model results (e.g., flow rate, frequency, general 

motion etc.) with those of other computational simulations, synthetic models, excised larynges, 

and measurements from actual human subjects. These comparisons are presented throughout the 

results and discussion section and show that the model yielded a reasonable approximation of 

actual phonation. 

2.2.4 Case Studies 

As was mentioned above, various cases with different airway geometries were utilized to 

compare the effects of supraglottal duct width, FVFs, and lateral offset of the supraglottal duct 

on vocal fold vibration and airway fluid dynamics. In all, twelve cases (I-XII) were studied. The 

general geometries are represented in Fig. 2.1 and parameter values are given in Table 2.2. To 

study the effect of supraglottal duct width, an airway consisting of symmetrically placed parallel 

walls in the supraglottal region with a variable width, W, was used. To study the effects of 

including the FVFs, an airway with FVFs (case IX) was included. By comparing cases I and IX 

Table 2.2: Geometric parameters for cases I through XII. 

Case # 
Supraglottal 

geometry type 

Supraglottal 

duct width 

(W) (mm) 

Offset of 

supraglottal 

duct (O) 

(mm) 

I Parallel duct 17.0 0.0 

II Parallel duct 18.4 0.0 

III Parallel duct 19.8 0.0 

IV Parallel duct 21.2 0.0 

V Parallel duct 22.6 0.0 

VI Parallel duct 22.6 0.1 

VII Parallel duct 22.6 1.4 

VIII Parallel duct 22.6 2.8 

IX False Vocal Folds 17.0 0.0 

X False Vocal Folds 17.0 0.1 

XI False Vocal Folds 17.0 1.4 

XII False Vocal Folds 17.0 2.6 
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the effects of including FVFs could be explored. To examine the effects of lateral offset, the 

supraglottal geometries of cases V and IX were offset in the lateral direction by a distance O, 

comprising cases VI-VIII and cases X-XII for the parallel and FVF cases respectively. 

2.2.5 Variable Definitions 

In the following sections, several output quantities are used to compare results. These are 

here briefly defined: 

 Left glottal half width, GL. The minimum distance from the left vocal fold to the medial 

plane (see Fig. 2.6). 

 Right glottal half width, GR. The minimum distance from the right vocal fold to the 

medial plane (see Fig. 2.6).  

 Glottal width, G. The minimum distance between opposing vocal folds. It is equal to 

GL+GR (see Fig. 2.6). 

 
Figure 2.6: Location of the points used to compare symmetry of motion (left plot) (dashed 

box denotes outline of left plot), and close up view with definitions for glottal width (G) and 

left and right glottal half-widths (GL and GR) (right plot). 
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 Maximum glottal width, Gmax. The maximum glottal width, G, over one cycle. This was 

averaged over 10 periods. 

 Average glottal width, Gavg. The average of the glottal width, G, over one cycle. 

 Open quotient, Oq. The fraction of a cycle in which the glottal width was not “closed” 

(i.e., when G > 0.05 mm). This was averaged over 10 periods. 

 Fundamental frequency, F0. The frequency calculated from the inverse of the period of 

the glottal width data. This was averaged over 10 periods. 

 Volume flow, Q. Calculated as Q = 0.015m*∫vdz where v is the fluid velocity in the 

superior (y) direction. It was calculated at y = 1.3 cm which was just downstream of the 

maximum position of the superior surface of the vocal fold and upstream of the inferior 

surface of the FVF when present (see Fig. 2.6). A distance of 0.015 m was used to scale 

the flow rate measurement in the 3
rd

 (anterior-posterior) dimension.  

 Maximum flow rate, Qmax. The maximum flow rate, Q, over one cycle. This was averaged 

over 10 periods. 

 Average flow rate, Qavg. The average of the flow rate, Q, over one cycle. 

 Wave velocity, VW. The speed at which the mucosal wave propagates. Calculated as the 

slope of a linear fit through the y-position of minimum glottal width over time from 

phases F-C of each cycle averaged over ten cycles (described further in Sec. 2.3.1; see 

Fig. 2.9). 

 Inferior point on the right vocal fold RI. See (Fig. 2.6). 

 Inferior point on the left vocal fold LI. See (Fig. 2.6). 

 Superior point on the right vocal fold RS. See (Fig. 2.6). 

 Superior point on the left vocal fold LS. See (Fig. 2.6). 
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 Correlation coefficient in the y-direction (inferior-superior) of the inferior points, RYI. 

This is calculated as  

 

LILIRIRI

RILI

YI

yyyy

yy
R , (2.1) 

where LIy and RIy are the fluctuations in the y-position LI and RI points about their mean 

values. The summations are over time steps for 10 cycles of vibration.  

 Correlation coefficient in the z-direction (medial-lateral) of the inferior points, RZI. 

Similar to RYI but in the z-direction. 

 Correlation coefficient in the y-direction (inferior-superior) of the superior points, RYS. 

Similar to RYI but using the superior points. 

 Correlation coefficient in the z-direction (medial-lateral) of the superior points, RZS. 

Similar to RZI but using the superior points. 

 Reynolds number, Re. Calculated based on flow rate (Q) as  
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QDH 44
Re , (2.2) 

where DH, , μ, , A, and P are the hydraulic diameter, kinematic viscosity, dynamic 

viscosity, density, area, and wetted perimeter respectively. 

 Wetted perimeter, P. The perimeter in contact with the fluid at the location Re is 

calculated. In this case it is 2×W + 2×0.015 m, where the distance 0.015 m is the 

dimension used to scale the flow in the third dimension.  

 Separation point. As shown in Fig. 2.23 (further described in Sec. 2.3.6), the separation 

point was manually located by determining the point at which the edge of the jet (blue or 
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red band in the vorticity plot) detached from the vocal fold surface. This was done for 10 

cycles at eight phases per cycle. 

2.3 Results and Discussion 

2.3.1 Glottal Motion 

As can be seen from the outline of the vocal folds at various phases of a single cycle for 

case I (Fig. 2.7), this model yielded a significant mucosal wave. The mucosal wave in this model 

was much more pronounced than that seen in several other simulations (Tao et al., 2007; Luo et 

al., 2009; Zheng et al., 2009; 2010; Pickup and Thomson, 2011). As the cover layer deformed on 

the model, a small bulge formed near the exit radius of the glottis. Initially this bulge was the 

location of G (Fig. 2.7, phase C). Soon after, the inferior edge of the medial surface moved 

medially, resulting in an upstream shift in location of minimum glottal width (Fig. 2.7, phase E). 

The glottal gap continued to decrease until the medial surface reached the contact line. The 

location of minimum glottal width moved superiorly until it separated from the contact plane 

near the superior end of the medial surface (Fig. 2.7, phases G-B). This motion, which was 

representative of the motion of each of the twelve cases, caused a pronounced alternating 

 
Figure 2.7: Vocal fold profiles at various phases of one cycle (profile of each phase shifted 

by 5 mm in y-direction). Undeformed profiles are shown with dotted lines. Dashed lines 

denote outline of Fig. 2.14. Phases A through H are marked for reference. 
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convergent/divergent intraglottal profile during each cycle. These two geometric vibratory 

features – mucosal wave and alternating convergent/divergent motion – are well-known 

characteristics of human vocal fold motion. 

Figure 2.8 shows waveforms of G and Q. The G waveform had several notable 

characteristics. First, there was a fairly sharp peak at the phases at which Gmax occurred (phase 

E). As can be seen in Figs. 2.7 and 2.8, this peak coincided with the transition from a convergent 

opening profile to a divergent closing profile. Occurring near this phase were two locations of 

equal minimum glottal width (near the inlet and outlet radiuses of the glottis) that temporarily 

caused a nearly parallel glottis. This transition was marked by a peak in the y-position of the 

minimum glottal width (Fig. 2.9, discussed further below), which coincided with phase E of each 

cycle where the location of minimum glottal width jumped from the superior to inferior portion 

 
Figure 2.8: Glottal width (black, left axis) and flow rate (gray, right axis) from a typical 

case. Vertical dashed lines represent phases A-H. 
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of the medial surface. This was a consequence of the presence of the mucosal wave. The 

“closed” portion of the cycle (phases G-A), where the minimum glottal width was at a constant 

value of 0.05 mm, lasted for approximately one-quarter of the cycle, corresponding to an Oq ratio 

close to 0.75.  

As can be seen in Table 2.3, Gmax values ranged from 0.831 to 0.854 mm. These are 

similar to typical values in humans of approximately 1 mm (Schuberth et al., 2002). The 

frequency ranged from 236.4 to 244.2 Hz, while Oq values ranged from 0.691 to 0.755. These 

values of are consistent with measurements of human phonation; e.g., Baken and Orlikoff (2000) 

reported a mean Oq value of 0.71 with a range of 0.51 to 1.0 for normal speakers with a 

fundamental frequency of 225 Hz. Values for individual cases are listed in Table 2.3. 

 
Figure 2.9: The y-position of the minimum glottal width vs. time for six cycles of a typical 

case is shown. Black dots are y-positions of minimum glottal width at each phase. Dotted 

lines are linear fits used to calculate wave velocity. Phases A through H are marked on one 

series for reference. 
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From the data of y-location of minimum glottal width vs. time, it was possible to 

calculate the velocity of the mucosal wave (VW) (Titze et al. 1993). The average VW of the 

various cases was 0.849 m/s with individual values found in Table 2.3; these values are in the 

range of 0.5 to 2.0 m/s reported by Titze et al. (1993) for excised canine larynges. 

There was no appreciable change in the glottal width waveform between any of the cases. 

In cases with a parallel supraglottal duct (cases I-VIII), there was a maximum variation in F0 of 

less than 0.5% and maximum variations in Gmax and Gavg of 1.62% and 1.14%, respectively. 

Additionally there was a maximum variation in VW of only 2.71%. These values are on the order 

of the cycle-to-cycle variations for a given case. In the cases including FVFs (cases IX-XII) these 

variations were similar with the maximum variation in F0, Gmax, Gavg, and VW being 0.73%, 

1.66%, 0.41%, and 1.56%, respectively. In addition, including FVFs (comparing case IX to 

case I) had little effect. It decreased Gmax by 0.08% and increased F0, Gavg, and VW by 2.92%, 

1.79%, and 3.07% respectively. 

Table 2.3: Measured values of frequency (F0), maximum glottal width (Gmax), average 

glottal width (Gavg), open quotient (Oq), wave velocity (VW), correlation coefficients 

(RYI, RZI, RYS, and RZS), maximum flow rate (Qmax), and average flow rate (Qavg). 

Case F0 (Hz) 

Gmax 

(mm) 

Gavg 

(mm) Oq 

VW 

(m/s) RYI RZI RYS RZS 

Qmax 

(ml/s) 

Qavg 

(ml/s) 

I 237.0 0.845 0.296 0.735 0.829 0.904 0.998 0.962 0.993 369.5 136.6 

II 237.4 0.837 0.297 0.741 0.850 0.933 0.998 0.972 0.993 367.8 137.2 

III 237.0 0.840 0.296 0.743 0.850 0.900 0.997 0.955 0.993 366.9 136.5 

IV 237.1 0.836 0.296 0.748 0.852 0.824 0.996 0.917 0.993 367.5 137.6 

V 237.0 0.832 0.295 0.754 0.851 0.887 0.996 0.947 0.994 367.8 137.9 

VI 236.5 0.831 0.295 0.753 0.850 0.914 0.996 0.968 0.994 367.2 137.9 

VII 236.4 0.834 0.293 0.747 0.848 0.899 0.997 0.953 0.993 365.7 136.5 

VIII 237.1 0.831 0.296 0.755 0.835 0.890 0.995 0.963 0.993 367.3 137.5 

IX 243.9 0.844 0.302 0.734 0.854 0.106 0.995 0.355 0.960 399.8 146.7 

X 244.2 0.840 0.301 0.697 0.850 0.361 0.996 0.594 0.975 398.8 146.0 

XI 244.2 0.849 0.302 0.708 0.863 0.883 0.999 0.925 0.994 402.8 145.8 

XII 242.4 0.854 0.301 0.691 0.857 0.896 0.995 0.930 0.992 389.2 142.5 
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2.3.2 Glottal Asymmetry 

Because of the asymmetry of the glottal jet, the symmetric vocal folds exhibited some 

degree of asymmetric motion. As was done by Zheng et al. (2009), the asymmetry of the vocal 

fold motion was visualized with the aid of phase plane plots and quantified by calculating the 

correlation coefficient between paired points on the two vocal folds. Points at the downstream 

edge of the entrance radius (inferior point) to the glottis as well as the upstream edge of the exit 

radius (superior point) of each vocal fold were used to generate these data (Fig. 2.6). Cycle-to-

cycle variation in the motion of a single vocal fold was evidenced by the fact that a given point 

did not trace out the same path in space through each cycle (see Fig. 2.10). A degree of 

asymmetry in the motion of the paired vocal folds was seen in the y-direction (inferior-superior) 

of both inferior and superior points and was evidenced by the divergence of the data from an 

ideal 45° line on the phase plane plots (Figs. 2.11 and 2.12). 

 

 
Figure 2.10: Motion of RI (a) and RS (b) points of case VIII for ten cycles. 
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The correlation coefficients (RYI, RZI, RYS, and RZS) of a model with perfectly symmetric 

motion would each be 1.0. However, much lower values were seen in several of the cases, 

denoting a degree of asymmetry (see Table 2.3). In all cases there was the highest degree of 

symmetry in RZI and the least symmetry in RYI. Also the centered FVF case (IX) had the highest 

degree of asymmetry for all four correlation coefficients with exceptionally low values of RYI and 

 
Figure 2.11: Phase plane plots for case I. Plot for the superior points in the y-direction (a) 

and z-direction (b) as well the inferior points in the y-direction (c) and z-direction (d). Note 

that the negative z-displacement was used for the right points to maintain positive slope. 

The dotted lines represent the path of perfectly symmetric motion. 
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RYS (0.106 and 0.355 respectively). As will be shown later, this case exhibited the largest 

variability in glottal jet motion, which may be the cause of vocal fold asymmetry. 

The magnitudes of the correlation coefficients measured in this study are somewhat 

different from those reported by Zheng et al. (2009). Both research studies found a greater 

degree of symmetry in the medial-lateral (ML) direction than in the inferior-superior (IS) 

 
Figure 2.12: Phase plane plots for case IX. Plot for the superior points in the y-direction (a) 

and z-direction (b) as well the inferior points in the y-direction (c) and z-direction (d). Note 

that the negative z-displacement was used for the right points to maintain positive slope. 

The dotted lines represent the path of perfectly symmetric motion. 
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direction (for example Zheng et al., 2009 reported R values for the superior points of 0.954 and 

0.653 in the ML and IS-directions respectively). However, Zheng et al. (2009) showed that the 

addition of FVFs increased the symmetry in the IS-direction but decreased the symmetry in the 

ML-direction. The present research showed a decrease in all symmetry with the addition of 

centered FVFs. This was again attributed in the present study to the less consistent nature of the 

glottal jet when FVFs are included than when they are not.  

It is also interesting to note the effect of the M-L alignment of the supraglottal duct on the 

symmetry of motion. With no FVFs present, there were only minor inconsistent changes (max 

variation of 3.0% in RYI) in the symmetry of vocal fold motion as the supraglottal duct was 

offset. However, with FVFs in place, increased offset of the supraglottal geometry led to an 

increase in motion symmetry. RYI increased from 0.106 to 0.882 as offset increased from 0.0 to 

1.4 mm. As offset increased from 1.4 to 2.6 mm, changes in symmetry were insignificant. These 

results were again caused by the degree to which the glottal jet was consistent from one cycle to 

the next. More consistent jets, even when highly asymmetric, led to more symmetric motion. 

Section 3.4 contains a more detailed discussion of the glottal jet 

The effects of the supraglottal width on symmetry of vocal fold motion were 

inconclusive. While increasing the width between 18.4 and 21.2 mm steadily decreased the 

symmetry in the y-direction (from RYI = 0.933 to 0.824) the opposite of this trend was seen for 

the thinnest and widest ducts used. Additionally it had little effect, if any, on the symmetry of 

motion in the z-direction. It is believed that the consistent nature of the jet dominated the 

influence on the vocal fold motion and that models with less consistent jet behavior may exhibit 

more significant trends. 
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These phase plots (Figs. 2.11 and 2.12) and correlation coefficients help to compare 

asymmetry between cases, but they do not lend themselves to quantifying the magnitude of the 

asymmetric motion. One way to visualize and better quantify the degree of asymmetry was by 

comparing GL and GR over time (see Fig. 2.13). As can be seen there was a slight phase shift 

between GL and GR, but its magnitude was only approximately 0.05 ms and was fairly consistent 

through all of the cases. Larger variations were seen in the relative magnitudes of GL and GR at 

their peaks. For example in case I there was roughly 0.005 mm difference in magnitude and the 

same half width was consistently larger than the other; however, in case IX there was a 0.022 

mm difference in magnitude which inconsistently switched as to which half width was greater. 

Another observed difference was shortly after the opening phase (see Fig. 2.13). In the parallel 

cases (I-VIII), one half width opened approximately 0.05 ms before the other, both then climbed 

at nearly the same rate in a nearly linear fashion for approximately one quarter of a cycle. At this 

 
Figure 2.13: Glottal half widths for cases VIII (top) and IX (bottom) 
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point the leading half width leveled out for approximately 0.2 ms while the other maintained its 

slope. This caused the trailing half width to become the leading half width. This phenomenon 

was manifested in each of the parallel duct cases. However; in the FVF cases both folds would 

decrease in slope but at different times causing a larger disparity between the two half widths 

(see Fig. 2.13, bottom). These observed variations helped to quantify the size of asymmetry, but 

only in the z-direction. 

The asymmetry could also be seen in the outlines of the vocal folds at various phases 

(Figs. 2.14 and 2.15). This asymmetry was most prevalent for cases where FVFs were present; 

however, it is difficult to see in full-scale plots. Figure 2.15 shows a close up view of the medial 

surface outlines for the left and right vocal folds plotted on top of one another. In this manner 

any asymmetry in both the y and z-direction can be seen. It is quite interesting to note that while 

there was obvious difference (of approximately 0.075 mm) in the z-position of the superior and 

inferior surfaces of the vocal folds, the medial surfaces were nearly identical. The same 

phenomenon was observed for all phases and cases, with some cases and phases having smaller 

 
Figure 2.14: Visualization of asymmetry of vocal fold motion for case I (upper plot) and 

case IX (lower plot). Dotted lines represent undeformed vocal fold geometry, blue points 

represent points RS and RI, and red points represent LS and LI. There was a greater 

degree of asymmetry in case IX, but the magnitude of the asymmetry was small. 
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discrepancies in the superior and inferior surface. Even though one vocal fold was further 

downstream than the other and different portions of the cover were aligned, the area between the 

medial surfaces remained symmetric. 

Even in the presence of very asymmetric downstream flow, the vocal folds remained 

fairly symmetric in their motion. There was maximum of about 0.075 mm of difference in the y-

position of the vocal folds and 0.022 mm difference in the z-position in the most extreme case. 

This was less than 1% of the vocal fold height. In addition, the vocal fold surfaces responded in 

such a way that the medial surfaces of the vocal folds formed an extremely symmetric passage 

despite the small asymmetries in the mean vocal fold position. 

2.3.3 Flow Rate 

Volume flow rate is another important measurement in phonation. Case V was typical of 

the cases with Qmax and Qavg values of 367.8 and 137.9 ml/s respectively. Values for the 

remaining cases can be found in Table 2.3 and are in line with measured mean flow rates of 72 to 

223 ml/s in humans (Baken and Orlikoff, 2000) and slightly lower than that which has been 

reported in studies using other computational models (e.g., Luo et al., 2009, reported 405 to 755 

 
Figure 2.15: Close up view of vocal fold profile of phase A of case IX showing the 

asymmetry in the y-position of the vocal folds and the symmetric medial surfaces. 
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cm
2
/s peak flow rate and 180 to 314 cm

2
/s mean flow rate, while Zheng et al., 2009, reported 587 

ml/s to 865 ml/s peak flow rate and 266 ml/s to 322 ml/s mean flow rate). This discrepancy is 

possibly due to the smaller vocal fold size used in this simulation (8.45 mm in the medial-lateral 

direction vs. 9.9 mm used by Lou et al., 2009, and Zheng et al., 2009) as well as the lower 

driving pressure (0.6 kPa in the present study vs. 0.8 to 1.2 kPa used by Lou et al., 2009, and 1.0 

kPa used by Zheng et al., 2009). The trends seen in flow rate and driving pressure data from Luo 

et al. (2009) as well as the size scales used, suggest that the lower flow rate observed was to be 

expected. 

For case V with a Qmax of 367.8 ml/s, and P = 0.0752 m, the peak Re was 1304. The 

range of peak Re for all cases was 1297 in case VII to 1539 in case I which were below transition 

for internal flows. This justified the choice of a laminar solver for the fluid domain. 

As can be seen in Fig. 2.8, the flow rate waveform closely followed that of the glottal 

width. However, there were a few notable distinctions. First, there was a definite phase shift with 

the flow rate lagging the glottal width by approximately 0.25 ms. Additionally the flow rate 

waveform was much smoother than that of the glottal width, with a much less pronounced peak 

and no obvious discontinuity in slope at the beginning and end of the closed portion of the cycle. 

Furthermore, the flow rate was briefly negative from just prior to glottal closure until 

approximately halfway through the closed portion of the cycle. This was mainly due to the 

diminishing glottal jet (due to glottis closure) and the large recirculation regions present (see Fig. 

2.16 discussed in Sec. 2.3.4). The final feature of interest was the small local maxima of flow 

rate during the latter half of the closed portion of the cycle. 

The flow rate was largely unaffected by changes in both lateral placement and width of 

the supraglottal duct in the parallel duct case. There was a maximum variation of only 1.02% in 
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Qmax and 1.03% in Qavg for cases I-VIII. Additionally, the offset of the supraglottal duct with 

FVFs present had a small effect on flow rate where the largest offset of 2.6 mm (case XII) 

produced a decrease in Qmax and Qavg from the symmetrically placed model of 2.65% and 2.86%, 

respectively. 

Including FVFs did create an appreciable change in flow rate, with an 8.20% increase in 

Qmax and 7.44% increase in Qavg. This trend was similar to that reported by Zheng et al. (2009) 

who reported 47.4% and 21% increases in Qmax and Qavg respectively when FVFs were included. 

 

 
Figure 2.16: x-vorticity of the glottal jet at each phase for cases IV, VIII, IX, and XII. 
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The difference in magnitude of increased flow rate was likely due in part to the higher driving 

pressure used by Zheng et al. (2009), which amplifies the flow rate and possibly the resulting 

effect of the FVFs. Also the distinct vocal fold motion exhibited by this model could alter the 

effects of the FVFs. It is also possible that the effect of adding FVFs was diminished by the 

transition from a consistent asymmetric jet to an inconsistent jet. 

2.3.4 Glottal Jet 

The glottal jet was characterized by examining vorticity contours. The x-vorticity 

highlights the jet edges, making the jet trajectory clear. As can be seen in Fig. 2.16, which 

depicts the x-vorticity for each of eight phases of a typical cycle from several cases (IV, VIII, IX, 

and XII), the glottal jet was generally not symmetric. The jet trajectory varied from case to case. 

The general pattern seen in case IV was typical for most of the parallel supraglottal cases; 

however, in some cases the jet deflected to the other direction (for example in Fig. 2.16 case VIII 

is nearly identical to case IV but the trajectory is mirrored about the y-axis). When FVFs were 

included the jet trajectory changed significantly with the FVF surfaces limiting the extent to 

which the jet could deflect (see Fig. 2.16 cases IX and XII). As reported by Zheng et al. (2011a), 

the deflection of the jet was likely initiated by recirculation regions just downstream of the 

glottis; in this case the jet then became attached to one vocal fold surface and remained attached. 

Because of the lower flow rates at which this model operated, the flow possibly did not separate 

as readily as it would in cases with higher flow rates. 

The degree to which the jet was diverted in the cases without FVFs (at times to the extent 

that it was attached to the superior surface of one vocal fold) was larger than that reported by 

several researchers (e.g., Tao et al., 2007; Zheng et al., 2009). However a similar phenomenon 
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was reported by Erath and Plesniak (2010) in a driven model and by Becker et al. (2009) in a 

synthetic self-oscillating model.  

It was also interesting to note that while each case exhibited highly asymmetric jets, the 

cycle-to-cycle variation in cases without FVFs was very minimal, with the jet seeming to have 

chosen one side early in the simulation and repeatedly diverting in the same direction (see Fig. 

2.17). This is likely a function of several factors, such as a laminar flow solver having been used 

and the lower flow rates (and consequently lower Re) studied in this paper than in other 

simulations. Finally the large deflection and lower flow rates of this model led to strong vortices 

that slowly connected downstream. Due to the specifics of this model, these vortices happened to 

affect each subsequent jet in the same way, causing consistent cyclic jets. This final reason was 

consistent with observations of the FVF cases. The two FVF cases with the large offset of the 

downstream geometry in the lateral direction (cases XI and XII) showed a similar consistent flow 

 
Figure 2.17: x-vorticity for phase E of ten cycles for cases IV, IX and XII. Note the nearly 

consistent jet from one cycle to the next in cases IV and XII and the inconsistent nature of 

the jet in case IX.  
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with little cycle-to-cycle variation. In both cases the glottal jet deflected when it encountered the 

inferior corner of the closer FVF. This large deflection led to a consistent vortex generation that 

in turn led to repetitive jet deflection (see Fig. 2.17 case IV and XII). 

In the other two FVF cases (IX and X), the jets were not consistent from one cycle to the 

next. In these cases the jet inconsistently attached to one FVF or the other, and at other times 

would persist nearly symmetric through the FVF gap (see Fig 2.17) just as reported by other 

researchers (Zheng et al,. 2009). In these cases the jet did not deflect to the extremes as in other 

cases. Even though the jet was visibly attached to the medial surface of one vocal fold, it exited 

the glottis with very little deflection. The jet did deflect slightly farther down stream as it entered 

the FVF gap. It therefore appears that large jet deflections led to a more stable repetitive flow 

structure that was self preserving, while jets with little deflection were unstable and exhibited 

inconsistent cycle-to-cycle variation in flow structures. 

The jets of these computational studies were similar to those observed in a self-oscillating 

synthetic model used by Drechsel and Thomson (2008). First, little cycle-to-cycle variation was 

seen in most of those cases. Secondly, in both studies, for most of the cases with an offset 

parallel supraglottal duct, the jet initially skewed toward the closer wall, and later in the cycle 

somewhat straightened out. One exception to this in the present study was in the extreme offset 

case (VIII) where the jet was instead deflected towards the farther wall. Drechsel and Thomson 

(2008) saw a similar phenomenon at one pressure (1.25 kPa). Furthermore, in cases with FVFs in 

both studies, the jet was initially skewed away from the closer FVF; it later straitened out to a 

degree and was then deflected again away from the near FVF (see Fig. 2.16, case XII). This was 

the observed jet behavior in cases XI and XII of the present study where there was substantial 

offset in the lateral position of the downstream duct. In cases IX and X of the present study 
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where the supraglottal geometry was nearly (case X) or perfectly (case IX) symmetric, the jet 

exited the glottis in a straight manner and then deflected towards and attached to one FVF or the 

other near the center of the FVFs in the superior inferior direction. Farther downstream it again 

separated from the FVF and deflected back towards the centerline (see Fig. 2.16, case IX).  

One significant difference between this study and that of Drechsel and Thomson (2008) 

is that the jet in the present study deflected drastically. It remained attached to one vocal fold 

until the superior surface during the very initial parts of the cycle. This again was attributed to 

the presence of a strong mucosal wave in this model that was not present in that of Drechsel and 

Thomson (2008), as well as lower driving pressure of this model (Drechsel and Thomson ,2008, 

used 1.25 to 1.9 kPa). Additionally, the jet in the present study is two-dimensional; the jet in the 

study of Drechsel and Thomson (2008) was three-dimensional. Because the two-dimensional 

model did not include any dissipation related to flow motion in the third dimension, it likely 

allowed the more deflected jet to persist, while in a three-dimensional model the jet may not 

deflect to such extremes. 

2.3.5 Intraglottal Pressure Distributions 

Thomson et al. (2005) showed that the time varying pressure along the vocal fold surface 

in conjunction with the vocal fold motion is critical in determining the rate at which energy is 

transferred to the vocal fold. In the present study, two vocal folds were present and, due to 

asymmetries in the flow, had distinct pressure profiles. Therefore knowing what the pressure 

profiles were along each vocal fold can lead to insights in possible asymmetric energy transfer. 
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Pressure data were extracted from along both vocal fold surfaces at the eight phases A-H 

per cycle for ten cycles. The pressure profiles for several cases and phases can be seen in Figs. 

2.18 through 2.21.  Note that Figs. 2.18 and 2.19 show data for phases from a single cycle, while 

Fig. 2.20 shows the pressures at one phase for ten cycles. In Fig. 2.21 the data are ensemble-

averaged and left and right vocal fold data were averaged together. Each figure is discussed in 

more detail below. In each case the pressure profile had a minimum at the location of minimum 

glottal width which corresponded to the highest velocity at that location. Different phases had a 

different magnitude of minimum pressure, with phase F exhibiting the largest negative pressure 

which was as the glottis was closing. As the cross sectional area decreased, the velocity 

increased and pressure decreased. At subsequent phases the glottis was closed and therefore 

 
Figure 2.18: Typical pressure profiles for every other phase (B, D, F, and H) of case V. 

Note that in this case the jet separates first from the left vocal fold surface (dashed line) 

and therefore recovers to a higher pressure before the right vocal fold (solid line). Also, the 

minimum pressure is seen in phase F where the vocal folds are in the process of closing. 

 

F 

H 

B 

D 



 40 

blocked the flow, which led to lower velocities and higher pressure; therefore, the peak minimum 

pressure in phases G and H was higher (less negative) than that of phase F. As the glottis opened 

once again (phase A) the flow was allowed to accelerate and the pressure again dropped, thus 

phase A had a lower peak pressure than that of H. In phases B-D the glottis widened, the velocity 

dropped, and the pressure rose. At phase E the glottis was parallel and there was a local 

minimum at the first narrowing of the glottis and another at the second narrowing, with relatively 

the same pressure. Between these two local minima the pressures were higher (see Figs. 2.18 and 

2.19). This trait is expected as the air slowed when as it flowed into the wider portion of the 

glottis and then sped back up as it entered the second constriction. 

 
Figure 2.19: Typical pressure profiles for every other phase (B, D, F, and H) of case IX. 

Note that for this cycle the jet separates first from the right vocal fold surface (solid line) 

and therefore recovers to a higher pressure before the left vocal fold (dashed line). Also, the 

minimum pressure is seen in phase F where the vocal folds are in the process of closing.  
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In the cases where consistent jet deflection was more prevalent (cases I-VII, XI, and XII), 

the pressure was distinct from one vocal fold surface to the other, yet the pressure was nearly 

identical from one cycle to the next (see Fig. 2.20). Both vocal folds had nearly identical 

pressure profiles from the inferior edge until the location of the minimum glottal width, where 

the pressure was a minimum. The pressure profiles remained relatively similar until the jet 

separated from one vocal fold surface; here the fold to which the jet remained attached 

maintained a lower pressure until its separation point (see Figs. 2.18 and 2.19). The largest 

pressure differences were seen near the superior surfaces, but both pressures eventually 

recovered to the same downstream pressure of 0.0 Pa. In cases IX and X, where the jet 

inconsistently varied from one cycle to the next, the pressures along opposing vocal folds were 

 
Figure 2.20: Pressure profiles for phase C of ten cycles of cases V and IX including the left 

(black) and right (gray) vocal fold pressure profiles. Note the consistent asymmetric 

behavior in case V and the inconsistent more symmetric behavior in case IX. 
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less distinguishable, with more closely symmetric pressure profiles in a single cycle and the left 

and right profiles switching when the jet deflected in the opposite direction.  

The pressure profiles for the various cases were altered in the presence of various 

supraglottal geometries. For cases I through V with various supraglottal widths, there was little 

variation between the pressure profiles with a slightly lower peak pressure for the case with the 

smallest supraglottal width (case I) and increased minimum pressure with wider ducts. Besides 

this small difference, cases I through V were essentially identical in their pressure profiles. Also, 

when comparing the medial-lateral placement of the downstream duct (cases V-VIII) there was 

essentially no significant difference.  

The most obvious difference among cases I-VIII was found in cases I and VIII where the 

jet deflected toward the left vocal fold instead of the right as it did in cases II-VII. Here the left 

pressure profile matched the right pressure profile of the other cases and the opposite was true 

 
Figure 2.21: Average pressure profiles for phases B, D, F, and H of cases I and IX. Data 

were ensemble-averaged and left and right vocal fold data were averaged together. 
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for the right pressure profile. This led to the conclusion that for a parallel supraglottal duct in the 

range of widths and offsets studied, and the given driving pressure, the main contributor to the 

pressure profile of a given vocal fold was the direction in which the jet deflected. This however, 

was likely only the case because a consistent supraglottal jet was present. An inconsistent jet 

may have revealed additional effects of supraglottal position or width not presently seen. 

The addition of FVFs however, did have a significant impact on the pressure profiles. In 

comparing case IX to case I, there was a pronounced difference (see Fig. 2.21). The pressures in 

phase F were essentially 300 Pa lower with FVFs than without (20% of the local minimum for 

the FVF case). Similar trends were seen in phases G, A, D, and E with an opposite effect in 

phases H and C with pressure profiles being nearly identical in phase B. These trends were seen 

in the recovery pressure as well. It was therefore likely that the recovery pressure was equal to 

the pressure between the FVFs and the true vocal folds and it drove the pressure magnitudes 

within the glottis. Additionally the higher flow rates (see Table 2.3) in case IX than in case I led 

to the lower glottal pressures.  

Comparing the offset cases with FVFs present (cases IX-XII) was more difficult; the 

variations in the jet for these cases caused significant scatter in the pressure data. However there 

was a recognizable increase in the pressure within the glottis as the supraglottal geometry was 

increasingly offset. This was likely due to the fact that the FVFs essentially blocked the glottal 

jet and therefore reduced its velocity and increased the pressure within the ventricles and glottis.  

The characteristics of the pressure profiles led to some interesting observations. First, in 

all cases the pressure profiles were nearly symmetric except for along the superior surfaces. 

Because the pressure on the superior surface acts mainly in the inferior direction, it may 

contribute to the asymmetries between vocal folds in the y-direction. Also, the cases with the 
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most (albeit small) asymmetric motion (cases IX and X) had inconsistent yet more symmetric 

pressure profiles than the cases where the motion was highly symmetric (cases I-VII, XI, and 

XII) but that had pressure profiles that were consistent and asymmetric. This led to the 

conclusion mentioned previously that asymmetric motion of the vocal folds was not due solely to 

asymmetric loading but rather to asymmetric loading with cycle-to-cycle variations. Obviously 

some asymmetry in the loading was necessary for asymmetric motion to develop. It is possible 

that the asymmetry of the vocal fold motion developed first and led to an inconsistent jet and 

pressure profiles, which in turn amplified the asymmetry in the vocal fold motion; however, 

Zheng et al. (2011a), using a symmetric driven computational model, found that downstream 

vortices were primarily responsible for jet deflection. A similar result was observed from the first 

two cycles of motion in the current study. Therefore the jet deflection may have been initiated 

downstream of the glottis and led to inconsistent loading on the vocal fold surfaces, which in 

turn caused the small observed asymmetries in motion. 

 
Figure 2.22: Effective stress in the vocal fold models at several phases of cases V and IX. 
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In an attempt to further understand why the asymmetric pressure profiles did not lead to 

significant asymmetry in the vocal fold motion, the stresses within the vocal folds for several 

phases were analyzed (see Fig. 2.22). As can be seen, there was a significantly higher stress in 

the epithelium layer than in the other layers. This stress was mainly due to the large deformation 

of this layer coupled with its high stiffness. The cover layer had a very low stress (approximately 

zero kPa) at every phase. It is possible that the large stresses present in the epithelium layers 

tended to dominate and the relatively small asymmetric loading on the vocal fold surfaces did 

not yield significant stress variations. While the stress contours in Fig. 2.22 lead to some new 

insights in the vocal fold behavior, they are only preliminary and future investigation in this area 

is needed. 

2.3.6 Separation Point Location 

Using vorticity plots, the separation points along the upper and lower vocal fold were 

estimated (see Fig. 2.23). In each case, one side of the jet separated just downstream of the 

 
 

Figure 2.23: Sample of separation points taken by visually inspecting the edge of the jet 

from vorticity plots. The pink dots represent the chosen separation points from the given 

vorticity plot. The dotted line represents the y-location of Gmin 
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minimum glottal area, as has been reported by other authors (Alipor and Scherer, 2004; Decker 

and Thomson, 2005). However, in most cases the other side of the jet remained attached to the 

other vocal fold and separated much further downstream. On the vocal fold from which the jet 

separated further upstream, the y-location of the separation point followed a consistent and well 

behaved curve throughout the cycle just downstream of the location of minimum glottal width 

(see Fig. 2.24). The other separation point was much less stable, with its location jumping 

upstream and downstream inconsistently. This is in part due to some instabilities in the jet arising 

from adverse pressure gradients. The side to which the jet remained attached was linked to the jet 

deflection direction and was therefore consistent in all cases except cases IX-XI.  

 

Figure 2.24: Separation point location for case IV (a) and case X (b). The solid and dashed 

lines are for the right and left vocal folds respectively. The discrete nature of the plots is 

due to the fact that data are only taken at eight phases per cycle.  
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In most cases the side of the jet that remained attached did not separate until near the 

superior surface of the vocal fold. In a few cases, the flow separated from both vocal folds at 

nearly the same y-location for some phases and then became reattached further downstream, with 

a second separation point near the glottis exit. In these cases the furthest downstream separation 

point was used in determining the y-location of separation. When both sides separated at the 

same y-location and remained separated, the jet remained nearly symmetric throughout the 

glottis; however, this was only observed in cases I, VII, and IX-XII, and then only for a few of 

the phases. The increased jet symmetry in cases IX-XII can be attributed to the FVFs which 

helped to maintain the jet along the centerline. In case I, the narrower supraglottal duct may have 

been responsible for this added symmetry. It is unclear why case VII had increased symmetry. 

2.4 Conclusions  

In this study a two-dimensional computational model of the vocal folds coupled with a 

laminar, incompressible, unsteady Navier-Stokes solver was used to study the flow-induced 

vibrations of phonation. The vocal fold had four layers, including an epithelium and very soft 

lamina propria. The airway was loaded with a constant 600 Pa pressure difference from inlet to 

outlet and resulted in frequency, flow rate, amplitude, and motion qualities comparable to those 

of human phonation. The model was verified through grid and time step independence studies. 

The peak flow rate in the smaller time step size case was 8.4% lower than in the case with the 

normal time step size; however, this was deemed acceptable when compared with the added 

computational costs. 

Various supraglottal geometric configurations were modeled in order to better understand 

their influence on vocal fold vibrations and glottal jet characteristics. Many of the cases resulted 

in highly asymmetric glottal jets with relatively consistent cycle-to-cycle trajectories. It is 
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believed that the low driving pressure and pronounced mucosal wave of the model caused the 

more consistent jet deflection than has been reported in some other computational (Lou et al., 

2009; Zheng et al., 2009, 2011a) and experimental (Becker et al., 2009; Erath and Plesniak, 

2010) models.  

The centered FVF cases exhibited the highest degree of variation from one cycle to the 

next and the highest degree of asymmetry in vocal fold motion, despite the fact that the 

magnitude of asymmetry in the glottal jet was significantly lower than the cases where the jet 

was more consistent from one cycle to the next. It was hypothesized that the asymmetry of 

motion in the vocal folds was influenced more by the inconsistency of the glottal jet than by its 

asymmetry.  

No significant changes in the vocal fold motion, glottal jet, or pressure profiles were seen 

in the parallel supraglottal cases (V-VIII) by offsetting the supraglottal geometry. The flow 

tended to be relatively consistent. A more unstable flow may have been more heavily influenced 

by asymmetries in supraglottal geometry. This was observed in the cases with FVFs (IX-XII), 

where the flow had significant cycle-to-cycle variations in the symmetrically placed supraglottal 

duct. However, with large offsets in this duct’s positioning, the flow was forced to deflect in a 

way that made it consistent from one cycle to the next, even with FVFs present. While the jet in 

the most extreme offset FVF case (XII) was more asymmetric than that of the symmetrically 

placed case (IX), it was also consistent and therefore led to reduced inter-cycle variation in other 

measured parameters. 

Widening the supraglottal airway in the range studied (cases I-V) also had little, if any, 

effect on flow rates, jet trajectory, and vocal fold motion. It did however slightly increase the 

pressure throughout the glottis. The addition of FVFs decreased the pressure throughout the 
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glottis for the majority of the phases but had the opposite effect in two phases and no change for 

another phase.  

The greatest effect of the supraglottal geometry was to influence jet stability, with more 

stable jets leading to more consistent and symmetric motion in the vocal folds. Jet stability can 

be affected in several ways. First, by changing glottal width, which was essentially the case with 

the addition of FVFs, an otherwise stable flow (in case I) was caused to become unstable (case 

IX). Also extreme lateral placement of supraglottal geometry (case XII) caused an unstable flow 

(case IX) to become stable.  

To summarize, while changing the supraglottal geometry in the manner described here 

had a significant effect on the supraglottal jet characteristics, doing so had relatively little effect 

on vocal fold vibration. This suggests that the supraglottal jet may not play a significant, direct 

role in governing vocal fold vibration; however, further computational and experimental studies 

should be performed to verify this. 
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3 EFFECT OF MODELING CHOICES ON THE FLOW-INDUCED RESPONSE OF A 

COMPUTATIONAL VOCAL FOLD MODEL 

In the previous chapter a computational model of the larynx was used to study the 

influence of supraglottal geometry. The focus of this chapter is on the effects of various 

computational assumptions and modeling choices on model response. While many of these 

assumptions and choices have been used previously, no systematic study of these factors has 

been performed. The goal of this study is to seek to clarify the importance and influence of these 

factors on predicted model response. 

3.1 Introduction 

Computational modeling requires many decisions and assumptions to be made. 

Computational modeling of the human vocal folds is no exception. Many of the decisions can 

potentially alter the simulation output, and consequently, its usefulness and validity. 

3.1.1 Contact Lines 

One motivation behind many vocal fold modeling choices is the need for well-behaved 

mesh movement throughout the simulation. Typically the vocal folds collide during the 

adduction phase of the cycle (e.g., Gunter et al., 2005). This collision temporarily closes the 

glottis, which in turn temporarily stops airflow. This collision is easy to simulate in a physical 

model, but much more difficult in a computational model. Computational models use finite 

elements or control volumes to model the air within the glottis. These control volumes must 
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maintain a non-zero volume in order for the solution to progress. In standard control volume 

computational fluid dynamics (CFD) with movable boundaries, the control volumes are distorted 

as the walls move. Within the glottis, the control volumes must compress in the medial-lateral 

direction as the folds adduct. Complete glottal closure would reduce these volumes to zero and 

cause the solver to fail. Even as the elements are increasingly compressed in this dimension, 

mesh distortion can result in numerical instability, solver failure, and/or solution inaccuracy. 

Complete glottal closure can also cause difficulties in non-conforming mesh approaches, 

such as the immersed boundary method. In this method the boundary of the solid model is 

overlaid onto a non-deforming Cartesian grid representing the fluid domain. The fluid velocities 

in elements which are within the boundary of the solid domain are forced to be zero while those 

outside of the solid domain remain as variables. A given element is affected depending on its 

position relative to the boundary during the current time step. As the vocal folds come together, 

an increasing number of elements are covered by the solid domain and “turned off,” resulting in 

increasingly fewer active elements within the glottis. This becomes problematic when the glottal 

gap is at or below the size of a single cell in this location because no flow will be present even 

when there is a small glottal gap.  

In both conventional control volume and immersed boundary method simulations, issues 

arising from complete glottal closure have been avoided in the past with the use of a contact line 

(2D) or plane (3D) (e.g., Luo et al., 2008; Pickup and Thomson, 2011). The contact line acts as a 

barrier through which the solid domain cannot pass. This restricts the movement of the edge of 

the vocal fold such that it is not permitted to close beyond a specified point. The collapsing fluid 

mesh is allowed to occupy a small space that never completely collapses in the control volume 

method. In the immersed boundary method model, this space is reserved for elements which will 
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never be “turned off.” In this approach the collision between folds is no longer represented 

directly but instead is represented by collisions between the folds and the contact lines. 

Provided that the gap maintained by the contact lines is sufficiently large, the model will 

continue to function; however new difficulties are introduced. With contact lines in place, the 

minimum glottal gap is forced to maintain a value greater than zero and some flow leakage past 

the vocal folds is present. In order to reduce the minimum glottal width and minimize flow 

leakage, the contact line is placed for as small of a glottal gap as practically possible. Another 

potential problem arises with the use of contact lines in a model containing both vocal folds. 

Because the collision between vocal folds is approximated with two distinct collisions between 

the folds and their respective contact lines, folds which are out of phase with one another could 

artificially collide at different times. This would indeed be a significant shortcoming; however, it 

is often not an issue as healthy vocal folds normally vibrate very closely in phase with one 

another, even under highly asymmetric flow conditions (see section 2.3.2). 

While the practice of including contact lines is often used, specific attention has not been 

given to its effect on the model. Many researchers have not reported any method used to prevent 

collapse of the mesh (their models may not fully close due to the flow and geometry of the vocal 

folds alone, or they may neglect to report the method used) (e.g., Alipour and Scherer, 2000). 

Others mention using a contact line but give no specific emphasis (e.g., Thomson et al., 2005). 

Those who discuss its use give a short explanation as to its necessity, the contact line location, 

and possibly the methods used to implement the contact condition and collision model; however, 

they do not justify the distance chosen (e.g., Luo et al., 2008, 2009; Pickup and Thomson, 2011). 

There is therefore a need to better understand how the contact line location affects the model 
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response. In this chapter, the influences of contact line location on vocal fold motion, pressure 

along the vocal fold surface, flow rate, and glottal jet are explored. 

3.1.2 Material Properties 

Another consideration of importance in computational vocal fold modeling is the choice 

of material properties. Due to the large variability in measured tissue properties, researchers will 

often choose a value within a given range that produces reasonable results. This is useful in 

producing a general model that can be used for further studies, but there is still some question as 

to the validity of the choice. Computational models are often used in conjunction with synthetic 

or excised larynx models to better understand the larynx in general. The material properties and 

geometries of a synthetic vocal fold can be well known; however, those of actual larynges are 

much more difficult to obtain. In addition, the material properties of a synthetic model are 

limited by the materials available and cannot exactly match those of an actual larynx. One such 

case is in the use of silicone for synthetic models. The Young’s modulus of the material can be 

altered over a wide range by the addition of thinner to the compound before it cures. This allows 

for models with Young’s moduli that approach those measured in human tissue. However, the 

Poisson’s ratio (  ) of silicone is not necessarily the same as that of human tissue, and cannot 

generally be controlled.  

Poisson’s ratio, which is related to the compressibility of a material, is a measure of the 

strain in one direction relative to an applied strain in an orthogonal direction. Human tissue is 

generally considered to be incompressible at phonation frequencies (Berry and Titze, 1996; Titze 

and Story, 2002). Depending on the material modeling assumptions, this corresponds to various 

Poisson’s ratios. In an isotropic material (one in which properties have no directional 
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dependence), a Poisson’s ratio of 0.5 would correspond to incompressibility. This is the upper 

limit of Poisson’s ratio in an isotropic material due to thermodynamic laws (Lempriere, 1968). 

However, vocal fold tissue is anisotropic and may exhibit different Poisson’s ratios depending on 

the orientation of the tissue. One way to model tissue anisotropy is to use a transversely isotropic 

material (one which has unique properties in the longitudinal, or anterior-posterior, direction, and 

no directional dependence in the transverse plane). If the longitudinal Poisson’s ratio (  ) in this 

type of material is equal to zero, the transverse Poisson’s ratio (  ) in the transverse direction can 

be greater than 0.5, with a limiting value of 1.0 in the incompressible case. The difference in 

Poisson’s ratios corresponding to incompressibility for these two model types demonstrates that 

comparison of Poisson's ratio alone between the models is insufficient.  

Despite the claim that vocal fold tissue is incompressible, computational vocal fold 

models have often been defined using Poisson's ratios that are lower than the corresponding 

incompressible value, and in different models, various Poisson's ratios have been used. For 

example Thomson et al. (2005), Luo et al. (2009), and Smith (2011), each using an isotropic 

material, used Poisson’s ratios of 0.45, 0.3, and 0.49 respectively. Tao and Jiang (2006, 2007) 

and Zheng et al. (2011b) used a transversely isotropic material model. Both models had a 

longitudinal Poisson's ratio of zero, while the former used a transverse Poisson's ratio of 0.3 and 

the latter used 0.9. Luo et al. (2008) and Rosa et al. (2003) each used a transversely isotropic 

material that had   = . Luo et al. used  = 0.3, while Rosa et al. (2003) used various Poisson's 

ratios for the different layers ranging from 0.45 to 0.76. The various Poisson’s ratios used led to 

a question of how model response is affected by the choice of . In this chapter, the influence of 

various Poisson’s ratios on a given isotropic model is explored. 
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3.1.3 Symmetry 

Another significant factor influencing computational modeling decisions is computational 

cost. Because the simulations generally take a considerable amount of time to process and post-

process, the models are simplified as much as possible. Various parameters can be altered to 

reduce computational costs, such as grid density and time step size. Other factors also play a role 

in computational cost, including turbulent vs. laminar flow modeling, compressibility, two-

dimensional vs. three-dimensional model definition, and small vs. large deflection. 

In computational vocal fold modeling, one simplification that has been followed has been 

to assume symmetric vocal fold motion. Generally, the geometry of a real larynx is reasonably 

(although not perfectly) symmetric, and when creating models, be they synthetic, analytical, or 

computational, researchers often model it as symmetrically as possible (e.g., Jiang et al., 2001; 

Suh and Frankel, 2008; Zheng et al., 2010). In computational simulations researchers often 

employ symmetry assumptions for computational efficiency. This can be done by modeling only 

one half of the larynx and enforcing a symmetry boundary condition. This essentially cuts 

computational costs in half because only one half of the larynx is modeled. This approach to 

modeling has often been taken (e.g., Zhao et al., 2002; Thomson et al., 2005); however, it has 

been found that the jet exiting the glottis is often asymmetric, diverting to one side or the other in 

the supraglottal region (e.g., Triep et al., 2005; Tao et al., 2007; Erath and Plesniak, 2010; Zheng 

et al., 2010). It is therefore important to quantify what effects the symmetry choice has on the 

computational model. In the past, researchers have used both half-models with symmetry 

assumptions, as well as full geometrically-symmetric models where asymmetry of flow and 

motion is allowed to develop (Tao et al., 2007; Luo et al., 2009; Zheng et al., 2010); however, 

the effects of symmetry assumptions on overall model response have not been quantified. In this 

chapter, the symmetry assumption is explored. 
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To summarize, the choices and assumptions specific to a computational model can 

greatly influence the model’s response and accuracy. This research explored the influence of 

multiple modeling choices including contact line location, Poisson’s ratio, and geometrically 

symmetric vs. an enforced symmetry boundary. The effects of these modeling decisions on vocal 

fold vibration, glottal width, flow rate, pressure profiles, and glottal jet are discussed in the 

following sections. Suggestions regarding modeling choices that can be reasonably expected to 

give accurate results are given.  

3.2 Numerical Methods 

As in Chapter 2, ADINA was used to simulate the flow-induced vibration of a two-

dimensional vocal fold model. 

3.2.1 Fluid Domain 

The fluid domain of this study was similar to that of the symmetric parallel case of 

Chapter 2 with several alterations. In all cases but one, only one half of the larynx was modeled 

and a symmetry condition was imposed on the medial line at z = 0 mm (see Fig. 3.1). This 

symmetry condition permitted a y-component (superior direction) of velocity but no z-

component (lateral direction). The supraglottal width for these cases was 18.9 mm, thus the half 

models had a 9.45 mm wide duct. All cases were designed to be initially symmetric, i.e., no 

supraglottal offset was used. Within the glottis, several leader-follower points were used which 

constrained the y-displacement of the follower points along the symmetry line to match the y-

displacement of the leader points on the vocal fold surface as it moved. This helped control mesh 

movement. Case S did not use a symmetry line or leader-follower points; instead, the airway was 

mirrored about the center line creating a full, initially-symmetric model. Leader-follower points 
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were not necessary in this case because both folds moved in a similar manner, thereby 

maintaining a reasonably controlled mesh. The properties of the air used in this study were 

identical to those in Chapter 2 with a density and viscosity of 1.2 kg/m
3
 and 1.8×10

−5
 Pa·s, 

respectively. 

3.2.2 Solid Domain 

The solid domain consisted of a single four layer vocal fold, identical to that described in 

Section 2.2.2 (see Fig. 2.3); although in several cases the contact line was not in the same 

location as it was in Chapter 2. A parameter was used that describes the minimum permitted 

glottal width (Gmin). In each case the distance between the symmetry line and the contact line, 

GC, was one half of Gmin (see Fig. 3.2). For example, in a case with Gmin = 50 µm, the contact 

line was located at z = 25 µm (see coordinate system in Fig 3.1). For reference, the medial 

surface of the vocal fold was initially at z = 50 µm. In all cases except those used to specifically 

study Poisson’s ratio, the Poisson's ratio was 0.49 in each layer of the solid. In the Poisson's ratio 

study, the Poisson's ratio varied from case to case but was the same throughout each vocal fold 

model of a given case. Further details of the contact and Poisson's ratio cases can be found in 

 
 

Figure 3.1: Airway geometry and boundary conditions. 
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Section 3.2.4. The symmetric case was unique in that two identical mirrored vocal folds were 

used. In this case the contact lines were located at z = ± 25 μm. 

3.2.3 Verification and Validation 

The same mesh density and time step size used in the models of Chapter 2 were used in 

the present studies. This led to a fluid domain with 33900 quadrilateral control volumes (for a 

half model) and solid domain with 50036 elements (for one vocal fold). Each case ran for a total 

simulated time of 0.25 s, at which point the vocal fold had been oscillating at a near steady-state 

condition for about 0.15 seconds. In one exception, the Poisson's ratio case with  = 0.4 failed to 

solve beyond t = 0.05 s, at which point it was close, but had not yet reached, steady-state 

vibrations. The last complete period of this case was used in the analysis. These simulations 

required approximately 120 processor hours per simulation on the Brigham Young University 

Fulton Supercomputing hardware (Dell PowerEdge M610 equipped with dual, quad-core, 2.8 

GHz Intel Nehalem processors and 24 GB of memory; simulations each ran on four cores of a 

single processor). 

 

 

 

 
 

Figure 3.2: Contact line location (not to scale). 
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3.2.4 Case Studies 

In this chapter several different cases were used to study the various parameters of 

interest. They are listed in Table 3.1. There were eight cases focusing on the effect of contact line 

location and were labeled with the letter C with the value of Gmin (in µm) as a subscript. For 

example, case C50 was the contact line case where Gmin = 50 µm. Twelve cases with   ranging 

from 0.4 to 0.49999 were used to study the effects of  on vocal fold motion and flow 

characteristics. These cases were labeled with the letter P with a subscript of the value of  for 

the given case. For example, case P0.495 was the Poisson’s ratio case where  = 0.495. Note that 

case C50 was identical to case P0.49. One additional case was used to study the differences 

 

Table 3.1: Geometric parameters for each case. 

Case 
Symmetry 

assumption 

Contact line 

location, GC (μm) 

Poisson’s 

ratio 

C1 Assumed symmetry 0.5 0.49 

C3 Assumed symmetry 1.5 0.49 

C5 Assumed symmetry 2.5 0.49 

C7 Assumed symmetry 3.5 0.49 

C10 Assumed symmetry 5 0.49 

C20 Assumed symmetry 10 0.49 

C30 Assumed symmetry 15 0.49 

C50 Assumed symmetry 25 0.49 

P0.4 Assumed symmetry 25 0.4 

P0.43 Assumed symmetry 25 0.43 

P0.46 Assumed symmetry 25 0.46 

P0.48 Assumed symmetry 25 0.48 

P0.485 Assumed symmetry 25 0.485 

P0.4875 Assumed symmetry 25 0.4875 

P0.49 Assumed symmetry 25 0.49 

P0.4925 Assumed symmetry 25 0.4925 

P0.495 Assumed symmetry 25 0.495 

P0.499 Assumed symmetry 25 0.499 

P0.4995 Assumed symmetry 25 0.4995 

P0.49999 Assumed symmetry 25 0.49999 

S Symmetric geometry  25 0.49 
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between a full model with initially symmetric geometry and a half model with a symmetry 

assumption. This case was labeled as case S and was defined using the same parameters for GC 

and  as case C50. Throughout this chapter, the model in case C50 where the geometry was 

modeled for only half of the larynx and the other half was treated with the symmetry assumption 

is referred to as a “half model,” while the model of case S where both halves of the larynx were 

modeled is referred to as a “full model.” 

3.3 Results and Discussion 

3.3.1 Contact Line 

The location of the contact line affected several aspects of the model. The contact line 

directly limited the vocal fold displacement as it approached the symmetry line; this directly 

altered the glottal waveform and vocal fold motion. These alterations in turn led to variations in 

other areas of the model. Some of the areas affected included the volumetric flow rate (Q) 

waveform, intraglottal pressures, and the characteristics of the glottal jet. These effects are 

discussed in this section.  

The glottal waveform was used to calculate the average and maximum glottal widths 

(Gavg and Gmax), as well as the open quotient (Oq), and the fundamental frequency (F0) of the 

model (see Section 2.2.5 for definitions of these variables). 

As can be seen in Figs. 3.3 and 3.4, there were minimal differences in the glottal 

waveforms predicted by the models with different contact line locations. The largest difference 

was in Gmin. As mentioned above, Gmin in each case was directly determined by GC. As expected, 
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distinct values of Gmin were observed for each contact line case. However, the glottal width for 

the remaining portions of the cycle was largely unaltered by variations in Gmin. As seen in 

Table 3.2, the maximum change in Gmax between the eight contact plane cases was only 3.1 μm, 

or about 0.36%. In addition, Gavg increased by 19.9 μm (6.8%) from case C1 to case C50 with a 

nearly linear relationship between Gmin and Gavg. F0 of each model was relatively unaltered by 

contact line location, with only a 0.47% change in frequency over all of the cases. 

 

Figure 3.3: Glottal width over the first 0.05 seconds of simulated time for several contact 

line cases. 

 

 

 
Figure 3.4: Glottal width vs. normalized time for one cycle of several contact line cases. 
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The general shape of the vocal fold profile during vibration was also relatively unaffected 

by Gmin (see Fig. 3.5). The only substantial difference in the profiles of various cases was seen 

during contact. The medial surfaces were slightly different because each case was permitted to 

extend toward the medial line to a different degree depending on the contact line location. 

However, the medial surface on either side of the region in contact was largely unaffected. The 

consistency across models was further evidenced by the path plots of points RI and RS (defined 

in Section 2.2.5) (see Fig 3.6). The paths of both points were very similar for all cases with a 

maximum deviation of approximately 0.01 mm. 

Table 3.2: Measured values of frequency (F0), maximum glottal width (Gmax), 

average glottal width (Gavg), open quotient (Oq), wave velocity (VW), 

maximum flow rate (Qmax), and average flow rate (Qavg). 

Case F0 (Hz) 
Gmax 

(mm) 

Gavg 

(mm) 
Oq VW (m/s) 

Qmax 

(ml/s) 

Qavg 

(ml/s) 

C1 235.6 0.839 0.273 0.795 0.830 363.6 129.0 

C3 236.0 0.839 0.275 0.789 0.827 363.5 129.7 

C5 236.0 0.839 0.276 0.789 0.827 363.6 130.1 

C7 236.1 0.839 0.277 0.788 0.827 363.6 129.2 

C10 236.1 0.839 0.278 0.776 0.833 363.6 129.7 

C20 236.4 0.838 0.283 0.765 0.834 363.8 131.3 

C30 236.7 0.836 0.286 0.753 0.833 363.8 132.8 

C50 236.5 0.836 0.293 0.718 0.831 363.9 135.8 

P0.4 275.9 1.151 0.433 0.828 1.053 512.0 209.3 

P0.43 256.9 1.011 0.353 0.783 1.051 451.3 164.8 

P0.46 243.0 1.001 0.341 0.771 0.963 428.7 158.8 

P0.48 248.6 0.970 0.310 0.660 0.897 419.6 140.7 

P0.485 243.6 0.883 0.297 0.691 0.894 379.1 137.1 

P0.4875 240.7 0.858 0.295 0.689 0.876 373.1 136.8 

P0.49 236.5 0.836 0.293 0.718 0.831 363.9 135.8 

P0.4925 231.7 0.788 0.286 0.747 0.776 338.9 133.7 

P0.495 225.5 0.734 0.277 0.787 0.711 316.6 129.4 

P0.499 83.0 0.617 0.290 1.000 0.174 240.8 132.5 

P0.4995 83.7 0.460 0.298 1.000 0.093 158.0 137.0 

P0.49999 0 0.279 0.279 1.000 0.000 126.2 126.2 

S 237.4 0.837 0.297 0.741 0.850 367.8 137.2 
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Figure 3.5: Outline of the vocal folds at one phase for several contact cases. The dashed box 

outlines the location of the inlaid close-up view. 
 

 

 
Figure 3.6: Superimposed motion of RI (a) and RS (b) points of cases C1 through C50 over a 

single cycle. 
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The wave velocity (VW) was also calculated for each of the cases in the same manner as 

in Chapter 2. There was very little variation in VW with various contact line locations (a 

maximum of 0.0073 m/s or 0.88%). 

The slight variations in glottal width for the contact line cases led to similar changes in 

the flow rate waveforms (see Fig. 3.7). The portions of the cycle and the degree to which the 

flow rate was affected were essentially the same as seen in the glottal width waveforms. There 

was a slightly higher flow rate during the closed portion of the cycle (about 15 ml/s) for case C50 

than C1. This was due to the less complete closure of the glottis in case C50. Because the glottis 

could not fully close, a small amount of air was allowed to “leak” past. However, for smaller 

Gmin, less flow was permitted to leak. The maximum variations in Qmax and Qavg were only 0.43 

ml/s (0.12%) and 6.74 ml/s (4.96%), respectively, and were fairly linear with Gmin (see 

Table 3.2). 

 
 

Figure 3.7: Volumetric flow rate vs. normalized time for several of the contact line cases. 
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An interesting phenomenon was observed in the pressure data for the various contact line 

cases. In theory, with a completely closed glottis, and an incompressible medium, the pressure on 

the upstream side of the contact location will be very close to that of the inlet 

pressure and the pressure on the downstream side of the contact will be at the exit pressure. 

However, because the glottis could not fully close in the present simulation, as air accelerated 

beyond the point of minimum glottal width, it caused a localized low pressure region. The more 

completely the glottis closed, the less air flowed past and the sharper the transition from the inlet 

to the outlet pressure. This is what was expected in the results from these models during the 

closed portion of the cycle; however, additional features were seen. In case C50 the minimum 

pressure peak was pronounced but also fairly smooth, as expected (see Fig. 3.8). As Gmin was 

reduced, the general path of the curve became closer to the expected step discontinuity in 

upstream and downstream pressures (see Fig 3.8(c) and (d)). However, for cases with Gmin 

smaller than 20 µm, the curve began to exhibit spurious pressure fluctuations, with the most 

severe case being C1 (see Fig. 3.8(c) and (d)).  

The observed pressure fluctuations were very ordered, with adjoining nodes alternating in 

pressure increase or decrease and the maximum fluctuations occurring at the location of contact. 

In one phase (not shown) of case C1 this pressure fluctuation had a magnitude of approximately 

700 Pa. It is assumed that these large pressure fluctuations arose from numerical instabilities 

occurring when the control volumes were significantly compressed and had high aspect ratios. It 

also appeared that filtering the pressure data could remove positional frequencies smaller than 

the size of a single control volume, thereby removing the noise while allowing a more realistic 

pressure profile to remain. However, the exact effect of the spurious pressures on the rest of the 

system is unclear. The pressure profiles more than 1 mm upstream or downstream of the 
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constriction do not appear to contain significant spurious pressure fluctuations. This is consistent 

with the assumption that the fluctuations arose from the highly compressed control volumes, 

since the control volumes further than about 1 mm from the point of contact were not 

compressed past their initial width. 

Another interesting phenomenon was seen in the pressure profiles for case C1 in phases 

where the glottis was open. In all cases of the closed phases the pressure profiles seemed to 

converge to the same step waveform, with sharper corners the smaller the Gmin. In addition, cases 

 
Figure 3.8: Pressure profiles for several contact line cases at phases B (a), E (b), G (c), and 

H (d) (see Fig. 2.7 for phase definitions). Phase B is just after the glottis has opened, phase 

E is when the glottis is at its maximum width, phase G is when the glottis first closes, and 

phase H is in the middle of the closed portion of the cycle. Note in plots (a) and (b) the 

pressure profiles for C50, C30, and C10 are directly over one another 
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C3 through C50 had essentially the same pressure profiles for each open phase, suggesting that the 

contact plane location made no difference in the open phase pressure profiles. However, during 

the open phase, case C1 had a different pressure profile, with variations in pressure from the 

other cases of up to 100 Pa (see Fig. 3.8(a) and (b)). It was assumed that the numerical instability 

during the closed portion of the cycle caused the distinct pressure profiles seen in case C1, 

causing it to be less accurate. It is unclear how the different pressure profiles arose without 

significantly affecting the glottal width, flow rate, or vocal fold outlines. 

As can be seen in Fig. 3.9, there was some change in the intraglottal flow as contact line 

location was altered. Plotting the maximum velocity within the glottis over time (Fig. 3.10) 

shows a steady decrease in the velocity with decreasing Gmin during the closed portion of the 

cycle for cases C7 through C50. Case C50 had a minimum leakage velocity of 23.1 m/s while that 

of case C7 was only 1.63 m/s. These were 43.7 and 3.1%, respectively, of the maximum velocity 

during the cycle. Plotting the minimum leakage velocity for each case vs. Gmin (Fig. 3.11) shows 

 
 

Figure 3.9: Velocity plots of four phases of several contact line cases. Phase C is when the 

glottis first closes and phase F is the first phase after the glottis opens. 
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a nearly linear relation between the two for Gmin > 7 μm. Below Gmin = 7 μm, the leakage 

velocity was essentially unchanged. 

By analyzing the trends of important values as Gmin approaches zero, one can now 

estimate the suitable value of Gmin. For most studies (using this solid model and driving pressure) 

a contact line corresponding to a Gmin of 50 μm was sufficient. The resulting Gavg, Oq, and Qavg 

using this contact location were within 10%, and the F0, Gmax, VW, and Qmax results were within 

1%. The glottal width and flow rate waveforms were all very similar. In addition, for case C50 the 

 

Figure 3.10: Maximum glottal velocity over time. 

 

 

 

Figure 3.11: Leakage velocity vs. minimum glottal width. 
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elements were able to collapse within the glottal gap without introducing the spurious pressure 

profiles seen for smaller Gmin. The most significant deviation seen from case C50 was in the 

pressure profiles within the glottis during the closed portion of the cycle. Here, a decrease in 

minimum pressure was seen due to the flow leakage. However, these pressure discrepancies 

were only around 100 to 200 Pa and acted on a very small area for a brief period of time and the 

overall vocal fold motion appeared to be unaffected. If higher accuracy is desired in closed 

glottis pressure profile predictions, as well as in other reported values, a Gmin of 10 µm can be 

used without introducing significant fluctuations in the pressure data. Using this Gmin value 

increased the consistency of all measured values to within approximately 1% of the C1 results. In 

addition, larger Gmin values are preferred from a computational standpoint because they are less 

prone to solver failure due to mesh movement problems.  

3.3.2 Isotropic vs. Transversely Isotropic Models 

In this section, the governing equations for stress strain relationships in a continuum 

model of the vocal folds are presented. They are developed for isotropic and transversely 

isotropic materials: two types which are commonly used in vocal fold modeling. They are given 

here as a basis for equations that are developed in the following section.  

In computational modeling of the vocal folds, two main material types have been used; 

isotropic and transversely isotropic. The material is oriented so that for both isotropic and 

transversely isotropic materials, the properties in the coronal plane are not directionally 

dependent. The axis with unique properties in the transversely isotropic model is in the anterior-

posterior direction. Often the plane strain assumption is made for both model types (e.g., Alipour 

et al., 2000; Cook et al., 2008; Zhang, 2009), which forces the motion in the anterior-posterior 
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direction to be zero. Different models have accomplished this in different ways (e.g., Thomson et 

al., 2005; Cook and Mongeau, 2007) and are discussed in more detail in Cook et al. (2008). 

One way to compare the isotropic and transversely isotropic models is through their 

compliance matrices. The compliance matrix [C] is used in the three-dimensional form of 

Hooke’s law to relate stresses and strains. In this case the strain tensor { } is equal to the product 

of [C] and the stress tensor { }. In its full form for a transversely isotropic material with the 

longitudinal axis in the 3-direction, it takes the form  
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where E and  are the Young’s modulus and Poisson's ratio in the transverse direction and E ,  , 

and G  are the Young’s modulus, Poisson's ratio, and shear modulus in the longitudinal direction. 

This can be degenerated for an isotropic material by setting E  and   equal to E and  

respectively. One method for including the assumption of plane strain is to force 13, 23, and 33  
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to be equal to zero. For a finite G , 13 and 23 are required to be zero as well, and Eq. (3.1) 

reduces to 
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for the transversely isotropic material, and 
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for an isotropic material.  
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When using transversely isotropic materials several researchers (e.g., Zheng et al., 2010) 

have assigned   = 0. This reduces Eq. (3.2) to 

 

 

12

22

11

12

22

11

0

0

0

1
00000

0
2

1
0000

00
2

1
000

000
1

00

0000
1

0000
1

0

0

0

E

G

G

E

EE

EE

. (3.4) 

 

There are several notable distinctions between Eqs. (3.3) and (3.4). Most notably, Eq. 

(3.4) is independent of 33. In fact, the plane strain assumption forces 33 = 0 for a finite E . In 

addition, because of the plane strain assumption, E  and G  are no longer significant. This makes 

the transversely isotropic model with plane strain and   = 0 identical to an isotropic model with 

plane strain and plane stress assumptions for either a two or three-dimensional material. 

It is instructive to note the similarities and differences between the isotropic model (Eq. 

3.3) and the transversely isotropic model (Eq. 3.4). Both models assume linear isotropic 

properties in the plane of simulation. Both models are also constrained by the plane strain 

assumption which eliminates all motion and strain out of the plane. While neither model has any 

strain in the 3-direction, the isotropic model will have stress in the 3-direction and the 

transversely isotropic model will not. This added stress will give added stiffness to a system 

governed by the isotropic model that would not be present with the transversely isotropic model. 



 74 

3.3.3 Poisson’s Ratio 

Altering the Poisson’s ratio of the solid model in the current study had a significant effect 

on the vocal fold motion. The lower Poisson’s ratios led to higher vibratory amplitudes while the 

higher Poisson’s ratios caused a significant decrease in this amplitude (see Fig. 3.12). Plotting 

Gmax and Gavg vs. Poisson’s ratio (Fig. 3.13) revealed a nearly linear relationship in Gavg and  , 

and a more complex relation between Gmax and , where Gmax was somewhat linear from 0.4 to 

0.48 and then rapidly dropped off as  approached 0.5. As can be seen in Figs. 3.14 and 3.15, in 

 
Figure 3.12: Glottal width over normalized time for several of the Poisson's ratio cases. 

 

 

 

 
 

Figure 3.13: Gavg and Gmax for various Poisson's ratios used. 
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Figure 3.14: Glottal width for several periods of vibration for the Poisson's ratio cases P0.46 

(‾ ‾ ‾), P0.495 ( ), and P0.4995 ( ). 

 

 

 
Figure 3.15: Vocal fold profiles at eight phases throughout one cycle for several Poisson's 

ratios. Phases A through H are marked for reference. Dotted lines represent original 

profile. 

 



 76 

cases with  above 0.495 the motion was so altered that the vocal fold did not contact the contact 

line, and therefore had no “closed” portion in the cycle.  

In addition to never fully closing, the glottal width waveform for cases P0.499 and P0.4995 

exhibited period doubling, where every other peak in glottal width data became distinct from its 

neighbors, leading to a new waveform where each complete cycle had two distinct peaks (see 

Figs. 3.12, 3.14, and 3.15). Increasing  led to decreased amplitude of vibration until the limiting 

case where Gmax = Gavg and no vibration was seen. This limit was shown by case P0.49999 where 

the vocal fold opened to a mean displacement and then remained at that position with no 

subsequent vibration. It is possible that collisions with the contact line helped to maintain the 

stable nature of the vocal fold motion for cases P0.4 to P0.495, resulting in a more consistent cycle-

to-cycle motion than was seen in the P0.499 and P0.4995 cases (see Fig. 3.14). 

Figure 3.15 shows the outline of the vocal fold in cases P0.4, P0.46, P0.49, and P0.4995 at eight 

different phases throughout the cycle. As can be seen, there is a larger amplitude of motion in 

both the superior and medial directions for lower Poisson’s ratios. The double period nature of 

case P0.4995 can be seen, in addition to distinct differences in vocal fold profiles during 

oscillation. Cases with higher Poisson’s ratios (but below 0.4995) maintained a shape closer to 

that of the P0.4 case.  

The fact that the vocal folds stopped vibrating at higher Poisson's ratios is especially 

interesting considering that vocal fold tissue is generally considered to be incompressible, which 

would seem to suggest that the ideal Poisson's ratio would be 0.5. Insight into the lack of motion 

for   ≈ 0.5 can be gained by investigation of relevant equations. Equation (3.3) is oriented to the 

vocal fold such that the 1-direction is along the inferior-superior axis, the 2-direction in along the 
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medial-lateral axis and the 3-direction is along the anterior-posterior axis. Solving the third row 

of Eq. (3.3) for 33 results in 

 )( 221133
. (3.5) 

Using this result, the first and second rows can be solved in terms of 11 and 22 as 
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As  approaches 0.5, Eqs. (3.6) and (3.7) become 
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This would suggest that for normal stresses of equal magnitude in the 1 and 2 directions, 

the strain will be zero in both directions. Similar results exist for Eq. (3.4) when a Poisson's ratio 

of 1.0 is used. Because the model is loaded mainly by pressures from the airway, which cause 

roughly equal normal stresses in both directions on the vocal fold surface, the strains become 

very small. On the other hand, if a lower value such as 0.49 is used for Poisson's ratio, Eqs. (3.6) 

and (3.7) become 
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Under these conditions even equal normal stresses in the 1 and 2 directions will lead to 

deformation in both the 1 and 2 directions. In the dynamic model of the vocal folds, if there is 

little or no deformation, such as when  = 0.5, the model cannot vibrate. With slightly lower , 
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and therefore larger deformation the model is able to persistently vibrate. A different method of 

applying the plane strain assumption, such as using a transversely isotropic material with very 

high longitudinal Young’s modulus, could potentially incorporate a Poisson's ratio corresponding 

to an incompressible material without limiting the model motion.  

The frequency at which that the model vibrated was also greatly affected by Poisson’s 

ratio (see Table 3.2). For the cases with  less than 0.499, the relationship between the 

fundamental frequency (F0) and  was fairly linear with F0 = 275.9 Hz for case P0.4 and F0 = 

225.5 Hz for case P0.495. However; the cases with  of 0.499 and 0.4995 did not fit this trend. 

Both had a F0 of about one third of the other cases (approximately 83 Hz). This was in part due 

to the period doubling. However, even taking this into consideration, the vibratory frequency of 

the model rapidly diminished for  greater than 0.495. Case P0.49999 was consistent with this 

observation, with F0 = 0. 

The variation in model motion was further evidenced by position plots of points RI an RS 

over one cycle (Fig. 3.16). The motion of these points was drastically altered by modifications to 

. In all cases the range of motion was reduced with increased  and the average position was 

moved closer to the symmetry line. In addition, the cases where the vocal fold made contact with 

the contact line (cases P0.4-P0.495), the motion of these points was generally normal to the vocal 

fold surface, while the cases in which no contact was made (cases P0.499 and P0.4995) predicted 

general motion which was more tangent to the vocal fold surface. 

The open quotient of each case exhibited interesting characteristics (see Table 3.2). As  

increased from 0.4 to 0.48, Oq decreased in a nearly linear manner from 0.828 to 0.660. Beyond 

this value of , the Oq increased in a somewhat linear manner to 1.0 for  ≥ 0.495. The changes 

in Oq for the various values of  were due to the different model vibration patterns. All of the Oq 
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values observed were in the ranges of 0.51 to 1.0 given for human phonation for speakers with a 

fundamental frequency of 225 Hz (Baken and Orlikoff, 2000). 

The wave velocity of the model was also significantly altered with changing . Figure 

3.17 shows the VW of the various cases vs. Poisson’s ratio. For  between 0.4 and 0.485 there 

was a gradual linear decrease in VW from 1.053 to 0.894 m/s. For  greater than 0.485 the VW 

rapidly decreased to zero. It was interesting to note that this vocal fold model produced a 

significant mucosal wave that propagated in the range of 0.5 to 2.0 m/s, which was observed 

experimentally by Titze et al. (1993) for excised canine larynges, but only for Poisson’s ratios ≤ 

0.495. For these Poisson's ratios, the general motion of the model was consistent with the 

observed motion in human vocal folds (Doellinger and Berry, 2006; Boessenecker et al., 2007). 

 
Figure 3.16: Motion of points RI (a) and RS (b) of cases P0.4 (‾ ‾ ‾), P0.46 (‾ ‾ ‾), P0.495 ( ), and 

P0.4995 ( ). 
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The flow rate waveform followed similar trends to that of glottal width (see Fig. 3.18). 

There was a clear decrease in amplitude with increased . This was a direct result of the 

decreased glottal area discussed above. The same period doubling was seen in cases P0.499 and 

P0.4995, with case P0.49999 producing a constant flow rate due to the lack of vibration. 

Poisson's ratio affected the glottal jet as can be seen in Fig. 3.19. The jet was much wider 

and varied throughout the cycle in models with lower Poisson's ratio. As Poisson's ratio 

increased, the glottal jet became more uniform along its length and decreased in width. This was 

due to the more vigorous motion exhibited by the solid when a lower Poisson's ratio was used. 

 
 

Figure 3.17: Wave velocity for various Poisson's ratios.  

 

 

 

 
 

Figure 3.18: Volumetric flow rate over normalized time for several Poisson's ratio cases 

(‾ ‾ ‾ = P0.4, ‾ ‾ ‾ = P0.46,  = P0.49,  = P0.4995).  
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The trend continued for cases P0.499 and P0.4995; however, two glottal jets were formed during a 

single cycle due to the two near-closures of the glottis over a given cycle. 

Without further investigation it is difficult to recommend a specific Poisson's ratio to use 

when modeling the vocal folds. It is clear that Poisson's ratios above P0.495 are not useful for the 

given model and boundary conditions. Different treatment of the plane strain assumption could 

allow for use of Poisson's ratios closer to the incompressible theoretical. However, it is likely 

that the best way to treat the condition is to model the vocal fold in three dimensions using a 

transversely isotropic material. For two-dimensional simulations, a Poisson's ratio in the range of 

0.43 to 0.495 resulted in motion and flow characteristics that were similar to those of human 

vocal folds. 

 
 

Figure 3.19: Vorticity plots showing the glottal jet at each of eight phases of one cycle for 

various Poisson's ratios used. 
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3.3.4 Symmetry Condition 

The assumption of symmetry was easily implemented and greatly reduced computational 

cost compared to that of a full model; however, the asymmetric nature of the glottal jet was not 

able to be represented in the simplified model. The jet asymmetry present in the full model had 

several notable effects on the model. 

While modeling the full geometry led to some small variations in the glottal width 

waveforms over time, they were largely unaffected (Fig. 3.20). By investigating a single cycle of 

the glottal width waveform over normalized time (Fig. 3.21), some of the small differences 

between cases C50 (half model with symmetry boundary condition) and S (full model) were seen. 

One difference between the models was a slightly more rounded peak in glottal width in the full 

model than in the half model. This was due in part to the very slight out of phase motion of the 

left and right vocal folds in the full model. Because one fold lagged behind the other, the 

transition from a convergent to a divergent glottis was not as instantaneous as it was in the half 

model, leading to less defined peak. In addition, the waveform in Fig. 3.21 was ensemble 

 
 

Figure 3.20: Glottal width over time for a full model (S) and a model with assumed 

symmetry (C50). 
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averaged over ten cycles. This tended to further blunt the peak of the glottal width data in case S 

as the peak was at slightly different times from one cycle to the next. Another difference in the 

glottal width waveforms was seen at t/T of approximately 0.2. While the waveform was mainly 

linear from opening to the time of Gmax, there was a small non-linear portion at this point in the 

cycle. In the full model this nonlinearity was more pronounced than it was in the half model. 

This was again attributed to the small phase shift between the two folds’ motions in the full 

model. 

With these small differences in the two models, other output parameters used to describe 

the glottal width were negligibly affected. The fundamental frequency was increased by 0.8 Hz 

(0.35%) when using a full model compared to the half model. In addition, Gmax and Gavg were 

increased by only 0.001 mm (0.12%) and 0.004 mm (1.32%), respectively. The largest effect was 

seen in Oq, where using a full model increased Oq by 0.024 (3.20%), but this is still relatively 

minor. The VW was also increased by 0.019 m/s (2.27%). Values for these metrics can be found 

in Table 3.2. 

 

 
 

Figure 3.21: Glottal width vs. normalized time for a full model and a model with assumed 

symmetry. 
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Other slight variations in vocal fold motion between the two cases could be seen in the 

vocal fold profiles (Fig. 3.22). While the contact point for the two models was in the same 

location, the vocal folds in the case S were slightly further downstream than in case C50. This 

downstream displacement was also seen in the motion of points RI and RS (see Fig. 3.23). There 

 
Figure 3.22: Vocal fold profiles at phase A for a full model (S) and a model with assumed 

symmetry (C50).  

 

 

 
Figure 3.23: Motion of points RI (a) and RS (b) of cases S (‾ ‾ ‾) and C50 ( ). 
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was a clear offset in the two paths of these points of approximately 0.05 mm in the y-direction 

for the full model. In addition, the motion of the points in the full model was slightly smaller in 

amplitude for the inferior point and larger for the superior point. 

The slight variations in vocal fold motion between cases C50 and S caused similar 

variations in volumetric flow rate (see Fig. 3.24). The flow rate was slightly higher (by about 5 

ml/s), for the full model from the time that the glottis opened until the time of maximum glottal 

width. It was then lower by about the same amount during the closed portion of the cycle. These 

changes were reflected in increases in Qmax and Qavg of 3.98 ml/s (1.06%) and 1.37 ml/s (1.00%), 

respectively. 

Figure 3.25 shows the pressure profiles on the vocal fold surfaces for several phases of 

cases C50 and S. To more easily compare the two cases, the pressures in case S were averaged 

over 10 cycles and also over left and right vocal folds. The pressure at the location of minimum 

glottal width for the full model was lower by about 30 Pa during several phases of the cycle (B, 

D, E, and H). The opposite effect was seen in phases A and F, where the pressures were higher 

by about 80 Pa. Phase G had nearly the same pressure for both cases. The biggest difference in 

pressures was seen in phase C, where the pressure at the constriction was lower by about 125 Pa 

 
Figure 3.24: Volumetric flow rate vs. normalized time for a full model and a model with 

assumed symmetry. 
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in the full model. The recovery pressure was lower in case S for every phase by about 15 to 60 

Pa depending on the phase. 

Figure 3.26 shows vorticity plots of cases C50 and S for each phase of one cycle. The jet 

in the half model was forced to be symmetric. It therefore exited the glottis and remained straight 

until it exited the airway. The jet in this case slightly dissipated and spread out as it traveled 

downstream. On the other hand, the jet in the full model was allowed to become asymmetric. As 

the glottis first opened the jet exited and remained attached to the right vocal fold surface during 

the first two open phases (B and C). It then detached from the vocal fold surface and exited the 

glottis in a nearly straight path (phase D), but a large recirculation region caused it to deflect 

towards one wall of the supraglottal airway. It remained in this configuration until the glottis 

again closed at phase G. The jet was rapidly dissipated as it mixed in the recirculation region and 

could not be clearly seen beyond approximately one vocal fold height downstream of the glottis. 

Despite the significant differences between the two glottal jets, there was similarity between the 

models. In both models a very minimal glottal jet was present during the closed portion of the 

cycle (due to flow leakage) that then began to become more established at phase B. In both cases 

the jet continued to grow in length from phases B to F and then effectively stopped at phase G 

when the glottis closed. 

 
Figure 3.25: Pressure profiles for phases B, D, F, and H of a full model and a model with 

assumed symmetry. 
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To summarize, despite the obvious differences in the downstream asymmetry of the 

glottal jet, there was little effect on the rest of the model. The F0, Gmax, Gavg, Oq, VW, Qmax, and 

Qavg all increased by less than 3.4% when a full model was used. There were also small 

 

Figure 3.26: Vorticity plots for a full model (S) and a model with assumed symmetry (C50). 
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differences in the vocal fold motion with decreased motion in RI and increased motion in RS. In 

addition, the vocal fold moved approximately 0.05 mm further in the y-direction when a full 

model was used. However, the general motion of the vocal fold remained the same. The pressure 

profiles throughout the glottis were also altered when a full model was used. The largest 

variation in these profiles was approximately 125 Pa at the contact location during phase C. Most 

of the pressure profiles had smaller differences of around only 20 Pa. The largest apparent effect 

of these differences in pressure was in the lower recovery pressure of the full model, leading to 

the larger downstream displacement of the vocal folds.  

It is concluded that for research focusing on vocal fold motion or flow within or upstream 

of the glottis, for cases with symmetric geometry and material properties, a half model may be 

adequate. A full model is necessary if details of the asymmetries present in the glottal jet or the 

asymmetries of pressures within the glottis are desired. One area in which this might also be 

important is the study of potential asymmetry in energy transfer to the two vocal folds. Finally, 

acoustic sound production is highly related to the jet dynamics, and is therefore sensitive to flow 

rate waveforms and other jet characteristics. Thus a full model would be better than a half model 

for predicting radiated sound. 

3.4 Conclusions 

Many different assumptions have been made in defining computational vocal fold 

models. These assumptions have the potential to alter the usefulness and validity of the 

simulations; however, the exact effects of these assumptions have not previously be explored. In 

this chapter, the effects of various modeling choices were explored using a two-dimensional 

four-layer vocal fold model. 
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The contact line location was systematically explored and found to affect some aspects of 

the simulation results. The closer the vocal fold was able to approach the center line, the more 

completely the glottis closed and flow leakage was reduced. There was however, a negative side 

effect. The pressures in cases with a minimum glottal gap (Gmin) less than 20 µm began to exhibit 

spurious pressure fluctuations in the vicinity of contact. The amplitude of these fluctuations 

increased with decreasing Gmin and was approximately 700 Pa at the location of contact in case 

C1. These spurious pressures seemed to arise from numerical instabilities when the mesh 

compressed beyond a certain point; however, they did not seem to significantly affect the 

remaining pressure fields or vocal fold motion for cases other than C1. 

Very little change was seen in the vocal fold motion, glottal widths, or flow rates with 

changing Gmin. For example, Gmax, F0, VW, and Qmax each varied by less than 1% while Gavg and 

Qavg both varied by less than 7% over the range of Gmin values studied. 

Based on these results, a Gmin of 50 μm should be sufficient to obtain results that are 

reasonably representative of what would be expected with a model that completely closes. 

However, for greater accuracy or more realistic pressures along the vocal fold surfaces, a Gmin of 

10 μm may be preferred. The choice must be made with consideration of the trade-offs between 

minimum desired glottal width, minimum desired flow rate, and mesh movement (which is 

typically easier with larger Gmin). In this study the effect on solid model stresses during contact 

was not considered, and this should be studied in the future. 

Varying the Poisson's ratio had a significant effect on this model’s response. As Poisson's 

ratio was increased, the amplitude of vibration decreased from Gmax = 1.151 mm in case P0.4 to 

Gmax = 0.46 in case P0.4995. Vibration stopped altogether in case P0.49999. The lack of vibration was 

attributed to the plain strain assumption combined with   ≈ 0.5. Under these conditions, equal 
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normal stresses in the 1 and 2 directions led to the strain in these directions being zero. In 

addition, the specific motion of the given model was significantly affected by the choice of 

Poisson's ratio. The variation in vocal fold motion also led to variations in flow rates, 

frequencies, and glottal jet characteristics. Qmax ranged from 126.2 to 363.6 ml/s, while F0 varied 

from 0.0 to 275.9 Hz. When choosing Poisson's ratio, the researcher must use a value that results 

in vocal fold motion that is similar to observed motion in actual larynges, which in this study, 

was found to be in the range of 0.43 to 0.495. 

Some variations in model output were seen when comparing the response of a full model 

(i.e., including both vocal folds) with a half model (only one vocal fold and assumed symmetry). 

The largest variation was in the glottal jet response. In the half model the jet was symmetric by 

definition and dissipated very little as it traveled through the supraglottal region. In the full 

model the jet was diverted toward one supraglottal wall and rapidly dissipated in the 

recirculation region. The lower supraglottal pressures (around 40 Pa lower) caused by the 

recirculation regions in the full model led to larger downstream displacement of the vocal folds 

by about 0.05 mm. Despite the larger mean displacement, the medial surface of the vocal folds in 

the region of contact was nearly identical in the two cases. In the full model, F0, Gmax, Gavg, Oq, 

VW, Qmax, and Qavg each increased by less than 3.4% from the half model values. The half model 

was deemed sufficient for simulations where the vocal folds are symmetric and the asymmetries 

of vocal fold pressures or of the glottal jet are not of particular interest. Because of the sensitivity 

of the radiated sound field to fine scale flow structures, a symmetric flow model may not be 

appropriate for acoustic predictions. Future work should explore this issue, however. 
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4 CONCLUSIONS AND FUTURE WORK 

Computational models of the flow-induced vibrations of the vocal folds are powerful 

tools that can be used in conjunction with physical experiments to better understand voice 

production. An improved understanding of the physics of voice production will lead to better 

diagnosis and treatment of patients with voice pathologies. This thesis research has been 

performed to contribute to this understanding. In particular, the effects of supraglottal geometry 

have been analyzed using a computational model of the vocal folds and laryngeal airway. In 

addition, three important computational modeling parameters (contact line location, Poisson's 

ratio, and symmetry assumptions) were systematically varied to determine the influence of their 

values on model response. 

4.1 Effect of Supraglottal Geometry on the Flow-Induced Response of a Computational 

Vocal Fold Model (Chapter 2) 

4.1.1 Conclusions 

Several supraglottal configurations were positioned superior to a pair of symmetric, four-

layer, finite element vocal fold models. Air flowing through the fluid domain interacted with the 

vocal folds to create sustained vibrations in the vocal folds. The vocal folds exhibited a 

pronounced mucosal wave that has not been seen in many previous simulations and synthetic 

model experiments, but that is representative of the motion of the human vocal folds during 

vibration. 
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Without false vocal folds (FVFs), the glottal jet was diverted towards one side of the 

supraglottal duct, generally towards the nearest wall when the supraglottal geometry was 

asymmetrically positioned. When FVFs were included, the jet diverted towards one of the FVF 

surfaces; however, the deflection was smaller in magnitude than when no FVFs were present. 

The jet deflection was fairly consistent from one cycle to the next when no FVFs were present or 

when the FVF geometry was asymmetrically placed. When the FVF geometry was 

symmetrically placed, the jet direction periodically alternated and at some times was not 

deflected at all. 

The asymmetric glottal jet led to asymmetric pressure profiles within the glottis. These 

asymmetries were more pronounced with larger jet deflection. In addition, the pressure profiles 

exhibited cycle-to-cycle variations when the jet was inconsistently deflected. In spite of these 

asymmetries, the motion of the vocal folds themselves was nearly symmetric, exhibiting only 

small degrees of asymmetry that were more prevalent when cyclically-inconsistent pressure 

profiles were present. The asymmetric pressure profiles observed in cases in which the jet 

consistently deflected in the same direction did not lead to asymmetric motion. In general, the 

relative insignificance of the degree of asymmetry exhibited by the vocal fold models in this 

study suggests that characteristics (such as asymmetry) of the supraglottal jet alone may not be 

sufficient to significantly alter vocal fold motion. 

4.1.2 Future Work 

Several areas of future work related to this research are suggested. First, and perhaps 

most importantly, because of the inherent three-dimensional nature of the glottis and glottal jet, a 

study that incorporates three-dimensional vocal folds and airway, and that also uses a vocal fold 

model that exhibits a pronounced mucosal wave, is necessary. Because a two-dimensional model 
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does not include energy dissipation in the third dimension, the effects of the glottal jet may be 

artificially amplified in a two-dimensional simulation. Second, it is possible that the low driving 

pressure of this model contributed to the consistent jet deflection. Therefore, the effect of higher 

driving pressures should be studied to determine their effect on cycle-to-cycle variations in this 

model. Third, using a turbulent model for the airway could lead to different effects on the glottal 

jet motion, and as a result, on the vocal fold motion and pressure profiles. Fourth, the stresses 

arising in the vocal folds in relation to the asymmetry in the pressure profiles should be studied 

in depth. Finally, in this study, due to computational cost, coarse movement of the supraglottal 

geometry was used. Additional insight could perhaps be gained by using a vocal fold model with 

prescribed motion, thereby reducing computational cost and allowing for finer variations in the 

supraglottal geometry size and position. 

4.2 Effect of Modeling Choices on the Flow-Induced Response of a Computational Vocal 

Fold Model (Chapter 3) 

4.2.1 Conclusions 

A two-dimensional computational model of the vocal folds was used to analyze the 

effects of several modeling choices on vocal fold motion and fluid flow characteristics. First, the 

position of the contact line was systematically varied. Second, different Poisson's ratio values of 

the solid model materials were studied. Third, a full model containing two vocal folds was 

compared to a half model in which only one vocal fold was included and a symmetry boundary 

condition was enforced.  

There exists a trade-off between modeling full glottal closure and running simulations 

using a setup that will allow for robust mesh movement. While the fluid mesh motion was more 

well-behaved for larger minimum glottal widths (Gmin), more air “leaked” through the glottis. To 
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determine how contact line location altered this balance, Gmin was systematically varied from 1 

to 50 µm by altering the location of the contact line. As Gmin approached zero, the values of 

important parameters were relatively unaffected by contact line location. The resulting flow rate, 

glottal width, frequency, wave velocity, and open quotients had a maximum variation of less 

than 7%. Pressure profiles along the vocal fold surface were not significantly altered during the 

open phase, except for the case in which Gmin was 1 µm. During the closed phase, the pressures 

for cases with Gmin less than 20 µm exhibited spurious pressure fluctuations which became more 

severe with smaller values of Gmin. It is suggested that for studies in which pressure profiles or 

minimum glottal flow are not of particular interest, a Gmin of 50 µm may be sufficient. If 

increased accuracy is desired, Gmin can be lowered to 10 µm without introducing significant 

pressure fluctuations. 

While vocal fold tissue is typically assumed to be incompressible, most computational 

models have been defined using a Poisson's ratio (  ) lower than the incompressible limit. There 

have been a wide variety of Poisson's ratios used, yet no previous systematic evaluation of its 

effect on a vocal fold model has previously been performed. In this thesis research the Poisson's 

ratio in the solid model was varied from 0.4 to 0.49999, where 0.5 corresponds to 

incompressibility. The model motion was strongly influenced by variations in , with larger 

amplitudes resulting with lower  values. For  > 0.495, the vocal folds did not close 

completely, and for  = 0.49999 the model did not vibrate. It was shown that for the assumptions 

of plane strain with an isotropic material, equal normal stresses in the plane will lead to zero 

normal strain when  = 0.5. In addition, it was found that with these same assumptions, the 

model motion approximated that of human vocal folds for   between 0.43 and 0.495. 
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For computational efficiency, often only one half of the larynx is modeled and a 

symmetry boundary condition is used. However, asymmetry in the glottal jet has been observed, 

both in this thesis research and in previous studies, in models (real and computational) with both 

vocal folds. In this study, the results of a full model, consisting of two vocal folds, and a half 

model, consisting of one vocal fold and a symmetry boundary condition, were compared. The 

profiles of the medial surfaces of the vocal folds of both models were nearly indistinguishable in 

the vicinity of contact with the contact line. However, the mean displacement of the folds in the 

full model was approximately 0.05 mm further downstream as evidenced by the profiles of the 

superior portion of the vocal folds. In the full model, the frequency, glottal width, flow rate and 

wave velocity all increased by less than 3.4% when compared to the half model. The largest 

variation between the models was in the glottal jet characteristics. The full model predicted a 

large deflection and rapid dissipation of the jet that were not seen in the half model. It was 

determined that for studies not dependent on glottal jet characteristics (such as acoustic sound 

production), or for studies that do not include inherent asymmetry in geometry or material 

properties, the half model is sufficient. 

4.2.2 Future Work 

Several additional areas of future research are advised. One possibility is to attempt to 

eliminate the spurious pressures which were seen for small Gmin. This could perhaps be 

accomplished by increasing the control volume density along the length of glottis. This would 

improve the aspect ratio of the control volumes when highly compressed. Additional insights 

about the effects of contact line location could be gained through a study analyzing the stresses 

within the vocal fold. Another area of future research would be to systematically determine the 

relative magnitude of longitudinal Young’s modulus that would be needed in a three-



 96 

dimensional, transversely isotropic model to cause planar motion without the need of the plane 

strain assumption. The effect of Poisson's ratio could also be studied on different model types to 

determine if similar effects to those observed in this model are seen in other models. The effect 

of the symmetry assumption on radiated acoustic sound could also be studied. 
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