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ABSTRACT

Soap Bubbles and Solid Spheres: Collisions and Interactions

Joshua Bryson
Department of Mechanical Engineering, BYU

Master of Science

Under the right conditions, a moving sphere may successfully enter, and leave, a soap
bubble without rupturing that bubble. The physics behind this phenomena are not well understood,
nor the limiting factors (such as sphere size, speed, etc.). This work, investigating this phenomenon
using high speed photography, has produced several results which are presented. First, several
distinct regimes, noted while photographing the interactions between the spheres and the bubbles,
are classified and discussed. Next a probabilistic examination of the soap bubbles rupture by
the moving spheres is presented. Then a conjecture for the limiting sphere sizes and speeds is
presented. And finally some interesting phenomena, noted in the course of this investigation, are
presented and discussed.
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CHAPTER 1. INTRODUCTION

In 1904 Lucien Bull, a cinematographer interested in developing high-speed photography

methods, published a series of photos entitled Soap Bubble Bursting, part of which may be found in

Figure 1.1. Bull later described the process captured in the photos as the ’bursting of a soap-bubble

caused by a paper pellet shot from a little spring gun’ [1]. The film clearly shows the pellet entering

the bubble without bursting it1 (also shown in Figure 1.2). This publication is the first recorded

example of the amazing ability of a bubble to reseal itself after being pierced by a moving object.

Although resealing also occurs on exit, this was not recorded in Bull’s work. Since Bulls work in

1904, little investigation has been done into this fascinating phenomenon.

Figure 1.1: Pictures from Bull’s photo series Soap Bubble Bursting. Note the successful entry of
the paper pellet by the last frame.

1.1 Objectives

This work investigates the remarkable phenomenon of a bubble’s ability to reseal itself

after the entry of a solid object. Specifically, the work address the following three questions: first,

what are the characteristics or properties of this phenomena? Second, under what conditions does

the passing sphere rupture the bubble? Finally, third, can a model be developed to capture bubble

rupture?

1You may view the movie online via youtube.com. URL: http://www.youtube.com/watch?v=RLR-LT55Ueo last
accessed 1/27/2011
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Figure 1.2: Example of a bubble being pierced by a sphere

This phenomena was studied by capturing the interaction of solid spheres being dropped

through soap bubbles, with the radii, masses, and materials of the spheres, as well as the bubble

size, being varried.

This investigation has lead to the classification of five interesting sphere-bubble interaction

regimes, dependent on the Weber number of the moving sphere. Additionally, the importance (in

terms of limiting bubble rupture) of the moving sphere’s radius, and the ratio of sphere radius to

the bubble radius has been quantified. The importance of the film’s thickness was also noted.

It was hoped that a complete numerical model of the phenomenon might be developed: a

model able to capture both the physical interactions between the moving spheres and soap film and

also the actual rupturing dynamics of the film. However, numerical modeling of a soap film as a

very thin sheet, with finite volume (required to accurately capture the rupture dynamics), rather

than as a surface, is beyond the capabilities of current numerical schemes.

One reason for the lack of such a numerical scheme involves the need to solve the Navier-

Stokes equations across a three dimensional domain many orders of magnitude larger than the film

itself (centimeters vs. nanometers). A model spanning both the film thickness and the bubble size

scales would surely crumple under the weight of the number of spacial nodes required to do so.

Indeed, a modeling method used to solve for just the film dynamics, which is not able to handle

film rupture, requires nearly a million spacial nodes for proper convergence, each of which needs

to be solved in time. Thus, we will settle for a more probabilistic approach to model under what

conditions a bubble will rupture when being pierced by a moving sphere.
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1.2 Background

Although past work studying bubble-solid collisions is limited to the work done by Bull,

there has been research into related phenomena, such as the study of soap film, bubbles, etc.. We

will review this work in the following way. First, we will investigate work done in the area of soap

films and soap film bubbles. This includes governing equations, thinning, thickness determination,

and modeling. Second, the work done regarding numerical models of thin films and bubbles will

be investigated.

1.3 Soap Films and Bubbles

Soap films have been formally studied for nearly 150 years. Yet, their history in nonsci-

entific circles goes back even further. In the 17th century it was used in paintings and prints as a

representation of the frailty of life [2]. The Assyrians even used very thin soap films to help divine

the future [3].

In their most basic form soap films are formed by mixing a surfactant with water. Most

people do this regularly by simply mixing liquid detergent with tap water. The surfactant plays a

critical role in the creation of soap bubbles in that it lowers surface tension and allows the film to

stand against its own weight in the air. The surfactant does this because of its chemical makeup.

A surfactant usually consists of a hydrophilic head and a hydrophobic tail [4]. This ar-

rangement causes the surfactant to rise to the surface with the tail sticking out of the water. This

causes the surface tension to drop. In a film, their is a monolayer of surfactant on either side of

the film with a water-surfactant mixture between the two layers. These monolayers have a density

greater than the water-surfactant mixture and this is what allows the soap film to be able to support

its own weight [3].

1.3.1 Bubble Attributes and Governing Equations

The shape of a bubble is governed by its surface tension. Surface tension forces a bubble

to minimize the surface area for the enclosed volume. This force also causes an internal pressure

to develop inside the bubble, in excess of the pressure outside the bubble. The pressure difference

at any point along the bubble wall is defined by the Laplace pressure relation:
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∆p = σ

(
1

R1
+

1
R2

)
, (1.1)

where ∆p defines the pressure difference, σ is the surface tension of the bubble and R1 and R2 are

the principle radii of curvature of the bubble at that location. Under steady state conditions the soap

film’s tendency to minimize the surface area forces the bubble to form a sphere. Because R1 = R2

for a sphere the internal pressure is constant at every point along the wall of the bubble, and thus

is constant throughout the entire bubble [3]. Although the final shape of a bubble is known, the

path a bubble takes to reach this spherical state from some perturbed condition has not been well

modeled.

If a soap bubble is initially non-spherical in shape, then surface tension and pressure gradi-

ents will drive the surface energy to its minimal state, resulting in the spherical shape [3]. Pressure

gradients are defined by the Laplace pressure (1.1) which is a function of the gaussian curvature

and the surface tension equation. If a bubble is deformed, the areas with lower curvature develop

higher pressure while areas with higher curvature have lower pressures [3].

A simple demonstration of this may be seen in an experiment involving two bubbles of

equal size, connected together by a hollow tube. If one bubble is perturbed slightly, air from that

bubble will flow into the other bubble, increasing the unperturbed bubble’s size and decreasing

its own. The perturbed bubble now has a smaller curvature, being a sphere holding less volume,

and thus has a higher pressure. The unperturbed bubble, now larger, has a larger curvature and

thus a lower pressure. From this unbalanced state the air will empty from the smaller bubble into

the larger one. The perturbed bubble will completely deflated until it becomes a film at the end

of the tube, with a final curvature equal to the final curvature of the, now much larger, originally

unperturbed bubble [5]. See Figure 1.3.

1.4 Thin Film Draining and Thickness

As discussed above, a thin film consists of two monolayers of surfactant surrounding a

water-surfactant solution. Under the force of gravity the solution drains from in between the

monolayers down the film [6, 7]. The mixture drains through three mechanisms, Poiseuille flow,

convective flow, and flows due to Laplace pressure differences within the film [3]. This draining
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(a) Initial, unstable condition. Each bubble is equal in size
and have the same curvature

(b) Final, stable condition. In this case, each bubble
has the same curvature but their sizes are unequal.

Figure 1.3: Unperturbed and perturbed bubbles connected by a solid tube.

continues until the water-surfactant solution has all drained, leaving just the two monolayers. At

this point the film is called a Newton black film, named after Sir Isaac Newton who studied them

in the 18th century. The term black refers to the ’see through’ nature of these thin films, which

occurs due to the thickness being below the diffraction limit (<100nm).

1.4.1 Draining Models

Schwartz and Roy [8], and Naire et al. [9] have developed models of the thinning which

takes place in a vertical film over time. Both models simplify the mathematics by utilizing the

lubrication approximation and both arrive at a solution using three nonlinear partial differential

equations. However, neither formulation was developed to allow a changing film orientation (as

is the case with a bubble). Thus, it becomes necessary to obtain thickness measurements through

experimental means.

1.4.2 Thin Film Thickness Measurements

As with any study involving thin films, the films thickness plays a critical role. Small

changes in film thickness can dramatically alter the response of the fluid to the experimental con-

ditions. Because of this, many methods for measuring the thickness of a thin film have been

devised. The most common of which are ellipsometry, reflectometry and interferometry.

Ellipsometry works by shining polarized light, with a known angle of incidence, at the

film and measuring the change in the polarization angle. The polarization angle can then be used

to derive the desired attributes about the film, including thickness and index of refraction. The
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light used can be either monochromic light [10] or a spectrum of light wavelengths for greater

accuracy [11]. These methods generally require the use of a substrate with known optical properties

upon which the thin film is placed, though some methods have been developed for transmission

ellipsometry, see [12].

In contrast with ellopsometry, reflectometry and interferometry are both methods which

utilize light intensity properties to gauge film thickness. Reflectometry analyses the amount of

light reflected off a thin film over a spectrum of wavelengths [13].

Interferometry splits a light beam and later superimposes the resulting light beams to form

an interference pattern. In this way information about changes in wavelengths may be measured

with great accuracy. This in turn may be used to gather information about the films properties

[14, 15].

Although these methods are widely used in industry and research, their application is not

suited for the problem at hand. This is due to geometric considerations. It is clear that classical el-

lipsometry is ill suited due to the use of the substrate for measurements. Transmission ellipsometry

and classical methods of reflectometry and interferometry all suffer from the same shortcoming,

namely that they require the transmission and measurement of light through the film. In our case,

this would require either the light source, or the receiver to be located inside the bubble. This

makes their use for measuring the thickness of a bubble impractical, at best. Thus we turn to

interference patterns for a solution.

1.4.3 Bubble Thickness and Interference Patterns

As stated above, the drainage of a soap film due to gravity also causes the profile of a soap

film bubble to change with location, see Figure (1.4(a)). If an infinitesimal slice if the bubble is

taken and straightened out, it may be seen that that slice forms a wedge of decreasing thickness,

see Figure (1.4(b)).

The illumination of the thickness variations in a thin film (caused by drainage or other-

wise) reveals interference patterns on the surface of the film. For example, under white light (or

a spectrum of light wavelengths), these interference patterns are demonstrated by regions of dif-

fering colors, with each color representing an area of differing thickness. Illumination under a

monochromatic light yields light and dark areas which represent the different thicknesses of the
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Figure 1.4: Bubble thickness profile examples.

film. Interference patters are demonstrated by horizontal bands of color, as seen in Figure (1.5(a))

for a film wedge. If viewed under a light of a single wavelength (or a small band of wavelengths),

light and dark rings are seen circling the bubble, see Figure (1.5(b)).

(a) Wedge with inter-
ference lines shown

(b) Bubble with interference rings shown

Figure 1.5: Examples of interference patterns.

These rings may be used to measure the thickness of the bubble profile in time by utilizing

the well developed theory of interference for thin film [7, 14]. This theory yields the following

equations for the thickness of a thin film wedge:

t =
(m+ 1

2)λ
2n

m = 0,1,2, ... (1.2a)

t =
mλ

2n
m = 0,1,2, ... (1.2b)
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where λ is the wavelength of light, t is the film thickness and n is the index of refraction for the

thin film. Equation (1.2a) refers to the thickness of the film at the mth constructive interference

band. Equation (1.2b) refers to the thickness at the mth destructive interference band.

The utilization of interference patterns to measure the thickness of the thin film is a straight

forward method. One must simply capture the interference band locations in time. These bands

appear at the top of the fluid as it thins and move down the film. Once the film reaches a thickness

smaller than the wavelength of the light being used to illuminate the film, no new bands will appear.

At this point the last new interference band represents the thickness where m = 0. With this marker

we may evaluate the thickness of each band using Equations 1.2a and 1.2b.

The advantage of this method over standard ellipsometry, reflectometry, and interferometry,

is that the bubble may simply be formed and photographed to determine the thickness at any point

in time. As mentioned above, ellipsometry, reflectometry, and interferometry, require either the

use of a substrate or the reflection through a single membrane. This makes their use difficult at

best. Furthermore, these methods only take point samples of the thickness, while the capture of

interference patterns yield profile information for the entire bubble.

However, this method does suffer from several disadvantages. First, for the best accuracy, a

monochromatic light source should be used and the wave length of that source needs to be known.

Even if a monochromatic light is used, the accuracy of the method is limited to the wavelength of

that light, see Equation (1.2). The second disadvantage of this method stems from the difficulty of

photographing reflections off a transparent film. This requires careful light, camera, and backdrop

positioning.

1.5 Bubble Rupturing

The rupture of a thin film and, in the case of a bubble, the consequent bursting of the

bubble has been studied for some time. As long ago as the late 1800’s Rayleigh studied the recoil

of ruptured film via photography and developed a model for the recoil speed using a kinetic energy

argument [16]. However, this argument has proved somewhat too simplistic, under-predicting the

recoil speed, and much work has been done to provide a more accurate model of film recoil after

rupture [17] [18] [19].
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Some work has been done into the requirements for film rupture. For example, Taylor and

Michael [20] investigated the conditions under which thin sheets of fluids rupture by piercing the

fluid with probes of different sizes. Their work suggests that rupture occurs when the radius of

the probe is greater than the thickness of the sheet. But, if the probe has a radius smaller than the

thickness of the sheet, the sheet is able to repair itself once the probe is withdrawn. In the case of

soap films this seems to make sense, as the film usually ruptures once most of the fluid has drained

from between the two monolayers of surfactant, leaving a film thickness on the order of 10 nm.

At this point, nearly any disturbance of the film may create a hole with a radius greater than the

thickness of the film.

1.6 Bubble Modeling

Chen and Steen have developed a model able to capture the dynamics of a film bridge

collapse and pinch-off [21], a process resembling the final stages of a sphere passing through a

soap bubble’s film. Their work investigated how an axisymmetric film bridge comes together and

pinches off into two separate films. It does not, however, take into account different initial radii as

is the case with spheres of different sizes passing through the bubble. Nor does the work address

the presence of foreign and moving bodies.

Other work has been done on the growth and collapse of bubbles. Delale et al. developed

analytical and numerical models for cylindrical vapor bubbles [22], while Kim et al. used a control

volume method to simulate the growth of foam for graphical purposes [23]. However, neither

of these works account for general shapes of bubbles but rather assume symmetry or ignore the

driving forces governing the movement of the bubble.

1.6.1 The Level Set Method

Because the curvature of a bubble determines its pressure, see Equation (1.1), and therefore

pressure gradients, the shape the bubble takes in time is of critical importance. There are several

methods for tracking the shape or interface of a fluid and each has its own merits and disadvantages.

A method of particular usefulness is the level set method developed by Sethian in 1982. This

method has the ability to accommodate fluid coalescence and breakup, and may also deal with
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regions having different property values [24], [25]. It is these properties of the level set method

which make it so applicable to the question at hand. As the sphere moves through the exterior

of the soap bubble the film must move apart and some of the fluid even attaches itself to the

sphere [26]. Thus any method attempting to accurately model these events must allow the fluid to

act accordingly. The level set method allows for the modeling of these types of events. Although

some work has been done to model bubbles using the level set method, [27] [28], their work does

not model bubble-solid interactions.

The level set method is able to track changes in topology, the formulations of cusps, and

other complicated geometries by embedding the surface of interest into a function of a higher

dimensional space, with time providing the extra dimension. For example, a two dimensional

surface, a function of x and y, would be imbedded in a three dimensional function, φ(x(t),y(t), t).

This function, φ , is called the level set function. Taking the time derivative of φ and simplifying

yields the level set equation:

φt +F ||∇φ ||= 0 (1.3)

where ||· || represents the euclidian norm. The function F determines the speed in the outward

normal direction of the evolution of the surface. The solution to this PDE yields the solution of

how the higher dimensional surface evolves in time and the level set of this higher dimensional

surface corresponding to t = 0 represents the evolution of our original surface at any time step.

A more complete formulation may be found in [29]. In practice the level set equation is usually

solved numerically through a finite difference scheme [29].

One method of modeling the interaction between to fluids is called the Ghost Fluid method,

developed by Fedkiw et al. [30] to help capture discontinuities between two phase contacts. The

method works by discretizing the domain twice, once for each fluid. One set of nodes contains

the mass, momentum, and energy information for the fluid really at that location, while the other

set, the ghost cells, contains the mass, momentum, and energy information for the other fluid. The

choice of which set of nodes to use at a particular location depends on the sign of the level set

function Equation (1.3). With the domain discretized and defined in this manner, standard single

phase numerical methods may be utilized to solve the problem and the level set function may be
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evolved in time. The function is updated after each time step to ensure use of the correct fluid

properties at each location [31].

One problem with level set methods is the ability of the method to lose mass in unresolved

areas of the flow. Thus, while the level set method is moving along, the mass of the modeled

water is disappearing from the system. Foster and Fedkiw proposed a method which hybridizes

particle methods and the level set method, known as the particle level set method, to combat this

problem [32]. This method works by refining the mesh in areas of high curvature within the system,

adding extra resolution to the locations which suffer the most mass lost [31].

1.7 High-Speed Photography

An important part of any numerical model is validation. Thoroddensen et al. provide a

good overview of high-speed photography and its application in capturing fluid phenomena [33].

For example, in 1990 Ashgriz and Poo used high speed-cameras to capture the collisions of two

droplets and classified the results [34]. Tanguy and Belemont used the images from Ashgriz and

Poo’s work to verify their numerical level set method model of droplet collisions.

1.8 Conclusions

This chapter has presented research into soap films and their interactions and governing

equations. Models covering bubble draining rates, film collapse and coalescence, as well as pos-

sible methods for their future modeling have also been presented. It is clear, however, that the

research performed does not answer the question at hand. Namely: how does a moving object,

specifically a moving sphere, successfully pass through a bubble without rupturing the bubble.

The remainder of this work attempts to address that question.
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CHAPTER 2. EXPERIMENTAL METHODS

This chapter discusses the experimental setup, variables and parameters. First the exper-

imental setup is described, both its physical appearance and its operation. Next the experiment

variables are discussed and their parameters given.

2.1 Experimental Setup

This section discusses the experimental setup, design and operation. First we will detail

the bubble making apparatus and its operation. Then we will detail the methods of sphere handling

and cleaning.

2.1.1 Experimental Setup and Design

Top, front, and side views of the experimental setup may be seen in Figures 2.1.1 and 2.2(a).

The main frame consists of a central column supported by by two legs and a cross brace. The frame

was clamped near the top of the central column to the “T” channels supporting the ceiling tiles.

This made the frame sufficiently ridged to eliminate vibration of the bubble when opening the iris.

Attached to the frame are three movable arms mounted on linear bearings. These arms support

the iris used to drop the spheres, the level used to gauge bubble size, and the arm supporting the

bubble cylinder (see front view in Figure 2.1.1). The frame for the setup was constructed from

8020® extruded aluminum.

To create a bubble, a gloved hand was dipped into the soap solution (discussed in 2.2.4),

and wiped across the top of a clear acrylic cylinder, referred to as the bubble cylinder. The bottom

of this cylinder would have already been immersed in a bowl of water located on top of a scissor

jack. The bubble is then created by raising the jack height, thus further immersing the bottom of

the bubble cylinder in the water and creating a pressure inside of the cylinder and creating the top

half of a bubble. The lower half of the bubble was created in a similar manner. First the film was
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wiped across a plate of clear acrylic with a hole of the appropriate diameter cut into it. Then the

plate was placed on top of a similarly immersed cylinder, but of a diameter larger than that of the

hole in the acrylic plate (see Figure 2.2(b)). Next the water bowl is lowered, causing a vacuum in

the cylinder which sucks the film downward, creating the bottom half of the bubble. Note that to

ensure suction, the top of the bubble cylinder, upon which the plate was placed, was wetted with

water before the plate was placed thereon.

In order to produce bubbles of the correct size a laser level was placed to shine a horizontal

beam at the desired height above the top of the bubble cylinder. The scissor jack operator could

watch the film move up the laser lines until reached the desired height and interrupted the beam.

For speed, ease of use, and to lower the amount of fluid drainage, the chuck of an electric hand

drill was connected to the screw of the scissor jack. The drill was then operated in forward or

reverse, fast or slow, as was needed. A screen was placed to the side of the frame to capture the

laser/bubble interactions.

The heights for the drops were varied by moving the iris up or down via moving the arm

to which the iris was attached. Additionally, the location of the drop could be varied in/out and

left/right by adjusting the cross piece attached to the iris arm. This helped in hitting the center of

the bubble.

14



Fi
gu

re
2.

1:
E

xp
er

im
en

ta
ls

et
up

,t
he

re
d

ar
ro

w
s

in
di

ca
te

di
re

ct
io

ns
of

m
ov

em
en

ts

15



(a) Overall view of the setup (b) View of the setup for creating the lower
half of the bubble

Figure 2.2: Photographs of the experimental setup

Images of the experiment were captured with a Photron Fastcam SA3 high speed camera.

The camera was placed in front of the bubble cylinder and the lighting for the pictures was provided

by a halogen lamp placed behind the cylinder. The light from the lamp was diffused through a piece

of vellum placed between the bubble cylinder and the lamp.

Ball Cleaning

To increase accuracy, consistency, and reproducibility of the results, the spheres used in the

experiments were cleaned prior to each use. The cleaning process consisted of the following steps:

1. Retrieve the spheres from the bowl of water used to create the bubble and into which they

fell after piercing the bubble. If the spheres were not used in any prior experiments step two

was performed directly.
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2. Dry the spheres with a microfiber towel.

3. Rinse the spheres in an 70 percent isopropyl alcohol bath.

4. Dry the spheres using a canned electronics duster. Note, the duster contained only tetraflu-

oroethane. A duster was used which contained another additive, but it was discovered that

this duster contaminated the experiment, resulting in far more bubble ruptures than was oth-

erwise the case.

The balls were handled only with gloved hands.

2.2 Experimental Variables and Parameters

2.2.1 Bubble Sizes

To be able to determine whether the size of the bubble was of any significance, the bubble

sizes were varied. Five bubble sizes were used in this experiment and their radii and orientations

are given below in Table 2.2.1.

Table 2.1: Bubble sizes for both top and bottom halves of the bubble.

Radius (m) Upper Hemisphere Lower Hemisphere
0.0150 Yes Yes
0.0225 Yes Yes
0.0375 Yes Yes
0.0500 Yes Yes
0.0625 Yes No

As stated above, the bubble upper hemisphere were created using clear acrylic cylinders

of the appropriate size. Only one cylinder per size was used. For the lower hemisphere of the

bubble, the holes cut into the acrylic sheets (mentioned above) were cut to match the size of the

corresponding cylinder; again, only one hole, per size, was used.
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2.2.2 Ball Surface Measurements

These experiments were conducted using spheres of different sizes and materials. Four

steel spheres, three glass spheres, two hollow aluminum spheres, and two billiard balls were used,

see Figure 2.3. The diameter, mass, and wetting angle for each of these spheres are given in Table

2.2. The advancing contact angle for similar materials was assumed to be equal and diameter and

mass values were averaged for each sphere size.

Figure 2.3: Picture of the different spheres used in the experiment

The wetting angle for each of the different types of materials was calculated using the

sessile drop method. The spheres were placed on a table, on top of a washer (to hold them steady).

The spheres were backlit with a light behind a diffuser. Then three to four drops of water were

placed on the sphere using a pipette. After each drop a picture was taken of the sphere with the

drop on it, see Figure 2.4. The pictures were taken with a Canon EOS 5D DSLR with a 100 mm

macro lens. After three or four drops were placed on the sphere the drops were removed using the

same pipette. Again, after each removal of water a picture was taken. The advancing and receding

contact angles were then calculated from each image, and averaged go give the values in Table 2.2.
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Table 2.2: Sphere property values, (mean ± stdev [samples size]).

Material Radius (mm) Mass (g) Advancing Contact Receding Contact
Angle (deg) Angle(deg)

Steel 12.7±0.0 [5] 65.7±0.05 [5] 45.2±3.4 [4] 62.2±8.6 [2]
Steel 11.9±2.89e-3 [5] 5402±0.84 [5] 45.2±3.4 [4] 62.2±8.6 [2]
Steel 11.1±0.0 [5] 44.2±0.0 [5] 45.2±3.4 [4] 62.2±8.6 [2]
Steel 8.7±0.0 [5] 21.5±0.42 [5] 45.2±3.4 [4] 62.2±8.6 [2]
Glass 4.8±2.24e-3 [6] 1.1±0.0 [6] 40.8±6.9 [3] 73.5±0 [1]
Glass 3.2±0.0 [6] 0.3±0.0 [6] 40.8±6.9 [3] 73.5±0 [1]
Glass 1.175±0.0 [5] 1.707e-2±0.0 [5] 40.8±6.9 [3] 73.5±0 [1]

Aluminum 9.4±2.62e-2 [6] 2.4±0.0 [6] 26.5±4.1 [5] 49.2±10.9 [4]
Aluminum 6.3±0.0 [14] 0.7±0.06 [14] 26.5±4.1 [5] 49.2±10.9 [4]

Billiard Ball 28.5±0.0 [6] 183.9±0.0 [6] 22.2±10.2 [5] 52.4±0.6 [3]
Billiard Ball 17.4±1.51e-1 [1] 39.9±0.926 [1] 26.9±2.9 [4] 47.9±10.8 [2]

Figure 2.4: Sessile drop test example pictures. In this case the sphere is the 9.4 mm radius alu-
minum.

2.2.3 Bubble Thickness

In order to capture the interference patterns as outlined in 1.4.3 the bubble was backlit

with monochromatic light provided by a HeNe laser pointer (max output <5mW) with a stated

wavelength of 532±10 nm. In order to fully (or nearly fully) illuminate the bubble the laser was

passed through a 532 nm 2-8X beam expander. The expander was placed 8.5 m in front of the

bubble and 80-90 cm above the top of the bubble. It was realized, however, that the interference

rings, though clearly visible to the eye were difficult to capture on film. This problem was solved
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by shining the beam at a low angle of incidence to the film and to view the reflection of the beam

off the soap film on a backdrop, see Figure 2.5.

Figure 2.5: Example picture gauging the thickness of the bubble film. The dark arcs are the
destructive interference rings on the bubble. Their distorted shape is a result of the projection of
the bubble onto the screen. The ’fan’ of dark lines are the reflection of the shadow cast by the 5
mm spaced screen, placed between the bubble and the laser.

The arcs in Figure 2.5 are the reflection of the interference rings on the bubble. Because

the reflection distorted the circular interference rings into the elongated arcs it became necessary to

find a way of judging the scale of the reflection. To do this we placed a transparency printed with

5 mm spaced vertical lines in the path of the laser beam, 30 cm in front of the center of the bubble.

These lines then cast a shadow in the bubble which was then reflected onto the backdrop, giving a

scale from which to judge the size and location of the interference rings. The general setup may

be seen in Figure 2.6.

The draining rates of the fluid from the bubble were all recorded at 60 fps using the same

high-speed camera used to capture the falling spheres. Three sets of images were recorded for each

bubble size. Image recording started once the bubble reached the cylinder diameter and stopped

once the film reached the newton black film state. This state is very recognizable as a dark circle

which grows larger with time as seen in Figure 2.7.
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Figure 2.6: Experimental setup for determining bubble film thickness as a function of time.

(a) Beginning formulation of
newton black film.

(b) Note the increase in size of
the black film.

Figure 2.7: Newton black film example. The film is at the newton black film state in the center
near the bottom both frames. Note the distinctive dark circle displayed by the film. The black film
grows in time from image (a) to (b), 1.22 seconds later.

These image sets for each bubble size were processed to gather profile information for the

bubble in time. The profile information is limited by the curvature of the bubble. The smaller

bubble has a higher curvature and thus the reflection is more distorted. Because of this the profile

information varies from 1.5 for the 0.015 m radius bubble, to 3.5 cm for the 0.05 cm radius bubble.

These results are found in Figure 2.8.
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The thickness calculated in Figure 2.8 were calculated at the destructive interference bands

using Equation 1.2b. For these calculations the values of 532 ±10 nm and 1.332 were used for

λ and n respectively. The variance in the wavelength, λ results in an uncertainty in thickness of

± 3.8 nm. Inaccuracy in locating the edge of the destructive interference fringes, due to camera

resolution and noise, resulted in an uncertainty of± 0.25 mm in the location of the thickness values

on the bubble. The plots in Figure 2.8 each represent a single bubble drainage experiment.

From the results found in Figure 2.8, we may state a general observation that, in most cases,

the bubble thickness at the time of sphere drop is at or above 600 nm. Indeed, this is a conservative

statement since interference bands are very blurry for the first couple of seconds after bubble

formation. This indicates that, though there do seem to be rings of set thicknesses, convection

and other transport methods are moving a lot of fluid around during the first few moments after

formation.

For the lower bubble half the fluid drains into the area of sphere-bubble collision, thus the

thickness increases with time. Therefore, it is assumed that the thickness at the point of intersection

is greater than one micron at all times.

2.2.4 Soap Solution Measurements

The soap film solution was created by mixing water and Dawn Ultra Concentrated, original

scent dishwashing liquid at a 25 to 1 ratio. The viscosity of the mixture was calculated using an AR

2000 Rheometer. The viscosity of both the mixture and of water were measured using a stepped

flow test. Figure 2.9 shows the results of these measurements.

The viscosity is somewhat larger than expected. Most texts state that water has a viscosity

near 1.002e-3 Ns/m2 at 20◦C, more than three times smaller than the calculated values. This

discrepancy is most likely do to improper machine calibration or use. That said, the similarity

between the viscosity of the water and the mixture should not come as a surprise. The mixture

is 96% water by volume and the viscosity of the detergent is not much larger than water. Thus

the effects of the detergents larger viscosity are negligible. Accordingly, all calculations involving

viscosity and density came from tabulated values of water at 20 ◦C [35], see Table 2.3
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Figure 2.9: Results of the rheometry tests.

Table 2.3: Viscosity and density values used for soap film calculations.

Viscosity (Ns/m2) Density (kg/m3)
1.002e-3 998.2

Surface Tension Measurements

The surface tension was measured following the technique used by Jackson and Sleyman.

They developed a very simple method utilizing the Laplace equation, see Equation (1.1), which

shows that the radius and internal pressure of bubbles of different sizes are related via the surface

tension of the fluid from which they are formed. Our method of recording the bubble size and

pressure is similar to the method used by Jackson and Sleyman and a picture of the setup is seen

below in Figure 2.10.

To create the bubble a syringe was connected to a glass bubble cylinder of radius 2.64 mm

and to an incline manometer. A film was wiped onto the bubble cylinder via a gloved hand, as

above, and the syringe was depressed to inflate the bubble. Once a bubble of desired size was

created the gauge pressure was noted and a picture of the bubble was taken. The 1 cm square grid
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Figure 2.10: Setup of the surface tension measurement system.

next to the bubble cylinder seen in Figure 2.10 was also captured in an image and was used to

calculate the size of the bubble. The data was used to create Figure 2.11, seen below.
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Figure 2.11: Plot of the experimental data for determining the surface tension. The slope of the
best fit line represents the surface tension, so the surface tension σ = 0.0263±0.015 N/m.

Taking the value of slope of the best fit line to the data as the surface tension yields a value

of σ = 0.0263 N/m. As this value is in good agreement with surface tension values calculated for

other soap films, such as the film used by Jackson and Sleyman, we will use it in our calculations.
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2.3 Conclusions

This chapter outlined the methods used for the creation of soap bubbles of various sizes

and for the dropping of spheres through those bubbles. Estimates for the draining of the soap

film bubble are also given. Finally, the soap film solution was analyzed and its properties given,

including surface tension, density, and viscosity.

The above mentioned methods and results were utilized to gather and analyze the experi-

mental data discussed in the following chapters and the fluid properties given are the ones used in

the calculations that follow.
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CHAPTER 3. EXPERIMENTAL RESULTS AND DISCUSSION

In this chapter we present the results of the experiment and explore some of their impli-

cations and significance. First we will present some interesting interactions between the bubble’s

soap film and the moving sphere. Next we will discuss where these phenomena occur and offer an

explanation into their occurrence. Finally we will discuss popping criteria and offer ’best method’

for sending a sphere through a bubble.

3.1 Regime Classification and Examples

Five distinct regimes appear when the sphere passes through the bubble membrane. These

regimes are characterized by three main parameters: pinch-off order, deformation shape, and film

bridge collapse.

At rest, surface tension forces form the soap film into its minimal surface. Once the film

has reached a minimal surface it has reached an equilibrium state for the surface energy functional

defining the film surface. As this surface is perturbed by the passing of the solid sphere that

equilibrium is upset and the surface tension works to restore it.

3.1.1 Pinch-off Order

As the sphere passes through the soap film forming the bubble the soap film wraps itself

around the sphere and, if the bubble doesn’t pop, the film reseals itself, usually in two places. This

resealing will be referred to as the pinch-off and may occur in several ways.

1. Bubble side pinch off. The first type of pinch-off occurs when the film bridge connecting

the sphere to the bubble pinches-off near the soap film first, see Figure 3.1(a).

2. Simultaneous pinch off. The second type of pinch-off occurs when the pinch-off near the

soap film and the bubble occur at, or near, the same time, see Figure 3.1(b).
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3. Sphere side pinch off. This final type of pinch-off occurs near the sphere first, then near the

bubble soap film, see Figure 3.1(a).

(a) Bubble side
pinch-off

(b) Simultaneous
pinch off

(c) Sphere side pinch-off

Figure 3.1: Pinch-off location examples. Each of these pictures come from the our experiments
and represent the different pinch-off types.

3.1.2 Film Bridge Shape Just Before Pinch-off

When a sphere passes through a soap film, the film must deform to allow that passage. As

the film deforms to allow the passage of the sphere the ‘bridge’ linking the sphere to the bubble

takes on several unique shapes:

1. Catenary. A catenary is the shape a chain makes when hanging between two fixed points.

It was noticed that when the spheres were dropped from low heights the bridge linking the

sphere to the bubble takes on the shape similar to that of a catenary. This shape was also

noticed by Gilet and Bush in their paper discussing droplets bouncing on a soap film [36].

See Figure 3.2(a) for an example.

2. Funnel. This shape only occurs when pinch-off occurs sphere side first. Just before pinch-

off, the soap film bridge connecting the bubble to the sphere takes on the shape of a funnel.

This may be a simple conical type funnel, or a cone with a cylinder on top, see Figures 3.2(b)

and 3.2(c).

28



3. Elongated Funnel. This final shape is very much like the funnel, except that the distance

the sphere travels before pinch-off is much larger, see Figure 3.2(d). Note, this shape only

occurs when a sphere is dropped through the lower hemisphere of a bubble.

Although shape (1) was remarked upon previously by Gilet and Bush in [36], film bridge

shapes (2) and (3) are new to this study.

(a) Catenary shape ex-
ample.

(b) Conical like funnel
shape.

(c) Cone funnel, similar
to a hopper.

(d) Elongated funnel.

Figure 3.2: Soap film bridge funnel type examples.

3.1.3 Film Bridge Collapse

In general, the collapse of a film bridge may be described by three parameters: necking,

breaking, and relaxing [37] [21]. In this section we will focus on the necking stage. But, as the

geometry and dynamics of our experiment involves more complex film dynamics than studied

in [37] and [21], we will use the term collapse as a more appropriate term than necking.

1. Bridge collapse. The first form of collapse is essentially the same as that noticed by Cryer

and Steen in their film collapse study [37]. The main characteristic of this collapse is the

capture/formation of one or more satellite bubbles as a nearly cylindrical portion of the

bridge collapses. These bubble are of relatively small size, on average their volume total

volume is less than 5% the volume of the sphere falling through the bubble. This collapse
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happens with pinch-off occurring at both locations nearly simultaneously or sphere side first.

For examples see Figures 3.3 and 3.8.

2. Bridge pinch-off. The second type of collapse occurs only when pinch-off happens sphere

side first. From this point the film bridge doesn’t so much collapse, as the first example

does, but the air in the bridge becomes mostly trapped by the bridge as the film necks and

pinches-off near the bubble. Additional necking and pinch-off locations, forming additional

bubbles, may also occur. In this case the total volume of the satellite bubbles is relatively

large, averaging between 65% and 1.86% that of the sphere. For examples see Figures 3.10

and 3.12.

3.1.4 Regime Descriptions

Using the above descriptions for pinch-off and deformation shape we may accurately clas-

sify the interactions between the spheres and the bubble film. These classifications yield five

distinct regimes for interactions between the falling spheres and the bubbles. Regimes (I)-(IV)

occur in both the top and bottom halves of the bubble. Regime (V) occurs only with in the bottom

hemisphere of the bubble. A description of the regimes is given below. Additionally, one may refer

to Table 3.1 for quick reference to the details of each regime.

I. The first regime is characterized by a catenary deformation shape with pinch-off occurring

first at the bubble side, then at the sphere side. The film bridge collapses, forming up to one

satellite bubble. An example of this is seen in Figures 3.3 and 3.5.

II. The second regime has the same catenary deformation shape as the first, but pinch-off occurs

simultaneously at both the bubble and sphere side. Again, the film bridge collapses, forming

up to one satellite bubble, see Figures 3.6 and 3.7.

III. In regime three the bridge takes on the funnel shape, generally only the cone type funnel

is noticed. Pinch-off occurs sphere side first and the film bridge collapses, creating one or

more, up to five were recorded, bubbles forming during collapse, see Figures 3.8 and 3.9.

IV. The fourth regime is defined by the funnel shape with the hopper type funnel usually forming,

though some instances of cone like funnels were recorded. Pinch-off occurring sphere side

30



first and the film bridge is then pinched-off. The pinched-off bridge may collapse further, as

discussed above, resulting in up to seven satellite bubbles, see Figure 3.10 and 3.11..

V. Regime five is characterized in much the same way as the hopper funnel shape is character-

ized above in IV, only in this case the funnel is much longer, with necking occurring bubble

side before sphere side pinch-off has taken place. Additionally, total bubble volumes in this

regime are typically larger, reaching up to 330% the volume of the passing sphere. This

regime is only found occurring in the bottom hemisphere of the bubble (see Figure 3.12).

It is interesting to note that in all cases a bubble is formed on top of the moving sphere, see,

for example Figures 3.3, 3.6, and 3.8, frames (L), (L), and (I) respectively. This will be discussed

further in Section 4.1.
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A B C

D E F G

H I J K

1.0 cm 1.0 cm

Figure 3.3: Type (I) regime example. A 0.48 cm radius glass sphere dropped from 23.5 cm above
the top of a 3.75 cm radius bubble. The shape is catenary and pinch-off order is bubble side first,
sphere side second. Notice the catenary shape develop as the glass sphere interacts with the soap
film, especially in frame (I). Both pinch-off locations occur between frames (I) and (J), see Figure
3.4 for greater detail. Frames are 1.5 ms apart.
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A B C D E

Figure 3.4: This set of pictures displays what happens between frames (I) and (K) of Figure 3.3,
only with frames 0.5 ms apart. This figure clearly shows pinch-off occurring first near the bubble
(frame (C).
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A B C

D E F G

H I J K

1.3 cm 1.3 cm

Figure 3.5: A 0.63 cm radius aluminum sphere dropped from 15 cm above the bottom hemisphere
of a 5.0 cm radius bubble. This is a type (I) regime exhibiting a catenary shape with pinch-off
order occurring bubble side first then bridge collapse (see frame(K)). Note the lack of a satellite
bubble. Though not always the case, this is due to the amount of liquid flowing to the bottom of
the bubble (i.e. drainage). Frames are 2.0 ms apart.
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A C D

E F G H

I J K L

B

Figure 3.6: A 0.48 cm radius glass sphere dropped from 51.5 cm above the top of a 5.0 cm radius
bubble. For this type (II) regime the shape is catenary and pinch-off order is simultaneous. Notice
that a similar catenary shape develops as in the first regime, especially in frame (J). Both pinch-off
locations occur between frames (K) and (L). For increased temporal resolution in the last frames,
an overall view was not given. Frames are 0.67 ms apart.
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A C D

E F G H

I J K L

B

Figure 3.7: A 0.48 cm radius glass sphere dropped from 25.7 cm above the bottom hemisphere
of a 2.25 cm radius bubble. This type (II) regime is defined by its catenary shape, simultaneous
pinch-off order and the collapse of the film bridge. Note in frame (L) that, along with two satellite
bubbles, a column of water droplets are seen indicating the presence of additional fluid as seen in
the last case. Frames are 1.5 ms apart.
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A B C

D E F G

H I J K

1.0 cm 1.0 cm

Figure 3.8: Example of regime type (III). 0.48 cm radius glass sphere dropped from 113.9 cm
above the top of a 3.75 cm radius bubble. This is a cone funnel shape with pinch-off occurring
sphere side first. A key characteristic of this regime is the quick collapse of the film bridge after
pinch-off, see frames (H) and (I). Also note the relatively small satellite bubble. Frames are 1.5 ms
apart.
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A B C

D E F G

H I J K

1.0 cm 1.0 cm

Figure 3.9: A 0.48 cm radius glass sphere dropped from 90.3 cm above the bottom hemisphere of
a 5.0 cm radius bubble. This type (III) regime is characterized by its cone-like shape, sphere side
first pinch-off order, and film bridge collapse. Frames are 1.33 ms apart.
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A C D

E F G H

I J K L

B

1.3 cm

Figure 3.10: A 0.94 cm radius aluminum sphere dropped from 113.9 cm above the top of a 3.75
cm radius bubble. In this type (IV) the film is distorted into a hopper funnel shape and pinch-off
occurs sphere side first. Notice that the disturbed film does not collapse in on itself after sphere
pinch-off, as it does in Figure 3.8. Instead, the funnel stays open, frames (I) - (K), until the bubble
side pinch-off occurs, capturing a large satellite bubble, frame (L). Frames are 2.5 ms apart.
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A B C

D E F G

H I J K

1.3 cm 1.3 cm

Figure 3.11: A 0.63 cm radius aluminum sphere dropped from 94.0 cm above the bottom hemi-
sphere of a 5.0 cm radius bubble. This type (IV) regime displays a hopper bridge shape with
pinch-off occurring sphere side first. The film bridge pinches-off and captures a relatively large
satellite bubble (see frame K). Frames are 2.67 ms apart.
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A C D

E F G H

I J K L

B

3.8 cm

Figure 3.12: A 0.94 cm radius aluminum sphere dropped from 95.0 cm above the bottom hemi-
sphere of a 5.0 cm radius bubble. This final regime, type (V), occurs only when spheres fall
through the lower hemisphere of the bubble. The regime is defined by its elongated hopper shape
and sphere side pinch-off order. The film bridge pinches-off, resulting in a large satellite bubble.
Note that not only is the funnel shape elongated, but that the time the film takes to pinch-off the
sphere has also increased in comparison to the hopper funnel type described above. Frames are 4.0
ms apart. 41
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A short discussion of the regime type image sequences

In Figure 3.3 we see a 0.48 cm radius glass sphere passing through the upper hemisphere of

a 3.75 cm radius bubble. The sphere was dropped from 23.5 cm above the top of the soap bubble.

In frame (A) we see an overall view of the setup, with the sphere just above the soap film. Frames

(B) through (K) are enlargements of the indicated area. In frames (B) - (F) we see the development

of the film bridge into a catenoid shape, with full development of the shape by frame (G). Note

the disturbance wave caused by the sphere’s contact with the soap film in frame (C). In frames (G)

- (I) we see further elongation of the film bridge. By frame (J) the film bridge has pinched-off,

leaving a satellite bubble forming just above the sphere, and another bubble attached to the top

of the sphere. Note that by frame (K) the satellite bubble is starting to take on a spherical shape.

Finally, notice the smaller attached bubble on the right side of the sphere in frames (I) - (K). This

bubble is formed by the entrainment of the air forming the boundary layer surrounding the falling

sphere.

Figure 3.5 shows the development of the same regime as Figure 3.3, but for the lower

hemisphere of a 5.0 cm radius bubble and a 0.63 cm radius aluminum sphere. The sphere was

dropped from 15 cm above the bottom of the hemisphere. As in Figure 3.3, frame (A) provides

an overall view of the setup with the sphere just above the soap film. Frames (B) - (H) show the

development of the film bridge into a catenary shape, with clear shape distinction by frame (I).

Frames (I) and (J) show further elongation and development of the film bridge. By frame (K) the

film bridge has pinched-off, with the formation of an attached bubble on top of the falling sphere.

Note, however, the lack of a satellite bubble and the presence of a stream of film droplets. The

cause of this is the greater film thickness in the lower hemisphere, due to the internal film drainage

discussed above in Chapter 1.

Figure 3.6 begins with a 0.48 cm radius glass sphere already touching the soap film, with

film disturbance clearly seen just under the sphere (frame A). The sphere was dropped from 51.5

cm above the top of a 5.0 cm radius upper hemisphere bubble. As seen above, we see the devel-

opment of the film bridge and its catenoid shape in frames (B) - (F) with clear shape development

by frame (G) and further stretching of the bridge continuing through frame (K). Note, however,

the greater elongation of the film bridge by the final frame before pinch-off, frame (K), as com-
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pared to the elongation in frame (I) of Figure 3.3. Frame (L) depicts the simultaneous pinch-off,

an elongated satellite bubble, and a bubble attached to the falling sphere.

We see in Figure 3.7 a 0.48 cm radius glass sphere falling through the lower hemisphere

of a 2.25 cm radius bubble. The sphere was dropped 25.7 cm above the lowest surface of the

film. The size of the bubble allows us to obtain an overall view in every frame. We see the usual

development of the film bridge in frames (A) - (H), with a clear catenary shape by frame (I). This

shape develops and elongates further in frame (J). Frame (K) shows the film bridge just before the

simultaneous pinch-off. Not the nearly columnar shape of the bridge at that point. In frame (N),

while we see the typical bubble formed on top of the falling sphere, we also see that two satellite

bubbles have been created, a deviation from what has happened in the examples mentioned above.

The photo sequence in Figure 3.8 illustrates the development of a type III regime. The

sequence was created with a 0.48 cm glass sphere being dropped 113.9 cm above the top of the

upper hemisphere of a 3.75 cm radius bubble. Frame (A) gives an overall view of the setup with the

sphere just above the soap film. Frame (B) shows the sphere still above the film, however, the film

has been disturbed by the surrounding fluid moving out of the way of the moving sphere. Frames

(C)-(E) show the development of the film bridge, forming a catenary like shape by frame (E).

This shape quickly becomes distorted in frames (F) and (G), with the shape becoming very cone

like by frame (H). Frame (H) also shows the formation of the typical bubble attached to the top

of the sphere. However, note that the bubble’s edges are wrapped down the side of the sphere, as

apposed to resting on top of the sphere. Additionally, note the downward movement of the bubble’s

lower edge in frame (I) and continued in frame (J). This is due to the boundary layer surrounding

the moving sphere preventing wetting of the sphere surface, and is discussed in greater detail in

section 4.1. We also see in frame (I) the collapse of the film bridge with pinch-off already having

occurred sphere side, and progressing bubble side. Frames (J) and (K) show the creation of three

satellite bubbles, two near the top of the cylinder and one near the bubble film. We also see the

response of the soap film following the two pinch-offs, see frames (J) and (K).

Figure 3.9 shows the development of regime type III, formed by a 0.48 cm radius glass

sphere falling through the lower hemisphere of a 5.0 cm radius bubble. The sphere was dropped

from 90.3 cm above the bottom of the bubble hemisphere. Frame (A) gives an overall view, with

catenary film bridge shape being developed in frames (B) through (D). Frames (E) through (H)
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show elongation of the bridge, with clear deviation from the catenary shape. By frame (H) the film

bridge begins to become cone like, with a very steep cone being formed by frame (I). Pinch-off

occurs by frame (J), while the bridge collapses in frames (J) and (K). Again we see in frames (I)

through (K) the formation of the bubble on the top of the sphere and the bubbles movement down

the sides of the sphere.

Figure 3.10, shows our first example including film bridge pinch-off. Frame (A) shows the

0.94 cm radius aluminum sphere just above the upper hemisphere of a 3.75 cm radius bubble. The

sphere was dropped from a height of 113.9 cm above the top of the bubble’s film. Again we see the

bubble distortion of the by the potential effects of the falling sphere. Frames (B) through (H) show

the development of the film bridge. Note, however, that the bridge shape never seems to take on

the classic catenary shape noticed in all the examples above. Rather, we see a sharp distortion of

the film bridge just above the sphere in frame (D) and moving further and further away in frames

(E) through (G). Also note the large distortion of the bubble’s film in frames (C) through (H) as the

film responds to the sphere’s movement. Sphere side pinch-off occurs between frames (H) and (I).

We notice that frames (I) through (K) show the air exiting the film bridge at the same time that the

top of the bridge moves to pinch-off. Pinch-off of the film occurs bubble side by frame (L), with

the formation of a satellite bubble of larger size than those seen in the above examples.

Figure 3.11 shows a 0.63 cm radius aluminum sphere falling through the lower hemisphere

of a 5.0 cm radius bubble. The sphere was dropped from 94.0 cm above the bottom of the hemi-

sphere. Frame (A) provides an overall view of the experiment. Frames (B) through (G) show the

development of the hopper shape film bridge. Again note the lack of catenary shape. Pinch-off

occurs sphere side in frame (H), and an intermediate pinch-off also occurs in frame (I), forming a

single satellite bubble. The film bridge empties out some of its entrained air in frames (I) and (J),

until bridge pinch-off occurs between frames (J) and (K). Again, note the larger size of the satellite

bubble formed by frame (K).

The final photo sequence (Figure 3.12) was formed by a 0.94 cm radius aluminum sphere

dropped through the lower hemisphere of a 5.0 cm radius bubble. The sphere was dropped from

95.0 cm above the bottom of the bubble. We observe bridge development in frames (A) through

(H). Pinch-off occurs bubble side frame (H). Again, note a secondary pinch-off occurring by frame

(I), creating satellite bubbles, with a final bridge pinch-off occurring in frame (K). The distinguish-
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ing characteristic of this regime from the last is the extremely large satellite bubble(s) formed from

the film bridge pinch-off.

3.2 Discussion of the Regimes

The regimes noted above are separated by the Weber number of the falling sphere, which

we will define as:

We =
ρu2r

σ
(3.1)

where ρ is the density of the fluid, u is the velocity of the sphere at impact, r is the radius of the

sphere, and σ is the surface tension of the fluid. To calculate of the falling sphere we used the

recorded drop height and the equation:

u =
√

2gh (3.2)

where g is the gravitational constant and h is the height above the bubble surface from which the

sphere was dropped. Although this may not yield exact velocities, the results are accurate enough

for the present purposes.

Figures 3.13 and 3.14 show the regimes displayed as a function of Weber number vs r/R,

where R is the bubble radius. The non-dimensional number r/R was chosen as it indicates a relative

scale of the sphere to bubble sizes. This is an important ratio as it demonstrates one limit to the

successful passing of a sphere through a bubble. For example, it is no surprise that a sphere is

unable to pass through a bubble of equal size. Thus an r/R value of one indicates an upper limit to

successful entry and exit of a sphere through a bubble.

Horizontal lines in Figures 3.13 and 3.14 separate the regimes discussed above and show

the dependance of each regime on Weber number. The Weber number ranges during which each

of the regimes was notice are in Tables 3.2 and 3.3. Note that their limiting values are the values

for which the horizontal lines in the figures are plotted. These values were calculated by averaging

the highest Weber number in the lower regime with the lowest Weber number in the higher regime.

For example, the first transition line in for the upper hemisphere of the bubble bubble was found by
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Figure 3.13: Regime diagram showing the dependance of the film bridge shape, pinch-off order
and collapse as the spheres were dropped through the upper half of the bubble. Upward pointing
triangles, circles, downward pointing triangles, and diamonds indicate the four regimes, as de-
scribed previously. Note the case with r/R near zero. This case was produced by dropping the
larger aluminum sphere through a flat film, thus approximating a bubble of infinite radius. For
calculations a radius of 5,000 cm was used. Marker size indicates the size of sphere dropped, e.g.
larger spheres have larger markers, smaller spheres have smaller markers.

averaging the highest Weber number in regime (I) with the lowest Weber Weber number in regime

(II).

Table 3.2: Limiting Weber numbers for each regime, upper hemisphere.

Regime Weber Number Range
I We < 1650
II 1650 < We < 3170
III 3170 < We < 6090
IV We > 6090

It should be noted that only one data point exists in regime I for the lower hemisphere

(Figures 3.14 and 3.16). It is believed that this is due to the difficulty of obtaining data with such

a low Weber number in the lower hemisphere (a result from the experimental setup), rather than a

deviation from the complete Weber number dependence of the regimes.
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Figure 3.14: Regime diagram showing the dependance of the film bridge shape, pinch-off order
and collapse as the spheres were dropped through the lower half of the bubble. Upward pointing
triangles, circles, downward pointing triangles, diamonds, and asterisks indicate the five regimes
noticed for the lower bubble half, as shown at the right respectively. Markers are filled to further
indicate downward bubble orientation. Marker size indicates the size of sphere dropped, e.g. larger
spheres have larger markers, smaller spheres have smaller markers.

Table 3.3: Limiting Weber numbers for each regime, lower hemisphere.

Regime Weber Number Range
I We < 708
II 708 < We < 2650
III 2650 < We < 3380
IV 3380 < We < 6310
V We > 6310

Another potential choice for plotting against the Weber number is the bond number, defined

as:

Bo =
gr2ρ

σ
(3.3)

where g is the gravitational constant, and the other variables are defined as before. Figures 3.15

shows Weber number vs. bond number for the upper hemisphere while Figure 3.16 shows the

lower cases.
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Figure 3.15: Regimes plotted Weber vs Bond number, for the upper half of the bubble. Notice that
the regimes span nearly a century of bond numbers. Upward pointing triangles, circles, downward
pointing triangles, and diamonds indicate the four regimes, as described respectively. Marker size
indicate size of sphere dropped, e.g. larger spheres have larger markers, smaller spheres have
smaller markers.

Note how in both cases, more than a half century of bond numbers are spanned and the

regimes are still displayed in their appropriate locations. However, there is an interesting lack

of the higher regimes found in both the low and high bond number cases and are missing for

separate and unrelated reasons. A Lower bond numbers indicate a smaller sphere radius. Smaller

sphere radii results in a smaller Weber number, the only important number when finding a regime,

it appears, and thus the need to drop the sphere from a higher height becomes necessary. This

height quickly becomes prohibitive. For example, to enter regime IV, in the upper hemisphere, the

smallest sphere would needed to have been dropped from a height of over 70 meters, neglecting

drag forces. To even enter regime II would require a drop height of nearly 19 meters. Thus for

bond numbers less than 10, reaching the upper regimes is difficult using the current system.

The reason the upper regimes are not evident in the higher bond numbers is also due to the

radius of the sphere, but for a different reason. As the sphere moves through the film, the film is

displaced and stretched. A larger sphere, of necessity, requires more stretching to allow that sphere

to pass through. However, the film is of finite thickness and will rupture when it thins too much.

Since the higher numbered regimes require more surface area, in a per radius view (meaning that
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Figure 3.16: Regimes plotted Weber vs Bond number, for the lower half of the bubble. Notice that
the regimes span nearly a century of bond numbers. Upward pointing triangles, circles, downward
pointing triangles, diamonds, and asterisks indicate the five regimes noticed for the lower bubble
hemisphere, as described respectively. Markers are filled to further indicate downward bubble
orientation.

they get longer), that surface area requirement becomes prohibitive to allowing the sphere to pass

without bubble rupture when the radius becomes too great. Some credence may be given to this

argument by comparing the Figures 3.15 and 3.16. Notice the existence of the higher regimes in the

lower bubble half case as opposed to the upper bubble half case. The difference being that the fluid

drains down and into the point of collision for the lower case (providing more fluid), verses down

and away from the point of collision for the upper case (lowering the amount of fluid available).

This argument is discussed further below in 3.3.3.

3.3 Rupture Criteria

Some insight into the criteria for popping may be found by examining the probability of a

bubble popping, plotted against different variables, namely: shape, We and r/R. It should be noted,

however, that due to the number of experiments performed (in excess of 1000) and the sensitivity

of soap films to small impurities, not all the experiments performed were recorded or saved. Some

experiments were ignored if their results were deemed to be affected by external forces, such as a
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dirty sphere or an unusually thin bubble. However, data was only discarded if the results deemed

unnatural were unable to be duplicated. Additionally, since many experiments were performed

holding all variables the same, only an accurate sample of the total number of experiments were

kept. However, it is believed that the representation presented herein is a good one and that the

probabilities given are repeatable. That said, we shall begin our discussion of the bursting of soap

bubbles with a description of the ways in which it is accomplished.

3.3.1 Methods of Soap Film Rupture

There are many ways for a soap film to rupture and burst. Common types of bursting

inherent to soap bubbles include: a charged or a dirty object (in our case spheres) touching the

film, and deterioration of the film due to drainage or evaporation of the soap film liquid held

between the monolayers of surfactant. Excluding these types of film rupture, there have been four

observed types of breaking.

A. Pinch-off Rupture. This rupture occurs when some part of the film bridge necks and at-

tempts to pinch-off another part of the bridge, or the sphere. At pinch-off the film is ruptured

and surface tension forces pull the bubble apart. An example of this may be found in Figure

3.17

B. Thinning Rupture. This film breakup is characterized by the sphere deforming the bubble,

forming the bridge shapes described above. However, before pinch-off the film cradling the

sphere thins to the point of rupture and the bubble pops. See Figure 3.18 for an example.

C. Contact Rupture. This rupture type takes place very soon after contact of the sphere with

the film. The sphere seems to punch a hole through the film and rupture happens before the

sphere is able to enter one sphere diameter into the bubble, see Figure 3.19

D. Side rupture. This rupture takes place when the passing of the sphere through the bubble

so distorts the bubble that its connection to the bubble cylinder is broken and the bubble

ruptures from the side. This type of rupture indicates that the size of the sphere compared to

the ball is too great for passage. See Figure 3.20 for an example.
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Figure 3.17: Example of a pinch-off rupture. The pinch-off occurs between frames (H) and (I)
when the ‘tail’ at the bottom of the hopper funnel shape pinched-off. These are pictures of a 0.63
cm radius aluminum sphere falling from 222 cm above the upper hemisphere of a 1.5 cm radius
bubble. Frames are 1.5 ms apart. 52
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Figure 3.18: Example of a thinning rupture. The film is torn between frames (F) and (G). These
are pictures of a 0.48 cm radius glass sphere falling from 124.6 cm above the upper hemisphere of
a 2.25 cm radius bubble. Frames are 1.5 ms apart.
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Figure 3.19: Example of a contact rupture. Note that by frame (C), with minimal displacement,
the film is already ruptured. These are pictures of a 0.48 cm radius glass sphere falling from 183.4
cm above the upper hemisphere of a 2.25 cm radius bubble. Frames are 1.0 ms apart.
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Figure 3.20: Example of a side rupture. Note the beginning of the rupture in frame (H) . These are
pictures of a 0.94 cm radius aluminum sphere falling from 40 cm above the upper hemisphere of a
1.5 cm radius bubble. Frames are 1.5 ms apart.
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Short discussion of the rupture type image sequences

In Figure 3.17 we see the formation of a type IV regime, described above, but with rupture

occurring before bubble side pinch-off. This example of pinch-off type rupture was created by

dropping a 0.63 cm radius aluminum sphere through the upper hemisphere of a 1.5 cm radius

bubble. The sphere was dropped from 222 cm above the film. Pinch-off occurs sphere side first

between frames (G) and (H). Note the small film ‘tail’ at the bottom of the film bridge. This tail

is pinched-off between (H) and (I), however this pinch-off is unsuccessful, do to an insufficient

amount of film and rupture occurs. We see in frames (I) through (L) the movement of the rupture

up the film bridge.

Figure 3.18 depicts a 0.48 cm radius glass sphere falling through the upper hemisphere of

a 2.25 cm radius bubble. The sphere was dropped from 124.6 cm above the top of the hemisphere.

This scenario should form a cone like film bridge shape, indicative of a type III regime. However,

as the bridge develops in frames (A) through (F) the film thins to the point of rupture, with rupture

occurring between frames (F) and (G). Frames (G) through (H) show the travel of the rupture up

the film bridge and onto the main portion of the bubble.

The example of contact rupture, seen in Figure 3.19, was created by dropping a 0.48 cm

radius glass sphere through the upper hemisphere of a 2.25 cm radius bubble. The sphere was

dropped from 183.4 cm above the top of the bubble. Note how by frame (C) the film is already

ruptured and how the rupture spreads over the bubble until it reaches the bubble cylinder, frames

(C) - (K).

The final rupture example, seen in Figure 3.20, shows a 0.94 cm radius aluminum sphere

falling through the upper hemisphere of a 1.5 cm radius bubble. The sphere was dropped from 40

cm above the top of the bubble. First note the large size of the sphere compared to the bubble (the

sphere’s radius is 60% the bubble’s radius). We see in frames (A) through (G) large deformation

of the bubble, with the bubble bulging around the sphere. The bulging eventually forces the film

off the side of the bubble cylinder, causing rupture, see frame (H). this rupture spreads, left to right,

across the bubble until nearly all of the bubble’s film is gone, see frames (H) through (L).
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3.3.2 Probability of Rupture

As the data was gathered in two hemispheres, we will first examine each hemisphere sepa-

rately. First we will look at the popping data for the upper hemisphere of the bubble, followed by

the lower hemisphere. The data in both cases are examined from a probabilistic view point. The

importance of such an examination lies in the general trends they demonstrate.

Soap films are incredibly unpredictable due, in part, to the variability of their thickness and

their sensitivity to impurities. This results in mixed results for the same experiment. A sphere of a

certain radius and dropped from a certain height may or may not rupture the film. Thus, since we

were unable to control the film thickness, we will examine the probability of film rupture under

various conditions.

Probability of rupture: upper hemisphere

Our first examination is that of how the bubbles popped according to the shape observed.

For this plot the data was separated according to the transition Weber numbers (see Table 3.2).

Thus all data samples in the I bar had Weber numbers below 1,650, all data samples in the II

bar had Weber numbers between 1,650 and 3,170, etc. Each bar is a stack of the probabilities of

bubble popping for each rupture type: pinch-off, thinning, punch, and side rupture and the numbers

in the middle indicate the number of samples taken in each set. Thus, for regime IV in Figure 3.21

there were 171 experimental sphere drops. Of these, 30.4% produced a pinch-off rupture, 20.5%

produced thinning rupture, 14.6% produced a punch rupture, and 0% produced a side rupture, for

a total of 65% chance of rupture for this regime.

Note the nearly equal probability of popping for the first three regimes. Also, that regime

IV probability of popping is more than twice that of the other regimes. It is not surprising that the

probability of each type of rupture has increased in regime IV, however, it is surprising that the

dramatic disproportionate increase in the number of pinch-off type ruptures.

The lack of side ruptures in regime IV is due to the fact that we stopped dropping very

large spheres through small bubbles (0.6 / r/R). We did this because all attempts resulted in

bubble rupture, either through thinning or a side rupture. Side ruptures happened more often at

higher drop heights. This is not shown in Figure 3.21 simply because, as stated above, once it
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Figure 3.21: Probability of bubble popping sorted by regime Weber numbers, for the upper hemi-
sphere. The numbers in the middle of the figure indicate the number of samples taken for each data
set.

became obvious that a combination of conditions (sphere and bubble size, height, etc.) always

resulted in bubble rupture no additional data was taken at, or above, the given height.

Figure 3.22 shows the probability of popping throughout the range of Weber numbers

recorded. The vertical lines indicate the transition lines from one regime to another. Note that

the large percentage of the pinch-off ruptures occur at the end of regime (III) and the beginning

of regime (IV). Also, the sudden increase in probability of popping near the middle of the third

regime. This seems to indicate that around this point the fluid is being stretched too quickly to

repair itself either at pinch-off or through tearing. The tearing failures dramatically increase in

probability around a Weber number of 12000. This is perhaps due to the increase in thinning rate

of the film. Thus, if the film were not thick enough to begin with, it is much more likely to tear

before pinch-off occurs.

Figure 3.23 sorts the probability of popping by the ratios of the radii, r/R. Several things

may be learned from this figure, first, the extremes of the ratios yield drastically different results.

Sphere radii near or above 55% of the bubble radii are unable to successfully enter the bubble. Note

the lack of pinch-off ruptures in these cases. This indicates that the film thinned to the point of

rupture before the film bridge had time to collapse. On the other end of the spectrum, all attempts

to pass a sphere through the flat film representing an infinite size bubble were successful. However,

only five data points and a maximum We = 8,415 were examined. An increase in either of these

numbers would surely increase the number of ruptures, but the complete lack of ruptures is still
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Figure 3.22: Probability of bubble popping according to Weber number, for the upper hemisphere.
The numbers in the middle of the figure indicate the number of samples taken for each data set.

significant. One possible reason for this lies in the lack of draining of the film found in the other

ratios. In this case the film thickness at the moment of impact was certainly much higher than in

the other cases. It is likely that the film thickness at the point of impact was at least double that in

the other cases.
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Figure 3.23: Probability of bubble popping sorted by r/R, for the upper hemisphere. The numbers
in the middle of the figure indicate the number of samples taken for each data set.

Probability of rupture: lower hemisphere

We will examine the popping probabilities of the lower half of the bubble in the same order

as the upper half, that is: by regime, We, and r/R.
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Examining the probabilities sorted by regime (see Table 3.3 for the regime Weber number

divisions), it is remarkable what low percentages of rupture occur in each of the first three regimes

as compared the last two, IV and V, see Figure 3.24. Although this increase in rupture rates was

seen above, starting in regime IV, the increase was not so dramatic. Also, note the low percentages

of thinning type ruptures and the low, and nearly constant, rates of pinch-off type ruptures. These

two phenomena are no doubt a product of the thicker film found in the lower hemisphere of the

bubble. One conclusion is that a thinning type rupture is related mainly to the thickness of the

bubble film at the time of contact.

Although there has been a decrease in thinning type ruptures, there are much higher rates

of punch type ruptures. This may be due to the geometry of the situation. Whereas for the upper

hemisphere of the bubble, the pressure difference and bubble curvature work together to push the

film close to, and around the sphere, the situation is reversed in the lower hemisphere. In the lower

hemisphere the higher pressure inside and lower pressure outside the bubble naturally want to push

the film apart and push with the sphere against surface tension forces instead of against the sphere,

as is the case in the upper hemisphere. Thus, quicker rupture is much more likely to happen in the

lower hemisphere than the upper. Another possible reason for these ruptures is that as the sphere

moves through the film, in the lower hemisphere, it is intersecting increasingly thinner film, due to

drainage. This is not so for spheres crossing the film in the upper hemisphere, which move through

progressively thicker film, also due to drainage. Thus, whereas in the upper hemisphere the film

becomes increasingly able to allow the spheres passage, in the lower hemisphere the films ability

to allow sphere passage diminishes with the motion.

Additional insight may be found by further sorting the data by Weber number and by r/R.

The results of sorting by Weber number are found in Figure 3.25 and they mirror the results seen

in Figure 3.24. First, there seems to be a large jump in pinch-off type ruptures for Weber numbers

above 10,000 and very high percentages of thinning ruptures occurring between Weber numbers

4,000 and 10,000. Additionally, comparing these results to the upper hemispheres analogous re-

sults in Figure 3.22 one finds a marked difference. The lower Weber number results have a much

smaller percentage of popping than is found above. This is also true regarding the higher Weber

numbers. The lower hemispheres’ likelihood of popping is, on average, more than 25% lower for

the last three bars than the corresponding bars for the upper hemisphere (see Figure 3.22). Finally,
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Figure 3.24: Probability of the lower hemisphere of the bubble popping according to regime. The
numbers in the middle of the figure indicate the number of samples taken for each data set.
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Figure 3.25: Probability of the lower hemisphere of the bubble popping according to We. The
numbers in the middle of the figure indicate the number of samples taken for each data set.

the last bar is lower than unity. This suggests that higher Weber numbers may be obtained without

rupture in the lower hemisphere than the upper.

Sorting by r/R (see Figure 3.26) generates a few final comments. First, there is a remark-

able consistency in the probability of rupture spanning the entire scale of r/R. This mirrors the

results seen for the upper hemisphere, see Figure 3.23, with the exception that there is a relatively

low percentage of ruptures for r/R values between 0 and 0.1. In the upper hemisphere this area

exhibits roughly the same chance of rupture as its larger neighbors.The second comment relates

also to a comparison to the upper hemispheres results. It is clear from the graphs that the prob-

abilities for rupture, according to r/R ratios, is appreciably lower, on average, than they are for

the upper hemisphere. As a third and final comment, it is interesting to note the dominance of
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Figure 3.26: Probability of the lower hemisphere of the bubble popping according to r/R. The
numbers in the middle of the figure indicate the number of samples taken for each data set.

the punch type rupture in nearly each data bar. Combining this data with the results presented in

Figure 3.25 suggests that most of these punch ruptures occur at Weber numbers ranging from four

to ten thousand and not that the high percentages of punch ruptures was due to something such as

sphere size. Rather it seems that there is a ’sweet spot’ for achieving a punch type rupture and that

that sweet spot depends mainly upon Weber number.

So far we have investigated the probability of film rupture sorted by regime, Weber number,

and r/R. Some final insight to this phenomena may be found by sorting the data by sphere size.

The results are presented in Figures 3.27 and 3.28. Do to the low number of experiments performed

using the smallest glass sphere and the two pool balls, their data was omitted from the figures.
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Figure 3.27: Probability of the upper hemisphere of the bubble popping according to r. The
numbers in the middle of the figure indicate the number of samples taken for each data set.
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Figure 3.28: Probability of the lower half of the bubble popping according to r. The numbers in
the middle of the figure indicate the number of samples taken for each data set.

A general higher upward trend of the percentage of ruptures occurring as the spheres get

larger, culminating in the largest presented sphere size which obtained 100% ruptures. Also note

the increasing, then decreasing trend in the percentage of pinch-off ruptures as well as the high

percentage of thinning ruptures for spheres with a radius greater than 10e-3. Both of these trends

denote a relationship between film thickness and the sphere’s size. Indeed, the larger the sphere,

the more the surface area of the bubble must deformed to allow the passage of the sphere. As the

surface area grows through this deformation, the thickness of the film necessarily grows thinner,

increasing the chance of rupture. This idea is further illustrated below.

3.3.3 Rupture Dependance on Weber Number and Radius

It is instructive to view all experimental data on one single graph. Where as above in

Figures 3.13 and 3.14 we only presented data representing un-ruptured bubbles, Figures 3.29 and

3.30 present all the data together on a single plot, per hemisphere.

Figure 3.29 suggest that their exists a limit to a sphere’s size and velocity, and its able to

pass through the bubble. As the ruptures in the gray area indicate, this is an area where no sphere

was able to successfully enter the bubble. This trend is continued in Figure 3.30 for which a similar

gray mask has been applied.

Although the defining line for certain bubble rupture is not quite as clear in Figure 3.30 as

it is in Figure 3.29, in both plots there seems to exist a point where the thinning required to allow

the sphere to pass through is too great and rupture occurs. This thinning is related to the Weber
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Figure 3.29: Combination of all experimental results for the upper hemisphere. Attention is only
payed to whether or not the bubble ruptured.
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Figure 3.30: Combination of all data for the lower hemisphere. Attention is only payed to whether
or not the bubble ruptured.
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number (Equation (3.1)). As stated above, the larger the sphere, the more the film must stretch

to allow passage. Also, the faster the sphere is moving, the quicker the film must stretch (thin)

to allow entry or exit of the sphere. Thus, it should not be surprising that ruptures increase with

Weber number, see Figures 3.22 and 3.25. Furthermore, it should not be surprising that the size of

the sphere also matters. For a larger sphere will thin the bubble’s film more quickly (regardless of

the bubble size), in order to allow the passage of the sphere, than a smaller sphere with the same

Weber number. This idea is supported through a simple analysis.

We may approximate the thinning of a bubble’s film, resulting from the passage of a moving

sphere, by modeling a sphere passing through a film disk. If we assume that the film is formed

from a constant volume of fluid and that the film’s thickness is equal at all points, in time, (meaning

that no portion of the film is thicker or thinner than another portion, at any point in time), we may

approximate the thickness by the following equation:

T (t) =
∀

As(t)
(3.4)

where T (t) is the film’s thickness as a function of time, ∀ is the initial, and constant, film volume,

and As(t) is the film surface area, in time. We may approximate this surface area of the sphere-film

interaction in two stages. Given a film disk of set thickness and radius, the first stage begins when

the moving sphere begins to deform the film, and ends once the film reaches the sphere’s equator

see Figures 3.31(a) and 3.31(b). For this stage, the surface area can be modeled as the sum of the

surface area of the sphere touching the film and the surface area of the unaltered disk, see Equation

(3.5).

As =
∫ 2π

0

∫
α

0
r2 sin(θ)dθdφ +π(R2− (

√
r2− (r− y)2)2 y≤ r (3.5a)

= 2πr2(1− cos(α))+π(R2−2ry+ y2) y≤ r (3.5b)

where R is the radius of the film disk, r is the radius of the sphere, y is the vertical distance the

sphere has moved from its initial condition, and α is the angle between the bottom of the sphere

and the point on the sphere intersecting the unaltered film disk, see Figure 3.32.
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(a) Beginning of the first stage, just
before the sphere hits the film.

(b) End of first stage, the sphere is
half way through the film.

Figure 3.31: Diagram of the first stage of the surface area approximation. R is the radius of the
film disk, r is the radius of the sphere, and y is the distance the sphere has fallen.

Figure 3.32: Dimensions and layout used in Equation (3.5)

Equation (3.5) may be simplified by noting that

α = arccos(
r− y

r
). (3.6)

Thus Equation (3.5) becomes

As = 2πr2(1− cos(arccos(
r− y

r
)))+π(R2−2ry+ y2) y≤ r (3.7a)

= 2πr2(1− (
r− y

r
)))+π(R2−2ry+ y2) y≤ r (3.7b)

= 2πry+π(R2−2ry+ y2) y≤ r (3.7c)

= π(R2 + y2). y≤ r (3.7d)
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The second stage begins once the sphere has moved a distance further than its own radius

down from its initial position, see Figure 3.33. For this stage the surface area is calculated as the

summation of: half the surface area of the sphere, the surface area of the open cylinder connecting

the sphere to the unaltered film and the surface area of the unaltered film disk, see Equation (3.8).

Figure 3.33: Diagram second stage, sphere is more than half way through the film. R is the radius
of the film disk, r is the radius of the sphere, and y is the distance the sphere has fallen.

As = 2πr2 +πr(y− r)π(R2− r2) y > r (3.8a)

= π(R2 +2ry− r2) y > r (3.8b)

Since our spheres are falling, with an initial velocity of zero, y, the distance the sphere has

fallen, may be approximated as

y = u0t, (3.9)

where u0 is the velocity at the moment of impact and t is the time elapsed since impact. Combining

Equations (3.7) and (3.8) and substituting the value of y from Equation (3.9) yields:

As(t) =

 π(R2 +(u0t)2) y≤ r

π(R2 +2ru0t− r2) y > r
(3.10)
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Now that we have an approximation of the surface area as a function of time, we only need

to know the volume in order to determine the thickness from Equation (3.4). Since we assume that

the volume of the film is constant in time, the volume may given by

∀= πR2T, (3.11)

where T is the initial thickness of the film disk. Equations (3.10) and (3.11) may be substituted

into Equation (3.4) to obtain an approximation of the thickness of the film at any point in time.

Using this approximation of the thickness, we see that when the sphere first contacts the film,

the film’s thickness decreases quadratically in time (this is a result of equation (3.10)). Once the

sphere has descended a depth of larger the length of its radius into the film the thinning becomes

linear. Although we lack the ability to validate this model (since we are unable to know the initial

thickness of the film), we ware able to get a qualitative feel for it’s validity overall. Additionally,

we were able to find good agreement between the linear portion of the model and actual increase

in surface area. This is discussed below in 4.4

Using this model we may now examine the thickness of the film in time for spheres of

different radii and velocities. First, we see that because larger spheres have a larger radius, more

time is spent with the film thinning quadratic (see Figure 3.34).

In this plot the thinning rates for all the spheres were calculated using the same initial

velocity and thickness. Note that by the end of the time of interest (0.05 s) the smallest sphere has

a thickness more than four times that of the largest sphere.

Although sphere radius plays a large role in the thinning rates, the role of the spheres

velocity cannot be discounted, as Figure 3.35 indicates. This figure was generated using the above

model, holding the sphere radius constant and altering the initial velocities.

Using this model one may hypothesize that if the thickness of the film could be known just

before sphere contacts the film, that one could scale the data used in Figures 3.29 and 3.30, so that

the ruptures in those figures would lie only in the gray area, while the non-rupture cases would lie

only in the white.
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Figure 3.34: Plot of film thickness as a function of time. Thickness is calculated using Equation
(3.4). Each line represents a different sphere.
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Figure 3.35: Plot of film thickness as a function of time. Thickness is calculated using Equation
(3.4). Each line represents a different initial velocity for a 9.4 mm radius aluminum sphere.

3.4 Conclusions

This chapter has presented several discoveries concerning the phenomena of passing solid

spheres through soap bubbles. We have shown the complete dependance of the regimes’ discussed
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above dependance on the Weber number and the regimes’ surprising independence from the bond

number. These results are clear and very reproducible.

We have also discussed the probabilities of bubble rupture sorted under different criteria.

From these probabilities several things become apparent. First, that the thickness of the film is

key to allowing sphere entry or exit. This is seen, for example, in the differences in film rupture

rates and types between the upper and lower hemispheres where the film thickness is different,

due to drainage. Second, that there are both limits on the relative size of the spheres, compared

to the bubble size, and the absolute size the sphere may be and still successfully pass through the

bubble’s soap film. Finally, that there is a clear connection between sphere size, its velocity and its

ability to pass through the soap film.
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CHAPTER 4. DISCUSSION OF INTERESTING PHENOMENA

In this chapter we discuss several interesting phenomena noticed during the course of this

research. First, we will view a case where a falling sphere is encapsulated in a smaller satellite

bubble after the sphere successfully passes through the bubble’s film. Next we will examine in-

teresting behavior of a bubble as it approaches bubble side pinch-off. Then we will witness the

remarkable ability of a bubble to be ripped, and yet be able to repair itself before complete rupture

occurs. Finally, examine some interactions between the moving sphere and the bubbles soap film.

This includes discussing the rates at which the soap film stretches as the sphere moves through the

bubble and examining the forces on the sphere as it intersects the soap film.

4.1 Sphere Encapsulation

As the sphere drops through the air and moves toward the bubble there forms a boundary

layer of air around the sphere. This boundary layer deforms the bubble surface ahead of the spheres

as the sphere approaches the bubble. It may seem however, that once the sphere hits the bubble

that the boundary layer disappears and the sphere is wetted, see Figure 4.1, frame (A) for example.

While it is certainly the case that wetting happens under some circumstances, this is not

always the case, as evidenced by frames (E) through (L) and especially frame (J) of Figure 4.1.

These frames clearly show the entrained air located on top of, and connected to, the sphere moving

down the sphere’s sides, surrounding the sphere, and even moving a bit below the sphere, as the

elasticity of the film reacts to the forces of pinch-off, surface tension, and pressure. An enlargement

of the sphere in frame (J) Figure 4.1 may be found in Figure 4.2.
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Figure 4.1: Images of a 6.3 mm radius aluminum sphere being encapsulated. Note the decent of
the bubble, initially located at the top of the sphere (frame (E)), down the side of the sphere (frames
(F) - (J), until, by frames (K) and (L) the encapsulating bubble’s film has moved below the sphere.
If the sequence of frames were continued, the bubble would be pushed up again as drag forces
push on the bubble.
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Figure 4.2: Enlargement of the encapsulated sphere from frame (J) in Figure 4.1

As these figures show, there clearly remains some air between the surface of the sphere and

the bubble’s soap film. For spheres moving at lower speeds, this phenomena was never noticed.

This leads us to believe that the air boundary layer formed by the falling sphere thins to the point

where lubrication forces become important and the ’draining’ of the air slows down. For low weber

numbers, there is enough time for the air to move away from the sphere and become wetted. How-

ever, at higher speeds, the boundary layer has insufficient time to drain thus, the sphere becomes

encapsulated by a small satellite after piercing the main bubble.

4.2 Curvature Battle

We have discussed the pinch-off of the film bridge connecting the bubble to the sphere, see

Section 3.1. In most cases the pinch-off of the film bridge follows a predictable course. Surface

tension forces compel the film forming the bubble and connected bridge to assume a minimal

surface, while the film is being driven to that minimal surface, one of two things may happen.

One outcome of the forced surface minimization is that the surface tension forces cause

necking to occur at some point along the film. The necking continues until the pressure dominates

surface tension and necking stops. At this point secondary necking occurs on either side of the

high pressure area until pinch-off, which produces a satellite bubble of the air entrained between

the two pinch-off locations. This is generally what happens in regimes I - III.

The second possible outcome is similar to the first, only the necking continues until pinch-

off. This is what happens in regimes III - V. The satellite bubbles occurring in these regimes are a
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result of the individual pinch-off’s beginning sphere side and continuing upward until bubble side

pinch-off.

One of the above two pinch-off and bridge collapse types occurs in nearly every experiment

performed. There were noticed, however, a few (and repeatable) examples where the second type

mentioned above fails in its initial attempt at bubble side pinch-off. An example of this is seen in

Figure 4.3.

A C D

E F G H

I J K L

B

Figure 4.3: An example of a failed bubble side pinch-off attempt. In this example the lower
hemisphere of a 2.25 cm bubble was pierced by a 9.4 mm radius aluminum sphere. Sphere side
pinch-off has already occurred by frame (A). Note the necking occurring in frames (A)-(F) and the
sudden expansion of the ’neck’ by frame (G). Another pinch-off attempt is successfully completed
by frame (K).
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An explanation for this behavior might be found by examining the forces present in frame

(F) of Figure 4.3 through the Laplace equation, Equation 1.1. This equation states that the pressure

at any point along the wall of a soap film is determined by its curvature and surface tension. Higher

curvature results in a higher pressure at the wall, and thus higher forces and vise versa. Applying

this principle to frame (F) of Figure 4.3 yields the diagram in Figure 4.4:

PH1

PH3

PH2

PL

PL

PH1< PH2< PH3

Figure 4.4: Frame (F) from Figure 4.3 with indications of high and low pressure spots as well as
general forces acting on the film. Note, arrow size is unimportant.

The draining behavior seems to be driven by two forces, the pressure and surface tension.

Surface tension forces are attempting to minimize the surface area of the film, by seeking to pinch-

off the large satellite bubble. However, as the necking begins the pressure builds in the region of

PH3 in Figure 4.4, with low pressures outside the soap film and high pressures inside the film, with

a highest pressure located in the film bridge. If PH3 is large enough the film bridge cannot collapse

and the air located in the satellite bubble is given time to drain. Draining moves the flow from

PH2 to PH1, causing a decrease in pressure near PH3. The decreasing pressure increases the radius

of curvature, further encouraging draining and pushing the neck outward. It seems that the key to

achieving a PH3 sufficiently high is to keep the satellite bubble near the film bridge. Note that the
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radii of curvature of the film bridge are very small and nearly equal. This results in a very large

pressure gradient ( Equation (1.1)).

4.3 Film Rupture: Pinch-off Repair

This section touches simply on an interesting phenomenon witnessed only a few times and

may be found in Figure 4.5. This phenomenon is by no means reproducible as it is dependent on

film thickness at the moment of impact, which, as we have discussed is outside the realm of our

control. This phenomenon is marked by a thinning of the film close to the falling sphere to the

point of rupture. The film ruptures, but, rather than a complete bubble rupture, the film bridge

pinches-off above the thinning rupture, thus preventing complete rupture. This phenomena was

also witnessed in the same experimental drop shown in Figure 4.3. In this case, however, the film

rupture was caused by the sphere side pinch-off, which resulted in a pinch-off rupture. However,

by frame (A) of Figure 4.3 the pinch-off of the ruptured film has already occurred.

It is amazing to witness this ability of the soap film to heal itself above a portion of film

which has been ruptured. This phenomena was only found in regime V. A reason for this may lie,

again, in the increased thickness of the film allowing for a longer film bridge. A longer bridge may

allow additional time for pinch-off to occur before the rupture moves entirely up the film bridge.
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Figure 4.5: This interesting phenomenon of film rupture and pinch-off repair occurred in the lower
hemisphere of a 5 cm radius bubble with a 9.4 mm radius aluminum sphere falling through it.
The sphere was dropped from a height of 95 cm. Note the thinning rupture by frame (G) and the
pinch-off of the ruptured film in frame (K).
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4.4 Comparison of Linear Stretch Rates

The surface area of a curve revolved about an axis is found according to the following

equation:

Asur f =
∫

C
2πrds (4.1)

where r is the radius of rotation and ds is the differential arc length. Using this equation, an ap-

proximation of the increase of surface area of the bubble’s soap film as the sphere passes through

it may be found by capturing the profiles of the film in time. Using these profiles we may approxi-

mate the differential arc length ds as the distance between two points on the surface and the radius

of rotation, r, as the distance of the film profile from the center of the bubble (assuming the sphere

was dropped through the center of the bubble). Examples of such profiles may be found in Figure

4.6.

Applying the above formulation for approximating the surface area of the deformed bubble

and plotting the percent increase of surface area as a function of time yields Figure 4.7.

The linearity of the percent increase of surface area found in regimes II and III is an inter-

esting fact and begs the question of why the film response is linear. One possible answer is found

by using the surface tension approximation used above. The linear portions of that approximation

(once the sphere has entered the bubble by more than its radius) yields surface area rates of in-

crease of 1.63 and 3.20 m2/s for regime III and IV found in Figure 4.7. This compare well with

the rates of increase found in Figure 4.6: 1.24 and 3.27 m2/s for regime III and IV respectively.

While we see that the regime IV approximation is very close, under predicting the rate of surface

area increase by just over 2%, the approximation for regime III over predicts by just more than

30%. Whether this discrepancy is a result of the regime or the sphere size is, at this point, unclear.

As the results in Figure 4.7 for regime II seem to indicate that the film reactions in this case are

non-linear, the approximation was not tested against this case.

4.5 Surface Tension Forces

In the course of our investigation it was noticed that ball weight had little effect. For the

most part, the balls with density less than water and those with density several times that of water
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Figure 4.6: Film profile information. Each profile, with the top profile representing our initial time,
t = 0 s, represents the film profile after 1.5 ms from the previous profile. The profiles are offset by
3 cm per 1.5 ms for clarity. Also, each profile on each axis is the profile of a 3.75 cm bubble being
deformed by a sphere. For the regime II and III profiles, the dropped sphere is a 4.8 mm radius
glass sphere dropped from a height of 23.5 cm and 113.9 cm respectively . The regime IV profile
was created by a 9.4 mm aluminum sphere dropped from a height of 113.9 cm.

acted the same. An explanation for this may be seen in a comparison of the surface tension forces

to gravitational forces. Examination of the ratio of gravitational forces to surface tension forces,

Fg

Fst
=

mg
2πrσ

(4.2)

shows that gravitational forces on all of the spheres, with the exception of the smallest one, were

many times that of surface tension forces, see Table 4.1. This explains why no change in sphere

inertia of the dropped spheres was ever noticed, except in the smallest case.
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Figure 4.7: Percent increase in surface area as a function of time for the three profiles found in
Figure 4.6. Each data set is fit with a linear polynomial. Note the highly linear results for regimes
III and IV, while the regime II profile is very non-linear.

Table 4.1: Gravitational to surface tention forces table.

Ball Radius (mm) Fg
Fst

1.1750 0.8626
3.1650 5.6271
4.7540 13.7362
6.3333 6.5614
8.7150 146.3188
9.4411 15.0912

11.1050 236.2855
11.8933 270.4387
12.6900 307.4697
17.3992 136.0807
28.5250 382.7273

4.6 Conclusions

This chapter has covered several interesting phenomena observed while investigating the

passing of solid spheres through soap bubbles. We have examined the entrainment of the sphere

by a satellite bubble, pinched-off the main soap bubble, the abortion of the pinch-off of the film

bridge due to interesting pressure forces, and the remarkable ability of the soap film to repair itself

after rupture has occurred. We have also discussed the rates of film stretching and examined the

ratio of gravitational and surface tension forces.
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CHAPTER 5. CONCLUSIONS

This work has categorized and thoroughly documented the dropping of solid spheres through

soap bubbles. The experiments were preformed in two sets, each set focusing on either the upper

or lower hemisphere of the bubble. Bubble and sphere sizes were varied as well as drop heights.

A deeper understanding of the bubble’s reaction to the passing of the spheres was gained, as well

as insight to when successful passage may or may not occur. Several interesting phenomena were

also noted and discussed.

An overview of these understandings, insights and noted phenomena is presented below as

well as an overview of possible future areas of research which could be preformed.

5.1 Summary

As the sphere passes through the soap film forming the bubble, the film must deform to

make way for the sphere. This shape and characterization of this deformation and pinch-off is

highly dependent upon the Weber number which (see Tables 3.2 and 3.3), in our case compares the

sphere’s inertia to the film’s surface tension. It is not surprising that this dependance exists as the

surface tension is continually fighting the sphere’s work to deform the film. Five new and distinct

Weber number regimes have been defined, see Figures 3.3 through 3.12 and Tables 3.2 and 3.3.

In addition to categorizing the deformation of the bubble caused by the spheres passage,

the data was also examined to discover trends in bubble rupture. This examination yielded some

key insights, such as a relationship between the Weber number and sphere size, and whether or

not a rupture will occur. Also, general trends of film rupture were noted which included increased

probability for film rupture as either Weber number or sphere radius increase. For example, it was

noted that spheres with a radius of greater than about 0.013 m were unable to enter the bubble’s

upper hemisphere without causing bubble rupture. Also successful entry of spheres with radii

between 0.01 m and 0.013 m are very dependent on their Weber number (see Figure 3.29). Similar,
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though less well defined, conclusions were noted for the lower hemisphere. Finally, it was noticed

that the relative size of the sphere to the bubble is also of importance, with 100% rupture rates

occurring at a sphere to bubble radius ratio of greater than 0.55.

The interesting phenomena noted were varied in importance and relevance. Some key

points include the linearity of surface area increase at mid to high Weber numbers (> 3000),

the encapsulation of the falling sphere in a satellite bubble and a competition between curvature,

pressure and surface tension in film bridge pinch-off.

5.2 Future Work

As was made clear in Chapter 1, work done on this topic has been limited at best. As a

result, there is a myriad of avenues of research which may be pursued. Studies into more precise

modeling of the bubbles soap film thickness as a function of time is an area which could add to the

body of this work. As mentioned numerous times, the thickness of the film plays a key role in the

outcome of the experiment. Film thickness determines whether or not the film will rupture when a

given sphere is dropped from a particular height as well as the rupture type. Precise modeling of

the thickness, at the point of impact as a minimum, would help to eliminate these unknowns and

yield a better understanding of the phenomena.

Related to knowing the film thickness in time is the ability to control, or standardize, the

initial film thickness when it is placed upon the bubble cylinder or plate. Being able to at least

know that each film started at a set thickness would also yield a clearer understanding, and more

precise study, of these events.

Another area of fruitful research would be to find a way to precisely model the film dy-

namics as the sphere passes through the bubble. Although this model would be unable to capture

bubble rupture, as was mentioned in Chapter 1, if the model was able to capture the film dynam-

ics it could be used help explain, or validate the given explanation, for some of the interesting

phenomena noted in Chapter 4.
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