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ABSTRACT

A Computational Fluid Dynamics Feature Extraction Method

Using Subjective Logic

Clifton H. Mortensen

Department of Mechanical Engineering

Master of Science

Computational fluid dynamics simulations are advancing to correctly simulate highly com-
plex fluid flow problems that can require weeks of computation on expensive high performance
clusters. These simulations can generate terabytes of data and pose a severe challenge to a re-
searcher analyzing the data. Presented in this document is a general method to extract computa-
tional fluid dynamics flow features concurrent with a simulation and as a post-processing step to
drastically reduce researcher post-processing time. This general method uses software agents gov-
erned by subjective logic to make decisions about extracted features in converging and converged
data sets. The software agents are designed to work inside the Concurrent Agent-enabled Feature
Extraction concept [1] and operate efficiently on massively parallel high performance computing
clusters. Also presented is a specific application of the general feature extraction method to vor-
tex core lines. Each agent’s belief tuple is quantified using a pre-defined set of information. The
information and functions necessary to set each component in each agent’s belief tuple is given
along with an explanation of the methods for setting the components. A simulation of a blunt
fin is run showing convergence of the horseshoe vortex core to its final spatial location at 60% of
the converged solution. Agents correctly select between two vortex core extraction algorithms and
correctly identify the expected probabilities of vortex cores as the solution converges. A simulation
of a delta wing is run showing coherently extracted primary vortex cores as early as 16% of the
converged solution. Agents select primary vortex cores extracted by the Sujudi-Haimes algorithm
as the most probable primary cores. These simulations show concurrent feature extraction is pos-
sible and that intelligent agents following the general feature extraction method are able to make
appropriate decisions about converging and converged features based on pre-defined information.

Keywords: Clifton Mortensen, feature extraction, subjective logic, computational fluid dynamics,
agent-based data mining, vortex core, massive data set post-processing
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CHAPTER 1. INTRODUCTION

1.1 Motivation

Computational fluid dynamics (CFD) simulations numerically solve the governing equa-

tions of fluid motion. A common formulation is the Navier-Stokes equations formed from the

application of Newton’s second law to fluid motion combined with the conservation of mass and

energy equations. The result is nonlinear partial differential equations with analytical solutions

available in only the simplest cases. Through the use of parallel codes and supercomputers CFD

simulations have increased in grid resolution and numerical accuracy to a point of correctly simu-

lating highly complex fluid flow problems. Many of these advanced simulations are run on multi-

node computing clusters requiring weeks to reach full convergence and generating terabytes of

data. Yao [2] and List [3] have run unsteady Reynolds-averaged Navier-Stokes (URANS) simula-

tions of gas turbine engine transonic fan stages with 166 million grid points and entire fans with

over 300 million grid points respectively. These types of simulations typically run on 900 to 1200

processors, generate terabytes of raw data, and take hundreds of thousands of hours in computation

time on expensive computing clusters to obtain converged solutions.

A common challenge when conducting high-fidelity simulations is the analysis of large

amounts of data. Currently the time to analyze many massive data sets is equivalent to the wall

time of computing the solution which can be on the order of hundreds of hours. To post-process

large data sets there are a variety of software programs and techniques which can be quite disci-
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pline dependent. One approach common to post-processing massive time-accurate CFD data sets

in turbomachinery applications requires a researcher to slowly sift through data to find useful infor-

mation based on intuition and previous experience. Other approaches spanning many disciplines

utilize software concepts and packages such as Evita [4], FieldView and ParaView. These types of

programs are meant to post-process and visualize massive data sets and commonly include tech-

niques such as feature extraction, construction of iso-surfaces using important scalar values and

automated visualization based on researcher input criteria.

As simulations continue to increase in size new post-processing techniques and ideas are

needed to build on previous techniques to help a researcher quickly parse through data to find use-

ful information aiding in design improvement. The Concurrent Agent-enabled Feature Extraction

(CAFÉ) [1] concept is currently being developed by Brigham Young University and 21st Century

Systems, Inc. to meet this challenge. CAFÉ is an agent-based data mining software system de-

signed to be a plug-in for CFD packages and to do concurrent analysis of CFD data. This research

is a part of the CAFÉ concept.

1.2 Feature Extraction

Fluid flows are comprised of basic features that serve as building blocks for the overall

flow. Post [5] defines features as “phenomena, structures or objects in a data set, that are of interest

for a certain research or engineering problem.” Some features of particular interest in high-fidelity

time-accurate CFD simulations are vortices, shock waves, and separation and attachment lines.

Usually flow features can be located in CFD data sets through visual inspection of streamlines, or

flow properties such as pressure, which can be a cumbersome process of visualization and search-

ing. Also, a simple visual inspection may not reveal all pertinent features in a data set. Feature

2



extraction works on the problem of locating relevant features in a data set without visualization

and does so in an automated fashion that requires little to no researcher input. Feature extraction

is an automated process by which a feature is precisely located in a data set. It is especially useful

because it can prioritize data for further analysis and provide insight to relevant flow physics. Also,

if a full 3D transient data set is too large to be saved to a hard disk the data size of extracted features

are orders of magnitude smaller allowing them all to be stored with ease.

Once features are extracted they can then be visualized making them understandable and

useful by displaying information such as feature location, strength, interaction, creation, and dis-

sipation. Extracted features have no real significance until they can be visualized to show where

spatially and when temporally in a data set they occur, and how they affect the surrounding flow.

Fortunately, vortices and separation and attachment lines may be visualized simply by lines, while

a shock wave may be visualized by an opaque surface. Figure 1.1 gives an example visualization

of an extracted shock surface surrounding a hypersonic vehicle. When visualized, features can

give a researcher quick insight into where design improvement may be made.

A current limitation to feature extraction from massive data sets is the time it takes to

extract features is often long enough to hinder post-processing rather than help. For example, if a

software package is not able to run in parallel requiring one processor to be used on a data set that

possibly took hundreds of processors to compute, the time to extract features could be too large

to be useful. Also feature extraction has been done after a CFD simulation is converged requiring

extra computation time after a simulation is complete. Feature extraction can be advanced by

extracting features in parallel and concurrent with a running simulation allowing features to be

available when a simulation is complete if not before a simulation is converged. This will decrease

post-processing time and decrease turn around time for product development.
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Feature extraction is often done algorithmically where each feature requires its own unique

feature extraction algorithm. Unfortunately, for each feature there is not one markedly superior

algorithm that extracts correctly all features within the spatiotemporal flow domain, but rather

multiple algorithms per feature that have been optimized for specific flow conditions. Ma [6] states,

“it is clear that there is no single best shock detection...algorithm.” Likewise, Roth [7] states, “none

of the [vortex extraction] methods is clearly superior in all the tested data sets.” This leaves the

problem of having to run a data set through multiple extraction algorithms and parse through the

data output to find relevant features.

Figure 1.1: Visualization of an extracted shock surface. [5]

When extracting vortices Roth suggested that “an idea for a follow-up project situated in

computer science is adding methods from computer vision and AI [artificial intelligence] tech-

niques to combine the various proposed definitions into a single system. Such a system would

calculate the vortex cores according to a set of definitions, and then try to use knowledge about the

strengths and weaknesses of each method to determine a single set of vortex cores. For example, as
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long as the resulting vortices are sufficiently strong or almost straight, the zero curvature definition

produces very good results. So by adding higher-level post-processing and considering the various

feature detection algorithms as specialized knowledge bases, one could use a rule-based AI system

to decide which definitions are most likely to give the best results in each particular situation [7].”

While Roth’s statement was specifically about extracting vortices, the idea can be extended

to any flow feature of interest with corresponding extraction algorithms. In this research multiple

extraction algorithms are used to locate features instead of using only one extraction algorithm per

feature. This leaves the job of trying to combine the output from each of these algorithms based

on their strengths and weaknesses into one coherent highly probable set of features. To do this,

intelligent software agents governed by subjective logic are used.

1.3 Software Agents

An intelligent software agent is a piece of software that can act autonomously without

any user intervention. It is able to make decisions and decide the outcome of situations without

being told by an end user what actions to take. An intelligent agent may use a pre-defined set of

information to decide what action to take in any given situation or it may use a form of machine

learning to identify what course of action is best. In this research agents are given a pre-defined

set of information to govern their behavior which is then quantified and input into agent opinions

defined by subjective logic [8–10].

Subjective logic is a mathematics based logic system that forms opinions which account

for uncertainty in a system state using four basic elements: belief (b), disbelief (d), uncertainty (u),

and atomicity (a). Atomicity is used in an agent opinion to give an a priori weight to a systems

uncertainty. In this research the common assumption of a = 0.5 is used allowing atomicity to
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be dropped from the agent opinion leaving only belief, disbelief, and uncertainty. These three

elements are shown in Eq. 1.1 where ω represents the entire opinion, or belief tuple.

ω = (b,d,u) (1.1)

Through the use of opinions agents are able to make intelligent decisions. Three opinion

values in subjective logic allow agents to form opinions that are not strictly one way or the other.

In other words, an agent has some subjectivity about the outcome of a situation. An agent can

find, based on given information, how probable an outcome is rather than simply reducing the

outcome to a binary situation of will, or will not, occur. Subjective logic is also useful when

making decisions about uncertain situations and/or when data is missing or incomplete. Missing

or incomplete data can be taken into account in an agent’s uncertainty value. During concurrent

feature extraction data will be highly uncertain requiring agents to make suitable decisions.

1.4 Objective

The objective of this research is to develop a method to extract flow features from CFD

data sets while simulations are converging and as a post-processing step when simulations are

converged. The developed method will be designed as a part of the CAFÉ concept. The method

will be able to use more than one feature extraction algorithm per feature utilizing the strengths of

each included algorithm. The general method will use software agents governed by subjective logic

to determine the expected probability of extracted features from converging data sets and to aid in

decisions made about features from converged data sets. It will be shown how to set each value in

an agent opinion so that a final opinion may be formed for extracted features. This general method
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will be validated by applying the method to vortex core lines. Two CFD simulations will be given

that replicate concurrent feature extraction of vortex core lines showing it is possible to extract

features before CFD simulations are fully converged. Also, these two simulations will be used to

validate the vortex core extraction method. It will be shown that the method can make appropriate

decisions about the probability of vortex cores before and after a simulation has converged.

The developed method will contribute to the ability to use multiple feature extraction algo-

rithms optimized for specific flow conditions and combine their feature outputs into one coherent

and highly probable set of features that precisely locates all features within the spatiotemporal flow

domain. Also, the method contributes a means to properly recognize the probability of features

in converging data sets allowing an interpretation of features and their interactions with the flow

before a CFD simulation has converged. The two CFD simulations contribute an understanding of

concurrent feature extraction and insight to when flow features may be extracted and when flow

features are spatially correct.

1.5 Overview

This document is organized as follows: Chapter 2 gives background on vortex extraction,

subjective logic, trust networks, and some large data set post-processing programs. Chapter 3 gives

the general method to extract flow features from CFD data sets using software agents governed by

subjective logic. Chapter 4 gives a specific application of the general method to vortex core lines.

Chapter 5 gives results of two CFD simulations that have vortex cores extracted from converging

and converged data sets using the method described in Chapter 4. Chapter 6 gives recommenda-

tions for future research and Chapter 7 gives conclusions about the research.
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CHAPTER 2. BACKGROUND & LITERATURE REVIEW

In this chapter vortices are defined along with some of their characteristics and a back-

ground is given on vortex extraction. A background is also given on subjective logic, trust networks

and novel large data set post-processing concepts.

2.1 Fluid Vortices

Vortices are common occurrences in many types of engineering flows. They arise where

there are large amounts of vorticity, or flow rotation. They can be effective and useful devices to

mix flow or can account for high losses in applications such as turbomachinery. Accordingly, in

some applications vortices may be sought after to increase their size and strength or in other appli-

cations vortices may be found to eliminate them and their corresponding losses. Vortex extraction

is useful in either of these situations as it can give an effective visualization of the size, strength,

and location of a vortex. Once a vortex is located, geometry or boundary conditions may be varied

to find how to properly influence the properties of a vortex.

Fluid vortices can be defined in various ways and their definitions are ambiguous which

lead to several extraction methods. A commonly accepted vortex definition in the feature ex-

traction community comes from Robinson [11] which states, “a vortex exists when instantaneous

streamlines mapped onto a plane normal to the vortex core exhibit a roughly circular or spiral pat-

tern, when viewed from a reference frame moving with the center of the vortex core.” An example
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of this behavior can be seen in Figure 2.1 where a fluid vortex extends from the wingtip of a mov-

ing aircraft and smoke allows an effective visualization. In this picture the vortex core is close

to normal with the picture making a normal reference plane. It can be seen that on this reference

plane the streamlines exhibit a circular pattern as given in the vortex definition.

Figure 2.1: Wingtip vortex [12].

This vortex definition leads to a physical vortex structure with two interdependent parts:

the vortex core line and the swirling fluid motion around the core. At the core there is no velocity

measured relative to the vortex in any direction except along the core line. All swirling motion

contained within a vortex rotates about the core. This dual structure gives rise to two separate

ideas for extracting vortices: extraction of a vortex region and extraction of a vortex core line.
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2.2 Extracting Vortex Regions

One of the most basic ideas to extract a vortex region is to find areas of high vorticity

where vorticity is calculated using Eq. 2.1. The idea is that areas in the flow with high vorticity are

vortices. This may not always be true because other flow conditions have high vorticity but are not

vortices such as boundary layers. Villasenor and Vincent [13] use vorticity requirements to extract

vortex tubes.

ζ = ∇×V (2.1)

Another idea to extract a vortex region is to locate areas with high helicity where helicity

is calculated using Eq. 2.2. The dot product in helicity removes the vorticity component normal

to the velocity vector giving a more accurate extraction of vortex regions than using vorticity only.

All areas of high helicity, similar to areas of high vorticity, may not be vortices such as boundary

layers. Levy [14] and Yates [15] utilize helicity when extracting vortex regions. Two other common

vortex region extraction methods are utilized by Robinson [16] and Jeong and Hussain [17].

h = (∇×V) ·V (2.2)

Extraction of vortex regions using simple filtering criterion such as high vorticity, or high

helicity, gives a quick and rough estimate of the shape, size, and position of a vortex. The numerical

complexity of these methods is commonly low with a low computation time that is beneficial in

applications requiring large data sets. Also, it is beneficial to work with quantities that are common

in fluid dynamics such as vorticity.
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The most glaring shortcoming of extracting a vortex region is that a vortex is not located

precisely. In other words, at what exact spatial location is the center of the vortex, or the point

at which the fluid rotates about? Extraction of vortex core lines solves the problem of precisely

locating the center of a fluid vortex. Figure 2.2 displays an extracted vortex core line (light blue)

with rotating streamlines and an overlain Line Integral Convolution (LIC) image to help visualize

the circular motion of the flow around the core. LIC is a texture based technique for visualizing

vector fields. Here the vortex has been located precisely and the streamlines will continue to rotate

around the core until the vortex dissipates.

Figure 2.2: Display of rotating streamlines around a vortex core line (light blue) with an overlain
LIC image normal to the core direction [7].
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2.3 Extracting Vortex Core Lines

Many algorithms have been developed to locate vortex core lines and in this research it was

determined that two algorithms were markedly superior. Two criteria helped to determine which

algorithms fit our application: How accurately did the algorithm identify all fluid vortices within

the flow domain? and would the algorithm adequately identify vortices in applications where

concurrent data mining would be required such as turbomachine simulations?

2.3.1 Sujudi-Haimes Algorithm

The first vortex extraction algorithm chosen for this research was the Sujudi-Haimes (SH)

algorithm [18]. The SH algorithm was designed as a robust vortex core line detection algorithm

for use in large 3D transient problems. It is used in the CFD post-processing software packages

EnSight 9 [19] and pV3 [20]. The SH algorithm has multiple software implementations. The first

implementation was put forward by the creators of the algorithm which computes the eigenvalues

of the velocity gradient matrix, shown in Eq. 2.3, at every cell location.

∇V =


∂u
∂x

∂u
∂y

∂u
∂ z

∂v
∂x

∂v
∂y

∂v
∂ z

∂w
∂x

∂w
∂y

∂w
∂ z

 (2.3)

Once the three eigenvalues are found, only the cells where the set of eigenvalues contain

one real valued and two complex conjugate eigenvalues corresponding to a saddle-spiral criti-

cal point are selected and the rest are discarded. Next a quantity called the reduced velocity is

computed from Eq. 2.4 where n is the normalized eigenvector corresponding to the one real eigen-
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value. The reduced velocity is then linearly interpolated across the entire cell. Two locations are

then found along the cell boundaries where Vr = 0 and these two locations form a line segment

within the cell that is added as part of a vortex core line.

Vr = V− (V ·n)n (2.4)

While the original implementation of the SH algorithm is correct, it is also computationally

expensive. Solving for eigenvalues is expensive and eigenvalues everywhere in the computational

domain must be computed before individual node locations may be filtered out. Roth [7] puts

forward another definition of the SH algorithm that is less computationally expensive utilizing his

parallel vectors operator. The underlying assumption of Vr = 0 is that the velocity vector is parallel

to the eigenvector obtained from the real eigenvalue (Eq. 2.5). If the velocity vector is not parallel

to the eigenvector from the real eigenvalue then the condition Vr = 0 cannot hold.

V ‖ e0 (2.5)

When finding locations where the eigenvector from the real eigenvalue is parallel to the flow ve-

locity Roth notes that this is equivalent to finding locations where

V ‖ ∇V ·V (2.6)

as the velocity vector itself can be an eigenvector. This equation can then be reformulated to

V ‖ a (2.7)
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since

a =
DV
Dt

=
∂V
∂ t

+∇V ·V (2.8)

where

∂V
∂ t

= 0 (2.9)

because we are only considering an instantaneous snapshot of the flow field.

This leads to the software implementation of the SH algorithm that finds all locations in

the flow domain where Eq. 2.7 holds and then thresholds those points with a discriminant greater

than zero (D > 0) to ensure that there is only one real eigenvalue and two complex conjugates. The

value for the discriminant comes from the matrix in Eq. 2.3. Selected points that pass all criteria

are then aggregated into lines. The latter implementation of the SH first order vortex extraction

algorithm given in Eq. 2.7 is used in this research.

The SH algorithm was designed to locate vortices in linear flow fields that occur where

there are spiral saddle and spiral node critical points. It works well when vortex core lines are

straight and when the vortex strength is high (high rotational velocity about the core). The SH

algorithm may extract erroneous core lines when the core line is curved or when the core line has

a low strength (low rotational velocity about the core). It also may extract erroneous lines when

the velocity along the core line is accelerating.

2.3.2 Roth-Peikert Algorithm

The second vortex extraction algorithm chosen for this research was the Roth-Peikert (RP)

algorithm [7, 21]. The RP algorithm is specifically designed to extract fluid vortices in turboma-

chine simulations. Some of the testing done on the RP algorithm has come from CFD simulations
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of Kaplan turbines used in hydroelectric facilities. What makes the RP algorithm unique and well

suited for complex flow fields is the fact that the RP algorithm is designed to locate curved rather

than straight vortex core lines. Curved vortices commonly appear in turbomachinery data sets as

the fluid travels through the flow domain in a curved fashion influenced by rotating blade rows.

Figure 2.3 displays a perfectly semi-circular vortex core line with two circling streamlines.

The three vectors V, a, and b are velocity, acceleration and jerk respectively. It can be seen that

for the case of a perfectly semi-circular vortex core line the condition V ‖ a from the first order

method of SH does not hold. That method will be unable to extract this type of core. This figure

does show that a separate condition may be used to extract this type of core line:

V ‖ b. (2.10)

Figure 2.3: Display of rotating streamlines around a curved vortex core line. [7]
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The fluid jerk is defined as the second substantial derivative of the fluid velocity

b =
D2V
Dt2 =

Da
Dt

=
∂a
∂ t

+∇a ·V (2.11)

where

∂a
∂ t

= 0. (2.12)

because we are only considering an instantaneous snapshot of the flow field. Substituting Eq. 2.8

into Eq. 2.11 we get

b = ∇(∇V ·V) ·V (2.13)

yielding

V ‖ ∇(∇V ·V) ·V. (2.14)

The RP algorithm takes advantage of Eq. 2.14 and proceeds in a point by point fashion to

find locations in the flow domain where the the fluid jerk is parallel to the fluid velocity. The points

that don’t meet the condition are dropped and the points that do meet the condition are aggregated

into vortex core lines.

Neither of these two algorithms (SH & RP) adequately extracts all vortex core lines in all

flow situations. Both of the algorithms have strengths and weaknesses that are complementary to

the other. In this research, we use both algorithms to maximize our chances of adequately detecting

all vortex core lines within the spatiotemporal flow domain. Where one algorithm might fail, the

other algorithm may not and then an agent-based decision can be made to chose which vortex core

lines from the algorithm outputs are the most probable.
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2.3.3 Other Vortex Core Extraction Methods

Another useful vortex core extraction algorithm developed by Jiang [22] is a method based

on Sperner’s lemma in combinatorial topology. Sperner’s lemma was originally used to break a

large triangle into smaller triangles and then label the subtriangles. It guarantees that any subdi-

vision of a triangle into smaller triangles will result in an odd number of fully labeled triangles.

Sperner’s lemma can also be applied to 3D vector fields where a vector field is labeled in the same

fashion as a triangle. A critical point, or a vortex core line, is found when a triangulation is fully

labeled. Filtering must be done to separate saddle regions from the correct set of vortex cores. This

algorithm is not used in this research. Other vortex core extraction algorithms have been given by

Banks and Singer [23], Globus et al. [24], Pagendarm et al. [25], and Miura and Kida [26].

2.4 Vortex Characteristics

Vortex characteristics are useful inputs to the agents that can aid in their decisions about the

expected probability of features. While there are many ways to characterize a vortex, the specific

vortex characteristics used in this research are quality, strength and curvature.

2.4.1 Quality

Quality is a vortex characteristic originally defined by Roth [7]. In this research quality

is the angle between a vortex core line and its associated velocity vector. This value is given in

Eq. 2.15 where t is the tangent vector to the vortex core line and V is the local velocity vector.

Generally a vortex core line is not a streamline which would be represented by a quality criterion

of zero, but with the assumption that there is close to zero rotational motion about a vortex core

the core line will be similar to a streamline. This behavior yields a small angle between the core
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line and the velocity vector, or a low quality value. Figure 2.4 gives a graphical representation of

quality. The red vectors are velocity vectors and the black line is a vortex core. Near the left of the

core the core has a low quality value and near the right the core has a high quality value. At the

location where the quality value is low the vortex core is more likely to be extracted in its proper

spatial position and where the quality value is high there is a higher chance that the vortex has been

extracted spuriously. Commonly, a vortex core will either have many low quality values or many

high quality values rather than an equal distribution of both.

θ = cos−1
(

V
|V|
· t
|t|

)
(2.15)

Figure 2.4: Vortex quality measure at both ends of a hypothetical core line.

2.4.2 Strength

Vortex strength measures how fast flow rotates locally around a vortex’s core. In a two

dimensional flow field the speed of rotation can be measured by the absolute value of the imaginary

part of an eigenvalue of ∇V. This definition is tied to two dimensional vector field topology which

gives a value for the imaginary part of the eigenvalue only in rotating flows at critical points such
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as a repelling focus, attracting focus and center. An overview of two dimensional vector field

topology in fluid flows is given by Helman and Hesselink [27, 28].

Since vortex cores are usually contained in three dimensions instead of two, a standard two

dimensional plane needs to be defined to use the two dimensional criteria. Roth [7] suggests to use

a plane perpendicular to the velocity at the vortex core since the core position and the velocity at

the core are already known. The local flow can be projected onto this two dimensional plane and

the local vortex strength found from the imaginary part of either eigenvalue.

2.4.3 Curvature

Curvature is defined as the reciprocal of the radius of a circle as shown in Eq. 2.16 where

r is the radius of the circle. Figure 2.3 depicts a perfectly curved vortex core line with rotating

streamlines. Since vortex cores are straight line segments connected end to end a curvature defi-

nition is needed that can be applied to these straight segments. The curvature of a vortex core is

calculated from the circle’s radius that contains the two core line endpoints and the midpoint.

Curvature =
1
r

(2.16)

2.5 Subjective Logic

Subjective logic is a propositional logic that gives a human estimate for the probable out-

come of a situation. Commonly, standard propositional logic is used to find if an outcome is true

or false but as humans we don’t always think in absolutes. For example, what if you were asked

are you going to have a good day today at work? The answer to this question is probably not a

strict yes or no but rather likely to contain some variability. If the boss gives me that raise then
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I will have a good day. If the noisy person in the cube next to me is loud, then I probably will

not have a good day. All the events that affect having a good day commonly do not have a strict

either/or occurrence as well. Subjective logic works with all this variability to give an answer that

is more human. Since the boss is not likely to give me the raise and based on past work days of

my coworker being loud than there is a low belief that my day will go well, a high disbelief that

my day will go well and some uncertainty as to the outcome because some unexpected good thing

might happen. It is the three values of belief, disbelief, and uncertainty given in Eq. 1.1 that make

up the subjective logic opinion on how the day will go.

To form an opinion each component of the belief tuple is given a numerical value which

allows the opinion to be given an exact measure. To maintain uniformity in an opinion the sum-

mation of an opinion is always equal to unity which is displayed in Eq. 2.17. Quantification and

Eq. 2.17 allow operators to work with opinions in a mathematically rigorous fashion.

b+d +u = 1 (2.17)

2.5.1 Opinion Triangle

An opinion can easily be visualized using the opinion triangle shown in Figure 2.5 where

ωx = (0.40, 0.10, 0.50, 0.60) is given as an example opinion. This opinion contains four values

because atomicity has been retained. The opinion can be located by traversing any two of the lines

connecting the mid-point of a triangle leg and an intersection of two triangle legs. Each of these

three lines is solid with an arrow at the tip and labeled either belief, disbelief or uncertainty. Also,

they go from 0 to 1 and have ten steps with a width of one tenth per step. To locate ωx travel 0.10,

or one step, on the disbelief line starting at 0. At this step there is a dotted line orthogonal to the
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disbelief line. The opinion must lie somewhere on this dotted line. Now travel 0.50, or 5 steps,

on the uncertainty line from 0. At this step there is also a dotted line orthogonal to the uncertainty

line. The place where the two dotted lines cross is the location of ωx. Any opinion may be located

using two out of the three lines for belief, disbelief and uncertainty.

Figure 2.5: Opinion triangle with ωx as an example [9].

2.5.2 Probability Expectation

When evaluating an opinion, probability expectation (E) is a useful value. This value gives

the expected probability of an outcome based on the opinion and can be calculated using Eq. 2.18.

It takes the entire belief value of an opinion into account and some of the uncertainty. Some

uncertainty is taken into account because uncertainty is a measure of the unknowns in an outcome.

Some of the unknowns may positively affect an outcome while some may negatively affect an

outcome. Atomicity defines how much uncertainty should go to positively affecting an outcome.

E = b+au (2.18)
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In Figure 2.5 the horizontal base line is the probability axis that contains all possible prob-

ability expectation values from 0 to 1. Returning to our example opinion, ωx, the probability

expectation value for this opinion is 0.70. It can be found by following the director from the opin-

ion location to where the director crosses the probability axis. The director is the line that extends

from the top of the triangle to the location of atomicity on the probability axis. Atomicity may be

found on the probability axis by traveling from left to right with 0 at the far left and 1 at the far

right. When the common assumption a = 0.50 is made the director is always orthogonal to the

probability axis and the probability expectation value is given in Eq. 2.19. In this research E is

evaluated using this assumption.

E = b+
1
2

u (2.19)

The probability expectation value gives the expected probability of a situation which is

different than probability. Expected probability defines what an agent expects the probability to

be and is not an exact measure of probability. For example, when a school class starts and most

grades given in the class are B grades, the probability that student 1 will get a B grade is higher than

probabilities that student 1 will get any other grade. What if student 1 has a history of getting good

grades and is in a subject where he/she excels? This information does not change the probability

that student 1 will get a B grade but it can change the expected probability. If it is input into

subjective logic the expected probability that student 1 will get an A grade could be higher than

the expected probability that student 1 will get a B grade. With information about a situation an

agent can expect the probability of an outcome to be higher or lower than it otherwise would have.
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2.6 Trust Networks

After selection and implementation of the feature extraction algorithms the intelligent

agents needed to be designed to encapsulate the algorithms and combine the algorithms output

into coherent feature sets. In this research the intelligent software agents are designed in the form

of a trust network. Trust networks [29] are a way to quantify trust that is transferred from one

individual to another. For example, Figure 2.6 shows a simple trust network where individual A

has trust in individual B, but does not know individual C. Individual B trusts individual C and

can then ‘refer’ individual C to individual A, thus giving individual A derived inferential trust in

individual C. In the agent architecture individuals are called ‘agents’ and the means by which trust

is quantitatively transferred between agents is subjective logic.

Figure 2.6: Simple trust network showing A’s derived trust in C from B.

2.6.1 Discounting Operator

In a trust network there are two separate operators that transfer trust: the discounting oper-

ator and the consensus operator. The discounting operator is used when agents in a trust network

lie along the same path as in Figure 2.6. The discounting operator is defined by Jøsang [8], and

uses the symbol ⊗ giving

ω
A
C = ω

A
B ⊗ω

B
C (2.20)
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where the superscripts represent an agent having the trust and the subscripts represent an agent, or

piece of information, on which the trust is based. The trust that A has in C from the discounting

operator can be calculated using the following equations:

bA
C = bA

BbB
C (2.21)

dA
C = bA

BdB
C (2.22)

uA
C = dA

B +uA
B +bA

BuB
C. (2.23)

2.6.2 Consensus Operator

The consensus operator is used when one agent holds two opinions on the same agent, or

piece of information, and they need to be combined into a single opinion. The consensus operator

is defined by Jøsang [9], and uses the symbol ⊕ giving

ω
XY
Z = ω

X
Z ⊕ω

Y
Z (2.24)

where again the superscripts represent the agent having the trust and the subscripts represent the

agent, or piece of information, on which the trust is based. To calculate the opinion ωXY
Z using the

consensus operator the following equations for belief, disbelief and uncertainty are used:

bXY
Z = (bX

Z uY
Z +bY

ZuX
Z )/κ (2.25)

f or κ 6= 0 dXY
Z = (dX

Z uY
Z +dY

Z uX
Z )/κ (2.26)

uXY
Z = (uX

Z uY
Z)/κ (2.27)
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bXY
Z =

γbX
Z +bY

Z
γ +1

(2.28)

f or κ = 0 dXY
Z =

γdX
Z +dY

Z
γ +1

(2.29)

uXY
Z = 0 (2.30)

where

κ = uX
Z +uY

Z −uX
Z uY

Z (2.31)

and

γ =
uY

Z
uX

Z
. (2.32)

2.6.3 Example Trust Network

A trust network where the consensus and discounting operators would be needed is shown

in Figure 2.7. Here A needs to form a final opinion on D (ωA
D).

Figure 2.7: Graphical representation of a simple trust network requiring the consensus and dis-
counting operators to calculate trust.
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To form the final opinion the discounting operator is used once along each trust path giving

ω
AB
D = ω

A
B ⊗ω

B
D (2.33)

ω
AC
D = ω

A
C ⊗ω

C
D (2.34)

where the superscript notation AB simply represents A’s opinion based on B’s opinion of D. The

two new derived opinions may be combined using the consensus operator giving

ω
A
D = ω

AB
D ⊕ω

AC
D , (2.35)

or in its long form

ω
A
D = (ωA

B ⊗ω
B
D)⊕ (ωA

C ⊗ω
C
D). (2.36)

In a trust network each intelligent agent needs to form an opinion on other agents in the

network and/or actual information being passed to the agent by the CFD simulation. When setting

an agent opinion the entire belief tuple containing belief, disbelief and uncertainty needs to be

given a value that follows Eq. 2.17. For example, in Eq. 2.36 the opinions ωA
B , ωB

D, ωA
C and ωC

D

each need to have a separate belief, disbelief and uncertainty value before the final opinion, ωA
D, can

be found. After the opinions are set, the mathematics of the consensus and discounting operators

can come into play to compute the final opinion.

Intelligent agents need their opinions defined beforehand in order to operate properly. The

creation and evaluation of these opinions based on factors stemming from the actual simulation

and factors specific to the extraction algorithms themselves allows the agents to make ‘intelligent’
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decisions. For an example of information that might be used to set an agent’s belief tuple think of

a feature that is extracted early on in a steady simulation, perhaps at 100 iterations of a simulation

that takes 10,000 iterations to run to full convergence. The disbelief and uncertainty of this feature

will be higher than say a feature that has been extracted at 9,900 iterations into the same 10,000

iteration simulation. Setting agent opinions means taking information that is known to influence

feature extraction in either a positive or negative manner and then computing a numerical belief,

disbelief and uncertainty value for each agent belief tuple according to that information.

2.7 Massive Data Set Post-processing Concepts

The created intelligent agent structure is meant to be incorporated into the CAFÉ concept.

In this section CAFÉ is defined as well as another similar massive data set post-processing concept

called Evita.

2.7.1 CAFÉ

CAFÉ uses an agent-based structure that was designed for decision support in software

applications and can be incorporated into some of the most popular CFD packages through the use

of a convenient plug-in. CAFÉ uses multiple feature extraction algorithms to increase the accuracy

of extracted features and machine learning to find characteristics that are of particular importance

to a given researcher.

Figure 2.8 shows a conceptual view of the CAFÉ tool. Software running a physics-based

simulation produces enormous amounts of data. The data is mined with various algorithms con-

tained in agents. The feature extraction transforms the multi-variate data into reduced order in-

formation and is exchanged amongst the agents and with the operator. The transformed data is
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much easier to share, allowing the system to tune itself and guide the data-mining efforts. Since

the agents communicate in information space, rather than the data space, the amount of bandwidth

needed for the agents to interact is far less than needed for even a hierarchical data-mining scheme.

CAFÉ’s capability to do concurrent analysis, i.e., during the simulation run time, can ame-

liorate excessive post-processing storage needs by targeting specific regions where features have

been detected. Technologists recommend, and system developers redact specifications, that the

computing system design has scalability as a requirement to anticipate the growth in data pro-

cessing. System scalability might include growth margin in the number of processors, network

bandwidth, type of distributed architecture (homogeneous, heterogeneous), programs, algorithms,

and perhaps the programming languages with emphasis on memory management. Systems that are

not easily extended are referred to as brittle, requiring a redesign or technology change. Software

agents allow CAFÉ to be applied across massively parallel computing systems alongside state of

the art CFD software programs taking full advantage of the parallel environment.

2.7.2 Evita

The closest program to CAFÉ is a concept designed specifically for large data set explo-

ration called Evita [4]. Evita gives two paradigms for feature mining: point classification and

aggregate classification. Point classification verifies points as features before they are aggregated

while aggregate classification aggregates points before they are verified and then verifies the ag-

gregate. It also gives an approach using wavelet transforms to eliminate unimportant features and

locate areas of high interest to a researcher. Evita uses one feature extraction algorithm to create

a binary classification of the flow domain that is then given to supplied data mining algorithms to
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Figure 2.8: CAFÉ conceptual picture showing how the physics domain maps to nodes in the in-
formation space. These nodes communicate among each other, direct the data-mining activity, and
interact with the operator.

classify, cluster, and categorize identified features before they are presented to a researcher. The

computer components that comprise Evita are: an offline preprocessor, a server and a client.
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CHAPTER 3. GENERAL FEATURE EXTRACTION METHOD

In this chapter a general method to extract flow features from CFD data sets using intelli-

gent software agents governed by subjective logic is defined. In Chapter 4 the general extraction

method is applied to fluid vortices. The general extraction method is defined as follows:

1. Extract features using feature extraction algorithms

2. Filter obviously extraneous features

3. Create agent opinions at regions contained in each extracted feature

4. Combine agent opinions to form final opinions of features

5. Aggregate one final feature set from all available feature sets

3.1 Extracting & Filtering Features

First, a CFD data set is run through feature extraction algorithms contained in intelligent

software agents yielding data sets of reduced size containing only features called feature sets. If

two extraction algorithms are in use then there will be two feature sets, one per algorithm. Each

feature set produced is usually significantly different than other feature sets from the same data set.

This can result in large variability between extracted features.
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Usually, variability can be seen in features that have been extracted extraneously because

each algorithm tends to extract different extraneous features. Of features that are extracted ex-

traneously some are clearly extraneous from the start. Computation time can be saved if clearly

extraneous features can be filtered out early using a simple threshold criterion. This criterion may

be a common quantity such as pressure where any feature with an average pressure above the

threshold value is kept and the remaining features are filtered out. The filtering threshold may be

set low to filter out clearly extraneous features only and let most features through since agents are

better suited to filter out features that are not clearly extraneous.

3.2 Forming Opinions on Extracted Features

Once features have been extracted and sent through a simple filter agents can begin to form

opinions on extracted features. When agents form their opinions it means that a belief, disbelief,

and uncertainty value is defined within an agent opinion adhering to Eq. 2.17. Agents form their

opinions based on a pre-defined set of information known to influence the extraction of features.

When all agent opinions have been formed, a final governing opinion may be formed using

the discounting and consensus operators defined in Sections 2.6.1 and 2.6.2 respectively. The final

opinion consists of three values: belief, disbelief, and uncertainty. It is these values that give an

estimate of the expected probability of a feature. If a feature has a high expected probability it will

have a high belief, low disbelief and low uncertainty. If a feature has a low expected probability it

will have a high disbelief and/or high uncertainty with a low belief. Recall that expected probability

is computed from an opinion using Eq. 2.19.

There is no exact measure of when a feature is correct or when a feature is incorrect. For

example, if a feature has a belief of 0.80, a disbelief of 0.10 and an uncertainty of 0.10 is the feature

32



correct? The answer is, it depends. Subjective logic is a logic that deals in subjective beliefs where

there is no clear cut definition of correct and incorrect. Instead of finding if a feature is correct it is

found if a feature has a high expected probability. With the opinion ω = (0.80, 0.10, 0.10,) there

is an expected probability of 85% which indicates that the feature is probable. It will be shown

in Section 5.1.3 that while we are dealing in relative correctness it is fairly straightforward to see

which features are the most probable.

3.2.1 Agent Structure

The graphical representation of the agent structure used to form opinions on the existence of

features is shown in Figure 3.1. AA is the algorithm agent which contains actual feature extraction

algorithms with subscripts 1 and 2 denoting encapsulation of separate algorithms. MA is the master

agent which combines information from multiple AAs to form its opinion. R refers to a region in

the computational domain that is under inspection by the intelligent agents to find whether or

not the feature is probable. For line-type features such as vortex core lines, separation lines and

attachment lines, R is a grid point contained in the extracted line. For features such as shock waves,

R can be a 2D or 3D region contained in the extracted shock. The end goal is for the MA to form

an opinion on the R meaning that the MA will have some belief, disbelief, and uncertainty about

the feature that contains the R.

Each AA forms its own opinion on the R denoted by ω
AA1
R and ω

AA2
R . This notation gives

the agent forming the opinion as the superscript and the region the opinion is formed on as the

subscript. The MA forms an opinion on each AA in use given by ωMA
AA1

and ωMA
AA2

. Once the

initial opinions are formed they can be combined into a final opinion, ωMA
R , on the existence of a
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feature in the R. Eq. 3.1 uses the consensus and discounting operators to give the final opinion and

Eqs. 3.2–3.4 give the belief tuple values in the final opinion for the common condition κ 6= 0.

Figure 3.1: Graphical representation of two algorithm agent structure.
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While Figure 3.1 displays two AAs any number of AAs may be incorporated into the agent

structure allowing the use of any number of extraction algorithms. Figure 3.2 shows how each

algorithm plays a role in only one of the transitive trust paths allowing a modular handling of
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multiple algorithms. A transitive trust path can be visualized as any one path from the MA to

the R. Any algorithm’s path may be added or removed from the trust network without affecting

other branches of the network. This allows the agent structure to easily handle new and updated

extraction algorithms. For example, if a new separation and attachment line extraction algorithm

is defined it can be encapsulated in an agent and easily inserted into the agent structure without

requiring a large change in the previous agent structure. For multiple AAs, N may be increased

to account for all included algorithm agents, or N may be decreased to 1 when only a single

AA is used. Eq. 3.6 uses the consensus and discounting operators to give the final opinion as a

combination of all opinions for any number of AAs. With an increased number of algorithms there

are more feature sets allowing the agents to search through an increased amount of features giving

more information on what features are probable and what are not. Also, with added algorithms

features that were not previously extracted could possibly be extracted. An agent cannot select a

feature if it is not in one of the available feature sets.

Figure 3.2: Graphical representation of modular agent structure.
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3.2.2 Algorithm Agent Opinions

The first agent opinions to set are the AA, or algorithm agent, opinions. Recall that in a

two AA structure there are two feature extraction algorithms that output two separate feature sets.

This case can be seen in Figure 3.1 and Eq. 3.1. It is important to think of each feature set as

separate, remembering that each feature set has been extracted by a different extraction algorithm

and thus by a different AA. Consider Figure 3.3 containing two hypothetical separate simple line-

type feature sets produced by AA1 (black) and AA2 (blue). The black line comprises feature set 1

and the blue line comprises feature set 2. While these line-type feature sets are displayed together

they are separate sets.

Figure 3.3: Two separate simple sets of line-type features hypothetically extracted by AA1 (black)
and AA2 (blue).

With these two feature sets in mind the opinions of AA1 and AA2 for feature set 1 may be

defined. AA1 needs to form an opinion at each point contained in each line in feature set 1. Also,

AA2 needs to form an opinion at each point contained in each line in feature set 1. Why does AA2

need to form an opinion on feature set 1 even if it does not extract the features, or the exact points,

contained in the feature? This follows from Figure 3.1 and the resulting Eq. 3.1. If AA2 does not

form an opinion at each point, or each R, then the left-hand-side of Eq. 3.1 cannot be evaluated

for there will be no values in ω
AA2
R . Both AA1 and AA2 need to form an opinion at each point in

feature set 1 leading to a dichotomy for defining the algorithm agents. AA1 extracts the features
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in feature set 1 so it is termed the extracting algorithm agent (AAE). AA2 does not extract the

features in feature set 1 so it is termed the non-extracting algorithm agent (AANE).

After opinions are defined for feature set 1, AA1 and AA2 need to define their opinions for

feature set 2. Recall that feature set 2 is extracted by the feature extraction algorithm contained in

AA2. This changes how opinions are set from feature set 1. In feature set 1, AA1 was the extracting

algorithm agent and AA2 was the non-extracting algorithm agent. Now the roles are reversed for

feature set 2. AA2 extracts the features in feature set 2 so it is AAE, and AA1 is AANE. Once each

feature set has had opinions defined for AA1 and AA2 there are no more AA opinions to define.

This dichotomy between extracting and non-extracting algorithm agent opinions works just

as well with multiple algorithms contained in the trust network as shown in Figure 3.2 and Eq. 3.6.

At each created feature set there will be one AAE and the rest of the algorithm agents will be non-

extracting algorithm agents. With this dichotomy in place it is now possible to define the AAE and

AANE opinions.

Extracting Algorithm Agent Opinion

The belief tuple set for AAE is defined as follows: belief is set by extraction algorithm

strengths, disbelief is set by extraction algorithm weaknesses, and uncertainty is set by flow feature

characteristics. This information is shown in Table 3.1. Recall that the three belief tuple values

must conform to Eq. 2.17.

Table 3.1: How to set AAE opinion.

AAE Set by
b Strengths
d Weaknesses
u Feature characteristics

37



Belief set by algorithm strengths means that each strength is given to the agent and a belief

is set based on whether or not the extracted region has the strength characteristics. For example,

work done by Roth [7] showed that the SH algorithm adequately extracts vortex core lines when

they are close to straight and when the vortex has high strength. These two strength characteristics

are given to AAE and a high belief of one is set if the region has both characteristics, a low value

near zero is set if the region has neither characteristic and any value in between the high and low

values may be given for all other cases.

Disbelief is set similar to belief except the weaknesses, or situations where a feature ex-

traction algorithm may spuriously extract a feature, govern the value. The weakness characteristics

may be the exact opposite of the strength characteristics. Continuing the example used for belief,

the SH algorithm does not work well for curved vortices or vortices with a low strength. So if a

vortex has both of these weakness characteristics the disbelief will be set high, if neither charac-

teristic is present than the disbelief value is zero and for other cases a disbelief value may be set

between the high and low values.

Uncertainty is set from scientifically known characteristics of the flow feature. For ex-

ample, it is not common for a shock wave to form in empty space but rather there is usually a

physical boundary near the shock. For external flows there is commonly a physical body that the

flow adjusts to forming the shock. For internal flows, such as flow in a nozzle, a shock wave will

be near to the nozzle walls. A criterion that a shock should be within a certain distance from a

physical boundary can be given to the agent. If a shock forms up against a physical boundary the

uncertainty will be zero, if the shock forms away from a boundary the uncertainty will be high

and other uncertainty values are given for situations in between. There are many types of flow

feature characteristics that can be input to the agents. The only criterion that must be met is that

38



this information is quantifiable. It is not possible to input information that is not quantifiable. This

criterion also holds for information used to set the belief and disbelief.

The main strength of setting the AAE opinion values in this manner is that this template can

easily be adapted to any feature with corresponding feature extraction algorithms. For example, if

a feature has three feature extraction algorithms then as long as the strengths of each algorithm,

the weaknesses of each algorithm, and some information about the physical formation of the fea-

ture are known they can be added to agents allowing them to make decisions about the expected

probability of extracted features.

Non-extracting Algorithm Agent Opinion

After defining the AAE’s opinion a definition can be given for the AANE’s opinion. The

belief tuple set for the AANE is defined as follows: belief is set by extraction algorithm strengths,

disbelief is set by extraction algorithm weaknesses, and uncertainty is set by the distance from

the closest extracted region. For the AANE the belief and disbelief values are set from the AAE

strengths and weaknesses.

The uncertainty is set according to the minimum distance between any region extracted by

the AANE and the region under consideration. For example, if there are two feature sets and the

region under inspection is contained in feature set 1 then the minimum distance would be measured

between that region and the closest region contained in feature set 2. The idea is when the AANE

extracts a region close to the AAE, the AANE is more certain about the region so its uncertainty

is near zero. When the AANE does not extract a region close to the region under inspection, it is

uncertain about the AAE’s extracted region meaning that its uncertainty will be high.
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Table 3.2: How to set AANE opinion.

AANE Set by
b AAE Strengths
d AAE Weaknesses
u Minimum distance from AANE extracted point

3.2.3 Master Agent Opinion

The MA can be thought of as the governing, or controlling, agent. It has the most influ-

ence on the believability of extracted features. Its job is to synthesize information from multiple

AAs and provide a final decision on the extracted features. The MA’s belief tuple is based on the

idea that as a simulation converges to a final solution, so too will a feature converge from some

beginning spatial location to a final location. This is implemented through a displacement measure

called feature displacement (FD). Feature displacement is a measure of the displacement, or move-

ment, of a region between any number of iterations. FD is divided by a reference length which

nondimensionalizes the FD making it easier to work with across separate simulations with large

variations in length scales. For line-type features the reference length is the line length. Eq. 3.7

gives the FD when the region is a point. Here the subscript i refers to the iteration under inves-

tigation and i− 1 refers to the previous iteration where features were extracted which could be

hundreds or thousands of iterations prior.

FDi =
|Pi−Pi−1|

`i
(3.7)

Figure 3.4 gives an example of feature displacement between two line-type features. One of

the lines is extracted at two hundred iterations with the other extracted at three hundred iterations.

If a similar point is taken from each line the feature displacement at that point is defined as the
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magnitude of the distance between the two points divided by the length of the line at three hundred

iterations. Each point contained in the three hundred iteration core line has a feature displacement

based on the two hundred iteration core line.

Figure 3.4: Two line-type features extracted at 200 and 300 iterations show that feature displace-
ment is found between a similar point on each line.

Another quantity used to define the MA’s opinion is the change in feature displacement

(∆FD). This value corresponds to the absolute value of the slope of a feature displacement vs.

iterations plot. Change in feature displacement is defined as:

∆FDi =
|FDi−FDi−1|
# o f iterations

. (3.8)

With feature displacement and change in feature displacement defined, the belief tuple

for the MA is specified as follows: belief is set by feature displacement and change in feature

displacement, disbelief is set by feature displacement and uncertainty is set by change in feature

displacement. This information is shown in Table 3.3.

The belief value will be high, or close to one, when the feature displacement is small as

well as the change in feature displacement. The belief value will be low, or close to zero, when the
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feature displacement and the change in feature displacement is high. This says that the MA believes

a feature when the feature has moved only a small amount between iterations under investigation

and has a trend that suggests the feature will not move substantially with more iterations. The

disbelief value will be low when feature displacement is low and high when feature displacement is

high. This says that the MA disbelieves a feature if there is a large amount of feature displacement

or does not disbelieve a feature if the feature displacement is small. The uncertainty value is high

when change in feature displacement is high and low when change in feature displacement is low.

This says that the MA is uncertain about the feature if the feature could move substantially with

more iterations.

Table 3.3: The MA opinion values set for
any feature extraction algorithm.

MA Belief Tuple
b FD & ∆FD
d FD
u ∆FD

3.3 Aggregating Final Feature Set

After regions contained in features are given final opinions by the intelligent agents, feature

sets may be combined into one final feature set. This is done by finding which features have high

expected probabilities and which features do not. The features with higher expected probabilities

are selected while the features with lower expected probabilities are discarded. When feature

extraction algorithms extract features that are the same feature then the feature with the highest

expected probability is selected and the other feature is discarded.
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Currently, this process is not automated but rather done by visual interpretation. It can be

automated by implementing a search criterion that locates the same feature in feature sets created

by separate extraction algorithms and then compares those features and selects the feature with the

highest expected probability. The search criterion could be a simple distance threshold where if a

feature in a separate feature set lies within some spatial bounding box then it is the same feature.

For those features that do not have the same feature extracted by a separate algorithm then they

may be selected or discarded based on some combination of their belief tuple values and their

probability expectation.
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CHAPTER 4. VORTEX CORE EXTRACTION METHOD

While the general feature extraction method using intelligent software agents defined in

Chapter 3 works for any feature, this chapter applies the method to vortex core line extraction.

4.1 Extracting and Filtering Vortex Cores

Two vortex core line extraction algorithms are used: RP and SH. These two algorithms

were described in Section 2.3. From these algorithms two feature sets are created. Each feature

set is a collection of points connected into lines. Some lines have been extracted as vortex cores

but are clearly extraneous lines. Figure 4.1 gives an example of a data set that has had vortex core

lines extracted where some lines are clearly extraneous. They are clearly extraneous because the

flow is moving from the bottom right corner to the top left corner and the inlet boundary condition

is steady, uniform flow with low freestream turbulence. Vortices are not likely to form in these

conditions upstream of a delta wing. Three filters are used to filter extraneous cores from vortex

core line feature sets: point count, strength, and quality.

4.1.1 Point Count Filter

The point count filter removes lines that have fewer points than a specified minimum value.

This filter removes cores that have low point counts because they are highly unlikely to be coherent

vortex structures. This is true especially in Reynolds-averaged Navier-Stokes (RANS) simulations

that do not resolve turbulent eddies but rather model turbulence. This research applies to RANS
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Figure 4.1: Unfiltered delta wing data set showing vortex cores with some cores clearly extraneous.

simulations only so the intelligent agents have not extracted features from CFD data sets that are

not RANS simulations. The behavior of the point count filter may change if a simulation is a

Large Eddy Simulation (LES) where some turbulent eddies are resolved or a Direct Numerical

Simulation (DNS) where all turbulent eddies at or above the Kolmogorov scale are resolved.

A suitable point count minimum threshold value depends upon the density of the grid used

to compute the CFD solution. There is a common trend that as the grid density increases the

minimum threshold value increases and as the grid density decreases the minimum threshold value

decreases. For the delta wing data set explained in Section 5.2 with a relatively high grid density

the minimum point count value is 5. This value could be set as high as 10, but it is better not to filter

out possible cores before they get to the agents. For the blunt fin data set explained in Section 5.1

with a relatively low grid density the minimum point count value is 2. While the minimum point

count values were set constant in these two simulations they may be changed by a user as the user
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sees fit. If the proper value for the point count filter is not known it is best to set it low as it may

filter out possible cores before they get to the agents.

4.1.2 Strength Filter

This filter removes points contained in vortex core lines that have a strength value below

the minimum strength value where vortex strength is defined in Section 2.4.2. This is done because

strength is synonymous with the swirling motion around the core and a highly probable vortex will

have high swirling motion around the core.

While it would be nice to have a value for vortex strength that could be applied across many

data sets this is not the case. Vortex strength relies heavily on the local flow velocity which can

have a large variation between data sets. There is a common trend that as the velocity increases

the minimum vortex strength increases and as the velocity decreases the minimum vortex strength

decreases. For the delta wing data set that has a freestream Mach of 0.3, the minimum value for

vortex strength is set at 50.

One thing to keep in mind is that for numerical stability some codes will divide the velocity,

pressure/density, and temperature values by a reference value. This makes these values close to

one giving the code more numerical stability. If this is the case, then the vortex strength value must

be set very low because velocities are close to 1. This happens in many old plot3D data sets that

are used to validate feature extraction codes [30].

In this research the vortex strength filter is implemented before the two feature extraction

algorithms are complete. In the SH and RP algorithms it is found if the conditions of Eq. 2.6 and

Eq. 2.14 hold and the result is a set of points that must be aggregated into lines. Before the lines

are aggregated the points with a vortex strength below the minimum value are removed.
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4.1.3 Quality Filter

The quality filter filters out any vortex core line that has an average quality above the

maximum quality value. Recall that quality is defined in Section 2.4.1 as the angle between a vortex

core line and its associated velocity vector. Since quality is a pointwise variable the average quality

is computed from all points contained in the vortex core line under consideration. Unlike vortex

strength and point count, the quality filter does have a threshold value that is constant across data

sets. Roth [7] gives a suggested maximum quality threshold between 30◦ and 45◦. A maximum

quality value of 35◦ is used in this research which is sufficient to filter out many extraneous cores.

4.2 Forming Opinions on Extracted Vortex Cores

After the two feature sets have been filtered, four opinions need to be formed at each point

contained in each line of both feature sets: ωMA
AA1

, ωMA
AA2

, ω
AA1
R , and ω

AA2
R . Here R refers to a point

contained in a vortex core line and AA1 and AA2 refer to the algorithm agents containing the SH

and RP algorithms respectively. In practice only three of the four opinions must actually be formed

as the opinions ωMA
AA1

and ωMA
AA2

are the same. Recall from Section 3.2.3 that the information used

to set the master agent opinion does not depend on the feature extraction algorithm in use. The

master agent opinion depends on the feature displacement and the change in feature displacement

which are measures of feature movement through a number of simulation iterations. This allows

the opinions to be the same without any loss of information.

To define the algorithm agent opinions the information in Table 3.1 needs to be defined

and quantified. Roth [7] gives an excellent comparison of both the SH and RP vortex extraction

algorithms along with their respective strengths and weaknesses. The strengths and weaknesses

information used here is taken from his work.
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4.2.1 Sujudi-Haimes Strengths, Weaknesses and Feature Characteristics

Table 4.1 gives the strengths, weaknesses and feature characteristics used for the SH vortex

core extraction algorithm. The SH algorithm is specifically designed to extract straight vortex cores

which is why a straight core is part of its strengths. The SH algorithm also works well when there

is a strong rotational velocity around the core. This situation is quantified by the vortex strength

so a high vortex strength is added as an algorithm strength. Quality is independent of extraction

algorithm but is used in the belief value because vortices with a low quality correspond with a

probable vortex core line.

Table 4.1: AAE opinion values set for the SH
vortex core extraction algorithm.

AAE Set by Sujudi-Haimes
b Strengths straight core, high strength, low quality
d Weaknesses curved core, low strength, high quality
u Feature characteristics distance from possible trip point

The weakness characteristics for the SH algorithm are the exact opposite of the strength

characteristics. Curved core, low strength, and high quality are all characteristics that negatively

affect the correct extraction of vortex core lines.

While there are many possible feature characteristics the only feature characteristic used in

this research is the distance from a possible vortex trip point. Other feature characteristics include

the 2π criterion where a core line must contain a streamline that rotates at least one revolution

around the core and a low pressure at the vortex core when compared to the vortical flow further

away from the core. Future research could implement other vortex feature characteristics into the

extracting algorithm agent opinion ω
AAE
R .
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4.2.2 Belief Tuple Values for Sujudi-Haimes Extracting Algorithm Agent

For each value in AAE’s belief tuple when SH is the feature extraction algorithm the in-

formation from Table 4.1 is used to set the value. This information is quantified and input into a

linear function which sets each belief tuple value. The linear functions are shown in Eq.’s 4.1–4.3.

b = 0.4 ·NormalAverage+0.6 (4.1)

d =−0.4 ·NormalAverage+0.4 (4.2)

u = 0.5 ·DistanceFromVortexTripPoint (4.3)

where

NormalAverage =
NormalVortexStrength+NormalCurvature+NormalQuality

3
(4.4)

and

NormalVortexStrength =


∣∣∣ VortexStrength

VortexStrengthMax

∣∣∣ , |VortexStrength|< VortexStrengthMax

1, |VortexStrength| ≥VortexStrengthMax

(4.5)

NormalCurvature =


∣∣ Curvature

CurvatureMax −1
∣∣ , Curvature < CurvatureMax

0, Curvature≥CurvatureMax

(4.6)

NormalQuality =


∣∣∣ Quality

QualityMax −1
∣∣∣ , Quality < QualityMax

0, Quality≥ QualityMax.

(4.7)

50



Each of the three strength values has a corresponding maximum value: VortexStrengthMax,

CurvatureMax, and QualityMax. These maximum values allow each strength value to be put on a

scale from zero to one. Zero meaning that the algorithm is operating away from its strengths and

one meaning that the algorithm is operating at its strongest point. When all three values are put on

the same scale they may be averaged and combined into a single value called the NormalAverage

which is then used in Eqs. 4.1 and 4.2. This is useful because it allows Eqs. 4.1 and 4.2 to be used

regardless of how many strength values are defined.

Eqs. 4.1, 4.2, and 4.3 were chosen to accurately represent the belief, disbelief, and uncer-

tainty a researcher familiar with the SH algorithm would have when it extracted vortex cores in

given situations. They are not set in stone and may be changed if it is found that different val-

ues more accurately reflect a researcher’s opinion. When NormalAverage = 1, corresponding to

a situation where SH extracts a feature where all of its strength characteristics are present, then

b = 1 and d = 0. This makes intuitive sense because the algorithm should be believed when it

extracts features where all its strengths are present. When NormalAverage = 0 corresponding to

SH extracting features where none of its strengths are present then b = 0.6 and d = 0.4. Why then

is b 6= 0? Belief is not equal to zero here because SH did extract the core line. If SH does detect

a feature there must be some belief that it is operating correctly. Now let’s look at a situation be-

tween these two extremes. What if NormalAverage = 0.5 which corresponds to the SH algorithm

extracting cores where some of its strengths are present and some are not. This gives b = 0.8 and

d = 0.2 which says that there is a significant amount of belief that the SH algorithm extracted the

core properly, but it might not have.

While it is nice to have b + d = 1 the condition for the belief tuple is b + d + u = 1 given

in Eq. 2.17. So clearly when u > 0 then b + d + u > 1. When u > 0 belief is held constant and
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disbelief and uncertainty are equally decreased until the condition holds. In Eq. 4.3 the uncertainty

is defined only by DistanceFromVortexTripPoint and if DistanceFromVortexTripPoint = 0 then

u = 0. As it increases the uncertainty will increase proportionately. So u > 0 will be all cases

except when a vortex core starts exactly on a solid boundary.

From Eq. 4.5 it can be seen that condition two gives a NormalVortexStrength = 1 which

corresponds to SH extracting a vortex with a high rotational velocity around the core which is one

of its strengths. If VortexStrength = 0, then NormalVortexStrength = 0 meaning that there is no

rotational velocity around the core so it is obviously extraneous.

Eq. 4.6 allows the NormalCurvature value to be one when there is zero curvature as SH

was designed to extract cores with zero curvature. The CurvatureMax value may be set according

to the definition of curvature used. In this research Eq. 2.16 is used to calculate curvature and

CurvatureMax = 0.30 is an acceptable value for this definition.

Eq. 4.7 is used to calculate NormalQuality and it is set similar to NormalCurvature be-

cause a small quality value leads to a more probable extraction of a vortex core. QualityMax = 50◦

is used as the maximum value. Recall from Section 4.1.3 that our minimum quality filter value is

35◦. Then why isn’t QualityMax = 35◦? It is 50◦ because the quality filter filters out lines, not

points, that have an average value above 35◦. While most points contained in the lines will have a

quality value below 35◦ there are still quality values at points that may be 50◦ or higher.

One consequence of Eqs. 4.1 and 4.2 is with NormalAverage = 1 which corresponds to SH

operating at an optimal value for all of its strengths then bAA1
R = 1 and dAA1

R = 0. This says that

AAE has a complete belief in the extracted feature and no disbelief. This is appropriate because the

algorithm should be believed when it is operating at optimal conditions. When NormalAverage = 0

this corresponds to the condition that SH is operating at all of its weaknesses. This sets bAA1
R = 0
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and dAA1
R = 1 saying that AAE has no belief in the extract feature and has total disbelief. This is

an appropriate opinion because the feature extraction algorithm should not be believed when it is

operating in areas for which it has not been designed.

4.2.3 Roth-Peikert Strengths, Weaknesses and Feature Characteristics

Table 4.2 gives the strengths, weaknesses and feature characteristics used for the RP vortex

core extraction algorithm. The RP algorithm was designed specifically to extract curved vortex

core lines as outlined in Section 2.3.2 so curved core is added to the algorithm’s strengths. The RP

algorithm also works well with core lines that have a low rotational velocity around the core, or

low vortex strength. It is not that the RP algorithm does not extract correctly vortices with a high

rotational strength because it does. It just also works well with vortices that have a low strength.

Once again quality is used as a strength even though it is algorithm independent.

Table 4.2: AAE opinion values set for the RP
vortex core extraction algorithm.

AAE Set by Roth-Peikert
b Strengths curved core, low strength, low quality
d Weaknesses straight core, near zero strength, high quality
u Feature characteristics distance from possible trip point

Two of the weakness characteristics for the RP algorithm are the opposite of the strength

characteristics: straight core and high quality. Setting a straight core as a weakness characteristic

might be misleading because the RP algorithm does not extraneously extract straight vortex core

lines. A straight core is a weakness characteristic because when it comes to straight core lines

there is more belief that the SH algorithm will extract them correctly than the RP algorithm. Using
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the SH and the RP algorithms together in this fashion helps us to match each algorithms strengths

with the flow situations for which they were designed. The last weakness for the RP algorithm is

a near zero strength. This simply means that there is some minimum threshold on vortex strength

for which the RP algorithm correctly extracts vortices.

The feature characteristic used for the RP algorithm is the same as the feature characteristic

used for the SH algorithm which is distance from a possible vortex trip point. When using multiple

feature extraction algorithms the same feature characteristics are used for all algorithms since

feature characteristics are not algorithm dependent.

4.2.4 Belief Tuple Values for Roth-Peikert Extracting Algorithm Agent

For each value in AAE’s belief tuple when RP is the feature extraction algorithm the infor-

mation from Table 4.2 is used to set the value. This information is quantified and input into a linear

function which sets each belief tuple value. The linear functions are shown in Eq.’s 4.8–4.10.

b = 0.4 ·NormalAverage+0.6 (4.8)

d =−0.4 ·NormalAverage+0.4 (4.9)

u = 0.5 ·DistanceFromVortexTripPoint (4.10)

where

NormalAverage =
NormalVortexStrength+NormalCurvature+NormalQuality

3
(4.11)
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and

NormalVortexStrength =


∣∣∣ VortexStrength

VortexStrengthMax

∣∣∣ , |VortexStrength|< VortexStrengthMax

1, |VortexStrength| ≥VortexStrengthMax

(4.12)

NormalCurvature =


∣∣ Curvature

CurvatureMax

∣∣ , Curvature < CurvatureMax

1, Curvature≥CurvatureMax

(4.13)

NormalQuality =


∣∣∣ Quality

QualityMax −1
∣∣∣ , Quality < QualityMax

0, Quality≥ QualityMax.

(4.14)

In Eq. 4.13 the definition of NormalCurvature is different for RP than SH. This is be-

cause RP is defined to extract curved cores so the NormalCurvature value should be one when

Curvature≥CurvatureMax. The definition for NormalQuality is the same for RP as SH. There is

a slight difference between Eqs. 4.5 and 4.12 found in the NormalVortexStrength value. For SH

VortexStrengthMax is set higher than RP. This is done because RP works better than SH for cores

that have a low strength, but a zero strength will still correspond to an extraneous vortex.

While it might seem that maximum values such as VortexStrengthMax and the constants

from Eqs. 4.8–4.10 must be set exactly they do not. These values are applied equally to all feature

sets serving to lower or higher each probability expectation value given in the final opinion. One

problem when setting these values is that if the VortexStrengthMax value is set too low and if the

QualityMax value is set too low than the opinions bunch around a belief of one and a probability
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expectation of one. Also, if the constant in Eq. 4.8 is changed from 0.6 to 0.8 then the belief values

will bunch around one.

Figure 4.2 gives a graphical representation of vortex core opinions with good and poor

spacing. A circle represents a vortex core opinion and the scale of the figures may represent

the belief value of each opinion or the probability expectation value for the entire opinion. It is

important to have well spaced opinions so decisions about the most probable cores are simpler. In

Figure 4.2a the red circle is clearly the vortex core with the highest belief or probability expectation

and the blue circle is below it with the second highest value. In Figure 4.2b this behavior is not

as easily distinguished. It looks as if the red circle still has the highest value but it is not as clear.

Also, are all the vortex cores bunched around one probable or just the red and blue circles as in

Figure 4.2a? It is hard to tell. Maximum values and constants need to be defined such that there

is good spacing of the belief and expected probability. With a good spacing it is much simpler

to decide which vortex cores are more probable. This behavior is shown in Section 5.1.3 and

Figure 5.6 where there is a comparison of belief, disbelief, uncertainty, and probability expectation

between the same extracted core by the SH and RP algorithms.

(a) (b)

Figure 4.2: (a) Vortex core opinions with good spacing. (b) Vortex core opinions with poor spacing.
The scale on either figure may represent belief or expected probability.
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The maximum value that plays the most importance is CurvatureMax because essentially

it is selecting between the two algorithms. There is a trend when setting the CurvatureMax value

that when it is set too high there is a bias to believe all cores extracted by RP and disbelieve all

cores extracted by SH. When CurvatureMax is set too close to zero then the bias shifts to believing

all cores extracted by SH and disbelieving all cores extracted by RP. CurvatureMax = 0.3 has been

found to give a good estimate of belief and disbelief to vortex cores extracted by the SH and RP

algorithms. This value corresponds to using the curvature definition of Eq. 2.16.

4.2.5 Non-extracting Algorithm Agent Opinion

For each value in AANE’s belief tuple the information from Table 3.2 is used to set the

value. This information is quantified and input into a linear function which sets each belief tuple

value. The linear functions are shown in Eq.’s 4.15–4.17.

b = 0.8 ·NormalAverage+0.2 (4.15)

d =−0.8 ·NormalAverage+0.8 (4.16)

u = 0.5 ·NormalMinimumDistance (4.17)

where NormalAverage is computed from Eqs. 4.4 and 4.11 based on what algorithm extracted the

vortex cores and

NormalMinimumDistance =
∣∣∣∣ MinimumDistance
MinimumDistanceMax

∣∣∣∣ . (4.18)
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The NormalMinimumDistance value is a measure of how close a point is from AANE to

the point under consideration from AAE. MinimumDistanceMax = 2 is used for the blunt fin data

set and MinimumDistanceMax = 0.5 is used for the delta wing data set because the length scales

are different. These values were chosen to give good spacing for the final opinions ωMA
R . To

maintain good spacing for other simulations as the length scales increase MinimumDistanceMax

will increase and as the length scales decrease MinimumDistanceMax should decrease.

The constants in Eqs. 4.15 and 4.16 were defined in a similar fashion to the constants from

Eqs. 4.1 and 4.2. Here the agent forming the opinion did not extract the region so it starts with

less belief that the region is correct. This is shown by the constant 0.2 in Eq. 4.15 when before in

Eq. 4.1 it was 0.6. If NormalAverage = 1 then b = 1 and d = 0 similar to setting the extracting

algorithm agent opinion. Also, these equations have the condition that b + d = 1 and when u > 0

then b + d + u > 1 which is in direct contradiction with the condition of Eq. 2.17. This leads

to a significant difference between the extracting and non-extracting opinions. In the extracting

opinion if b+d +u > 1 then the disbelief and uncertainty are adjusted until b+d +u = 1. For the

non-extracting agent opinion if b+d +u > 1 then the uncertainty is left unchanged and the belief

and disbelief are adjusted until the condition b+d +u = 1 is met.

4.2.6 Master Agent Opinion

For each value in the MA’s belief tuple the information from Table 3.3 is used to set the

value. This information is quantified and input into a function which sets the value. The functions

are shown in Eqs. 4.19–4.21. Eqs. 4.20 and 4.21 are linear functions while Eq. 4.19 is nonlinear.

Linear functions were used to simplify the resulting equations but a planar function was needed

for Eq. 4.19 to use information from both the feature displacement and the change in feature dis-
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placement. Recall that the FD and the ∆FD are defined for line-type features in Section 3.2.3 and

measure the movement of features between iterations and the rate of change in feature movement

between iterations.

b =
−2.25 ·∆FD−0.02 ·FD

2
+1 (4.19)

d = 0.02 ·FD (4.20)

u = 2.25 ·∆FD (4.21)

The constants 2.25 and 0.2 from Eqs. 4.19–4.21 were determined to give the final opinion

ωMA
R good spacing for the probability expectation value. Different values for the constants were

tried and a visual inspection was done of the extracted cores. The constants giving the best spacing

for the probability expectation value were selected. Eq. 4.21 shows that when ∆FD = 0 then u = 0

meaning that there is no uncertainty when FD does not change between iterations. When there is

a large change in FD between iterations then the uncertainty value will be high. Eq. 4.20 shows

that when FD = 0 then d = 0 meaning that when a vortex core does not move between iterations

the MA has no disbelief in the extracted core. As the FD value increases, or as the extracted core

lines are extracted at different spatial locations, the disbelief in the extracted cores will increase.

Eq. 4.19 gives the belief value as a function of FD and ∆FD. When FD = ∆FD = 0 corresponding

to no feature movement between iterations and no rate of change in feature movement then the MA

will have total belief in the extracted features. This corresponds to a CFD simulation being fully

converged and when a CFD simulation is fully converged the MA should have a full belief in

extracted features. When FD and ∆FD have large values this corresponds to extracted features

moving between iterations meaning that the vortex cores are still converging so the MA has less
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belief in the extracting algorithm. The behavior of the FD value in a converging simulation can be

seen in Section 5.1.1 and Figure 5.4.

4.3 Aggregating Final Vortex Core Feature Set

When aggregating a final feature set of vortex core lines there are two feature sets to select

from. Each feature set contains vortex core lines that have been filtered using the three filters

explained in Sections 4.1.1–4.1.3. At each point in each core line in both feature sets there is a

final opinion that gives the belief, disbelief, and uncertainty of the point. From these values the

expected probability of each point can be found using Eq. 2.19. The probability expectation value

gives the expected probability of the point contained in each feature. From the expected probability

of each point the expected probability of the entire line can be found by taking an average.

Currently, when forming the final feature set the two feature sets are searched through to

determine if any features have been extracted in the same place. In other words, it is found if the

same feature has been extracted by both algorithms. It happens frequently that the same vortex

core has been extracted by both algorithms but the position and length of the core lines are not the

same. There usually is a noticeable displacement between a core extracted by SH and RP even if

it is the same core. Once similar cores are found, the core line with the highest average expected

probability is selected for the final feature set and the other core is not.

After selecting the more probable similar cores, each feature set is manually searched to

find if any other vortex cores have high expected probabilities. There is no fast and hard rule that

defines when a feature is correct based on the expected probability or the individual belief tuple

values. A good rule of thumb is that a vortex core should have an average expected probability

value around 0.85.
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Keeping in mind that this vortex feature extraction method is to be incorporated into the

CAFÉ concept it is useful to consider how a researcher will work with a final feature set. If the

vortex cores selected for the final feature set are ranked in order of decreasing expected probability

with the first feature having the highest expected probability, then a researcher will have the best

starting points for evaluating his CFD data set.
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CHAPTER 5. METHOD VALIDATION

Two CFD simulations were run on separate geometries to verify that concurrent feature

extraction is possible and to validate the vortex core extraction method described in Chapter 4.

The two geometries are common in CFD feature extraction research: a blunt fin and a delta wing.

The blunt fin was selected as an initial test case that had well defined vortex cores and was simple

to grid and solve using a standard desktop computer. The delta wing data set was selected as it had

a more complex flow field that would help validate the vortex core extraction method.

One crucial piece of information needs to be clear for a proper interpretation of results.

When agents form opinions on extracted cores they have information from the current iteration of

the simulation and previous iterations only. They do not use information from the fully converged

simulation, or any iterations greater than the current iteration, to form opinions on extracted cores.

Belief, disbelief, uncertainty, and expected probability of vortex cores can be determined without

requiring a final converged solution giving information about a final simulation’s expected vortex

cores before a simulation is 100% converged.

5.1 Blunt Fin

A CFD simulation was run of a blunt fin [31] geometry using the steady RANS equations

solved using Fluent 6.3. The computational domain was generated as a structured curvilinear grid

with 44,000 nodes and is displayed in Figure 5.1. The Reynolds number based on the fin diameter
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was 630,000 and the one equation Spalart-Allmaras method was used to model turbulence. The

inlet boundary condition was a pressure-inlet condition with the flow velocity constrained to the

downstream direction. The inlet velocity profile from the Hung and Buning blunt fin was used as

the input velocity profile for the pressure-inlet boundary condition with a freestream M = 2.95.

The outlet boundary condition was a pressure-outlet condition, the top boundary condition was a

symmetry condition. The fin and the lower boundary were modeled as walls. The flow solver was

a compressible pressure-based solver and the flow field was initialized using a small velocity in the

downstream direction. The solution reached full convergence at 900 iterations and the simulation

residuals are displayed in Figure 5.2. Concurrent feature extraction was replicated by exporting

Figure 5.1: Computational domain for the blunt fin simulation.

and saving to hard disk the entire flow field data set every 45 iterations throughout the flow solution.

Each of these saved data sets were then input into the vortex core extraction method described in

Chapter 4 where vortex core lines were extracted from each of the saved data sets using the RP and
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the SH algorithms (see Section 2.3) resulting in two feature sets per saved data set. Agents then

produced final opinions on all features in both feature sets and a final feature set was selected per

data set. This simulation is not of the magnitude where concurrent feature extraction is required,

but does yield a good starting point for concept verification.

Figure 5.2: Residual plot for the blunt fin simulation.

5.1.1 Vortex Cores in Converging Data Sets

Figures 5.3a–d display the vortex core extraction results obtained from the RP algorithm.

Extraneous cores have already been filtered out to make the images easier to understand. The

black lines represent extracted vortex core lines from the converged data set and the red lines

represent extracted core lines from the converging data sets. The percent convergence is obtained

by dividing the iteration containing the converging cores by the number of iterations at full solution

convergence and multiplying by one hundred. In order to give a visual comparison, the core lines
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extracted from the converged solution, i.e. the algorithms correct features, are displayed with the

core lines extracted at intermediate steps.

(a) 30% converged (b) 40% converged

(c) 50% converged (d) 60% converged

Figure 5.3: Comparison of RP extracted vortex core lines from the converged data set (black) and
converging data sets (red). (a) At 30% converged the horseshoe line begins to take shape upstream.
(b) At 40% converged the horseshoe line and the fin line are almost correctly resolved. (c) At 50%
converged the end point of the fin line moves downstream. (d) At 60% converged the horseshoe
line is spatially correct but the fin line is not.

There are two vortex core lines for the blunt fin data set: the horseshoe vortex core line

and the fin vortex core line. The core line that forms around the front of the fin in a horseshoe

like shape is called the horseshoe line. The core line near the side of the fin is called the fin line.

The horseshoe vortex forms as a result of flow separation upstream of the blunt fin. The fin vortex
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forms as a result of a high pressure region near the middle of the fin and a low pressure region near

the bottom of the fin. The interaction of these two pressure regions causes the flow to swirl creating

the fin vortex. The low pressure region is a result of the horseshoe vortex and the flow expanding

around the fin while the location of the high pressure region corresponds with flow stagnation.

Experimental results of a blunt fin have shown the formation of these two features. [32]

Figure 5.4 shows a graph of the feature displacement for the endpoints of the horseshoe

core line and the fin core line extracted by the RP algorithm and displayed in Figures 5.3a–d. The

start point is defined as the farthest upstream point and the end point is defined as the farthest

downstream point. At 60% converged, all but the end point of the fin line has a non-negligible

feature displacement. This shows that at 60% converged the entirety of the horseshoe vortex core

line is very close to the same position it will be in at full solution convergence which can be seen

in Figure 5.3d. The start point of the fin line has the same behavior as the horseshoe line. The

end point of the fin line has a feature displacement within 2.5% and 10% from 55% converged

to full solution convergence. This tells us that the end point of the fin line does not find a fixed

position, but rather continues to move slightly every 45 iterations between 55% converged and fully

converged. This behavior suggests that the simulation is not fully converged as the RP algorithm

takes two spatial derivatives of velocity to locate vortex cores which makes it very sensitive to

variations in the velocity field solution. Making sure that the feature displacement is zero for all

features in the spatiotemporal flow domain extracted by the RP algorithm could aid in determining

if a CFD simulation has reached full solution convergence. If the feature displacement is not zero

then the features are continuing to move suggesting that the flow solution has not converged. The

two vortex core lines exhibit similar behavior when they are extracted by the SH algorithm.
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While it is possible to monitor features and their corresponding feature displacement to

aid in checking for solution convergence, a simulation should not be considered complete as soon

as features are converged. Extracting features is just a starting point to massive data set post-

processing and certainly more information beyond features such as coefficient of lift, coefficient of

drag, boundary layer profile, vorticity, etc. are needed to thoroughly post-process CFD data sets.

If the blunt fin simulation were terminated at 60% converged when the horseshoe core line was

spatially converged then useful information could be lost such as an exact value for coefficient of

drag and the simulation would be inaccurate.

Figure 5.4: Percent feature displacement for the endpoints of the horseshoe line and the fin line
extracted by the RP algorithm.

It is interesting to note that the upstream start point moves to its final location sooner than

the downstream end point for both core lines. Recall from Section 3.2.3 that FD is defined by

Eq. 3.7 as the displacement of a region between iterations nondimensionalized by the length of

the line for line-type features. For the horseshoe line the FD at the start point is 0.8% at 35%

converged and the FD at the end point is 0.8% at 60% converged. This suggests that the vortex
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core lines are convected downstream as the solution converges. This convection can also be seen

in Figure 5.5.

5.1.2 Vortex Cores in Converging Data Sets Processed by Agents

Figures 5.5a–d are a comparison of the probability expectation between four separate core

lines extracted by RP at 30%, 40%, 50% and 60% converged. Recall that the probability expec-

tation defined in Eq. 2.19 gives what one would expect the probability of a feature to be. The

converged line is colored black to represent the exact location of the final core line. It is this core

that we are trying to match. In these figures the flow is moving from left to right.

(a) 30% converged vs. converged (b) 40% converged vs. converged

(c) 50% converged vs. converged (d) 60% converged vs. converged

Figure 5.5: Comparison of horseshoe core lines extracted by RP algorithm at 10% convergence
increments. The black line represents the extracted core line from the final converged solution.
Flow is moving from left to right.

69



At 30% converged the probability expectation value is close to 1 at the start point and then

quickly transitions to 0.5 at the downstream end point which tells us that only the area near the

start point has a high expected probability. A high expected probability is approximately 0.85

and above. At 40% and 50% converged the probability expectation value is close to 1 at the

start point and stays close to 1 until near the end point which indicates that these lines are highly

probable. This is a correct analysis by the agents since both lines are close to the final line. The

60% converged core line is almost identical spatially to the fully converged core line but the agents

have only given most of the line an expected probability of 0.90 or above and the rest is lower with

the end reaching an expected probability of 0.75. The reason for this is that near the end point of

the horseshoe line the vortex strength has a low value which is one of the input criterion for belief

in a feature. This low value drives the belief down at the end of the horseshoe line and therefore

drives the probability expectation value down. In these cases agents correctly identify the core line

at 30% convergence as having a low expected probability and correctly identify the core lines at

40%, 50% and 60% as having a high expected probability.

5.1.3 Comparison of Vortex Cores Processed by Agents from Converged Solution

Figure 5.6 is a comparison of the horseshoe line extracted at full solution convergence by

the RP algorithm and the SH algorithm after agents have formed final opinions. This particular

situation represents a case where both feature extraction algorithms have extracted a feature in a

similar location so one more probable feature must be selected. Referring to Table 4.2 it can be

seen that a belief criteria for the RP algorithm was curved. This core line contains a high curvature

so the corresponding belief value for AAE when RP extracts the line will be high which is shown

in Figure 5.6a. Weaknesses for the RP algorithm were not found in the extracted core which makes
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(a) RP belief value (b) SH belief value

(c) RP disbelief value (d) SH disbelief value

(e) RP uncertainty value (f) SH uncertainty value

(g) RP probability expectation value (h) SH probability expectation value

Figure 5.6: Comparison of the belief tuple values and probability expectation value for the horse-
shoe core line from the final opinion ωMA

R of the converged data set extracted by the RP and SH
algorithms at full solution convergence. Flow is moving from left to right.
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for the low disbelief in Figure 5.6c. From Table 4.1 a criterion to set the disbelief for SH is curved

so the corresponding disbelief for AAE when SH extracts the line will be high which is shown in

Figure 5.6d. Only some strengths were found in the SH extracted core line giving a belief around

0.75 for most of the horseshoe core line. The uncertainty values for both algorithms in Figures 5.6e

& f are low showing that the distance from a vortex trip point is low and that the horseshoe core

line is converged as the FD and ∆FD must also be low for the uncertainty to be low.

For the horseshoe core line the RP horseshoe line was selected as most probable because

the probability expectation value throughout the line was higher as well as the belief value. The

probability expectation values are shown in Figures 5.6g & h. Based on the strengths and weak-

nesses input criteria, agents correctly selected the RP horseshoe line as the feature with the highest

expected probability.

5.2 Delta Wing

A CFD simulation was run of a delta wing using the steady Reynolds-averaged Navier-

Stokes (RANS) equations solved using Fluent 12.0. The computational domain was generated

as an unstructured tetrahedral mesh with 6,065,247 nodes. The inlet mach number was 0.3 and

the wing was at α = 10◦. The inlet boundary condition was a pressure-inlet condition, the outlet

boundary condition was a pressure-outlet condition, and the delta wing was modeled as a wall.

The Fluent Full Multigrid Initialization (FMG) [33] technique was employed to generate an initial

condition. FMG initialization uses iterations on computationally cheap coarse levels and a few on

computationally costly fine levels to provide a better initial condition with lower computational

cost. The k-ω SST model was used to model turbulence and the solver was a pressure based
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compressible solver. The simulation reached convergence at 1900 iterations and the simulation

residuals are displayed in Figure 5.7.

Figure 5.7: Residual plot for the delta wing simulation.

Concurrent feature extraction was replicated by exporting and saving to hard disk the entire

flow field data set every 200 iterations, starting at 100 iterations, throughout the flow solution.

Each of these saved data sets were then input into the vortex core extraction method described in

Chapter 4 where vortex core lines were extracted from each of the saved data sets using the RP

and the SH algorithms (see Section 2.3) resulting in two feature sets per saved data set. Agents

then produced final opinions on all features in both feature sets and a final feature set was selected

per data set. Like the blunt fin, this simulation is not of the magnitude where concurrent feature

extraction is required but does yield a good test point for validating the feature extraction method.
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5.2.1 Definition of Extracted Vortex Cores

Figure 5.8 shows the vortex core lines extracted by the RP and SH extraction algorithms.

In this figure flow is moving from the bottom to the top of the page. The core lines that extend

from the nose of the delta wing well beyond the trailing edge are called the primary lines. They

can be seen in both the RP and SH feature sets. In the RP feature set there are two lines that are

outboard of the primary lines laying almost directly on the edge of the delta wing. These lines

are called the secondary lines and are not contained in the SH feature set. Near the leading edge

running along the intersection of the fuselage and the wing are two lines called the tertiary lines.

The tertiary lines are contained in both the SH and RP feature sets.

(a) Cores extracted by SH (b) Cores extracted by RP

Figure 5.8: Display of vortex cores extracted by RP and SH algorithms at full solution convergence.
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5.2.2 Comparison of Vortex Cores Processed by Agents from Converged Solution

Figure 5.9 shows the primary vortex cores extracted by the RP and SH algorithms. Each

of the primary cores is colored by the probability expectation value from the final opinion ωMA
R .

The expected probability is high for both algorithms across most of the primary cores. At the

downstream sections of the primary cores for both algorithms the probability expectation value is

substantially lower than the upstream portions. For the RP algorithm the probability expectation

value is around 0.65 at the farthest downstream section. This decrease in expected probability is

due to a large value for vortex strength at the upstream portion of the primary cores and then a

decreasing value for vortex strength as the core extends downstream as shown in Figures 5.10c

& d. Physically the primary cores are dissipating as they travel downstream which is giving the

decrease in vortex strength leading to a smaller belief value set in the opinions ω
AA1
R and ω

AA2
R .

(a) Primary cores extracted by SH (b) Primary cores extracted by RP

Figure 5.9: Display of primary cores extracted by RP and SH algorithms colored by the probability
expectation value from the final opinion at full solution convergence.
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Figures 5.10a & b show the quality of the primary cores from the converged solution. The

quality of the primary cores for both algorithms is low which leads to a higher expected probability.

For the downstream section of the primary cores for the RP algorithm the quality is high which also

helps to decrease the expected probability with the decreased value for vortex strength. This high

quality for the primary cores at the extreme downstream section is not seen for the SH algorithm

where the quality is low throughout the entire core.

(a) SH (b) RP (c) SH (d) RP

Figure 5.10: Display of primary cores extracted by RP and SH algorithms colored by quality and
vortex strength from the final opinion ωMA

R at full solution convergence.

The difference in expected probability of the primary cores for the SH and RP algorithms

is slight, but overall the expected probability is higher for SH than RP. The main reason that the

expected probabilities are so close is that the strength and quality values are nearly identical across

the majority of the primary lines making the curvature value the main cause of the difference. The

curvature value for the two sets of primary lines lies almost directly between the zero curvature

and high curvature conditions. Recall from Tables 4.1 & 4.2 the strength condition for the SH

algorithm is a straight core line and the strength for the RP algorithm is a curved core line. For
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this simulation CurvatureMax = 0.3, Curvature = 0.100 for SH, and Curvature = 0.095 for RP.

In Section 4.2.4 selecting CurvatureMax is explained. These values lead to setting the belief value

for the opinion ω
AA1
R higher than the belief value for the ω

AA2
R opinion which gives a higher belief

value in the final opinion for the primary cores extracted by SH and therefore a higher expected

probability. This higher overall expected probability for SH leads to selecting the primary cores

extracted by SH for the final feature set.

Do the agents make a correct decision when selecting the primary cores extracted by SH

over the primary cores extracted by RP? Based on the selection criteria, yes. While it may be

alarming that the primary cores have expected probabilities that are so similar, it should not be.

It may be expected to have one core with a much higher probability than the other when they are

extracted in such a similar spatial location. In some situations this may be the case, but not in

all situations. Since the only real difference between the extracted cores is the curvature value,

which is between the straight and curved core conditions, the expected probabilities are similar.

Recall that the idea behind subjective logic is not to make a strict yes or no decision about a

situation, but rather to make a human estimate of a situation. Applying this idea to the primary

cores there is a human estimate that both sets of primary cores have high expected probabilities,

but the primary cores that are the most probable are the cores extracted by SH. This is the reason

SH was appropriately selected.

5.2.3 Vortex Cores in Converging Data Sets

In the simple case of the blunt fin it was seen that vortex cores could be detected early

enough in a simulation to warrant concurrent feature extraction. It was also seen that the vortex
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cores were convected downstream as the solution approached convergence. In this section it is

shown how the delta wing’s vortex cores behave as its simulation converges.

Figure 5.11 displays the primary cores from the converged simulation (cyan) with the pri-

mary cores from two converging data sets (green). In Figures 5.11a and 5.11b the flow is moving

from right to left. At 300 iterations, or 16% of solution convergence, the primary cores can be

extracted by the SH algorithm. When extracted at 16% converged the primary cores are noticeably

downstream of their converged location but still relatively close. At 47% of solution convergence

the primary cores are extracted close to their final converged spatial location. No iterations after

47% converged were visualized as it is difficult to visually distinguish the converging cores from

the converged cores.

Recall that the delta wing is flying at α = 10◦. A visual inspection reveals that the cores

convect downstream with the flow near this angle of attack. There is some movement of the cores

along the length of the wing as seen in Figures 5.11c & 5.11d as well as some movement normal

to the top of the delta wing as seen in Figures 5.11a & 5.11b. This corroborates the findings from

the blunt fin that vortex cores are convected downstream.

One reason for the cores being present and well defined so early on in the simulation is due

to the FMG initialization performed to obtain a better initial guess. What FMG does is compute

solutions on a coarser grid and then set that coarse grid solution as a starting point for the fine

grid. This method helps to resolve the cores before the iteration count is started. If the FMG

initialization were not used it would take more iterations for the cores to develop.
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(a) 16% converged vs. converged

(b) 47% converged vs. converged

(c) 16% converged vs. converged (d) 47% converged vs. converged

Figure 5.11: Display of converging vortex cores extracted by SH algorithm.
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5.2.4 Expected Probability of Converging Cores

Extracting vortex cores early on in CFD simulations has limited value until a measure

can be made about the extracted cores. Are the extracted cores in the correct spatial location?

Are there portions of the cores that have been extracted correctly and portions that are spurious?

The probability expectation value gives a measure about the expected probability of vortex cores

extracted from converging data sets which can answer these questions.

Figure 5.12 shows the expected probabilities of the primary cores extracted by the SH

algorithm at specific iterations before the solution has converged. Also, on each subfigure there

is an overlain opaque image of the primary cores extracted from the converged simulation. In

Figure 5.12a there is a comparison between the primary cores extracted at 26% converged and

the cores extracted from the fully converged solution. The portions of the primary cores with the

lowest expected probabilities, around 0.50, are at the downstream ends of the cores. This is due

partly to the low vortex strength but mainly to a large feature displacement. Portions of the primary

cores with large values for FD and ∆FD will have the lowest expected probabilities. Recall that in

Section 4.2.6 the belief tuple for MA is set based on FD and ∆FD. When FD and ∆FD are large

the belief will be low and the disbelief and uncertainty will be high for the opinion ωMA
AA1

.

In Figures 5.12b & 5.12c there is only slight spatial variation between the converging pri-

mary cores and the converged primary cores. The probability expectation value for both primary

cores is high as anticipated when FD is low. In Figure 5.12d there is close to no spatial variation

between the primary cores at 89% converged and fully converged. The 89% converged primary

cores have close to the same expected probability as the fully converged primary cores shown in

Figure 5.9a. These are correct interpretations of the converging primary cores by the agents.
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(a) 26% converged vs. converged (b) 47% converged vs. converged

(c) 68% converged vs. converged (d) 89% converged vs. converged

Figure 5.12: Display of expected probability for converging vortex cores extracted by the SH
algorithm with primary cores extracted from the converged simulation overlain.

81



82



CHAPTER 6. RECOMMENDATIONS

This research and the CAFÉ concept are still in development. This chapter gives recom-

mendations for future research and development.

6.1 CAFÉ and the General Feature Extraction Method Recommendations

Thus far vortex cores have been chosen to demonstrate extracting features from converging

data sets. Two other features that are common in high-fidelity CFD applications are shock waves

and separation and attachment lines. One new research direction would be to extract these two

features from converging data sets to find if they behave similar to, or different from, vortex cores.

Also, with their corresponding feature extraction algorithms they may be input into the general

feature extraction method from Chapter 4.

In Section 3.2.2 the opinion for the non-extracting algorithm agent, ωAA
R , is given. This

opinion is based on the extracting algorithm strengths and weaknesses and the distance from a

region extracted by the non-extracting algorithm agent. Essentially this opinion adds or subtracts

uncertainty to the final opinion. It could be possible to cut the non-extracting algorithm agent

opinion out of the agent structure altogether. This would result in a trust network that is a line as

shown on the left side of Figure 3.2. While this would make the method simpler, the final opinion

would not take into account the features extracted by other feature extraction algorithms. Further
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development would find if there is any significant difference between the two trust networks and if

so, which trust network is superior.

As explained in Section 3.3 the process to aggregate a final feature set is not automated.

When implemented in CAFÉ the end user may not want to select the final feature set, but rather

have the final feature set already selected. This aggregation process may be implemented by using a

simple search criterion to locate cores in common between feature sets and then selecting the cores

with the highest expected probabilities. Also, a threshold criterion for cores that are not similar

between feature sets must be set based on probability expectation, belief, disbelief, uncertainty or

some combination of these values. Future research would find how to locate the common cores,

select between them and then parse through the remaining feature sets to select the remaining most

probable cores in an automated fashion.

6.2 Vortex Extraction Method Recommendations

The main limitation to the vortex feature extraction method is that maximum values used to

set the opinion ωAA
R such as VortexStrengthMax are not properly defined across data sets with vary-

ing flow conditions. The VortexStrengthMax value is set based on each data set and the range of

values for vortex strength seen in that data set. There needs to be a way to find VortexStrengthMax

based upon the simulation Reynolds number, inlet mach number, or some other common flow

value. If this is not the case then a different measure of vortex strength may be used. Future re-

search would find a function based only on standard CFD values that could be used with any CFD

data set to set VortexStrengthMax.

Currently CAFÉ has concentrated on RANS and URANS simulations, but it has the ability

to aid in post-processing other high-fidelity CFD simulations such as LES and DNS. To do this
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the general and vortex feature extraction processes need to be validated on LES and DNS data

sets. As turbulent eddies are either partially or fully resolved in these codes it might be difficult to

distinguish turbulent eddies from vortices. Future research would extract vortex cores from LES

and DNS data sets to find how to distinguish turbulent eddies from vortices.

Also as codes scale up in grid resolution, other parts of the extraction method such as filters

may be affected. The point count filter explained in Section 4.1.1 may need a higher minimum

point count to threshold extraneous cores as the number of points contained in cores increases as

the grid resolution increases. The quality filter will be affected with grid resolution as well. As

the grid is increased the quality of the extracted cores should decrease as the flow vector and the

direction vector of the core line will be more closely aligned. Future research would find the affect

that grid density has on setting the minimum threshold values for filters such as the point count

filter and the quality filter.

In the extracting algorithm agent opinion the uncertainty value is defined by feature specific

characteristics. Currently the only vortex characteristic implemented is the distance from a vortex

trip point. For the agents to make more intelligent decisions other feature characteristics need to be

inserted. One possible vortex characteristic is the 2π criterion used in the Evita [4] concept which

defines a vortex core as having a streamline that rotates one full revolution around the core. Future

research would add more vortex characteristics to the extracting algorithm agent opinion.

Lastly one challenge has been to find a proper definition for the curvature of a line and

then its proper software implementation. Curvature is currently calculated by taking the two line

endpoints and midpoint to find the radius of the containing circle. The inverse of the radius is then

the curvature. While this definition is sufficient to calculate curvature it would be better to have

a local definition of curvature rather than a single global curvature value for the entire core line
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as opinions are calculated in a pointwise fashion. Future research would find an accurate local

definition of curvature and then implement it.
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CHAPTER 7. CONCLUSIONS

This research has developed a general method to extract fluid flow features from converging

and converged CFD simulations using intelligent software agents governed by subjective logic.

The general feature extraction method contains five basic steps which may be applied to any CFD

flow feature with corresponding feature extraction algorithms. These five basic steps are as follows:

1. Extract features using feature extraction algorithms

2. Filter obviously extraneous features

3. Create agent opinions at regions contained in each extracted feature

4. Combine agent opinions to form final opinions of features

5. Aggregate one final feature set from all available feature sets

After defining the general feature extraction method, the method was applied specifically

to vortex core lines. Three specific filters were used to filter out extraneous core lines: point count,

quality, and vortex strength. The SH and RP algorithms were used to extract vortex core lines as

they are robust algorithms with strengths and weaknesses that are complimentary. The information

and functions necessary to set each component in each agent belief tuple was given along with an

explanation of the methods for setting the components.

Before agents were applied to converging simulations it was found if vortex cores could

coherently be extracted from CFD data sets that were still converging. Results from the blunt fin
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simulation showed that the horseshoe core line could be extracted coherently as early as 30% into a

converging simulation and that at 60% of the converged solution the horseshoe core line had little to

no spatial variation from the horseshoe core line extracted from the fully converged solution. The

delta wing simulation helped to confirm the results of the blunt fin by showing coherent primary

cores at 16% of solution convergence. These results showed that concurrent feature extraction

from CFD data sets is possible.

Application of intelligent agents to fully converged data sets showed that a human estimate

of the probability of extracted features could be made. The blunt fin simulation showed that the

horseshoe core line was extracted by both the RP and SH algorithms so one algorithm’s feature

needed to be selected as most probable. Based on the strengths and weaknesses of each algorithm

agents formed a final opinion at each point contained in the horseshoe cores. This final opinion

aided in selecting the RP extracted core as the most probable. This decision corresponds with

feature extraction literature as the RP algorithm is designed specifically to extract curved vortex

cores. The fully converged delta wing simulation showed that the primary cores were extracted by

both the RP and SH algorithms so a decision needed to be made between the two sets of primary

cores. Based on a curvature value for SH of Curvature = 0.100 and a curvature value for RP of

Curvature = 0.095 agents correctly selected the SH algorithm’s primary cores as most probable.

Agents were then tested on their abilities to find the expected probability of features in

converging data sets. When forming opinions on and making decisions about vortex core lines

agents do not have any information about the fully converged simulation or any following itera-

tions. Agents do have information about features extracted at previous iterations in the simulation.

This means that agents can select features from converging data sets as being highly probable to

be in the same spatial location at the end of the simulation. The blunt fin simulation showed that as
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early as 40% into the simulation the horseshoe core line was found to have an expected probability

above 0.90 for most of the feature. This was a correct analysis by the agents as the feature at

40% was close to its final spatial position in the fully converged data set. The delta wing simula-

tion showed that at 47% and 68% converged the extracted primary cores by the SH algorithm had

expected probability values near 0.9 for the majority of the cores except at the downstream ends

as the vortex strength and quality values were low. This expected probability was correct as the

primary cores from the fully converged data set showed little to no spatial variation between the

primary cores at 47% and 68% converged.

Subjective logic provides an effective vehicle for analysis of concurrent feature extraction.

In concurrent feature extraction it is difficult to make a concrete statement about the convergence of

extracted features such as yes the extracted features are spatially correct. Subjective logic provides

three logic values so intermediate opinions can be made about converging features such as there

is a high belief with some uncertainty and low disbelief giving a high expected probability. While

it may be uncomfortable without a clear cut yes or no to extracted features, concurrent feature

extraction is inherently a gray area. Features are in the process of converging. This grayness, rather

than black and white, is effectively quantified with subjective logic. Also, because subjective logic

does not give a clear cut yes or no for cores it can give a researcher some flexibility based on

previous experience as to what cores to analyze and visualize.

When extracting features, specifically vortex cores, from converged data sets it is not al-

ways clear if extracted cores are vortices or if they are extraneous cores. Even when tracing stream-

lines to visualize flow rotation it can still be difficult. This is especially true for cores with weak

rotation. Subjective logic can effectively present the expected probability of extracted cores based

on their characteristics. The developed method does not take away the need to visualize a data set
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and to visualize extracted features but rather it can provide an effective starting point for visualiza-

tion and possibly find highly probable features that may have gone unnoticed. The most effective

starting point for flow visualization will be the feature with the highest expected probability then

moving to the next feature with the highest expected probability.

A weakness of using the developed method is it can be cumbersome to set all of the values

appropriately. There are three opinions which make for nine belief tuple values that need to be

set before final opinions may be evaluated. For each of these belief tuple values there is usually a

linear function that sets each value so the constants in the linear functions must be found. Once

the constants are found then the value input into the constant must be found which includes more

variables and equations. Luckily, most of the values to be found such as constants in the linear

equations are constant across any given CFD data sets so once they are found they stay the same.

With all of these values to be set it is difficult to find which values are influencing the outcome of

the final opinion and which values have little influence on the final opinion.

The unique contributions of this research is a method to analyze CFD flow features in

converging data sets. Previously there has not been a method to analyze features from converging

data sets. Also, the method can combine feature sets created by two separate algorithms into one

feature set containing only features with high expected probabilities. It has been a problem in

vortex core extraction that algorithms were designed to extract features in specific flow conditions

and did not produce acceptable results in other flow conditions. Also, the research provided some

basic information on how features behaved in converging data sets. Features were shown to convect

downstream as the solution converged and some features found their final spatial location before

the overall CFD solution was converged.
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APPENDIX A. USER’S GUIDE TO VORTEX CORE EXTRACTION METHOD WITH
SOURCE CODE

A.1 User’s Guide

The code that runs the intelligent vortex core extraction and includes the ‘main’ method

is contained in Section A.2. The easiest way to go through the code will be to walk through it

step-by-step. Before this code will compile the VTK 5.4 libraries with parallel enabled must be

compiled and working properly. All other linked libraries come from the C++ Standard Library.

This code has been compiled on Ubuntu 9.10 (Karmic Koala) using g++ and cmake 2.6 to create

make files.

The #include statements on lines 1–38 include all libraries required for execution of the

code. The system call on line 48 is used to remove the files that the program writes and will throw

an error that doesn’t matter if there are no files in the directory to delete. On lines 50–56 some

values are defined that will be used as inputs to objects later. In lines 60–67 an array iterations is

set up to hold each iteration number that data sets have been saved for.

On line 70 the for loop is started which performs the actual feature extraction using the

Sujudi-Haimes and Roth-Peikert extraction algorithms. What this for loop does is read in data sets

that are saved to the hard disk (currently the data sets are Fluent case files), then put the data sets

into the Roth-Peikert and Sujudi-Haimes algorithms where feature sets are created containing only
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vortex core lines, these feature sets are then saved to disk and the unused objects are deleted. The

extraction algorithms have been provided by Dr. Rhonda Vickery and John van der Zwaag.

Lines 72–81 of the for loop define strings for the names of the files that are to be read in

and the files that are to be saved to disk later. Lines 85–87 are the vtkFLUENTReader that read

in the saved Fluent data sets to a vtkUnstructuredGrid object. If other data sets besides Fluent

are saved to disk then the appropriate vtk reader can be substituted into these lines. Lines 91–93

just change the vtkUnstructuredGrid as having cell data to point data. When the Fluent data file is

read in the data is read in as cell data rather than point data so it needs to be changed because the

feature extraction algorithms work with point data rather than cell data. Lines 96–106 use the class

vtkArrayCalculator to add an array to the vtkUnstructuredGrid called ‘Velocity’ that is an array

with three components. This is done because as input into the vtkRothPeikert and vtkSujudiHaimes

classes a velocity vector needs to be input rather than three scalar velocity components. Lines 109–

116 remove extraneous arrays that are not needed. Lines 121–127 instantiate and input the data

object into the Roth-Peikert vortex core extraction algorithm. This class takes an unstructured grid

as an input and outputs a poly data set which is composed of polylines. Lines 136–139 delete

unused objects. Lines 144–150 instantiate and input the data object into the Sujudi-Haimes vortex

core extraction algorithm. This class takes an unstructured grid as an input and outputs a poly data

set which is composed of polylines. Lines 130–133 and 153–156 write the extracted core lines to

file and lines 159–161 delete the rest of the unused objects. This completes the for loop.

Lines 166–168 really don’t matter. I put them in there because at the time I was wondering

how long it was taking the code to complete and about how much time left the code would take

to complete when it was running. These lines correspond with the other lines that use the object

stopWatch.
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The next for loop starts on line 171. This for loop takes the feature sets created from

the first for loop, cleans the data sets, computes all the values needed to form the final opinion,

computes the final opinion and then writes the data sets to disk. The for loop in this case ends at 10

because there are only ten data sets. The condition i<11 should be changed to reflect how many

data sets are currently available to process. The for loop starts at i=2 because the first feature set

can’t form an opinion because there is no previous data set. The condition on line 175 if(i==2)

is there because even the second feature set can’t form a final opinion but certain values such as

feature displacement need to be calculated in order for the third feature set to form its final opinion.

For this condition the Sujudi-Haimes data sets are read in using the vtkPolyDataReader, they are

cleaned using vtkCleanPolyData, the quality is computed using vtkQuality, each of the lines is

paramaterized from 0 to 1 using vtkParamaterizeLineFilter, the feature displacement is computed

using vtkFeatureDisplacement and then the feature sets are saved to disk. The feature sets need

to be cleaned because when they come out of the classes vtkRothPeikert and vtkSujudiHaimes

sometimes there are stray points that are not core lines that need to be removed. This procedure is

then followed for the Roth-Peikert feature sets.

The else statement is for all feature sets past the second feature set. It is fairly similar

to the i==2 condition except for change in feature displacement is calculated and final opinions

are calculated. So lines 377–392 deal with getting and setting the proper file names to read and

then write files at the end of the else statement. Lines 394–457 read in the Sujudi-Haimes feature

sets, clean the newest feature set (this would be 3 if i=3, 4 if i=4 etc.), computes the quality of

the newest feature set, paramaterizes the newest feature set, computes the curvature of the newest

feature set, finds same lines for the newest feature set, calculates the feature displacement and

change in feature displacement and then deletes all of the unused objects. Lines 461–512 read
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in the Roth-Peikert feature sets, cleans, computes quality for, paramaterizes, computes curvature

for, finds same lines for, calculates feature displacment and change in feature displacement for

the newest feature set. Lines 516–526 find the minimum distance between points in feature sets

once for Sujudi-Haimes and once for Roth-Peikert. Lines 529–538 is where everything is all tied

together and a final opinion is computed for each point contained in each vortex core line. Then

lines 541–550 write the complete feature sets to file and the remaining lines delete objects and deal

with timing the code.

A.2 Source Code

1 # i n c l u d e <vtkPLOT3DReader . h>
2 # i n c l u d e <v t k S t r u c t u r e d G r i d . h>
3 # i n c l u d e <v t k P o l y D a t a R e a d e r . h>
4 # i n c l u d e <v t k P o l y D a t a . h>
5 # i n c l u d e <v t k P o l y D a t a W r i t e r . h>
6 # i n c l u d e <vtkAppendPolyData . h>
7 # i n c l u d e <vtkFLUENTReader . h>
8 # i n c l u d e <v t k M u l t i B l o c k D a t a S e t . h>
9 # i n c l u d e <v t k C e l l D a t a T o P o i n t D a t a . h>

10 # i n c l u d e <v t k A r r a y C a l c u l a t o r . h>
11 # i n c l u d e <v t k V e c t o r s G r a d i e n t F i l t e r . h>
12 # i n c l u d e <v t k P a r a l l e l V e c t o r s . h>
13 # i n c l u d e <vtkCallbackCommand . h>
14 # i n c l u d e <v t k V o r t e x S t r e n g t h . h>
15 # i n c l u d e <v t k T h r e s h o l d P o i n t s . h>
16 # i n c l u d e <v t k C o n n e c t L i n e s . h>
17 # i n c l u d e <v tkDoub leAr ray . h>
18 # i n c l u d e <v t k P o i n t D a t a . h>
19 # i n c l u d e <vtkMath . h>
20 # i n c l u d e <v t k C e l l . h>
21 # i n c l u d e ” v t k P a r a m a t e r i z e L i n e F i l t e r . h ”
22 # i n c l u d e ” v t k C u r v a t u r e . h ”
23 # i n c l u d e ” v t k F e a t u r e D i s p l a c e m e n t . h ”
24 # i n c l u d e ” vtkSameLine . h ”
25 # i n c l u d e ” v t k Q u a l i t y . h ”
26 # i n c l u d e ” vtkMinimumDistance . h ”
27 # i n c l u d e ” v t k C r e a t e O p i n i o n . h ”
28 # i n c l u d e ” v t k R o t h P e i k e r t . h ”
29 # i n c l u d e ” v t k S u j u d i H a i m e s . h ”
30 # i n c l u d e <v t k G r a d i e n t F i l t e r . h>
31 # i n c l u d e ” v t k E x t r a c t C e l l s . h ”
32 # i n c l u d e ” v t k U n s t r u c t u r e d G r i d . h ”
33 # i n c l u d e ” v t k P o l y D a t a C o n n e c t i v i t y F i l t e r . h ”
34 # i n c l u d e ” v t k C l e a n P o l y D a t a . h ”
35 # i n c l u d e <math . h>
36 # i n c l u d e <s s t r e a m>
37 # i n c l u d e <i o s t r e a m >
38 # i n c l u d e ” h r t i m e . h ”
39

40 us ing namespace s t d ;
41
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42 i n t main ( )
43 {
44

45 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
46

47 / / removing unneeded f i l e s
48 sys tem ( ”rm . / d a t a S e t s / de l t aWing / Complete * ” ) ;
49

50 bool v e r b o s e = t rue ;
51 i n t cpu = 4 ;
52 double v o r t e x S t r e n g t h T h r e s h o l d = 1 0 ;
53 double q u a l i t y T h r e s h o l d V a l u e = 4 0 ; / / Roth s a y s t h i s v a l u e i s t y p i c a l l y
54 / / be tween 30 and 45 d e g r e e s .
55 bool t h r e s h o l d L i n e s = t rue ;
56 i n t minimumCorePoints = 5 ; / / min v a l u e 2
57

58 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
59

60 i n t i t e r a t i o n s [ 1 0 ] ;
61 i t e r a t i o n s [ 0 ] = 100 ;
62 c o u t << i t e r a t i o n s [ 0 ] << e n d l ;
63 i n t q ;
64 f o r ( q=1 ; q<10 ; q ++){
65 i t e r a t i o n s [ q ] = i t e r a t i o n s [ q−1] + 200 ;
66 c o u t << i t e r a t i o n s [ q ] << ”\n ” ;
67 }
68

69 i n t j ;
70 f o r ( j =9 ; j <10 ; j ++){
71

72 / / g e t t i n g c o r r e c t names f o r t h e f i l e s
73 s t r i n g inpu tF i l eName , outputFi leNameSH , outputFi leNameRP ;
74 s t r i n g s t r e a m o u t ;
75

76 o u t << ” . / d a t a S e t s / M a t t s G r i d s / de l t aWing / d e l t a 1 0 d e g i t e r ” << i t e r a t i o n s [ j ] << ” . c a s ” <<
e n d l ;

77 g e t l i n e ( out , i n p u t F i l e N a m e ) ;
78 o u t << ” . / d a t a S e t s / M a t t s G r i d s / de l t aWing / d e l t a 1 0 d e g i t e r ” << i t e r a t i o n s [ j ] << ” RP . v t k ”

<< e n d l ;
79 g e t l i n e ( out , ou tputFi leNameRP ) ;
80 o u t << ” . / d a t a S e t s / M a t t s G r i d s / de l t aWing / d e l t a 1 0 d e g i t e r ” << i t e r a t i o n s [ j ] << ” SH . v t k ”

<< e n d l ;
81 g e t l i n e ( out , outputFi leNameSH ) ;
82

83 c o u t << ” Begin Reading F i l e . ” << e n d l ;
84 / / Reading i n t h e FLUENT 5 / 6 f i l e t o a v t k U n s t r u c t u r e d G r i d
85 vtkFLUENTReader * f l u e n t = vtkFLUENTReader : : New ( ) ;
86 f l u e n t−>SetF i leName ( i n p u t F i l e N a m e . c s t r ( ) ) ;
87 f l u e n t−>Update ( ) ;
88 c o u t << ”End Reading F i l e . ” << e n d l ;
89

90 / / Changing F l u e n t ’ s c e l l da ta t o p o i n t da ta
91 v t k C e l l D a t a T o P o i n t D a t a * c2p = v t k C e l l D a t a T o P o i n t D a t a : : New ( ) ;
92 c2p−>S e t I n p u t ( f l u e n t−>GetOutpu t ( )−>GetBlock ( 0 ) ) ;
93 c2p−>Update ( ) ;
94

95 / / C r e a t i n g t h e ’ V e l o c i t y ’ a r r a y
96 v t k A r r a y C a l c u l a t o r * a r r a y C a l c = v t k A r r a y C a l c u l a t o r : : New ( ) ;
97 a r r a y C a l c−>A d d S c a l a r V a r i a b l e ( ” X V e l o c i t y ” , ”X VELOCITY” , 0 ) ;
98 a r r a y C a l c−>A d d S c a l a r V a r i a b l e ( ” Y V e l o c i t y ” , ”Y VELOCITY” , 0 ) ;
99 a r r a y C a l c−>A d d S c a l a r V a r i a b l e ( ” Z V e l o c i t y ” , ”Z VELOCITY” , 0 ) ;

100 a r r a y C a l c−>Se tResu l tAr rayName ( ” V e l o c i t y ” ) ;
101 a r r a y C a l c−>S e t F u n c t i o n ( ” i H a t * ( X V e l o c i t y ) +”
102 ” j H a t * ( Y V e l o c i t y ) +”
103 ” kHat * ( Z V e l o c i t y ) ” ) ;
104 a r r a y C a l c−>S e t I n p u t ( c2p−>GetOutpu t ( ) ) ;
105 a r r a y C a l c−>S e t A t t r i b u t e M o d e T o U s e P o i n t D a t a ( ) ;
106 a r r a y C a l c−>Update ( ) ;
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107

108 / / removing u n r e q u i r e d a r r a y s
109 a r r a y C a l c−>GetOutpu t ( )−>G e t P o i n t D a t a ( )−>RemoveArray ( ”X VELOCITY” ) ;
110 a r r a y C a l c−>GetOutpu t ( )−>G e t P o i n t D a t a ( )−>RemoveArray ( ”Y VELOCITY” ) ;
111 a r r a y C a l c−>GetOutpu t ( )−>G e t P o i n t D a t a ( )−>RemoveArray ( ”Z VELOCITY” ) ;
112 a r r a y C a l c−>GetOutpu t ( )−>G e t P o i n t D a t a ( )−>RemoveArray ( ”NUT” ) ;
113 a r r a y C a l c−>GetOutpu t ( )−>G e t P o i n t D a t a ( )−>RemoveArray ( ”BODY FORCES” ) ;
114 a r r a y C a l c−>GetOutpu t ( )−>G e t P o i n t D a t a ( )−>RemoveArray ( ”MU LAM” ) ;
115 a r r a y C a l c−>GetOutpu t ( )−>G e t P o i n t D a t a ( )−>RemoveArray ( ”MU TURB” ) ;
116 a r r a y C a l c−>GetOutpu t ( )−>G e t P o i n t D a t a ( )−>RemoveArray ( ”WALL DIST” ) ;
117

118 / / E x t r a c t i n g c o r e l i n e s u s i n g v t k R o t h P e i k e r t
119 / / need t o have a da ta s e t w i t h p o i n t da ta as i n p u t and a v e l o c i t y v e c t o r
120 / / n o t v e l o c i t y as t h r e e s e p a r a t e s c a l a r components .
121 v t k R o t h P e i k e r t * r o t h P e i k e r t = v t k R o t h P e i k e r t : : New ( ) ;
122 r o t h P e i k e r t−>S e t I n p u t ( a r r a y C a l c−>GetOutpu t ( ) ) ;
123 r o t h P e i k e r t−>Se tVe loc i tyAr rayName ( ” V e l o c i t y ” ) ;
124 r o t h P e i k e r t−>S e t V o r t e x S t r e n g t h T h r e s h o l d ( v o r t e x S t r e n g t h T h r e s h o l d ) ;
125 r o t h P e i k e r t−>SetMinimumNumberOfPoints ( minimumCorePoints ) ;
126 r o t h P e i k e r t−>S e t V e r b o s e ( v e r b o s e ) ;
127 r o t h P e i k e r t−>Update ( ) ;
128

129 / / w r i t i n g t h e c o n n e c t e d l i n e s t o RP . v t k
130 v t k P o l y D a t a W r i t e r * w r i t e r 2 = v t k P o l y D a t a W r i t e r : : New ( ) ;
131 w r i t e r 2−>S e t I n p u t ( r o t h P e i k e r t−>GetOutpu t ( ) ) ;
132 w r i t e r 2−>SetF i leName ( outputFi leNameRP . c s t r ( ) ) ;
133 w r i t e r 2−>Wri te ( ) ;
134

135 / / d e l e t i n g unused o b j e c t s
136 f l u e n t−>D e l e t e ( ) ;
137 c2p−>D e l e t e ( ) ;
138 r o t h P e i k e r t−>D e l e t e ( ) ;
139 w r i t e r 2−>D e l e t e ( ) ;
140

141 / / E x t r a c t i n g c o r e l i n e s u s i n g v t k S u j u d i H a i m e s
142 / / need t o have a da ta s e t w i t h p o i n t da ta as i n p u t and a v e l o c i t y v e c t o r
143 / / n o t v e l o c i t y as t h r e e s e p a r a t e s c a l a r components .
144 v t k S u j u d i H a i m e s * s u j u d i H a i m e s = v t k S u j u d i H a i m e s : : New ( ) ;
145 su jud iHa imes−>S e t I n p u t ( a r r a y C a l c−>GetOutpu t ( ) ) ;
146 su jud iHa imes−>Se tVe loc i tyAr rayName ( ” V e l o c i t y ” ) ;
147 su jud iHa imes−>S e t V o r t e x S t r e n g t h T h r e s h o l d ( v o r t e x S t r e n g t h T h r e s h o l d ) ;
148 su jud iHa imes−>SetMinimumNumberOfPoints ( minimumCorePoints ) ;
149 su jud iHa imes−>S e t V e r b o s e ( v e r b o s e ) ;
150 su jud iHa imes−>Update ( ) ;
151

152 / / w r i t i n g e x t r a c t e d l i n e s from Sujud−Haimes
153 v t k P o l y D a t a W r i t e r * w r i t e r 3 = v t k P o l y D a t a W r i t e r : : New ( ) ;
154 w r i t e r 3−>S e t I n p u t ( su jud iHa imes−>GetOutpu t ( ) ) ;
155 w r i t e r 3−>SetF i leName ( outputFi leNameSH . c s t r ( ) ) ;
156 w r i t e r 3−>Wri te ( ) ;
157

158 / / d e l e t i n g unused o b j e c t s
159 a r r a y C a l c−>D e l e t e ( ) ;
160 su jud iHa imes−>D e l e t e ( ) ;
161 w r i t e r 3−>D e l e t e ( ) ;
162 }
163

164 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
165

166 CStopWatch s topWatch = CStopWatch : : CStopWatch ( ) ;
167 s topWatch . s t a r t T i m e r ( ) ;
168 double t imeToComple t ion , oldTime ;
169

170 i n t i ;
171 f o r ( i =2 ; i <11 ; i ++){ / / ** need t o change t h e s e i v a l u e s so t h e y can a c c u r a t e l y r e f l e c t how

many da ta s e t s we have : p
172

173 / / f o r i ==2 we don ’ t need t o use s u b j e c t i v e l o g i c because b e l i e f , d i s b e l i e f ,
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174 / / and u n c e r t a i n t y v a l u e s can ’ t be computed u n t i l t h e t h i r d da ta s e t .
175 i f ( i ==2){
176

177 / / g e t t i n g c o r r e c t names f o r t h e f i l e s
178 s t r i n g ac t iveFi leNameSH , pass iveFi leNameSH , outputFi leNameSH ,
179 ac t iveFi leNameRP , pass iveFi leNameRP , outputFi leNameRP ;
180 s t r i n g s t r e a m o u t ;
181 o u t << ” . / d a t a S e t s / de l t aWing / ” << i << ”SH . v t k ” << e n d l ;
182 g e t l i n e ( out , ac t iveF i l eNameSH ) ;
183 o u t << ” . / d a t a S e t s / de l t aWing / ” << i−1 << ”SH . v t k ” << e n d l ;
184 g e t l i n e ( out , pass iveFi leNameSH ) ;
185 o u t << ” . / d a t a S e t s / de l t aWing / Complete ” << i << ”SH . v t k ” << e n d l ;
186 g e t l i n e ( out , outputFi leNameSH ) ;
187

188 o u t << ” . / d a t a S e t s / de l t aWing / ” << i << ”RP . v t k ” << e n d l ;
189 g e t l i n e ( out , ac t iveF i l eNameRP ) ;
190 o u t << ” . / d a t a S e t s / de l t aWing / ” << i−1 << ”RP . v t k ” << e n d l ;
191 g e t l i n e ( out , pass iveF i leNameRP ) ;
192 o u t << ” . / d a t a S e t s / de l t aWing / Complete ” << i << ”RP . v t k ” << e n d l ;
193 g e t l i n e ( out , ou tputFi leNameRP ) ;
194

195 / / / / * * * * S u j u d i−Haimes S e c t i o n * * * * / / / /
196 / / Reading i n S u j u d i−Haimes v o r t e x core l i n e s
197 v t k P o l y D a t a R e a d e r * po lyReade r1 = v t k P o l y D a t a R e a d e r : : New ( ) ;
198 polyReader1−>SetF i leName ( ac t iveF i l eNameSH . c s t r ( ) ) ;
199 polyReader1−>Update ( ) ;
200

201 / / Reading i n S u j u d i−Haimes v o r t e x core l i n e s from p r e v i o u s e x t r a c t i o n
202 v t k P o l y D a t a R e a d e r * po lyReade r2 = v t k P o l y D a t a R e a d e r : : New ( ) ;
203 polyReader2−>SetF i leName ( pass iveFi leNameSH . c s t r ( ) ) ;
204 polyReader2−>Update ( ) ;
205

206 / / c l e a n i n g t h e i n p u t da ta s e t
207 v t k C l e a n P o l y D a t a * c l e a n 1 = v t k C l e a n P o l y D a t a : : New ( ) ;
208 c l ean1−>S e t I n p u t ( po lyReader1−>GetOutpu t ( ) ) ;
209 c l ean1−>Update ( ) ;
210

211 / / c l e a n i n g t h e i n p u t da ta s e t
212 v t k C l e a n P o l y D a t a * c l e a n 2 = v t k C l e a n P o l y D a t a : : New ( ) ;
213 c l ean2−>S e t I n p u t ( po lyReader2−>GetOutpu t ( ) ) ;
214 c l ean2−>Update ( ) ;
215

216 / / Computing t h e q u a l i t y o f t h e v o r t i c e s
217 v t k Q u a l i t y * q u a l i t y 1 = v t k Q u a l i t y : : New ( ) ;
218 q u a l i t y 1−>S e t I n p u t ( c l ean1−>GetOutpu t ( ) ) ;
219 q u a l i t y 1−>S e t T h r e s h o l d L i n e s ( t h r e s h o l d L i n e s ) ;
220 q u a l i t y 1−>S e t Q u a l i t y T h r e s h o l d V a l u e ( q u a l i t y T h r e s h o l d V a l u e ) ;
221 q u a l i t y 1−>Update ( ) ;
222

223 / / Computing t h e q u a l i t y o f t h e v o r t i c e s
224 v t k Q u a l i t y * q u a l i t y 2 = v t k Q u a l i t y : : New ( ) ;
225 q u a l i t y 2−>S e t I n p u t ( c l ean2−>GetOutpu t ( ) ) ;
226 q u a l i t y 2−>S e t T h r e s h o l d L i n e s ( t h r e s h o l d L i n e s ) ;
227 q u a l i t y 2−>S e t Q u a l i t y T h r e s h o l d V a l u e ( q u a l i t y T h r e s h o l d V a l u e ) ;
228 q u a l i t y 2−>Update ( ) ;
229

230 / / P a r a m a t e r i z i n g l i n e s e g m e n t s
231 / / each l i n e segment has an a , b , c , d , e , f and l a s s o c i a t e d v a l u e
232 v t k P a r a m a t e r i z e L i n e F i l t e r * p l f 1 = v t k P a r a m a t e r i z e L i n e F i l t e r : : New ( ) ;
233 p l f 1−>S e t I n p u t ( q u a l i t y 1−>GetOutpu t ( ) ) ;
234 p l f 1−>Update ( ) ;
235

236 / / P a r a m a t e r i z i n g l i n e s e g m e n t s
237 / / each l i n e segment has an a , b , c , d , e , f and l a s s o c i a t e d v a l u e
238 v t k P a r a m a t e r i z e L i n e F i l t e r * p l f 2 = v t k P a r a m a t e r i z e L i n e F i l t e r : : New ( ) ;
239 p l f 2−>S e t I n p u t ( q u a l i t y 2−>GetOutpu t ( ) ) ;
240 p l f 2−>Update ( ) ;
241
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242 / / f i n d i n g same l i n e s i n o t h e r da ta s e t f o r p r e v i o u s e r r o r f i l t e r
243 vtkSameLine * sameLine1 = vtkSameLine : : New ( ) ;
244 sameLine1−>AddInpu tConnec t i on ( p l f 1−>G e t O u t p u t P o r t ( ) ) ;
245 sameLine1−>AddInpu tConnec t i on ( p l f 2−>G e t O u t p u t P o r t ( ) ) ;
246 sameLine1−>Update ( ) ;
247 v t k I n t A r r a y * sameLineArray1 = sameLine1−>GetSameLine ( ) ;
248

249 / / Computing p r e v i o u s e r r o r o f t h e da ta s e t
250 v t k F e a t u r e D i s p l a c e m e n t * pe1 = v t k F e a t u r e D i s p l a c e m e n t : : New ( ) ;
251 / / t h e f i r s t i n p u t i s t h e i n p u t t h a t t h e p r e v i o u s e r r o r i s c a l c u l a t e d f o r
252 / / i . e . newer da ta s e t
253 pe1−>AddInpu tConnec t i on ( p l f 1−>G e t O u t p u t P o r t ( ) ) ;
254 / / t h e second i n p u t i s used t o c a l c u l a t e p r e v i o u s e r r o r f o r t h e f i r s t i n p u t
255 / / i . e . o l d e r da ta s e t
256 pe1−>AddInpu tConnec t i on ( p l f 2−>G e t O u t p u t P o r t ( ) ) ;
257 pe1−>SetSameLineArray ( sameLineArray1 ) ;
258 pe1−>ComputeChangeInEr rorOff ( ) ;
259 pe1−>C l o s e s t P o i n t O n ( ) ;
260 pe1−>Update ( ) ;
261

262 / / W r i t i n g f i l e t o check i t
263 v t k P o l y D a t a W r i t e r * p d W r i t e r 1 = v t k P o l y D a t a W r i t e r : : New ( ) ;
264 pdWri t e r1−>S e t I n p u t ( pe1−>GetOutpu t ( ) ) ;
265 pdWri t e r1−>SetF i leName ( outputFi leNameSH . c s t r ( ) ) ;
266 pdWri t e r1−>Wri te ( ) ;
267

268 / / d e l e t i n g unused o b j e c t s
269 polyReader1−>D e l e t e ( ) ;
270 polyReader2−>D e l e t e ( ) ;
271 c l ean1−>D e l e t e ( ) ;
272 c l ean2−>D e l e t e ( ) ;
273 q u a l i t y 1−>D e l e t e ( ) ;
274 q u a l i t y 2−>D e l e t e ( ) ;
275 p l f 1−>D e l e t e ( ) ;
276 p l f 2−>D e l e t e ( ) ;
277 sameLine1−>D e l e t e ( ) ;
278 pe1−>D e l e t e ( ) ;
279 pdWri t e r1−>D e l e t e ( ) ;
280 sameLineArray1−>D e l e t e ( ) ;
281

282 / / / / * * * * Roth−P e i k e r t S e c t i o n * * * * / / / /
283 / / Reading i n Roth−P e i k e r t v o r t e x core l i n e s
284 v t k P o l y D a t a R e a d e r * po lyReade r3 = v t k P o l y D a t a R e a d e r : : New ( ) ;
285 polyReader3−>SetF i leName ( ac t iveF i l eNameRP . c s t r ( ) ) ;
286 polyReader3−>Update ( ) ;
287

288 / / Reading i n Roth−P e i k e r t v o r t e x core l i n e s from p r e v i o u s e x t r a c t i o n
289 v t k P o l y D a t a R e a d e r * po lyReade r4 = v t k P o l y D a t a R e a d e r : : New ( ) ;
290 polyReader4−>SetF i leName ( pass iveF i leNameRP . c s t r ( ) ) ;
291 polyReader4−>Update ( ) ;
292

293 / / c l e a n i n g t h e i n p u t da ta s e t
294 v t k C l e a n P o l y D a t a * c l e a n 3 = v t k C l e a n P o l y D a t a : : New ( ) ;
295 c l ean3−>S e t I n p u t ( po lyReader3−>GetOutpu t ( ) ) ;
296 c l ean3−>Update ( ) ;
297

298 / / c l e a n i n g t h e i n p u t da ta s e t
299 v t k C l e a n P o l y D a t a * c l e a n 4 = v t k C l e a n P o l y D a t a : : New ( ) ;
300 c l ean4−>S e t I n p u t ( po lyReader4−>GetOutpu t ( ) ) ;
301 c l ean4−>Update ( ) ;
302

303 / / Computing t h e q u a l i t y o f t h e v o r t i c e s
304 v t k Q u a l i t y * q u a l i t y 3 = v t k Q u a l i t y : : New ( ) ;
305 q u a l i t y 3−>S e t I n p u t ( c l ean3−>GetOutpu t ( ) ) ;
306 q u a l i t y 3−>S e t T h r e s h o l d L i n e s ( t h r e s h o l d L i n e s ) ;
307 q u a l i t y 3−>S e t Q u a l i t y T h r e s h o l d V a l u e ( q u a l i t y T h r e s h o l d V a l u e ) ;
308 q u a l i t y 3−>Update ( ) ;
309
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310 / / Computing t h e q u a l i t y o f t h e v o r t i c e s
311 v t k Q u a l i t y * q u a l i t y 4 = v t k Q u a l i t y : : New ( ) ;
312 q u a l i t y 4−>S e t I n p u t ( c l ean4−>GetOutpu t ( ) ) ;
313 q u a l i t y 4−>S e t T h r e s h o l d L i n e s ( t h r e s h o l d L i n e s ) ;
314 q u a l i t y 4−>S e t Q u a l i t y T h r e s h o l d V a l u e ( q u a l i t y T h r e s h o l d V a l u e ) ;
315 q u a l i t y 4−>Update ( ) ;
316

317 / / P a r a m a t e r i z i n g l i n e s e g m e n t s
318 / / each l i n e segment has an a , b , c , d , e , f and l a s s o c i a t e d v a l u e
319 v t k P a r a m a t e r i z e L i n e F i l t e r * p l f 3 = v t k P a r a m a t e r i z e L i n e F i l t e r : : New ( ) ;
320 p l f 3−>S e t I n p u t ( q u a l i t y 3−>GetOutpu t ( ) ) ;
321 p l f 3−>Update ( ) ;
322

323 / / P a r a m a t e r i z i n g l i n e s e g m e n t s
324 / / each l i n e segment has an a , b , c , d , e , f and l a s s o c i a t e d v a l u e
325 v t k P a r a m a t e r i z e L i n e F i l t e r * p l f 4 = v t k P a r a m a t e r i z e L i n e F i l t e r : : New ( ) ;
326 p l f 4−>S e t I n p u t ( q u a l i t y 4−>GetOutpu t ( ) ) ;
327 p l f 4−>Update ( ) ;
328

329 / / f i n d i n g same l i n e s i n o t h e r da ta s e t f o r p r e v i o u s e r r o r f i l t e r
330 vtkSameLine * sameLine2 = vtkSameLine : : New ( ) ;
331 sameLine2−>AddInpu tConnec t i on ( p l f 3−>G e t O u t p u t P o r t ( ) ) ;
332 sameLine2−>AddInpu tConnec t i on ( p l f 4−>G e t O u t p u t P o r t ( ) ) ;
333 sameLine2−>Update ( ) ;
334 v t k I n t A r r a y * sameLineArray2 = sameLine2−>GetSameLine ( ) ;
335

336 / / Computing p r e v i o u s e r r o r o f t h e da ta s e t
337 v t k F e a t u r e D i s p l a c e m e n t * pe2 = v t k F e a t u r e D i s p l a c e m e n t : : New ( ) ;
338 / / t h e f i r s t i n p u t i s t h e i n p u t t h a t t h e p r e v i o u s e r r o r i s c a l c u l a t e d f o r
339 / / i . e . newer da ta s e t
340 pe2−>AddInpu tConnec t i on ( p l f 3−>G e t O u t p u t P o r t ( ) ) ;
341 / / t h e second i n p u t i s used t o c a l c u l a t e p r e v i o u s e r r o r f o r t h e f i r s t i n p u t
342 / / i . e . o l d e r da ta s e t
343 pe2−>AddInpu tConnec t i on ( p l f 4−>G e t O u t p u t P o r t ( ) ) ;
344 pe2−>SetSameLineArray ( sameLineArray2 ) ;
345 pe2−>ComputeChangeInEr rorOff ( ) ;
346 pe2−>Update ( ) ;
347

348 / / W r i t i n g f i l e t o check i t
349 v t k P o l y D a t a W r i t e r * p d W r i t e r 2 = v t k P o l y D a t a W r i t e r : : New ( ) ;
350 pdWri t e r2−>S e t I n p u t ( pe2−>GetOutpu t ( ) ) ;
351 pdWri t e r2−>SetF i leName ( outputFi leNameRP . c s t r ( ) ) ;
352 pdWri t e r2−>Wri te ( ) ;
353

354 / / d e l e t i n g unused o b j e c t s
355 polyReader3−>D e l e t e ( ) ;
356 polyReader4−>D e l e t e ( ) ;
357 c l ean3−>D e l e t e ( ) ;
358 c l ean4−>D e l e t e ( ) ;
359 q u a l i t y 3−>D e l e t e ( ) ;
360 q u a l i t y 4−>D e l e t e ( ) ;
361 p l f 3−>D e l e t e ( ) ;
362 p l f 4−>D e l e t e ( ) ;
363 sameLine2−>D e l e t e ( ) ;
364 pe2−>D e l e t e ( ) ;
365 pdWri t e r2−>D e l e t e ( ) ;
366 sameLineArray2−>D e l e t e ( ) ;
367

368 s topWatch . s t o p T i m e r ( ) ;
369 oldTime = s topWatch . g e t E l a p s e d T i m e ( ) ;
370 c o u t << ” Completed ” << i << ” i n Time = ” << s topWatch . g e t E l a p s e d T i m e ( ) << ” s ” << e n d l ;
371 }
372 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
373

374 e l s e {
375

376 / / g e t t i n g c o r r e c t names f o r t h e f i l e s
377 s t r i n g ac t iveFi leNameSH , pass iveFi leNameSH , outputFi leNameSH ,
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378 ac t iveFi leNameRP , pass iveFi leNameRP , outputFi leNameRP ;
379 s t r i n g s t r e a m o u t ;
380 o u t << ” . / d a t a S e t s / de l t aWing / ” << i << ”SH . v t k ” << e n d l ;
381 g e t l i n e ( out , ac t iveF i l eNameSH ) ;
382 o u t << ” . / d a t a S e t s / de l t aWing / Complete ” << i−1 << ”SH . v t k ” << e n d l ;
383 g e t l i n e ( out , pass iveFi leNameSH ) ;
384 o u t << ” . / d a t a S e t s / de l t aWing / Complete ” << i << ”SH . v t k ” << e n d l ;
385 g e t l i n e ( out , outputFi leNameSH ) ;
386

387 o u t << ” . / d a t a S e t s / de l t aWing / ” << i << ”RP . v t k ” << e n d l ;
388 g e t l i n e ( out , ac t iveF i l eNameRP ) ;
389 o u t << ” . / d a t a S e t s / de l t aWing / Complete ” << i−1 << ”RP . v t k ” << e n d l ;
390 g e t l i n e ( out , pass iveF i leNameRP ) ;
391 o u t << ” . / d a t a S e t s / de l t aWing / Complete ” << i << ”RP . v t k ” << e n d l ;
392 g e t l i n e ( out , ou tputFi leNameRP ) ;
393

394 / / / / * * * * S u j u d i−Haimes S e c t i o n * * * * / / / /
395 / / Reading i n S u j u d i−Haimes v o r t e x core l i n e s
396 v t k P o l y D a t a R e a d e r * po lyReade r1 = v t k P o l y D a t a R e a d e r : : New ( ) ;
397 polyReader1−>SetF i leName ( ac t iveF i l eNameSH . c s t r ( ) ) ;
398 polyReader1−>Update ( ) ;
399

400 / / Reading i n a n o t h e r da ta s e t
401 v t k P o l y D a t a R e a d e r * po lyReade r2 = v t k P o l y D a t a R e a d e r : : New ( ) ;
402 polyReader2−>SetF i leName ( pass iveFi leNameSH . c s t r ( ) ) ;
403 polyReader2−>Update ( ) ;
404

405 / / c l e a n i n g t h e i n p u t da ta s e t
406 v t k C l e a n P o l y D a t a * c l e a n 1 = v t k C l e a n P o l y D a t a : : New ( ) ;
407 c l ean1−>S e t I n p u t ( po lyReader1−>GetOutpu t ( ) ) ;
408 c l ean1−>Update ( ) ;
409

410 / / Computing t h e q u a l i t y o f t h e v o r t i c e s
411 v t k Q u a l i t y * q u a l i t y 1 = v t k Q u a l i t y : : New ( ) ;
412 q u a l i t y 1−>S e t I n p u t ( c l ean1−>GetOutpu t ( ) ) ;
413 q u a l i t y 1−>S e t T h r e s h o l d L i n e s ( t h r e s h o l d L i n e s ) ;
414 q u a l i t y 1−>S e t Q u a l i t y T h r e s h o l d V a l u e ( q u a l i t y T h r e s h o l d V a l u e ) ;
415 q u a l i t y 1−>Update ( ) ;
416

417 / / P a r a m a t e r i z i n g l i n e s e g m e n t s
418 / / each l i n e segment has an a , b , c , d , e , f and l a s s o c i a t e d v a l u e
419 v t k P a r a m a t e r i z e L i n e F i l t e r * p l f 1 = v t k P a r a m a t e r i z e L i n e F i l t e r : : New ( ) ;
420 p l f 1−>S e t I n p u t ( q u a l i t y 1−>GetOutpu t ( ) ) ;
421 p l f 1−>Update ( ) ;
422

423 / / c a l c u l a t i n g t h e c u r v a t u r e o f t h e l i n e
424 v t k C u r v a t u r e * c u r v a t u r e 1 = v t k C u r v a t u r e : : New ( ) ;
425 c u r v a t u r e 1−>S e t I n p u t ( p l f 1−>GetOutpu t ( ) ) ;
426 c u r v a t u r e 1−>S i n g l e C u r v a t u r e V a l u e O n ( ) ;
427 c u r v a t u r e 1−>TwoSegmentCurvatureOff ( ) ;
428 c u r v a t u r e 1−>Update ( ) ;
429

430 / / f i n d i n g same l i n e s i n o t h e r da ta s e t f o r p r e v i o u s e r r o r f i l t e r
431 vtkSameLine * sameLine1 = vtkSameLine : : New ( ) ;
432 sameLine1−>AddInpu tConnec t i on ( c u r v a t u r e 1−>G e t O u t p u t P o r t ( ) ) ;
433 sameLine1−>AddInpu tConnec t i on ( po lyReader2−>G e t O u t p u t P o r t ( ) ) ;
434 sameLine1−>Update ( ) ;
435 v t k I n t A r r a y * sameLineArray1 = sameLine1−>GetSameLine ( ) ;
436

437 / / Computing p r e v i o u s e r r o r o f t h e da ta s e t
438 v t k F e a t u r e D i s p l a c e m e n t * pe1 = v t k F e a t u r e D i s p l a c e m e n t : : New ( ) ;
439 / / t h e f i r s t i n p u t i s t h e i n p u t t h a t t h e p r e v i o u s e r r o r i s c a l c u l a t e d f o r
440 / / i . e . newer da ta s e t
441 pe1−>AddInpu tConnec t i on ( c u r v a t u r e 1−>G e t O u t p u t P o r t ( ) ) ;
442 / / t h e second i n p u t i s used t o c a l c u l a t e p r e v i o u s e r r o r f o r t h e f i r s t i n p u t
443 / / i . e . o l d e r da ta s e t
444 pe1−>AddInpu tConnec t i on ( po lyReader2−>G e t O u t p u t P o r t ( ) ) ;
445 pe1−>SetSameLineArray ( sameLineArray1 ) ;
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446 pe1−>ComputeChangeInErrorOn ( ) ;
447 pe1−>Update ( ) ;
448

449 / / d e l e t i n g unused o b j e c t s
450 polyReader1−>D e l e t e ( ) ;
451 polyReader2−>D e l e t e ( ) ;
452 c l ean1−>D e l e t e ( ) ;
453 q u a l i t y 1−>D e l e t e ( ) ;
454 p l f 1−>D e l e t e ( ) ;
455 c u r v a t u r e 1−>D e l e t e ( ) ;
456 sameLine1−>D e l e t e ( ) ;
457 sameLineArray1−>D e l e t e ( ) ;
458

459 / / / / * * * * Roth−P e i k e r t S e c t i o n * * * * / / / /
460 / / Reading i n Roth−P e i k e r t v o r t e x core l i n e s
461 v t k P o l y D a t a R e a d e r * po lyReade r3 = v t k P o l y D a t a R e a d e r : : New ( ) ;
462 polyReader3−>SetF i leName ( ac t iveF i l eNameRP . c s t r ( ) ) ;
463 polyReader3−>Update ( ) ;
464

465 / / Reading i n a n o t h e r da ta s e t
466 v t k P o l y D a t a R e a d e r * po lyReade r4 = v t k P o l y D a t a R e a d e r : : New ( ) ;
467 polyReader4−>SetF i leName ( pass iveF i leNameRP . c s t r ( ) ) ;
468 polyReader4−>Update ( ) ;
469

470 / / c l e a n i n g t h e i n p u t da ta s e t
471 v t k C l e a n P o l y D a t a * c l e a n 3 = v t k C l e a n P o l y D a t a : : New ( ) ;
472 c l ean3−>S e t I n p u t ( po lyReader3−>GetOutpu t ( ) ) ;
473 c l ean3−>Update ( ) ;
474

475 / / Computing t h e q u a l i t y o f t h e v o r t i c e s
476 v t k Q u a l i t y * q u a l i t y 3 = v t k Q u a l i t y : : New ( ) ;
477 q u a l i t y 3−>S e t I n p u t ( c l ean3−>GetOutpu t ( ) ) ;
478 q u a l i t y 3−>S e t T h r e s h o l d L i n e s ( t h r e s h o l d L i n e s ) ;
479 q u a l i t y 3−>S e t Q u a l i t y T h r e s h o l d V a l u e ( q u a l i t y T h r e s h o l d V a l u e ) ;
480 q u a l i t y 3−>Update ( ) ;
481

482 / / P a r a m a t e r i z i n g l i n e s e g m e n t s
483 / / each l i n e segment has an a , b , c , d , e , f and l a s s o c i a t e d v a l u e
484 v t k P a r a m a t e r i z e L i n e F i l t e r * p l f 3 = v t k P a r a m a t e r i z e L i n e F i l t e r : : New ( ) ;
485 p l f 3−>S e t I n p u t ( q u a l i t y 3−>GetOutpu t ( ) ) ;
486 p l f 3−>Update ( ) ;
487

488 / / c a l c u l a t i n g t h e c u r v a t u r e o f t h e l i n e
489 v t k C u r v a t u r e * c u r v a t u r e 3 = v t k C u r v a t u r e : : New ( ) ;
490 c u r v a t u r e 3−>S e t I n p u t ( p l f 3−>GetOutpu t ( ) ) ;
491 c u r v a t u r e 3−>S i n g l e C u r v a t u r e V a l u e O n ( ) ;
492 c u r v a t u r e 3−>TwoSegmentCurvatureOff ( ) ;
493 c u r v a t u r e 3−>Update ( ) ;
494

495 / / f i n d i n g same l i n e s i n o t h e r da ta s e t f o r p r e v i o u s e r r o r f i l t e r
496 vtkSameLine * sameLine2 = vtkSameLine : : New ( ) ;
497 sameLine2−>AddInpu tConnec t i on ( c u r v a t u r e 3−>G e t O u t p u t P o r t ( ) ) ;
498 sameLine2−>AddInpu tConnec t i on ( po lyReader4−>G e t O u t p u t P o r t ( ) ) ;
499 sameLine2−>Update ( ) ;
500 v t k I n t A r r a y * sameLineArray2 = sameLine2−>GetSameLine ( ) ;
501

502 / / Computing p r e v i o u s e r r o r o f t h e da ta s e t
503 v t k F e a t u r e D i s p l a c e m e n t * pe2 = v t k F e a t u r e D i s p l a c e m e n t : : New ( ) ;
504 / / t h e f i r s t i n p u t i s t h e i n p u t t h a t t h e p r e v i o u s e r r o r i s c a l c u l a t e d f o r
505 / / i . e . newer da ta s e t
506 pe2−>AddInpu tConnec t i on ( c u r v a t u r e 3−>G e t O u t p u t P o r t ( ) ) ;
507 / / t h e second i n p u t i s used t o c a l c u l a t e p r e v i o u s e r r o r f o r t h e f i r s t i n p u t
508 / / i . e . o l d e r da ta s e t
509 pe2−>AddInpu tConnec t i on ( po lyReader4−>G e t O u t p u t P o r t ( ) ) ;
510 pe2−>SetSameLineArray ( sameLineArray2 ) ;
511 pe2−>ComputeChangeInErrorOn ( ) ;
512 pe2−>Update ( ) ;
513
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514 / / Computing minimum d i s t a n c e be tween p o i n t s i n S u j u d i−Haimes da ta s e t
515 / / and p o i n t s i n Roth−P e i k e r t da ta s e t .
516 vtkMinimumDistance * minimumDistance1 = vtkMinimumDistance : : New ( ) ;
517 minimumDistance1−>AddInpu tConnec t i on ( pe1−>G e t O u t p u t P o r t ( ) ) ;
518 minimumDistance1−>AddInpu tConnec t i on ( pe2−>G e t O u t p u t P o r t ( ) ) ;
519 minimumDistance1−>Update ( ) ;
520

521 / / Computing minimum d i s t a n c e be tween p o i n t s i n Roth−P e i k e r t da ta s e t
522 / / and p o i n t s i n S u j u d i−Haimes da ta s e t .
523 vtkMinimumDistance * minimumDistance2 = vtkMinimumDistance : : New ( ) ;
524 minimumDistance2−>AddInpu tConnec t i on ( pe2−>G e t O u t p u t P o r t ( ) ) ;
525 minimumDistance2−>AddInpu tConnec t i on ( pe1−>G e t O u t p u t P o r t ( ) ) ;
526 minimumDistance2−>Update ( ) ;
527

528 / / C r e a t i n g t h e f i n a l o p i n i o n o f t h e da ta s e t
529 v t k C r e a t e O p i n i o n * c r e a t e O p i n i o n 1 = v t k C r e a t e O p i n i o n : : New ( ) ;
530 c r e a t e O p i n i o n 1−>S e t I n p u t ( minimumDistance1−>GetOutpu t ( ) ) ;
531 c r e a t e O p i n i o n 1−>SujudiHaimesOn ( ) ;
532 c r e a t e O p i n i o n 1−>Update ( ) ;
533

534 / / C r e a t i n g t h e f i n a l o p i n i o n o f t h e da ta s e t
535 v t k C r e a t e O p i n i o n * c r e a t e O p i n i o n 2 = v t k C r e a t e O p i n i o n : : New ( ) ;
536 c r e a t e O p i n i o n 2−>S e t I n p u t ( minimumDistance2−>GetOutpu t ( ) ) ;
537 c r e a t e O p i n i o n 2−>R o t h P e i k e r t O n ( ) ;
538 c r e a t e O p i n i o n 2−>Update ( ) ;
539

540 / / W r i t i n g f i l e t o check i t
541 v t k P o l y D a t a W r i t e r * p d W r i t e r 1 = v t k P o l y D a t a W r i t e r : : New ( ) ;
542 pdWri t e r1−>S e t I n p u t ( c r e a t e O p i n i o n 1−>GetOutpu t ( ) ) ;
543 pdWri t e r1−>SetF i leName ( outputFi leNameSH . c s t r ( ) ) ;
544 pdWri t e r1−>Wri te ( ) ;
545

546 / / W r i t i n g f i l e t o check i t
547 v t k P o l y D a t a W r i t e r * p d W r i t e r 2 = v t k P o l y D a t a W r i t e r : : New ( ) ;
548 pdWri t e r2−>S e t I n p u t ( c r e a t e O p i n i o n 2−>GetOutpu t ( ) ) ;
549 pdWri t e r2−>SetF i leName ( outputFi leNameRP . c s t r ( ) ) ;
550 pdWri t e r2−>Wri te ( ) ;
551

552 / / d e l e t i n g unused o b j e c t s
553 polyReader3−>D e l e t e ( ) ;
554 polyReader4−>D e l e t e ( ) ;
555 c l ean3−>D e l e t e ( ) ;
556 q u a l i t y 3−>D e l e t e ( ) ;
557 p l f 3−>D e l e t e ( ) ;
558 c u r v a t u r e 3−>D e l e t e ( ) ;
559 sameLine2−>D e l e t e ( ) ;
560 pe2−>D e l e t e ( ) ;
561 pdWri t e r2−>D e l e t e ( ) ;
562 sameLineArray2−>D e l e t e ( ) ;
563

564 s topWatch . s t o p T i m e r ( ) ;
565 t imeToComple t ion = ( s topWatch . g e t E l a p s e d T i m e ( )−oldTime ) *(10− i ) ;
566 c o u t << ” Completed ” << i << ” i n Time = ” << s topWatch . g e t E l a p s e d T i m e ( )−oldTime << ” s ”

<< ”\ t E l a p s e d Time = ” << s topWatch . g e t E l a p s e d T i m e ( ) << ”\tETA = ” <<
t imeToComple t ion << ” s ” << e n d l ;

567 oldTime = s topWatch . g e t E l a p s e d T i m e ( ) ;
568

569 }
570 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
571

572 }
573

574 re turn 1 ;
575 }
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A.3 Header Files

In this section header files are listed for code I have written in C++. Header files have

not been listed for code I did not write like vtkRothPeikert and vtkSujudiHaimes. All of the

code uses VTK 5.4 code as superclasses. Two books from Kitware, Inc. explain the vtk object

structure [34, 35]. The header files are listed in alphabetical order.

A.3.1 vtkCreateOpinion.h

1 / / .NAME v t k C r e a t e O p i n i o n
2

3 / / . SECTION D e s c r i p t i o n
4 / / v t k C r e a t e O p i n i o n i s a f i l t e r t h a t computes t h e f i n a l o p i n i o n .
5

6 # i f n d e f v t k C r e a t e O p i n i o n h
7 # d e f i n e v t k C r e a t e O p i n i o n h
8

9 # i n c l u d e ” v t k P o l y D a t a A l g o r i t h m . h ”
10

11 c l a s s v t k F l o a t A r r a y ;
12 c l a s s v t k I d L i s t ;
13 c l a s s v t k P o l y D a t a ;
14

15 c l a s s VTK GRAPHICS EXPORT v t k C r e a t e O p i n i o n : p u b l i c v t k P o l y D a t a A l g o r i t h m
16 {
17 p u b l i c :
18 v tkTypeRev i s ionMacro ( v t k C r e a t e O p i n i o n , v t k P o l y D a t a A l g o r i t h m ) ;
19 void P r i n t S e l f ( o s t r e a m& os , v t k I n d e n t i n d e n t ) ;
20

21 s t a t i c v t k C r e a t e O p i n i o n *New ( ) ;
22

23 / / D e s c r i p t i o n : S e t / Get c o n s t a n t used t o f i n d b e l i e f ,
24 / / d i s b e l i e f , and u n c e r t a i n t y v a l u e s f o r Master Agent .
25 v tkSe tMacro ( P r e v i o u s E r r o r C o n s t a n t , double ) ;
26 vtkGetMacro ( P r e v i o u s E r r o r C o n s t a n t , double ) ;
27

28 / / D e s c r i p t i o n : S e t / Get c o n s t a n t used t o f i n d b e l i e f ,
29 / / d i s b e l i e f , and u n c e r t a i n t y v a l u e s f o r Master Agent .
30 v tkSe tMacro ( C h a n g e I n E r r o r C o n s t a n t , double ) ;
31 vtkGetMacro ( C h a n g e I n E r r o r C o n s t a n t , double ) ;
32

33 / / D e s c r i p t i o n : Turn on / o f f S u j u d i−Haimes as t h e
34 / / a c t i v e e x t r a c t i o n a l g o r i t h m .
35 v tkSe tMacro ( SujudiHaimes , i n t ) ;
36 vtkGetMacro ( SujudiHaimes , i n t ) ;
37 vtkBooleanMacro ( SujudiHaimes , i n t ) ;
38

39 / / D e s c r i p t i o n : Turn on / o f f Roth−P e i k e r t as t h e
40 / / a c t i v e e x t r a c t i o n a l g o r i t h m .
41 v tkSe tMacro ( R o t h P e i k e r t , i n t ) ;
42 vtkGetMacro ( R o t h P e i k e r t , i n t ) ;
43 vtkBooleanMacro ( R o t h P e i k e r t , i n t ) ;
44

45 / / D e s c r i p t i o n : S e t / Get l a r g e s t v o r t e x s t r e n g t h v a l u e which
46 / / d i v i d e s a l l t h e v o r t e x s t r e n g t h v a l u e s .
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47 v tkSe tMacro ( Vor texSt reng thMax , double ) ;
48 vtkGetMacro ( Vor texSt reng thMax , double ) ;
49

50 / / D e s c r i p t i o n : S e t / Get l a r g e s t c u r v a t u r e v a l u e which
51 / / d i v i d e s a l l t h e c u r v a t u r e v a l u e s .
52 v tkSe tMacro ( CurvatureMax , double ) ;
53 vtkGetMacro ( CurvatureMax , double ) ;
54

55 / / D e s c r i p t i o n : S e t / Get l a r g e s t q u a l i t y v a l u e which
56 / / d i v i d e s a l l t h e q u a l i t y v a l u e s .
57 v tkSe tMacro ( Quali tyMax , double ) ;
58 vtkGetMacro ( Quali tyMax , double ) ;
59

60 / / D e s c r i p t i o n : S e t / Get l a r g e s t q u a l i t y v a l u e which
61 / / d i v i d e s a l l t h e q u a l i t y v a l u e s .
62 v tkSe tMacro ( MinimumDistanceMax , double ) ;
63 vtkGetMacro ( MinimumDistanceMax , double ) ;
64

65 p r o t e c t e d :
66 v t k C r e a t e O p i n i o n ( ) ;
67 ˜ v t k C r e a t e O p i n i o n ( ) {} ;
68

69 / / Usual da ta g e n e r a t i o n method
70 i n t Reques tDa ta ( v t k I n f o r m a t i o n * , v t k I n f o r m a t i o n V e c t o r ** , v t k I n f o r m a t i o n V e c t o r * ) ;
71

72 double P r e v i o u s E r r o r C o n s t a n t ;
73 double C h a n g e I n E r r o r C o n s t a n t ;
74 double Vor texS t r eng thMax ;
75 double CurvatureMax ;
76 double Qual i tyMax ;
77 double MinimumDistanceMax ;
78 i n t Sujud iHa imes ;
79 i n t R o t h P e i k e r t ;
80

81 p r i v a t e :
82 v t k C r e a t e O p i n i o n ( c o n s t v t k C r e a t e O p i n i o n &) ; / / Not imp lemen ted .
83 void operator =( c o n s t v t k C r e a t e O p i n i o n &) ; / / Not imp lemen ted .
84 } ;
85

86 # e n d i f

A.3.2 vtkCurvature.h

1 / / .NAME v t k C u r v a t u r e − computes c u r v a t u r e o f l i n e s
2

3 / / . SECTION D e s c r i p t i o n
4 / / v t k C u r v a t u r e i s a f i l t e r t h a t computes t h e c u r v a t u r e o f a p o l y l i n e and
5 / / s e t s a c u r v a t u r e v a l u e f o r each p o i n t i n t h e l i n e .
6

7 # i f n d e f v t k C u r v a t u r e h
8 # d e f i n e v t k C u r v a t u r e h
9

10 # i n c l u d e ” v t k P o l y D a t a A l g o r i t h m . h ”
11

12 c l a s s v t k F l o a t A r r a y ;
13 c l a s s v t k I d L i s t ;
14 c l a s s v t k P o l y D a t a ;
15

16 c l a s s VTK GRAPHICS EXPORT v t k C u r v a t u r e : p u b l i c v t k P o l y D a t a A l g o r i t h m
17 {
18 p u b l i c :
19 v tkTypeRev i s ionMacro ( v t k C u r v a t u r e , v t k P o l y D a t a A l g o r i t h m ) ;
20 void P r i n t S e l f ( o s t r e a m& os , v t k I n d e n t i n d e n t ) ;
21

22 s t a t i c v t k C u r v a t u r e *New ( ) ;
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23

24 / / D e s c r i p t i o n :
25 / / S e t number o f p o i n t s t o c a l c u l a t e c u r v a t u r e .
26 v tkSe tMacro ( NumberOfCurvatureValues , i n t ) ;
27 vtkGetMacro ( NumberOfCurvatureValues , i n t ) ;
28

29 / / D e s c r i p t i o n :
30 / / Turn on / o f f c a l c u l a t i n g c u r v a t u r e u s i n g l i n e e n d p o i n t ,
31 / / m i d p o i n t and s t a r t p o i n t .
32 v tkSe tMacro ( S i n g l e C u r v a t u r e V a l u e , i n t ) ;
33 vtkGetMacro ( S i n g l e C u r v a t u r e V a l u e , i n t ) ;
34 vtkBooleanMacro ( S i n g l e C u r v a t u r e V a l u e , i n t ) ; / / f a l s e i s 0
35

36 / / D e s c r i p t i o n :
37 / / Turn on / o f f t h e c a l c u l a t i o n o f c u r v a t u r e f o r a c e n t r a l
38 / / p o i n t u s i n g a t h r e e p o i n t a p p r o x i m a t i o n .
39 v tkSe tMacro ( TwoSegmentCurvature , i n t ) ;
40 vtkGetMacro ( TwoSegmentCurvature , i n t ) ;
41 vtkBooleanMacro ( TwoSegmentCurvature , i n t ) ; / / f a l s e i s 0
42

43 p r o t e c t e d :
44 v t k C u r v a t u r e ( ) ;
45 ˜ v t k C u r v a t u r e ( ) {} ;
46

47 i n t TwoSegmentCurvature ;
48 i n t S i n g l e C u r v a t u r e V a l u e ;
49 i n t NumberOfCurva tureValues ;
50

51 / / Usual da ta g e n e r a t i o n method
52 i n t Reques tDa ta ( v t k I n f o r m a t i o n * , v t k I n f o r m a t i o n V e c t o r ** , v t k I n f o r m a t i o n V e c t o r * ) ;
53

54 p r i v a t e :
55 v t k C u r v a t u r e ( c o n s t v t k C u r v a t u r e &) ; / / Not imp lemen ted .
56 void operator =( c o n s t v t k C u r v a t u r e &) ; / / Not imp lemen ted .
57 } ;
58

59 # e n d i f

A.3.3 vtkMinimumDistance.h

1 / / .NAME vtkMin imumDis tance
2

3 / / . SECTION D e s c r i p t i o n
4 / / v t kMin imumDis tance i s a f i l t e r t h a t computes t h e s m a l l e s t c a r t e s i a n
5 / / d i s t a n c e be tween each p o i n t i n i n p u t 1 and a l l t h e p o i n t s i n i n p u t 2 .
6

7 # i f n d e f v tkMin imumDis t ance h
8 # d e f i n e v tkMin imumDis t ance h
9

10 # i n c l u d e ” v t k P o l y D a t a A l g o r i t h m . h ”
11

12 c l a s s v t k F l o a t A r r a y ;
13 c l a s s v t k I d L i s t ;
14 c l a s s v t k P o l y D a t a ;
15

16 c l a s s VTK GRAPHICS EXPORT vtkMinimumDistance : p u b l i c v t k P o l y D a t a A l g o r i t h m
17 {
18 p u b l i c :
19 v tkTypeRev i s ionMacro ( vtkMinimumDistance , v t k P o l y D a t a A l g o r i t h m ) ;
20 void P r i n t S e l f ( o s t r e a m& os , v t k I n d e n t i n d e n t ) ;
21

22 s t a t i c vtkMinimumDistance *New ( ) ;
23

24 p r o t e c t e d :
25 vtkMinimumDistance ( ) ;
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26 ˜ v tkMinimumDistance ( ) {} ;
27

28 / / Usual da ta g e n e r a t i o n method
29 i n t Reques tDa ta ( v t k I n f o r m a t i o n * , v t k I n f o r m a t i o n V e c t o r ** , v t k I n f o r m a t i o n V e c t o r * ) ;
30 i n t F i l l I n p u t P o r t I n f o r m a t i o n ( i n t p o r t , v t k I n f o r m a t i o n * i n f o ) ;
31

32 p r i v a t e :
33 vtkMinimumDistance ( c o n s t vtkMinimumDistance &) ; / / Not imp lemen ted .
34 void operator =( c o n s t vtkMinimumDistance &) ; / / Not imp lemen ted .
35 } ;
36

37 # e n d i f

A.3.4 vtkFeatureDisplacement.h

1 / / .NAME v t k F e a t u r e D i s p l a c e m e n t − computes f e a t u r e d i s p l a c e m e n t
2

3 / / . SECTION D e s c r i p t i o n
4 / / v t k F e a t u r e D i s p l a c e m e n t i s a f i l t e r t h a t computes t h e f e a t u r e d i s p l a c e m e n t
5 / / f o r each l i n e i n t h e f i r s t da ta s e t . The f e a t u r e d i s p l a c e m e n t i s computed
6 / / based on t h e c l o s e s t l i n e i n t h e second da ta s e t .
7

8 # i f n d e f v t k F e a t u r e D i s p l a c e m e n t h
9 # d e f i n e v t k F e a t u r e D i s p l a c e m e n t h

10

11 # i n c l u d e ” v t k P o l y D a t a A l g o r i t h m . h ”
12

13 c l a s s v t k F l o a t A r r a y ;
14 c l a s s v t k I d L i s t ;
15 c l a s s v t k P o l y D a t a ;
16

17 c l a s s VTK GRAPHICS EXPORT v t k F e a t u r e D i s p l a c e m e n t : p u b l i c v t k P o l y D a t a A l g o r i t h m
18 {
19 p u b l i c :
20 v tkTypeRev i s ionMacro ( v t k F e a t u r e D i s p l a c e m e n t , v t k P o l y D a t a A l g o r i t h m ) ;
21 void P r i n t S e l f ( o s t r e a m& os , v t k I n d e n t i n d e n t ) ;
22

23 s t a t i c v t k F e a t u r e D i s p l a c e m e n t *New ( ) ;
24

25 v tkSe tMacro ( SameLineArray , v t k I n t A r r a y * ) ;
26

27 / / t u r n i n g on / o f f t h e c o m p u t a t i o n o f t h e change i n e r r o r a r r a y
28 v tkSe tMacro ( ComputeChangeInError , i n t ) ;
29 vtkGetMacro ( ComputeChangeInError , i n t ) ;
30 vtkBooleanMacro ( ComputeChangeInError , i n t ) ;
31

32 / / t u r n i n g on / o f f t h e c o m p u t a t i o n o f p r e v i o u s e r r o r u s i n g c l o s e s t p o i n t
33 v tkSe tMacro ( C l o s e s t P o i n t , i n t ) ;
34 vtkGetMacro ( C l o s e s t P o i n t , i n t ) ;
35 vtkBooleanMacro ( C l o s e s t P o i n t , i n t ) ;
36

37 / / t u r n i n g on / o f f t h e c o m p u t a t i o n o f p r e v i o u s e r r o r u s i n g same l i n e
38 v tkSe tMacro ( SameLine , i n t ) ;
39 vtkGetMacro ( SameLine , i n t ) ;
40 vtkBooleanMacro ( SameLine , i n t ) ;
41

42 p r o t e c t e d :
43 v t k F e a t u r e D i s p l a c e m e n t ( ) ;
44 ˜ v t k F e a t u r e D i s p l a c e m e n t ( ) {} ;
45

46 / / Usual da ta g e n e r a t i o n method
47 i n t Reques tDa ta ( v t k I n f o r m a t i o n * , v t k I n f o r m a t i o n V e c t o r ** , v t k I n f o r m a t i o n V e c t o r * ) ;
48 i n t F i l l I n p u t P o r t I n f o r m a t i o n ( i n t p o r t , v t k I n f o r m a t i o n * i n f o ) ;
49

50 v t k I n t A r r a y * SameLineArray ;
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51 i n t ComputeChangeInError ;
52 i n t C l o s e s t P o i n t ;
53 i n t SameLine ;
54

55 p r i v a t e :
56 v t k F e a t u r e D i s p l a c e m e n t ( c o n s t v t k F e a t u r e D i s p l a c e m e n t &) ; / / Not imp lemen ted .
57 void operator =( c o n s t v t k F e a t u r e D i s p l a c e m e n t &) ; / / Not imp lemen ted .
58 } ;
59

60 # e n d i f

A.3.5 vtkQuality.h

1 / / .NAME v t k Q u a l i t y
2

3 / / . SECTION D e s c r i p t i o n
4 / / v t k Q u a l i t y i s a f i l t e r t h a t computes t h e v o r t e x q u a l i t y
5 / / a t each p o i n t o f a v o r t e x core l i n e .
6

7 # i f n d e f v t k Q u a l i t y h
8 # d e f i n e v t k Q u a l i t y h
9

10 # i n c l u d e ” v t k P o l y D a t a A l g o r i t h m . h ”
11

12 c l a s s v t k F l o a t A r r a y ;
13 c l a s s v t k I d L i s t ;
14 c l a s s v t k P o l y D a t a ;
15

16 c l a s s VTK GRAPHICS EXPORT v t k Q u a l i t y : p u b l i c v t k P o l y D a t a A l g o r i t h m
17 {
18 p u b l i c :
19 v tkTypeRev i s ionMacro ( v t k Q u a l i t y , v t k P o l y D a t a A l g o r i t h m ) ;
20 void P r i n t S e l f ( o s t r e a m& os , v t k I n d e n t i n d e n t ) ;
21

22 s t a t i c v t k Q u a l i t y *New ( ) ;
23

24 / / D e s c r i p t i o n :
25 / / Turn on / o f f q u a l i t y t h r e s h o l d i n g .
26 v tkSe tMacro ( T h r e s h o l d L i n e s , i n t ) ;
27 vtkGetMacro ( T h r e s h o l d L i n e s , i n t ) ;
28 vtkBooleanMacro ( T h r e s h o l d L i n e s , i n t ) ; / / f a l s e i s 0
29

30 / / D e s c r i p t i o n :
31 / / S e t / Get v a l u e f o r q u a l i t y t h r e s h o l d .
32 v tkSe tMacro ( Q u a l i t y T h r e s h o l d V a l u e , double ) ;
33 vtkGetMacro ( Q u a l i t y T h r e s h o l d V a l u e , double ) ;
34

35 p r o t e c t e d :
36 v t k Q u a l i t y ( ) ;
37 ˜ v t k Q u a l i t y ( ) {} ;
38

39 / / Usual da ta g e n e r a t i o n method
40 i n t Reques tDa ta ( v t k I n f o r m a t i o n * , v t k I n f o r m a t i o n V e c t o r ** , v t k I n f o r m a t i o n V e c t o r * ) ;
41

42 i n t T h r e s h o l d L i n e s ;
43 double Q u a l i t y T h r e s h o l d V a l u e ;
44

45 p r i v a t e :
46 v t k Q u a l i t y ( c o n s t v t k Q u a l i t y &) ; / / Not imp lemen ted .
47 void operator =( c o n s t v t k Q u a l i t y &) ; / / Not imp lemen ted .
48 } ;
49

50 # e n d i f
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A.3.6 vtkSameLine.h

1 / / .NAME v tkSameL ine − l o c a t e s c l o s e s t l i n e i n s e p a r a t e da ta s e t
2

3 / / . SECTION D e s c r i p t i o n
4 / / v t kSameL ine i s a f i l t e r t h a t l o c a t e s t h e c l o s e s t l i n e i n t h e second
5 / / da ta s e t t o a l l l i n e s i n t h e f i r s t da ta s e t
6

7 # i f n d e f v t k S a m e L i n e h
8 # d e f i n e v t k S a m e L i n e h
9

10 # i n c l u d e ” v t k P o l y D a t a A l g o r i t h m . h ”
11

12 c l a s s v t k F l o a t A r r a y ;
13 c l a s s v t k I d L i s t ;
14 c l a s s v t k P o l y D a t a ;
15

16 c l a s s VTK GRAPHICS EXPORT vtkSameLine : p u b l i c v t k P o l y D a t a A l g o r i t h m
17 {
18 p u b l i c :
19 v tkTypeRev i s ionMacro ( vtkSameLine , v t k P o l y D a t a A l g o r i t h m ) ;
20 void P r i n t S e l f ( o s t r e a m& os , v t k I n d e n t i n d e n t ) ;
21

22 s t a t i c vtkSameLine *New ( ) ;
23

24 vtkGetMacro ( SameLine , v t k I n t A r r a y * ) ;
25

26 p r o t e c t e d :
27 vtkSameLine ( ) ;
28 ˜ v tkSameLine ( ) {} ;
29

30 / / Usual da ta g e n e r a t i o n method
31 i n t Reques tDa ta ( v t k I n f o r m a t i o n * , v t k I n f o r m a t i o n V e c t o r ** , v t k I n f o r m a t i o n V e c t o r * ) ;
32 i n t F i l l I n p u t P o r t I n f o r m a t i o n ( i n t p o r t , v t k I n f o r m a t i o n * i n f o ) ;
33

34 v t k I n t A r r a y * SameLine ;
35

36 p r i v a t e :
37 vtkSameLine ( c o n s t vtkSameLine &) ; / / Not imp lemen ted .
38 void operator =( c o n s t vtkSameLine &) ; / / Not imp lemen ted .
39 } ;
40

41 # e n d i f

A.4 Source Files

In this section source files are listed for each of the header files in Section A.3. Source files

have not been listed for code I did not write like vtkRothPeikert and vtkSujudiHaimes. All of the

code uses VTK 5.4 code as superclasses. The source files are listed in alphabetical order.

A.4.1 vtkCreateOpinion.cxx

1 # i n c l u d e ” v t k C r e a t e O p i n i o n . h ”
2
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3 # i n c l u d e ” v t k C e l l A r r a y . h ”
4 # i n c l u d e ” v t k C e l l D a t a . h ”
5 # i n c l u d e ” v tkDoub leAr ray . h ”
6 # i n c l u d e ” v t k I n f o r m a t i o n . h ”
7 # i n c l u d e ” v t k I n f o r m a t i o n V e c t o r . h ”
8 # i n c l u d e ” v t k O b j e c t F a c t o r y . h ”
9 # i n c l u d e ” v t k P o i n t D a t a . h ”

10 # i n c l u d e ” v t k P o l y D a t a . h ”
11 # i n c l u d e ” vtkMath . h ”
12 # i n c l u d e ” v t k T h r e s h o l d . h ”
13 # i n c l u d e ” v t k U n s t r u c t u r e d G r i d . h ”
14 # i n c l u d e ” v t k G e o m e t r y F i l t e r . h ”
15 # i n c l u d e <math . h>
16

17 vtkCxxRevis ionMacro ( v t k C r e a t e O p i n i o n , ” $ R e v i s i o n : 1 . 7 0 $ ” ) ;
18 vtkStandardNewMacro ( v t k C r e a t e O p i n i o n ) ;
19

20 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 v t k C r e a t e O p i n i o n : : v t k C r e a t e O p i n i o n ( )
22 {
23 t h i s−>P r e v i o u s E r r o r C o n s t a n t = 0 . 0 2 ;
24 t h i s−>C h a n g e I n E r r o r C o n s t a n t = 0 . 0 5 ;
25 t h i s−>Sujud iHa imes = t rue ;
26 t h i s−>R o t h P e i k e r t = f a l s e ;
27 t h i s−>Vor texS t r eng thMax = 600 ; / / I l i k e 600
28 t h i s−>CurvatureMax = 0 . 3 ; / / I l i k e 0 . 3
29 t h i s−>Qual i tyMax = 8 0 ; / / I l i k e 80
30 t h i s−>MinimumDistanceMax = 0 . 1 ;
31 }
32

33 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
34 i n t v t k C r e a t e O p i n i o n : : Reques tDa ta (
35 v t k I n f o r m a t i o n * vtkNotUsed ( r e q u e s t ) ,
36 v t k I n f o r m a t i o n V e c t o r ** i n p u t V e c t o r ,
37 v t k I n f o r m a t i o n V e c t o r * o u t p u t V e c t o r )
38 {
39 / / g e t t h e i n f o o b j e c t s
40 v t k I n f o r m a t i o n * i n I n f o = i n p u t V e c t o r [0]−> G e t I n f o r m a t i o n O b j e c t ( 0 ) ;
41 v t k I n f o r m a t i o n * o u t I n f o = o u t p u t V e c t o r−>G e t I n f o r m a t i o n O b j e c t ( 0 ) ;
42

43 / / g e t i n p u t and o u t p u t
44 v t k P o l y D a t a * i n p u t = v t k P o l y D a t a : : SafeDownCast ( i n I n f o−>Get ( v t k D a t a O b j e c t : : DATA OBJECT ( ) ) ) ;
45 v t k P o l y D a t a * o u t p u t = v t k P o l y D a t a : : SafeDownCast ( o u t I n f o−>Get ( v t k D a t a O b j e c t : : DATA OBJECT ( ) ) ) ;
46

47 / / c r e a t i n g Master Agent o p i n i o n a r r a y
48 v tkDoub leAr ray *MAArray = v tkDoub leAr ray : : New ( ) ;
49 MAArray−>SetNumberOfValues ( i n p u t−>GetNumberOfPoints ( ) *3) ;
50 MAArray−>SetNumberOfComponents ( 3 ) ;
51 MAArray−>SetNumberOfTuples ( i n p u t−>GetNumberOfPoints ( ) ) ;
52 MAArray−>SetName ( ”MA” ) ;
53

54 / / C r e a t i n g a r r a y t o s t o r e a l g o r i t h m a g e n t o p i n i o n when
55 / / t h e Roth−P e i k e r t a l g o r i t h m e x t r a c t s t h e c o r e s
56 v tkDoub leAr ray *AARPArray = v tkDoub leAr ray : : New ( ) ;
57 AARPArray−>SetNumberOfValues ( i n p u t−>GetNumberOfPoints ( ) *3) ;
58 AARPArray−>SetNumberOfComponents ( 3 ) ;
59 AARPArray−>SetNumberOfTuples ( i n p u t−>GetNumberOfPoints ( ) ) ;
60 AARPArray−>SetName ( ”AARP” ) ;
61

62 / / C r e a t i n g a r r a y t o s t o r e a l g o r i t h m a g e n t o p i n i o n when
63 / / t h e S u j u d i−Haimes a l g o r i t h m e x t r a c t s t h e c o r e s
64 v tkDoub leAr ray *AASHArray = v tkDoub leAr ray : : New ( ) ;
65 AASHArray−>SetNumberOfValues ( i n p u t−>GetNumberOfPoints ( ) *3) ;
66 AASHArray−>SetNumberOfComponents ( 3 ) ;
67 AASHArray−>SetNumberOfTuples ( i n p u t−>GetNumberOfPoints ( ) ) ;
68 AASHArray−>SetName ( ”AASH” ) ;
69

70 / / C r e a t i n g a r r a y t o s t o r e f i n a l o p i n i o n
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71 v tkDoub leAr ray * f i n a l O p i n i o n A r r a y = v tkDoub leAr ray : : New ( ) ;
72 f i n a l O p i n i o n A r r a y−>SetNumberOfValues ( i n p u t−>GetNumberOfPoints ( ) *3) ;
73 f i n a l O p i n i o n A r r a y−>SetNumberOfComponents ( 3 ) ;
74 f i n a l O p i n i o n A r r a y−>SetNumberOfTuples ( i n p u t−>GetNumberOfPoints ( ) ) ;
75 f i n a l O p i n i o n A r r a y−>SetName ( ” F i n a l O p i n i o n ” ) ;
76

77 / / C r e a t i n g a r r a y t o s t o r e p r o b a b i l i t y e x p e c t a t i o n v a l u e
78 v tkDoub leAr ray * probExpArray = v tkDoub leAr ray : : New ( ) ;
79 probExpArray−>SetNumberOfValues ( i n p u t−>GetNumberOfPoints ( ) ) ;
80 probExpArray−>SetNumberOfComponents ( 1 ) ;
81 probExpArray−>SetNumberOfTuples ( i n p u t−>GetNumberOfPoints ( ) ) ;
82 probExpArray−>SetName ( ” P r o b a b i l i t y E x p e c t a t i o n ” ) ;
83

84 / / B e l i e f i s s e t based on p r e v i o u s e r r o r and change i n e r r o r
85 / / a s m a l l p r e v i o u s e r r o r and s m a l l change i n e r r o r y i e l d s
86 / / b e l i e f v a l u e s o f a p p r o x i m a t e l y one .
87 / / D i s b e l i e f i s s e t based on p r e v i o u s e r r o r . A s m a l l p r e v i o u s
88 / / e r r o r y i e l d s a low d i s b e l i e f .
89 / / U n c e r t a i n t y i s s e t based on change i n e r r o r . A s m a l l
90 / / change i n e r r o r y i e l d s a low u n c e r t a i n t y .
91 double b , d , u , CE , PE , tup leCheck , e q u a l i z e r ;
92 i n t i ;
93 f o r ( i =0 ; i<i n p u t−>GetNumberOfPoints ( ) ; i ++){
94 PE = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” P r e v i o u s E r r o r ” )−>GetComponent ( i , 0 ) ;
95 CE = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” C h a n g e I n E r r o r ” )−>GetComponent ( i , 0 ) ;
96 b = (−C h a n g e I n E r r o r C o n s t a n t * CE − P r e v i o u s E r r o r C o n s t a n t * PE ) / 2 + 1 ;
97 i f ( b<0){b = 0 ;}
98 d = P r e v i o u s E r r o r C o n s t a n t * PE ;
99 i f ( d>1){d = 1 ;}

100 u = C h a n g e I n E r r o r C o n s t a n t * CE ;
101 i f ( u>1){u = 1 ;}
102 t u p l e C h e c k = b + d + u ;
103 i f ( tup leCheck >1){
104 i f ( u == 1){
105 b = 0 ;
106 d = 0 ;
107 }
108 e l s e {
109 e q u a l i z e r = ( ( u + d + b )−1) / 2 ;
110 b = b − e q u a l i z e r ;
111 d = d − e q u a l i z e r ;
112 i f ( b<0){b = 0 ;}
113 i f ( d<0){d = 0 ;}
114 t u p l e C h e c k = b + d + u ;
115 i f ( tup leCheck >1){
116 i f ( b ==0){d = 1 − u ;}
117 i f ( d ==0){b = 1 − u ;}
118 }
119 }
120 }
121 MAArray−>SetComponent ( i , 0 , b ) ;
122 MAArray−>SetComponent ( i , 1 , d ) ;
123 MAArray−>SetComponent ( i , 2 , u ) ;
124 / / c o u t << ”b = ” << b << ”\ t d = ” << d << ”\ t u = ” << u << ”\ tSum = ” << b+d+u << e n d l ;
125 }
126

127 / / i n i t i a l i z i n g v a r i a b l e s
128 double v o r t e x S t r e n g t h , c u r v a t u r e , q u a l i t y , minimumDistance , n o r m a l V o r t e x S t r e n g t h ,

n o r m a l C u r v a t u r e , n o r m a l Q u a l i t y , normalAverage , normalMinimumDistance ;
129

130 / / c a l c u l a t i n g b e l i e f t u p l e v a l u e s as i f S u j u d i−Haimes was t h e
131 / / e x t r a c t i o n a l g o r i t h m f o r t h e s e t o f v o r t e x c o r e s .
132 i f ( Su jud iHa imes ) {
133 f o r ( i =0 ; i<i n p u t−>GetNumberOfPoints ( ) ; i ++){
134 / / c r e a t i n g t h e AARP o p i n i o n f o r t h e Roth−P e i k e r t a l g o r i t h m when RP DOES NOT e x t r a c t t h e

p o i n t s
135 / / p u t t i n g v o r t e x s t r e n g t h v a l u e i n pr op er form
136 v o r t e x S t r e n g t h = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” V o r t e x S t r e n g t h ” )−>GetComponent ( i , 0 ) ;
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137 n o r m a l V o r t e x S t r e n g t h = f a b s ( v o r t e x S t r e n g t h / Vor t exS t r eng thMax ) ;
138 i f ( n o r m a l V o r t e x S t r e n g t h >1){ n o r m a l V o r t e x S t r e n g t h =1;}
139

140 / / p u t t i n g c u r v a t u r e v a l u e i n pr op er form
141 c u r v a t u r e = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” C u r v a t u r e ” )−>GetComponent ( i , 0 ) ;
142 i f ( c u r v a t u r e >CurvatureMax ) { c u r v a t u r e =CurvatureMax ;}
143 n o r m a l C u r v a t u r e = f a b s ( c u r v a t u r e / CurvatureMax − 1) ;
144

145 / / p u t t i n g q u a l i t y v a l u e i n pr op er form
146 q u a l i t y = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” Q u a l i t y ” )−>GetComponent ( i , 0 ) ;
147 i f ( q u a l i t y >Qual i tyMax ) { q u a l i t y =Qual i tyMax ;}
148 n o r m a l Q u a l i t y = f a b s ( q u a l i t y / Qual i tyMax − 1) ;
149

150 / / f i n d i n g t h e average o f t h e t h r e e v a l u e s
151 normalAverage = ( n o r m a l V o r t e x S t r e n g t h + n o r m a l C u r v a t u r e + n o r m a l Q u a l i t y ) / 3 ;
152

153 / / p u t t i n g minimum d i s t a n c e v a l u e i n pr op er form
154 minimumDistance = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” MinimumDistance ” )−>GetComponent ( i , 0 ) ;
155 normalMinimumDistance = f a b s ( minimumDistance / MinimumDistanceMax ) ;
156 i f ( normalMinimumDistance >1){normalMinimumDistance =1;}
157

158 / / t h e f u n c t i o n t h a t s e t s t h e b e l i e f v a l u e
159 b = 0 . 8 * normalAverage + 0 . 2 ; / /<−−−−−−−−−−−−−−−−−−−−−−
160 i f ( b>1){b =1;}
161 / / t h e f u n c t i o n t h a t s e t s t h e d i s b e l i e f v a l u e
162 d = −0.8* normalAverage + 0 . 8 ; / /<−−−−−−−−−−−−−−−−−−−−−−
163 i f ( d<0){d =0;}
164 / / t h e f u n c t i o n t h a t s e t s t h e u n c e r t a i n t y v a l u e
165 u = normalMinimumDistance * 0 . 5 ; / /<−−−−−−−−−−−−−−−−−−−−−−
166

167 t u p l e C h e c k = b + d + u ;
168 / / c h e c k i n g t h e b e l i e f t u p l e t o make s u r e i t sums t o 1 . i . e . b+d+u=1
169 i f ( tup leCheck >1){
170 / / I f b + d + u doesn ’ t e q u a l 1 t h e n up da t e u and d
171 e q u a l i z e r = ( ( b + d + u ) − 1) / 2 ;
172 u = u − e q u a l i z e r ;
173 b = b − e q u a l i z e r ;
174 i f ( u<0){u =0;}
175 i f ( b<0){b =0;}
176 t u p l e C h e c k = u + b + d ;
177 i f ( tup leCheck >1){
178 i f ( u ==0){b = 1 − d ;}
179 i f ( b ==0){u = 1 − d ;}
180 }
181 }
182 AARPArray−>SetComponent ( i , 0 , b ) ;
183 AARPArray−>SetComponent ( i , 1 , d ) ;
184 AARPArray−>SetComponent ( i , 2 , u ) ;
185 / / c o u t << ”b = ” << b << ”\ t d = ” << d << ”\ t u = ” << u << ”\ tSum = ” << b+d+u << e n d l ;
186 }
187

188 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
189

190 f o r ( i =0 ; i<i n p u t−>GetNumberOfPoints ( ) ; i ++){
191 / / c r e a t i n g t h e AASH o p i n i o n f o r t h e S u j u d i−Haimes a l g o r i t h m when SH DOES e x t r a c t t h e

p o i n t s .
192 / / p u t t i n g v o r t e x s t r e n g t h v a l u e i n pr op er form
193 v o r t e x S t r e n g t h = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” V o r t e x S t r e n g t h ” )−>GetComponent ( i , 0 ) ;
194 n o r m a l V o r t e x S t r e n g t h = f a b s ( v o r t e x S t r e n g t h / Vor t exS t r eng thMax ) ;
195 i f ( n o r m a l V o r t e x S t r e n g t h >1){ n o r m a l V o r t e x S t r e n g t h =1;}
196

197 / / p u t t i n g c u r v a t u r e v a l u e i n pr op er form
198 i f ( c u r v a t u r e >CurvatureMax ) { c u r v a t u r e =CurvatureMax ;}
199 n o r m a l C u r v a t u r e = f a b s ( c u r v a t u r e / CurvatureMax − 1) ;
200 c u r v a t u r e = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” C u r v a t u r e ” )−>GetComponent ( i , 0 ) ;
201

202 / / p u t t i n g q u a l i t y v a l u e i n pr op er form
203 q u a l i t y = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” Q u a l i t y ” )−>GetComponent ( i , 0 ) ;
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204 i f ( q u a l i t y >Qual i tyMax ) { q u a l i t y =Qual i tyMax ;}
205 n o r m a l Q u a l i t y = f a b s ( q u a l i t y / Qual i tyMax − 1) ;
206

207 / / f i n d i n g t h e average o f t h e t h r e e v a l u e s
208 normalAverage = ( n o r m a l V o r t e x S t r e n g t h + n o r m a l C u r v a t u r e + n o r m a l Q u a l i t y ) / 3 ;
209

210 / / t h e f u n c t i o n t h a t s e t s t h e b−v a l u e
211 b = 0 . 4 * normalAverage + 0 . 6 ; / /<−−−−−−−−−−−−−−−−−−−−−−
212 i f ( b>1){b =1;}
213 / / t h e f u n c t i o n t h a t s e t s t h e d−v a l u e
214 d = −0.4* normalAverage + 0 . 4 ; / /<−−−−−−−−−−−−−−−−−−−−−−
215 i f ( d<0){d =0;}
216 / / t h e f u n c t i o n t h a t s e t s t h e u−v a l u e
217 u = 0 . 0 5 ; / / / / / / / / / / * * * * * * * * * * we are s e t t i n g t h i s t o a low v a l u e
218 / / / / / / / / / / * * * * * * * * * * maybe r e p l a c e t h i s w i t h o t h e r v o r t e x f a c t o r s
219

220 t u p l e C h e c k = b + d + u ;
221 / / c h e c k i n g t h e b e l i e f t u p l e t o make s u r e i t sums t o 1 . i . e . b+d+u=1
222 i f ( tup leCheck >1){
223 / / I f b + d + u doesn ’ t e q u a l 1 t h e n up da t e u and d
224 e q u a l i z e r = ( ( b + d + u ) − 1) / 2 ;
225 u = u − e q u a l i z e r ;
226 d = d − e q u a l i z e r ;
227 i f ( u<0){u =0;}
228 i f ( d<0){d =0;}
229 t u p l e C h e c k = u + b + d ;
230 i f ( tup leCheck >1){
231 i f ( u ==0){d = 1 − b ;}
232 i f ( d ==0){u = 1 − b ;}
233 }
234 }
235 AASHArray−>SetComponent ( i , 0 , b ) ;
236 AASHArray−>SetComponent ( i , 1 , d ) ;
237 AASHArray−>SetComponent ( i , 2 , u ) ;
238 / / c o u t << ”b = ” << b << ”\ t d = ” << d << ”\ t u = ” << u << ”\ tSum = ” << b+d+u << e n d l ;
239 }
240 }
241

242 / / / / / / / / / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / / / / / / / / / /
243 / / / / / / / / / / * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * / / / / / / / / / /
244

245 / / c a l c u l a t i n g b e l i e f t u p l e v a l u e s as i f R o t h P e i k e r t was t h e
246 / / e x t r a c t i o n a l g o r i t h m f o r t h e s e t o f v o r t e x c o r e s .
247 i f ( R o t h P e i k e r t ) {
248 f o r ( i =0 ; i<i n p u t−>GetNumberOfPoints ( ) ; i ++){
249 / / c r e a t i n g t h e AARP o p i n i o n f o r t h e Roth−P e i k e r t a l g o r i t h m when RP DOES e x t r a c t t h e

p o i n t s
250 / / p u t t i n g v o r t e x s t r e n g t h v a l u e i n pr op er form
251 v o r t e x S t r e n g t h = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” V o r t e x S t r e n g t h ” )−>GetComponent ( i , 0 ) ;
252 n o r m a l V o r t e x S t r e n g t h = f a b s ( v o r t e x S t r e n g t h / Vor t exS t r eng thMax ) ;
253 i f ( n o r m a l V o r t e x S t r e n g t h >1){ n o r m a l V o r t e x S t r e n g t h =1;}
254

255 / / p u t t i n g c u r v a t u r e v a l u e i n pr op er form
256 c u r v a t u r e = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” C u r v a t u r e ” )−>GetComponent ( i , 0 ) ;
257 n o r m a l C u r v a t u r e = c u r v a t u r e / CurvatureMax ;
258 i f ( n o r m a l C u r v a t u r e >1){ n o r m a l C u r v a t u r e =1;}
259

260 / / p u t t i n g q u a l i t y v a l u e i n pr op er form
261 q u a l i t y = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” Q u a l i t y ” )−>GetComponent ( i , 0 ) ;
262 i f ( q u a l i t y >Qual i tyMax ) { q u a l i t y =Qual i tyMax ;}
263 n o r m a l Q u a l i t y = f a b s ( q u a l i t y / Qual i tyMax − 1) ;
264

265 / / f i n d i n g t h e average o f t h e t h r e e v a l u e s
266 normalAverage = ( n o r m a l V o r t e x S t r e n g t h + n o r m a l C u r v a t u r e + n o r m a l Q u a l i t y ) / 3 ;
267

268 / / t h e f u n c t i o n t h a t s e t s t h e b e l i e f v a l u e .
269 b = 0 . 4 * normalAverage + 0 . 6 ;
270 i f ( b>1){b =1;}
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271 / / t h e f u n c t i o n t h a t s e t s t h e d i s b e l i e f v a l u e .
272 d = −0.4* normalAverage + 0 . 6 ;
273 i f ( d<0){d =0;}
274 / / t h e f u n c t i o n t h a t s e t s t h e u n c e r t a i n t y v a l u e .
275 u = 0 . 0 5 ; / / / / / / / / / / * * * * * * * * * * we are s e t t i n g t h i s t o a low v a l u e
276 / / / / / / / / / / * * * * * * * * * * maybe r e p l a c e t h i s w i t h d i s t a n c e from e x t r a c t e d

p o i n t
277

278 t u p l e C h e c k = b + d + u ;
279 / / c h e c k i n g t h e b e l i e f t u p l e t o make s u r e i t sums t o 1 . i . e . b+d+u=1
280 i f ( tup leCheck >1){
281 / / I f b + d + u doesn ’ t e q u a l 1 t h e n up da t e u and d
282 e q u a l i z e r = ( ( b + d + u ) − 1) / 2 ;
283 u = u − e q u a l i z e r ;
284 d = d − e q u a l i z e r ;
285 i f ( u<0){u =0;}
286 i f ( d<0){d =0;}
287 t u p l e C h e c k = u + b + d ;
288 i f ( tup leCheck >1){
289 i f ( u ==0){d = 1 − b ;}
290 i f ( d ==0){u = 1 − b ;}
291 }
292 }
293 AARPArray−>SetComponent ( i , 0 , b ) ;
294 AARPArray−>SetComponent ( i , 1 , d ) ;
295 AARPArray−>SetComponent ( i , 2 , u ) ;
296 / / c o u t << ”b = ” << b << ”\ t d = ” << d << ”\ t u = ” << u << ”\ tSum = ” << b+d+u << e n d l ;
297 }
298

299 / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
300

301 f o r ( i =0 ; i<i n p u t−>GetNumberOfPoints ( ) ; i ++){
302 / / c r e a t i n g t h e AASH o p i n i o n f o r t h e S u j u d i−Haimes a l g o r i t h m when SH DOES NOT e x t r a c t

t h e p o i n t s
303 / / p u t t i n g v o r t e x s t r e n g t h v a l u e i n pr op er form
304 v o r t e x S t r e n g t h = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” V o r t e x S t r e n g t h ” )−>GetComponent ( i , 0 ) ;
305 n o r m a l V o r t e x S t r e n g t h = f a b s ( v o r t e x S t r e n g t h / Vor t exS t r eng thMax ) ;
306 i f ( n o r m a l V o r t e x S t r e n g t h >1){ n o r m a l V o r t e x S t r e n g t h =1;}
307

308 / / p u t t i n g c u r v a t u r e v a l u e i n pr op er form
309 c u r v a t u r e = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” C u r v a t u r e ” )−>GetComponent ( i , 0 ) ;
310 n o r m a l C u r v a t u r e = f a b s ( c u r v a t u r e / CurvatureMax ) ;
311 i f ( n o r m a l C u r v a t u r e >1){ n o r m a l C u r v a t u r e =1;}
312

313 / / p u t t i n g q u a l i t y v a l u e i n pr op er form
314 q u a l i t y = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” Q u a l i t y ” )−>GetComponent ( i , 0 ) ;
315 i f ( q u a l i t y >Qual i tyMax ) { q u a l i t y =Qual i tyMax ;}
316 n o r m a l Q u a l i t y = f a b s ( q u a l i t y / Qual i tyMax − 1) ;
317

318 / / f i n d i n g t h e average o f t h e t h r e e v a l u e s
319 normalAverage = ( n o r m a l V o r t e x S t r e n g t h + n o r m a l C u r v a t u r e + n o r m a l Q u a l i t y ) / 3 ;
320

321 / / p u t t i n g minimum d i s t a n c e v a l u e i n pr op er form
322 minimumDistance = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” MinimumDistance ” )−>GetComponent ( i , 0 ) ;
323 normalMinimumDistance = f a b s ( minimumDistance / MinimumDistanceMax ) ;
324 i f ( normalMinimumDistance >1){normalMinimumDistance =1;}
325

326 / / t h e f u n c t i o n t h a t s e t s t h e b e l i e f v a l u e
327 b = 0 . 8 * normalAverage + 0 . 2 ; / /<−−−−−−−−−−−−−−−−−−−−−−
328 i f ( b>1){b =1;}
329 / / t h e f u n c t i o n t h a t s e t s t h e d i s b e l i e f v a l u e
330 d = −0.8* normalAverage + 0 . 8 ; / /<−−−−−−−−−−−−−−−−−−−−−−
331 i f ( d<0){d =0;}
332 / / t h e f u n c t i o n t h a t s e t s t h e u n c e r t a i n t y v a l u e
333 u = normalMinimumDistance * 0 . 5 ; / /<−−−−−−−−−−−−−−−−−−−−−−
334

335 t u p l e C h e c k = b + d + u ;
336 / / c h e c k i n g t h e b e l i e f t u p l e t o make s u r e i t sums t o 1 . i . e . b+d+u=1
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337 i f ( tup leCheck >1){
338 / / I f b + d + u doesn ’ t e q u a l 1 t h e n up da t e u and b
339 e q u a l i z e r = ( ( b + d + u ) − 1) / 2 ;
340 u = u − e q u a l i z e r ;
341 b = b − e q u a l i z e r ;
342 i f ( u<0){u =0;}
343 i f ( b<0){b =0;}
344 t u p l e C h e c k = u + b + d ;
345 i f ( tup leCheck >1){
346 i f ( u ==0){b = 1 − d ;}
347 i f ( b ==0){u = 1 − d ;}
348 }
349 }
350 AASHArray−>SetComponent ( i , 0 , b ) ;
351 AASHArray−>SetComponent ( i , 1 , d ) ;
352 AASHArray−>SetComponent ( i , 2 , u ) ;
353 / / c o u t << ”b = ” << b << ”\ t d = ” << d << ”\ t u = ” << u << ”\ tSum = ” << b+d+u << e n d l ;
354 }
355 }
356

357 / / Combining a l l t h e o p i n i o n s i n t o t h e f i n a l o p i n i o n .
358 double MA[ 3 ] , AARP[ 3 ] , AASH[ 3 ] , MAxAASH[ 3 ] , MAxAARP[ 3 ] , k , f i n a l O p i n i o n [ 3 ] , gamma ;
359 f o r ( i =0 ; i<i n p u t−>GetNumberOfPoints ( ) ; i ++){
360 MAArray−>GetTuple ( i ,MA) ;
361 AARPArray−>GetTuple ( i ,AARP) ;
362 AASHArray−>GetTuple ( i ,AASH) ;
363 / / D i s c o u n t i n g o p e r a t o r
364 MAxAARP[ 0 ] = MA[ 0 ] *AARP [ 0 ] ;
365 MAxAARP[ 1 ] = MA[ 0 ] *AARP [ 1 ] ;
366 MAxAARP[ 2 ] = MA[ 1 ] + MA[ 2 ] + MA[ 0 ] *AARP [ 2 ] ;
367 / / D i s c o u n t i n g o p e r a t o r
368 MAxAASH[ 0 ] = MA[ 0 ] *AASH [ 0 ] ;
369 MAxAASH[ 1 ] = MA[ 0 ] *AASH [ 1 ] ;
370 MAxAASH[ 2 ] = MA[ 1 ] + MA[ 2 ] + MA[ 0 ] *AASH [ 2 ] ;
371 / / Consensus o p e r a t o r f o r combin ing b e l i e f s
372 k = MAxAARP[ 2 ] + MAxAASH[ 2 ] − MAxAARP[ 2 ] *MAxAASH[ 2 ] ;
373 i f ( k ! = 0 ) {
374 f i n a l O p i n i o n [ 0 ] = (MAxAARP[ 0 ] *MAxAASH[ 2 ] + MAxAASH[ 0 ] *MAxAARP[ 2 ] ) / k ;
375 f i n a l O p i n i o n [ 1 ] = (MAxAARP[ 1 ] *MAxAASH[ 2 ] + MAxAASH[ 1 ] *MAxAARP[ 2 ] ) / k ;
376 f i n a l O p i n i o n [ 2 ] = (MAxAARP[ 2 ] *MAxAASH[ 2 ] ) / k ;
377 }
378 e l s e {
379 gamma = MAxAASH[ 2 ] /MAxAARP[ 2 ] ;
380 f i n a l O p i n i o n [ 0 ] = ( gamma*MAxAARP[ 0 ] +MAxAASH[ 0 ] ) / ( gamma+1) ;
381 f i n a l O p i n i o n [ 1 ] = ( gamma*MAxAARP[ 1 ] +MAxAASH[ 1 ] ) / ( gamma+1) ;
382 f i n a l O p i n i o n [ 2 ] = 0 ;
383 }
384 f i n a l O p i n i o n [ 0 ] = (MAxAARP[ 0 ] *MAxAASH[ 2 ] + MAxAASH[ 0 ] *MAxAARP[ 2 ] ) / k ;
385 f i n a l O p i n i o n [ 1 ] = (MAxAARP[ 1 ] *MAxAASH[ 2 ] + MAxAASH[ 1 ] *MAxAARP[ 2 ] ) / k ;
386 f i n a l O p i n i o n [ 2 ] = (MAxAARP[ 2 ] *MAxAASH[ 2 ] ) / k ;
387 / / c o u t << ”b=” << f i n a l O p i n i o n [ 0 ] << ”\ t d =” << f i n a l O p i n i o n [ 1 ] << ”\ t u =” << f i n a l O p i n i o n

[ 2 ] << ”\ t E r r o r =” << 1 − f i n a l O p i n i o n [ 0 ] − f i n a l O p i n i o n [ 1 ] − f i n a l O p i n i o n [ 2 ] << e n d l ;
388 f i n a l O p i n i o n A r r a y−>S e t T u p l e ( i , f i n a l O p i n i o n ) ;
389 }
390

391 / / c a l c u l a t i n g t h e p r o b a b i l i t y e x p e c t a t i o n v a l u e
392 f o r ( i =0 ; i<i n p u t−>GetNumberOfPoints ( ) ; i ++){
393 probExpArray−>S e t V a l u e ( i , f i n a l O p i n i o n A r r a y−>GetComponent ( i , 0 ) +0 .5* f i n a l O p i n i o n A r r a y−>

GetComponent ( i , 2 ) ) ;
394 }
395

396 / / add ing a r r a y s t o t h e i n p u t da ta s e t
397 i n p u t−>G e t P o i n t D a t a ( )−>AddArray ( MAArray ) ;
398 i n p u t−>G e t P o i n t D a t a ( )−>AddArray ( AASHArray ) ;
399 i n p u t−>G e t P o i n t D a t a ( )−>AddArray ( AARPArray ) ;
400 i n p u t−>G e t P o i n t D a t a ( )−>AddArray ( f i n a l O p i n i o n A r r a y ) ;
401 i n p u t−>G e t P o i n t D a t a ( )−>AddArray ( probExpArray ) ;
402
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403 / / Copying t h e i n p u t da ta and s t r u c t u r e t o t h e o u t p u t
404 o u t p u t−>C o p y S t r u c t u r e ( i n p u t ) ;
405 o u t p u t−>G e t P o i n t D a t a ( )−>P a s s D a t a ( i n p u t−>G e t P o i n t D a t a ( ) ) ;
406 o u t p u t−>G e t C e l l D a t a ( )−>P a s s D a t a ( i n p u t−>G e t C e l l D a t a ( ) ) ;
407

408 re turn 1 ;
409 }
410

411 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
412 void v t k C r e a t e O p i n i o n : : P r i n t S e l f ( o s t r e a m& os , v t k I n d e n t i n d e n t )
413 {
414 t h i s−>S u p e r c l a s s : : P r i n t S e l f ( os , i n d e n t ) ;
415 os << i n d e n t << ” P r e v i o u s E r r o r C o n s t a n t : ” << ( t h i s−>P r e v i o u s E r r o r C o n s t a n t ) << ”\n ” ;
416 os << i n d e n t << ” C h a n g e I n E r r o r C o n s t a n t : ” << ( t h i s−>C h a n g e I n E r r o r C o n s t a n t ) << ”\n ” ;
417 }

A.4.2 vtkCurvature.cxx

1 # i n c l u d e ” v t k C u r v a t u r e . h ”
2

3 # i n c l u d e ” v t k C e l l A r r a y . h ”
4 # i n c l u d e ” v t k C e l l D a t a . h ”
5 # i n c l u d e ” v tkDoub leAr ray . h ”
6 # i n c l u d e ” v t k I n f o r m a t i o n . h ”
7 # i n c l u d e ” v t k I n f o r m a t i o n V e c t o r . h ”
8 # i n c l u d e ” v t k O b j e c t F a c t o r y . h ”
9 # i n c l u d e ” v t k P o i n t D a t a . h ”

10 # i n c l u d e ” v t k P o l y D a t a . h ”
11 # i n c l u d e ” vtkMath . h ”
12

13 # i n c l u d e ” v t k I d L i s t . h ”
14

15 # i n c l u d e <v e c t o r >
16 # i n c l u d e <math . h>
17

18 vtkCxxRevis ionMacro ( v t k C u r v a t u r e , ” $ R e v i s i o n : 1 . 7 0 $ ” ) ;
19 vtkStandardNewMacro ( v t k C u r v a t u r e ) ;
20

21 v t k C u r v a t u r e : : v t k C u r v a t u r e ( )
22 {
23 t h i s−>S i n g l e C u r v a t u r e V a l u e = t rue ;
24 t h i s−>TwoSegmentCurvature = f a l s e ;
25 t h i s−>NumberOfCurva tureValues = 4 ;
26 }
27

28 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 i n t v t k C u r v a t u r e : : Reques tDa ta (
30 v t k I n f o r m a t i o n * vtkNotUsed ( r e q u e s t ) ,
31 v t k I n f o r m a t i o n V e c t o r ** i n p u t V e c t o r ,
32 v t k I n f o r m a t i o n V e c t o r * o u t p u t V e c t o r )
33 {
34 / / g e t t h e i n f o o b j e c t s
35 v t k I n f o r m a t i o n * i n I n f o = i n p u t V e c t o r [0]−> G e t I n f o r m a t i o n O b j e c t ( 0 ) ;
36 v t k I n f o r m a t i o n * o u t I n f o = o u t p u t V e c t o r−>G e t I n f o r m a t i o n O b j e c t ( 0 ) ;
37

38 / / g e t t h e i n p u t and o u p t u t
39 v t k P o l y D a t a * i n p u t = v t k P o l y D a t a : : SafeDownCast ( i n I n f o−>Get ( v t k D a t a O b j e c t : : DATA OBJECT ( ) ) ) ;
40 v t k P o l y D a t a * o u t p u t = v t k P o l y D a t a : : SafeDownCast ( o u t I n f o−>Get ( v t k D a t a O b j e c t : : DATA OBJECT ( ) ) ) ;
41

42 i f ( S i n g l e C u r v a t u r e V a l u e ) {
43 / / C a l c u l a t i n g t h e r a d i u s and t h e c u r v a t u r e
44 double f f , gg ,mm, x1 , x2 , x3 , y1 , y2 , y3 ;
45 double cc , dd , hh , ee , kk , ss , r a d i u s , c u r v a t u r e ;
46 double x y z F i r s t [ 3 ] , x y z L a s t [ 3 ] , xyzMiddle [ 3 ] ;
47 s t d : : v e c t o r <i n t> i P o i n t L i s t ;
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48

49 / * I n i t i a l i z i n g t h e c u r v a t u r e a r r a y t o add t o p o l y d a t a * /
50 v tkDoub leAr ray * c u r v a t u r e A r r a y = v tkDoub leAr ray : : New ( ) ;
51 c u r v a t u r e A r r a y−>SetNumberOfComponents ( 1 ) ;
52 c u r v a t u r e A r r a y−>SetNumberOfTuples ( i n p u t−>GetNumberOfPoints ( ) ) ;
53 c u r v a t u r e A r r a y−>SetName ( ” C u r v a t u r e ” ) ;
54

55 / / i n i t i a l i z i n g v a l u e s
56 double p1 [ 3 ] , p2 [ 3 ] , p3 [ 3 ] ;
57 double v1 [ 3 ] , v2 [ 3 ] , v3 [ 3 ] , v4 [ 3 ] , v5 [ 3 ] , v6 [ 3 ] ;
58 double n1 [ 3 ] , n2 [ 3 ] , n3 [ 3 ] ;
59

60 i n t p , i ;
61 f o r ( p=0 ; p<i n p u t−>GetNumberOfLines ( ) ; p ++){
62 / * P u t t i n g c e l l p o i n t i d s i n t o an a r r a y because t h e p o i n t e r s k e p t g e t t i n g screwed up * /
63 v t k I d L i s t * c e l l P t I d s ;
64 c e l l P t I d s = i n p u t−>G e t C e l l ( p )−>G e t P o i n t I d s ( ) ;
65 i P o i n t L i s t . r e s i z e ( c e l l P t I d s −>GetNumberOfIds ( ) ) ;
66 f o r ( i =0 ; i<c e l l P t I d s −>GetNumberOfIds ( ) ; i ++){
67 i P o i n t L i s t [ i ] = c e l l P t I d s −>Get Id ( i ) ;
68 }
69 / * G e t t i n g p o i n t l o c a t i o n s a t end and b e g i n n i n g o f l i n e * /
70 i n p u t−>G e t C e l l ( p )−>G e t P o i n t s ( )−>G e t P o i n t ( 0 , x y z F i r s t ) ;
71 i n p u t−>G e t C e l l ( p )−>G e t P o i n t s ( )−>G e t P o i n t ( i n p u t−>G e t C e l l ( p )−>GetNumberOfPoints ( ) −1, x y z L a s t ) ;
72

73 / * F i n d i n g t h e r i g h t a , b , c e t c f o r t =0.5 * /
74 i n t t c o u n t e r = 0 ;
75 double c h e c k t = 0 ;
76 f l o a t f i n d t = 0 . 5 ;
77 whi le ( f i n d t > c h e c k t ) {
78 t c o u n t e r = t c o u n t e r + 1 ;
79 c h e c k t = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” t ” )−>GetComponent ( i P o i n t L i s t [ t c o u n t e r ] , 0 ) ;
80 }
81 / * Now t c o u n t e r i s e q u a l t o t h e number o f t h e l i n e t h a t h o l d s t h e a , b , c , d , e , f v a l u e s * /
82 xyzMiddle [ 0 ] = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” a ” )−>GetComponent ( i P o i n t L i s t [ t c o u n t e r ] , 0 )

* 0 . 5 + i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” d ” )−>GetComponent ( i P o i n t L i s t [ t c o u n t e r ] , 0 ) ;
83 xyzMiddle [ 1 ] = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” b ” )−>GetComponent ( i P o i n t L i s t [ t c o u n t e r ] , 0 )

* 0 . 5 + i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” e ” )−>GetComponent ( i P o i n t L i s t [ t c o u n t e r ] , 0 ) ;
84 xyzMiddle [ 2 ] = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” c ” )−>GetComponent ( i P o i n t L i s t [ t c o u n t e r ] , 0 )

* 0 . 5 + i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” f ” )−>GetComponent ( i P o i n t L i s t [ t c o u n t e r ] , 0 ) ;
85

86 i n t q ;
87 f o r ( q=0 ; q<3 ; q ++){
88 p1 [ q ] = x y z F i r s t [ q ] ;
89 p2 [ q ] = xyzMiddle [ q ] ;
90 p3 [ q ] = x y z L a s t [ q ] ;
91 }
92

93 / / f i n d i n g two v e c t o r s be tween t h e p o i n t s
94 i n t i ;
95 f o r ( i =0 ; i <3 ; i ++){
96 v1 [ i ] = p2 [ i ]−p1 [ i ] ;
97 v3 [ i ] = p3 [ i ]−p1 [ i ] ;
98 }
99

100 / / C r o s s i n g t h e v e c t o r s t o f i n d a normal v e c t o r t o a p l a n e
101 / / c o n t a i n i n g t h e t h r e e p o i n t s .
102 vtkMath : : Cross ( v1 , v3 , v4 ) ;
103

104 / / making t h e v e c t o r s u n i t v e c t o r s
105 f o r ( i =0 ; i <3 ; i ++){
106 v2 [ i ] = v1 [ i ] / vtkMath : : Norm ( v1 ) ;
107 v5 [ i ] = v4 [ i ] / vtkMath : : Norm ( v4 ) ;
108 }
109

110 / / c r o s s i n g two v e c t o r s t o f i n d t h e l a s t o r t h o g o n a l component
111 vtkMath : : Cross ( v2 , v5 , v6 ) ;
112
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113 / / f i n d i n g t h e new p o i n t v a l u e s
114 / / n1=L mn*p1
115 n1 [ 0 ] = p1 [ 0 ] * v2 [ 0 ] + p1 [ 1 ] * v2 [ 1 ] + p1 [ 2 ] * v2 [ 2 ] ;
116 n1 [ 1 ] = p1 [ 0 ] * v6 [ 0 ] + p1 [ 1 ] * v6 [ 1 ] + p1 [ 2 ] * v6 [ 2 ] ;
117 n1 [ 2 ] = p1 [ 0 ] * v5 [ 0 ] + p1 [ 1 ] * v5 [ 1 ] + p1 [ 2 ] * v5 [ 2 ] ;
118 / / n2=L mn*p2
119 n2 [ 0 ] = p2 [ 0 ] * v2 [ 0 ] + p2 [ 1 ] * v2 [ 1 ] + p2 [ 2 ] * v2 [ 2 ] ;
120 n2 [ 1 ] = p2 [ 0 ] * v6 [ 0 ] + p2 [ 1 ] * v6 [ 1 ] + p2 [ 2 ] * v6 [ 2 ] ;
121 n2 [ 2 ] = p2 [ 0 ] * v5 [ 0 ] + p2 [ 1 ] * v5 [ 1 ] + p2 [ 2 ] * v5 [ 2 ] ;
122 / / n3=L mn*p3
123 n3 [ 0 ] = p3 [ 0 ] * v2 [ 0 ] + p3 [ 1 ] * v2 [ 1 ] + p3 [ 2 ] * v2 [ 2 ] ;
124 n3 [ 1 ] = p3 [ 0 ] * v6 [ 0 ] + p3 [ 1 ] * v6 [ 1 ] + p3 [ 2 ] * v6 [ 2 ] ;
125 n3 [ 2 ] = p3 [ 0 ] * v5 [ 0 ] + p3 [ 1 ] * v5 [ 1 ] + p3 [ 2 ] * v5 [ 2 ] ;
126

127 / * S e p a r a t i n g t h e x and y v a l u e s * /
128 x1 = n1 [ 0 ] ; y1 = n1 [ 1 ] ;
129 x2 = n2 [ 0 ] ; y2 = n2 [ 1 ] ;
130 x3 = n3 [ 0 ] ; y3 = n3 [ 1 ] ;
131

132 / * Computing t h e e q u a t i o n o f a c i r c l e c o n t a i n i n g t h e t h r e e p o i n t s * /
133 f f = x3*x3−x3*x2−x1*x3+x1*x2+y3*y3−y3*y2−y1*y3+y1*y2 ;
134 gg = x3*y1−x3*y2+x1*y2−x1*y3+x2*y3−x2*y1 ;
135

136 i f ( gg ==0){mm=0;}
137 e l s e {mm=( f f / gg ) ;}
138

139 cc = (mm*y2 )−x2−x1−(mm*y1 ) ;
140 dd = (mm*x1 )−y1−y2−(x2*mm) ;
141 ee = ( x1*x2 ) +( y1*y2 )−(mm*x1*y2 ) +(mm*x2*y1 ) ;
142

143 hh = ( cc / 2 ) ;
144 kk = ( dd / 2 ) ;
145 s s = ( ( ( hh ) * ( hh ) ) + ( ( kk ) * ( kk ) )−ee ) ;
146

147 / * r a d i u s i s e q u a l t o t h e r a d i u s o f t h e computed c i r c l e * /
148 r a d i u s = pow ( ss , . 5 ) ;
149 c u r v a t u r e = 1 / r a d i u s ;
150

151 / * S e t t i n g c u r v a t u r e a r r a y * /
152 / * C u r v a t u r e i s t h e same f o r e v e r y p o i n t on t h e l i n e * /
153 f o r ( i =0 ; i<i n p u t−>G e t C e l l ( p )−>GetNumberOfPoints ( ) ; i ++){
154 c u r v a t u r e A r r a y−>S e t V a l u e ( i P o i n t L i s t [ i ] , c u r v a t u r e ) ;
155 }
156 }
157 i n p u t−>G e t P o i n t D a t a ( )−>AddArray ( c u r v a t u r e A r r a y ) ;
158

159 / * Copying t h e i n p u t da ta and s t r u c t u r e t o t h e o u t p u t * /
160 o u t p u t−>C o p y S t r u c t u r e ( i n p u t ) ;
161 o u t p u t−>G e t P o i n t D a t a ( )−>P a s s D a t a ( i n p u t−>G e t P o i n t D a t a ( ) ) ;
162 o u t p u t−>G e t C e l l D a t a ( )−>P a s s D a t a ( i n p u t−>G e t C e l l D a t a ( ) ) ;
163 }
164

165 e l s e i f ( TwoSegmentCurvature ) {
166 double c [ 3 ] , c1 [ 3 ] , c5 [ 3 ] ;
167

168 / / i n i t i a l i z i n g v a l u e s
169 double p1 [ 3 ] , p2 [ 3 ] , p3 [ 3 ] ;
170 double v1 [ 3 ] , v2 [ 3 ] , v3 [ 3 ] , v4 [ 3 ] , v5 [ 3 ] , v6 [ 3 ] ;
171 double n1 [ 3 ] , n2 [ 3 ] , n3 [ 3 ] ;
172

173 double f f , gg ,mm, x1 , x2 , x3 , y1 , y2 , y3 ;
174 double cc , dd , hh , ee , kk , ss , r a d i u s , c u r v a t u r e ;
175

176 / / I n i t i a l i z i n g t h e c u r v a t u r e a r r a y t o add t o p o l y d a t a
177 v tkDoub leAr ray * c u r v a t u r e A r r a y = v tkDoub leAr ray : : New ( ) ;
178 c u r v a t u r e A r r a y−>SetNumberOfComponents ( 1 ) ;
179 c u r v a t u r e A r r a y−>SetNumberOfTuples ( i n p u t−>GetNumberOfPoints ( ) ) ;
180 c u r v a t u r e A r r a y−>SetName ( ” C u r v a t u r e ” ) ;
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181

182 i n t i , j ;
183 f o r ( i =0 ; i<i n p u t−>GetNumberOfLines ( ) ; i ++){
184

185 / / g e t t i n g c e l l i d s
186 v t k I d L i s t * c e l l P t I d s ;
187 c e l l P t I d s = i n p u t−>G e t C e l l ( i )−>G e t P o i n t I d s ( ) ;
188

189 / / g e t t i n g t h e e n d p o i n t s
190 i n p u t−>G e t C e l l ( i )−>G e t P o i n t s ( )−>G e t P o i n t ( 0 , c1 ) ;
191 i n p u t−>G e t C e l l ( i )−>G e t P o i n t s ( )−>G e t P o i n t ( i n p u t−>G e t C e l l ( i )−>GetNumberOfPoints ( ) −1, c5 ) ;
192

193 double f i n d t [ 5 ] ;
194 f i n d t [ 0 ] = 0 ; f i n d t [ 1 ] = 0 . 2 5 ;
195 f i n d t [ 2 ] = 0 . 5 ; f i n d t [ 3 ] = 0 . 7 5 ;
196 f i n d t [ 4 ] = 1 ;
197

198 s t d : : v e c t o r <i n t> t H o l d e r ;
199 t H o l d e r . p u s h b a c k ( 0 ) ;
200 s t d : : v e c t o r <double> cHolde r ;
201 s t d : : v e c t o r <double> h o l d e r ;
202 h o l d e r . p u s h b a c k ( c1 [ 0 ] ) ;
203 h o l d e r . p u s h b a c k ( c1 [ 1 ] ) ;
204 h o l d e r . p u s h b a c k ( c1 [ 2 ] ) ;
205

206 i n t p ;
207 f o r ( p=1 ; p<4 ; p ++){
208

209 / / F i n d i n g t h e r i g h t a , b , c e t c f o r g i v e n t
210 i n t t c o u n t e r = 0 ;
211 double c h e c k t = 0 ;
212

213 whi le ( f i n d t [ p ] > c h e c k t ) {
214 t c o u n t e r = t c o u n t e r + 1 ;
215 c h e c k t = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” t ” )−>GetComponent ( c e l l P t I d s −>Get Id (

t c o u n t e r ) , 0 ) ;
216 }
217 t H o l d e r . p u s h b a c k ( t c o u n t e r ) ;
218 / / Now t c o u n t e r i s e q u a l t o t h e number o f t h e l i n e t h a t h o l d s t h e a , b , c , d , e , f v a l u e s
219 c [ 0 ] = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” a ” )−>GetComponent ( c e l l P t I d s −>Get Id ( t c o u n t e r )

, 0 ) * f i n d t [ p ] + i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” d ” )−>GetComponent ( c e l l P t I d s −>
Get Id ( t c o u n t e r ) , 0 ) ;

220 c [ 1 ] = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” b ” )−>GetComponent ( c e l l P t I d s −>Get Id ( t c o u n t e r )
, 0 ) * f i n d t [ p ] + i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” e ” )−>GetComponent ( c e l l P t I d s −>
Get Id ( t c o u n t e r ) , 0 ) ;

221 c [ 2 ] = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” c ” )−>GetComponent ( c e l l P t I d s −>Get Id ( t c o u n t e r )
, 0 ) * f i n d t [ p ] + i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” f ” )−>GetComponent ( c e l l P t I d s −>
Get Id ( t c o u n t e r ) , 0 ) ;

222 h o l d e r . p u s h b a c k ( c [ 0 ] ) ;
223 h o l d e r . p u s h b a c k ( c [ 1 ] ) ;
224 h o l d e r . p u s h b a c k ( c [ 2 ] ) ;
225 }
226

227 t H o l d e r . p u s h b a c k ( i n p u t−>G e t C e l l ( i )−>GetNumberOfPoints ( ) −1) ;
228 h o l d e r . p u s h b a c k ( c5 [ 0 ] ) ;
229 h o l d e r . p u s h b a c k ( c5 [ 1 ] ) ;
230 h o l d e r . p u s h b a c k ( c5 [ 2 ] ) ;
231

232 f o r ( p=0 ; p<2 ; p ++){
233 / / f i n d i n g two v e c t o r s be tween t h e p o i n t s
234 i n t f ;
235 f o r ( f =0 ; f<3 ; f ++){
236 p1 [ f ] = h o l d e r [ f +3*p ] ;
237 p2 [ f ] = h o l d e r [ f +3+3*p ] ;
238 p3 [ f ] = h o l d e r [ f +6+3*p ] ;
239 v1 [ f ] = p2 [ f ]−p1 [ f ] ;
240 v3 [ f ] = p3 [ f ]−p1 [ f ] ;
241 }

122



242

243 / / C r o s s i n g t h e v e c t o r s t o f i n d a normal v e c t o r t o a p l a n e
244 / / c o n t a i n i n g t h e t h r e e p o i n t s .
245 vtkMath : : Cross ( v1 , v3 , v4 ) ;
246

247 / / making t h e v e c t o r s u n i t v e c t o r s
248 f o r ( f =0 ; f<3 ; f ++){
249 v2 [ f ] = v1 [ f ] / vtkMath : : Norm ( v1 ) ;
250 v5 [ f ] = v4 [ f ] / vtkMath : : Norm ( v4 ) ;
251 }
252

253 / / c r o s s i n g two v e c t o r s t o f i n d t h e l a s t o r t h o g o n a l component
254 vtkMath : : Cross ( v2 , v5 , v6 ) ;
255

256 / / f i n d i n g t h e new p o i n t v a l u e s
257 / / n1=L mn*p1
258 n1 [ 0 ] = p1 [ 0 ] * v2 [ 0 ] + p1 [ 1 ] * v2 [ 1 ] + p1 [ 2 ] * v2 [ 2 ] ;
259 n1 [ 1 ] = p1 [ 0 ] * v6 [ 0 ] + p1 [ 1 ] * v6 [ 1 ] + p1 [ 2 ] * v6 [ 2 ] ;
260 / / n2=L mn*p2
261 n2 [ 0 ] = p2 [ 0 ] * v2 [ 0 ] + p2 [ 1 ] * v2 [ 1 ] + p2 [ 2 ] * v2 [ 2 ] ;
262 n2 [ 1 ] = p2 [ 0 ] * v6 [ 0 ] + p2 [ 1 ] * v6 [ 1 ] + p2 [ 2 ] * v6 [ 2 ] ;
263 / / n3=L mn*p3
264 n3 [ 0 ] = p3 [ 0 ] * v2 [ 0 ] + p3 [ 1 ] * v2 [ 1 ] + p3 [ 2 ] * v2 [ 2 ] ;
265 n3 [ 1 ] = p3 [ 0 ] * v6 [ 0 ] + p3 [ 1 ] * v6 [ 1 ] + p3 [ 2 ] * v6 [ 2 ] ;
266

267 / / S e p a r a t i n g t h e x and y v a l u e s
268 x1 = n1 [ 0 ] ; y1 = n1 [ 1 ] ;
269 x2 = n2 [ 0 ] ; y2 = n2 [ 1 ] ;
270 x3 = n3 [ 0 ] ; y3 = n3 [ 1 ] ;
271

272 / / Computing t h e e q u a t i o n o f a c i r c l e c o n t a i n i n g t h e t h r e e p o i n t s
273 f f = x3*x3−x3*x2−x1*x3+x1*x2+y3*y3−y3*y2−y1*y3+y1*y2 ;
274 gg = x3*y1−x3*y2+x1*y2−x1*y3+x2*y3−x2*y1 ;
275

276 i f ( gg ==0){mm=0;}
277 e l s e {mm=( f f / gg ) ;}
278

279 cc = (mm*y2 )−x2−x1−(mm*y1 ) ;
280 dd = (mm*x1 )−y1−y2−(x2*mm) ;
281 ee = ( x1*x2 ) +( y1*y2 )−(mm*x1*y2 ) +(mm*x2*y1 ) ;
282

283 hh = ( cc / 2 ) ;
284 kk = ( dd / 2 ) ;
285 s s = ( ( ( hh ) * ( hh ) ) + ( ( kk ) * ( kk ) )−ee ) ;
286

287 / / r a d i u s i s e q u a l t o t h e r a d i u s o f t h e computed c i r c l e
288 r a d i u s = pow ( ss , . 5 ) ;
289 c u r v a t u r e = 1 / r a d i u s ;
290 cHolde r . p u s h b a c k ( c u r v a t u r e ) ;
291 }
292

293 cHolde r . p u s h b a c k ( ( cHo lde r [ 0 ] + cHolde r [ 1 ] ) / 2 ) ;
294

295 i n t f = 0 ;
296 whi le ( f<i n p u t−>G e t C e l l ( i )−>GetNumberOfPoints ( ) ) {
297 i f ( f<t H o l d e r [ 1 ] | | f == t H o l d e r [ 1 ] ) {
298 c u r v a t u r e A r r a y−>SetComponent ( c e l l P t I d s −>Get Id ( f ) , 0 , cHo lde r [ 0 ] ) ;
299 }
300 e l s e i f ( f>t H o l d e r [ 1 ] & f<t H o l d e r [ 3 ] | | f == t H o l d e r [ 3 ] ) {
301 c u r v a t u r e A r r a y−>SetComponent ( c e l l P t I d s −>Get Id ( f ) , 0 , cHo lde r [ 2 ] ) ;
302 }
303 e l s e {
304 c u r v a t u r e A r r a y−>SetComponent ( c e l l P t I d s −>Get Id ( f ) , 0 , cHo lde r [ 1 ] ) ;
305 }
306 f ++;
307 }
308

309 }

123



310

311 i n p u t−>G e t P o i n t D a t a ( )−>AddArray ( c u r v a t u r e A r r a y ) ;
312

313 / / Copying t h e i n p u t da ta and s t r u c t u r e t o t h e o u t p u t
314 o u t p u t−>C o p y S t r u c t u r e ( i n p u t ) ;
315 o u t p u t−>G e t P o i n t D a t a ( )−>P a s s D a t a ( i n p u t−>G e t P o i n t D a t a ( ) ) ;
316 o u t p u t−>G e t C e l l D a t a ( )−>P a s s D a t a ( i n p u t−>G e t C e l l D a t a ( ) ) ;
317 }
318

319 re turn 1 ;
320 }
321

322 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
323 void v t k C u r v a t u r e : : P r i n t S e l f ( o s t r e a m& os , v t k I n d e n t i n d e n t )
324 {
325 t h i s−>S u p e r c l a s s : : P r i n t S e l f ( os , i n d e n t ) ;
326 os << i n d e n t << ” S i n g l e C u r v a t u r e V a l u e : ” << ( t h i s−>S i n g l e C u r v a t u r e V a l u e ? ”On\n ” : ” Off\n ” )

;
327 os << i n d e n t << ” TwoSegmentCurvature : ” << ( t h i s−>TwoSegmentCurvature ? ”On\n ” : ” Off\n ” ) ;
328 os << i n d e n t << ” NumberOfCurva tureValues : ” << ( t h i s−>NumberOfCurva tureValues ) ;
329 }

A.4.3 vtkMinimumDistance.cxx

1 # i n c l u d e ” vtkMinimumDistance . h ”
2

3 # i n c l u d e ” v t k C e l l A r r a y . h ”
4 # i n c l u d e ” v t k C e l l D a t a . h ”
5 # i n c l u d e ” v tkDoub leAr ray . h ”
6 # i n c l u d e ” v t k I n f o r m a t i o n . h ”
7 # i n c l u d e ” v t k I n f o r m a t i o n V e c t o r . h ”
8 # i n c l u d e ” v t k O b j e c t F a c t o r y . h ”
9 # i n c l u d e ” v t k P o i n t D a t a . h ”

10 # i n c l u d e ” v t k P o l y D a t a . h ”
11 # i n c l u d e <math . h>
12

13 vtkCxxRevis ionMacro ( vtkMinimumDistance , ” $ R e v i s i o n : 1 . 7 0 $ ” ) ;
14 vtkStandardNewMacro ( vtkMinimumDistance ) ;
15

16 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
17 vtkMinimumDistance : : v tkMinimumDistance ( )
18 {
19 t h i s−>S e t N u m b e r O f I n p u t P o r t s ( 1 ) ;
20 t h i s−>Se tNumberOfOutpu tPor t s ( 1 ) ;
21 }
22

23 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
24 i n t vtkMinimumDistance : : F i l l I n p u t P o r t I n f o r m a t i o n ( i n t p o r t , v t k I n f o r m a t i o n * i n f o )
25 {
26 i f ( p o r t == 0 )
27 {
28 i n f o−>S e t ( v t k D a t a O b j e c t : : DATA TYPE NAME ( ) , ” v t k P o l y D a t a ” ) ;
29 i n f o−>S e t ( v t k A l g o r i t h m : : INPUT IS REPEATABLE ( ) , 1 ) ;
30

31 re turn 1 ;
32 }
33

34 v t k E r r o r M a c r o ( ” Th i s f i l t e r does n o t have more t h a n 1 i n p u t p o r t ! ” ) ;
35 re turn 0 ;
36 }
37

38 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39 i n t vtkMinimumDistance : : Reques tDa t a (
40 v t k I n f o r m a t i o n * vtkNotUsed ( r e q u e s t ) ,
41 v t k I n f o r m a t i o n V e c t o r ** i n p u t V e c t o r ,
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42 v t k I n f o r m a t i o n V e c t o r * o u t p u t V e c t o r )
43 {
44 / / g e t t h e i n f o o b j e c t s
45 v t k I n f o r m a t i o n * i n I n f o 1 = i n p u t V e c t o r [0]−> G e t I n f o r m a t i o n O b j e c t ( 0 ) ;
46 v t k I n f o r m a t i o n * i n I n f o 2 = i n p u t V e c t o r [0]−> G e t I n f o r m a t i o n O b j e c t ( 1 ) ;
47 v t k I n f o r m a t i o n * o u t I n f o = o u t p u t V e c t o r−>G e t I n f o r m a t i o n O b j e c t ( 0 ) ;
48

49 / / g e t t h e 2 i n p u t s and 1 o u p t u t
50 / / i n p u t 1 i s t h e da ta o b j e c t t h a t we w i l l be c a l c u l a t i n g t h e p r e v i o u s e r r o r f o r
51 v t k P o l y D a t a * i n p u t 1 = v t k P o l y D a t a : : SafeDownCast ( i n I n f o 1−>Get ( v t k D a t a O b j e c t : : DATA OBJECT ( ) ) ) ;
52 v t k P o l y D a t a * i n p u t 2 = v t k P o l y D a t a : : SafeDownCast ( i n I n f o 2−>Get ( v t k D a t a O b j e c t : : DATA OBJECT ( ) ) ) ;
53 v t k P o l y D a t a * o u t p u t = v t k P o l y D a t a : : SafeDownCast ( o u t I n f o−>Get ( v t k D a t a O b j e c t : : DATA OBJECT ( ) ) ) ;
54

55 / / O b t a i n i n g minimum d i s t a n c e a t each p o i n t o f i n p u t 1
56 / / I n i t i a l i z i n g t h e a r r a y
57 v tkDoub leAr ray * m i n D i s t a n c e A r r a y = v tkDoub leAr ray : : New ( ) ;
58 minDis t anceAr ray−>SetNumberOfValues ( i n p u t 1−>GetNumberOfPoints ( ) ) ;
59 minDis t anceAr ray−>SetNumberOfComponents ( 1 ) ;
60 minDis t anceAr ray−>SetNumberOfTuples ( i n p u t 1−>GetNumberOfPoints ( ) ) ;
61 minDis t anceAr ray−>SetName ( ” MinimumDistance ” ) ;
62

63 double minDis t ance , d i s t a n c e , xyz1 [ 3 ] , xyz2 [ 3 ] ;
64

65 i n t i , j ;
66 f o r ( i =0 ; i<i n p u t 1−>GetNumberOfPoints ( ) ; i ++){
67

68 i n p u t 1−>G e t P o i n t s ( )−>G e t P o i n t ( i , xyz1 ) ;
69 m i n D i s t a n c e = 1000000;
70

71 f o r ( j =0 ; j<i n p u t 2−>GetNumberOfPoints ( ) ; j ++){
72 i n p u t 2−>G e t P o i n t s ( )−>G e t P o i n t ( j , xyz2 ) ;
73 d i s t a n c e = s q r t ( pow ( xyz1 [0]− xyz2 [ 0 ] , 2 ) + pow ( xyz1 [1]− xyz2 [ 1 ] , 2 ) + pow ( xyz1 [2]− xyz2 [ 2 ] , 2 )

) ;
74 i f ( d i s t a n c e < m i n D i s t a n c e ) {
75 m i n D i s t a n c e = d i s t a n c e ;
76 }
77

78 minDis t anceAr ray−>S e t V a l u e ( i , m i n D i s t a n c e ) ;
79

80 }
81 }
82 i n p u t 1−>G e t P o i n t D a t a ( )−>AddArray ( m i n D i s t a n c e A r r a y ) ;
83

84 / / Copying t h e i n p u t da ta and s t r u c t u r e t o t h e o u t p u t
85 o u t p u t−>C o p y S t r u c t u r e ( i n p u t 1 ) ;
86 o u t p u t−>G e t P o i n t D a t a ( )−>P a s s D a t a ( i n p u t 1−>G e t P o i n t D a t a ( ) ) ;
87 o u t p u t−>G e t C e l l D a t a ( )−>P a s s D a t a ( i n p u t 1−>G e t C e l l D a t a ( ) ) ;
88

89 re turn 1 ;
90 }
91

92 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
93 void vtkMinimumDistance : : P r i n t S e l f ( o s t r e a m& os , v t k I n d e n t i n d e n t )
94 {
95 t h i s−>S u p e r c l a s s : : P r i n t S e l f ( os , i n d e n t ) ;
96 }

A.4.4 vtkFeatureDisplacement.cxx

1 # i n c l u d e ” v t k F e a t u r e D i s p l a c e m e n t . h ”
2

3 # i n c l u d e ” v t k C e l l A r r a y . h ”
4 # i n c l u d e ” v t k C e l l D a t a . h ”
5 # i n c l u d e ” v tkDoub leAr ray . h ”
6 # i n c l u d e ” v t k I n f o r m a t i o n . h ”
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7 # i n c l u d e ” v t k I n f o r m a t i o n V e c t o r . h ”
8 # i n c l u d e ” v t k O b j e c t F a c t o r y . h ”
9 # i n c l u d e ” v t k P o i n t D a t a . h ”

10 # i n c l u d e ” v t k P o l y D a t a . h ”
11 # i n c l u d e ” vtkSameLine . h ”
12 # i n c l u d e <v e c t o r >
13 # i n c l u d e <math . h>
14

15 vtkCxxRevis ionMacro ( v t k F e a t u r e D i s p l a c e m e n t , ” $ R e v i s i o n : 1 . 7 0 $ ” ) ;
16 vtkStandardNewMacro ( v t k F e a t u r e D i s p l a c e m e n t ) ;
17

18 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
19 v t k F e a t u r e D i s p l a c e m e n t : : v t k F e a t u r e D i s p l a c e m e n t ( )
20 {
21 t h i s−>S e t N u m b e r O f I n p u t P o r t s ( 1 ) ;
22 t h i s−>Se tNumberOfOutpu tPor t s ( 1 ) ;
23 t h i s−>ComputeChangeInError = t rue ;
24 t h i s−>C l o s e s t P o i n t = t rue ;
25 t h i s−>SameLine = f a l s e ;
26 }
27

28 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 i n t v t k F e a t u r e D i s p l a c e m e n t : : F i l l I n p u t P o r t I n f o r m a t i o n ( i n t p o r t , v t k I n f o r m a t i o n * i n f o )
30 {
31 i f ( p o r t == 0 )
32 {
33 i n f o−>S e t ( v t k D a t a O b j e c t : : DATA TYPE NAME ( ) , ” v t k P o l y D a t a ” ) ;
34 i n f o−>S e t ( v t k A l g o r i t h m : : INPUT IS REPEATABLE ( ) , 1 ) ;
35

36 re turn 1 ;
37 }
38

39 v t k E r r o r M a c r o ( ” Th i s f i l t e r does n o t have more t h a n 1 i n p u t p o r t ! ” ) ;
40 re turn 0 ;
41 }
42

43 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
44 i n t v t k F e a t u r e D i s p l a c e m e n t : : Reques tDa ta (
45 v t k I n f o r m a t i o n * vtkNotUsed ( r e q u e s t ) ,
46 v t k I n f o r m a t i o n V e c t o r ** i n p u t V e c t o r ,
47 v t k I n f o r m a t i o n V e c t o r * o u t p u t V e c t o r )
48 {
49 / / g e t t h e i n f o o b j e c t s
50 v t k I n f o r m a t i o n * i n I n f o 1 = i n p u t V e c t o r [0]−> G e t I n f o r m a t i o n O b j e c t ( 0 ) ;
51 v t k I n f o r m a t i o n * i n I n f o 2 = i n p u t V e c t o r [0]−> G e t I n f o r m a t i o n O b j e c t ( 1 ) ;
52 v t k I n f o r m a t i o n * o u t I n f o = o u t p u t V e c t o r−>G e t I n f o r m a t i o n O b j e c t ( 0 ) ;
53

54 / / g e t t h e 2 i n p u t s and 1 o u p t u t
55 / / i n p u t 1 i s t h e da ta o b j e c t t h a t we w i l l be c a l c u l a t i n g t h e f e a t u r e d i s p l a c e m e n t f o r
56 v t k P o l y D a t a * i n p u t 1 = v t k P o l y D a t a : : SafeDownCast ( i n I n f o 1−>Get ( v t k D a t a O b j e c t : : DATA OBJECT ( ) ) ) ;
57 v t k P o l y D a t a * i n p u t 2 = v t k P o l y D a t a : : SafeDownCast ( i n I n f o 2−>Get ( v t k D a t a O b j e c t : : DATA OBJECT ( ) ) ) ;
58 v t k P o l y D a t a * o u t p u t = v t k P o l y D a t a : : SafeDownCast ( o u t I n f o−>Get ( v t k D a t a O b j e c t : : DATA OBJECT ( ) ) ) ;
59

60 / / O b t a i n i n g f e a t u r e d i s p l a c e m e n t a t each p o i n t
61 / / I n i t i a l i z i n g t h e a r r a y and naming v a r i a b l e s
62 v tkDoub leAr ray * PEArray = v tkDoub leAr ray : : New ( ) ;
63 PEArray−>SetNumberOfValues ( i n p u t 1−>GetNumberOfPoints ( ) ) ;
64 PEArray−>SetNumberOfComponents ( 1 ) ;
65 PEArray−>SetNumberOfTuples ( i n p u t 1−>GetNumberOfPoints ( ) ) ;
66 PEArray−>SetName ( ” F e a t u r e D i s p l a c e m e n t ” ) ;
67

68 / / O b t a i n i n g change i n e r r o r a t each p o i n t
69 / / I n i t i a l i z i n g t h e a r r a y and naming v a r i a b l e s
70 v tkDoub leAr ray *CEArray = v tkDoub leAr ray : : New ( ) ;
71 CEArray−>SetNumberOfValues ( i n p u t 1−>GetNumberOfPoints ( ) ) ;
72 CEArray−>SetNumberOfComponents ( 1 ) ;
73 CEArray−>SetNumberOfTuples ( i n p u t 1−>GetNumberOfPoints ( ) ) ;
74 CEArray−>SetName ( ” C h a n g e I n E r r o r ” ) ;
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75

76 i f ( C l o s e s t P o i n t ) {
77 / / a r r a y t o ho ld minimum d i s t a n c e v a l u e
78 v tkDoub leAr ray *mdArray = v tkDoub leAr ray : : New ( ) ;
79 mdArray−>SetNumberOfValues ( i n p u t 1−>GetNumberOfPoints ( ) ) ;
80 mdArray−>SetNumberOfComponents ( 1 ) ;
81 mdArray−>SetNumberOfTuples ( i n p u t 1−>GetNumberOfPoints ( ) ) ;
82

83 / / a r r a y t o ho ld number o f c l o s e s t p o i n t
84 v tkDoub leAr ray * cpArray = v tkDoub leAr ray : : New ( ) ;
85 cpArray−>SetNumberOfValues ( i n p u t 1−>GetNumberOfPoints ( ) ) ;
86 cpArray−>SetNumberOfComponents ( 1 ) ;
87 cpArray−>SetNumberOfTuples ( i n p u t 1−>GetNumberOfPoints ( ) ) ;
88

89 / / i n i t i a l z i n g v a l u e s
90 double p0 [ 3 ] , c0 [ 3 ] ;
91 double d i s t a n c e , l e n g t h ;
92 double m i n D i s t a n c e = 1000 ;
93 i n t i , j ;
94

95 f o r ( i =0 ; i<i n p u t 1−>GetNumberOfPoints ( ) ; i ++){
96 i n p u t 1−>G e t P o i n t s ( )−>G e t P o i n t ( i , p0 ) ;
97

98 / / r e s e t t i n g m i n D i s t a n c e v a l u e
99 m i n D i s t a n c e = 1000 ;

100

101 f o r ( j =0 ; j<i n p u t 2−>GetNumberOfPoints ( ) ; j ++){
102 i n p u t 2−>G e t P o i n t s ( )−>G e t P o i n t ( j , c0 ) ;
103

104 / / measure d i s t a n c e be tween t h e p o i n t s
105 d i s t a n c e = s q r t ( pow ( p0 [0]− c0 [ 0 ] , 2 ) +pow ( p0 [1]− c0 [ 1 ] , 2 ) +pow ( p0 [2]− c0 [ 2 ] , 2 ) ) ;
106

107 i f ( d i s t a n c e <m i n D i s t a n c e ) {
108 m i n D i s t a n c e = d i s t a n c e ;
109 cpArray−>SetComponent ( i , 0 , j ) ;
110 }
111 }
112 mdArray−>S e t V a l u e ( i , m i n D i s t a n c e ) ;
113 }
114

115 f o r ( i =0 ; i<i n p u t 1−>GetNumberOfLines ( ) ; i ++){
116

117 / / g e t t i n g i d L i s t f o r c e l l p o i n t s
118 v t k I d L i s t * c e l l P t I d s ;
119 c e l l P t I d s = i n p u t 1−>G e t C e l l ( i )−>G e t P o i n t I d s ( ) ;
120

121 i n p u t 1−>G e t C e l l ( i )−>GetLength2 ( ) ;
122

123 / / G e t t i n g t h e l e n g t h o f t h e c u r r e n t l i n e t o use l a t e r
124 / / l e n g t h = i n p u t 1−>GetPo in tDa ta ( )−>GetArray (” l ”)−>GetComponent ( c e l l P t I d s −>Get Id ( 0 ) , 0 ) ;
125 l e n g t h = s q r t ( i n p u t 1−>G e t C e l l ( i )−>GetLength2 ( ) ) ;
126

127 f o r ( j =0 ; j<i n p u t 1−>G e t C e l l ( i )−>GetNumberOfPoints ( ) ; j ++){
128 PEArray−>S e t V a l u e ( c e l l P t I d s −>Get Id ( j ) , mdArray−>GetValue ( c e l l P t I d s −>Get Id ( j ) ) *100 /

l e n g t h ) ;
129 }
130 }
131

132 i f ( ComputeChangeInError ) {
133 double PE1 , PE2 , CE ;
134 i n t i ;
135 f o r ( i =0 ; i<i n p u t 1−>GetNumberOfPoints ( ) ; i ++){
136 PE1 = PEArray−>GetValue ( i ) ;
137 PE2 = i n p u t 2−>G e t P o i n t D a t a ( )−>GetArray ( ” F e a t u r e D i s p l a c e m e n t ” )−>GetComponent ( cpArray−>

GetValue ( i ) , 0 ) ;
138 CE = f a b s ( PE1−PE2 ) ;
139 CEArray−>S e t V a l u e ( i , CE) ;
140 }
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141 } / / end o f i f ( ComputeChangeInError )
142

143 mdArray−>D e l e t e ( ) ;
144 cpArray−>D e l e t e ( ) ;
145 } / / end o f C l o s e s t P o i n t i f s t a t e m e n t
146

147 i f ( SameLine ) {
148

149 s t d : : v e c t o r <i n t> i P o i n t L i s t , i P o i n t L i s t 1 ;
150 double l e n g t h , x y z i [ 3 ] , x y z i 1 [ 3 ] ;
151 i n t i , q ;
152

153 / / Begin i t e r a t i n g t h r o u g h t h e l i n e s
154 i n t numLines = i n p u t 1−>GetNumberOfLines ( ) ;
155 i n t p ;
156 f o r ( p=0 ; p<numLines ; p ++){
157

158 / / P u t t i n g c e l l p o i n t i d s i n t o an a r r a y because t h e p o i n t e r s k e p t g e t t i n g screwed up
159 / / t h e s e i d s are f o r t h e l i n e which i s compared t o i t s p r e v i o u s l i n e
160 v t k I d L i s t * c e l l P t I d s ;
161 c e l l P t I d s = i n p u t 1−>G e t C e l l ( p )−>G e t P o i n t I d s ( ) ;
162 i P o i n t L i s t . r e s i z e ( c e l l P t I d s −>GetNumberOfIds ( ) ) ;
163 f o r ( i =0 ; i<c e l l P t I d s −>GetNumberOfIds ( ) ; i ++){
164 i P o i n t L i s t [ i ] = c e l l P t I d s −>Get Id ( i ) ;
165 }
166

167 / / t h e s e are t h e i d s f o r t h e l i n e t o be compared t o
168 c e l l P t I d s = i n p u t 2−>G e t C e l l ( SameLineArray−>GetValue ( p ) )−>G e t P o i n t I d s ( ) ;
169 i P o i n t L i s t 1 . r e s i z e ( c e l l P t I d s −>GetNumberOfIds ( ) ) ;
170 f o r ( i =0 ; i<c e l l P t I d s −>GetNumberOfIds ( ) ; i ++){
171 i P o i n t L i s t 1 [ i ] = c e l l P t I d s −>Get Id ( i ) ;
172 }
173

174 / / G e t t i n g t h e l e n g t h o f t h e c u r r e n t l i n e t o use l a t e r
175 l e n g t h = i n p u t 1−>G e t P o i n t D a t a ( )−>GetArray ( ” l ” )−>GetComponent ( i P o i n t L i s t [ 0 ] , 0 ) ;
176

177 double PE , CE , f i n d t ;
178 double c h e c k t = 0 ;
179 i n t t c o u n t e r = 0 ;
180 / / Begin i t e r a t i n g t h r o u g h t h e p o i n t s i n each l i n e
181 f o r ( q=0 ; q<i n p u t 1−>G e t C e l l ( p )−>GetNumberOfPoints ( ) ; q ++){
182

183 / / O b t a i n i n g f e a t u r e d i s p l a c e m e n t a t f i r s t p o i n t i n l i n e
184 i f ( q ==0){
185 i n p u t 1−>G e t C e l l ( p )−>G e t P o i n t s ( )−>G e t P o i n t ( q , x y z i ) ;
186 i n p u t 2−>G e t C e l l ( SameLineArray−>GetValue ( p ) )−>G e t P o i n t s ( )−>G e t P o i n t ( q , x y z i 1 ) ;
187 PE = ( pow ( pow ( x y z i [0]− x y z i 1 [ 0 ] , 2 ) + pow ( x y z i [1]− x y z i 1 [ 1 ] , 2 ) + pow ( x y z i [2]− x y z i 1 [ 2 ] , 2 )

, 0 . 5 ) / l e n g t h ) *100 ;
188 PEArray−>S e t V a l u e ( i P o i n t L i s t [ q ] , PE ) ;
189

190 / / comput ing t h e change i n f e a t u r e d i s p l a c e m e n t i f r e q u i r e d
191 i f ( ComputeChangeInError ) {
192 CE = f a b s ( PE − i n p u t 2−>G e t P o i n t D a t a ( )−>GetArray ( ” F e a t u r e D i s p l a c e m e n t ” )−>

GetComponent ( i P o i n t L i s t 1 [ 0 ] , 0 ) ) ;
193 CEArray−>S e t V a l u e ( i P o i n t L i s t [ q ] , CE) ;
194 }
195 }
196

197 / / O b t a i n i n g f e a t u r e d i s p l a c e m e n t a t l a s t p o i n t i n l i n e
198 e l s e i f ( q== i n p u t 1−>G e t C e l l ( p )−>GetNumberOfPoints ( ) −1){
199 i n p u t 1−>G e t C e l l ( p )−>G e t P o i n t s ( )−>G e t P o i n t ( q , x y z i ) ;
200 i n p u t 2−>G e t C e l l ( SameLineArray−>GetValue ( p ) )−>G e t P o i n t s ( )−>G e t P o i n t ( i n p u t 2−>G e t C e l l ( p )

−>GetNumberOfPoints ( ) −1, x y z i 1 ) ;
201 PE = ( pow ( pow ( x y z i [0]− x y z i 1 [ 0 ] , 2 ) + pow ( x y z i [1]− x y z i 1 [ 1 ] , 2 ) + pow ( x y z i [2]− x y z i 1 [ 2 ] , 2 )

, 0 . 5 ) / l e n g t h ) *100 ;
202 PEArray−>S e t V a l u e ( i P o i n t L i s t [ q ] , PE ) ;
203

204 / / comput ing t h e change i n f e a t u r e d i s p l a c e m e n t i f r e q u i r e d
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205 i f ( ComputeChangeInError ) {
206 CE = f a b s ( PE − i n p u t 2−>G e t P o i n t D a t a ( )−>GetArray ( ” F e a t u r e D i s p l a c e m e n t ” )−>

GetComponent ( i P o i n t L i s t 1 [ i n p u t 2−>G e t C e l l ( SameLineArray−>GetValue ( p ) )−>
GetNumberOfPoints ( ) −1] ,0) ) ;

207 CEArray−>S e t V a l u e ( i P o i n t L i s t [ q ] , CE) ;
208 }
209 }
210

211 / / O b t a i n i n g f e a t u r e d i s p l a c e m e n t a t i n b e t w e e n p o i n t s
212 e l s e {
213 t c o u n t e r = 0 ;
214 c h e c k t = 0 ;
215 f i n d t = i n p u t 1−>G e t P o i n t D a t a ( )−>GetArray ( ” t ” )−>GetComponent ( i P o i n t L i s t [ q ] , 0 ) ;
216 whi le ( f i n d t > c h e c k t ) {
217 t c o u n t e r = t c o u n t e r + 1 ;
218 c h e c k t = i n p u t 2−>G e t P o i n t D a t a ( )−>GetArray ( ” t ” )−>GetComponent ( i P o i n t L i s t 1 [ t c o u n t e r

] , 0 ) ;
219 }
220

221 / / Now t c o u n t e r i s e q u a l t o t h e number o f t h e l i n e t h a t h o l d s t h e a , b , c , d , e , f v a l u e s
222 x y z i 1 [ 0 ] = i n p u t 2−>G e t P o i n t D a t a ( )−>GetArray ( ” a ” )−>GetComponent ( i P o i n t L i s t 1 [ t c o u n t e r

] , 0 ) * f i n d t + i n p u t 2−>G e t P o i n t D a t a ( )−>GetArray ( ” d ” )−>GetComponent ( i P o i n t L i s t 1 [
t c o u n t e r ] , 0 ) ;

223 x y z i 1 [ 1 ] = i n p u t 2−>G e t P o i n t D a t a ( )−>GetArray ( ” b ” )−>GetComponent ( i P o i n t L i s t 1 [ t c o u n t e r
] , 0 ) * f i n d t + i n p u t 2−>G e t P o i n t D a t a ( )−>GetArray ( ” e ” )−>GetComponent ( i P o i n t L i s t 1 [
t c o u n t e r ] , 0 ) ;

224 x y z i 1 [ 2 ] = i n p u t 2−>G e t P o i n t D a t a ( )−>GetArray ( ” c ” )−>GetComponent ( i P o i n t L i s t 1 [ t c o u n t e r
] , 0 ) * f i n d t + i n p u t 2−>G e t P o i n t D a t a ( )−>GetArray ( ” f ” )−>GetComponent ( i P o i n t L i s t 1 [
t c o u n t e r ] , 0 ) ;

225 i n p u t 1−>G e t C e l l ( p )−>G e t P o i n t s ( )−>G e t P o i n t ( q , x y z i ) ;
226 PE = ( pow ( pow ( x y z i [0]− x y z i 1 [ 0 ] , 2 ) + pow ( x y z i [1]− x y z i 1 [ 1 ] , 2 ) + pow ( x y z i [2]− x y z i 1 [ 2 ] , 2 )

, 0 . 5 ) / l e n g t h ) *100 ;
227 PEArray−>S e t V a l u e ( i P o i n t L i s t [ q ] , PE ) ;
228

229 / / comput ing t h e change i n f e a t u r e d i s p l a c e m e n t i f r e q u i r e d
230 i f ( ComputeChangeInError ) {
231 CE = f a b s ( PE − i n p u t 2−>G e t P o i n t D a t a ( )−>GetArray ( ” F e a t u r e D i s p l a c e m e n t ” )−>

GetComponent ( i P o i n t L i s t 1 [ t c o u n t e r ] , 0 ) ) ;
232 CEArray−>S e t V a l u e ( i P o i n t L i s t [ q ] , CE) ;
233 }
234 }
235 }
236 }
237 }
238

239 / / add ing computed a r r a y s t o i n p u t 1
240 i n p u t 1−>G e t P o i n t D a t a ( )−>AddArray ( PEArray ) ;
241 i f ( ComputeChangeInError ) {
242 i n p u t 1−>G e t P o i n t D a t a ( )−>AddArray ( CEArray ) ;
243 }
244

245 / / Copying t h e i n p u t da ta and s t r u c t u r e t o t h e o u t p u t
246 o u t p u t−>C o p y S t r u c t u r e ( i n p u t 1 ) ;
247 o u t p u t−>G e t P o i n t D a t a ( )−>P a s s D a t a ( i n p u t 1−>G e t P o i n t D a t a ( ) ) ;
248 o u t p u t−>G e t C e l l D a t a ( )−>P a s s D a t a ( i n p u t 1−>G e t C e l l D a t a ( ) ) ;
249

250 re turn 1 ;
251 }
252

253 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
254 void v t k F e a t u r e D i s p l a c e m e n t : : P r i n t S e l f ( o s t r e a m& os , v t k I n d e n t i n d e n t )
255 {
256 t h i s−>S u p e r c l a s s : : P r i n t S e l f ( os , i n d e n t ) ;
257 }
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A.4.5 vtkQuality.cxx

1 # i n c l u d e ” v t k Q u a l i t y . h ”
2

3 # i n c l u d e ” v t k C e l l A r r a y . h ”
4 # i n c l u d e ” v t k C e l l D a t a . h ”
5 # i n c l u d e ” v tkDoub leAr ray . h ”
6 # i n c l u d e ” v t k I n f o r m a t i o n . h ”
7 # i n c l u d e ” v t k I n f o r m a t i o n V e c t o r . h ”
8 # i n c l u d e ” v t k O b j e c t F a c t o r y . h ”
9 # i n c l u d e ” v t k P o i n t D a t a . h ”

10 # i n c l u d e ” v t k P o l y D a t a . h ”
11 # i n c l u d e ” vtkMath . h ”
12 # i n c l u d e ” v t k T h r e s h o l d . h ”
13 # i n c l u d e ” v t k U n s t r u c t u r e d G r i d . h ”
14 # i n c l u d e ” v t k G e o m e t r y F i l t e r . h ”
15 # i n c l u d e <math . h>
16

17 vtkCxxRevis ionMacro ( v t k Q u a l i t y , ” $ R e v i s i o n : 1 . 7 0 $ ” ) ;
18 vtkStandardNewMacro ( v t k Q u a l i t y ) ;
19

20 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
21 v t k Q u a l i t y : : v t k Q u a l i t y ( )
22 {
23 t h i s−>T h r e s h o l d L i n e s = t rue ;
24 t h i s−>Q u a l i t y T h r e s h o l d V a l u e = 2 7 ;
25 }
26

27 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
28 i n t v t k Q u a l i t y : : Reques tDa ta (
29 v t k I n f o r m a t i o n * vtkNotUsed ( r e q u e s t ) ,
30 v t k I n f o r m a t i o n V e c t o r ** i n p u t V e c t o r ,
31 v t k I n f o r m a t i o n V e c t o r * o u t p u t V e c t o r )
32 {
33

34 / / g e t t h e i n f o o b j e c t s
35 v t k I n f o r m a t i o n * i n I n f o = i n p u t V e c t o r [0]−> G e t I n f o r m a t i o n O b j e c t ( 0 ) ;
36 v t k I n f o r m a t i o n * o u t I n f o = o u t p u t V e c t o r−>G e t I n f o r m a t i o n O b j e c t ( 0 ) ;
37

38 / / g e t i n p u t and o u t p u t
39 v t k P o l y D a t a * i n p u t = v t k P o l y D a t a : : SafeDownCast ( i n I n f o−>Get ( v t k D a t a O b j e c t : : DATA OBJECT ( ) ) ) ;
40 v t k P o l y D a t a * o u t p u t = v t k P o l y D a t a : : SafeDownCast ( o u t I n f o−>Get ( v t k D a t a O b j e c t : : DATA OBJECT ( ) ) ) ;
41

42 / / c r e a t i n g q u a l i t y a r r a y
43 v tkDoub leAr ray * q u a l i t y A r r a y = v tkDoub leAr ray : : New ( ) ;
44 q u a l i t y A r r a y−>SetNumberOfValues ( i n p u t−>GetNumberOfPoints ( ) ) ;
45 q u a l i t y A r r a y−>SetNumberOfComponents ( 1 ) ;
46 q u a l i t y A r r a y−>SetNumberOfTuples ( i n p u t−>GetNumberOfPoints ( ) ) ;
47 q u a l i t y A r r a y−>SetName ( ” Q u a l i t y ” ) ;
48

49 / / comput ing t h e q u a l i t y
50 double t h e t a , t h e t a 2 ;
51 double v1 [ 3 ] , v2 [ 3 ] , v3 [ 3 ] , v e l [ 3 ] , n v e l [ 3 ] ;
52 i n t i , j ;
53 f o r ( i =0 ; i<i n p u t−>GetNumberOfLines ( ) ; i ++){
54 f o r ( j =0 ; j<i n p u t−>G e t C e l l ( i )−>GetNumberOfPoints ( ) ; j ++){
55

56 / / g e t t i n g p o i n t I d s t o use l a t e r
57 v t k I d L i s t * p t I d s = v t k I d L i s t : : New ( ) ;
58 i n p u t−>G e t C e l l P o i n t s ( i , p t I d s ) ;
59

60 i f ( j ==0){
61 / / s e t v e l o c i t i e s and p o s i t i o n v e c t o r s
62 v e l [ 0 ] = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” V e l o c i t y ” )−>GetComponent ( p t I d s−>Get Id ( j ) , 0 )

;

130



63 v e l [ 1 ] = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” V e l o c i t y ” )−>GetComponent ( p t I d s−>Get Id ( j ) , 1 )
;

64 v e l [ 2 ] = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” V e l o c i t y ” )−>GetComponent ( p t I d s−>Get Id ( j ) , 2 )
;

65 i n p u t−>G e t C e l l ( i )−>G e t P o i n t s ( )−>G e t P o i n t ( j , v1 ) ;
66 i n p u t−>G e t C e l l ( i )−>G e t P o i n t s ( )−>G e t P o i n t ( j +1 , v2 ) ;
67

68 / / making t h e v e c t o r s u n i t v e c t o r s
69 i n t q ;
70 f o r ( q=0 ; q<3 ; q ++){
71 v1 [ q ] = v1 [ q]−v2 [ q ] ;
72 }
73 f o r ( q=0 ; q<3 ; q ++){
74 v3 [ q ] = v1 [ q ] / vtkMath : : Norm ( v1 ) ;
75 n v e l [ q ] = v e l [ q ] / vtkMath : : Norm ( v e l ) ;
76 }
77 t h e t a = acos ( vtkMath : : Dot ( v3 , n v e l ) ) ;
78 t h e t a = t h e t a * 1 8 0 / 3 . 1 4 1 5 9 2 6 5 ; / / r a d i a n s t o d e g r e e s
79 i f ( t h e t a >90){ t h e t a =180− t h e t a ;}
80 q u a l i t y A r r a y−>SetComponent ( p t I d s−>Get Id ( j ) , 0 , t h e t a ) ;
81 }
82

83 e l s e i f ( j == i n p u t−>G e t C e l l ( i )−>GetNumberOfPoints ( ) −1){
84 v e l [ 0 ] = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” V e l o c i t y ” )−>GetComponent ( p t I d s−>Get Id ( j ) , 0 )

;
85 v e l [ 1 ] = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” V e l o c i t y ” )−>GetComponent ( p t I d s−>Get Id ( j ) , 1 )

;
86 v e l [ 2 ] = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” V e l o c i t y ” )−>GetComponent ( p t I d s−>Get Id ( j ) , 2 )

;
87 i n p u t−>G e t C e l l ( i )−>G e t P o i n t s ( )−>G e t P o i n t ( j , v1 ) ;
88 i n p u t−>G e t C e l l ( i )−>G e t P o i n t s ( )−>G e t P o i n t ( j −1,v2 ) ;
89 / / making t h e v e c t o r s u n i t v e c t o r s
90 i n t q ;
91 f o r ( q=0 ; q<3 ; q ++){
92 v1 [ q ] = v1 [ q]−v2 [ q ] ;
93 }
94 f o r ( q=0 ; q<3 ; q ++){
95 v3 [ q ] = v1 [ q ] / vtkMath : : Norm ( v1 ) ;
96 n v e l [ q ] = v e l [ q ] / vtkMath : : Norm ( v e l ) ;
97 }
98 t h e t a = acos ( vtkMath : : Dot ( v3 , n v e l ) ) ;
99 t h e t a = t h e t a * 1 8 0 / 3 . 1 4 1 5 9 2 6 5 ; / / r a d i a n s t o d e g r e e s

100 i f ( t h e t a >90){ t h e t a =180− t h e t a ;}
101 q u a l i t y A r r a y−>SetComponent ( p t I d s−>Get Id ( j ) , 0 , t h e t a ) ;
102 }
103

104 e l s e {
105 v e l [ 0 ] = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” V e l o c i t y ” )−>GetComponent ( p t I d s−>Get Id ( j ) , 0 )

;
106 v e l [ 1 ] = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” V e l o c i t y ” )−>GetComponent ( p t I d s−>Get Id ( j ) , 1 )

;
107 v e l [ 2 ] = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” V e l o c i t y ” )−>GetComponent ( p t I d s−>Get Id ( j ) , 2 )

;
108 i n p u t−>G e t C e l l ( i )−>G e t P o i n t s ( )−>G e t P o i n t ( j , v1 ) ;
109 i n p u t−>G e t C e l l ( i )−>G e t P o i n t s ( )−>G e t P o i n t ( j −1,v2 ) ;
110 / / making t h e v e c t o r s u n i t v e c t o r s
111 i n t q ;
112 f o r ( q=0 ; q<3 ; q ++){
113 v1 [ q ] = v1 [ q]−v2 [ q ] ;
114 }
115 f o r ( q=0 ; q<3 ; q ++){
116 v3 [ q ] = v1 [ q ] / vtkMath : : Norm ( v1 ) ;
117 n v e l [ q ] = v e l [ q ] / vtkMath : : Norm ( v e l ) ;
118 }
119 t h e t a = acos ( vtkMath : : Dot ( v3 , n v e l ) ) ;
120 t h e t a = t h e t a * 1 8 0 / 3 . 1 4 1 5 9 2 6 5 ; / / r a d i a n s t o d e g r e e s
121 i f ( t h e t a >90){ t h e t a =180− t h e t a ;}
122 q u a l i t y A r r a y−>SetComponent ( p t I d s−>Get Id ( j ) , 0 , t h e t a ) ;
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123

124 / / f o r t h e i n t e r i o r p o i n t s we can c a l c u l a t e two q u a l i t y v a l u e s
125 i n p u t−>G e t C e l l ( i )−>G e t P o i n t s ( )−>G e t P o i n t ( j , v1 ) ;
126 i n p u t−>G e t C e l l ( i )−>G e t P o i n t s ( )−>G e t P o i n t ( j +1 , v2 ) ;
127 / / making t h e v e c t o r s u n i t v e c t o r s
128 f o r ( q=0 ; q<3 ; q ++){
129 v1 [ q ] = v1 [ q]−v2 [ q ] ;
130 }
131 f o r ( q=0 ; q<3 ; q ++){
132 v3 [ q ] = v1 [ q ] / vtkMath : : Norm ( v1 ) ;
133 }
134 t h e t a 2 = acos ( vtkMath : : Dot ( v3 , n v e l ) ) ;
135 t h e t a 2 = t h e t a 2 * 1 8 0 / 3 . 1 4 1 5 9 2 6 5 ; / / r a d i a n s t o d e g r e e s
136 i f ( t h e t a 2 >90){ t h e t a 2 =180− t h e t a 2 ;}
137 i f ( t h e t a 2 <t h e t a ) {
138 q u a l i t y A r r a y−>SetComponent ( p t I d s−>Get Id ( j ) , 0 , t h e t a 2 ) ;
139 }
140 }
141 }
142 }
143 / / S e t t i n g q u a l i t y a r r a y t o i n p u t
144 i n p u t−>G e t P o i n t D a t a ( )−>AddArray ( q u a l i t y A r r a y ) ;
145

146 / / t h r e s h o l d by an average q u a l i t y v a l u e
147 double a v g Q u a l i t y = 0 ;
148 i f ( T h r e s h o l d L i n e s ) {
149 / / c r e a t i n g Avergae q u a l i t y a r r a y
150 v tkDoub leAr ray * a v e r a g e Q u a l i t y A r r a y = v tkDoub leAr ray : : New ( ) ;
151 a v e r a g e Q u a l i t y A r r a y−>SetNumberOfValues ( i n p u t−>GetNumberOfPoints ( ) ) ;
152 a v e r a g e Q u a l i t y A r r a y−>SetNumberOfComponents ( 1 ) ;
153 a v e r a g e Q u a l i t y A r r a y−>SetName ( ” A v e r a g e Q u a l i t y ” ) ;
154

155 f o r ( i =0 ; i<i n p u t−>GetNumberOfLines ( ) ; i ++){
156 / / g e t t i n g p o i n t I d s t o use l a t e r
157 v t k I d L i s t * p t I d s = v t k I d L i s t : : New ( ) ;
158 i n p u t−>G e t C e l l P o i n t s ( i , p t I d s ) ;
159

160 / / f i n d i n g t h e average q u a l i t y a c r o s s t h e l i n e
161 f o r ( j =0 ; j<i n p u t−>G e t C e l l ( i )−>GetNumberOfPoints ( ) ; j ++){
162 a v g Q u a l i t y = i n p u t−>G e t P o i n t D a t a ( )−>GetArray ( ” Q u a l i t y ” )−>GetComponent ( p t I d s−>Get Id ( j )

, 0 ) + a v g Q u a l i t y ;
163 }
164 a v g Q u a l i t y = a v g Q u a l i t y / i n p u t−>G e t C e l l ( i )−>GetNumberOfPoints ( ) ;
165

166 f o r ( j =0 ; j<i n p u t−>G e t C e l l ( i )−>GetNumberOfPoints ( ) ; j ++){
167 a v e r a g e Q u a l i t y A r r a y−>SetComponent ( p t I d s−>Get Id ( j ) , 0 , a v g Q u a l i t y ) ;
168 }
169 }
170 i n p u t−>G e t P o i n t D a t a ( )−>AddArray ( a v e r a g e Q u a l i t y A r r a y ) ;
171

172 / / t h r e s h o l d i n g based on average v o r t e x q u a l i t y
173 v t k T h r e s h o l d * t h r e s h o l d = v t k T h r e s h o l d : : New ( ) ;
174 t h r e s h o l d−>S e t I n p u t ( i n p u t ) ;
175 t h r e s h o l d−>ThresholdByLower ( Q u a l i t y T h r e s h o l d V a l u e ) ;
176 t h r e s h o l d−>S e t I n p u t A r r a y T o P r o c e s s ( 0 , 0 , 0 , 0 , ” A v e r a g e Q u a l i t y ” ) ;
177 t h r e s h o l d−>Update ( ) ;
178

179 / / c o n v e r t i n g u n s t r u c t u r e d g r i d t o p o l y da ta
180 v t k G e o m e t r y F i l t e r * g e o m e t r y F i l t e r = v t k G e o m e t r y F i l t e r : : New ( ) ;
181 g e o m e t r y F i l t e r−>S e t I n p u t ( t h r e s h o l d−>GetOutpu t ( ) ) ;
182 g e o m e t r y F i l t e r−>Update ( ) ;
183 g e o m e t r y F i l t e r−>GetOutpu t ( )−>G e t P o i n t D a t a ( )−>RemoveArray ( ” A v e r a g e Q u a l i t y ” ) ;
184

185 / * Copying t h e i n p u t da ta and s t r u c t u r e t o t h e o u t p u t * /
186 o u t p u t−>C o p y S t r u c t u r e ( g e o m e t r y F i l t e r−>GetOutpu t ( ) ) ;
187 o u t p u t−>G e t P o i n t D a t a ( )−>P a s s D a t a ( g e o m e t r y F i l t e r−>GetOutpu t ( )−>G e t P o i n t D a t a ( ) ) ;
188 o u t p u t−>G e t C e l l D a t a ( )−>P a s s D a t a ( g e o m e t r y F i l t e r−>GetOutpu t ( )−>G e t C e l l D a t a ( ) ) ;
189 }
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190

191 e l s e {
192 / * Copying t h e i n p u t da ta and s t r u c t u r e t o t h e o u t p u t * /
193 o u t p u t−>C o p y S t r u c t u r e ( i n p u t ) ;
194 o u t p u t−>G e t P o i n t D a t a ( )−>P a s s D a t a ( i n p u t−>G e t P o i n t D a t a ( ) ) ;
195 o u t p u t−>G e t C e l l D a t a ( )−>P a s s D a t a ( i n p u t−>G e t C e l l D a t a ( ) ) ;
196 }
197

198 re turn 1 ;
199 }
200

201 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
202 void v t k Q u a l i t y : : P r i n t S e l f ( o s t r e a m& os , v t k I n d e n t i n d e n t )
203 {
204 t h i s−>S u p e r c l a s s : : P r i n t S e l f ( os , i n d e n t ) ;
205 os << i n d e n t << ” T h r e s h o l d L i n e s : ” << ( t h i s−>T h r e s h o l d L i n e s ? ”On\n ” : ” Off\n ” ) ;
206 os << i n d e n t << ” Q u a l i t y T h r e s h o l d V a l u e : ” << ( t h i s−>Q u a l i t y T h r e s h o l d V a l u e ) << ”\n ” ;
207 }

A.4.6 vtkSameLine.cxx

1 # i n c l u d e ” vtkSameLine . h ”
2

3 # i n c l u d e ” v t k C e l l A r r a y . h ”
4 # i n c l u d e ” v t k C e l l D a t a . h ”
5 # i n c l u d e ” v tkDoub leAr ray . h ”
6 # i n c l u d e ” v t k I n f o r m a t i o n . h ”
7 # i n c l u d e ” v t k I n f o r m a t i o n V e c t o r . h ”
8 # i n c l u d e ” v t k O b j e c t F a c t o r y . h ”
9 # i n c l u d e ” v t k P o i n t D a t a . h ”

10 # i n c l u d e ” v t k P o l y D a t a . h ”
11 # i n c l u d e <math . h>
12 # i n c l u d e <i o s t r e a m >
13

14 vtkCxxRevis ionMacro ( vtkSameLine , ” $ R e v i s i o n : 1 . 7 0 $ ” ) ;
15 vtkStandardNewMacro ( vtkSameLine ) ;
16

17 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
18 vtkSameLine : : v tkSameLine ( )
19 {
20 t h i s−>S e t N u m b e r O f I n p u t P o r t s ( 1 ) ;
21 t h i s−>Se tNumberOfOutpu tPor t s ( 1 ) ;
22 }
23

24 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25 i n t vtkSameLine : : F i l l I n p u t P o r t I n f o r m a t i o n ( i n t p o r t , v t k I n f o r m a t i o n * i n f o )
26 {
27 i f ( p o r t == 0 )
28 {
29 i n f o−>S e t ( v t k D a t a O b j e c t : : DATA TYPE NAME ( ) , ” v t k P o l y D a t a ” ) ;
30 i n f o−>S e t ( v t k A l g o r i t h m : : INPUT IS REPEATABLE ( ) , 1 ) ;
31

32 re turn 1 ;
33 }
34

35 v t k E r r o r M a c r o ( ” Th i s f i l t e r does n o t have more t h a n 1 i n p u t p o r t ! ” ) ;
36 re turn 0 ;
37 }
38

39 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
40 i n t vtkSameLine : : Reques tDa ta (
41 v t k I n f o r m a t i o n * vtkNotUsed ( r e q u e s t ) ,
42 v t k I n f o r m a t i o n V e c t o r ** i n p u t V e c t o r ,
43 v t k I n f o r m a t i o n V e c t o r * o u t p u t V e c t o r )
44 {
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45 / / g e t t h e i n f o o b j e c t s
46 v t k I n f o r m a t i o n * i n I n f o 1 = i n p u t V e c t o r [0]−> G e t I n f o r m a t i o n O b j e c t ( 0 ) ;
47 v t k I n f o r m a t i o n * i n I n f o 2 = i n p u t V e c t o r [0]−> G e t I n f o r m a t i o n O b j e c t ( 1 ) ;
48 v t k I n f o r m a t i o n * o u t I n f o = o u t p u t V e c t o r−>G e t I n f o r m a t i o n O b j e c t ( 0 ) ;
49

50 / / g e t t h e 2 i n p u t s and 1 o u p t u t
51 / / i n p u t 1 i s t h e da ta o b j e c t t h a t we w i l l be l o c a t i n g same l i n e s f o r
52 v t k P o l y D a t a * i n p u t 1 = v t k P o l y D a t a : : SafeDownCast ( i n I n f o 1−>Get ( v t k D a t a O b j e c t : : DATA OBJECT ( ) ) ) ;
53 v t k P o l y D a t a * i n p u t 2 = v t k P o l y D a t a : : SafeDownCast ( i n I n f o 2−>Get ( v t k D a t a O b j e c t : : DATA OBJECT ( ) ) ) ;
54 v t k P o l y D a t a * o u t p u t = v t k P o l y D a t a : : SafeDownCast ( o u t I n f o−>Get ( v t k D a t a O b j e c t : : DATA OBJECT ( ) ) ) ;
55

56 / / c r e a t i n g sameLine i n t a r r a y t h a t h o l d s v a l u e s f o r l i n e s i n i n p u t 2 t h a t
57 / / have a minimum d i s t a n c e from l i n e s i n i n p u t 1
58 SameLine = v t k I n t A r r a y : : New ( ) ;
59 SameLine−>SetNumberOfComponents ( 1 ) ;
60 SameLine−>SetNumberOfTuples ( i n p u t 1−>GetNumberOfLines ( ) ) ;
61 SameLine−>SetName ( ” SameLine ” ) ;
62

63 / / i n i t i a l z i n g v a l u e s
64 double p0 [ 3 ] , p1 [ 3 ] , c0 [ 3 ] , c1 [ 3 ] ;
65 double d i s t a n c e , d i s t a n c e 2 ;
66 double m i n D i s t a n c e = 1000 ;
67

68 / / b e g i n i t e r a t i n g t h r o u g h l i n e s i n i n p u t 1
69 i n t i , j ;
70 f o r ( j =0 ; j<i n p u t 1−>GetNumberOfLines ( ) ; j ++){
71 / / g e t t i n g e n d p o i n t s from each l i n e i n i n p u t 1
72 i n p u t 1−>G e t C e l l ( j )−>G e t P o i n t s ( )−>G e t P o i n t (0 , p0 ) ;
73 i n p u t 1−>G e t C e l l ( j )−>G e t P o i n t s ( )−>G e t P o i n t ( i n p u t 1−>G e t C e l l ( j )−>G e t P o i n t s ( )−>

GetNumberOfPoints ( )−1 , p1 ) ;
74

75 / / r e s e t t i n g m i n D i s t a n c e v a l u e
76 m i n D i s t a n c e = 1000 ;
77

78 f o r ( i =0 ; i<i n p u t 2−>GetNumberOfLines ( ) ; i ++){
79 / / g e t t i n g e n d p o i n t s from each l i n e i n i n p u t 2
80 i n p u t 2−>G e t C e l l ( i )−>G e t P o i n t s ( )−>G e t P o i n t (0 , c0 ) ;
81 i n p u t 2−>G e t C e l l ( i )−>G e t P o i n t s ( )−>G e t P o i n t ( i n p u t 2−>G e t C e l l ( i )−>G e t P o i n t s ( )−>

GetNumberOfPoints ( )−1 , c1 ) ;
82

83 / / Measure d i s t a n c e be tween t h e e n d p o i n t s
84 d i s t a n c e = s q r t ( pow ( p0 [0]− c0 [ 0 ] , 2 ) +pow ( p0 [1]− c0 [ 1 ] , 2 ) +pow ( p0 [2]− c0 [ 2 ] , 2 ) ) +
85 s q r t ( pow ( p1 [0]− c1 [ 0 ] , 2 ) +pow ( p1 [1]− c1 [ 1 ] , 2 ) +pow ( p1 [2]− c1 [ 2 ] , 2 ) ) ;
86 d i s t a n c e 2 = s q r t ( pow ( p0 [0]− c1 [ 0 ] , 2 ) +pow ( p0 [1]− c1 [ 1 ] , 2 ) +pow ( p0 [2]− c1 [ 2 ] , 2 ) ) +
87 s q r t ( pow ( p1 [0]− c0 [ 0 ] , 2 ) +pow ( p1 [1]− c0 [ 1 ] , 2 ) +pow ( p1 [2]− c0 [ 2 ] , 2 ) ) ;
88 i f ( d i s t a n c e <m i n D i s t a n c e ) {
89 m i n D i s t a n c e = d i s t a n c e ;
90 SameLine−>SetComponent ( j , 0 , i ) ;
91 }
92 i f ( d i s t a n c e 2 <m i n D i s t a n c e ) {
93 m i n D i s t a n c e = d i s t a n c e 2 ;
94 SameLine−>SetComponent ( j , 0 , i ) ;
95 }
96 }
97 }
98

99 / * Copying t h e i n p u t da ta and s t r u c t u r e t o t h e o u t p u t * /
100 o u t p u t−>C o p y S t r u c t u r e ( i n p u t 1 ) ;
101 o u t p u t−>G e t P o i n t D a t a ( )−>P a s s D a t a ( i n p u t 1−>G e t P o i n t D a t a ( ) ) ;
102 o u t p u t−>G e t C e l l D a t a ( )−>P a s s D a t a ( i n p u t 1−>G e t C e l l D a t a ( ) ) ;
103

104 re turn 1 ;
105 }
106 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
107 void vtkSameLine : : P r i n t S e l f ( o s t r e a m& os , v t k I n d e n t i n d e n t )
108 {
109 t h i s−>S u p e r c l a s s : : P r i n t S e l f ( os , i n d e n t ) ;
110 }
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APPENDIX B. FLOW VISUALIZATION IMAGES

This appendix contains figures of the delta wing data set at varying degrees of solution

convergence. There are eight values displayed for each converging data set: feature displacement,

change in feature displacement, vortex strength, quality, belief, disbelief, uncertainty and probabil-

ity expectation. The first four values help to set the probability expectation and belief tuple values.

The scales for the color bars were chosen to give the best understanding of each value.
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(a) (b)

(c) (d)

Figure B.1: Values for primary cores extracted by SH from 26% converged simulation.
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(a) (b)

(c) (d)

Figure B.2: Probability expectation and belief tuple values for primary cores extracted by SH from
26% converged simulation.
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(a) (b)

(c) (d)

Figure B.3: Values for primary cores extracted by RP from 26% converged simulation.
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(a) (b)

(c) (d)

Figure B.4: Probability expectation and belief tuple values for primary cores extracted by RP from
26% converged simulation.
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(a) (b)

(c) (d)

Figure B.5: Values for primary cores extracted by SH from 68% converged simulation.
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(a) (b)

(c) (d)

Figure B.6: Probability expectation and belief tuple values for primary cores extracted by SH from
68% converged simulation.
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(a) (b)

(c) (d)

Figure B.7: Values for primary cores extracted by RP from 68% converged simulation.
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(a) (b)

(c) (d)

Figure B.8: Probability expectation and belief tuple values for primary cores extracted by RP from
68% converged simulation.
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(a) (b)

(c) (d)

Figure B.9: Values for primary cores extracted by SH from converged simulation.
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(a) (b)

(c) (d)

Figure B.10: Probability expectation and belief tuple values for primary cores extracted by SH
from converged simulation.
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(a) (b)

(c) (d)

Figure B.11: Values for primary cores extracted by RP from converged simulation.
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(a) (b)

(c) (d)

Figure B.12: Probability expectation and belief tuple values for primary cores extracted by RP
from converged simulation.
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