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ABSTRACT 

 

Active Noise Control of a Two-Fan Exhaust-Mounted Array Using Near-Field 

Control Sources and Error Sensors 

 
 

Ryan L. Rust 

Department of Mechanical Engineering 

Master of Science 
 
 

Multiple fans are sometimes used in an array configuration to cool various types of 
electronic equipment.  In addition to adding another noise source, using two fans with closely 
spaced blade passage frequencies (BPF) can create an annoying beat frequency.  A two fan array 
with each fan having a different BPF was considered.  The fans were theoretically modeled at the 
BPF and first harmonics. Each fan has two acoustic paths to the far field. Thus, each fan was 
modeled as a two source array.  The first control configuration consisted of one control filter 
using six control sources and six error sensors in a fully coupled control system designed to 
control both fans simultaneously.  The second configuration used two independent controllers 
with three control sources and three error sensors, one controller per fan. Experimentally, the 
averaged narrow band reduction of the BPFs and the second harmonic of the two independent 
controllers were 15.6 and 7.4 dB respectively, compared to a reduction of 14.4 and 5.7 dB at the 
two frequencies using a single control loop.  The results suggest that independent controllers 
perform better than the single control loop for the fan array studied.  Optimization of active noise 
control systems has increased performance but sometimes with decreased robustness. Two 
control source configurations for the sound power reduction of a simple source were analyzed by 
modeling the control systems.  The two control source configurations were four symmetric 
control sources surrounding the noise source and an optimized linear array of four control 
sources.  Simulation results show the linear array control source configuration is more sensitive 
to microphone placement errors, with a 20-33 dB reduction in attenuation for a microphone 
placement error of 2 mm compared to a 0.8 dB drop in attenuation for the symmetric case.  The 
linear array configuration was found to be more sensitive to the microphone placement errors 
compared to the symmetric configuration.  A 2.5 mm change in one microphone position causes 
an average of 6 dB loss in attenuation for the linear array configuration compared to a 0.6 dB 
loss for the symmetric configuration. 
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1 INTRODUCTION 

1.1 Axial Cooling Fans 

1.1.1 Fan Noise 

Fans perform a necessary cooling function for many electronics and machines but create 

noise as a negative byproduct. Figure 1-1 shows the typical spectrum of an axial cooling fan.  

 

 

Figure 1-1: Spectrum of a typical axial cooling fan 

 

The fan spectrum shows the largest amplitude tone occurs at around 700 Hz. The noise at 

this frequency is based on the number of fan blades times the rotation speed of the fan and is 

BPF 2nd Harmonic 

3rd Harmonic 
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called the blade passage frequency (BPF). Additionally, at multiples of the BPF, there are tonal 

noise peaks in the spectrum called the harmonics of the BPF, with the 2nd and 3rd

There are many different noise sources in cooling fans. A study by Huang

 harmonics 

shown in Fig. 1-1. The tonal noise is representative of the “hum” that is associated with a fan in 

operation.  In addition to the tonal noise content, the spectrum also shows broadband noise, 

which is associated with the “whoosh” sound of the fan.   

1 showed that 

tonal noise from the axial cooling fans comes from aerodynamic interactions between the fan 

blades and the stator vanes.  Additionally, Huang1 showed the noise at the BPF acts as an 

acoustic dipole, which can be represented by two closely spaced acoustic sources of equal 

magnitude and opposite phase.  Additionally, Sharland2 showed that some of the broadband 

noise comes from the vortex shedding at the blade trailing edges and from turbulence in the flow. 

Additional noise sources in the fan result from unsteady loading of the fan or unsteady inlet 

conditions, turbulent flow through the fan, and trailing edge noise.1-6 Fitzgerald7

Various passive noise control methods have been implemented, but mainly consist of 

changing the geometry of the fan housing and blades.  Shin et al.

 showed that the 

tonal noise dominates when the fan has high flow.  Modeling and investigating the effective 

locations of the noise sources in cooling fans has been the subject of many studies, since 

understanding how the noise is generated by the fan helps engineers implement noise control 

measures.  

8 used response surface 

methodology to decrease the BPF and the harmonics while maintaining the flow rate and 

efficiency of the fan.   Filleul et, al.9 changed the inlet to have a bell mouth opening that reduces 

noise caused by the shroud.  Fitzgerald7 found that fans could be quieted by changing many 
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aspects of a fan’s design including streamlining struts and making parts of the fan more 

symmetric.     

Often times, when a single cooling fan is not adequate to cool a device, multiple cooling 

fans will be used.  Servers, cooling trays, and rack mount electronics are often built to have more 

than one fan arranged side by side in an array as the cooling solution.  These fan arrays often are 

built with the identical model fan; however, differences in manufacturing cause a slight 

difference in BPF of each fan, even when the same voltage is applied to the fans.  The difference 

creates a beat frequency that can be annoying.  Figure 1-2 shows the narrow band spectrum of 

two 60 mm fans arrayed side by side. 

 

 

Figure 1-2: Zoom spectrum of the two closely spaced BPFs 

 

In this spectrum, the BPFs of the two fans were separated by 2 Hz in this case, which 

creates a beat frequency of 2 Hz.  A beat frequency results from the superposition of two closely 

spaced waves that interfere with each other to create low and high amplitude oscillations in the 

BPF at 714 Hz BPF at 712 Hz 
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time signature.  The time series of two sinusoids closely spaced in frequency which are added 

together is shown in Figure 1-3 to demonstrate the beating phenomena. 

 

 

Figure 1-3: The time wave form of two sinusoids with closely spaced frequency showing the beat frequency of 
2 Hz. 

 

1.2 Active Noise Control 

The idea of active noise control (ANC) derives from the superposition of two sound waves 

of opposite phase and equal magnitude that combine to create zero pressure.  Active control gets 

its name from using speakers to create the canceling wave which adds to the acoustic wave 

created by the noise source, or in other words from actively adding sound to a noise field.  Active 

noise control was originally proposed by P. Lueg10, who had the idea patented in 1936.  

However, it was not until the advent of the digital signal processor that active noise control could 

be applied to practical applications. Digital signal processors are a key component to many 
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practical applications of ANC because it provides the computation power to process the real time 

signals. Recently, the price of digital signal processors has dropped to allow ANC to be a viable 

option in many noise control applications. 

1.2.1 Feed Forward Active Noise Control 

Adaptive feed forward ANC is made possible by the development of the filtered-x 

algorithm, which uses finite impulse response filters to generate the control signal.  Feed forward 

ANC uses knowledge of the impending sound field, called a reference signal, as a basis to create 

a control signal.  The reference signal can be taken from either a mechanical source, such as the 

signal from an accelerometer or tachometer or an acoustical source, such as the signal from a 

microphone.  The control filter is updated using the least mean square (LMS) algorithm proposed 

by Widrow et, al.11-12

A block diagram of the filtered-x algorithm can be seen in Fig. 1-4.  The reference signal, 

x(t), is a signal that is correlated to the noise, d(t), that is generated by the plant C(z).  The 

reference signal has two roles in the algorithm.  First, the reference signal is used with the 

control filter, W(z), to create the control signal, u(t).  The control signal, u(t), then travels 

through the filters and amplifiers to the control speaker and propagates to the error sensor.  This 

total transfer function is called the secondary path, H(z), and the output of this secondary path, 

y(t), is measured at the error microphone. The principle of superposition says that pressures add 

at the error microphone or some other acoustic sensor. Thus, the output of the controller plus the 

disturbance noise gives the error, e(t).  The second use of the reference signal is to update the 

control filter. The reference signal is first filtered by an estimate of the secondary path H’(z) 

creating the filtered-x signal, r(t).   The reference signal is first filtered to increase the stability of 
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the control system.  The error signal and filtered-x signals are now used in the LMS update to 

adaptively change the control filter.  

 

 

Figure 1-4: The Filtered-x algorithm 

 

The LMS update is derived from the squared error and uses a steepest descent gradient to 

update the control filter.  The convergence parameter, µ, must be large enough to track changes 

in the noise, but also small enough to maintain stability.   Filtered-x update equation then 

becomes 

W(n + 1) = W(n) − µe(t)R(t)     (1-1) 

The update equation means that the next control filter is taken from the old control filter minus 

the gradient, were R(t) is a vector of the last N values of r(t) and where N is the length of the 

control filter.  Feed forward active noise control is often used for tonal noise sources of revolving 

equipment like engines and fans. 

H’(z) 
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1.2.2 Free Field Active Noise Control 

Implementation of ANC minimizes the squared pressure or other acoustic signal at an 

error sensor.  In ANC, when the noise at the error sensors is driven to zero by the control system, 

the result is not always a reduction in the overall sound power.  The placement of the error 

sensors and control sources impact the reductions achieved by the control system.  Source 

coupling is a way to globally reduce the noise.  The concept of source coupling is demonstrated 

by a dipole source configuration which consists of two closely spaced simple sources of the same 

magnitude and opposite phase.  Figure 1-5 shows the relative sound power of a two simple 

sources of equal phase and opposite magnitude to a monopole source based on the kd of the 

dipole, where k is the wave number and d is the distance between the two sources and kd is a 

measure of distance relative to the acoustic wavelength.  The figure shows that as the two 

sources are brought closer together relative to wavelength, they create a dipole, i.e., a small kd, 

the sound power relative to monopole goes to zero.   

 

 

Figure 1-5: The relative power of a dipole compared to a monopole as a function of kd 
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Applying the dipole source coupling idea, Nelson et, al.14-15 minimized the sound power 

by introducing closely spaced control sources relative to a wavelength.  The closely spaced 

control sources modify impedance for the primary source, basically inhibiting the primary source 

from radiating noise.  All acoustic sources create impedances between themselves and the other 

acoustic sources, including self impedance.  Nelson et al.14-15

    Z(kd) = jk2ρoc
4π

�e
−jkd

kd
�,    (1-2) 

 showed that the complex 

impedance between two simple sources is given by  

where k is the wave number, d is the distance between the two sources, ρo 

     Π =  1
2
𝐐�HRe[𝐙�]𝐐�         (1-3) 

 and c are the density 

and speed of sound in the medium respectively. An impedance matrix, 𝒁�, can be constructed 

whose elements consist of the impedance between all the sources in a system, including the self 

impedance, with each term obtained from using Eqn. 1-2.  Using this impedance matrix, the total 

sound power radiated from a system of sources can be represented by, 

where 𝑄� is the vector of complex source strengths for all sources in the system.  Breaking this 

power equation into primary source and control sources, the total sound power can be rewritten 

as 

    Π = 𝐐�cH𝐀�𝐐�c + 𝐁�H𝐐�c + 𝐐�cH𝐁� + C        (1-4) 

where 
 
     𝑨 = 1

2
Re�𝐙cc�,                     (1-5) 

     𝑩 = 1
2

Re�𝐙pc�𝐐p,          (1-6) 

     C = 1
2
𝐐p
H

Re�𝐙pp�𝐐p,        (1-7) 
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with 𝒁𝑐𝑐 R being an impedance matrix between each control source and all other control sources, 

𝒁𝑝𝑐 is the impedance matrix between control sources and the primary sources, 𝒁𝑝𝑝 is the 

impedance matrix between all the primary sources, 𝑸𝑝 R 

     𝐐�so = −𝐀�−1𝐁�                                 (1-8) 

is a vector of the complex source 

strengths of the primary sources and 𝐐�c is a vector of the complex source strength of the control 

sources.  Taking the derivative of Equation 1-4 with respect the control source strength vector 

and setting the result equal to zero results in the source strength vector that minimizes the sound 

power: 

Substituting this source strength into the sound power equation results in the minimum 

sound power of the configuration of sources given by 

Πmin = C − 𝐁
H
𝐀
−1
𝐁.     (1-9) 

The minimized sound power can now be divided by the sound power of the primary sources to 

find the attenuation of the primary source. 

Many factors go into implementing this type of control system as set forth by Synder16

In the sound minimization technique, the arrangement of the control sources becomes the 

greatest factor in maximizing attenuation of the primary source.  

, 

who developed a pyramid of important control system factors as shown in Fig. 1-6.  The pyramid 

is arranged so that the bottom part is the most important design aspect in achieving attenuation 

and progressively gets less important going to the top of the pyramid.  
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Figure 1-6: Global control hierarchy with the bottom the most important factor

 

16 

An additional aspect that needs to be considered in setting up this type of control is the 

position of the error sensors.  The right configuration of control sources will not automatically 

converge to the optimal source strengths to minimize sound power.  The error microphones must 

be placed in the right locations to force the controller to the optimal source strengths.  As with 

any feed forward active noise control system, the reference signal has to be correlated with the 

noise in order for the noise source to be attenuated.  The control algorithm must be able to drive 

the error to zero without going unstable.   

1.2.3 Implementation of Active Control on Cooling Fans 

Passive noise control efforts have been successful but the methods have limitations.  

Hence, active noise control of axial cooling fans has been the subject of many studies.17-28 Since 

many control configurations have been studied a only a few will be outlined here. A simple 

control system implemented by Quinlan18 used a single source located next to the fan 

demonstrating that active noise control could be applied to a cooling fan.  Also, Wang19 used an 

uncapped speaker acting as a dipole and combined with the dipole nature of a fan to create a 

lateral quadrupole to reduce noise emission from the fan.  More complex control configurations 
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have since been attempted.  Wang et al.20 used a four speaker array of speakers to control the 

drag noise of the fan.  Two of the speakers were on top of the fan, with one speaker being placed 

pointing away from the fan, and the other facing the same direction as the fan. The two 

remaining speakers were placed on the bottom of the fan in the same type of speaker 

configuration.  Lauche21

Notably, Gee and Sommerfeldt

 used the fan itself as the control source, creating a small distance 

between the control source and the primary source.  A shaker was used to make the fan into a 

control source to attenuation noise radiated from the fan.  

22-23 surrounded the fan with four control sources in a 

symmetric control configuration, but also created a compact system by placing the error sensors 

in the near-field.  Applying the sound minimization technique to cooling fans, Gee and 

Sommerfeldt found the optimal near-field error microphone locations by a) modeling all sources 

as monopoles, b) using the Nelson et al.14-15 method to minimize the radiated power, and c) 

finding where the calculated near-field pressure level reduction was the greatest.   However, 

because minimization of squared-pressure at discrete locations does not necessarily guarantee the 

source coupling that will result in minimized radiated power, near-field measurements were used 

to confirm the validity of this approach.24 

Few efforts have been made to actively control multiple cooling fans.  There are two US 

patents that explain ways to control the noise and beat frequency of fan arrays.  Abali et al.

  

25 

have reduced noise at the blade passage frequency of a fan array by using the other fans in the 

array as control sources.  The speed of the control fan is changed to minimize the radiated sound.  

Lyszkowski and Wallace26 control the beating by changing the speed of the fans to match each 

other. 
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1.2.4 Optimization of Control Source Locations  

Optimization of error sensor and control source placement has also been the subject of 

many active control studies.27-34 For instance, Clark and Fuller27 used an algorithm to optimize 

the placement of a piezoelectric actuator and strain error sensor to control the sound from a 

baffled simply supported plate.  Berkhoff28 found that there is an optimal distance between 

control sources and error sensors which is related to the distance between the control sources for 

the active control of sound transmission through a plate.  Pulthasthan and Pota29

Specifically, Duke et al.

 used an energy- 

based approach to find the optimal actuator and sensor locations to control structural radiation.  

Additionally, genetic algorithms have also been implemented to find the optimal locations for 

control sources and error sensors.  

30

The theoretical results predict large improvements of the control system for the linear 

array configuration. However, when controlling a speaker, experimental results were unable to 

match the theoretical results.  The linear array configuration predicted a reduction of 58.4, 33.4 

and 17.7 dB of the sound power at 550, 1100 and 1650 Hz respectively but experimental results 

only achieved 32.4, 23.2 and 3.0 dB. 

 used a genetic algorithm to improve upon the control source 

arrangement used by Gee and Sommerfeldt for an axial cooling fan.  The results showed that 

including the primary source within a linear array of control sources resulted in the source 

configuration that minimized the radiated power.  Experiments showed improved performance 

relative to Gee and Sommerfeldt’s symmetric source arrangement.   Figure 1-7 shows the 

experimental results from the linear array verses the surrounding configuration used by Gee.   
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Figure 1-7: Experimental results for the sound power attenuation of the primary source for the linear array 
and symmetric control configuration.

 

30 

1.3 Objective 

Two main objectives will be considered for this thesis.  The first objective is to study 

active noise control of a closely spaced two fan array with the two fans having slightly different 

BPFs.   Two different control strategies will be implemented to the two fan array system.  First, a 

single control system that controls the BPFs and first harmonics of both fans.  Second, two 

independent controllers implemented to control each fan individually, comparing these two 

results will show whether each fan in the array can be modeled and controlled individually as 

independent sources. 
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The second objective is to investigate how control source configurations affect the robust 

nature of a control system.  Since the linear array of control sources was unable to achieve the 

theoretical results, a sensitivity analysis of the linear array of control sources verses a symmetric 

configuration is performed.  The control system is modeled as four baffled point sources.  The 

squared pressure at four locations will be driven to zero representing the four error microphones.  

The purpose of the simulation is to analyze the effect of sensor placement error and the 

sensitivity of the control system to extraneous noise sources on the two control source 

configurations.  Additionally, the simulation will provide insight into the reasons why the linear 

configuration of control sources does not achieve the predicted attenuations. 

1.4 Thesis Outline 

The next two chapters present papers that will be submitted for publication.  Chapter 2 

presents a paper on the active control of multiple cooling fans covering the study into the first 

objective of the thesis.  The paper shows the modeling and experimental work of actively 

controlling a two fan array.  Building upon the optimization set forth by Duke, et al.30

 

 Chapter 3 

presents an analysis of two control configurations for a single axial cooling fan.  The analysis 

was performed using a simulation tool to test the sensitivity of the two control configurations to 

error sensor placement and noise sources.  The chapter includes simulations of a control system 

as well as the experimental confirmation of the results and contributes to objective two of the 

thesis.  Chapter 4 has the conclusions and recommendations for possible future work.   
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2 ACTIVE NOISE CONTROL OF A TWO-FAN EXHAUST-MOUNTED ARRAY 
USING NEAR-FIELD CONTROL SOURCES AND ERROR SENSORS 

2.1 Abstract 

Multiple fans are sometimes used in an array configuration to cool various types of 

electronic equipment.  In addition to adding another noise source, using two fans with closely 

spaced blade passage frequencies (BPF) can create an annoying beat frequency.  In this work, a 

two-fan, exhaust-mounted array was considered for active noise control of the BPF and 2nd 

harmonic of each fan.  In this array, each fan has a different BPF, as such, the fans were 

theoretically modeled individually at the 4 frequencies of interest. Each fan has two acoustic 

paths to the far field.  First the direct radiation and a second acoustic path from the back of the 

fan through the box and out the other fan opening, creating a second virtual source at the location 

of the other fan.  Therefore, in this work, each fan was modeled as a two source array because of 

the two acoustic paths.  Two control configurations were theoretically and experimentally 

compared.  The first control configuration consisted of one control filter using six control 

sources and six error sensors in a fully coupled control system designed to control both fans 

simultaneously.  The second configuration used two independent controllers with three control 

sources and three error sensors, one controller per fan.  Theoretically, at 712 Hz the nominal BPF 

of the fans in the array, the second acoustic path greatly affects the theoretical attenuation of the 

3 control source implementation dropping the attenuation from 23 dB to 7 dB in extreme cases, 

but barely impacts the 6 control source implementation. If the second acoustic path was 

negligible, the 6 control source configuration only has 3 dB more sound power attenuation of the 
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BPFs than the two 3 control source implementation. The 6 source control configuration requires 

microphone positions which were optimal for both fans. The shared microphones in this 

configuration cause limited optimal placement compared to the individual controllers.  

Experimentally, the averaged narrow band reduction of the BPFs and the second harmonic of the 

two independent controllers were 15.6 and 7.4 dB respectively, compared to a reduction of 14.4 

and 5.7 dB at the two frequencies using a single control loop.  The results suggest that 

independent controllers perform better than the single control loop for the fan array studied. The 

limited optimal error sensor placement of the error microphones impacted the performance of the 

6 control source implementation.  Additionally, the independent controllers required less 

computation time because this implementation used less finite impulse response filters than the 6 

control source configuration.  The active noise control of the BPFs caused the amplitude of the 

tonal components in the beat frequency to be low, making the beating less noticeable. 

2.2 Introduction 

Arrays of cooling fans are often used in applications such as servers and cooling trays.  

Compared to a single fan, multiple fans improve cooling but also increase noise levels by adding 

a second noise source.  Huang1 showed the tonal noise from axial cooling fans comes from 

aerodynamic interactions between the fan blades and the stator vanes.  The frequency of the 

lowest tone, which is called the blade passage frequency (BPF), is found by the number of fan 

blades multiplied by the rotation speed. Huang1 also showed that the radiation at the BPF acted 

like a dipole noise source.  Additional tones at the harmonics of the BPF are also present in the 

noise spectrum.  Broadband noise from cooling fan comes from various sources, including the 

vortex shedding at the blade trailing edges and from turbulence in the flow.2-3  
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When using two or more cooling fans, manufacturing differences cause identical model 

fans to generally rotate at slightly different speeds, even when the same voltage is applied. When 

the BPFs are sufficiently close together, they create an audible beat frequency.  Means of 

eliminating the beat frequency have been explored by various researchers; including 

synchronizing the speed of one fan to match the speed of the other.25  Another proposed method 

is for one fan to be the control source to actively control the noise of the other fan.

 The active control of the tonal noise content from axial cooling fans has been studied 

using various control configurations. Control source configurations have ranged from a single 

control source to multiple control sources surrounding the fan.

26 

18-24  Gee and Sommerfeldt22-23 

used a sound power reduction technique proposed by Nelson et al.14

Gee and Sommerfeldt

  In this technique, the sound 

power of a simple source can be minimized by introducing control sources that are closely 

spaced to the primary source, relative to an acoustic wavelength.    

22-23

 The purpose of this paper is to extend the approach implemented by Gee and 

Sommerfeldt

 surrounded the baffled fan with four symmetrically placed 

control sources.  Modeling the control sources and fan as simple sources, they determined the 

optimal control source strengths to minimize the sound power.  Using these source strengths, the 

near-field controlled pressure field relative to the primary pressure field was determined.  Near-

field control microphones were then placed at locations of maximum attenuation in the relative 

pressure field.  With the error microphones placed in these locations, the BPF and harmonics 

were controlled globally for an axial cooling fan.   

22-23 and later by Monson et al.35 and Shafer et al.24  from a single exhaust-mounted 

cooling fan to an exhaust-mounted, two-fan array.  Fan arrays pose additional problems beyond a 

single fan system.  The proximity of the two fans affects the control source configuration that 
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can be implemented. Gee and Sommerfeldt22-23

In implementing the active noise control, two different control configurations were 

considered.  First, two independent controllers were used to control the two fans independent of 

the other fan.  Second, a single control loop was used to actively control both fans, using a fully 

coupled control system that surrounds the fan array.    Theoretically, the sound power 

attenuations of a two primary source array using both of these control configurations were 

determined.  The optimal control source strengths were used to create the near-field controlled 

pressure relative to the primary field to find microphone placement locations.  Using the two 

control configurations and the theoretical error sensor placement locations, active noise control 

was applied to a two fan array. 

 used four symmetrically and closely spaced 

control sources surrounding the fan which cannot be used for this two-fan array.  Having two 

fans in the array creates two acoustic paths for the noise to travel. First, direct path radiation and 

second noise from the back side of each fan through the box and out of the other fan opening, 

creating a virtual noise source at the location of the other fan.  The two acoustic paths effectively 

turn each fan into a two source array. 

2.3 Theoretical Development 

A two fan array with the fans arranged side by side was considered for this paper.  

Following the same procedure as Gee and Sommerfeldt,22-23 each fan in the array was modeled 

as an independent simple noise source because each fan generally had a different BPF.  Huang1 

showed that the BPF of a single fan radiates as a dipole. As such, there was noise radiated from 

both the front and back of the fan.  Noise from the back side of the fan radiates through the box 

and out the other fan opening. The second acoustic path creates a virtual noise source at the 
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location of the other fan.   Therefore, each fan in the array was modeled as two closely spaced 

simple sources. 

Gee and Sommerfeldt22-23

 

 placed four equally-spaced control sources surrounding the fan 

with one source on each side of the square surrounding the fan.  However, here the two fans were 

placed side by side close together, not allowing the fourth control source to surround each fan.  

The control sources were instead placed surrounding fan array.  The modeled control of a single 

fan in the array surrounded by 6 control sources is shown in Fig. 2-1. 

 

Figure 2-1: The location of the primary and control sources with the primary sources being red dashed 
circles and the control sources blue solid circles 

 

Primary source A in Fig. 2-1 is representative of the main acoustic path of the fan from the 

front side of the fan.  Primary source B is a flanking source representative of the acoustic path 

from the back side of the fan through the box and out the other fan hole.  Two control source 

configurations were investigated to control these two closely spaced primary sources.  The first 

2 

1 

3 4 

5 

6 

A B 
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control configuration used control sources 1-3.  The second control implementation used all six 

control sources shown in Fig. 2-1.  The BPFs of the two fans were determined to be 712 and 714 

Hz, so 712 Hz was used in the theoretical analysis.   The phase and magnitude of primary source 

B relative to A was unknown for the experimental array.  The sound power attenuation of 

various primary source arrays was determined to find the potential impact of source B on the two 

control configurations.  The sound power attenuation (in dB) is shown for various primary 

source arrays in Table 2-1 with the relative phase and magnitude of source B compared to source 

A.      

Table 2-1: Sound power attenuation of a two primary source array of a three  
and six control source configuration, shown are the magnitude and  

phase of primary source B relative to primary source B. 
Relative 

Magnitude  
Relative 
Phase 

Attenuation (dB) 
3 Sources 6 Sources 

1 0 16.0 26.9 
1 90 14.6 27.1 
1 180 7.1 34.2 

0.5 0 18.1 26.9 
0.5 90 18.0 27.1 
0.5 180 17.0 28.4 
0.25 0 20.2 27.0 
0.25 90 21.3 27.1 
0.25 180 26.2 27.5 

0 0 24.2 27.1 
 

Table 2-1 shows that the 6 control source configuration is robust and is relatively unaffected by 

different possible primary source arrays.  The theoretical attenuation does not drop below 26.6 

dB across all the possible primary source arrays for this control configuration.  Looking at the 

three control source configuration results, if primary source B is significant compared to source 

A then the configuration is greatly impacted dropping to 7 dB in the worst case.  However, as the 

magnitude of the second primary source drops, the difference between the two control source 

configurations was lessened until there was only a 3 dB difference between the two control 
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implementations when the source B is neglected.  Depending on the magnitude and phase of the 

acoustic path from the back side of the fan, there is a large impact on which control configuration 

would be optimal to use on the fan array.   

The theoretical microphone positions were found in the same manner as Gee and 

Sommerfeldt.22-23

 

 The optimal control source strengths were used to minimize the sound power 

to predict near-field controlled pressure relative to the primary source pressure field. The places 

of maximum attenuation of the primary field correspond to optimal error microphone locations.  

 

 

Figure 2-2: The near-field pressure of the controlled field relative to the primary field, in dB, for a three 
control source and one primary source configuration.  The nulls in the near field are the ideal locations for 
the error sensors, the circles show the locations of the control sources and the star is the primary source 
location. 

 

The primary source array is unknown, so the most simplistic case of primary source B 

with zero magnitude will be used to demonstrate how the microphone placement in the control 
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system is determined.  In this case, the controlled near-field pressure relative to the primary field 

is shown in Fig. 2-2 for the three control source configuration.   

The places of maximum attenuation in the pressure map shown in Fig. 2-2 represent the 

optimal locations for the error sensors in the near field to obtain maximum sound power 

attenuation of the primary source. In this case, the control system should converge to having 

control source 2 (on the left side) go toward zero, leaving two control sources effectively 

controlling the primary source.   

  

  

Figure 2-3: The near-field pressure of the controlled field relative to the primary field, in dB, for a six control 
source and one primary source configuration.  The nulls in the near field are the ideal locations for the error 
sensors, the circles show the locations of the control sources and the star is the primary source location. 

 

For the three control source configuration each fan had an independent controller. Thus, 

for the second fan in the array the same plot (mirrored about the y-axis) would be used for the 
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second fan at the frequency of interest.  The relative near field pressure map for the six control 

source configuration is shown in Fig. 2-3, again for the case of having only one primary source.  

The error microphones should be located along the pressure minima in Fig. 2-3.  When applying 

the six control source configuration to a fan array, both fans were controlled with shared error 

microphones. Therefore, the error microphones need to be in optimal locations for each fan.  A 

similar pressure map can be made for the second fan in the array. The two pressure maps can be 

overlapped with the optimal error sensor locations were found by the intersection of the pressure 

minima of the two maps, the intersection map is shown in Fig. 2-4. 

 

 

Figure  2-4 : The overlapped near-field pressure of the controlled field relative to the primary field, in dB, for 
a six control source and one primary source configuration for each fan in a two fan array.  The cross section 
of the nulls in the near field are the ideal locations for the error sensors, the circles show the locations of the 
control sources and the stars the locations of primary sources. 

 

 

Ideal Locations 
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Looking at Fig. 2-4, the optimal placement for both fans was limited to in between the two 

primary sources.  The limited error sensor placement locations means that in practice the control 

system might not be able to achieve the theoretical sound power reductions because optimal 

microphone placement locations might not be available for both fans. 

In the experimental set up used to test the active noise control on the fan array, the 

magnitude of the primary source B comparative to source A was unknown; therefore, the ideal 

microphone placements were also unknown.  An estimate of primary source B relative to source 

A was determined for a fan in the experimental array.  

 

 

Figure 2-5: The overlapped near-field pressure of the controlled field relative to the primary field, in dB, for 
a three control source and two primary source configuration.  The nulls in the near field are the ideal 
locations for the error sensors, the circles show the locations of the control sources and the stars are the 
primary source locations. 

 

A baffle was placed in between the two fans, isolating the two primary sources. A 

microphone was placed on each side of the baffle just outside each fan opening.  With one fan in 
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operation, the transfer function between the two microphones was used to estimate the 

magnitude difference at the BPF between the two acoustic paths.  The magnitude difference was 

estimated to be 7 dB.  Looking at Table 2-1, the estimated magnitude ratio of 0.44 between the 

primary and secondary path means that the 6 control source configuration would theoretically 

have approximately 10 dB more attenuation than the 3 control source configuration.   

Using the magnitude data, the error sensor placement can be approximated with creating new 

pressure maps.  The near field control pressure field relative to the primary field for the 3 control 

source configuration is shown in Fig. 2-5 with a second primary source B with a relative 

magnitude of 0.44 and no phase difference to primary source A. The places of maximum 

attenuation in the plot were used as the microphone placement for the two fan array tested in this 

paper.   

 

Figure 2-6: The overlapped near-field pressure of the controlled field relative to the primary field, in dB, for 
a six control source and two primary sources configuration.  The cross section of the nulls in the near field 
are the ideal locations for the error sensors, the circles show the locations of the control sources and the stars 
the locations of primary sources. 
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Similarly, the overlapped relative control pressure field to the primary field for the 6 

control source configuration is shown in Fig. 2-6. The optimal microphones locations in this 

theoretical plot were used in the experimental active noise control on the two fan array.  The 

maximum sound power attenuation for the 3 control source configuration at the BPF is 16-17 dB 

and 27 dB for the 6 control source configuration. 

2.4 Experimental Setup 

An exhaust-mounted two fan array was constructed with two identical 60 mm axial cooling 

fans.  The fan array was in a computer sized box with dimensions of 46 x 42 x 22 cm.  The two 

fans were spaced 6.5 cm apart, center to center.  The control sources were 2.5 cm HiVi and were 

placed according to Fig. 2-1 with the complete set up is shown in Fig. 2-7 

Feed-Forward active noise control requires a reference signal that is correlated to the noise 

and the fans used did not have a built in tachometer like many fans.  Therefore, the reference 

signal was taken from an emitter detector pair mounted on the fan that gives a pulse each time a 

fan blade passes. This method has been used in a number of previous studies.22-23,24,35
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Figure 2-7: The control setup used for the active control of a two fan array 

 

 For the six control source configuration, the reference signals from each fan were mixed 

and used in the single control loop.  The control filter utilized 128 coefficients and 20 

coefficients were used for the secondary path model.  When implementing the two control filter 

loop with three control speakers and three error microphones for each loop, one of the fan 

reference signals was used in each control loop, with 20 control filter coefficients and 20 

secondary path model coefficients in each loop.  The error microphones were 6mm Hosiden 

electret microphones.  The error sensors were placed on the theoretical pressure minimum 

locations found previously.  Anti-aliasing low-pass filters were implemented with a cutoff 

frequency of 1800 Hz using 8 pole Krohn-Hite 3384 filters.  The DSP board was based on a 

Texas Instruments 320c6713 chip and used a 4000 Hz sampling frequency. 

The fan array was placed in an anechoic chamber to measure the sound power reduction 

at the tonal frequencies.  A characteristic measurement was an on-axis measurement of the fan 

noise spectrum with 0.6 Hz resolution to find the beat frequency of the fan array at 1.7 m using a 

GRAS 12.7 mm type I microphone. The sound power measurement of the fan array was obtained 
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using a semicircular array with a radius of 1.7 m and 13 GRAS 12.7 mm type I microphones 

equally placed along the semicircle and can be seen in Fig. 2-8.  

The fan array was placed under the center microphone of the semicircular array, and the 

measurement array was rotated about the center microphone at 15 degree increments to create a 

360 degree scan.  At each microphone position, the autospectrum was calculated using 15 

averages and a frequency resolution of 6.1 Hz. The sound power was calculated using the 

autospectrum with a method used by Monson et al.10

 

 who used an area weighting function to 

determine the sound power.   

Figure 2-8: Picture of the 13 microphone measurement array in the anechoic chamber 

 

The measurement was repeated 5 times with and without active noise control. The 

resulting sound powers were then averaged to find the performance of the single control loop and 

for two control loops. 
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2.5 Results and Discussion 

The characteristic noise spectrum of this two fan array is shown in Fig. 2-9.  The figure shows 

the frequencies that were targeted by the control system, consisting of the BPFs and 2nd

   

 

harmonics at 712, 714, 1424 and 1428 Hz, respectively.  Highlighting the beating of the fan, Fig. 

2-10 shows a zoom spectrum of the BPFs. The BPF peaks are 2 Hz apart, creating an audible 

beat frequency.  

 

 

Figure 2-9: Noise spectrum of a two fan array measured 1.7 m on axis with the array. 

 

 

BPFs  

2nd Harmonics 

3rd Harmonics 
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Figure 2-10: The noise spectrum measured 1.7 m away from the center of the fan array, showing the two 
BPFs 2 Hz apart. 

  

 

Figure 2-11: Sound power with control on and off of a two fan array using a single six control source by 6 
error sensor controller for both fans. 

BPF at 714 Hz BPF at 712 Hz 
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Figure 2-12: Sound power with control on and off of a two fan array using two independent three by three 
controller one for each fan. 

 

The narrowband sound power spectra of one trial of the two control implementations are shown 

in Figs. 2-11 and 2-12.  The figures show that both control systems were able to control the BPFs 

and the 2nd

Two 12 Hz bands were used, the first included both BPFs and the second contained both 

2

 harmonics of both fans in the two fan array.  The individual narrow band reduction of 

the BPFs and the second harmonics of each trial were determined by integrating across a 12 Hz 

band centered on the frequency of interest. 

nd

 

 harmonics and are reported in Table 2-2. The table shows that the narrow band reductions of 

the BPFs and the second harmonics of the two controller approach attenuate the BPFs an 

additional 1.4 dB over using a single controller and an additional 1.7 dB for the second 

harmonics.   
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Table 2-2: - 12 Hz narrow band sound power reduction (in dB) of the BPFs and 2nd

  

 harmonics of a two 
fan array using one control filter and two independent filters. 

1 Control Filter 2 Control filters 
runs BPFs 2x BPFs BPFs 2x BPFs 

1 14.3 6.2 15.6 6.9 
2 14.0 6.0 15.7 7.5 
3 14.0 5.5 15.4 7.7 
4 14.1 5.0 15.7 7.4 
5 14.4 5.9 15.5 7.7 

Average 14.2 5.7 15.6 7.4 
 

In this case, the two controller approach outperformed the single controller for the narrow band 

results.  In this case, the individual controllers for each fan were sufficient without using a fully 

coupled control system.  Predicted attenuations for the two independent controllers matched 

what was expected at around 16 dB.  However, the 6 control source implementation was limited 

by the shared microphone placement.  Moving one microphone to make it more ideal for one fan, 

moves it out of the optimal place for the other fan, limiting the performance. 

The directivity plots associated with these reductions are shown in 2-13 through 2-16. 

The plot shows the sound pressure level (SPL) in dB (re 20 μPa) in each direction with control 

‘on’ in color and control ‘off’ as a wireframe mesh.  The directivity plots show there was no 

major difference between the two control approaches in regard to directivity.  The figures show 

that the active control attenuates the tones in all directions.  Figures 2-15 through 2-16 show that 

there was some lobing for the two independent controllers in one direction where the single 

control loop is more uniform. 
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Figure 2-13: Directivity plot of a two fan array at the BPFs using one control filter with the control on (color) 
and control off (mesh), showing that the BPFs are reduced in all directions. 

 

 

Figure 2-14: Directivity plot of a two fan array at the 2nd harmonics using one control filter with the control 
on (color) and control off (mesh), showing that the 2nd

 

 harmonics are reduced in all directions. 
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Using smaller independent controllers over larger fully coupled systems has advantages. 

For this case, individual controllers use less computation power than a single control loop 

coupled with all the control sources.  Taking the number of finite impulse response filters used in 

the filtered-x algorithm as the metric for computation power, the one six control source by six 

error microphone control system used 6 control filters for the actuators in addition to the 36 (6 x 

6) filters for the secondary path model, giving a total of 42 filters.   

 

 

Figure 2-15: Directivity plot of the BPFs using two independent control loops to control each fan with the 
control on (color) and control off (mesh), showing that the BPFs are reduced in all directions. 

The two control loops each used 3 control filters and 9 (3 x 3) secondary path model 

filters, for a total of 24 filters.  Using the independent controllers required 18 fewer filters than 

the fully coupled system, greatly reducing the computation time.  Another benefit to smaller 

systems is that microphones do not have to be shared between control systems.  Microphones 

used for two different noise sources have to be placed in optimal locations for both noise sources 

causing limited optimal placement positions that can degrade performance. 
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 Overall, for both control loops, the amplitude of the beat frequency was reduced 

significantly.  Applying the active noise control to the fan array lowers the magnitude of the two 

BPFs to give the beat frequency the low amplitude of the two tonal components.  Figure 2-17 

shows a band pass filter of the time signal of a far-field microphone 1.7 m from the fan array 

starting with control off and showing the reduced amplitude of the beat frequency when the 

controller is turned on.  The signal is band pass filtered to show the beat frequency better.   

 

 

 

Figure 2-16: Directivity plot of the 2nd harmonics using two independent control loops to control each fan 
with the control on (color) and control off (mesh), showing that the 2nd

Figure 2-17 also shows that the beat frequency appears to fluctuate around 2 Hz because of 

the slightly varying in rotation speeds of the two fans.  Figure 16 shows that the active noise 

control system can be used to reduce the amplitude of the components in the beat frequency, 

thereby making the fan array less annoying 

 harmonics are reduced in all 
directions. 
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Figure 2-17: Band pass filtered time signal of a far field microphone with control off and then turned on.  The 
noticeable beat frequency drops out of the time signal. 

 

2.6 Conclusion 

The active noise control of a two fan exhaust mounted array has been studied.  The fan 

array was controlled using two different control configurations.  First, a fully coupled 6 control 

source systems to control both fans and second, two independent controllers, one for each fan, 

were studied.  Each fan in the array operated at different frequencies, so they were modeled 

individually.  A single fan has two acoustic paths a direct path radiation and an acoustic path 

through the box and out the other fan opening. Therefore, each fan was modeled as a two source 

array.  Since the primary source array was unknown, the sound power attenuation of various two 

source array was theoretically determined for the two control systems.  When the second 

acoustic path was significant, the six control source configuration outperformed the 3 control 

Control On 
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source configuration by 8-27 dB. However, as the relative magnitude of the second primary 

source dropped, the difference in performance of the two control systems was reduced until there 

was only 3 dB separating them.  This suggests that, if the second acoustic path is significant, a 

control source configuration that surrounds the two fan array should be used.  The source 

strength of the second acoustic path relative to the direct radiation was estimated to be 0.44.  The 

microphone positions were estimated for this primary source array. 

Experimental results showed that the two independent controllers actually achieved 

slightly more attenuation than the single control loop system.  The narrow band sound power 

attenuation for two independent controllers was 15.6 dB for the BPFs and 7.4 dB for the second 

harmonics, as compared to 14.2 dB and 5.7 dB for the larger single control loop.  This result 

suggests that using independent controller is sufficient for this two fan array.   For similar 

implementations, this control strategy can be used for larger arrays.  Additionally, using smaller 

independent controllers means a reduction in computation time required – in the configuration 

presented here, the number of filters required dropped from 42 filters to 24 filters.  Additionally, 

the larger fully coupled system had limited optimal microphone placements for both fans, 

reducing the performance of the control system.  The active control of the two fan array reduced 

the components that contributed to an audible beat frequency, thereby making it far less 

annoying.  When control is turned on the beat frequency is no longer apparent in the time 

signature. 
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3 CHARACTERIZATION OF MICROPHONE PLACEMENT AND NOISE 
SENSITIVITY OF A GLOBAL ACTIVE NOISE CONTROL SYSTEM FOR A 
COMPACT NOISE SOURCE 

 

3.1 Abstract 

Optimization of active noise control systems has increased performance and applicability. 

Specifically, the optimization of control source placement for the active noise control of an axial 

cooling increased the performance but was unable to achieve the predicted gains.  In this paper, 

the sensitivity of control systems to extraneous noise and to microphone placement errors was 

performed theoretically and experimentally.  Two control source configurations for the sound 

power reduction of a simple source were analyzed by modeling the control systems.  The two 

control source configurations compared were four symmetric control sources surrounding the 

noise source and an optimized linear array of four control sources.  The control sources were 

modeled as simple sources with a baffled free space Green’s function to predict the noise 

measured by the four error microphones.  Simulation results show the linear array control source 

configuration is more sensitive to microphone placement errors, with a 20-33 dB reduction in 

attenuation for a microphone placement error of 2 mm.  For the same microphone placement 

error the symmetric configuration resulted in a 0.8 dB drop in attenuation.  Noise is then 

introduced to the simulation at various signals to noise ratios.  Again the linear array control 

source configuration is more sensitive to noise.  When the signal to noise ratio is 40 dB, the 

linear array configuration predicted attenuation is reduced by 19 dB.  In contrast, the symmetric 
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configuration has negligible affect for the same signal to noise ratio.  The experimental results 

suggested that for the configurations used, the sensitivity to microphone placement errors was 

the dominate effect.   Additionally, the linear array configuration was found to be more sensitive 

to the microphone placement errors compared to the symmetric configuration. A 2.5 mm change 

in one microphone position causes an average of 6 dB loss in attenuation for the linear array 

configuration compared to a 0.6 dB loss for the symmetric configuration. 

3.2 Introduction 

Active noise control of axial cooling fans has been studied using various control source 

configurations.18-25  The range of control system configurations includes simple single control 

source configurations 18-22 to four sources in various configurations22-25.  Gee and Sommerfeldt22-

23 and Monson, et al.35 applied a sound power reduction technique to an axial cooling fan 

surrounded by symmetrically-arranged loudspeakers. The sound power reduction technique was 

proposed by Nelson, et al.9-10 to globally attenuate simple noise sources.   The global control can 

be achieved by introducing control sources that are closely spaced to the primary source relative 

to an acoustic wavelength. Theoretically, optimal control source strengths were found by the 

minimization of the power radiated by the system of primary and secondary sources.  In applying 

this technique to cooling fans, Gee found the optimal near-field error microphone locations by a) 

modeling all sources as monopoles, b) using the Nelson et al.14-15 method to theoretically 

minimize the radiated power, and c) finding where the calculated near-field pressure level 

reduction was the greatest.   However, because minimization of the squared-pressure at discrete 

locations does not necessarily guarantee the source coupling that will result in minimized 

radiated power, near-field measurements were used to confirm the validity of this approach.24   
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Optimization of error sensor and control source placement has been the focus of many 

active control studies.27-34 For instance, Clark and Fuller27 used an algorithm to optimize the 

placement of a piezoelectric actuator and strain error sensor to control the sound from a baffled 

simply supported plate.  Berkhoff28 found that there was an optimal distance between control 

sources and error sensors for the active control of sound transmission through a plate.  

Pulthasthan and Pota29 used an energy based approach to find the optimal actuator and sensor 

locations to control structural radiation.  Additionally, genetic algorithms have also been 

implemented to find the optimal locations for control sources and error sensors.  In the specific 

case of axial cooling fans, Duke, et al.30 used a genetic algorithm to improve upon the symmetric 

four control source arrangement used by Gee and Sommerfeldt.22-33

Experiments showed improved performance relative to Gee and Sommerfeldt’s 

symmetric source arrangement.  However, Duke, et al.

  The genetic algorithm 

results showed that including the primary source within a linear array of four control sources, 

two on each side of the primary source, was the optimal control source configuration that 

minimized the sound power of the primary source.   

30 were not able to achieve the theoretical 

reductions predicted from the linear array of sources.  The fact that the linear array configuration 

was unable to achieve the theoretical attenuations suggested that other aspects of the control 

system were limiting the attenuation. Snyder16 proposed that a number of different aspects of an 

active control configuration impact the attenuation achieved in addition to control source 

configuration, including error sensor placement, quality of the reference signal and the 

controller.  The aim in this paper was find the impact of the error sensors on the control system 

by simulating the control configuration used by Duke, et al.30 compared to the symmetric control 

system used by Gee and Sommerfeldt.22-23 
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3.3 Simulation 

3.3.1 Global Active Control 

A brief overview of the free field active noise control theory developed by Nelson et al.14

Z(kd) = jk2ρoc
4π

�e
−jkd

kd
�,                                 (3-1) 

 

is presented in this section as the basis for the simulation of the control system.  Free field global 

active noise control uses near field control sources that are closely spaced relative to a 

wavelength to minimize the sound power of a primary source.  Each source contributes to the 

overall sound power and creates a radiation impedance between itself and all sources present 

according to 

where k is the wave number, d is the distance between the two sources, ρo 

Π =  1
2
�𝑸�𝑝𝐻𝑅𝑒�𝒁�𝑝𝑝�𝑸�𝑝 + 𝑸�𝑐𝐻𝑅𝑒�𝒁�𝑝𝑐�𝑸�𝑝 + 𝑸�𝑝𝐻𝑅𝑒�𝒁�𝑐𝑝�𝑸�𝑐 + 𝑸�𝑐𝐻𝑅𝑒[𝒁�𝑐𝑐]𝑸�𝑐�      (3-2) 

 and c are the density 

and speed of sound in the medium respectively.  Using equation 1, impedance matrices can then 

be constructed to find the total sound power of a configuration of sources. The matrix, 𝒁𝑐𝑐, can 

be defined as a control source impedance matrix between all of the control sources.  

Additionally, the primary source impendence matrix, 𝒁𝑝𝑝 , would elements representing the 

impedances between all primary sources. Lastly, 𝒁𝑐𝑝 and 𝒁𝑝𝑐 are matrices with impedances 

between the primary and secondary sources where 𝒁𝑐𝑝 = 𝒁𝑝𝑐
𝑇

.  Using these impedance matrices 

to break up the sound power expression into control and primary sources, the total sound power 

is given by, 

where 𝑸�𝑐 is the complex control source strength vector, whose elements are the control source 

strengths of each control source, 𝑸�𝑝 is the complex source strength vector of the primary 

sources, and H is the Hermitian transpose.  
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Defining 

𝐀 = 1
2

Re�𝐙ss�,      (3-3) 

𝐁 = 1
2

Re�𝐙ps�𝐐p ,     (3-4) 

C = 1
2
𝐐p
H

Re�𝐙pp�𝐐p,      (3-5) 

simplifies the sound power expression.  By minimizing the sound power expression with respect 

to the control source strength vector, the optimal control source strengths are determined to be, 

                                     𝐐�so = −𝐀�−1𝐁�                         (3-6) 

with the minized sound power given as 

 𝚷min = C − 𝐁
H
𝐀
−1
𝐁,                                   (3-7) 

When applying the sound power minimization to a primary source using active noise 

control the aim is to have the control configuration achieve the minimized sound power given in 

Eq. 7.  This approach was implemented to exhaust- mounted cooling fans by Gee and 

Sommerfeldt,22-23 Monson, et al.35 and Shafer, et al.24 by modeling the baffled fan and control 

speakers as simple sources.  After finding the optimal control sources that minimize the sound 

power, the near-field controlled pressure field relative to the primary pressure field was 

determined.  The error microphones were placed in places of maximum attenuation, resulting in 

the sound power reduction of the blade passage frequencies and its harmonics.  Shafer was able 

to confirm that the near-field pressure field relative to the primary field that was predicted was 

achieved.24

To optimize the control source configuration, Duke, et al.

   

30 used a genetic algorithm.  

The algorithm iterated through control source configurations to converge onto the optimal 

control source locations which minimized the sound power of a primary source.  The resulting 
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control source configuration is shown in Fig. 130 compared to a surrounding configuration used 

by Gee, et al.22-23 The linear array configuration predicted a reduction in the sound power of 

58.4, 33.4 and 17.7 dB at 550, 1100 and 1650 Hz respectively.  However, experimental results 

only achieved 32.4, 23.2 and 3.0 dB.

 

30 

 

Figure 3-1: a) A symmetric configuration of control and primary sources employed by Gee, et al.22-23 b) A 
linear array of control sources implemented by Duke, et al.30

 

 for use in global active noise control 
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3.3.2 Control System Modeling 

In order to investigate error sensor impact on the control system, a control system model 

is created and used to test the control configurations under different scenarios.  The model allows 

for the control system performance to be analyzed under different error sensor position 

combinations. The basis of the model is having the control sources as baffled simple sources and 

the microphones as point sensors.  The free space Green’s function for a baffled monopole 

source is used to model the transfer function between the simple sources and the point 

microphones, given by  

G = 2jρock
4πD

e−jkD,     (3-8) 

where D is the distance between the source and a point in space.  The pressure due to the specific 

source at the chosen point is found by multiplying Eq. 3-8 by the source strength, qs

  Pm = q1G1m + q2G2m + ⋯+ qnGnm    (3-9) 

. The total 

pressure at point m in space can then be calculated using the Green’s function between each 

primary and control source and point m given by, 

where G1m

𝐏� = 𝐆�cc𝐐�c + 𝐆�pp𝐐�p,     (3-10) 

 is the Green’s function between source 1 and point m.  Equation 3-9 can now be used 

to find the pressure at each error microphone.  The pressure of each microphone location is 

placed into a Mx1 vector, 𝑷�.  Separating the control and primary sources in the configuration 

results in, 

where 𝑮�𝑐𝑐 is a matrix of Green’s functions from each control source to each of the microphones 

and 𝑮�𝑝𝑝is a matrix of Green’s functions from each primary source to each microphone.   
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In order to simulate the control system, the squared pressure at each microphone location 

is found by forming 𝑷�𝐻𝑷� which results in 

  𝐏�H𝐏� = 𝐐�cH𝐆�ccH 𝐆�cc𝐐�c + 𝐐�cH𝐆�ccH 𝐆�pp𝐐�p + 𝐐�pH𝐆�ppH 𝐆�cc𝐐�c + 𝐐�pH𝐆�ppH 𝐆�pp𝐐�p     (3-11) 

In order to minimize the squared pressure at the microphone, like an active noise control system, 

the derivative of Eqn. 3-11 is taken with respect to 𝑸�𝑐  to yield 

    ∂𝐏�H𝐏�
∂𝐐�c

= 𝐆�cc
H𝐆�cc𝐐� c + 𝐆�cc

H𝐆�pp𝐐�p     (3-12) 

  The derivative is set to zero and the control source strengths are solved for, resulting in 

𝑸�𝑐 = −(𝑮�𝑐𝑐𝐻 𝑮�𝑐𝑐)−1�𝑮�𝑐𝑐𝐻 𝑮�𝑝𝑝𝑸�𝑝�.    (3-13) 

Equation 3-13 gives the source strengths the control system will converge to with the 

microphones in any configuration. These control source strengths are then used to find the sound 

power of the control system configuration using Eq. 3-2. The attenuation of the primary source 

field is then calculated. Thus, by using this model, the attenuation achieved by a control system 

can be found by virtue of the microphone positions.  

 

3.3.3 Control System Simulation 

The control system is simulated, using the presented model, for the two control 

configurations shown in Fig. 3-1., the optimized linear array of control sources and the 

symmetric configuration. With the microphones in the optimal locations, Shafer, et al.25 

confirmed that the near-field controlled pressure relative to the primary pressure was created by 

the control system for the symmetric configuration. Building upon Shafer’s work, the sound 

power of a primary source operating at 600 Hz was simulated with the two different control 

configurations.  For the simulation, the error microphones are placed in the optimal locations 
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found by Gee, et al.22-23,25

After confirming the control configurations could achieve the predicted maximums, the 

simulation is now used to find the sensitivity of the two control systems relative to microphone 

placement error.  In the simulation, a single microphone is moved with three of the four 

microphones remaining placed in the optimal locations.  The single microphone is moved along 

a line in space which crosses the optimal location. The movement path of the microphone and 

the near-field controlled pressure relative to the primary field for both configurations are shown 

in Figs. 3-2 and 3-3.   A total of three error microphone simulations are performed, one for the 

symmetric case and since the linear array has two speakers closer to and two farther from the 

primary source, two different microphone paths were simulated, giving a total of three different 

simulations.  

, which results in maximum attenuation of 58 dB for the linear array 

and 29 dB for the symmetric configuration.   

  

Figure 3-2: Near-field controlled pressure field relative to the primary field (in dB) for the symmetric 
configuration of control sources, with the circles as control sources and the star as the primary source.  The 
microphone path used for the non-fixed microphone shown as the line that crosses the contour of maximum 
attenuation. 

Symmetric Microphone Path 
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Figure 3-3 Near-field controlled pressure field relative to the primary field (in dB) for the linear 
configuration of control sources, with the circles as control sources and the star as the primary source.    The 
microphone path used for the non-fixed microphone shown as the line that crosses the contour of maximum 
attenuation. The linear configuration has two simulations, one for the close microphone path and one for the 
far microphone path. 

All the paths start 1 cm from the optimal location and move 1 cm past the optimal 

placement, with a total movement of 2 cm per simulation. 

Figure 3-4 shows the results of the single microphone placement error simulation, with 

distance on abscissa corresponding to the distance from the ideal placement and with the positive 

values being further from the primary source. For the two linear configuration microphone 

placement plots, there is a large, narrow peak in the predicted attenuation, creating a wide range 

of possible sound power attenuations for small errors in microphone placement.  The microphone 

closer to the primary source leads to attenuation variations from 15 – 60 dB, while the predicted 

attenuation for  the microphone farther from the primary source varies from 19 – 60 dB for the 2 

cm simulation.  Additionally, the peak in the attenuation is narrow for the linear configuration, 

meaning a microphone placement error of 2 mm from the ideal placement means a 25-33 dB 

Far Microphone Path 

Close Microphone Path 
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drop in sound power attenuation.    In contrast, the surrounding configuration varies from 20 – 30 

dB across the 2 cm simulation, which is a relatively small range compared to the linear 

configuration.  In particular, a 2 mm error in placement of one microphone from the ideal 

placement only yields a 0.8 dB decrease in attenuation compared to the large decrease of 25-33 

dB for the linear array control configuration. 

 

 

Figure 3-4: The simulated sound power attenuation of a primary source (in dB) for three simulations.  One 
microphone is moved along the paths shown in Figs. 3-2 and 3-3 while keeping the other microphones 
stationary, with the abscissa being distance from the optimal microphone position. 

 

Since these control systems use four microphones, the above simulation is repeated 

incorporating position errors of all the microphones.  As before, one of the four microphones is 

moved along the same line in space, as shown in Figs. 3-2 and Fig. 3-3, which is referred to as 

the simulation microphone. For all three simulations, this microphone is referred to as the 

simulation microphone.  The other three error microphones are given an error corresponding to a 

1 mm x 1 mm grid broken up into 81 different positions, with each grid centered on the ideal 

microphone location. At each increment of the simulation microphone, the other three 
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microphones are individually incremented across their grid to give to give a total of 531,441 

microphone position combinations. The attenuation is calculated for all these microphone 

position combinations with the maximum and minimum attenuation being saved at each 

increment of the simulation microphone. The maximum and minimum attenuations give an 

extreme range of expected values from the control system based on 1 mm error in placement of 

all the microphones.  The results are plotted in Figs. 3-5 through 3-7 along with the curves from 

the previous single microphone placement error simulations for all three simulation paths.  

Looking at Figs. 3-5 through 3-7, there is a large variability in possible attenuation values for the 

linear array configuration. Specifically, when the simulation microphone is near the optimal 

location, where the horizontal axis is close to zero, the attenuation has a range of 22-23 dB for 

the linear array control configuration.  The large range shows how sensitive this configuration is 

to microphone position errors especially compared 0.4 dB range of expected values for the 

symmetric case.   Looking further into the two linear array configuration simulations, there is 

more variability associated with the far microphone compared to the close microphone, 

specifically, the far microphone has a 23 dB spread at the ideal placement position compared to 

22 dB range for the near microphone.  Additionally, when the simulation microphone was past 

the optimal location, i.e., farther from the primary source, there is a 5 dB spread in the 

attenuation for the far microphone compared to a 2 dB spread for the linear near microphone.  

The results show that the sensitivity of the linear array control system configuration to 

microphone placement errors is much greater than that of the symmetric control system 

configuration. 

Moving on from the placement error simulations, the effect of having an area sensor 

instead of a point sensor is investigated.  
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Figure 3-5: The simulated sound power attenuation for moving the far microphone in the linear 
configuration across the path shown in Figure 3-3 and for the other three microphones having position errors 
of 1 mm in the x and the y direction so the maximum and minimum sound power attenuation curves 
correspond to the extreme results obtained for these simulations. 

 

 

Figure 3-6: The simulated sound power attenuation for moving the near microphone in the linear 
configuration across the path shown in Figure 3-3 and for the other three microphones having position errors 
of 1 mm in the x and the y direction so the maximum and minimum sound power attenuation curves 
correspond to the extreme results obtained for these simulations. 
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Figure 3-7: The simulated sound power attenuation for moving the microphone in the symmetric 
configuration across the path shown in Figure 3-2 and for the other three microphones having position errors 
of 1 mm in the x and the y direction so the maximum and minimum sound power attenuation curves 
correspond to the extreme results obtained for these simulations. 

The sharp peak in predicted attenuation for the linear array configuration because of 

placement error suggested that the microphone diaphragm size might have an impact on 

performance of the control system.  The model is changed from having point sensors to area 

sensors.   

The free space Green’s function is modified to include a surface integral of the pressure 

across each microphone diaphragm, with an area of 5 mm by 5 mm for each diaphragm.  The 

same process is used to solve for the control source strengths and resulting sound power with the 

modified Green’s functions as previously presented. Performing the simulation with all four 

microphones in the ideal locations, the results showed that for this microphone diaphragm size, 

the sound power attenuation does not change, i.e., giving the same results as when the point error 

sensors were used in the model.  The control system simulation created a node in the pressure 

across the center of the microphone with positive and negative pressure on either side of the 

node.  The result suggests that the size of the diaphragm was not as critical in the control system 

as the location of the acoustic center of the microphone.   
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The last aspect of the error sensor sensitivity that was investigated was sensitivity to 

noisy signals used for active noise control.  The noise would come from either electrical noise 

from the equipment or acoustical noise at the error sensor.  The noise is added to the system at 

the error microphones with the form of 

 n = Ae−2πbi      (3-11) 

where A is an amplitude term which can be varied to added different signal to noise ratios and b 

is a random number with a uniform distribution to give the noise a random phase element.  So, 

Eqn. 3-9, the pressure at each microphone, was modified to include a noise vector, whose 

elements are representative of the noise each error microphone, Eqn. 3-11, given by, 

  𝑷� = 𝑮�𝑐𝑐𝑸�𝑐 + 𝑮�𝑝𝑝𝑸�𝑝 + 𝒏�.      (3-12) 

Now following the same procedure above, minimizing the squared pressure at each of the 

microphones results in the control source strengths, 

𝑸�𝑐 = −(𝑮�𝑐𝑐𝐻 𝑮�𝑐𝑐)−1�𝑮�𝑐𝑐𝐻 𝑮�𝑝𝑝𝑸�𝑝 + 𝑮�𝑐𝑐𝐻 𝒏��.   (3-13) 

Equation 3-13 shows that when the noise is added at the error sensor, it is filtered by the 

Hermitian transpose of the control source transfer function from the source to the microphone. 

The control source strength is then put back into the equation for the total sound power of the 

system, Eqn. 3-2, in order to determine the attenuation of the primary source sound power.  The 

effect of different signal to noise ratios on the control system is found by adding the noise 100 

times and finding the average sound power attenuation.   In this simulation, the microphones are 

still incremented through the paths shown in Figs. 3-2 and 3-3.   At each microphone position on 

the microphone path normally distributed noise was added to the control source strengths 100 

times, the sound power for each simulation was calculated, and the 100 sound power attenuations 

were averaged.  Noise corresponding to different signal to noise ratios is used in the simulations.  
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The signal to noise ratios is calculated by finding the pressure at each microphone from the 

primary source compared to the added noise.  The results are shown in Figure 3-8 and 3-9.  

 

 

Figure 3-8: The placement sensitivity of the near microphone for the linear array with noise corresponding to 
different signal to noise ratios added at the error microphone and the resulting averaged sound power 
attenuation. 

 

As shown, the noise in the control system has a much greater effect on the linear configuration. 

The attenuation dropped from 59 dB to 41 dB for a 40 dB signal to noise ratio used compared to 

an infinite signal to noise ratio. Looking at the symmetric configuration, there is virtually no 

drop for the symmetric case with the same 40 dB signal to noise ratio.  Looking further into the 

linear array case, the control configuration is more sensitive to the noise when the microphone is 

closer to the optimal location (close to zero on the abscissa).   

The overall results show the linear array control system configuration was more sensitive 

to uncorrelated noise sources compared to the symmetric control system configuration.  

Additionally, the linear array control configuration is much more sensitive to noise and 

microphone placement than the symmetric configuration. 
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Figure 3-9: The placement sensitivity of the symmetric microphone for the linear array with noise 
corresponding to different signal to noise ratios added at the error microphone and the resulting averaged 
sound power attenuation. 

 

3.4 Experiments 

3.4.1 Experimental Setup 

The microphone placement sensitivity of the two configurations is now tested 

experimentally. The primary source used is a 2.5 cm tweeter loudspeaker placed in a speaker 

plate.  The 2.5 cm control sources were placed around the primary source according to Fig. 3-1 

for both configurations and the control set up is shown in Fig. 3-10.  The feed-forward control 

system is implemented using a Texas Instruments 320c6713 DSP with a sampling frequency of 

4000 Hz. The controller used 20 control filter coefficients and 20 secondary path model 

coefficients. The error microphones are 6mm Hosiden electret microphones.  Anti-aliasing low-

pass filters are Krohn-Hite 3384 8 pole filters set with a cutoff frequency of 1800 Hz.    
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-  

Figure 3-10: The experimental setup of the linear array and symmetric control configurations used. 

 

The primary source speaker is driven at 600 Hz. The sensitivity of the control system to 

microphone location is found by placing three of the four microphones in the optimal locations.  

Following the control paths in Figs. 3-2 and 3-3, the fourth microphone is incremented at 2.5 mm 

increments with a total of 9 measurements.  Each error microphone path is tested four times.  At 

each error sensor location, the sound power attenuation of the primary field was measured. The 

sound power measurement is obtained using a rotating semicircular array with a radius of 1.8 m 

and with thirteen 12.7mm GRAS type I microphones equally spaced along the semicircle. The 

control set up is placed directly under the center microphone of the array and the array is rotated 

about the center microphone at 15 degree increments to create a 360 degree hemispherical scan.  

At each microphone location, the autospectrum is calculated using 15 averages and a frequency 

resolution of 6.1 Hz. The sound power is then calculated using an area weighting function used 

by Monson, et al.35 In this method, an area weighting function is used on the individual 

microphones measurements to account for the unequal areas swept out by the measurement array 

to determine the sound power.  Additionally, control is also run using 12.7 mm type I Larson 
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Davis microphones to test whether the surface area of the microphone diaphragm was 

experimentally an important factor in sound power attenuation of the primary source.  The larger 

microphones were placed in the maximum attenuation locations for this trial. 

3.4.2 Results and Discussion 

The results for the 4 trials of sensitivity to error sensor placement are shown in Figs. 3-11 

through 3-13. The experimental trials are plotted along with the simulated range for possible 

attenuations calculated in Figs. 3-5 through 3-7.     

 

 

Figure 3-11: The experimental results from the 4 trials of the linear array configuration far microphone 
plotted against the possible theoretical result range of possible sound power attenuation taken from fig. 3-5. 

 

Generally the values are within the range predicted by Figs. 3-5 through 3-7.    However, 

toward the optimal position placement of the moved microphone, the values become closer to the 

minimum predicted attenuation.   
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Figure 3-12: The experimental results from the 4 trials of the linear array configuration near microphone 
plotted against the possible theoretical result range of possible sound power attenuation taken from fig. 3-6. 

 

 

Figure 3-13: The experimental results from the 4 trials  of the symmetric configuration plotted against the 
possible theoretical result range of possible sound power attenuation taken from fig. 3-7. 

 

As for the linear array configuration plots, the far microphone has experimental values 

that are higher than predicted on the outside tails of the plot.  However, the shape experimental 

trials for the far microphone still peak at the optimal location, sloping downward faster as the 



 58 

microphone moves from the optimal location toward the primary source than when the 

microphone is moving away from the primary source.  This pattern matches the pattern of the 

simulation shown in Fig. 3-4 when 3 of the 4 microphones are in the optimal locations. Allowing 

for an experimental error 1 mm in regards for all four microphones, the data matches what could 

be reasonably expected from the control system, meaning that most of the data is within the 

expected range calculated and shown in Figs. 3-5 through 3-7.  The experimental results showed 

that the linear array did have a greater sensitivity to microphone placement compared to the 

symmetric configuration.  Looking specifically across the 9 measurements for a single trial 

(moving one microphone 2 cm) the range of sound power attenuation values for the closer 

microphone in the linear array configuration was 18-34 dB.  This 16 dB range was much higher 

than the symmetric configuration that had a range of 4 dB (24-28 dB).  Specifically, moving off 

the optimal location in either direction 2.5 mm meant an average of 5.5 dB lost attenuation for 

the closer microphone in the linear array configuration compared to 0.6 dB for the symmetric 

configuration for the same microphone movement. 

The error sensor signal to noise ratio is determined by taking a measurement with the 

control on and off.  The signal to noise ratio was determined to be 50-70 dB for the four 

microphones.  The noise simulation plots show that a signal to noise ratio of 50-70 dB did not 

have a significant impact on either control configuration.  The signal to noise ratio measurement 

and the experimental results from moving one microphone across the optima results suggests that 

microphone placement is the most important factor in achieving the maximum sound power 

attenuation and not noise sources for this configuration 

When 12.7 mm microphones were used as error sensors for the linear array configuration, 

the amount of control achieved matched 6mm microphones of 33.1 dB sound power reduction.  
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The result of 33.1 dB using the larger microphone diaphragm as error sensors confirms the 

simulation result that microphone diaphragm size does not affect the control at this frequency. 

3.5 Conclusion 

The purpose of this paper was to investigate the sensitivity of two different control 

configurations in regard to error microphone position errors and the sensitivity of the control 

systems to added noise.  The two control systems simulated were a symmetric 4 control source 

configuration that surrounded the primary source and a linear array of 4 control sources with the 

primary source in the middle of the array.  The control systems were modeled using baffled free 

space Green’s functions as the transfer function between the primary and control sources to the 

microphones.  Using this model, simulations were performed.  The simulated results showed that 

linear array has more sensitivity than the symmetric case with regard to error sensor placement 

and to extraneous noise sources.  A 2.5 millimeter change in microphone position caused a 25-30 

dB theoretical loss in attenuation compared to a 2 dB loss for the symmetric case.  For the noise 

source simulation, adding noise to the simulation greatly affected the linear case with a minimal 

effect for the symmetric configuration. A 40 dB signal to noise ratio for the control source 

strengths resulted in a decrease in attenuation from 59 to 41 dB for the linear array configuration.   

The experimental results confirmed that the linear array configuration was more sensitive 

to microphone placement with large decreases in attenuation based on microphone placement 

error.  A 2.5 mm change in the position a single microphone cause an average 5.5 dB loss in 

sound power attenuation for the linear array configuration compared to an average loss of 0.6 dB 

for the symmetric case.  A measurement of the signal to noise ratios at the error microphones 

showed that in this experimental configuration, noise was not a significant factor for the control 
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systems.  The acoustic center of the microphone proved to be the most important part of the 

control because microphone diaphragm size did not affect the global control results both 

theoretically and experimentally.  Overall, the results show that the control configuration can 

have an impact on the robust nature of the control system including sensitivity to microphone 

placement, noise sources, and model errors.  Since the control source configuration has an 

impact on the sensitivity of a control system to noise and error sensor placement, the shape of the 

error sensor placement curve should be used to constrain the optimization. 
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4 CONCLUSIONS 

4.1 Summary 

The theoretical modeling of the active noise control and experimentation of a two fan 

array was performed.  Each fan in the array was modeled as a simple source and was actively 

controlled using two different control source configurations.  Since the blade passage frequency 

was at slightly different frequencies for each fan, each fan was modeled individually. However, 

the presence of the second fan created a second acoustic path to the far field, such that each fan 

could be considered as a two primary source array.  The fan array was controlled with a single 

control filter with 6 control sources and 6 error sensors.  Additionally, each fan in the array was 

controlled with its own independent control filter with 3 control sources and 3 error sensors. The 

experimental results showed that using individual control systems, one for each fan, was a better 

control approach.  The result suggests, that each fan on the array then can be modeled 

individually, meaning that additional fans can be added to the array and controlled by using 

nearby control sources and error sensors.  In addition to allowing for larger fan arrays, using two 

smaller control systems instead of one large controller means a reduced computation cost for the 

digital signal processor.  The six by six control filter had 42 finite impulse response filters while 

two independent controllers had 24 filters.  The amplitudes of the tones at the BPFs of the 

multiple fan array were attenuated by about 15 dB for a narrow band of 12 Hz centered on the 
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BPFs. Additionally, the amplitude of the second harmonics of the fan array were reduced by 6 

dB.   The attenuation of the peak amplitudes of the BPF of each fan caused the beat frequency to 

correspond to the low amplitude of the components and was no longer noticeable in the time 

signature of a far field microphone. 

The sensitivity of two different near-field source configurations was analyzed for the 

active control of a single monopole source.  The first configuration was a symmetric four control 

source configuration surrounding the primary source.  The second control configuration was a 

linear array of four control sources with the primary source in the middle of the array. The linear 

array of control sources has large theoretical attenuation values but was unable to achieve the 

attenuation experimentally.  The control system was simulated by modeling each source with a 

baffled free space Green’s function and the microphones were modeled as point sensors.  

Different parameters were changed to find factors that might be impacting the experimental 

results, including microphone placement and extraneous noise sources.   

The linear array proved to be more sensitive to microphone position.  A 2 mm error in the 

position of one microphone created a 20-33 dB drop in the theoretical sound power attenuation.  

Incorporation of the position errors for all microphones in the control system showed that a wide 

range of possible attenuations was possible.  In contrast, errors in the symmetric configuration 

saw slight reductions in attenuation based on microphone positions with only a 0.8 dB reduction 

in attenuation for a microphone placement error of 2 mm.   

Sensitivity of the two configurations was tested by adding uncorrelated noise at the error 

microphone. Noise was added to the system at different signal to noise ratios.  At 40 dB, the 

predicted attenuation dropped by 17 dB for the linear configuration but negligibly affected the 

symmetric case.  The surface area of the error microphones was also investigated using the 
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simulation because the sharp peak in attenuation for the linear array control configuration based 

on error sensor placement suggested that maybe microphone diameter size could be a limiting 

factor.  However, the surface area of the control microphones did not affect the predicted sound 

power attenuation and this result was confirmed by experimentation.  The placement of the 

acoustic center in the right location was the determining factor in the amount of control achieved 

by the control system. 

Experimental testing of the two configurations showed that external noise sources were 

not an important factor for this set up.  Microphone positions errors were the dominant factor 

limiting the attenuation for both control configurations.  Across the 2 cm in microphone position 

error that was tested, the linear array configuration ranged from 18-34 dB, a 16 dB spread.  In 

contrast, the symmetric configuration ranged from 24 to 28 dB.  Additionally, a 2.5 mm change 

in one microphone position off the optimal location caused an average 5.5 dB drop for the linear 

configuration and only 0.6 dB reduction in attenuation for the symmetric configuration.  The 

linear array control configuration proved to be more sensitive to microphone error sensor 

placement both theoretically and experimentally. 

 

4.2 Recommendations 

The study of a two fan array was for an exhaust-mounted array.  However, fan arrays are 

sometimes used inside an enclosure such as a computer server.  Internal fans provide a different 

acoustic environment which cannot be modeled as a source radiating into free space.  Additional 

problems facing internal fan applications include, having a small foot print, a computer server 

does not allow a lot of room for control actuators to be placed.   
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A second recommendation is to apply the sensitivity analysis as a constraint to 

optimization routines.  The simulation of the linear array configuration showed that microphone 

placement sensitivity was the limiting factor.  Dramatic changes in attenuation based on small 

microphone placement errors, characteristic of the linear array configuration were found to be 

undesirable.  Using the derivative of the sensitivity curve as a constraint would allow for a 

configuration that has gradual changes in attenuation based on microphone placement like the 

symmetric configuration. 
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