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ABSTRACT 

 

 Recognizing Parametric Geometry from  

Topology Optimization Results 

 
 

Shane H. Larsen 

Department of Mechanical Engineering 

Master of Science 
 
 

Topology Optimization has been proven to be a useful tool in discovering non-intuitive 
optimal designs subject to certain design constraints. The results of Topology Optimization are 
either represented as a tessellation object composed of thousands of triangular surfaces, or as a 
point cloud. In either case, the results of Topology Optimization are not suited for use in 
subsequent steps of the design process which require 3D parametric CAD (Computer Aided 
Design) models. Converting Topology Optimization results into parametric CAD geometry by 
hand is an extremely tedious and time consuming process which is highly subjective. This thesis 
presents a shape recognition algorithm that uses a feature by feature CAD-centric approach to 
convert Topology Optimization results into parametric CAD geometry. This is accomplished by 
fitting 2D cross section geometry to various parts of a given feature through the use of Shape 
Templates and then constructing 3D surfaces through the set of 2D cross sections. This algorithm 
aids in measuring the geometric approximation error of the generated geometry as compared to 
the optimal model, and standardizes the process through automation techniques. It also aids the 
designer / engineer in managing the direct tradeoff between closeness of geometric 
approximation (measured by volumetric comparison) and model complexity (measured by the 
number of parameters required to represent the geometry). 
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1 INTRODUCTION 

Topology Optimization (TO) is a process used to distribute material in an optimal manner 

throughout a predefined design domain. It has been used heavily in mechanical design [15][8], 

electromagnetic design [5], and a myriad of other industries to generate optimal configurations. 

It is capable of generating design concepts that are, many times, outside of the realm of human 

intuition since predefined parameters or model features are not needed [16]. This optimization 

process is performed on finite element models (FEM) comprised of nodes and elements and 

therefore, the results are also in the form of nodes and elements and are generally represented in 

IGES or STL format.  

After the TO process is complete, the resultant optimal topology is used as a visual 

reference from which a parametric CAD model can be created. A parametric CAD model is the 

preferred format for all subsequent design processes including parametric optimization and 

manufacturing process planning. A parametric CAD model can be controlled and adapted by a 

finite set of parameters that control the entire model. This makes it possible for the designer to 

change and update the model quickly and automatically as new discoveries are made or new 

customer needs are revealed.  

1.1  Problem Statement 

The current method of manual interpretation of TO results by a human designer is very 

time intensive and lacks standardization. Under these circumstances the use of TO in industry is 
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limited due, in part, to the expense of interpreting the results once the optimization run is 

complete. A number of researchers have also pointed out the need for an automated method for 

interpreting the results of TO. [8][11][16] If a more automated, standardized approach to TO 

results interpretation and implementation were developed TO could be utilized in more industries 

allowing more efficient designs to be created. 

1.2 Objectives 

It is my objective to implement methods which improve the process of converting TO 

results into Parametric CAD geometry through an improved shape recognition algorithm. This 

algorithm would operate in a CAD-centric environment, use intuitive standard CAD features, 

and allow the designer to control the complexity of the resulting features in terms of number of 

defining parameters required to represent them. Ideally, this process would be automated, be 

repeatable, and reduce interpretation time requirements. It would also provide the appropriate 

setup to parameterize the CAD model in such a way that parametric optimization could be 

performed after the conversion to CAD is finished. The main points of this thesis are: 

1. Create automated processes to evaluate a given set of points and surfaces from TO 

results and determine the best fit parametric CAD feature to represent the set of 

surfaces and points. 

2. Implement the automation processes in a CAD-centric environment. 

3. Show that the resultant CAD feature is a good approximation of the optimal topology 

by volume comparison. 
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To demonstrate the proposed methods, a set of basic cantilevered beam cases will be 

used. These cases are well known in the field of structural optimization. Graphical 

representations of these cases are presented in Figure 1-1. 

 

Case I: Cantilevered 
Cube with distributed 
load 

Case II: Cantileverd 
Beam under torque 
load 

Case III: Cantilevered 
Beam with point load 
and symmetry 

Case IV: Automobile A-
Arm with a point load 

  

 

 
 

Figure 1-1: Thesis case studies 

1.3 Statement of Scope 

The scope of this research is most easily delineated within the framework of the design 

process. A typical design process sequence utilizing TO is  

1. Geometric Design 

2. Optimization Pre-Processing 

3. Topology Optimization (TO) 

4. Generate IGES/STL of TO results 

5. Import IGES/STL into CAD 

6. Conversion to Parametric CAD 

7. Parametric Optimization 

8. Manufacturing Process Planning 

This research assumes that TO has been completed and that a discreet model has been 

obtained (steps 1-5). This can be done using any TO software so long as the TO results can be 
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transferred to a CAD software package in the form of standard STL or IGES file formats. The 

main focus of the research is on step 6 of the design process, Conversion to Parametric CAD.  

Although the methods proposed in this research are application independent, the 

implementation will be done within CATIA V5 R18 using the CAA RADE API interface. While 

this API is very advanced, the implemented methods use functionality within this API that is 

common to most CAD application APIs. 

As will be seen within this thesis, the process of converting TO results into CAD 

geometry is split into a number of sub-steps. Some of the sub-steps are not included in the scope 

of this research due to resource limitations and time constraints.  

1.3.1 Feature Segmentation/Selection 

Feature segmentation is the process of recognizing one feature from another within the 

same model. Although some method of feature segmentation is needed in order to implement the 

actual research findings in this thesis, different methodologies for accomplishing this task were 

not researched or addressed. The research assumes that the recognition algorithm is given a set of 

surfaces that are all part of a single feature to be recognized.  

Feature selection is the process of selecting a subset of points or faceted surfaces from the 

TO results that define a single feature of the model. This is related to feature segmentation and is 

also not treated in the current research.  

1.3.2 Parametric Optimization (Shape Optimization) 

After the conversion from TO results to parametric CAD geometry, it is assumed that a 

subsequent process of parametric optimization will be performed on a given part. As this process 
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is well defined in industry, it is not treated within the scope of this research. This is, however, an 

active area of research. 

1.4 Guiding Principles 

This research offers a number of benefits to industry standard practices. It is hoped that 

the resultant methods can easily be implemented within the current design architecture that is 

being used in industry without great disruption to that architecture. The following section will 

provide the reader with insight into the ideology that guided the development of the methods 

presented in this thesis. 

1.4.1 Simple 

The methods and processes proposed in this research are intended to provide a simple 

way to interpret TO results that is intuitive to a human designer. The benefits of simplicity are 

hard to quantify, but are far reaching. A simple process is easy to teach to new employees and 

can be executed by lower level employees thus achieving cost savings in business processes. The 

more complex a tool becomes, the less likely it is that the tool will have the intended beneficial 

impact. 

The methods outlined in this process also allow the designer to maintain control over the 

level of complexity of the resultant model in terms of number of parameters required to create 

the CAD geometry. This results in computational savings in subsequent steps of the design 

process. [11] 
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1.4.2 Parametric 

As Parametric CAD models have become the standard for product design, it is essential 

that new design processes support this architecture. The methods proposed by this research 

improve the link between TO and parametric CAD. 

1.4.3 Automatic 

The most apparent benefit of this thesis will likely be the time savings from an automated 

approach to TO results interpretation. It is expected that, even on simple parts, some time savings 

will be realized while on complex parts the time required for conversion to parametric CAD 

could be reduced substantially. 

Automation also improves repeatability. Repeatability in TO results interpretation refers 

to the ability for a single person to produce the same design multiple times from the same given 

starting point. The current method of manual TO results interpretation reduces repeatability due 

to human involvement in every small parameter and aspect of the geometric design. When more 

of the fine details of the design are moved to an automated algorithm, as this research proposes 

to do, the repeatability of the design is improved. 

1.4.4 Standardized 

Standardization refers to process similarity from one person to the next. Currently, there 

is no industry standardization in the process of TO results interpretation outside of a company’s 

3D modeling standards. Due to this lack of standardization two co-workers may follow very 

different approaches to TO results interpretation which could lead to vastly different business 

outcomes. This causes discontinuities in the design process as personnel in a company change 
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from time to time. It is beneficial to know that when a certain engineer or designer leaves their 

current position, the person who comes in to replace them will be able to produce similar results. 

This research provides a standard approach to TO results interpretation to facilitate continuity of 

design over time. 

1.4.5 Measured 

Another drawback of the current process is the lack of a fitness measure to know if the 

resultant geometry matches the optimal topology. In order to make decisions about the level of 

complexity of a given model, information about the fitness of the model compared to the optimal 

geometry obtained from the TO is required. This research incorporates a least squares fitness of 

each feature of the model thus providing the designer with the information needed to make 

decisions about the inherent tradeoff between model complexity and geometric fitness.  

1.5 Thesis Organization 

As Topology Optimization gains momentum in industry and is used more widely, it will 

become ever more important to automate the process of interpreting the optimization results. The 

following chapters of this thesis will delve into the details of how this can be done in accordance 

with the above guiding principles. Chapter 2 will provide background information regarding how 

others have attempted to solve this problem in the past, as well as foundational work in different 

fields that relate to the methods in this research. Chapter 3 will then present in detail the 

proposed methods. Chapter 4 will present the CATIA V5 R18 specific implementation used as a 

proof of concept of the methods from Chapter 3 along with the results of the four case studies. 
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Chapter 5 will conclude the research by analyzing the results from Chapter 4 to determine if the 

research objectives have been met.  
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2 LITERATURE REVIEW / BACKGROUND 

The following literature review includes the relevant foundational work in the fields of 

Topology Optimization and Shape Recognition that this research builds upon. It is intended to 

inform the reader regarding what has been accomplished in these fields. A basic understanding 

of this foundational work is required to fully understand the proposed methods. 

2.1 Topology Optimization 

This research does not directly affect the process of Topology Optimization, but only the 

post-processing and interpretation of TO results. The process of TO, however, affects how post-

processing and interpretation can occur. Therefore, it is imperative to understand the basics of 

the process of TO. This section presents the aspects of TO that are pertinent to this research. 

2.1.1 The Soft Kill Method 

Though there are many different methods of topology optimization [14], this research 

will focus on the Soft Kill Method of TO [1]. TO is applied to a finite element model (FEM) 

which defines a design space representing the maximum area or volume that the model is 

allowed to exist in. Once boundary conditions, model constraints, and optimization constraints 

are defined the optimization process begins [2]. The optimization algorithm for the Soft Kill 

Method adjusts each element’s material properties such as density or Young’s Modulus between 

0% and 100% of the actual material property value and then observes the resultant change in 
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element stresses throughout the whole model. If the objective of the optimization is to reduce 

material mass, the algorithm will attempt to push all of the element densities to zero. When any 

given element reaches some predefined stress constraint the algorithm will discontinue reducing 

its density. Through iterating on this process, the optimal material distribution for the given 

loading conditions is found. 

2.1.2 Tessellation and Visualization of Topology Optimization Results 

Once the optimization process has converged to a solution, the topology must be viewed 

to decide if the result is acceptable and feasible. Using the Soft Kill method, there are truly 

infinite possible solutions due to the variation in density or Young’s Modulus throughout the 

model. To view the solution, a density threshold is chosen from which an iso-surface can be 

displayed representing the optimal part. This iso-surface represents the boundary around all 

elements with a density equal to or greater than the density threshold. To illustrate the concept of 

an iso-surface imagine that the beginning design space for a problem was a cube and that a 

cylindrical rod is the optimal solution. Figure 2-1, shows a cross section representing this 

problem. The radial gradient represents the element densities of the solution. The lighter color of 

the gradient represents a less dense material. The designer can decide what density threshold to 

use to create an iso-surface. Several possible iso-surface solutions are represented in Figure 2-1. 

It is important to note that this surface is based on the original design space finite element 

model. This means that the resultant iso-surface is similar to the finite element model in that it is 

made of a combination of lines and vertices which form quadrilateral or triangular surfaces (not a 

smooth curve as shown in Figure 2-1). 
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This is sometimes referred to as a tessellation object. Smoothing algorithms can be used to 

reduce the number of lines and vertices required to create the tessellation object, but the result 

will still be a tessellation object. Tessellation objects are not compatible with parametric CAD 

because there are no part features defined only thousands of points in space connected by lines 

that have no relationship to one another.  

2.2 TO Results Interpretation - Previous Approaches / Architectures 

On a basic level, TO results interpretation is similar to other fields of research that 

attempt to extract geometry from or represent geometry with point clouds such as reverse 

engineering, medical imaging, and computer graphics. There have been many different 

approaches used in these various fields to identify features from point clouds. A few recent 

approaches are presented below. 

Figure 2-1: Example Iso-Surface (cross section view) 

Iso-Surfaces 

Design 
Space 

Solution 
Densities 
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2.2.1 Application Linked Architecture 

Most commercial CAD packages available today do not include TO solvers and pre-

processors. In fact, historically, a different software application was used to mesh, solve, and 

post-process Finite Element Analyses (FEA) followed by another software application to create 

the results of the analyses in a CAD environment. Many Engineering firms operate in this type of 

environment today. Blattman [4] presented an overall process for converting TO results to 

parametric CAD that linked these different applications together through API programming, 

system calls, and stand alone C++ executable files. He also pointed out the need for more robust 

shape recognition algorithms which would enhance this overall process, although that was not 

his focus directly. Blattman’s work was a feature by feature approach to TO results interpretation 

that gave the designer instantaneous feedback within the CAD environment about the progress of 

the interpretation process. 

Since this time of linked architecture, the industry has seen much by way of 

consolidation. The move is clearly toward a CAD-centric architecture [10] where all types of 

analysis and optimization are performed in one multi-faceted software application. This means 

that geometric design, meshing, analysis and optimization are all performed in a single 3D CAD 

environment.  

Although many of the principles of the conversion from TO results to CAD incorporated 

into the Application Linked Architecture are extremely valuable, it is clear that a CAD-centric 

design environment is preferred in industry. Accordingly, one objective of the methods presented 

in this thesis is to perform as much of the interpretation process within the CAD application as 

possible. 
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2.2.2 Mesh Refinement 

Mesh refinement algorithms come mainly from laser scanning applications used in 

reverse engineering. They are used in most cases to eliminate redundant data points that don’t 

add any unique geometric information [3][7] . A very simple example of a mesh refinement 

algorithm would be a program that recognizes when three points are approximately collinear. In 

this case, the point in the middle of the three points can be eliminated without losing any 

significant geometric data since a line is completely defined by 2 points, not three. 

Mesh refinement algorithms are currently applied in commercial TO applications when 

exporting the chosen iso-surface to IGES or STL formats to create tessellations with fewer point 

densities. It has not been used in the conversion from TO to CAD geometry however. Even 

though mesh refinement algorithms are readily applied to TO results, the result of a mesh 

refinement is usually still a mesh; not parametric geometry. While mesh refinement has many 

benefits in terms of computational savings, it does not address the fundamental problem of 

converting TO results into parametric CAD geometry. 

2.2.3 Image Processing 

Image processing is typically applied in a 2D realm where a model is represented by a 

gray level image and segmented into square pieces as shown in Figure 2-2. A TO results file can 

readily be converted into this kind of gray level segmented image format based on finite 

elements and densities. The “elements” are then considered existent or non-existent based on a 

grayness threshold set by the user. The model is then converted to a binary black and white 

image based on this threshold. This effectively filters out the unimportant information from the 

Gray level image and the algorithm can then perform its function. 
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Figure 2-2: Conversion of gray level image to binary black and white 

 

Image processing is used widely to identify part edges and boundaries and to obtain 

geometric points from those boundaries. Those points can then be used in any of the various 

shape recognition methods which will be covered in the following sections. 

The technique of image processing has been widely used in TO results interpretation due 

to the compatibility of TO results with image processing input data. Even though it is best suited 

for 2D problems [11], it has also been used in 3D TO results interpretation with great success 

[15]. 

One of the main issues that is encountered with image processing is the reliance upon the 

finite element mesh. Current commercial TO applications provide the user with many different 

options for exporting the results of TO. As was mentioned earlier, one popular method is to 

apply mesh refinement algorithms which approximate the solution with fewer data points than 

the finite element mesh. However, this popular option removes the nicely organized mesh and 

reduces the number of data points available such that image processing techniques will have little 

data to work from. These problems are complicated further when extrapolated to the 3D realm. It 
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is the view of the author that industry standard practices that have emerged in recent years have 

rendered image processing a less effective tool in the TO results interpretation process. 

2.2.4 2D Shape Templates 

Lin and Chao [11] utilized image processing in conjunction with Shape Templates to 

automatically create 2D truss geometry from TO results files. After converting the gray level 

image to a discretized black and white image as described above, the outer edges of the model 

were created by fitting a B-Spline to the exterior points and then the truss members were formed 

by inserting voids that matched the white space of the image. To determine the shape and size of 

these voids, Lin and Chao utilized shape templates. An example of their results is shown in 

Figure 2-3. 

 

 

To create a shape template, a suitable, generic, convex shape is drawn and the distance 

(L) between a reference point within the shape and the edge of the shape is measured. This is 

repeated for various points around the periphery of the shape at different angles (θ). A polar map 

of the shape can then be graphed as shown in Figure 2-4. 

 

Figure 2-3: Examples of shape template fitting employed by Lin and 
Chao. 
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Figure 2-4: Example shape template 

 

After the desired shape templates have been defined, samples from the TO results can be 

compared to the shape templates and the most appropriately fitting shape template can be chosen 

to use for that shape. Lin and Chao accomplish this task by calculating the standard deviation of 

measurements from the centroid of a void to its periphery and comparing this standard deviation 

to that of the known shape templates. This method has many strong points within the realm of 

the problems that Lin and Chao addressed. However, there are also several reasons why this 

method may not be ideal. For example, if the mesh is not uniform, the standard deviation will be 

skewed toward the higher density areas of the mesh making comparison of the standard 

deviations error prone. This method also does not take advantage of the fact that an analytical 

solution to this problem is readily available.  

Shape templates are a convenient way to represent the topological data of features due to 

the ease of comparing sample data to shape templates in polar space. They also offer the ability 

to define different levels of complexity based on the number of parameters the designer is 

willing to allow the template to assume. If a more perfect fit to the optimal part is required, the 

designer can make the decision to allow templates with more defining parameters which will fit 

more perfectly. 

𝑎𝑎 

𝑏𝑏 

𝑎𝑎 𝑏𝑏 

𝜃𝜃 

𝑟𝑟 
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2.2.5 B-Spline Cross Section Fitting 

Tang and Chang [15] also used image processing but they extended it to 3D applications 

of TO results interpretation. This was accomplished by applying a 2D process to many different 

cross sections throughout the part and constructing a surface through the cross sections. The 2D 

cross sections were formed by fitting B-Splines to the resultant points of the image processing 

step. 

Through this process, Tang and Chang were able to automatically reconstruct a 

manufacturable, optimized Roadarm of a tracked vehicle. Figure 2-5 shows the initial design of 

the Roadarm which was taken directly from the TO results, as well as the optimal design after 

shape optimization occurred.  

 

 

Figure 2-5: Reconstructed road arm from TO results 

 

Tang and Chang had great success using B-Splines to approximate the TO results and 

created novel methods to transition between different numbers of B-Splines per cross section. 
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Much of their work acted as inspiration and as a starting point for this thesis. It is the intent of 

the author to add to what has been done by accomplishing a similar task on a feature by feature 

basis to allow the designer more control of the process. It is also the author’s intent to use 

simpler CAD objects than B-Spline curves to reduce the number of parameters required to 

represent the whole model. 

2.2.6 Shape Similarity Matching Algorithms 

Shape similarity matching algorithms are used to search through databases of 3D 

geometric part designs to find specific types of parts. For example, if you were designing a part 

that needed a fastener similar to a screw or a bolt, but didn’t know exactly which one would be 

ideal for your given design problem it would be useful to be able to perform a search on a 3D 

part database and retrieve all parts that are similar to a screw. This may retrieve nails, screws, 

bolts, rivets, rods, etc. From the results, the best option can be chosen to fulfill the needs of the 

given situation. 

Shape similarity matching algorithms can be used in TO feature recognition by 

generating a library of known manufacturable shapes that can be created as parametric CAD 

features. Then, in the same way that the algorithms were intended to be used, a search can be 

performed to find the shape from the library with greatest similarity score to the TO results 

sample. Then, this shape can be used in the parametric CAD model to approximate the optimal 

shape from the TO results. Since most 3D models are represented as tessellation objects, shape 

similarity matching algorithms are especially useful for TO results processing. Many of the 

issues faced in TO results interpretation are the same problems found in the field of computer 

graphics and are taken into account in most algorithms. These techniques have yet to be applied 

directly to TO results interpretation, but offer great insight into possibilities for the future. 



 19 

One method of shape similarity matching is referred to as shape distribution comparisons. 

[13] A shape distribution is a plot of the probability of getting different values for a certain 

random measurement of a shape. For example, the shape distributions of the distances measured 

between two random points on familiar shapes are presented below in Figure 2-6. 

 

 

 

2.3 API Programming 

An Application Programming Interface, or API, allows access to most internal 

functionality of an application. For example, Excel, a popular spreadsheet application from 

Microsoft, provides access to all of its functionality through a VBA (Visual Basic for 

Applications) API. In Excel, most anything that can be done interactively through the mouse and 

keyboard can be done through the VBA API. This makes it possible to create customized 

functionality that can improve the efficiency of the user. There may be several different APIs 

available for a single application. For example, you may access functionality of a given 

application using VBA, C++, of Java programming languages.  

API programming is an essential part of implementing the methods in this research. 

Theoretically, the API does not affect the proposed methods. In some cases, however, an API 

Figure 2-6: Shape distributions of familiar shapes 
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could be limiting in the scope of access it provides to the core functionality of the application 

and, therefore, would limit the implementation of a given set of methods. 
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3 METHODS 

This chapter presents general methods for shape recognition to convert TO results 

information into parametric CAD features. These methods allow the engineer/designer to 

maintain control over the tradeoff between fitness to the optimal model and feature complexity. 

A process overview will first be presented to familiarize the reader with the general steps 

involved in the methods. In this section many important terms and concepts will also be defined. 

After the process overview, the details of the shape recognition algorithm will be presented. 

Although much of the language in this thesis regarding TO refers to structural 

optimization, the methods are applicable to any use of TO resulting in a geometric solution. 

3.1 Process Overview 

The shape recognition algorithm employed in this research is intended to be used 

on the design space as defined in the TO within the CAD environment since the algorithm 

itself constructs geometry. This creates instantaneous feedback for the designer to see that 

the TO results interpretation process is going as desired.  

The algorithm takes a set of B-Rep (Boundary Representation) surfaces as input along 

with a few geometric parameters that describe the feature orientation. It then recognizes the best 

feature to create to approximate the volume enclosed by the surfaces (a feature will be defined in 

detail later in this section).  



 22 

The algorithm finishes by constructing the best fit feature and performing a Boolean 

operation between the design space and the newly constructed feature in order to either add to or 

remove material from the design space. This process is then repeated for each desired feature to 

create a 3D parametric solid model that is ready for parametric optimization and manufacturing 

planning. This overall process is represented in Figure 3-1. 

 

 

 
 
 

In order to perform TO, a design space must first be established within which material can 

be distributed in any manner. This design space is typically a very simple geometric form and 

can readily be imported into a CAD application and converted into a solid model. Throughout 

this thesis the subset of ℝ𝟑𝟑defining this design space will be represented by 𝑫𝑫𝑫𝑫. 𝑫𝑫𝑫𝑫 entirely 

defines the available solution sets to the problem. Given this fact, any subset of ℝ𝟑𝟑 forming the 

optimal solution set 𝑫𝑫𝒐𝒐𝒐𝒐𝒐𝒐 resulting from TO must be a subset of the original design space. This  

 

Figure 3-1: Overall process 
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concept is represented mathematically by: 

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 ⊆ 𝐷𝐷𝑆𝑆 ⊂  ℝ3 (3-1)  
 

 As final output of TO, a set of B-Rep surfaces 𝑂𝑂 are generated to create a visual 

representation of the optimal topology. 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜  is defined by the volume that these surfaces bound 

such that 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜  is equal to the boundary of 𝑂𝑂. 

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 ≈  𝑏𝑏𝑂𝑂 (3-2)  
 

Although 𝑏𝑏𝑂𝑂 may represent the optimal solution in terms of performance, it is not usually 

economically feasible to manufacture a part based directly on 𝑏𝑏𝑂𝑂. For this reason, a more 

simplified approximation of 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜  must be obtained through the shape recognition algorithm. This 

solution set will be known as 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  to denote a simplified approximation of 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 . 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠  is created 

through a sequence of Boolean operations between 𝐷𝐷𝑆𝑆 and a set of 𝑛𝑛 solid features 𝑓𝑓𝑛𝑛  obtained 

from the shape recognition algorithm. These features can represent either positive space or 

negative space such that by unifying them with the design space a material addition or 

subtraction can be performed. This process is represented mathematically below 

𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐷𝐷𝑆𝑆�𝑓𝑓1 �𝑓𝑓2 �…�𝑓𝑓𝑛𝑛  (3-3)  
 

The word feature, as used in this thesis, refers to a solid object constructed by sweeping a 

closed surface through 𝐶𝐶𝑆𝑆 cross sections. A cross section is made of 𝑠𝑠 curves linked at their end 

points to create a closed loop (see Figure 3-2).  
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The geometric data needed to construct a feature is obtained through the shape 

recognition algorithm which forms the core contribution of this research. A subset of surfaces 

from 𝑂𝑂 referred to as 𝑂𝑂𝑓𝑓  to signify feature surfaces, is used as input to this algorithm. Figure 3-3 

illustrates the relationship between 𝐷𝐷𝑆𝑆, 𝑂𝑂, and 𝑂𝑂𝑓𝑓 .  

 

 

 

Figure 3-3: Design Space 𝑫𝑫𝑫𝑫, Solution Set 𝑶𝑶, and Feature Surfaces 𝑶𝑶𝑶𝑶 

𝐷𝐷𝑆𝑆  

𝑂𝑂 

𝑂𝑂𝑓𝑓  

Figure 3-2: Definition of a feature 

𝐶𝐶𝑆𝑆 cross sections 𝑠𝑠 curves of a cross section 

Feature 
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In the figure, 𝑂𝑂 has been identified through TO performed on 𝐷𝐷𝑆𝑆 as the optimal solution 

to the problem. 𝑂𝑂𝑓𝑓  is a subset of 𝑂𝑂 which defines a feature. The feature appears to be a 

cylindrical hole through the design space 𝐷𝐷𝑆𝑆. To clarify, 𝐷𝐷𝑆𝑆 is a solid object and there is 

currently no hole in 𝐷𝐷𝑆𝑆. Rather, 𝑂𝑂𝑓𝑓  will be used as input to a shape recognition algorithm and an 

actual hole that approximates 𝑂𝑂𝑓𝑓 , will be created as a result of the algorithm. This is then 

repeated for each feature. 

3.2 Shape Recognition Algorithm 

This section will step through the shape recognition algorithm in sequential order and 

explain the detailed methods employed in each step. We begin by defining the inputs to the 

overall algorithm. 

3.2.1 Inputs 

The shape recognition algorithm requires four inputs. They are introduced together here 

so as to familiarize the reader with the symbols used to represent the inputs and because they are 

the first data that the algorithm handles.  

• Feature surface set 𝑂𝑂𝑓𝑓  (required) 

• Feature orientation geometry 𝐺𝐺 (required) 

• Number of cross sections 𝐶𝐶𝑆𝑆 (required) 

• Design space intersection surface set 𝐷𝐷𝑆𝑆𝑥𝑥  (optional) 

This thesis does not address how these inputs are obtained, but assumes that they are known and 

fed directly into the algorithm at the beginning. An example of how they may be obtained is 

presented, however, within the Implementation section (Chapter 4). 
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Feature Surface Set - The feature surface set was introduced above in section 3.1. It is 

used to define the subset of the optimal solution that the algorithm is trying to approximate. 

 

Feature Orientation Geometry – The main objective of the algorithm is to generate cross 

sections that can be used to create a 3D feature within the design space. In order to orient these 

cross sections, a 2D plane is needed. The Feature Orientation Geometry, symbolized by 𝐺𝐺, is a 

generalized curve in ℝ3 used to locate and orient the cross section planes of the feature. It is also 

used to control the path of the feature from one cross section to the next. 

 

 

Number of Cross Sections – This defines the number of cross sections used to create the 

feature. The more cross sections used, the better the approximation to the optimal geometry, but 

the greater resulting model complexity and computational cost in subsequent steps of the design 

process. 

 

Design Space Intersection Surface set – Many times when a feature is subtracted from the 

design space, it may intersect one or more surfaces of the design space in such a way that the 

topological entities of the design space are changed. The efficiency and accuracy of the 

Figure 3-4: Feature Orientation Geometry 

CS Normal Vector Feature Orientation Geometry 
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algorithm are greatly improved when this is identified at the beginning of the recognition 

process. Figure 3-5 depicts a common example of such an intersection. In the model on the left, 

the  “Intersection surface” is one surface with 4 sides. After the feature is subtracted from the 

cube, the “Intersection surface” is split into two smaller surfaces. 

 

 

3.2.2 Uniform Point Cloud Generation 

The first step in the algorithm is to generate a uniform density point cloud on 𝑂𝑂𝑓𝑓 . The 

reason for doing this is to eliminate any dependence on the surfaces from the TO run. This point 

cloud is generated by looping through the surfaces of 𝑂𝑂𝑓𝑓  and generating random points on each 

surface. The locations of these random points are determined by a linear combination of the 

vertices (𝑉𝑉) of the surface. The number of random points generated on each surface is dependent 

upon the area of that surface. This feature point cloud 𝐶𝐶𝑓𝑓  is then represented by 

𝐶𝐶𝑓𝑓 = 𝑓𝑓(𝐴𝐴𝑂𝑂𝑓𝑓𝑠𝑠 ,𝜌𝜌,𝑉𝑉𝑂𝑂𝑓𝑓𝑠𝑠 )  (3-4)  
 

Figure 3-5: Design space intersection surface 

Design Space 
Feature 

(subtracted) 

Intersection 
Surface 

Feature 
Subtraction 
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Where 𝐴𝐴𝑂𝑂𝑓𝑓𝑠𝑠  is the area of the 𝑠𝑠𝑜𝑜ℎ  surface in the surface set 𝑂𝑂𝑓𝑓 , 𝜌𝜌 is a predetermined point per area 

density value, and 𝑉𝑉𝑂𝑂𝑓𝑓𝑠𝑠  is the set of vertices associated with the 𝑠𝑠𝑜𝑜ℎ  surface of 𝑂𝑂𝑓𝑓 . 

 Figure 3-6 (a) shows a set of surfaces representing 𝑂𝑂𝑓𝑓  and (b) the points that would be 

generated on the surfaces during this step. The resulting point cloud (c) is then used for 

subsequent steps of the shape recognition algorithm thus eliminating the need to refer to the 

feature surfaces after this point. 

 

 

 

3.2.3 Point Cloud Segmentation 

The feature point cloud 𝐶𝐶𝑓𝑓  is then segmented into 𝐶𝐶𝑆𝑆 smaller point clouds based on the 

orientation geometry 𝐺𝐺. To accomplish this, each point 𝑃𝑃𝑠𝑠  in 𝐶𝐶𝑓𝑓  is projected onto 𝐺𝐺 along a 

normal vector to 𝐺𝐺 as shown in Figure 3-7.  

Figure 3-6: a) Example 𝑶𝑶𝑶𝑶, b) Points on 𝑶𝑶𝑶𝑶, c) Resultant feature point cloud 𝑪𝑪𝑶𝑶 

a) b) c) 
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The arc length 𝑆𝑆𝑠𝑠  of the projection of 𝑃𝑃𝑠𝑠 → 𝐺𝐺 is then measured from the end point of 𝐺𝐺. 

Each point of 𝐶𝐶𝑓𝑓  can then be sorted into separate cross section point clouds (𝐶𝐶𝑗𝑗 ) based on its 

location along the arc length of 𝐺𝐺 (represented as 𝐺𝐺�) according to the following equations where 

𝑗𝑗 is an integer between 0 and 𝐶𝐶𝑆𝑆 − 1. 

if      j ∙
𝐺𝐺�
CS

≤ Si < (j + 1) ∙
𝐺𝐺�
CS

   , Pi ∈  Cj (3-5)  

  
if    𝑆𝑆𝑠𝑠 = 𝐺𝐺�                                      , 𝑃𝑃𝑠𝑠 ∈  𝐶𝐶(CS−1) (3-6)  

  

 For example, assume that the arc length of 𝐺𝐺 is 10 (𝐺𝐺� = 10) and the projection of a 

certain point 𝑃𝑃𝑠𝑠  onto 𝐺𝐺 is located at an arc length of 3 along 𝐺𝐺 (𝑆𝑆𝑠𝑠  = 3), and the user has specified 

to use 4 cross sections to approximate the feature. Substituting all of these values into equation 

3-5 indicates that 𝑃𝑃𝑠𝑠  would be sorted into cross section point cloud C1  

1 ∙
10
4
≤ 3 < (1 + 1) ∙

10
4

  

  

Figure 3-7: Projecting 𝑪𝑪𝑶𝑶 onto 𝑮𝑮 

𝐺𝐺 

𝑃𝑃𝑠𝑠  
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𝑃𝑃𝑠𝑠  
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Figure 3-8 shows a simple example of the point cloud segmentation step just described assuming 

that 𝐶𝐶𝑆𝑆 = 2. 

 

 

3.2.4 Cross Section Point Cloud Projection 

Now that there are 𝐶𝐶𝑆𝑆 cross section point clouds, each point cloud can be used to 

determine the cross section of the feature in that general vicinity. This is done by projecting the 

point cloud onto a 2D plane. This plane will be denoted by ⊿𝐶𝐶𝑗𝑗  representing the projecting plane 

of cross section point cloud 𝑗𝑗. To locate and orient ⊿𝐶𝐶𝑗𝑗  in space, a point (𝐷𝐷) and plane normal 

vector (𝑁𝑁��⃗ ) must first be identified.  

It is ideal if the plane is located as close to the center of the point cloud as possible so that 

the distance any one point is projected is minimized, which minimizes the approximation error 

introduced by projecting the points in the first place. To do this, the same arc lengths computed 

in the previous step (𝑆𝑆𝑠𝑠) are subtracted from one another until the two points (𝑃𝑃𝑠𝑠𝑠𝑠𝑛𝑛  and 𝑃𝑃𝑠𝑠𝑎𝑎𝑥𝑥 ) 

Figure 3-8: Segmentation of 𝑪𝑪𝑶𝑶 into multiple cross section point 
clouds 𝐂𝐂𝐂𝐂 𝐚𝐚𝐚𝐚𝐚𝐚 𝐂𝐂𝐂𝐂 

𝑆𝑆𝑠𝑠  

𝐶𝐶0 𝐶𝐶1 

𝐶𝐶𝑓𝑓  

𝑃𝑃𝑠𝑠 → G 𝐺𝐺 

𝑃𝑃𝑠𝑠  
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that are furthest apart along 𝐺𝐺 are located, yielding Δ𝑆𝑆𝑠𝑠𝑎𝑎𝑥𝑥 . 𝐷𝐷 is then located starting at the 

projection of  𝑃𝑃𝑠𝑠𝑠𝑠𝑛𝑛 → 𝐺𝐺 and moving along 𝐺𝐺 the arc distance Δ𝑆𝑆𝑠𝑠𝑎𝑎𝑥𝑥
2

 as shown in Figure 3-9 a. 

 

  
a)                                                            b) 

 
 

Once 𝐷𝐷 is located, the tangent vector of 𝐺𝐺 at point 𝐷𝐷 (𝑇𝑇�⃑ 𝐺𝐺𝐷𝐷 ) is used as the normal vector 

for the projecting plane ⊿𝐶𝐶𝑗𝑗 . Each point in 𝐶𝐶𝑗𝑗  is then projected along 𝑇𝑇�⃑ 𝐺𝐺𝐷𝐷  to ⊿𝐶𝐶𝑗𝑗 . The projected 

cross section point cloud will be distinguished by 𝐶𝐶𝑗𝑗���⃗ . An example of this projection is seen in 

Figure 3-9 b. 

3.2.5 Polar Mapping 

In order to compare the point data to Shape Templates (defined in subsequent sections) a 

polar map of 𝐶𝐶𝑗𝑗���⃗  must be constructed. This is done by first obtaining an arbitrary reference point 

(𝐴𝐴) from which to measure the polar coordinates of each point in 𝐶𝐶𝑗𝑗���⃗ . A point near the center of 

the point cloud is best in order for the algorithm to maintain mathematical stability, but any 

reference point on ⊿𝐶𝐶𝑗𝑗  will theoretically work (see Figure 3-10 a). The polar coordinates (𝑟𝑟,𝜃𝜃) 

Figure 3-9: a) Locating a point to define ⊿𝑪𝑪𝑪𝑪, b) projecting 𝑪𝑪𝑪𝑪 onto ⊿𝑪𝑪𝑪𝑪 

     Initial point          
     Projected point 

𝐺𝐺 

⊿𝐶𝐶𝑗𝑗  Δ𝑆𝑆𝑠𝑠𝑎𝑎𝑥𝑥  

P𝑠𝑠𝑠𝑠𝑛𝑛  P𝑠𝑠𝑎𝑎𝑥𝑥  

𝐷𝐷 

Δ𝑆𝑆𝑠𝑠𝑎𝑎𝑥𝑥
2  

𝐺𝐺 
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of  𝐶𝐶𝑗𝑗���⃗  with respect to 𝐴𝐴 are then measured and the points are sorted into 𝜃𝜃 “bins” which represent 

groupings of points from 𝐶𝐶𝑗𝑗���⃗  with similar 𝜃𝜃 coordinates. The points in each 𝜃𝜃 bin are then 

averaged together so that there is one point representing each 𝜃𝜃 bin as seen in Figure 3-10 b. The 

resulting averaged point cloud will be symbolized by 𝐶𝐶𝑗𝑗���⃗  to represent the averaged, projected 

cross section point cloud. The polar coordinates of 𝐶𝐶𝑗𝑗���⃗  are then measured and recorded as shown 

in Figure 3-10 c. 

 

 
a)                b)         c)  

 

 
Plotting the polar measurements from the previous step yields a polar map of the 

periphery of the shape as described by Lin and Chao [11]. The set of points comprising this polar 

map will be referred to throughout the rest of this thesis as 𝐶𝐶𝑗𝑗′ . Figure 3-12 presents several polar 

maps of known shapes as visual reference for the reader. As can be seen in the figure, the max 

and min points on 𝐶𝐶𝑗𝑗′  represent key geometric data needed to represent a given shape.  

 

Figure 3-10: a) Reference point 𝑨𝑨, b) Average points, c) Polar measurement 
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Figure 3-11: Polar map of sample data 

 

 
Figure 3-12: Polar maps of known shapes 

 

3.2.6 Finding the Peaks 

At this point in the algorithm, the points within 𝐶𝐶𝑗𝑗′  with maximum 𝑟𝑟 values need to be 

identified so that 𝐶𝐶𝑗𝑗′  can be compared to different pre-defined shape templates in a subsequent 

step. This section describes how this is to be done. 
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The most complex shape template that has been defined will determine 𝑜𝑜𝑘𝑘𝑜𝑜𝑎𝑎𝑟𝑟 , the target 

number of peaks (or local maxima) that will be identified from 𝐶𝐶𝑗𝑗′ . For example if the most 

complex template defined is a 5 sided polygon, then 𝑜𝑜𝑘𝑘𝑜𝑜𝑎𝑎𝑟𝑟  = 5 because 5 local maxima will be 

needed from 𝐶𝐶𝑗𝑗′  in order to define a 5 sided polygon. The number of peaks actually identified by 

the algorithm is 𝑜𝑜𝑘𝑘𝑎𝑎𝑎𝑎𝑜𝑜 . 

The search algorithm proceeds through all of the points in 𝐶𝐶𝑗𝑗′  one by one to determine if that 

point is a local maximum. Let the single point under consideration at any given time be called 

𝑃𝑃𝑎𝑎𝑐𝑐𝑟𝑟 . The search algorithm compares the 𝑟𝑟 values of all the points within a given 𝜃𝜃 range (𝑟𝑟𝑛𝑛𝑟𝑟) 

before and after 𝑃𝑃𝑎𝑎𝑐𝑐𝑟𝑟 . If the 𝑟𝑟 value of 𝑃𝑃𝑎𝑎𝑐𝑐𝑟𝑟  is the largest among this subgroup of 𝐶𝐶𝑗𝑗′  it is declared 

as a peak and 𝑜𝑜𝑘𝑘𝑎𝑎𝑎𝑎𝑜𝑜  is incremented by one. The algorithm then moves to the next point and 

repeats this process.  

Figure 3-13 illustrates some of the details of the peak search algorithm. If 𝑃𝑃𝑎𝑎𝑐𝑐𝑟𝑟  is Point 4 

in Figure 3-13 (indicated by a circle), and 𝑟𝑟𝑛𝑛𝑟𝑟 = 1, then the 𝑟𝑟 values of Points 3, 4, and 5 are 

compared to each other. If Points 4 has the highest 𝑟𝑟 value among the points included in the 

comparison, then it is considered a maximum. In this case, Point 4 is a maximum so 𝑜𝑜𝑘𝑘𝑎𝑎𝑎𝑎𝑜𝑜  is 

incremented by 1. If 𝑟𝑟𝑛𝑛𝑟𝑟 = 3, however, then Point 4 would no longer be considered a maximum 

because Point 7 would be included in the 𝑟𝑟 value comparison and it has a higher 𝑟𝑟 value than 

Point 4. The point with the next higher 𝜃𝜃 value (in this case Point 5) is then considered to be 𝑃𝑃𝑎𝑎𝑐𝑐𝑟𝑟  

and the same process is repeated. In this example, with 𝑟𝑟𝑛𝑛𝑟𝑟 equal to 1 or 3, Points 4 and 8 are 

identified as maxima. 

After each point in 𝐶𝐶𝑗𝑗′  has been considered, if 𝑜𝑜𝑘𝑘𝑎𝑎𝑎𝑎𝑜𝑜  > 𝑜𝑜𝑘𝑘𝑜𝑜𝑎𝑎𝑟𝑟  then 𝑟𝑟𝑛𝑛𝑟𝑟 is incremented by 

one and each point is considered again within a larger range of neighboring points until 𝑜𝑜𝑘𝑘𝑎𝑎𝑎𝑎𝑜𝑜  < 

𝑜𝑜𝑘𝑘𝑜𝑜𝑎𝑎𝑟𝑟  at which point the set of peaks found in the previous iteration is used.  
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This process is shown graphically in Figure 3-14 using a sample data set from a triangle. 

Notice that there is a bit of “noisy data” within the sample at 𝜃𝜃 = 180. This is a typical problem 

contained within TO results. When the value of 𝑟𝑟𝑛𝑛𝑟𝑟 is low, this noise is mistaken for a 

maximum. However, as the value of 𝑟𝑟𝑛𝑛𝑟𝑟 increases, these mistaken maxima are filtered out. 

In the final iteration, shown in Figure 3-14 e, 𝑜𝑜𝑘𝑘𝑎𝑎𝑎𝑎𝑜𝑜  is less than 𝑜𝑜𝑘𝑘𝑜𝑜𝑎𝑎𝑟𝑟 , therefore the 3 

maxima identified in d (the previous iteration) are used for template generation and fitting. 

 

 

Figure 3-14: Peak search algorithm 

Figure 3-13: Peak search method 
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3.2.7 Parametric Shape Template Generation 

A Shape Template 𝑆𝑆𝑇𝑇, for purposes of this research, is a two dimensional, closed, convex 

shape of 𝑛𝑛 sides. Each side of the shape is defined in polar coordinates by a function of the form 

𝑟𝑟 = 𝑟𝑟(𝜃𝜃). Thus, the entire shape can be defined by a piecewise function 𝐺𝐺(𝜃𝜃). 

 

𝑟𝑟 =  𝐺𝐺(𝜃𝜃) =

⎩
⎪
⎨

⎪
⎧
�

𝑟𝑟1(𝜃𝜃),  𝜃𝜃0 ≤ 𝜃𝜃 < 𝜃𝜃1
𝑟𝑟2(𝜃𝜃),𝜃𝜃1 ≤ 𝜃𝜃 < 𝜃𝜃2
𝑟𝑟3(𝜃𝜃),𝜃𝜃2 ≤ 𝜃𝜃 ≤ 𝜃𝜃3
∶                       ∶       

     𝑟𝑟𝑛𝑛(𝜃𝜃),  𝜃𝜃𝑛𝑛−1 ≤ 𝜃𝜃 ≤ 𝜃𝜃𝑛𝑛

�
��       �θn = 2π

n

0

 (3-7)  

 

Each function 𝑟𝑟𝑛𝑛  represents one side of 𝑆𝑆𝑇𝑇 and can be compared to the sample data 

between two peaks identified in the previous step. This is done by plugging the 𝜃𝜃 values of 𝑜𝑜𝑘𝑘𝑎𝑎𝑎𝑎𝑜𝑜  

into the piecewise function limits in Equation (3-7). Then, for each (𝑟𝑟,𝜃𝜃) pair in 𝐶𝐶𝑗𝑗′ , a 

comparison 𝑟𝑟 value is generated from the template equations. It is then a trivial matter to subtract 

the template 𝑟𝑟 values from the 𝐶𝐶𝑗𝑗′  𝑟𝑟 values to calculate the 2D approximation error 𝜀𝜀2𝐷𝐷  of that 

specific template using those specific peaks. 𝜀𝜀2𝐷𝐷   for each possible combination of peaks is 

calculated and  the combination of peaks which minimizes 𝜀𝜀2𝐷𝐷  is identified. This process is a 

simple exhaustive search optimization method. Any other defined templates are then processed 

in the same way.  

 To illustrate how a parametric shape template is generated we will now look at an 

example. Assume that there is a shape template defined with 4 sides. Sides 1 through 3 are 

straight lines, with side 4 being an arc as shown in Figure 3-15.  
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The equation of a line in Cartesian space is 

 
𝑦𝑦 = 𝑠𝑠𝑥𝑥 + 𝑏𝑏 (3-8)  

 

Then, substituting the standard polar transformation equations in for x and y and solving for r 

 
𝑦𝑦 = 𝑟𝑟sin𝜃𝜃 (3-9)  
𝑥𝑥 = 𝑟𝑟cos𝜃𝜃 (3-10)  

 

We end up with the polar equation of a line where m and b are the slope and y-intercept, 

respectively, of the line in Cartesian space. 

 

𝑟𝑟 =
𝑏𝑏

sin𝜃𝜃 −  𝑠𝑠 cos 𝜃𝜃
 (3-11)  

 

The shape template equations 𝑟𝑟1, 𝑟𝑟2, and 𝑟𝑟3 would be of the same form as Equation 3-11 but 

with differing values for m and b since these pieces of the template are all straight lines. To get 

the general form of 𝑟𝑟4, we take the general equation of a circle and, in a similar manner, 

substitute for x and y using Equations 3-9 and 3-10. This results in Equation 3-12. 

 

Figure 3-15: Example shape template 
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𝑟𝑟 =
2𝑟𝑟0 cos(𝜃𝜃 − 𝜑𝜑)  ± �[2𝑟𝑟0 cos(𝜃𝜃 − 𝜑𝜑)]2 − 4(𝑟𝑟02 − 𝑎𝑎2)

2
 (3-12)  

 

where (𝑟𝑟0,𝜑𝜑) is the polar location of the circle center and a is the radius of the circle. In the case 

of the example template shown in  Figure 3-15, the center of the circle must lie on the line 

formed between the end points of lines 3 and 1. This means that a is equal to half the length of 

the gray dotted line in Figure 3-15. The full shape template definition as presented in Equation 3-

7 is 

𝑟𝑟 =  𝐺𝐺(𝜃𝜃) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑏𝑏1

sin𝜃𝜃 −  𝑠𝑠1 cos 𝜃𝜃
,                                                                   𝜃𝜃0 ≤ 𝜃𝜃 < 𝜃𝜃1

𝑏𝑏2

sin 𝜃𝜃 −  𝑠𝑠2 cos𝜃𝜃
,                                                                  𝜃𝜃1 ≤ 𝜃𝜃 < 𝜃𝜃2

𝑏𝑏3

sin 𝜃𝜃 −  𝑠𝑠3 cos𝜃𝜃
,                                                                  𝜃𝜃2 ≤ 𝜃𝜃 ≤ 𝜃𝜃3

   

   
2𝑟𝑟0 cos(𝜃𝜃 − 𝜑𝜑)  ± �[2𝑟𝑟0 cos(𝜃𝜃 − 𝜑𝜑)]2 − 4(𝑟𝑟02 − 𝑎𝑎2)

2
,  𝜃𝜃3 ≤ 𝜃𝜃 ≤ 𝜃𝜃4

� (3-13) 

 

Now assume that Figure 3-16 a) represents the sample data from a model. Images b, c, d, 

and e illustrate graphically what occurs when the different peak 𝜃𝜃 values are substituted into 

Equation 3-13. It is obvious that the combination of substitutions made which yielded image e is 

the best orientation for the Shape Template  geometry. 

This process is repeated for each cross section point cloud and each defined shape 

template. This should result in a set of templates being generated for each cross section along 

with the 2D approximation error measurement 𝜀𝜀2𝐷𝐷  associated with each template. 
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3.2.8 Template Selection 

At this point in the design process it is advantageous to bring the designer in the loop. It 

may be that manufacturing capabilities or constraints are such that the designer would like to use 

a specific template to create the feature regardless of optimal geometric fit. Only the human 

designer can decide the tradeoff between model complexity and model fitness for every situation. 

In accordance with this fact, the designer is presented with the findings of the algorithm up to 

this point which include the 3D approximation error 𝜀𝜀3𝐷𝐷  for each template and the number of 

needed parameters 𝑃𝑃𝑎𝑎𝑟𝑟𝑠𝑠 to represent a given template as a measure of complexity. 𝜀𝜀3𝐷𝐷 is 

calculated by adding all the 2D approximation errors of each cross section associated with a 

given template as shown in equation (3-8).  

𝜀𝜀3𝐷𝐷 = �𝜀𝜀2𝐷𝐷𝑛𝑛  
𝐶𝐶𝑆𝑆

0

  (3-13)  

 

Figure 3-16: Parametric shape templates with different combinations of peaks 
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Table 3-1: Fitness and Complexity of Defined Templates 

Template 𝜺𝜺𝟑𝟑𝑫𝑫 # Parameters 
Template 1 𝜀𝜀3𝐷𝐷1 𝑃𝑃𝑎𝑎𝑟𝑟𝑠𝑠1 
Template 2 𝜀𝜀3𝐷𝐷2 𝑃𝑃𝑎𝑎𝑟𝑟𝑠𝑠2 
Template 3 𝜀𝜀3𝐷𝐷3 𝑃𝑃𝑎𝑎𝑟𝑟𝑠𝑠3 
Template 𝑛𝑛 𝜀𝜀3𝐷𝐷𝑛𝑛  𝑃𝑃𝑎𝑎𝑟𝑟𝑠𝑠𝑛𝑛  

 

 
Once the designer has indicated which template is best based on the tradeoff between 

fitness and complexity, it can be used to create actual geometry. 

3.2.9 Geometry Creation 

The geometry creation portion of this process is accomplished through CAD API 

programming and is not part of the methods included in this research.  
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4 IMPLEMENTATION AND IMPLEMENTATION RESULTS 

In order to demonstrate and test the validity of the concepts and methods just discussed, 

this chapter is dedicated to a sample implementation. At the end of this chapter, results from 

implementing the methods on four complete models along with their fitnesses will be presented. 

This implementation is not all-encompassing in the scope of the research, but is intended to show 

the efficacy of the methods in a few simple cases. To make the implementation tractable within 

the scope of this research, a few simplifying constraints have been put in place. The functions 𝑟𝑟1 

through 𝑟𝑟𝑛𝑛  defining a shape template according to Equation 3-7, are limited to 1st order functions 

of 𝜃𝜃. In other words the, shape templates implemented are n-sided piecewise linear polygons. 

Similarly, the orientation geometry 𝐺𝐺 is limited to 1st order B-Spline geometry, or in other 

words, straight lines. 

The implementation presented here will show the recognition and construction of a single 

feature of a model of a cantilevered cube under a distributed load on the top surface (Figure 4-1). 

This process mirrors that presented in Figure 3-1 in the box labeled “Feature Algorithm”. This is 

indicative of the actual process that would be repeated for each feature of the model, but is only 

shown for one feature. The entire implementation occurs within CATIA V5 R18, hereafter 

referred to as CATIA, and utilizes the CAA RADE C++ API to accomplish tasks within the 

CAD application.\ 
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4.1 Environment 

The process begins with setting up the environment. This is done by importing both the 

design space (𝐷𝐷𝑆𝑆 seen in Figure 4-2 a) and the output surface set from TO (𝑂𝑂) into CATIA. The 

translucency of 𝐷𝐷𝑆𝑆 can be adjusted so that both 𝐷𝐷𝑆𝑆 and 𝑂𝑂 can be seen simultaneously as shown 

in Figure 4-2 b. 

 

 
 Figure 4-2: a) 𝑫𝑫𝑫𝑫, b) 𝑫𝑫𝑫𝑫 and 𝑶𝑶 with translucency 

a) b) 

Figure 4-1: Case study for implementation 
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4.2 Inputs 

Several inputs introduced in section 3.2.1 are obtained from the user through a Graphical 

User Interface (GUI) including the direction vector defining 𝐺𝐺 and the number of cross sections 

to use to approximate the feature (𝐶𝐶𝑆𝑆). The GUI also displays the file path of 𝐷𝐷𝑆𝑆 and allows the 

user to specify which of the defined shape templates should be used to approximate the feature. 

When the “Auto” option is selected, the shape template that minimizes approximation error is 

used automatically. Figure 4-3 shows the GUI and the inputs used for this example. For purposes 

of demonstration a shape template defining a circle, a triangle, a quadrilateral, and a pentagon 

were defined. In this example 𝐺𝐺 is a straight line oriented in the Y-Direction, 2 cross sections 

will be used, and the best fit template will be used to create geometry. 

 

 
 

 

To obtain the other inputs including the feature surfaces 𝑂𝑂𝑓𝑓 , and the design space 

intersection surfaces 𝐷𝐷𝑆𝑆𝑥𝑥 , the user must use an interactive selection trap within the CAD 

Figure 4-3: Graphical User Interface 

𝐺𝐺 
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environment. Through this process the user can specify which surfaces from 𝑂𝑂 are to be included 

in 𝑂𝑂𝑓𝑓  and which surfaces of the design space the feature intersects (𝐷𝐷𝑆𝑆𝑥𝑥 ). These steps are shown 

in Figure 4-4. The polygon trap user selection method shown in Figure 4-4 b uses a polygon 

drawn freehand by the user and extrudes that polygon along the direction of the current view 

frame. Any object that is completely contained within that extrusion is considered “selected” and 

will be included in 𝑂𝑂𝑓𝑓 . 

 

 

 
All of the user interaction used to gather the inputs of the algorithm are dependent on 

CATIA CAA RADE object classes. 

4.3 Uniform Point Cloud Generation 

To generate the uniform feature point cloud 𝐶𝐶𝑓𝑓  from the feature surfaces 𝑂𝑂𝑓𝑓 , the vertices 

of each surface must be accessed. To do this a “cell list” is retrieved from each surface object of 

SurfList. The cell list contains all geometric object data for the surface including points 

representing the vertices, lines connecting the points that form the boundaries of the surface, and 

the surface itself. Retrieving the surface from the list is accomplished via the CATPathElement 

Figure 4-4: User selection of 𝑫𝑫𝑫𝑫𝑫𝑫 (a) and 𝑶𝑶𝑶𝑶(b). c) Resulting selected surfaces of 𝑶𝑶𝑶𝑶 
a) b) c) 
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object. Next the surface must be recast to a CATBaseUnknown object type in order to use the 

CATIMfGeometryAccess interface to access the geometric objects and store them in a list 

structure (CellList). 

for(int i=0; i<SurfList->GetSize(); i++) 
{ 
 CATPathElement * mPath = NULL; 

mPath = (CATPathElement*) (*SurfList)[i]; 
  CATBaseUnknown *spUnknownObj = mPath->CurrentElement();  
  CATLISTV(CATBaseUnknown_var) CellList; 

CATIMfGeometryAccess* GeomAcc = NULL; 
spUnknownObj-> QueryInterface  

(IID_CATIMfGeometryAccess,(void**)&GeomAcc); 
  GeomAcc->GetCells(CellList); 
 
 
Then, the geometric dimension of each item in CellList is observed to determine if it is a line 

(dimension 1) or a surface (dimension 2). If it is a line, then the end points represent the vertices 

of the surface and are stored in double arrays a, b, and c. If it is of dimension 2, it must be 

the surface face itself and the area of the face is extracted and stored in a variable called area. 

 
 for (int j=1; j<=CellList.Size(); j++) 
 { 
  CATCell_var tmpCell = CellList[j]; 
  short dim = tmpCell->GetDimension(); 
  if (dim == 1) 
   { 
    //Extract point data into a, b, and c 
   } 
 
  if (dim == 2) 
   { 

CATFace_var face = tmpCell; 
    area = face->CalcArea(); 
   } 
 } 

 
Once the above routine is complete, the vertex data along with the surface area are known and 

the point cloud can be generated. First the number of needed points is determined based on the 

surface area and the point density variable obtained in an earlier step from the user. The random 

point is then appended to HolePoints which is a data structure used to store all points of 𝐶𝐶𝑓𝑓 . 
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   int numPoints = (int)(area*pDens); 
   if (numPoints<1) numPoints = 1; 
 
   for (int j=1; j<numPoints; j++) 
   { 
    //generate 2 random numbers 
    double r1 = (rand()%10001)/10000.0; 
    double r2 = (rand()%10001)/10000.0; 
 
    //generate random point coord on the triangle 
    ArrMult(a,(1-sqrt(r1))); 
    ArrMult(b,(sqrt(r1)*(1-r2))); 
    ArrMult(c,(sqrt(r1)*r2)); 
 
    ArrPlus(d,a,b); 
    ArrPlus(p,c,d); 
    //this results in p = a+b+c 
    HolePoints.Append(p); 
   }  
ArrMult and ArrPlus are defined as 

 
void TTCStateCommand::ArrPlus(double point[3], const double 
left[3], const double right[3]) 
{ 
 point[0] = left[0] + right[0]; 
 point[1] = left[1] + right[1]; 
 point[2] = left[2] + right[2]; 
} 
 
void TTCStateCommand::ArrMult(double arr[3],double scale) 
{ 
 arr[0] = arr[0]*scale; 
 arr[1] = arr[1]*scale; 
 arr[2] = arr[2]*scale; 
} 

The result of this step is shown graphically in Figure 4-5. 

 

 
Figure 4-5: Uniform point cloud generation results 
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4.4 Point Cloud Segmentation 

To segment the point cloud into multiple cross section point clouds each point in 

HolePoints is projected onto 𝐺𝐺, which is equal to the Y-axis in the example. The max and min 

Y value of all points in HolePoints is used to separate the HolePoints into two point clouds. 

The result of this step is shown in Figure 4-6. 

 

 

 

4.5 Cross Section Point Cloud Projection 

Due to the simplification employed in this implementation, of using a straight line to 

represent 𝐺𝐺, the normal vector of the projecting plane ⊿𝐶𝐶𝑗𝑗  is equal to the Y-axis direction. In 

order to locate the projecting plane, all the points in 𝐶𝐶𝑗𝑗  (CSPointList) are averaged together to 

yield a reference point AveCSPnt.  

 for ( int i=1; i<= CSPointList.Size(); i++) 
 { 
  AveCSPnt+= CSPointList[i]; 
 } 

AveCSPnt = AveCSPnt/CSPointList.Size(); 

Figure 4-6: Point cloud segmentation 
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The CATIA CAA RADE API includes many object classes that are designed for quickly doing 

common geometric operations. Two of these objects that are used at this point and throughout 

the implementation are CATMathVector and CATMathPoint. The following code demonstrates 

how member functions and operators of these two classes help to project the point cloud onto the 

projecting plane. 

 for ( int i=1; i<= CSPointList.Size(); i++) 
 { 
  CATMathPoint* tmpPoint = new CATMathPoint(CSPointList[i]); 
  CATMathVector cur2ave = CSPointList[i]-AveCSPnt; 
  CATMathVector radVec = ((*GenDir^cur2ave)^*GenDir); 
  *tmpPoint = *tmpPoint - (cur2ave*(*GenDir))*(*GenDir); 
 } 

First a CATMathPoint, tmpPoint, is created based on the current cross section point. Then a 

CATMathVector cur2ave is instantiated by subtracting the average point from the current point. 

In the code snippet, GenDir is a unit vector in the direction of 𝐺𝐺. By taking the cross product 

(symbolized by ^ in the CATMathVector class) of GenDir and cur2ave followed by the cross 

product of GenDir again, the projection of cur2ave onto the projecting plan is obtained and 

named radVec. If this is the first point to be projected then it represents 𝜃𝜃 = 0 and a new 

coordinate system (XVec ,YVec) is defined based on this projected vector. 

  if (i==1) 
  { 
   YVec = radVec; 
   XVec = (*GenDir)^YVec; 
   Theta = 0; 
  } 

 

The resultant 2D point cloud is shown in Figure 4-7. 
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4.6 Polar Mapping 

To determine the polar coordinates of each point in the current CSPointList, each 

point’s component in the XVec and YVec directions is obtained and the angle theta is 

determined based on the following equation 

𝜃𝜃 = cos−1(𝑟𝑟𝑎𝑎𝑟𝑟𝑉𝑉𝑟𝑟𝑎𝑎 ∙ 𝑌𝑌𝑉𝑉𝑟𝑟𝑎𝑎)  (4-1)  
 

When using 𝑎𝑎𝑜𝑜𝑠𝑠−1 however, it is important to know which quadrant the point lies in with special 

attention being given to when the point lies directly on the axis line. To manage these issues the 

following code was implemented. 

double yCheck = radVec*YVec; 
  double xCheck = radVec*XVec; 
 
  //when the point is on an axis line 
  if(yCheck > .99999999999) Theta = 0; 
  else if(yCheck < -.99999999999) Theta = 2*pi; 
  else if(xCheck < -.99999999999) Theta = 3*pi/2; 
  else if(xCheck > .99999999999) Theta = pi; 
  //1st quadrant case 
  else if(yCheck > 0 && xCheck > 0) Theta = acos(radVec*YVec); 

Figure 4-7: a) Projecting planes, b) 2D projected point cloud 
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  //2nd quadrant case 
  else if(yCheck < 0 && xCheck > 0) Theta = pi - acos(radVec*(- 

1*YVec)); 
  //3rd quadrant case 
  else if(yCheck < 0 && xCheck < 0) Theta = pi + acos(radVec*(- 

1*YVec)); 
  //4th Quadrant case 
  else Theta = 2*pi - acos(radVec*YVec); 
 

Finally the r value of the points can be determined by taking the length of radVec and the 𝜃𝜃 bin 

that the point lies in can be determined based on the number of 𝜃𝜃 bins being used. This example 

uses an interval of 1 which creates 360 𝜃𝜃 bins. 

 
  rad = radVec.Norm();   
  radVec.Normalize(); 
 
 

Each point is separated into its respective bin by dividing 𝜃𝜃 by interval and truncating the 

result.  

  int bin = floor(Theta / interval); 
  UniDistPoints.at(bin).push_back(tmpPoint); 
 

Notice that the points are stored in a 2-dimensional vector (UniDistPoints) with the top level 

having a set length of 360, while the 2nd level of vectors are dynamically allocated. This makes 

averaging the different points in each bin a trivial nested loop and results in the creation of an 

average bin point (binAvePnt). A simplified graphical representation of this concept is shown in 

Figure 4-8.  

The average bin point binAvePnt is then stored in another vector of set length 360 along 

with the radial distance 𝑟𝑟 of binAvePnt called curRad. 

pnts360.erase(pnts360.begin()+j); 
  pnts360.insert(pnts360.begin()+j,binAvePnt); 

  rads360.erase(rads360.begin()+j); 
  rads360.insert(rads360.begin()+j,curRad) 
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Many times there are large angles that have no point data to represent the cross section. 

This is usually due to the fact that the feature intersects the design space, as in our example case. 

Figure 4-8 shows this lack of point data along the left edge of the cross section. The algorithm 

senses this issue during the 𝜃𝜃 bin averaging by keeping track of consecutive 𝜃𝜃 bins that have no 

point data in them to average. When a set number of consecutive 𝜃𝜃 bins are detected with no 

point data, each of the user specified intersection surfaces 𝐷𝐷𝑆𝑆𝑥𝑥  are tested to see if the current 𝜃𝜃 

direction intersects any of these surfaces. If there is an intersection, a point is generated at the 

intersection and added to 𝐶𝐶𝑗𝑗���⃗  to represent that angular position of the polar map of the cross 

section. The implementation of this process is shown below where SpecListOfFaces is 𝐷𝐷𝑆𝑆𝑥𝑥 , 

and spSearchDir is the direction of the current 𝜃𝜃 bin. First, a copy of the cross section reference 

point AveCSPnt is projected in spSearchDir direction until it intersects one of the surfaces in 

SpecListOfFaces. 

 

Figure 4-8: Averaged 𝜽𝜽 bin points 
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 for (int j=0; j<pnts360.size(); j++) 
 { 

//if there is a data gap around theta bin j, check for 
//intersections with design space surfaces 

 for (int k=1; k<=SpecListOfFaces.Size(); k++) 
 { 
  //create the projection of AveCSPnt on each face unless it fails 
  CATISpecObject_var PntToProj = CreateGSMPoint(AveCSPnt,false); 
  CATIGSMProject_var projection = spGSMFactory-> 

   CreateProject(PntToProj,SpecListOfFaces[k],spSearchDir,FALSE); 
 CATISpecObject_var spProj = projection; 
 HRESULT hr; 
 CATTry 
 { 
  hr = spProj->Update(); 
 } 
 CATCatch(CATMfErrUpdate,error) 
 { 
  printf("No intersection with design space surfaces\n"); 
  continue; 
 } 
 CATEndTry; 

 
If the projection does not update correctly, there must not be an intersection with the design 

space surface and the algorithm moves on to the next surface. If it was successful, then the 

CATIGeometricalElement interface is used to access the CATBody result of the projection. 

 CATBody_var spBody = NULL_var; 
 CATIGeometricalElement_var spGeoEle = NULL_var; 
 spGeoEle = spProj; 
 spBody = spGeoEle->GetBodyResult(); 

 
Then, the vertices are retrieved from the CATBody, a point is created (GSMPoint) and finally 

added to pnts360. 

  CATLISTP(CATCell) listVertexCells; 
  spBody->GetAllCells(listVertexCells,0); 
 
  for ( int i = 1; i <= listVertexCells.Size(); i++) 
  { 
  CATVertex *aVertex = (CATVertex*) (listVertexCells[i]); 
  CATPoint *aCatPoint = aVertex->GetPoint(); 
  CATMathPoint* tmp_pt = new CATMathPoint(0,0,0); 
  aCatPoint->GetMathPoint(*tmp_pt); 
  if(CreatePnts360) CreateGSMPoint(*tmp_pt); 
  pnts360.erase(pnts360.begin()+j); 
  pnts360.insert(pnts360.begin()+j,tmp_pt); 
  } 

} //(end of for loop k) 
} //(end of for loop j) 
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In our example, nine intersection points were added. With this addition, the averaged 

points from our example can be seen in Figure 4-9 along with its corresponding polar map. 

 

 
Figure 4-9: Cartesian points with corresponding polar map 

 

4.7 Finding the Peaks 

The following code shows the implementation of the routine described in section 3.2.6 

used to identify “peak” points in the polar map 𝐶𝐶𝑗𝑗′ . In this code checkPeakNum = 𝑜𝑜𝑘𝑘𝑜𝑜𝑎𝑎𝑟𝑟 , 

numPeaks = 𝑜𝑜𝑘𝑘𝑎𝑎𝑎𝑎𝑜𝑜 , and range = 𝑟𝑟𝑛𝑛𝑟𝑟. 

 while (checkPeakNum > numPeaks && range < 150 ) 
 { 
  checkPeakNum = 0; 

range = 0; 
  peaks.clear(); 
  peaks.resize(rads360.size(),NULL); 
  range++; 
 
  for (int i=0; i<rads360.size(); i++) 
  { 
   if (rads360[i] == 0) continue; 
   bool isMax = TRUE; 

𝐶𝐶𝑗𝑗���⃗  

𝐷𝐷𝑆𝑆𝑥𝑥  intersection points 

𝐶𝐶𝑗𝑗′  
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   //get all rads within a certain range of the current point 
   std::vector<double> nearPnts; 
   for (int j=-range; j<=range; j++) 
   {       

nearPnts.push_back(rads360[(i+j+rads360.size())% 
rads360.size()]); 

   } 
 
   //if it is the max R within range, mark it as a peak. 
   double maxR=rads360[i]; 
   for (int k=0; k<=range*2; k++) 
   { 
    if (k==range) continue; 
    if (maxR <= nearPnts[k]) isMax = FALSE; 
   } 
   if(isMax) 
   { 
    peaks.erase(peaks.begin()+i); 
    peaks.insert(peaks.begin()+i,rads360[i]); 
    checkPeakNum++; 
   } 
  } 
 } 
 

It is important to note the data structure used in this portion of the code. When a peak is 

identified, the 𝑟𝑟 value is stored in a vector called peaks which has a set size equal to that of 

rads360 or points360. The 𝑟𝑟 value is stored in the same position within peaks as the 𝑟𝑟 value 

obtained from rads360. This makes identifying peak points in 𝐶𝐶𝑗𝑗′  in later steps a trivial matter. If 

peaks[i] is not empty, then rads360[i] and i represent the (𝑟𝑟,𝜃𝜃) coordinates respectively of a 

“peak” point in polar space. 

4.8 Parametric Shape Template Generation 

To generate 𝑟𝑟 values from the shape templates for each 𝜃𝜃 value in 𝐶𝐶𝑗𝑗′ , a number of sub 

routines were defined for each type of shape template. Each one is passed the reference to the 

vectors rads360 and peaks, and returns a double representing the fitness of the shape template 
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to the actual point data. The Quadrilateral Shape Template is shown here. All other shape 

templates follow a similar method but have slight differences that are intuitive. 

First, the variables to be used are declared and initialized. 

 int th1, th2, th3, th4; 
 double pRad1,pRad2,pRad3,pRad4; 
 double reportFit = 0; 
 bool firstTime = true; 
 
Then, two new vectors are filled representing all of the “peak” 𝑟𝑟 and 𝜃𝜃 values. 

 for (unsigned int i=0; i< peaks.size(); i++) 
 { 
  if (peaks[i] != 0) 
  { 
   peakRads.push_back(rads360[i]); 
   theta.push_back(i); 
  } 
 } 

Now, the pRad and th variables declared above are assigned actual values. Since these values 

must be assigned in consecutive order in terms of 𝜃𝜃, an exhaustive search of the possible 

combinations of these values can be done with merely a nested for loop as shown below 

 
 for (int m=0; m<peakRads.size()-3; m++) 
 { 
  th1 = theta[m]; 
  pRad1 = peakRads[m]; 
  for (int j=m+1; j<peakRads.size()-2; j++) 
  { 
   th2 = theta[j]; 
   pRad2 = peakRads[j]; 
   for (int k=j+1; k<peakRads.size()-1; k++) 
   { 
    th3 = theta[k]; 
    pRad3 = peakRads[k]; 
    for (int l=k+1; l<peakRads.size(); l++) 
    { 
     th4 = theta[l]; 
     pRad4 = peakRads[l]; 
 
The fitness of each of these different combinations of peaks within the quadrilateral template are 

calculated by subtracting 𝐺𝐺(𝜃𝜃) (Equation 3-7) from the actual 𝑟𝑟 value corresponding to 𝜃𝜃 from 

𝐶𝐶𝑗𝑗′ . This implementation is limited in scope to straight line shape templates, so a generic routine 
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(GenerateLineTemplate) was created which interpolates a point on a straight line when given 

the two endpoints and returns the distance of that point from the polar origin. To determine 

which of the piecewise functions from equation 3-7 to use, the current 𝜃𝜃 value must be compared 

to the four 𝜃𝜃 values of the peaks being used. Then, the appropriate limits can be given to 

GenerateLineTemplate to generate the correct 𝐺𝐺(𝜃𝜃). 

  for (int i=0; i< rads360.size(); i++) 
  { 
   if (rads360[i] == 0) continue; 
   if (i > th1 && i <= th2) 
   { 

double tmp = GenerateLineTemplate  
(i,th1*pi/180,th2*pi/180,pRad1,pRad2)); 

tmp = fabs(rads360[i]- tmp); 
reportFit += tmp; 
} 
 

This is then repeated for the 4 other possible locations of the current θ value within the shape 

template and the inputs to GenerateLineTemplate are changed accordingly.  

   else if (i > th2 && i <= th3)… 
   else if (i > th3 && i <= th4)… 
   else if (i > th4 || i <= th1)… 
   else printf("theta does not fall in a  

real quadrant"); 
  } 
 
The set of peaks that produce the lowest reportFit are kept and the rest are ignored. This 

process is repeated for each defined shape template so that the templates can be compared to one 

another. The polar maps of the analytical shape templates super-imposed on 𝐶𝐶𝑗𝑗′  is shown in 

Figure 4-10. 

Notice that the analytical shape templates only produce comparison points for points that 

exist in 𝐶𝐶𝑗𝑗′ . This can be seen within the orange box of Figure 4-10. The spacing of the points 

generated by the shape templates perfectly match the spacing of the points in the sample data. If 

this were not the case, the reportFit variable would be biased and the comparison of shape 

templates in the next step could be rendered useless. 
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Figure 4-10: Analytical shape templates compared to 𝑪𝑪𝑪𝑪′  

4.9 Template Selection 

The implementation of the Template Selection process is trivial. Each of the reportFit 

variables for each cross section must be summed. Then the template with the lowest summed 

reportFit is chosen unless the user specified through the GUI that a specific shape template 

should be used. 

In our example problem the fitness values for each cross section and shape template are: 

Table 4-1: 2D and 3D Approximation Errors for Defined Templates 

 Circle Triangle Quadrilateral 

𝜺𝜺𝟐𝟐𝑫𝑫 
CS 1 1200 4000 600 

CS 2 1450 3500 1250 

𝜺𝜺𝟑𝟑𝑫𝑫 2650 7500 1850 
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Comparing the approximation error of each template to the number of parameters required to 

represent each template illuminates the tradeoff between model complexity and model fitness. 

 

Table 4-2: Cross Section Fitness vs Complexity 

Template 𝜺𝜺𝟑𝟑𝑫𝑫 # Parameters 
Circle 2650 2 

Triangle 7500 18 
Quadrilateral 1850 24 

 

 

A pair-wise comparison of each template fitness as well as a pair-wise comparison of the 

number of parameters required to represent the entire feature with a given template are presented 

in Table 4-3 and  

Table 4-4 respectively. 

Table 4-3: Pair-wise Comparison of Template Fitnesses 

 Fitness Comparison 

 Circle Triangle Quadrilateral 
Circle 0% -183% 30% 

Triangle 65% 0% 75% 
Quadrilateral -43% -305% 0% 

 

Table 4-4: Pair-wise Comparison of Template Complexity 

 Complexity Comparison 

 Circle Triangle Quadrilateral 
Circle 0% -200% -300% 

Triangle 67% 0% -33% 
Quadrilateral 75% 25% 0% 
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4.10 Geometry Creation 

A CATIGSMPolyline was used to create the cross sections (except for the circle which 

utilized a CATIGSMCircleCenterAxis). The CATIGSMPolyline represents an n-sided polygon 

with 𝐶𝐶2 continuity. It is formed by adding a fillet to each corner of the polygon which maintains 

tangency to the two adjoining lines. It requires, as input, the location of each point as well as the 

radius of the fillet corresponding to each point. These cross sections are then used as input into 

the CATIGSMLoft object and the solid feature is either added or subtracted from the design space. 

A graphical representation of this whole process for the single feature treated in this 

implementation, including the created geometry, is shown in Figure 4-11. 

 

 

4.11 Results 

The results of the implementation of the methods in four different TO case studies are 

presented in Table 4-5. The first column shows the original design space and loading conditions. 

The second column shows the tessellation object obtained from exporting an iso-surface of the 

TO results as discussed in section 2.1.2. The third column shows the final parametric model with 

Figure 4-11: Graphical representation of the TO results refinement process 

CATIGSMPolylines CATIGSMLoft 
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the outlines of the features that were created by the algorithm highlighted in orange. The fourth 

column shows the number of features used to approximate the optimal model. Finally, the fifth 

column shows the percent volume of the optimal model that the parametric model occupies. In 

each case, the objective of the TO was to minimize total mass subject to a total deflection 

constraint at a certain point. The point at which this deflection constraint was applied is 

represented in Table 4-5 with an X. 

 

Table 4-5: Results of Implementation on 4 Models 

Loading Conditions TO Results 
(Optimal Part) Parametric Model  # 

Features 

% of 
Optimal 
Volume 

 

 
I 

  

 

 

 

4 133% 

 

 
II  

 

 

10 158% 

 

 
III 

 

 

 

 

3 101% 

 

 
IV 

 

 

 

 

2 126% 

 

 

X 

X 

X 

X 
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Table 4-6 demonstrates the difference which results from using different shape templates on the 

same part. Notice that as the number of parameters increases, the volume approaches the optimal 

part volume. 

 

Table 4-6: Tradeoff Between Complexity and Approximation Error 

Template Result 
Number of 

Parameters (using 2 
cross sections) 

% of Optimal 
Volume 

Triangle 

 

30 130% 

Quadrilateral 

 

36 114% 

Pentagon 

 

42 101% 

 

 

The reader may recall that the results from this implementation are intended to be used as a 

starting point for parametric optimization in the next step of the design process (see section 1.3). 

This brings up the question of how to measure the performance of the shape recognition 

algorithm. Industry standard practice would suggest that the models obtained from the algorithm 

be meshed and loaded in the same manner that the original part was and their performances in 

terms of stress, deflection, and mass be compared to what the Topology Optimization results said 

it should be. The parametric models shown in Table 4-5, however, are not intended to be the 
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finalized designs. Instead, the intent was to establish an appropriate geometric fit to the optimal 

model such that the subsequent parametric optimization will yield the best possible performance. 

For this reason, the volume of the resultant model was compared to the volume of the optimal 

model to provide feedback as to the effectiveness of the methods employed.  
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5 CONCLUSIONS AND FUTURE WORK 

The main objective of this research was to create an automated process to evaluate a 

given set of points and surfaces from TO results and determine the best fit parametric CAD 

feature to represent the set of surfaces and points. This was to be done using standard CAD 

features that allow for simple parameterization and parametric optimization in later steps of the 

design process. At the same time, this process was intended to allow the designer/engineer to 

maintain control of the tradeoff between goodness of fit and geometric complexity. 

Chapter 3 presented a generalized algorithm for determining the best shape to 

approximate a given set of TO results surfaces. This best fit shape was chosen from among a set 

of predefined parametric Shape Templates of varying complexities. Chapter 4 presented a simple 

implementation of the methods from Chapter 3 within the CATIA V5 R18 environment. This 

implementation was used to demonstrate the effectiveness of the methods on four different case 

studies. The case studies showed that a close geometric approximation to the optimal part can be 

obtained through using the method (Table 4-5). The implementation also showed the magnitude 

of the tradeoff between model complexity and model fitness and that this tradeoff can be 

effectively managed through using the methods of Chapter 3 (Table 4-6).  

This thesis demonstrates that a shape recognition algorithm can be constructed to 

automatically recognize the topological entity that most closely approximates surfaces from TO 

results. It also shows that this can be done using simple geometric shapes that form standard 

features in most commercial CAD packages. This allows the designer/engineer to create 
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topologically optimal parts from within the CAD-centric environment. The simplicity of features 

and design also allow the model to be represented in a standard CAD format that other designers 

who come in contact with the model later will be able to work with in an intuitive, standard way.  

5.1  Future Work 

Although the results in chapter 4 demonstrate the effectiveness of the methods presented 

in this thesis, there are many opportunities for improvement. There are possible advancements 

that will increase the scope and/or eliminate some of the limitations of the methods. This section 

will present a few promising possibilities for future research. 

5.1.1 Shape Distributions 

One alternative method to Shape Templates that was considered in the initial phases of 

this research has to do with Shape Distributions [13] (see section 2.2.6). Shape Distributions 

could be used in the 3D realm in the same way that Shape Templates were used in this thesis in a 

2D realm. Figure 5-1 shows shape distributions for open ended 3D rectangular extrusions of 

varying dimensions. These distributions were created by taking 100,000 random measurements 

between two points on the surface of the extrusion and creating a histogram of those 

measurements.  

From these shape distributions it is possible to pick out the defining dimensional values 

of the original rectangular extrusion. For example, looking more closely at Figure 5-1 (d), it is 

easy to see that peaks occur in the shape distribution at the dimensions 25, and 50. 
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Figure 5-1: Shape distributions of for variations of an open ended rectangle 

 

 

 
If a method were discovered to create shape distributions on the fly for different types of 

3D shapes according to an analytical model instead of by taking 100,000 random measurements, 

then shape distributions could be used in 3D space in the same way that Shape Templates were 

Figure 5-2: Parameters taken from a shape distribution 
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used in 2D space. This would allow geometry to be created without sweeping through multiple 

cross sections, which would reduce some of the approximation error of the methods presented in 

this thesis.  

5.1.2 Non-convex shape templates 

One of the major limitations of the methods presented in this thesis is the requirement 

that all shape templates be convex shapes. One possible solution to this problem is to create cross 

sections using multiple reference points. Figure 5-3 shows the difference between the current 

method (left) and the theoretical proposed method (right). In the image on the right, if the 

relationship between points A and B are known, then the whole non-convex shape could be 

represented with multiple convex shape templates. If this is possible, the flexibility of the 

methods would be greatly increased. 

 

 

 

 

 
 

Figure 5-3: Convex template (left) and proposed non-convex template (right) 

A 

B 
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5.1.3 Other 

One of the major limitations of the shape recognition algorithm is the ability to segment 

the input surfaces in a useful way. Currently, feature segmentation is done by a human with 

selection tools that are built into the CAD package. It is very difficult to select the desired 

surfaces with these rudimentary tools. Feature segmentation is also a source of variation. When 

one person looks at a model, they may segment the model into different features in a different 

way from the next person. This is not necessarily bad, but there should be some way to know if 

the feature surface segmentation step could be improved to yield improved overall results 

More research is also needed in the area of spine rules. Spines control the shape of the 

feature between cross sections (see section 3.2.1). The Feature Orientation Geometry, which is a 

user input, is currently fulfilling this role. In the implementation of chapter 4, this Feature 

Orientation Geometry was simplified significantly in order to prove out the concept. An 

automated process to infer the Feature Orientation Geometry would add a great deal of value to 

the algorithm as a whole. 
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