
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2010-03-12

Recognizing Parametric Geometry from Topology
Optimization Results
Shane H. Larsen
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Larsen, Shane H., "Recognizing Parametric Geometry from Topology Optimization Results" (2010). All Theses and Dissertations.
2072.
https://scholarsarchive.byu.edu/etd/2072

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2072&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2072&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F2072&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2072&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2072&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F2072&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2072?utm_source=scholarsarchive.byu.edu%2Fetd%2F2072&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

 Recognizing Parametric Geometry from

Topology Optimization Results

Shane H. Larsen

A thesis submitted to the faculty of
Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

C. Greg Jensen, Chair
Scott Thomson

Denise Halverson

Department of Mechanical Engineering

Brigham Young University

April 2010

Copyright © 2010 Shane H. Larsen

All Rights Reserved

ABSTRACT

 Recognizing Parametric Geometry from

Topology Optimization Results

Shane H. Larsen

Department of Mechanical Engineering

Master of Science

Topology Optimization has been proven to be a useful tool in discovering non-intuitive
optimal designs subject to certain design constraints. The results of Topology Optimization are
either represented as a tessellation object composed of thousands of triangular surfaces, or as a
point cloud. In either case, the results of Topology Optimization are not suited for use in
subsequent steps of the design process which require 3D parametric CAD (Computer Aided
Design) models. Converting Topology Optimization results into parametric CAD geometry by
hand is an extremely tedious and time consuming process which is highly subjective. This thesis
presents a shape recognition algorithm that uses a feature by feature CAD-centric approach to
convert Topology Optimization results into parametric CAD geometry. This is accomplished by
fitting 2D cross section geometry to various parts of a given feature through the use of Shape
Templates and then constructing 3D surfaces through the set of 2D cross sections. This algorithm
aids in measuring the geometric approximation error of the generated geometry as compared to
the optimal model, and standardizes the process through automation techniques. It also aids the
designer / engineer in managing the direct tradeoff between closeness of geometric
approximation (measured by volumetric comparison) and model complexity (measured by the
number of parameters required to represent the geometry).

Keywords: Shane H. Larsen, topology optimization, shape templates, shape recognition

ACKNOWLEDGMENTS

 I would like to express my appreciation to all those who supported me throughout this

research including my ever-encouraging and optimistic advisor Dr. Greg Jensen and my fellow

class mates and researchers of the ParaCAD Lab at BYU. I would also like to thank the many

mentors that spent time teaching me about topology optimization; Nandeesh Madapdi, Matthew

King, and Matthieu Pupat of Altair Engineering. Finally, a special thanks to my loving wife

Jennie and my boys for their daily sacrifices and support over the years.

 v

TABLE OF CONTENTS

LIST OF TABLES ... ix

LIST OF FIGURES ... xi

1 Introduction ... 1

1.1 Problem Statement .. 1

1.2 Objectives ... 2

1.3 Statement of Scope ... 3

1.3.1 Feature Segmentation/Selection .. 4

1.3.2 Parametric Optimization (Shape Optimization) .. 4

1.4 Guiding Principles .. 5

1.4.1 Simple ... 5

1.4.2 Parametric ... 6

1.4.3 Automatic .. 6

1.4.4 Standardized .. 6

1.4.5 Measured ... 7

1.5 Thesis Organization .. 7

2 Literature review / Background .. 9

2.1 Topology Optimization ... 9

2.1.1 The Soft Kill Method .. 9

2.1.2 Tessellation and Visualization of Topology Optimization Results 10

2.2 TO Results Interpretation - Previous Approaches / Architectures 11

2.2.1 Application Linked Architecture .. 12

2.2.2 Mesh Refinement .. 13

2.2.3 Image Processing .. 13

 vi

2.2.4 2D Shape Templates ... 15

2.2.5 B-Spline Cross Section Fitting .. 17

2.2.6 Shape Similarity Matching Algorithms .. 18

2.3 API Programming ... 19

3 Methods .. 21

3.1 Process Overview ... 21

3.2 Shape Recognition Algorithm .. 25

3.2.1 Inputs ... 25

3.2.2 Uniform Point Cloud Generation .. 27

3.2.3 Point Cloud Segmentation .. 28

3.2.4 Cross Section Point Cloud Projection ... 30

3.2.5 Polar Mapping ... 31

3.2.6 Finding the Peaks .. 33

3.2.7 Parametric Shape Template Generation .. 36

3.2.8 Template Selection .. 39

3.2.9 Geometry Creation .. 40

4 Implementation and Implementation Results .. 40

4.1 Environment .. 42

4.2 Inputs .. 43

4.3 Uniform Point Cloud Generation .. 44

4.4 Point Cloud Segmentation .. 47

4.5 Cross Section Point Cloud Projection ... 47

4.6 Polar Mapping ... 49

4.7 Finding the Peaks .. 53

4.8 Parametric Shape Template Generation ... 54

 vii

4.9 Template Selection ... 57

4.10 Geometry Creation .. 59

4.11 Results ... 59

5 Conclusions and future work ... 63

5.1 Future Work .. 64

5.1.1 Shape Distributions ... 64

5.1.2 Non-convex shape templates .. 66

5.1.3 Other ... 67

References .. 69

 viii

 ix

LIST OF TABLES

Table 3-1: Fitness and Complexity of Defined Templates ..40

Table 4-1: 2D and 3D Approximation Errors for Defined Templates 57

Table 4-2: Cross Section Fitness vs Complexity ...58

Table 4-3: Pair-wise Comparison of Template Fitnesses ..58

Table 4-4: Pair-wise Comparison of Template Complexity ..58

Table 4-5: Results of Implementation on 4 Models ...60

Table 4-6: Tradeoff Between Complexity and Approximation Error 61

 x

 xi

LIST OF FIGURES

Figure 1-1: Thesis case studies ..3

Figure 2-1: Example Iso-Surface (cross section view) ..11

Figure 2-2: Conversion of gray level image to binary black and white 14

Figure 2-3: Examples of shape template fitting employed by Lin and Chao. 15

Figure 2-4: Example shape template ..16

Figure 2-5: Reconstructed road arm from TO results ..17

Figure 2-6: Shape distributions of familiar shapes ..19

Figure 3-1: Overall process ..22

Figure 3-2: Definition of a feature ...24

Figure 3-3: Design Space 𝑫𝑫𝑫𝑫, Solution Set 𝑶𝑶, and Feature Surfaces 𝑶𝑶𝑶𝑶U24

Figure 3-4: Feature Orientation Geometry ..26

Figure 3-5: Design space intersection surface ...27

Figure 3-6: a) Example 𝑶𝑶𝑶𝑶, b) Points on 𝑶𝑶𝑶𝑶, c) Resultant feature point cloud 𝑪𝑪𝑶𝑶U28

Figure 3-7: Projecting 𝑪𝑪𝑶𝑶 onto 𝑮𝑮U ..29

Figure 3-8: Segmentation of 𝑪𝑪𝑶𝑶 into multiple cross section point clouds 𝐂𝐂𝐂𝐂 𝐚𝐚𝐚𝐚𝐚𝐚 𝐂𝐂𝐂𝐂U30

Figure 3-9: a) Locating a point to define ⊿𝑪𝑪𝑪𝑪, b) projecting 𝑪𝑪𝑪𝑪 onto ⊿𝑪𝑪𝑪𝑪U31

Figure 3-10: a) Reference point 𝑨𝑨, b) Average points, c) Polar measurement 32

Figure 3-11: Polar map of sample data ..33

Figure 3-12: Polar maps of known shapes ...33

Figure 3-13: Peak search method ...35

Figure 3-14: Peak search algorithm ...35

Figure 3-15: Example shape template ..37

Figure 3-16: Parametric shape templates with different combinations of peaks 39

 xii

Figure 4-1: Case study for implementation ...42

Figure 4-2: a) 𝑫𝑫𝑫𝑫, b) 𝑫𝑫𝑫𝑫 and 𝑶𝑶 with translucency ..42

Figure 4-3: Graphical User Interface ...43

Figure 4-4: User selection of 𝑫𝑫𝑫𝑫𝑫𝑫 (a) and 𝑶𝑶𝑶𝑶(b). c) Resulting selected surfaces of 𝑶𝑶𝑶𝑶U44

Figure 4-5: Uniform point cloud generation results ..46

Figure 4-6: Point cloud segmentation ..47

Figure 4-7: a) Projecting planes, b) 2D projected point cloud ...49

Figure 4-8: Averaged 𝜽𝜽 bin points ...51

Figure 4-9: Cartesian points with corresponding polar map ..53

Figure 4-10: Analytical shape templates compared to 𝑪𝑪𝑪𝑪′U ..57

Figure 4-11: Graphical representation of the TO results refinement process 59

Figure 5-1: Shape distributions of for variations of an open ended rectangle 65

Figure 5-2: Parameters taken from a shape distribution ..65

Figure 5-3: Convex Template (left) and proposed non-convex Template (right) 66

 1

1 INTRODUCTION

Topology Optimization (TO) is a process used to distribute material in an optimal manner

throughout a predefined design domain. It has been used heavily in mechanical design [15][8],

electromagnetic design [5], and a myriad of other industries to generate optimal configurations.

It is capable of generating design concepts that are, many times, outside of the realm of human

intuition since predefined parameters or model features are not needed [16]. This optimization

process is performed on finite element models (FEM) comprised of nodes and elements and

therefore, the results are also in the form of nodes and elements and are generally represented in

IGES or STL format.

After the TO process is complete, the resultant optimal topology is used as a visual

reference from which a parametric CAD model can be created. A parametric CAD model is the

preferred format for all subsequent design processes including parametric optimization and

manufacturing process planning. A parametric CAD model can be controlled and adapted by a

finite set of parameters that control the entire model. This makes it possible for the designer to

change and update the model quickly and automatically as new discoveries are made or new

customer needs are revealed.

1.1 Problem Statement

The current method of manual interpretation of TO results by a human designer is very

time intensive and lacks standardization. Under these circumstances the use of TO in industry is

 2

limited due, in part, to the expense of interpreting the results once the optimization run is

complete. A number of researchers have also pointed out the need for an automated method for

interpreting the results of TO. [8][11][16] If a more automated, standardized approach to TO

results interpretation and implementation were developed TO could be utilized in more industries

allowing more efficient designs to be created.

1.2 Objectives

It is my objective to implement methods which improve the process of converting TO

results into Parametric CAD geometry through an improved shape recognition algorithm. This

algorithm would operate in a CAD-centric environment, use intuitive standard CAD features,

and allow the designer to control the complexity of the resulting features in terms of number of

defining parameters required to represent them. Ideally, this process would be automated, be

repeatable, and reduce interpretation time requirements. It would also provide the appropriate

setup to parameterize the CAD model in such a way that parametric optimization could be

performed after the conversion to CAD is finished. The main points of this thesis are:

1. Create automated processes to evaluate a given set of points and surfaces from TO

results and determine the best fit parametric CAD feature to represent the set of

surfaces and points.

2. Implement the automation processes in a CAD-centric environment.

3. Show that the resultant CAD feature is a good approximation of the optimal topology

by volume comparison.

 3

To demonstrate the proposed methods, a set of basic cantilevered beam cases will be

used. These cases are well known in the field of structural optimization. Graphical

representations of these cases are presented in Figure 1-1.

Case I: Cantilevered
Cube with distributed
load

Case II: Cantileverd
Beam under torque
load

Case III: Cantilevered
Beam with point load
and symmetry

Case IV: Automobile A-
Arm with a point load

Figure 1-1: Thesis case studies

1.3 Statement of Scope

The scope of this research is most easily delineated within the framework of the design

process. A typical design process sequence utilizing TO is

1. Geometric Design

2. Optimization Pre-Processing

3. Topology Optimization (TO)

4. Generate IGES/STL of TO results

5. Import IGES/STL into CAD

6. Conversion to Parametric CAD

7. Parametric Optimization

8. Manufacturing Process Planning

This research assumes that TO has been completed and that a discreet model has been

obtained (steps 1-5). This can be done using any TO software so long as the TO results can be

 4

transferred to a CAD software package in the form of standard STL or IGES file formats. The

main focus of the research is on step 6 of the design process, Conversion to Parametric CAD.

Although the methods proposed in this research are application independent, the

implementation will be done within CATIA V5 R18 using the CAA RADE API interface. While

this API is very advanced, the implemented methods use functionality within this API that is

common to most CAD application APIs.

As will be seen within this thesis, the process of converting TO results into CAD

geometry is split into a number of sub-steps. Some of the sub-steps are not included in the scope

of this research due to resource limitations and time constraints.

1.3.1 Feature Segmentation/Selection

Feature segmentation is the process of recognizing one feature from another within the

same model. Although some method of feature segmentation is needed in order to implement the

actual research findings in this thesis, different methodologies for accomplishing this task were

not researched or addressed. The research assumes that the recognition algorithm is given a set of

surfaces that are all part of a single feature to be recognized.

Feature selection is the process of selecting a subset of points or faceted surfaces from the

TO results that define a single feature of the model. This is related to feature segmentation and is

also not treated in the current research.

1.3.2 Parametric Optimization (Shape Optimization)

After the conversion from TO results to parametric CAD geometry, it is assumed that a

subsequent process of parametric optimization will be performed on a given part. As this process

 5

is well defined in industry, it is not treated within the scope of this research. This is, however, an

active area of research.

1.4 Guiding Principles

This research offers a number of benefits to industry standard practices. It is hoped that

the resultant methods can easily be implemented within the current design architecture that is

being used in industry without great disruption to that architecture. The following section will

provide the reader with insight into the ideology that guided the development of the methods

presented in this thesis.

1.4.1 Simple

The methods and processes proposed in this research are intended to provide a simple

way to interpret TO results that is intuitive to a human designer. The benefits of simplicity are

hard to quantify, but are far reaching. A simple process is easy to teach to new employees and

can be executed by lower level employees thus achieving cost savings in business processes. The

more complex a tool becomes, the less likely it is that the tool will have the intended beneficial

impact.

The methods outlined in this process also allow the designer to maintain control over the

level of complexity of the resultant model in terms of number of parameters required to create

the CAD geometry. This results in computational savings in subsequent steps of the design

process. [11]

 6

1.4.2 Parametric

As Parametric CAD models have become the standard for product design, it is essential

that new design processes support this architecture. The methods proposed by this research

improve the link between TO and parametric CAD.

1.4.3 Automatic

The most apparent benefit of this thesis will likely be the time savings from an automated

approach to TO results interpretation. It is expected that, even on simple parts, some time savings

will be realized while on complex parts the time required for conversion to parametric CAD

could be reduced substantially.

Automation also improves repeatability. Repeatability in TO results interpretation refers

to the ability for a single person to produce the same design multiple times from the same given

starting point. The current method of manual TO results interpretation reduces repeatability due

to human involvement in every small parameter and aspect of the geometric design. When more

of the fine details of the design are moved to an automated algorithm, as this research proposes

to do, the repeatability of the design is improved.

1.4.4 Standardized

Standardization refers to process similarity from one person to the next. Currently, there

is no industry standardization in the process of TO results interpretation outside of a company’s

3D modeling standards. Due to this lack of standardization two co-workers may follow very

different approaches to TO results interpretation which could lead to vastly different business

outcomes. This causes discontinuities in the design process as personnel in a company change

 7

from time to time. It is beneficial to know that when a certain engineer or designer leaves their

current position, the person who comes in to replace them will be able to produce similar results.

This research provides a standard approach to TO results interpretation to facilitate continuity of

design over time.

1.4.5 Measured

Another drawback of the current process is the lack of a fitness measure to know if the

resultant geometry matches the optimal topology. In order to make decisions about the level of

complexity of a given model, information about the fitness of the model compared to the optimal

geometry obtained from the TO is required. This research incorporates a least squares fitness of

each feature of the model thus providing the designer with the information needed to make

decisions about the inherent tradeoff between model complexity and geometric fitness.

1.5 Thesis Organization

As Topology Optimization gains momentum in industry and is used more widely, it will

become ever more important to automate the process of interpreting the optimization results. The

following chapters of this thesis will delve into the details of how this can be done in accordance

with the above guiding principles. Chapter 2 will provide background information regarding how

others have attempted to solve this problem in the past, as well as foundational work in different

fields that relate to the methods in this research. Chapter 3 will then present in detail the

proposed methods. Chapter 4 will present the CATIA V5 R18 specific implementation used as a

proof of concept of the methods from Chapter 3 along with the results of the four case studies.

 8

Chapter 5 will conclude the research by analyzing the results from Chapter 4 to determine if the

research objectives have been met.

 9

2 LITERATURE REVIEW / BACKGROUND

The following literature review includes the relevant foundational work in the fields of

Topology Optimization and Shape Recognition that this research builds upon. It is intended to

inform the reader regarding what has been accomplished in these fields. A basic understanding

of this foundational work is required to fully understand the proposed methods.

2.1 Topology Optimization

This research does not directly affect the process of Topology Optimization, but only the

post-processing and interpretation of TO results. The process of TO, however, affects how post-

processing and interpretation can occur. Therefore, it is imperative to understand the basics of

the process of TO. This section presents the aspects of TO that are pertinent to this research.

2.1.1 The Soft Kill Method

Though there are many different methods of topology optimization [14], this research

will focus on the Soft Kill Method of TO [1]. TO is applied to a finite element model (FEM)

which defines a design space representing the maximum area or volume that the model is

allowed to exist in. Once boundary conditions, model constraints, and optimization constraints

are defined the optimization process begins [2]. The optimization algorithm for the Soft Kill

Method adjusts each element’s material properties such as density or Young’s Modulus between

0% and 100% of the actual material property value and then observes the resultant change in

 10

element stresses throughout the whole model. If the objective of the optimization is to reduce

material mass, the algorithm will attempt to push all of the element densities to zero. When any

given element reaches some predefined stress constraint the algorithm will discontinue reducing

its density. Through iterating on this process, the optimal material distribution for the given

loading conditions is found.

2.1.2 Tessellation and Visualization of Topology Optimization Results

Once the optimization process has converged to a solution, the topology must be viewed

to decide if the result is acceptable and feasible. Using the Soft Kill method, there are truly

infinite possible solutions due to the variation in density or Young’s Modulus throughout the

model. To view the solution, a density threshold is chosen from which an iso-surface can be

displayed representing the optimal part. This iso-surface represents the boundary around all

elements with a density equal to or greater than the density threshold. To illustrate the concept of

an iso-surface imagine that the beginning design space for a problem was a cube and that a

cylindrical rod is the optimal solution. Figure 2-1, shows a cross section representing this

problem. The radial gradient represents the element densities of the solution. The lighter color of

the gradient represents a less dense material. The designer can decide what density threshold to

use to create an iso-surface. Several possible iso-surface solutions are represented in Figure 2-1.

It is important to note that this surface is based on the original design space finite element

model. This means that the resultant iso-surface is similar to the finite element model in that it is

made of a combination of lines and vertices which form quadrilateral or triangular surfaces (not a

smooth curve as shown in Figure 2-1).

 11

This is sometimes referred to as a tessellation object. Smoothing algorithms can be used to

reduce the number of lines and vertices required to create the tessellation object, but the result

will still be a tessellation object. Tessellation objects are not compatible with parametric CAD

because there are no part features defined only thousands of points in space connected by lines

that have no relationship to one another.

2.2 TO Results Interpretation - Previous Approaches / Architectures

On a basic level, TO results interpretation is similar to other fields of research that

attempt to extract geometry from or represent geometry with point clouds such as reverse

engineering, medical imaging, and computer graphics. There have been many different

approaches used in these various fields to identify features from point clouds. A few recent

approaches are presented below.

Figure 2-1: Example Iso-Surface (cross section view)

Iso-Surfaces

Design
Space

Solution
Densities

 12

2.2.1 Application Linked Architecture

Most commercial CAD packages available today do not include TO solvers and pre-

processors. In fact, historically, a different software application was used to mesh, solve, and

post-process Finite Element Analyses (FEA) followed by another software application to create

the results of the analyses in a CAD environment. Many Engineering firms operate in this type of

environment today. Blattman [4] presented an overall process for converting TO results to

parametric CAD that linked these different applications together through API programming,

system calls, and stand alone C++ executable files. He also pointed out the need for more robust

shape recognition algorithms which would enhance this overall process, although that was not

his focus directly. Blattman’s work was a feature by feature approach to TO results interpretation

that gave the designer instantaneous feedback within the CAD environment about the progress of

the interpretation process.

Since this time of linked architecture, the industry has seen much by way of

consolidation. The move is clearly toward a CAD-centric architecture [10] where all types of

analysis and optimization are performed in one multi-faceted software application. This means

that geometric design, meshing, analysis and optimization are all performed in a single 3D CAD

environment.

Although many of the principles of the conversion from TO results to CAD incorporated

into the Application Linked Architecture are extremely valuable, it is clear that a CAD-centric

design environment is preferred in industry. Accordingly, one objective of the methods presented

in this thesis is to perform as much of the interpretation process within the CAD application as

possible.

 13

2.2.2 Mesh Refinement

Mesh refinement algorithms come mainly from laser scanning applications used in

reverse engineering. They are used in most cases to eliminate redundant data points that don’t

add any unique geometric information [3][7] . A very simple example of a mesh refinement

algorithm would be a program that recognizes when three points are approximately collinear. In

this case, the point in the middle of the three points can be eliminated without losing any

significant geometric data since a line is completely defined by 2 points, not three.

Mesh refinement algorithms are currently applied in commercial TO applications when

exporting the chosen iso-surface to IGES or STL formats to create tessellations with fewer point

densities. It has not been used in the conversion from TO to CAD geometry however. Even

though mesh refinement algorithms are readily applied to TO results, the result of a mesh

refinement is usually still a mesh; not parametric geometry. While mesh refinement has many

benefits in terms of computational savings, it does not address the fundamental problem of

converting TO results into parametric CAD geometry.

2.2.3 Image Processing

Image processing is typically applied in a 2D realm where a model is represented by a

gray level image and segmented into square pieces as shown in Figure 2-2. A TO results file can

readily be converted into this kind of gray level segmented image format based on finite

elements and densities. The “elements” are then considered existent or non-existent based on a

grayness threshold set by the user. The model is then converted to a binary black and white

image based on this threshold. This effectively filters out the unimportant information from the

Gray level image and the algorithm can then perform its function.

 14

Figure 2-2: Conversion of gray level image to binary black and white

Image processing is used widely to identify part edges and boundaries and to obtain

geometric points from those boundaries. Those points can then be used in any of the various

shape recognition methods which will be covered in the following sections.

The technique of image processing has been widely used in TO results interpretation due

to the compatibility of TO results with image processing input data. Even though it is best suited

for 2D problems [11], it has also been used in 3D TO results interpretation with great success

[15].

One of the main issues that is encountered with image processing is the reliance upon the

finite element mesh. Current commercial TO applications provide the user with many different

options for exporting the results of TO. As was mentioned earlier, one popular method is to

apply mesh refinement algorithms which approximate the solution with fewer data points than

the finite element mesh. However, this popular option removes the nicely organized mesh and

reduces the number of data points available such that image processing techniques will have little

data to work from. These problems are complicated further when extrapolated to the 3D realm. It

 15

is the view of the author that industry standard practices that have emerged in recent years have

rendered image processing a less effective tool in the TO results interpretation process.

2.2.4 2D Shape Templates

Lin and Chao [11] utilized image processing in conjunction with Shape Templates to

automatically create 2D truss geometry from TO results files. After converting the gray level

image to a discretized black and white image as described above, the outer edges of the model

were created by fitting a B-Spline to the exterior points and then the truss members were formed

by inserting voids that matched the white space of the image. To determine the shape and size of

these voids, Lin and Chao utilized shape templates. An example of their results is shown in

Figure 2-3.

To create a shape template, a suitable, generic, convex shape is drawn and the distance

(L) between a reference point within the shape and the edge of the shape is measured. This is

repeated for various points around the periphery of the shape at different angles (θ). A polar map

of the shape can then be graphed as shown in Figure 2-4.

Figure 2-3: Examples of shape template fitting employed by Lin and
Chao.

 16

Figure 2-4: Example shape template

After the desired shape templates have been defined, samples from the TO results can be

compared to the shape templates and the most appropriately fitting shape template can be chosen

to use for that shape. Lin and Chao accomplish this task by calculating the standard deviation of

measurements from the centroid of a void to its periphery and comparing this standard deviation

to that of the known shape templates. This method has many strong points within the realm of

the problems that Lin and Chao addressed. However, there are also several reasons why this

method may not be ideal. For example, if the mesh is not uniform, the standard deviation will be

skewed toward the higher density areas of the mesh making comparison of the standard

deviations error prone. This method also does not take advantage of the fact that an analytical

solution to this problem is readily available.

Shape templates are a convenient way to represent the topological data of features due to

the ease of comparing sample data to shape templates in polar space. They also offer the ability

to define different levels of complexity based on the number of parameters the designer is

willing to allow the template to assume. If a more perfect fit to the optimal part is required, the

designer can make the decision to allow templates with more defining parameters which will fit

more perfectly.

𝑎𝑎

𝑏𝑏

𝑎𝑎 𝑏𝑏

𝜃𝜃

𝑟𝑟

 17

2.2.5 B-Spline Cross Section Fitting

Tang and Chang [15] also used image processing but they extended it to 3D applications

of TO results interpretation. This was accomplished by applying a 2D process to many different

cross sections throughout the part and constructing a surface through the cross sections. The 2D

cross sections were formed by fitting B-Splines to the resultant points of the image processing

step.

Through this process, Tang and Chang were able to automatically reconstruct a

manufacturable, optimized Roadarm of a tracked vehicle. Figure 2-5 shows the initial design of

the Roadarm which was taken directly from the TO results, as well as the optimal design after

shape optimization occurred.

Figure 2-5: Reconstructed road arm from TO results

Tang and Chang had great success using B-Splines to approximate the TO results and

created novel methods to transition between different numbers of B-Splines per cross section.

 18

Much of their work acted as inspiration and as a starting point for this thesis. It is the intent of

the author to add to what has been done by accomplishing a similar task on a feature by feature

basis to allow the designer more control of the process. It is also the author’s intent to use

simpler CAD objects than B-Spline curves to reduce the number of parameters required to

represent the whole model.

2.2.6 Shape Similarity Matching Algorithms

Shape similarity matching algorithms are used to search through databases of 3D

geometric part designs to find specific types of parts. For example, if you were designing a part

that needed a fastener similar to a screw or a bolt, but didn’t know exactly which one would be

ideal for your given design problem it would be useful to be able to perform a search on a 3D

part database and retrieve all parts that are similar to a screw. This may retrieve nails, screws,

bolts, rivets, rods, etc. From the results, the best option can be chosen to fulfill the needs of the

given situation.

Shape similarity matching algorithms can be used in TO feature recognition by

generating a library of known manufacturable shapes that can be created as parametric CAD

features. Then, in the same way that the algorithms were intended to be used, a search can be

performed to find the shape from the library with greatest similarity score to the TO results

sample. Then, this shape can be used in the parametric CAD model to approximate the optimal

shape from the TO results. Since most 3D models are represented as tessellation objects, shape

similarity matching algorithms are especially useful for TO results processing. Many of the

issues faced in TO results interpretation are the same problems found in the field of computer

graphics and are taken into account in most algorithms. These techniques have yet to be applied

directly to TO results interpretation, but offer great insight into possibilities for the future.

 19

One method of shape similarity matching is referred to as shape distribution comparisons.

[13] A shape distribution is a plot of the probability of getting different values for a certain

random measurement of a shape. For example, the shape distributions of the distances measured

between two random points on familiar shapes are presented below in Figure 2-6.

2.3 API Programming

An Application Programming Interface, or API, allows access to most internal

functionality of an application. For example, Excel, a popular spreadsheet application from

Microsoft, provides access to all of its functionality through a VBA (Visual Basic for

Applications) API. In Excel, most anything that can be done interactively through the mouse and

keyboard can be done through the VBA API. This makes it possible to create customized

functionality that can improve the efficiency of the user. There may be several different APIs

available for a single application. For example, you may access functionality of a given

application using VBA, C++, of Java programming languages.

API programming is an essential part of implementing the methods in this research.

Theoretically, the API does not affect the proposed methods. In some cases, however, an API

Figure 2-6: Shape distributions of familiar shapes

 20

could be limiting in the scope of access it provides to the core functionality of the application

and, therefore, would limit the implementation of a given set of methods.

 21

3 METHODS

This chapter presents general methods for shape recognition to convert TO results

information into parametric CAD features. These methods allow the engineer/designer to

maintain control over the tradeoff between fitness to the optimal model and feature complexity.

A process overview will first be presented to familiarize the reader with the general steps

involved in the methods. In this section many important terms and concepts will also be defined.

After the process overview, the details of the shape recognition algorithm will be presented.

Although much of the language in this thesis regarding TO refers to structural

optimization, the methods are applicable to any use of TO resulting in a geometric solution.

3.1 Process Overview

The shape recognition algorithm employed in this research is intended to be used

on the design space as defined in the TO within the CAD environment since the algorithm

itself constructs geometry. This creates instantaneous feedback for the designer to see that

the TO results interpretation process is going as desired.

The algorithm takes a set of B-Rep (Boundary Representation) surfaces as input along

with a few geometric parameters that describe the feature orientation. It then recognizes the best

feature to create to approximate the volume enclosed by the surfaces (a feature will be defined in

detail later in this section).

 22

The algorithm finishes by constructing the best fit feature and performing a Boolean

operation between the design space and the newly constructed feature in order to either add to or

remove material from the design space. This process is then repeated for each desired feature to

create a 3D parametric solid model that is ready for parametric optimization and manufacturing

planning. This overall process is represented in Figure 3-1.

In order to perform TO, a design space must first be established within which material can

be distributed in any manner. This design space is typically a very simple geometric form and

can readily be imported into a CAD application and converted into a solid model. Throughout

this thesis the subset of ℝ𝟑𝟑defining this design space will be represented by 𝑫𝑫𝑫𝑫. 𝑫𝑫𝑫𝑫 entirely

defines the available solution sets to the problem. Given this fact, any subset of ℝ𝟑𝟑 forming the

optimal solution set 𝑫𝑫𝒐𝒐𝒐𝒐𝒐𝒐 resulting from TO must be a subset of the original design space. This

Figure 3-1: Overall process

Import Design Space into CAD
Import TO results into CAD

Parametric Optimization
Manufacturing Planning

Give algorithm inputs
Uniform Point Cloud Generation
Point Cloud Segmentation

Template Selection
Feature Geometry Creation

Cross Section Point Cloud Projection
Polar Mapping
Finding the Peaks
Parametric Shape Template Generation

Fe
at

ur
e

A
lg

or
ith

m

C
ro

ss

Se
ct

io
ns

D
es

ig
n

Pr
oc

es
s

 23

concept is represented mathematically by:

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 ⊆ 𝐷𝐷𝑆𝑆 ⊂ ℝ3 (3-1)

 As final output of TO, a set of B-Rep surfaces 𝑂𝑂 are generated to create a visual

representation of the optimal topology. 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 is defined by the volume that these surfaces bound

such that 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 is equal to the boundary of 𝑂𝑂.

𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 ≈ 𝑏𝑏𝑂𝑂 (3-2)

Although 𝑏𝑏𝑂𝑂 may represent the optimal solution in terms of performance, it is not usually

economically feasible to manufacture a part based directly on 𝑏𝑏𝑂𝑂. For this reason, a more

simplified approximation of 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 must be obtained through the shape recognition algorithm. This

solution set will be known as 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 to denote a simplified approximation of 𝑆𝑆𝑜𝑜𝑜𝑜𝑜𝑜 . 𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 is created

through a sequence of Boolean operations between 𝐷𝐷𝑆𝑆 and a set of 𝑛𝑛 solid features 𝑓𝑓𝑛𝑛 obtained

from the shape recognition algorithm. These features can represent either positive space or

negative space such that by unifying them with the design space a material addition or

subtraction can be performed. This process is represented mathematically below

𝑆𝑆𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐷𝐷𝑆𝑆�𝑓𝑓1 �𝑓𝑓2 �…�𝑓𝑓𝑛𝑛 (3-3)

The word feature, as used in this thesis, refers to a solid object constructed by sweeping a

closed surface through 𝐶𝐶𝑆𝑆 cross sections. A cross section is made of 𝑠𝑠 curves linked at their end

points to create a closed loop (see Figure 3-2).

 24

The geometric data needed to construct a feature is obtained through the shape

recognition algorithm which forms the core contribution of this research. A subset of surfaces

from 𝑂𝑂 referred to as 𝑂𝑂𝑓𝑓 to signify feature surfaces, is used as input to this algorithm. Figure 3-3

illustrates the relationship between 𝐷𝐷𝑆𝑆, 𝑂𝑂, and 𝑂𝑂𝑓𝑓 .

Figure 3-3: Design Space 𝑫𝑫𝑫𝑫, Solution Set 𝑶𝑶, and Feature Surfaces 𝑶𝑶𝑶𝑶

𝐷𝐷𝑆𝑆

𝑂𝑂

𝑂𝑂𝑓𝑓

Figure 3-2: Definition of a feature

𝐶𝐶𝑆𝑆 cross sections 𝑠𝑠 curves of a cross section

Feature

 25

In the figure, 𝑂𝑂 has been identified through TO performed on 𝐷𝐷𝑆𝑆 as the optimal solution

to the problem. 𝑂𝑂𝑓𝑓 is a subset of 𝑂𝑂 which defines a feature. The feature appears to be a

cylindrical hole through the design space 𝐷𝐷𝑆𝑆. To clarify, 𝐷𝐷𝑆𝑆 is a solid object and there is

currently no hole in 𝐷𝐷𝑆𝑆. Rather, 𝑂𝑂𝑓𝑓 will be used as input to a shape recognition algorithm and an

actual hole that approximates 𝑂𝑂𝑓𝑓 , will be created as a result of the algorithm. This is then

repeated for each feature.

3.2 Shape Recognition Algorithm

This section will step through the shape recognition algorithm in sequential order and

explain the detailed methods employed in each step. We begin by defining the inputs to the

overall algorithm.

3.2.1 Inputs

The shape recognition algorithm requires four inputs. They are introduced together here

so as to familiarize the reader with the symbols used to represent the inputs and because they are

the first data that the algorithm handles.

• Feature surface set 𝑂𝑂𝑓𝑓 (required)

• Feature orientation geometry 𝐺𝐺 (required)

• Number of cross sections 𝐶𝐶𝑆𝑆 (required)

• Design space intersection surface set 𝐷𝐷𝑆𝑆𝑥𝑥 (optional)

This thesis does not address how these inputs are obtained, but assumes that they are known and

fed directly into the algorithm at the beginning. An example of how they may be obtained is

presented, however, within the Implementation section (Chapter 4).

 26

Feature Surface Set - The feature surface set was introduced above in section 3.1. It is

used to define the subset of the optimal solution that the algorithm is trying to approximate.

Feature Orientation Geometry – The main objective of the algorithm is to generate cross

sections that can be used to create a 3D feature within the design space. In order to orient these

cross sections, a 2D plane is needed. The Feature Orientation Geometry, symbolized by 𝐺𝐺, is a

generalized curve in ℝ3 used to locate and orient the cross section planes of the feature. It is also

used to control the path of the feature from one cross section to the next.

Number of Cross Sections – This defines the number of cross sections used to create the

feature. The more cross sections used, the better the approximation to the optimal geometry, but

the greater resulting model complexity and computational cost in subsequent steps of the design

process.

Design Space Intersection Surface set – Many times when a feature is subtracted from the

design space, it may intersect one or more surfaces of the design space in such a way that the

topological entities of the design space are changed. The efficiency and accuracy of the

Figure 3-4: Feature Orientation Geometry

CS Normal Vector Feature Orientation Geometry

 27

algorithm are greatly improved when this is identified at the beginning of the recognition

process. Figure 3-5 depicts a common example of such an intersection. In the model on the left,

the “Intersection surface” is one surface with 4 sides. After the feature is subtracted from the

cube, the “Intersection surface” is split into two smaller surfaces.

3.2.2 Uniform Point Cloud Generation

The first step in the algorithm is to generate a uniform density point cloud on 𝑂𝑂𝑓𝑓 . The

reason for doing this is to eliminate any dependence on the surfaces from the TO run. This point

cloud is generated by looping through the surfaces of 𝑂𝑂𝑓𝑓 and generating random points on each

surface. The locations of these random points are determined by a linear combination of the

vertices (𝑉𝑉) of the surface. The number of random points generated on each surface is dependent

upon the area of that surface. This feature point cloud 𝐶𝐶𝑓𝑓 is then represented by

𝐶𝐶𝑓𝑓 = 𝑓𝑓(𝐴𝐴𝑂𝑂𝑓𝑓𝑠𝑠 ,𝜌𝜌,𝑉𝑉𝑂𝑂𝑓𝑓𝑠𝑠) (3-4)

Figure 3-5: Design space intersection surface

Design Space
Feature

(subtracted)

Intersection
Surface

Feature
Subtraction

 28

Where 𝐴𝐴𝑂𝑂𝑓𝑓𝑠𝑠 is the area of the 𝑠𝑠𝑜𝑜ℎ surface in the surface set 𝑂𝑂𝑓𝑓 , 𝜌𝜌 is a predetermined point per area

density value, and 𝑉𝑉𝑂𝑂𝑓𝑓𝑠𝑠 is the set of vertices associated with the 𝑠𝑠𝑜𝑜ℎ surface of 𝑂𝑂𝑓𝑓 .

 Figure 3-6 (a) shows a set of surfaces representing 𝑂𝑂𝑓𝑓 and (b) the points that would be

generated on the surfaces during this step. The resulting point cloud (c) is then used for

subsequent steps of the shape recognition algorithm thus eliminating the need to refer to the

feature surfaces after this point.

3.2.3 Point Cloud Segmentation

The feature point cloud 𝐶𝐶𝑓𝑓 is then segmented into 𝐶𝐶𝑆𝑆 smaller point clouds based on the

orientation geometry 𝐺𝐺. To accomplish this, each point 𝑃𝑃𝑠𝑠 in 𝐶𝐶𝑓𝑓 is projected onto 𝐺𝐺 along a

normal vector to 𝐺𝐺 as shown in Figure 3-7.

Figure 3-6: a) Example 𝑶𝑶𝑶𝑶, b) Points on 𝑶𝑶𝑶𝑶, c) Resultant feature point cloud 𝑪𝑪𝑶𝑶

a) b) c)

 29

The arc length 𝑆𝑆𝑠𝑠 of the projection of 𝑃𝑃𝑠𝑠 → 𝐺𝐺 is then measured from the end point of 𝐺𝐺.

Each point of 𝐶𝐶𝑓𝑓 can then be sorted into separate cross section point clouds (𝐶𝐶𝑗𝑗) based on its

location along the arc length of 𝐺𝐺 (represented as 𝐺𝐺�) according to the following equations where

𝑗𝑗 is an integer between 0 and 𝐶𝐶𝑆𝑆 − 1.

if j ∙
𝐺𝐺�
CS

≤ Si < (j + 1) ∙
𝐺𝐺�
CS

 , Pi ∈ Cj (3-5)

if 𝑆𝑆𝑠𝑠 = 𝐺𝐺� , 𝑃𝑃𝑠𝑠 ∈ 𝐶𝐶(CS−1) (3-6)

 For example, assume that the arc length of 𝐺𝐺 is 10 (𝐺𝐺� = 10) and the projection of a

certain point 𝑃𝑃𝑠𝑠 onto 𝐺𝐺 is located at an arc length of 3 along 𝐺𝐺 (𝑆𝑆𝑠𝑠 = 3), and the user has specified

to use 4 cross sections to approximate the feature. Substituting all of these values into equation

3-5 indicates that 𝑃𝑃𝑠𝑠 would be sorted into cross section point cloud C1

1 ∙
10
4
≤ 3 < (1 + 1) ∙

10
4

Figure 3-7: Projecting 𝑪𝑪𝑶𝑶 onto 𝑮𝑮

𝐺𝐺

𝑃𝑃𝑠𝑠

𝑃𝑃𝑠𝑠 → G 𝐺𝐺

𝑃𝑃𝑠𝑠

 30

Figure 3-8 shows a simple example of the point cloud segmentation step just described assuming

that 𝐶𝐶𝑆𝑆 = 2.

3.2.4 Cross Section Point Cloud Projection

Now that there are 𝐶𝐶𝑆𝑆 cross section point clouds, each point cloud can be used to

determine the cross section of the feature in that general vicinity. This is done by projecting the

point cloud onto a 2D plane. This plane will be denoted by ⊿𝐶𝐶𝑗𝑗 representing the projecting plane

of cross section point cloud 𝑗𝑗. To locate and orient ⊿𝐶𝐶𝑗𝑗 in space, a point (𝐷𝐷) and plane normal

vector (𝑁𝑁��⃗) must first be identified.

It is ideal if the plane is located as close to the center of the point cloud as possible so that

the distance any one point is projected is minimized, which minimizes the approximation error

introduced by projecting the points in the first place. To do this, the same arc lengths computed

in the previous step (𝑆𝑆𝑠𝑠) are subtracted from one another until the two points (𝑃𝑃𝑠𝑠𝑠𝑠𝑛𝑛 and 𝑃𝑃𝑠𝑠𝑎𝑎𝑥𝑥)

Figure 3-8: Segmentation of 𝑪𝑪𝑶𝑶 into multiple cross section point
clouds 𝐂𝐂𝐂𝐂 𝐚𝐚𝐚𝐚𝐚𝐚 𝐂𝐂𝐂𝐂

𝑆𝑆𝑠𝑠

𝐶𝐶0 𝐶𝐶1

𝐶𝐶𝑓𝑓

𝑃𝑃𝑠𝑠 → G 𝐺𝐺

𝑃𝑃𝑠𝑠

 31

that are furthest apart along 𝐺𝐺 are located, yielding Δ𝑆𝑆𝑠𝑠𝑎𝑎𝑥𝑥 . 𝐷𝐷 is then located starting at the

projection of 𝑃𝑃𝑠𝑠𝑠𝑠𝑛𝑛 → 𝐺𝐺 and moving along 𝐺𝐺 the arc distance Δ𝑆𝑆𝑠𝑠𝑎𝑎𝑥𝑥
2

 as shown in Figure 3-9 a.

a) b)

Once 𝐷𝐷 is located, the tangent vector of 𝐺𝐺 at point 𝐷𝐷 (𝑇𝑇�⃑ 𝐺𝐺𝐷𝐷) is used as the normal vector

for the projecting plane ⊿𝐶𝐶𝑗𝑗 . Each point in 𝐶𝐶𝑗𝑗 is then projected along 𝑇𝑇�⃑ 𝐺𝐺𝐷𝐷 to ⊿𝐶𝐶𝑗𝑗 . The projected

cross section point cloud will be distinguished by 𝐶𝐶𝑗𝑗���⃗ . An example of this projection is seen in

Figure 3-9 b.

3.2.5 Polar Mapping

In order to compare the point data to Shape Templates (defined in subsequent sections) a

polar map of 𝐶𝐶𝑗𝑗���⃗ must be constructed. This is done by first obtaining an arbitrary reference point

(𝐴𝐴) from which to measure the polar coordinates of each point in 𝐶𝐶𝑗𝑗���⃗ . A point near the center of

the point cloud is best in order for the algorithm to maintain mathematical stability, but any

reference point on ⊿𝐶𝐶𝑗𝑗 will theoretically work (see Figure 3-10 a). The polar coordinates (𝑟𝑟,𝜃𝜃)

Figure 3-9: a) Locating a point to define ⊿𝑪𝑪𝑪𝑪, b) projecting 𝑪𝑪𝑪𝑪 onto ⊿𝑪𝑪𝑪𝑪

 Initial point
 Projected point

𝐺𝐺

⊿𝐶𝐶𝑗𝑗 Δ𝑆𝑆𝑠𝑠𝑎𝑎𝑥𝑥

P𝑠𝑠𝑠𝑠𝑛𝑛 P𝑠𝑠𝑎𝑎𝑥𝑥

𝐷𝐷

Δ𝑆𝑆𝑠𝑠𝑎𝑎𝑥𝑥
2

𝐺𝐺

 32

of 𝐶𝐶𝑗𝑗���⃗ with respect to 𝐴𝐴 are then measured and the points are sorted into 𝜃𝜃 “bins” which represent

groupings of points from 𝐶𝐶𝑗𝑗���⃗ with similar 𝜃𝜃 coordinates. The points in each 𝜃𝜃 bin are then

averaged together so that there is one point representing each 𝜃𝜃 bin as seen in Figure 3-10 b. The

resulting averaged point cloud will be symbolized by 𝐶𝐶𝑗𝑗���⃗ to represent the averaged, projected

cross section point cloud. The polar coordinates of 𝐶𝐶𝑗𝑗���⃗ are then measured and recorded as shown

in Figure 3-10 c.

a) b) c)

Plotting the polar measurements from the previous step yields a polar map of the

periphery of the shape as described by Lin and Chao [11]. The set of points comprising this polar

map will be referred to throughout the rest of this thesis as 𝐶𝐶𝑗𝑗′ . Figure 3-12 presents several polar

maps of known shapes as visual reference for the reader. As can be seen in the figure, the max

and min points on 𝐶𝐶𝑗𝑗′ represent key geometric data needed to represent a given shape.

Figure 3-10: a) Reference point 𝑨𝑨, b) Average points, c) Polar measurement

⊿𝐶𝐶𝑗𝑗

𝜃𝜃 𝑟𝑟

⊿𝐶𝐶𝑗𝑗

Original Points Average Points

⊿𝐶𝐶𝑗𝑗

𝐴𝐴

 33

Figure 3-11: Polar map of sample data

Figure 3-12: Polar maps of known shapes

3.2.6 Finding the Peaks

At this point in the algorithm, the points within 𝐶𝐶𝑗𝑗′ with maximum 𝑟𝑟 values need to be

identified so that 𝐶𝐶𝑗𝑗′ can be compared to different pre-defined shape templates in a subsequent

step. This section describes how this is to be done.

0

1

2

3

4

5

6

0 45 90 135 180 225 270 315 360

r

θ°

Polar Map

𝑎𝑎

𝑏𝑏 𝑎𝑎

𝑎𝑎 𝑏𝑏 𝑎𝑎 𝑎𝑎 𝑏𝑏

𝑏𝑏

𝑎𝑎

2𝜋𝜋 2𝜋𝜋 2𝜋𝜋

𝑟𝑟 𝑟𝑟 𝑟𝑟

𝑎𝑎

𝑎𝑎 𝑏𝑏

2𝜋𝜋

𝑟𝑟

𝑏𝑏

a) circle b) equilateral
triangle

c) square d) isosceles
 right triangle

 34

The most complex shape template that has been defined will determine 𝑜𝑜𝑘𝑘𝑜𝑜𝑎𝑎𝑟𝑟 , the target

number of peaks (or local maxima) that will be identified from 𝐶𝐶𝑗𝑗′ . For example if the most

complex template defined is a 5 sided polygon, then 𝑜𝑜𝑘𝑘𝑜𝑜𝑎𝑎𝑟𝑟 = 5 because 5 local maxima will be

needed from 𝐶𝐶𝑗𝑗′ in order to define a 5 sided polygon. The number of peaks actually identified by

the algorithm is 𝑜𝑜𝑘𝑘𝑎𝑎𝑎𝑎𝑜𝑜 .

The search algorithm proceeds through all of the points in 𝐶𝐶𝑗𝑗′ one by one to determine if that

point is a local maximum. Let the single point under consideration at any given time be called

𝑃𝑃𝑎𝑎𝑐𝑐𝑟𝑟 . The search algorithm compares the 𝑟𝑟 values of all the points within a given 𝜃𝜃 range (𝑟𝑟𝑛𝑛𝑟𝑟)

before and after 𝑃𝑃𝑎𝑎𝑐𝑐𝑟𝑟 . If the 𝑟𝑟 value of 𝑃𝑃𝑎𝑎𝑐𝑐𝑟𝑟 is the largest among this subgroup of 𝐶𝐶𝑗𝑗′ it is declared

as a peak and 𝑜𝑜𝑘𝑘𝑎𝑎𝑎𝑎𝑜𝑜 is incremented by one. The algorithm then moves to the next point and

repeats this process.

Figure 3-13 illustrates some of the details of the peak search algorithm. If 𝑃𝑃𝑎𝑎𝑐𝑐𝑟𝑟 is Point 4

in Figure 3-13 (indicated by a circle), and 𝑟𝑟𝑛𝑛𝑟𝑟 = 1, then the 𝑟𝑟 values of Points 3, 4, and 5 are

compared to each other. If Points 4 has the highest 𝑟𝑟 value among the points included in the

comparison, then it is considered a maximum. In this case, Point 4 is a maximum so 𝑜𝑜𝑘𝑘𝑎𝑎𝑎𝑎𝑜𝑜 is

incremented by 1. If 𝑟𝑟𝑛𝑛𝑟𝑟 = 3, however, then Point 4 would no longer be considered a maximum

because Point 7 would be included in the 𝑟𝑟 value comparison and it has a higher 𝑟𝑟 value than

Point 4. The point with the next higher 𝜃𝜃 value (in this case Point 5) is then considered to be 𝑃𝑃𝑎𝑎𝑐𝑐𝑟𝑟

and the same process is repeated. In this example, with 𝑟𝑟𝑛𝑛𝑟𝑟 equal to 1 or 3, Points 4 and 8 are

identified as maxima.

After each point in 𝐶𝐶𝑗𝑗′ has been considered, if 𝑜𝑜𝑘𝑘𝑎𝑎𝑎𝑎𝑜𝑜 > 𝑜𝑜𝑘𝑘𝑜𝑜𝑎𝑎𝑟𝑟 then 𝑟𝑟𝑛𝑛𝑟𝑟 is incremented by

one and each point is considered again within a larger range of neighboring points until 𝑜𝑜𝑘𝑘𝑎𝑎𝑎𝑎𝑜𝑜 <

𝑜𝑜𝑘𝑘𝑜𝑜𝑎𝑎𝑟𝑟 at which point the set of peaks found in the previous iteration is used.

 35

This process is shown graphically in Figure 3-14 using a sample data set from a triangle.

Notice that there is a bit of “noisy data” within the sample at 𝜃𝜃 = 180. This is a typical problem

contained within TO results. When the value of 𝑟𝑟𝑛𝑛𝑟𝑟 is low, this noise is mistaken for a

maximum. However, as the value of 𝑟𝑟𝑛𝑛𝑟𝑟 increases, these mistaken maxima are filtered out.

In the final iteration, shown in Figure 3-14 e, 𝑜𝑜𝑘𝑘𝑎𝑎𝑎𝑎𝑜𝑜 is less than 𝑜𝑜𝑘𝑘𝑜𝑜𝑎𝑎𝑟𝑟 , therefore the 3

maxima identified in d (the previous iteration) are used for template generation and fitting.

Figure 3-14: Peak search algorithm

Figure 3-13: Peak search method

4
7 𝑟𝑟

𝜃𝜃

𝑟𝑟𝑛𝑛𝑟𝑟 = 3

𝑟𝑟𝑛𝑛𝑟𝑟 = 1

2
1

3
5 6

8

 36

3.2.7 Parametric Shape Template Generation

A Shape Template 𝑆𝑆𝑇𝑇, for purposes of this research, is a two dimensional, closed, convex

shape of 𝑛𝑛 sides. Each side of the shape is defined in polar coordinates by a function of the form

𝑟𝑟 = 𝑟𝑟(𝜃𝜃). Thus, the entire shape can be defined by a piecewise function 𝐺𝐺(𝜃𝜃).

𝑟𝑟 = 𝐺𝐺(𝜃𝜃) =

⎩
⎪
⎨

⎪
⎧
�

𝑟𝑟1(𝜃𝜃), 𝜃𝜃0 ≤ 𝜃𝜃 < 𝜃𝜃1
𝑟𝑟2(𝜃𝜃),𝜃𝜃1 ≤ 𝜃𝜃 < 𝜃𝜃2
𝑟𝑟3(𝜃𝜃),𝜃𝜃2 ≤ 𝜃𝜃 ≤ 𝜃𝜃3
∶ ∶

 𝑟𝑟𝑛𝑛(𝜃𝜃), 𝜃𝜃𝑛𝑛−1 ≤ 𝜃𝜃 ≤ 𝜃𝜃𝑛𝑛

�
�� �θn = 2π

n

0

 (3-7)

Each function 𝑟𝑟𝑛𝑛 represents one side of 𝑆𝑆𝑇𝑇 and can be compared to the sample data

between two peaks identified in the previous step. This is done by plugging the 𝜃𝜃 values of 𝑜𝑜𝑘𝑘𝑎𝑎𝑎𝑎𝑜𝑜

into the piecewise function limits in Equation (3-7). Then, for each (𝑟𝑟,𝜃𝜃) pair in 𝐶𝐶𝑗𝑗′ , a

comparison 𝑟𝑟 value is generated from the template equations. It is then a trivial matter to subtract

the template 𝑟𝑟 values from the 𝐶𝐶𝑗𝑗′ 𝑟𝑟 values to calculate the 2D approximation error 𝜀𝜀2𝐷𝐷 of that

specific template using those specific peaks. 𝜀𝜀2𝐷𝐷 for each possible combination of peaks is

calculated and the combination of peaks which minimizes 𝜀𝜀2𝐷𝐷 is identified. This process is a

simple exhaustive search optimization method. Any other defined templates are then processed

in the same way.

 To illustrate how a parametric shape template is generated we will now look at an

example. Assume that there is a shape template defined with 4 sides. Sides 1 through 3 are

straight lines, with side 4 being an arc as shown in Figure 3-15.

 37

The equation of a line in Cartesian space is

𝑦𝑦 = 𝑠𝑠𝑥𝑥 + 𝑏𝑏 (3-8)

Then, substituting the standard polar transformation equations in for x and y and solving for r

𝑦𝑦 = 𝑟𝑟sin𝜃𝜃 (3-9)
𝑥𝑥 = 𝑟𝑟cos𝜃𝜃 (3-10)

We end up with the polar equation of a line where m and b are the slope and y-intercept,

respectively, of the line in Cartesian space.

𝑟𝑟 =
𝑏𝑏

sin𝜃𝜃 − 𝑠𝑠 cos 𝜃𝜃
 (3-11)

The shape template equations 𝑟𝑟1, 𝑟𝑟2, and 𝑟𝑟3 would be of the same form as Equation 3-11 but

with differing values for m and b since these pieces of the template are all straight lines. To get

the general form of 𝑟𝑟4, we take the general equation of a circle and, in a similar manner,

substitute for x and y using Equations 3-9 and 3-10. This results in Equation 3-12.

Figure 3-15: Example shape template

1

2

3

4

 38

𝑟𝑟 =
2𝑟𝑟0 cos(𝜃𝜃 − 𝜑𝜑) ± �[2𝑟𝑟0 cos(𝜃𝜃 − 𝜑𝜑)]2 − 4(𝑟𝑟02 − 𝑎𝑎2)

2
 (3-12)

where (𝑟𝑟0,𝜑𝜑) is the polar location of the circle center and a is the radius of the circle. In the case

of the example template shown in Figure 3-15, the center of the circle must lie on the line

formed between the end points of lines 3 and 1. This means that a is equal to half the length of

the gray dotted line in Figure 3-15. The full shape template definition as presented in Equation 3-

7 is

𝑟𝑟 = 𝐺𝐺(𝜃𝜃) =

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝑏𝑏1

sin𝜃𝜃 − 𝑠𝑠1 cos 𝜃𝜃
, 𝜃𝜃0 ≤ 𝜃𝜃 < 𝜃𝜃1

𝑏𝑏2

sin 𝜃𝜃 − 𝑠𝑠2 cos𝜃𝜃
, 𝜃𝜃1 ≤ 𝜃𝜃 < 𝜃𝜃2

𝑏𝑏3

sin 𝜃𝜃 − 𝑠𝑠3 cos𝜃𝜃
, 𝜃𝜃2 ≤ 𝜃𝜃 ≤ 𝜃𝜃3

2𝑟𝑟0 cos(𝜃𝜃 − 𝜑𝜑) ± �[2𝑟𝑟0 cos(𝜃𝜃 − 𝜑𝜑)]2 − 4(𝑟𝑟02 − 𝑎𝑎2)

2
, 𝜃𝜃3 ≤ 𝜃𝜃 ≤ 𝜃𝜃4

� (3-13)

Now assume that Figure 3-16 a) represents the sample data from a model. Images b, c, d,

and e illustrate graphically what occurs when the different peak 𝜃𝜃 values are substituted into

Equation 3-13. It is obvious that the combination of substitutions made which yielded image e is

the best orientation for the Shape Template geometry.

This process is repeated for each cross section point cloud and each defined shape

template. This should result in a set of templates being generated for each cross section along

with the 2D approximation error measurement 𝜀𝜀2𝐷𝐷 associated with each template.

 39

3.2.8 Template Selection

At this point in the design process it is advantageous to bring the designer in the loop. It

may be that manufacturing capabilities or constraints are such that the designer would like to use

a specific template to create the feature regardless of optimal geometric fit. Only the human

designer can decide the tradeoff between model complexity and model fitness for every situation.

In accordance with this fact, the designer is presented with the findings of the algorithm up to

this point which include the 3D approximation error 𝜀𝜀3𝐷𝐷 for each template and the number of

needed parameters 𝑃𝑃𝑎𝑎𝑟𝑟𝑠𝑠 to represent a given template as a measure of complexity. 𝜀𝜀3𝐷𝐷 is

calculated by adding all the 2D approximation errors of each cross section associated with a

given template as shown in equation (3-8).

𝜀𝜀3𝐷𝐷 = �𝜀𝜀2𝐷𝐷𝑛𝑛
𝐶𝐶𝑆𝑆

0

 (3-13)

Figure 3-16: Parametric shape templates with different combinations of peaks

a

b c d e

 40

Table 3-1: Fitness and Complexity of Defined Templates

Template 𝜺𝜺𝟑𝟑𝑫𝑫 # Parameters
Template 1 𝜀𝜀3𝐷𝐷1 𝑃𝑃𝑎𝑎𝑟𝑟𝑠𝑠1
Template 2 𝜀𝜀3𝐷𝐷2 𝑃𝑃𝑎𝑎𝑟𝑟𝑠𝑠2
Template 3 𝜀𝜀3𝐷𝐷3 𝑃𝑃𝑎𝑎𝑟𝑟𝑠𝑠3
Template 𝑛𝑛 𝜀𝜀3𝐷𝐷𝑛𝑛 𝑃𝑃𝑎𝑎𝑟𝑟𝑠𝑠𝑛𝑛

Once the designer has indicated which template is best based on the tradeoff between

fitness and complexity, it can be used to create actual geometry.

3.2.9 Geometry Creation

The geometry creation portion of this process is accomplished through CAD API

programming and is not part of the methods included in this research.

 41

4 IMPLEMENTATION AND IMPLEMENTATION RESULTS

In order to demonstrate and test the validity of the concepts and methods just discussed,

this chapter is dedicated to a sample implementation. At the end of this chapter, results from

implementing the methods on four complete models along with their fitnesses will be presented.

This implementation is not all-encompassing in the scope of the research, but is intended to show

the efficacy of the methods in a few simple cases. To make the implementation tractable within

the scope of this research, a few simplifying constraints have been put in place. The functions 𝑟𝑟1

through 𝑟𝑟𝑛𝑛 defining a shape template according to Equation 3-7, are limited to 1st order functions

of 𝜃𝜃. In other words the, shape templates implemented are n-sided piecewise linear polygons.

Similarly, the orientation geometry 𝐺𝐺 is limited to 1st order B-Spline geometry, or in other

words, straight lines.

The implementation presented here will show the recognition and construction of a single

feature of a model of a cantilevered cube under a distributed load on the top surface (Figure 4-1).

This process mirrors that presented in Figure 3-1 in the box labeled “Feature Algorithm”. This is

indicative of the actual process that would be repeated for each feature of the model, but is only

shown for one feature. The entire implementation occurs within CATIA V5 R18, hereafter

referred to as CATIA, and utilizes the CAA RADE C++ API to accomplish tasks within the

CAD application.\

 42

4.1 Environment

The process begins with setting up the environment. This is done by importing both the

design space (𝐷𝐷𝑆𝑆 seen in Figure 4-2 a) and the output surface set from TO (𝑂𝑂) into CATIA. The

translucency of 𝐷𝐷𝑆𝑆 can be adjusted so that both 𝐷𝐷𝑆𝑆 and 𝑂𝑂 can be seen simultaneously as shown

in Figure 4-2 b.

 Figure 4-2: a) 𝑫𝑫𝑫𝑫, b) 𝑫𝑫𝑫𝑫 and 𝑶𝑶 with translucency

a) b)

Figure 4-1: Case study for implementation

Distributed Load

C
an

til
ev

er
ed

 F
ac

e

 43

4.2 Inputs

Several inputs introduced in section 3.2.1 are obtained from the user through a Graphical

User Interface (GUI) including the direction vector defining 𝐺𝐺 and the number of cross sections

to use to approximate the feature (𝐶𝐶𝑆𝑆). The GUI also displays the file path of 𝐷𝐷𝑆𝑆 and allows the

user to specify which of the defined shape templates should be used to approximate the feature.

When the “Auto” option is selected, the shape template that minimizes approximation error is

used automatically. Figure 4-3 shows the GUI and the inputs used for this example. For purposes

of demonstration a shape template defining a circle, a triangle, a quadrilateral, and a pentagon

were defined. In this example 𝐺𝐺 is a straight line oriented in the Y-Direction, 2 cross sections

will be used, and the best fit template will be used to create geometry.

To obtain the other inputs including the feature surfaces 𝑂𝑂𝑓𝑓 , and the design space

intersection surfaces 𝐷𝐷𝑆𝑆𝑥𝑥 , the user must use an interactive selection trap within the CAD

Figure 4-3: Graphical User Interface

𝐺𝐺

𝐶𝐶𝑆𝑆

𝑆𝑆𝑇𝑇

 44

environment. Through this process the user can specify which surfaces from 𝑂𝑂 are to be included

in 𝑂𝑂𝑓𝑓 and which surfaces of the design space the feature intersects (𝐷𝐷𝑆𝑆𝑥𝑥). These steps are shown

in Figure 4-4. The polygon trap user selection method shown in Figure 4-4 b uses a polygon

drawn freehand by the user and extrudes that polygon along the direction of the current view

frame. Any object that is completely contained within that extrusion is considered “selected” and

will be included in 𝑂𝑂𝑓𝑓 .

All of the user interaction used to gather the inputs of the algorithm are dependent on

CATIA CAA RADE object classes.

4.3 Uniform Point Cloud Generation

To generate the uniform feature point cloud 𝐶𝐶𝑓𝑓 from the feature surfaces 𝑂𝑂𝑓𝑓 , the vertices

of each surface must be accessed. To do this a “cell list” is retrieved from each surface object of

SurfList. The cell list contains all geometric object data for the surface including points

representing the vertices, lines connecting the points that form the boundaries of the surface, and

the surface itself. Retrieving the surface from the list is accomplished via the CATPathElement

Figure 4-4: User selection of 𝑫𝑫𝑫𝑫𝑫𝑫 (a) and 𝑶𝑶𝑶𝑶(b). c) Resulting selected surfaces of 𝑶𝑶𝑶𝑶
a) b) c)

 45

object. Next the surface must be recast to a CATBaseUnknown object type in order to use the

CATIMfGeometryAccess interface to access the geometric objects and store them in a list

structure (CellList).

for(int i=0; i<SurfList->GetSize(); i++)
{
 CATPathElement * mPath = NULL;

mPath = (CATPathElement*) (*SurfList)[i];
 CATBaseUnknown *spUnknownObj = mPath->CurrentElement();
 CATLISTV(CATBaseUnknown_var) CellList;

CATIMfGeometryAccess* GeomAcc = NULL;
spUnknownObj-> QueryInterface

(IID_CATIMfGeometryAccess,(void**)&GeomAcc);
 GeomAcc->GetCells(CellList);

Then, the geometric dimension of each item in CellList is observed to determine if it is a line

(dimension 1) or a surface (dimension 2). If it is a line, then the end points represent the vertices

of the surface and are stored in double arrays a, b, and c. If it is of dimension 2, it must be

the surface face itself and the area of the face is extracted and stored in a variable called area.

 for (int j=1; j<=CellList.Size(); j++)
 {
 CATCell_var tmpCell = CellList[j];
 short dim = tmpCell->GetDimension();
 if (dim == 1)
 {
 //Extract point data into a, b, and c
 }

 if (dim == 2)
 {

CATFace_var face = tmpCell;
 area = face->CalcArea();
 }
 }

Once the above routine is complete, the vertex data along with the surface area are known and

the point cloud can be generated. First the number of needed points is determined based on the

surface area and the point density variable obtained in an earlier step from the user. The random

point is then appended to HolePoints which is a data structure used to store all points of 𝐶𝐶𝑓𝑓 .

 46

 int numPoints = (int)(area*pDens);
 if (numPoints<1) numPoints = 1;

 for (int j=1; j<numPoints; j++)
 {
 //generate 2 random numbers
 double r1 = (rand()%10001)/10000.0;
 double r2 = (rand()%10001)/10000.0;

 //generate random point coord on the triangle
 ArrMult(a,(1-sqrt(r1)));
 ArrMult(b,(sqrt(r1)*(1-r2)));
 ArrMult(c,(sqrt(r1)*r2));

 ArrPlus(d,a,b);
 ArrPlus(p,c,d);
 //this results in p = a+b+c
 HolePoints.Append(p);
 }
ArrMult and ArrPlus are defined as

void TTCStateCommand::ArrPlus(double point[3], const double
left[3], const double right[3])
{
 point[0] = left[0] + right[0];
 point[1] = left[1] + right[1];
 point[2] = left[2] + right[2];
}

void TTCStateCommand::ArrMult(double arr[3],double scale)
{
 arr[0] = arr[0]*scale;
 arr[1] = arr[1]*scale;
 arr[2] = arr[2]*scale;
}

The result of this step is shown graphically in Figure 4-5.

Figure 4-5: Uniform point cloud generation results

 47

4.4 Point Cloud Segmentation

To segment the point cloud into multiple cross section point clouds each point in

HolePoints is projected onto 𝐺𝐺, which is equal to the Y-axis in the example. The max and min

Y value of all points in HolePoints is used to separate the HolePoints into two point clouds.

The result of this step is shown in Figure 4-6.

4.5 Cross Section Point Cloud Projection

Due to the simplification employed in this implementation, of using a straight line to

represent 𝐺𝐺, the normal vector of the projecting plane ⊿𝐶𝐶𝑗𝑗 is equal to the Y-axis direction. In

order to locate the projecting plane, all the points in 𝐶𝐶𝑗𝑗 (CSPointList) are averaged together to

yield a reference point AveCSPnt.

 for (int i=1; i<= CSPointList.Size(); i++)
 {
 AveCSPnt+= CSPointList[i];
 }

AveCSPnt = AveCSPnt/CSPointList.Size();

Figure 4-6: Point cloud segmentation

𝑀𝑀𝑎𝑎𝑥𝑥𝐷𝐷𝑠𝑠𝑠𝑠𝑜𝑜
2

𝑀𝑀𝑎𝑎𝑥𝑥𝐷𝐷𝑠𝑠𝑠𝑠𝑜𝑜

𝐶𝐶0 𝐶𝐶1

 48

The CATIA CAA RADE API includes many object classes that are designed for quickly doing

common geometric operations. Two of these objects that are used at this point and throughout

the implementation are CATMathVector and CATMathPoint. The following code demonstrates

how member functions and operators of these two classes help to project the point cloud onto the

projecting plane.

 for (int i=1; i<= CSPointList.Size(); i++)
 {
 CATMathPoint* tmpPoint = new CATMathPoint(CSPointList[i]);
 CATMathVector cur2ave = CSPointList[i]-AveCSPnt;
 CATMathVector radVec = ((*GenDir^cur2ave)^*GenDir);
 *tmpPoint = *tmpPoint - (cur2ave*(*GenDir))*(*GenDir);
 }

First a CATMathPoint, tmpPoint, is created based on the current cross section point. Then a

CATMathVector cur2ave is instantiated by subtracting the average point from the current point.

In the code snippet, GenDir is a unit vector in the direction of 𝐺𝐺. By taking the cross product

(symbolized by ^ in the CATMathVector class) of GenDir and cur2ave followed by the cross

product of GenDir again, the projection of cur2ave onto the projecting plan is obtained and

named radVec. If this is the first point to be projected then it represents 𝜃𝜃 = 0 and a new

coordinate system (XVec ,YVec) is defined based on this projected vector.

 if (i==1)
 {
 YVec = radVec;
 XVec = (*GenDir)^YVec;
 Theta = 0;
 }

The resultant 2D point cloud is shown in Figure 4-7.

 49

4.6 Polar Mapping

To determine the polar coordinates of each point in the current CSPointList, each

point’s component in the XVec and YVec directions is obtained and the angle theta is

determined based on the following equation

𝜃𝜃 = cos−1(𝑟𝑟𝑎𝑎𝑟𝑟𝑉𝑉𝑟𝑟𝑎𝑎 ∙ 𝑌𝑌𝑉𝑉𝑟𝑟𝑎𝑎) (4-1)

When using 𝑎𝑎𝑜𝑜𝑠𝑠−1 however, it is important to know which quadrant the point lies in with special

attention being given to when the point lies directly on the axis line. To manage these issues the

following code was implemented.

double yCheck = radVec*YVec;
 double xCheck = radVec*XVec;

 //when the point is on an axis line
 if(yCheck > .99999999999) Theta = 0;
 else if(yCheck < -.99999999999) Theta = 2*pi;
 else if(xCheck < -.99999999999) Theta = 3*pi/2;
 else if(xCheck > .99999999999) Theta = pi;
 //1st quadrant case
 else if(yCheck > 0 && xCheck > 0) Theta = acos(radVec*YVec);

Figure 4-7: a) Projecting planes, b) 2D projected point cloud

Projecting plane for each
cross section

Cross section
average points

a) b)

 50

 //2nd quadrant case
 else if(yCheck < 0 && xCheck > 0) Theta = pi - acos(radVec*(-

1*YVec));
 //3rd quadrant case
 else if(yCheck < 0 && xCheck < 0) Theta = pi + acos(radVec*(-

1*YVec));
 //4th Quadrant case
 else Theta = 2*pi - acos(radVec*YVec);

Finally the r value of the points can be determined by taking the length of radVec and the 𝜃𝜃 bin

that the point lies in can be determined based on the number of 𝜃𝜃 bins being used. This example

uses an interval of 1 which creates 360 𝜃𝜃 bins.

 rad = radVec.Norm();
 radVec.Normalize();

Each point is separated into its respective bin by dividing 𝜃𝜃 by interval and truncating the

result.

 int bin = floor(Theta / interval);
 UniDistPoints.at(bin).push_back(tmpPoint);

Notice that the points are stored in a 2-dimensional vector (UniDistPoints) with the top level

having a set length of 360, while the 2nd level of vectors are dynamically allocated. This makes

averaging the different points in each bin a trivial nested loop and results in the creation of an

average bin point (binAvePnt). A simplified graphical representation of this concept is shown in

Figure 4-8.

The average bin point binAvePnt is then stored in another vector of set length 360 along

with the radial distance 𝑟𝑟 of binAvePnt called curRad.

pnts360.erase(pnts360.begin()+j);
 pnts360.insert(pnts360.begin()+j,binAvePnt);

 rads360.erase(rads360.begin()+j);
 rads360.insert(rads360.begin()+j,curRad)

 51

Many times there are large angles that have no point data to represent the cross section.

This is usually due to the fact that the feature intersects the design space, as in our example case.

Figure 4-8 shows this lack of point data along the left edge of the cross section. The algorithm

senses this issue during the 𝜃𝜃 bin averaging by keeping track of consecutive 𝜃𝜃 bins that have no

point data in them to average. When a set number of consecutive 𝜃𝜃 bins are detected with no

point data, each of the user specified intersection surfaces 𝐷𝐷𝑆𝑆𝑥𝑥 are tested to see if the current 𝜃𝜃

direction intersects any of these surfaces. If there is an intersection, a point is generated at the

intersection and added to 𝐶𝐶𝑗𝑗���⃗ to represent that angular position of the polar map of the cross

section. The implementation of this process is shown below where SpecListOfFaces is 𝐷𝐷𝑆𝑆𝑥𝑥 ,

and spSearchDir is the direction of the current 𝜃𝜃 bin. First, a copy of the cross section reference

point AveCSPnt is projected in spSearchDir direction until it intersects one of the surfaces in

SpecListOfFaces.

Figure 4-8: Averaged 𝜽𝜽 bin points

Averaged Pnts
binAvePnts

No data over
large angle

 52

 for (int j=0; j<pnts360.size(); j++)
 {

//if there is a data gap around theta bin j, check for
//intersections with design space surfaces

 for (int k=1; k<=SpecListOfFaces.Size(); k++)
 {
 //create the projection of AveCSPnt on each face unless it fails
 CATISpecObject_var PntToProj = CreateGSMPoint(AveCSPnt,false);
 CATIGSMProject_var projection = spGSMFactory->

 CreateProject(PntToProj,SpecListOfFaces[k],spSearchDir,FALSE);
 CATISpecObject_var spProj = projection;
 HRESULT hr;
 CATTry
 {
 hr = spProj->Update();
 }
 CATCatch(CATMfErrUpdate,error)
 {
 printf("No intersection with design space surfaces\n");
 continue;
 }
 CATEndTry;

If the projection does not update correctly, there must not be an intersection with the design

space surface and the algorithm moves on to the next surface. If it was successful, then the

CATIGeometricalElement interface is used to access the CATBody result of the projection.

 CATBody_var spBody = NULL_var;
 CATIGeometricalElement_var spGeoEle = NULL_var;
 spGeoEle = spProj;
 spBody = spGeoEle->GetBodyResult();

Then, the vertices are retrieved from the CATBody, a point is created (GSMPoint) and finally

added to pnts360.

 CATLISTP(CATCell) listVertexCells;
 spBody->GetAllCells(listVertexCells,0);

 for (int i = 1; i <= listVertexCells.Size(); i++)
 {
 CATVertex *aVertex = (CATVertex*) (listVertexCells[i]);
 CATPoint *aCatPoint = aVertex->GetPoint();
 CATMathPoint* tmp_pt = new CATMathPoint(0,0,0);
 aCatPoint->GetMathPoint(*tmp_pt);
 if(CreatePnts360) CreateGSMPoint(*tmp_pt);
 pnts360.erase(pnts360.begin()+j);
 pnts360.insert(pnts360.begin()+j,tmp_pt);
 }

} //(end of for loop k)
} //(end of for loop j)

 53

In our example, nine intersection points were added. With this addition, the averaged

points from our example can be seen in Figure 4-9 along with its corresponding polar map.

Figure 4-9: Cartesian points with corresponding polar map

4.7 Finding the Peaks

The following code shows the implementation of the routine described in section 3.2.6

used to identify “peak” points in the polar map 𝐶𝐶𝑗𝑗′ . In this code checkPeakNum = 𝑜𝑜𝑘𝑘𝑜𝑜𝑎𝑎𝑟𝑟 ,

numPeaks = 𝑜𝑜𝑘𝑘𝑎𝑎𝑎𝑎𝑜𝑜 , and range = 𝑟𝑟𝑛𝑛𝑟𝑟.

 while (checkPeakNum > numPeaks && range < 150)
 {
 checkPeakNum = 0;

range = 0;
 peaks.clear();
 peaks.resize(rads360.size(),NULL);
 range++;

 for (int i=0; i<rads360.size(); i++)
 {
 if (rads360[i] == 0) continue;
 bool isMax = TRUE;

𝐶𝐶𝑗𝑗���⃗

𝐷𝐷𝑆𝑆𝑥𝑥 intersection points

𝐶𝐶𝑗𝑗′

 54

 //get all rads within a certain range of the current point
 std::vector<double> nearPnts;
 for (int j=-range; j<=range; j++)
 {

nearPnts.push_back(rads360[(i+j+rads360.size())%
rads360.size()]);

 }

 //if it is the max R within range, mark it as a peak.
 double maxR=rads360[i];
 for (int k=0; k<=range*2; k++)
 {
 if (k==range) continue;
 if (maxR <= nearPnts[k]) isMax = FALSE;
 }
 if(isMax)
 {
 peaks.erase(peaks.begin()+i);
 peaks.insert(peaks.begin()+i,rads360[i]);
 checkPeakNum++;
 }
 }
 }

It is important to note the data structure used in this portion of the code. When a peak is

identified, the 𝑟𝑟 value is stored in a vector called peaks which has a set size equal to that of

rads360 or points360. The 𝑟𝑟 value is stored in the same position within peaks as the 𝑟𝑟 value

obtained from rads360. This makes identifying peak points in 𝐶𝐶𝑗𝑗′ in later steps a trivial matter. If

peaks[i] is not empty, then rads360[i] and i represent the (𝑟𝑟,𝜃𝜃) coordinates respectively of a

“peak” point in polar space.

4.8 Parametric Shape Template Generation

To generate 𝑟𝑟 values from the shape templates for each 𝜃𝜃 value in 𝐶𝐶𝑗𝑗′ , a number of sub

routines were defined for each type of shape template. Each one is passed the reference to the

vectors rads360 and peaks, and returns a double representing the fitness of the shape template

 55

to the actual point data. The Quadrilateral Shape Template is shown here. All other shape

templates follow a similar method but have slight differences that are intuitive.

First, the variables to be used are declared and initialized.

 int th1, th2, th3, th4;
 double pRad1,pRad2,pRad3,pRad4;
 double reportFit = 0;
 bool firstTime = true;

Then, two new vectors are filled representing all of the “peak” 𝑟𝑟 and 𝜃𝜃 values.

 for (unsigned int i=0; i< peaks.size(); i++)
 {
 if (peaks[i] != 0)
 {
 peakRads.push_back(rads360[i]);
 theta.push_back(i);
 }
 }

Now, the pRad and th variables declared above are assigned actual values. Since these values

must be assigned in consecutive order in terms of 𝜃𝜃, an exhaustive search of the possible

combinations of these values can be done with merely a nested for loop as shown below

 for (int m=0; m<peakRads.size()-3; m++)
 {
 th1 = theta[m];
 pRad1 = peakRads[m];
 for (int j=m+1; j<peakRads.size()-2; j++)
 {
 th2 = theta[j];
 pRad2 = peakRads[j];
 for (int k=j+1; k<peakRads.size()-1; k++)
 {
 th3 = theta[k];
 pRad3 = peakRads[k];
 for (int l=k+1; l<peakRads.size(); l++)
 {
 th4 = theta[l];
 pRad4 = peakRads[l];

The fitness of each of these different combinations of peaks within the quadrilateral template are

calculated by subtracting 𝐺𝐺(𝜃𝜃) (Equation 3-7) from the actual 𝑟𝑟 value corresponding to 𝜃𝜃 from

𝐶𝐶𝑗𝑗′ . This implementation is limited in scope to straight line shape templates, so a generic routine

 56

(GenerateLineTemplate) was created which interpolates a point on a straight line when given

the two endpoints and returns the distance of that point from the polar origin. To determine

which of the piecewise functions from equation 3-7 to use, the current 𝜃𝜃 value must be compared

to the four 𝜃𝜃 values of the peaks being used. Then, the appropriate limits can be given to

GenerateLineTemplate to generate the correct 𝐺𝐺(𝜃𝜃).

 for (int i=0; i< rads360.size(); i++)
 {
 if (rads360[i] == 0) continue;
 if (i > th1 && i <= th2)
 {

double tmp = GenerateLineTemplate
(i,th1*pi/180,th2*pi/180,pRad1,pRad2));

tmp = fabs(rads360[i]- tmp);
reportFit += tmp;
}

This is then repeated for the 4 other possible locations of the current θ value within the shape

template and the inputs to GenerateLineTemplate are changed accordingly.

 else if (i > th2 && i <= th3)…
 else if (i > th3 && i <= th4)…
 else if (i > th4 || i <= th1)…
 else printf("theta does not fall in a

real quadrant");
 }

The set of peaks that produce the lowest reportFit are kept and the rest are ignored. This

process is repeated for each defined shape template so that the templates can be compared to one

another. The polar maps of the analytical shape templates super-imposed on 𝐶𝐶𝑗𝑗′ is shown in

Figure 4-10.

Notice that the analytical shape templates only produce comparison points for points that

exist in 𝐶𝐶𝑗𝑗′ . This can be seen within the orange box of Figure 4-10. The spacing of the points

generated by the shape templates perfectly match the spacing of the points in the sample data. If

this were not the case, the reportFit variable would be biased and the comparison of shape

templates in the next step could be rendered useless.

 57

Figure 4-10: Analytical shape templates compared to 𝑪𝑪𝑪𝑪′

4.9 Template Selection

The implementation of the Template Selection process is trivial. Each of the reportFit

variables for each cross section must be summed. Then the template with the lowest summed

reportFit is chosen unless the user specified through the GUI that a specific shape template

should be used.

In our example problem the fitness values for each cross section and shape template are:

Table 4-1: 2D and 3D Approximation Errors for Defined Templates

 Circle Triangle Quadrilateral

𝜺𝜺𝟐𝟐𝑫𝑫
CS 1 1200 4000 600

CS 2 1450 3500 1250

𝜺𝜺𝟑𝟑𝑫𝑫 2650 7500 1850

Polar Map

0

5

10

15

20

25

0 1 2 3 4 5 6

Theta

D
is

ta
nc

e

Sample
Circle
Triangle
Quad

 58

Comparing the approximation error of each template to the number of parameters required to

represent each template illuminates the tradeoff between model complexity and model fitness.

Table 4-2: Cross Section Fitness vs Complexity

Template 𝜺𝜺𝟑𝟑𝑫𝑫 # Parameters
Circle 2650 2

Triangle 7500 18
Quadrilateral 1850 24

A pair-wise comparison of each template fitness as well as a pair-wise comparison of the

number of parameters required to represent the entire feature with a given template are presented

in Table 4-3 and

Table 4-4 respectively.

Table 4-3: Pair-wise Comparison of Template Fitnesses

 Fitness Comparison

 Circle Triangle Quadrilateral
Circle 0% -183% 30%

Triangle 65% 0% 75%
Quadrilateral -43% -305% 0%

Table 4-4: Pair-wise Comparison of Template Complexity

 Complexity Comparison

 Circle Triangle Quadrilateral
Circle 0% -200% -300%

Triangle 67% 0% -33%
Quadrilateral 75% 25% 0%

 59

4.10 Geometry Creation

A CATIGSMPolyline was used to create the cross sections (except for the circle which

utilized a CATIGSMCircleCenterAxis). The CATIGSMPolyline represents an n-sided polygon

with 𝐶𝐶2 continuity. It is formed by adding a fillet to each corner of the polygon which maintains

tangency to the two adjoining lines. It requires, as input, the location of each point as well as the

radius of the fillet corresponding to each point. These cross sections are then used as input into

the CATIGSMLoft object and the solid feature is either added or subtracted from the design space.

A graphical representation of this whole process for the single feature treated in this

implementation, including the created geometry, is shown in Figure 4-11.

4.11 Results

The results of the implementation of the methods in four different TO case studies are

presented in Table 4-5. The first column shows the original design space and loading conditions.

The second column shows the tessellation object obtained from exporting an iso-surface of the

TO results as discussed in section 2.1.2. The third column shows the final parametric model with

Figure 4-11: Graphical representation of the TO results refinement process

CATIGSMPolylines CATIGSMLoft

 60

the outlines of the features that were created by the algorithm highlighted in orange. The fourth

column shows the number of features used to approximate the optimal model. Finally, the fifth

column shows the percent volume of the optimal model that the parametric model occupies. In

each case, the objective of the TO was to minimize total mass subject to a total deflection

constraint at a certain point. The point at which this deflection constraint was applied is

represented in Table 4-5 with an X.

Table 4-5: Results of Implementation on 4 Models

Loading Conditions TO Results
(Optimal Part) Parametric Model #

Features

% of
Optimal
Volume

I

4 133%

II

10 158%

III

3 101%

IV

2 126%

X

X

X

X

 61

Table 4-6 demonstrates the difference which results from using different shape templates on the

same part. Notice that as the number of parameters increases, the volume approaches the optimal

part volume.

Table 4-6: Tradeoff Between Complexity and Approximation Error

Template Result
Number of

Parameters (using 2
cross sections)

% of Optimal
Volume

Triangle

30 130%

Quadrilateral

36 114%

Pentagon

42 101%

The reader may recall that the results from this implementation are intended to be used as a

starting point for parametric optimization in the next step of the design process (see section 1.3).

This brings up the question of how to measure the performance of the shape recognition

algorithm. Industry standard practice would suggest that the models obtained from the algorithm

be meshed and loaded in the same manner that the original part was and their performances in

terms of stress, deflection, and mass be compared to what the Topology Optimization results said

it should be. The parametric models shown in Table 4-5, however, are not intended to be the

 62

finalized designs. Instead, the intent was to establish an appropriate geometric fit to the optimal

model such that the subsequent parametric optimization will yield the best possible performance.

For this reason, the volume of the resultant model was compared to the volume of the optimal

model to provide feedback as to the effectiveness of the methods employed.

 63

5 CONCLUSIONS AND FUTURE WORK

The main objective of this research was to create an automated process to evaluate a

given set of points and surfaces from TO results and determine the best fit parametric CAD

feature to represent the set of surfaces and points. This was to be done using standard CAD

features that allow for simple parameterization and parametric optimization in later steps of the

design process. At the same time, this process was intended to allow the designer/engineer to

maintain control of the tradeoff between goodness of fit and geometric complexity.

Chapter 3 presented a generalized algorithm for determining the best shape to

approximate a given set of TO results surfaces. This best fit shape was chosen from among a set

of predefined parametric Shape Templates of varying complexities. Chapter 4 presented a simple

implementation of the methods from Chapter 3 within the CATIA V5 R18 environment. This

implementation was used to demonstrate the effectiveness of the methods on four different case

studies. The case studies showed that a close geometric approximation to the optimal part can be

obtained through using the method (Table 4-5). The implementation also showed the magnitude

of the tradeoff between model complexity and model fitness and that this tradeoff can be

effectively managed through using the methods of Chapter 3 (Table 4-6).

This thesis demonstrates that a shape recognition algorithm can be constructed to

automatically recognize the topological entity that most closely approximates surfaces from TO

results. It also shows that this can be done using simple geometric shapes that form standard

features in most commercial CAD packages. This allows the designer/engineer to create

 64

topologically optimal parts from within the CAD-centric environment. The simplicity of features

and design also allow the model to be represented in a standard CAD format that other designers

who come in contact with the model later will be able to work with in an intuitive, standard way.

5.1 Future Work

Although the results in chapter 4 demonstrate the effectiveness of the methods presented

in this thesis, there are many opportunities for improvement. There are possible advancements

that will increase the scope and/or eliminate some of the limitations of the methods. This section

will present a few promising possibilities for future research.

5.1.1 Shape Distributions

One alternative method to Shape Templates that was considered in the initial phases of

this research has to do with Shape Distributions [13] (see section 2.2.6). Shape Distributions

could be used in the 3D realm in the same way that Shape Templates were used in this thesis in a

2D realm. Figure 5-1 shows shape distributions for open ended 3D rectangular extrusions of

varying dimensions. These distributions were created by taking 100,000 random measurements

between two points on the surface of the extrusion and creating a histogram of those

measurements.

From these shape distributions it is possible to pick out the defining dimensional values

of the original rectangular extrusion. For example, looking more closely at Figure 5-1 (d), it is

easy to see that peaks occur in the shape distribution at the dimensions 25, and 50.

 65

Figure 5-1: Shape distributions of for variations of an open ended rectangle

If a method were discovered to create shape distributions on the fly for different types of

3D shapes according to an analytical model instead of by taking 100,000 random measurements,

then shape distributions could be used in 3D space in the same way that Shape Templates were

Figure 5-2: Parameters taken from a shape distribution

l=25 w=50 max=61
l

w

max

h

ℎ = �𝑠𝑠𝑎𝑎𝑥𝑥2 − 𝑤𝑤2 + 𝑙𝑙2 = 25

a) b) c)

d) e) f)

g)

 66

used in 2D space. This would allow geometry to be created without sweeping through multiple

cross sections, which would reduce some of the approximation error of the methods presented in

this thesis.

5.1.2 Non-convex shape templates

One of the major limitations of the methods presented in this thesis is the requirement

that all shape templates be convex shapes. One possible solution to this problem is to create cross

sections using multiple reference points. Figure 5-3 shows the difference between the current

method (left) and the theoretical proposed method (right). In the image on the right, if the

relationship between points A and B are known, then the whole non-convex shape could be

represented with multiple convex shape templates. If this is possible, the flexibility of the

methods would be greatly increased.

Figure 5-3: Convex template (left) and proposed non-convex template (right)

A

B

 67

5.1.3 Other

One of the major limitations of the shape recognition algorithm is the ability to segment

the input surfaces in a useful way. Currently, feature segmentation is done by a human with

selection tools that are built into the CAD package. It is very difficult to select the desired

surfaces with these rudimentary tools. Feature segmentation is also a source of variation. When

one person looks at a model, they may segment the model into different features in a different

way from the next person. This is not necessarily bad, but there should be some way to know if

the feature surface segmentation step could be improved to yield improved overall results

More research is also needed in the area of spine rules. Spines control the shape of the

feature between cross sections (see section 3.2.1). The Feature Orientation Geometry, which is a

user input, is currently fulfilling this role. In the implementation of chapter 4, this Feature

Orientation Geometry was simplified significantly in order to prove out the concept. An

automated process to infer the Feature Orientation Geometry would add a great deal of value to

the algorithm as a whole.

 68

 69

REFERENCES

[1] Baumgartner, A.; Harzheim, L.; Mattheck, C.; “SKO (Sot Kill Option): the Biological way
to find an optimum structure topology”, International Journal of Fatigue, vol. 14, 387-393,
1992.

[2] Bendsoe, M.; Kikuchi, N.; “Generating Optimal Topologies in Structural Design Using a

Homogenization Method”, Computer Methods in Applied Mechanics and Engineering,
71:197-224, 1988.

[3] Bernardini, F.; Bajaj C. L.; Cheny J.; Schikore D. R.: “Automatic Reconstruction of 3D

CAD Models”, Department of Computer Sciences, Purdue University, West Lafayette, IN,
1999 http://ww.cs.purdue.edu/research/shastra.

[4] Blattman W. R.: “Generating CAD Parametric Features Based on Topology Optimization

Results”, MS Thesis, Brigham Young University, Provo, UT, 2008 .

[5] Campelo F.; Ota S.; Watanabe K.; Igarashi H.: “Generating Parametric Design Models

Using Information From Topology Optimization”, IEEE Transactions on Magnetics, 44-
6:986-989, 2008.

[6] Eschenauer, H. A.; Olhoff N.: “Topology optimization of continuum structures:A review”,

Appl Mech Rev vol 54, no 4, July 2001.

[7] Hoppe, H.; DeRose, T.; Duchamp, T.; McDonald, J.; Stuetzle, W.; “Surface Reconstruction

from Unorganized Points”, Computer Graphics, 26, 2, 1992

[8] Hsu, M.-H.; Hsu, Y.-L.: “Interpreting three-dimensional structural topology optimization

results”, Computers and Structures, 83:327-337, 2005.

[9] Jain A. K.; Zhong Y.; Lakshmanan S.: “Object Matching Using Deformable Templates”,

IEEE Transaction on Pattern Analysis and Machine Intelligence, 18-3:267-278, 1996.

[10] King, M. L.; Fisher, M.J.; Jensen, C.G.; “A CAD-centric Approach to CFD Analysis With

Discrete Features”, Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 279-288,
2006.

[11] Lin, C.-Y.; Chao L.-S.; “Automated image interpretation for integrated topology and

shape optimization”, Struct Multidisc Optim, 20:125-137, 2000.

http://ww.cs.purdue.edu/research/shastra�

 70

[12] Lin, C.-Y.; Lin S.-H.; “Artificial neural network based hole image interpretation techniques
 for integrated topology and shape optimization”, Computer Methods in Applied Mechanics
 and Engineering, Vol. 194, Nos. 36-38, 3817-3837, 2005

[13] Osada, R.; Funkhouser, T.; Chazelle B.; Dobkin, D.: “Shape Distributions”, ACM

Transactions on Graphics, 21-4 807-832, 2002.

[14] Rozvany, G.I.N.; “Aims, Scope, Methods, History and Unified Terminology of Computer-

Aided Topology Optimization in Structural Mechanics”, Struct Multidisc Optim, 21, 90-
108, 2001

[15] Tang, P.-S.; Chang, K.-H.: “Integration of topology and shape optimization for design

of structural components”, Struct Multidisc Optim, 22:65–82, 2001.

[16] Yin L.; Ananthasuresh G. K.; “A novel topology design scheme for the multi-physics

problems of electro-thermally actuated compliant micromechanisms”, Finite Elements in
Analysis and Design 40, 1317-1331, 2004

	Brigham Young University
	BYU ScholarsArchive
	2010-03-12

	Recognizing Parametric Geometry from Topology Optimization Results
	Shane H. Larsen
	BYU ScholarsArchive Citation

	Title Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Objectives
	Statement of Scope
	Feature Segmentation/Selection
	Parametric Optimization (Shape Optimization)

	Guiding Principles
	Simple
	Parametric
	Automatic
	Standardized
	Measured

	Thesis Organization

	Literature review / Background
	Topology Optimization
	The Soft Kill Method
	Tessellation and Visualization of Topology Optimization Results

	TO Results Interpretation - Previous Approaches / Architectures
	Application Linked Architecture
	Mesh Refinement
	Image Processing
	2D Shape Templates
	B-Spline Cross Section Fitting
	Shape Similarity Matching Algorithms

	API Programming

	Methods
	Process Overview
	Shape Recognition Algorithm
	Inputs
	Uniform Point Cloud Generation
	Point Cloud Segmentation
	Cross Section Point Cloud Projection
	Polar Mapping
	Finding the Peaks
	Parametric Shape Template Generation
	Template Selection
	Geometry Creation

	Implementation and Implementation Results
	Environment
	Inputs
	Uniform Point Cloud Generation
	Point Cloud Segmentation
	Cross Section Point Cloud Projection
	Polar Mapping
	Finding the Peaks
	Parametric Shape Template Generation
	Template Selection
	Geometry Creation
	Results

	Conclusions and future work
	Future Work
	Shape Distributions
	Non-convex shape templates
	Other

	References

