
Brigham Young University
BYU ScholarsArchive

All Theses and Dissertations

2011-10-05

Automated Flow Path Design Optimization Using
Mesh Morphing
William Dennis Gough
Brigham Young University - Provo

Follow this and additional works at: https://scholarsarchive.byu.edu/etd

Part of the Mechanical Engineering Commons

This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an
authorized administrator of BYU ScholarsArchive. For more information, please contact scholarsarchive@byu.edu, ellen_amatangelo@byu.edu.

BYU ScholarsArchive Citation
Gough, William Dennis, "Automated Flow Path Design Optimization Using Mesh Morphing" (2011). All Theses and Dissertations.
2843.
https://scholarsarchive.byu.edu/etd/2843

http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2843&utm_medium=PDF&utm_campaign=PDFCoverPages
http://home.byu.edu/home/?utm_source=scholarsarchive.byu.edu%2Fetd%2F2843&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu?utm_source=scholarsarchive.byu.edu%2Fetd%2F2843&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2843&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd?utm_source=scholarsarchive.byu.edu%2Fetd%2F2843&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarsarchive.byu.edu%2Fetd%2F2843&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.byu.edu/etd/2843?utm_source=scholarsarchive.byu.edu%2Fetd%2F2843&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@byu.edu,%20ellen_amatangelo@byu.edu

Automated Flow Path Design Optimization

Using Mesh Morphing

William D. Gough

A thesis submitted to the faculty of

Brigham Young University

in partial fulfillment of the requirements for the degree of

Master of Science

C. Greg Jensen, Chair

Steven L. Gorrell

Dale R. Tree

Department of Mechanical Engineering

Brigham Young University

December 2011

Copyright © 2011William D. Gough

All Rights Reserved

ABSTRACT

Automated Flow Path Design Optimization

Using Mesh Morphing

William D. Gough

Department of Mechanical Engineering

Master of Science

The use of CAD models and CFD analysis has become an essential part of fluid flow

design. To reduce the time spent determining a design, optimization frameworks have been

implemented to automate the process. Mesh morphing has been implemented within these

frameworks to further reduce the time needed. While optimization methods have been

developed to optimize a fluid flow path, the optimum design needs to be recreated in a CAD

model. A method has been developed which eliminates the need to recreate the optimal results

in CAD. This is accomplished by using mesh morphing, CAD and CFD together in an

optimization framework. The method developed has been implemented with a significant time

savings over the use of a traditional meshing optimization framework.

Keywords: William Gough, optimization, mesh morphing, intake design, design automation

ACKNOWLEDGMENTS

I would like to express my appreciation for all those who have helped me to complete this

research. I thank Dr. Jensen, for his support, guidance and unwavering belief in me to

accomplish something great. I thank Dr. Gorrell and Dr. Tree for their guidance and input

during this process. I am grateful to Ron Thue at Altair Engineering and the team at the Sandy,

Utah office for their help and guidance with HyperWorks. I also thank Mark Landon and John

Jenkins from Optimal Solutions for their guidance and help.

Finally, I thank my wife, Katie, for her constant support and encouragement and our

children for their sacrifice and support.

 v

TABLE OF CONTENTS

LIST OF TABLES .. vii

LIST OF FIGURES ... ix

1 Introduction ... 1

1.1 Problem Statement .. 2

1.2 Objectives ... 3

1.3 Delimitations ... 3

2 Background ... 5

2.1 Intake Manifold Design .. 5

2.2 Parametric Computer Aided Design ... 6

2.3 Application Programming Interface ... 7

2.4 Mesh Deformation Technology .. 9

2.5 Computer Aided Design and Computer Aided Engineering Tools Integration 15

2.5.1 Attribute Management .. 15

2.6 Optimization ... 16

2.7 Flow Optimization Methods ... 17

3 Method ... 21

3.1 Parametric Flow Path Model .. 22

3.2 Flow Path Mesh Generation.. 24

3.3 Morphing Procedure ... 24

3.4 CFD Procedure.. 26

3.5 Optimization ... 27

3.6 Summary ... 30

 vi

4 Implementation ... 31

4.1 Parametric Model .. 32

4.2 Mesh Generation ... 36

4.3 Mesh Morphing Process ... 39

4.4 Flow Model Analysis .. 42

4.5 Optimization Framework .. 46

4.5.1 Optimization Using Traditional Method ... 51

4.5.2 Optimization Using Morphing Method .. 51

5 Results .. 53

5.1 Traditional Method Loop .. 53

5.2 Morph Method Loop ... 56

5.3 Traditional and Morph Loop Comparison .. 58

6 Conclusions .. 63

6.1 Future Work .. 64

REFERENCES .. 67

Appendix A. C++ NX Executable code ... 71

A.1 Tokenizer Header File .. 71

A.2 NX Main .cpp File .. 71

Appendix B. HyperMorph TCL script for meshing ... 75

Appendix C. HyperMorph TCL Script ... 79

Appendix D. Fluent Journal File .. 83

D.1 Mesh Fluent Journal ... 83

D.2. Morph Journal File .. 84

 vii

LIST OF TABLES

Table 3-1: Flow Feature Identification ..23

Table 3-2: Geometric Feature Identification..23

Table 4-1: Parameter Variables and Limits ...34

Table 4-2: Model Flow Features ..37

Table 4-3: Mesh Type and Size ...39

Table 4-4: Model Geometric Features ...41

Table 4-5: Flow Boundary Conditions ..42

Table 4-6: Grid Independence Mesh Size and Flow Results ...43

Table 4-7: Grid Independence Results Comparison ..43

Table 4-8: Flow Solver Setup ..45

Table 5-1: Computer Specs ..53

Table 5-2: Traditional Optimization Results ...54

Table 5-3: Morph Optimization Results ..56

 viii

Table 5-4: Loop Comparison ...58

 ix

LIST OF FIGURES

Figure 2-1: Smith Port Deformation Example ...10

Figure 2-2: Morph Volume ..12

Figure 2-3: Morphed Volume Comparison..13

Figure 2-4: Node Deformation Example ...13

Figure 2-5: Domain Morph Example ...14

Figure 3-1: Optimization Framework Overview ...21

Figure 4-1: Optimization Framework Implementation ..31

Figure 4-2: Design Space ...32

Figure 4-3: Control Dimensions and Parameters ...33

Figure 4-4: Control Dimensions End View ...33

Figure 4-5: Pc1 = 28mm ...35

Figure 4-6: Pc1 = 26mm ...35

Figure 4-7: Mesh Sample ...38

 x

Figure 4-8: Optimization Loop Example ...47

Figure 4-9: Optimization Settings ..48

Figure 5-1: Traditional Velocity Contour Comparison ...55

Figure 5-2: Traditional Static Pressure Contour Comparison ..56

Figure 5-3: Morphing Velocity Contour Comparison ...57

Figure 5-4: Morphing Static Pressure Comparison ...58

Figure 5-5: Optimal Velocity Comparison ..59

Figure 5-6: Elbow Velocity Profile..59

Figure 5-7: Pressure Profile Comparison ...60

1

1 INTRODUCTION

Automotive engine development is a critical part of vehicle development. An extremely

competitive market, customer expectations and government regulations all contribute to the need

to continually improve the automotive engine. Some of the critical factors of engine

development are power, efficiency, durability, noise, vibration, and cost to mention a few.

Because of the many different factors of development, a broad spectrum of expertise is needed in

many areas and needs to come together seamlessly to be both effective and competitive. An

efficient design and development process is needed to be able to accomplish the task of

efficiently bringing all these disciplines together for a desirable final product. To this end, the

use of computer aided design, analysis, and manufacturing tools (CAx tools) provide a means to

accomplish this automation. Though these tools have vastly increased the productivity of

engineering development in general, there is still great potential for the implementation of these

tools in the development of the automotive engine.

With minimal user input, an ideal automotive engine development tool would be able to

automatically generate the geometry, perform the analyses, and optimize an engine or sub-

assembly based on the needed design requirements. The creation of this tool must effectively

use CAx tools and include knowledge based engineering (KBE), CAD-centric and database-

centric model and information management, efficient handling and passing of data from one

process or program to another, robust parametric model creation, efficient and automated

2

generation of analysis models and optimization updates and many others. The design process

should be fast and simple to extract the necessary information from the various analyses and

optimization routines. The responsible personnel should be able to quickly select the most

appropriate design based on the available information that has been provided through the design

and analysis processes. While this comprehensive tool does not currently exist, there are many

examples of automated portions and tasks. These elemental tools have greatly contributed to the

reduction of time and costs of doing laborious engineering tasks, while contributing to better

designs a major component that enables engines to produce power is the air intake flow system.

The power an engine is able to produce is directly related to the amount of air that flows through

the engine. Because of the significant impact airflow design can have on performance and

efficiency, a tool is being considered that can automate much of the CAx design of this process.

The motivation for this research is to improve the design of intake manifolds. This will be

accomplished by developing a method that will aid in the design process of manifold runners,

which is the focus of this research. The method that will be developed for this research will be

an important step towards the development of a complete internal combustion engine tool.

1.1 Problem Statement

Intake manifold design for internal combustion engines currently takes a significant

amount of time to perform. Steps include generating the initial geometry for the space and

performance requirements, setting up and performing analysis for a given design, adjusting the

design to meet specified requirements, and repeating the process until a satisfactory flow design

is achieved. Frequently, engines are used in different vehicles where similar engine

requirements need to be met in a different design space. Changes in the new design space for an

engine, as well as changes in the required engine driving dynamics directly relate to the design or

3

redesign of the intake manifold. Going forward, design, redesign and analysis will be considered

the same. A change in a manifold design is mandated whenever the intake geometry is

obstructed or when the engine performance characteristics need adjustment. These necessitate

frequent redesign of an intake manifold to meet the new space and/or performance requirements.

To reduce the time it takes for these changes, an automated process is needed to reduce the

amount of time both for the initial design, as well as for changing performance requirements and

space constraints in the engine compartment.

1.2 Objectives

The Objective of this research is to reduce the amount of time it takes to design and

analyze an intake manifold runner by implementing design automation with CAx tools to

optimize the flow path of an intake runner. Two parts of this process will receive special focus.

1. . Integrate pipe flow analysis process from CAD, to meshing/morphing utility, to CFD

package, via an optimization framework.

2. Optimize the shape of an intake runner with full or partial automation.

1.3 Delimitations

Ideally, a tool that would both generate the geometry and then perform an optimization

on that design would be the purpose and intent of this research. This analysis would be

simulated using the desired engine operating conditions with a fully operating engine simulation

tool and detailed 3D analysis. While the ideal tool for this process would include the complete

intake system, the development of a tool this complex is beyond the scope of this thesis. The

scope will be limited to a steady state case with the intent to develop basic optimization methods

for pipe flow. The methods developed may be implemented into a complete analysis tool that

4

would include the complete intake system in a transient 3D analysis simulation. Within this

thesis, fundamentals will be developed which may be built on to create a more complete

optimization tool.

5

2 BACKGROUND

As mentioned, tools have been developed which implement parts of an automated design

process for engine development. While these tools and processes demonstrate many of the

capabilities possible, none have been found which completely utilize the capabilities currently

available through automation, integration and optimization. In this chapter, an overview of

currently available functions and basic methods will be covered. Also, different tools and

methods already developed will be discussed including their advantages and disadvantages. This

will lay the foundation for how these different methods may be used in unison to the greatest

advantage.

2.1 Intake Manifold Design

As mentioned previously, intake manifolds have a significant effect on engine

performance. Restrictions in the air flow such as an air filter, throttle plate, turns, or other

obstructions result in a loss of pressure from the inlet at atmospheric pressure to the pressure into

the cylinder. This pressure loss has the effect of making the engine underperform because work

is required to bring the air in through the obstacles of the intake system. This is sometimes

referred to as pumping work. To reduce the pressure losses it is important that a flow path with

the least amount of pressure drop is used. Another critical factor about the air flow through an

intake manifold is that it is transient. Because the air flow into a cylinder is constantly being

6

stopped and started pressure waves are formed within the intake manifold. Depending on the

length of the intake runners, valve timing and other factors, these pressure waves may be

reflected at the correct time at a specific engine speed to achieve additional power and efficiency.

This effect is referred to as a ram effect [1]. To take advantage of this effect over a broader

range of engine speeds, some intake manifolds have mechanisms that effectively change the

length of the intake runner so that better performance can be achieved over a broader engine

operating range.

Many different factors affect intake flow dynamics. Shape and cross-sections are two of

the important factors that determine a well-designed runner. For a complete discussion of engine

fundamentals and flow for internal combustion engines such as Heywood [1] and Ferguson and

Kirkpatrick [2].

2.2 Parametric Computer Aided Design

It has been estimated that approximately 80% of a designer’s time is spent redesigning

for different applications [3]. This emphasizes the need to reuse a part or part assembly and

model designs without manual redesign. Parametric modeling enables a model to be reused

many times during a part or assembly lifecycle [4]. Parametric computer aided design (CAD)

refers to the ability to update a CAD model with new dimensions or parameters without the need

to manually recreate or redesign the geometry. Parametric CAD enables changes to quickly be

made so design studies and optimizations can be performed for a specific application. These

capabilities exist in most modern CAD packages such as Siemens NX, Dassault Systems

CATIA, Autodesk Inventor and PTC Creo Elements/Pro.

What enables a model to be parametric is the ability to assign a name and dimension to a

given feature on a part or assembly and associate these parameters with other features or

7

dimensions. When a part or model has all of the dimensions assigned and constrained correctly,

one or more dimensions may be adjusted and the model will update to accommodate the

changes. If the parametric model is correctly constrained then little to no work will be needed to

reuse or adapt the model to a new assembly [5].

Dimensions on a part may have multiple constraints to make a model work given

differing requirements. As a simple example, an annulus may be considered. If the inner radius

needs to be changed and it becomes larger than the original outer radius, then the model is no

longer valid, but if a constraint relative to the inner radius is placed on the outer radius, such as

1.5 times the inner radius, then as the inner radius changes, the outer radius will automatically

adjust. This principle is applied to very complex models and assemblies, making it possible to

eliminate the need for a complete redesign when changes need to be made to different parts of

the model. It is important that each of the parameters in a model be assigned correctly when

making a parametric model so that the model will not fail when a specific design change is

implemented. The time it will take to make a completely parametric model is longer than a non-

parametric model, but the time it will take to adapt that model in the future can be nearly

completely eliminated [6].

Parametric CAD enables design time to be greatly reduced because models are able to be

adapted to similar applications with minimal user input. The ability to update a model this way

makes it possible to implement changes automatically via programming. The ability to program

CAD packages and other design tools is an integral part to design automation.

2.3 Application Programming Interface

An application programming interface (API) is a feature that enables a user access to

features and functions that the software uses [7]. This enables a user the ability to add

8

functionality, automate repetitive tasks and program routines to be used interactively in

executable format or in batch mode.

A software package may either have a common programming language that can be used

or it may have its own custom programming language. For example, the Siemens NX API can

be programmed in multiple languages, such as C, C++, Java and Visual Basic. Other programs

may have their own specific language that is used, such as the Ansys Developer Programming

Language (ADPL). Many benefits are enabled by an API. One is that modern CAD packages

and other Computer Aided engineering tools (CAx) have the ability to be programmed to

automate tasks that would take extensive amounts of time to complete when done manually. If a

program is developed that performs a series of tasks automatically, an engineer can use that time

for other development and research. There are numerous examples of different applications and

customizations that have been implemented using an API to customize different applications.

Using an API provides access to internal commands of a software tool so that they may be used

to create a program for that tool. In NX it is possible to write a program to perform a basic

geometric operation, such as make a cylinder of a specified size. An example by Hepworth [8]

demonstrates the use of a custom geometry kernel for composites design to speed up the design

and analysis process. In this example, the API was used to implement the kernel that replaced

the native geometry kernel. Because the kernel access through the API was indirect, a different

kernel was used to speed up the process. Another example of customization involves that of

implementing communication tools to capture design rationale. In this example, Mix [9] shows

how communication tools can be used to capture and record this information so that in the future

other engineers would be able to determine the background to decisions made during the design

9

and analysis process. This method involves the implementation of Skype into NX to facilitate

design.

API’s can be used in multiple ways to implement needed customization for a specific

design or process. As a result engineers are able to save the time and money that otherwise

would have been used without the utilization of a programming interface.

2.4 Mesh Deformation Technology

“Over 50% of the time spent in industry on a CFD project is devoted to the definition of

the domain geometry and grid generation” [10]. While this comment is general and not focused

on a specific industry, it is indicative of the amount of time that is used for grid generation for

CFD projects. The model preparation for a design to be analyzed in CFD takes a significant

amount of time. Mesh Generation alone can be very time consuming depending on the size and

type of the model, and to mesh similar designs will take about the same amount of time.

Performing this task repeatedly for an optimization is both time consuming and inefficient. This

type of change hereafter will be referred to as the traditional method. To help eliminate this

problem, a process to change the mesh without re-meshing the entire part has been developed

which is referred to as mesh deformation. Mesh deformation technology (also referred to as

mesh or grid morphing) enables the mesh of an analysis model to be updated or changed from a

new or updated design in CAD without re-generating the mesh. This makes it possible to

perform design studies much more rapidly [11], [12] because the process of modifying the

original part, and then re-meshing is eliminated from the optimization process. Those two

processes can be replaced by changing the original mesh and then reanalyzing the model [13].

An example of mesh morphing is shown in an optimization for engine intake ports by Smith

[14]. In Figure 2-1 a morphing volume used to change the shape of the ports is shown. Within

10

this shape it was possible to change the mesh with the control volume rather than generate new

geometry and a new mesh for each iteration, eliminating the time needed for remeshing.

Figure 2-1: Smith Port Deformation Example

Mesh deformation enables a meshed model to be changed either manually or

programmatically, but there are rules that need to be followed for the mesh morphing process to

be valid. In an application discussing how a mesh deforms, Gao [15] states four rules that need

to be followed for the mesh deformation process. Following is a quote of those rules:

11

1. No grid line crossover may occur to ensure the positivity of the cell volume.

2. The grid orthogonality must be, at least nearly, preserved. It is important to

ensure such orthogonality in the viscous region near the surface grid..

3. The transition of the deformation from that of the surface grid to the zero

deformation in the far-field grid should be kept as smooth as possible.

4. The clustering of the near-body grid cannot be compromised as the body

deforms. The grid must maintain its clustering in the viscous layer.

Rule 2 refers to structured grids, while this rule does not directly apply to unstructured

grids, it can safely be assumed that good quality of the grid needs to be maintained in the

viscous region. These rules ensure that when a mesh model is morphed that the quality of the

mesh is not compromised, thus enabling the analysis to be performed [15]. As long as these

rules are followed then the model may be morphed to adapt to the changes that are desired.

However, when keeping a good quality mesh is not possible because the morphing change is too

drastic or large the model may need to be partially or completely re-meshed. Morphing tools

can check the quality of a mesh after it has been morphed to verify that the changes made are

not beyond the limits of the morphing range for the model. Some tools can repair or correct

problems which are encountered after a morph has been done. Morphing limits are dependent

on the model, the magnitude of the changes made, and the type of morphing procedure used.

Mesh morphing can also have a significant advantage in CFD analysis with design

changes. Often the solver can start from the previous solution instead of resolving the entire

model because the same mesh is used. This may result in a significant reduction in the amount

of time required for subsequent CFD models to be solved because they start with the previous

solution [11].

12

There are different methods for morphing a mesh within morphing programs. While the

names used may differ between the different morphing software packages, the principles are

similar. As outlined in Altair HyperWorks Documentation [16] these methods include:

 Volume Deformation

 Direct Node Deformation

 Domains and Handles Deformation

Volume deformation involves creating a geometric volume around the mesh that defines

how the mesh will move within this volume. This method deforms the mesh based on how the

control volume is changed. This means the mesh is deformed based on the algorithm controlling

the deformation inside of the volume. An example of this can be seen from a HyperMorph

tutorial example on morph volumes HM-3550 [16]. Figure 2-2, from the HyperWorks Tutorial,

shows the volume around the portion of the mesh that will be changed. In Figure 2-3, from the

HyperWorks Tutorial, the change is shown on the right with the B-pillar morphed outward,

compared to the original B-pillar in the standard location on the left.

Figure 2-2: Morph Volume

13

Figure 2-3: Morphed Volume Comparison

Direct Node Deformation is the method of deforming the mesh with the specific nodes

of the mesh. This method allows very specific movements of the mesh to take place so that

detailed changes can be made at a very low level. Nodes can also be moved together in groups

while keeping others stationary with specified constraints. A simple example is shown in Figure

2-4 which shows how a single node can be deformed while keeping the rest stationary.

Figure 2-4: Node Deformation Example

Domains and Control Points deformation enables areas of a mesh to be assigned to a

specific group, and control points can be used to manipulate these groups, or the group can be

morphed to a specified shape. This also can be used to morph a base mesh to a new shape that

can be imported from a CAD model. An example of this method is demonstrated in Figure 2-5

where the base shape on the left is morphed to the blue line from a CAD model.

14

Figure 2-5: Domain Morph Example

Different methods may be used together to make the necessary changes that are needed

for the desired design changes on an analysis model. This enables many different uses of

morphing for various changes to an analysis model. Changes made to the morph can be either

somewhat arbitrary within a specific range, or the changes made can match specific geometric

changes that are generated in a CAD model.

Mesh morphing may also be used to make significant changes to an analysis model.

Using mesh morphing, a model can be directly modified to be used in analysis by a CFD analyst

to make changes while waiting for a new design change or model. This would enable a CFD

analyst to participate in the design process at an earlier stage of design and development. This

model could also be used for an optimization process. An example of this applied to vehicle

development is given by Singh [13].

Another time saving results when a morphed CFD model begins the new solution

iterations from the previous solution resulting in large reductions in the amount of time needed

for the new solution [17]. As a result of the substantial time reductions gained in CFD analysis

and the ability to more quickly move from previous designs to new design iterations, mesh

15

morphing enables significant time and cost reductions in the overall design and analysis process.

This effect is only increased when integrated with other CAx tools to greatly reduce CFD pre-

processing, analysis time and the total time to an optimal design.

2.5 Computer Aided Design and Computer Aided Engineering Tools Integration

The integration of CAD and Computer Aided Engineering/Manufacturing (CAx) tools is

made possible by the use of API’s and the ability to run a CAx program in batch or as an

executable. The advantage to this is that a user can program the software to perform the specific

tasks needed. Many examples of this can be found in the literature [18-20]. Once the different

software packages have been programmed they may be integrated with an optimization

framework so that different tasks may be performed iteratively, thus converging on a solution

[19]. This allows flexibility for the engineer to determine the parameters or regions which need

to be optimized, set the parameters to be studied or optimized and, then let the optimization

framework determine the design. Using other methods previously mentioned would allow the

designer or engineer to work on new work rather than continually monitoring and controlling the

optimization process, making changes and re-running analyses manually, as well as post-

processing the information.

2.5.1 Attribute Management

One of the key elements in being able to integrate CAx programs is assigning attributes

to the CAD model. Attributes are properties that can be assigned to different features in the

CAD model that may represent properties, materials, boundary conditions, etc. An example of

the use of attributes in a CAD model is described by King in the development of a CAD-centric

model to CFD [21]. An example of using attributes can be shown with a property of a flow inlet.

16

The feature in CAD that represents a flow inlet can be assigned an attribute, such as a velocity.

This attribute is then passed with this feature identified as a flow inlet. This may be used to set

up the mesh and the flow condition for the CFD solver. Using attributes enables one to

programmatically use CAx programs together, passing essential information about the original

model to downstream programs. This enables the ability to automate many different commands

because those attributes in the model can be used programmatically, eliminating the need to

manually reassign those same attributes in subsequent programs for each case.

2.6 Optimization

Optimization seems to be the essence of modern day engineering with any product

development, improvement or redesign. By definition, optimal means “most desirable possible

under a restriction expressed or implied” [22]. There are multiple optimization frameworks

available today which apply algorithms that can point to the best possible solution given a set of

requirements or constraints. Some of these frameworks include Isight, Optdes-x, Frontier,

HyperStudy and modeFRONTIER to mention a few. Optimization methods are being used

extensively in every aspect of engineering, and large improvements have been made as a result

of using optimization algorithms and software integration.

Optimization frameworks can be used to integrate or control multiple programs to

perform an optimization. As an example, a specific part can be optimized using an optimization

framework in the following process. The optimization framework can be given the design

variables that will be studied, such as hole radius and plate thickness. The framework will begin

the optimization by sending a command to an analysis program to perform an analysis and return

the results to a specified location. Those results can then be analyzed and the optimization

program can then start a CAD program to create new geometry with different parameters. The

17

new geometry would then be sent to a meshing tool, meshed, then the analysis performed again

and the results analyzed by the framework. To continue with the optimization, new parameters

would then be passed to the CAD program, new geometry created, and the cycle would repeat

until the optimal result is achieved. This optimization process can be used on something as

simple as an I-beam, or as complex as an airframe structure and assembly for an aircraft. While

the preparation to set up such an optimization process would have a significant initial time

investment, the advantage would be that further design iterations would be automated and

optimized by the framework.

Optimization frameworks can use many different algorithms to achieve the optimum for a

given case. Many different optimization algorithms are available and implemented into available

optimization frameworks. The type of problem that needs to be optimized will determine the

type of algorithm that may be used. Types of optimization algorithms include gradient-based

algorithms, genetic algorithms, simulated annealing algorithms, branch and bound and many

others with variations of each type. Some of these are for a continuous design space while others

are for discrete design space. Here, it is not intended to give a description of each type of

algorithm, but to give an overview of the options and some of the details needed in setting up an

optimization framework. For more information and background on optimization algorithms,

suitable types for different design problems as well as optimization theory, various sources may

be referred to such as “Optimization Based Design” by Alan Parkinson [23] and others [24],

[25].

2.7 Flow Optimization Methods

To develop a model for optimization of inlet port design Blaxill et al [26] used a

parametric CAD model defining the desired design space to test multiple CFD cases. A base

18

case was used to determine the best grid and necessary CFD parameters for the remaining

designs, then a script was used to create the remaining designs using the best-determined CFD

setup. Once each case was created, the models were then run in batch mode, each of the 45 cases

taking approximately eight hours to complete, for about 360 hours total CFD processing. The

grid size of each case was approximately 60,000 cells and CFD processing was done in parallel

on a dual core Silicon Graphic Power Challenge. This amount does not include the time that was

taken to mesh each model and perform the necessary setup needed. Because of the automated

creation of the remaining models after the first, there was a significant amount of time savings,

but as can be seen in the following examples, the amount of time needed to perform both the

gridding and analyses can be reduced and automated further.

In another related example [14], intake port optimization was performed that followed a

different automation technique that included the use of a mesh morphing tool. The optimization

process was started with a single CFD model. The model was then imported into a mesh-

morphing tool, which was used to set how the CFD mesh could be changed. The process of

setting up a model like this was referred to as arbitrary shape deformation (ASD). This process

saved the time of creating multiple CAD models that were individually meshed and then set up

in a CFD model. The set up time for the mesh morphing process was approximately two days

performed manually. This process requires checking the model to verify that as the model is

deformed to the different configurations, the mesh stays within the needed limits for good

numerical results. Similar to the previous example, the cases that were made after the ASD

process was finalized were done with a script, and seventy-seven additional CFD models were

made. The amount of time it took to make and check these additional “cases took less than 3

man hours in total” [14]. One of the main advantages shown in this example was a product of

19

using a base CFD model. As a result, the number of iterations after the first were lowered by

about 90% because each of the following models was able to use the converged information

from the previously run model. The analysis model used was approximately 2.7 million cells for

the 124 cases during which more than one 12xCPU PC array was used during run. The total

CPU time was just over 169 hours. While neither of these cases is fully automated, the second is

far superior in the amount of saved time. The drastic time difference between the two examples

is emphasized by the fact that the first used a symmetric model and created 45 cases whereas the

second used a full model and created seventy-seven cases. Results for time saved using baseline

results is shown by Gleason et al [11], where the time saved from using base line results reduced

the overall computation time by 36 hrs.

The most comprehensive method found for an engine airflow optimization was by

Gaikwad et al [27]. Their method optimizes two cases of steady state flow for an intake port

using an automated process with optimization performed with Isight. Using pre-determined

parameters for meshing, a model is updated in the CAD software and then sent to the meshing

tool for analysis setup before the job is submitted. After the model has been optimized, it is then

sent to a different meshing utility to prepare the model for transient analysis. The process

presented included minimal human interaction for the whole process. This process utilized the

traditional method and no mesh-deformation software was implemented. The advantage to this

process is that both steady state and transient cases are used for the optimization process.

A closely related flow example is given by Hoke and Doroudian [12]. The method

presented was an example of how to optimize an instrument panel/console duct. The flow model

was manually meshed and then imported into a mesh-morphing utility so that the shape of the

ducting to each of the outlets could be optimized. This case involves steady state flow where the

20

space constraints are very restrictive due to the available space underneath the instrument panel

and console. As a result of using an optimization package in conjunction with the mesh-

deformation tool, an improvement of 250% in flow through the duct entrance as well as a 9%

pressure drop reduction in the console duct were achieved.

An optimization method using CFD to optimize a vehicle shape with mesh morphing

describes a CFD tool that has the mesh morphing tool and optimization tool built in [28].

Because of this, the optimization is simplified with the initially meshed model being used as the

base for subsequent cases. The geometric changes, design space and optimization method are all

contained within the CFD tool to perform the optimization. While this greatly simplifies the

process for the setup of the optimization with the analysis model, it does not implement a way to

link the final parameter changes to the CAD model. In addition, the design space is redefined

within the CFD analysis tool when the space should already be established and set in the CAD

model. While this process is an improvement over the traditional method and non-integrated

optimization processes, it does not allow for feedback into the CAD package so that parametric

modeling may be used to account for the changes made.

21

3 METHOD

In this chapter, the general method for how the design optimization process will be

accomplished is presented. Below is a short outline of the steps required to accomplish this

method represented by Figure 3-1.

1. Develop parametric flow path model

2. Generate mesh for the flow path model

3. Create mesh morphing model from mesh

4. Perform CFD analysis

5. Optimize flow path by changing mesh geometry

Figure 3-1: Optimization Framework Overview

22

The remainder of this chapter generally describes these steps such that they can be

implemented regardless of the software used. Chapter 4 will present a working prototype that

shows a specific implementation of the method.

3.1 Parametric Flow Path Model

The first step to performing the optimization process is to create the flow path to be

optimized. To fully explore the design space allowed for the flow path, a parametric model will

be needed. How this model is developed will determine what geometric parameters will be used

to optimize the flow path. Each of these parameters can be identified by a term. Here, these

parameters will be referred to generally as Pxn and identified for each parameter as Px1…Pxn

depending on the number of parameters or constraints that will be used. Here the “x” refers to

some parameter group, “P” signifies that it is a parameter, and the subscript “n” identifies each

parameter in a group. Each parameter has a base starting value that will be identified by Pxn.

The bounds of each of these constraints will be identified by two other terms for each parameter.

Pxn
H
 will be the maximum value for a specific parameter while Pxn

L
 will be the minimum value

allowable. Pxn will be the base value used for optimization routines.

To prepare the model for flow analysis, other features will need to be assigned to the

model. These features may also have accompanying attributes to be associated with a specific

feature that can be assigned within the CAD model. To identify the features needed for a flow

model, such as an inlet, outlet, wall, or fluid a symbol will be assigned to each of these

conditions for downstream setup and analysis. In addition, attributes may be assigned to each of

these features along with any other required information. A wall may be assigned an attribute

that specifies the type of mesh, mesh size, or fluid conditions such as pressure, velocity or

temperature. Here Table 3-1 shows how these will be referred to in the method. When referring

23

to flow features and attributes generally Fxn and FxnAj will be used. Here flow features represent

geometry related to flow boundaries or regions. Velocity, pressure, type of fluid, and other

similar information will be passed as attributes.

Table 3-1: Flow Feature Identification

Flow

Features Identifier Attributes

inlet FI1...n FLnA1…FLnAj

outlet FO1...n FOnA1…FOnAj

symmetry FS1...n FSnA1…FSnAj

wall FW1...n FWnA1…FWnAj

fluid FF1...n FFnA1…FFnAj

Other geometric features from the model may also need to be referenced for operations

performed when meshing, other than what will be used for the base mesh model.

Geometric features may be used for the mesh morphing process such as a flow path

centerline, surface, or edges that will be used for morphing. Similarly, if an attribute needs to be

assigned to a feature in addition to its identification this can also be done in a like manner as

shown. Table 3-2: Geometric Feature Identification shows how these will be referred to in the

method. Following the same pattern, referring generally to geometric features the term Gxn will

be used.

Table 3-2: Geometric Feature Identification

Geometric features Identifier Attributes

Centerline GC1...n GCnA1…GCnAj

Surface GS1...n GSnA1…GSnAj

Edge GE1...n GEnA1…GEnAj

24

While it is additional work in the beginning to create these attributes for the features, it

enables the ability to automate other applications in the process without repeating known

information.

3.2 Flow Path Mesh Generation

Using flow features (Fxn) and attributes (FxnAj) makes it possible to automate the meshing

process. To follow the method described, a meshing tool that allows direct import of the part file

from the CAD program and automatic meshing is required. If a tool is used that does not import

parts directly, an adjustment will need to be made to this approach using exported geometry from

the CAD package. Fxn and FxnAj will be used to define the mesh. Using these enable the size,

shape, type, and other options needed to be stored for use. If the information needed to create

the grid is known, that may be stored in FxnAj and used. Otherwise, to determine the mesh

parameters, a base analysis should be performed. Once the results of the base analysis are

satisfactory, the parameters needed for the mesh creation are known.

After all the needed information has been established, a script or program is then written

for the meshing tool using the API. This program will import the flow geometry, features and

attributes (Fxn and FxnAj) and use that information to mesh the flow path for analysis. At this

stage the mesh that has been created can be used for flow analysis.

3.3 Morphing Procedure

To make changes to the analysis model created, a mesh morphing procedure will be used.

The analysis model will be morphed to match the shape of the geometry that has been created in

the CAD package. Changes to the model are made by using Pxn that will be used for design

optimization.

25

Here a general process will be described to morph the analysis model to the new

geometry. There are different morphing methods used to change the shape of the analysis model

to the new shapes needed to find the optimal point. The method used to morph the analysis

model must be determined by the user. A requirement is that the morphing package be able to

import the geometry needed from a CAD package. As mentioned, Gxn and GxnAj, which the

CAD model has assigned to it, make it possible to programmatically determine details about the

geometry. While not used in all types of mesh morphing procedures, they may be needed so that

specific control over certain areas of the mesh may be morphed to specific geometric features.

In addition, the geometry that is imported must also use attributes so that geometry imported can

be appropriately assigned or named for morphing control. Previous iterations or original

geometry may need to be imported for distance calculations for the mesh to be morphed to the

new shapes. This also needs to be identified programmatically so that the geometry components

imported will be kept organized. Once the new geometry has been imported, and the old if

needed, then the morphing procedure may be continued.

Given a certain geometric model and analysis model, the difference between the two

needs to be eliminated for the shape to be matched. While the specific method for how to

accomplish this will vary from one software package to another, the basis is the same. Once the

difference between the analysis model and the new model design is eliminated then the shape

change is complete. The difference between the two different geometric shapes may be

considered as some εx. With the current analysis geometry or feature being represented as Gxold

and the new geometry being represented as Gxnew. With many different features and changes

which need to be made, an equation can express the change from the previous geometry to the

new, shown below.

26

[

]+[

]=[

] (3-1)

Once the analysis model has been matched to the new geometry, the morphing process

has been completed. This enables the same mesh to be utilized while also enabling the shape

changes needed for optimization.

This process will need to be adjusted depending on the software package being used. The

mesh morphing tool may be integrated with the CFD package and the meshing package, as well

as another program, if desired. The exact procedure will vary depending on what is used, but the

underlying procedure of associating the CAD model features and then passing those attributes to

downstream applications with the needed data is still applicable.

3.4 CFD Procedure

To perform the CFD automatically, guidelines must be established for how the model

will be analyzed. Once this has been established, a command file may be created which contains

the necessary data for how an analysis should be performed. Using the API, the command file

can be used to import the analysis model, perform the analysis, and return the results that are

needed for the optimization framework. Here this process will be presented in more detail.

Guidelines must be established for the analysis of flow models for an automated process.

If previous guidelines have not been established from a knowledge base, an initial analysis will

be used to determine the correct size of the grid so that the flow detail is independent of the grid

size (grid independence). During the initial analysis, the CFD setup will also be checked to

make sure that the solution methods are working correctly. Once the proper grid resolution and

CFD setup has been determined, they will be used for subsequent models that will run

27

automatically. This will enable the automation of similar models while ensuring that the correct

solution methods are selected. In addition to the solution method, the monitors desired will need

to be determined for the optimization framework. The method for the solution needs to be saved

in a file that the solver can then import. This file will have the commands needed to assign the

type of solvers, conditions, monitors, etc. that are needed. This file will then be imported to the

CFD program that is used for the cases run for the optimization. This process enables the

subsequent cases to be performed without the necessity of inputting the needed information at

every iteration. As an example, this process may be read in by Fluent when the conditions are

laid out in a journal file. When imported, this file defines the needed information for the

analysis. This and the case file are then used for the analysis of the model. The first run is a

baseline run that will establish the initial model values. Once the analysis is completed, the

desired output values are written to file which will be used for the subsequent optimization of the

design space.

3.5 Optimization

While there are many details that take place in an optimization, a short summary will be

given here of the overall process. Following, more detail will be covered about specific aspects

of optimization.

To perform an optimization on a specific model, the optimization framework needs to be

setup. The setup includes defining what the design variables are and their associated design

constraints, which are Pxn, Pxn
H
, and Pxn

L
. The optimization framework works by controlling

the CAx programs. To perform the optimization, each analysis program needs to run and

provide useable results. As each analysis program runs they write the results specified by the

28

user in the command file, script or program. The optimization framework then retrieves the

results for needed calculations.

The type of algorithm that will be used, as well as any associated settings for that

particular algorithm, will need to be set up before the optimization process begins. Then, a base

model will be tested. Once the initial model is solved, this information will be passed to the

optimization framework. The optimization framework will parse the results file for the needed

information regarding the design variables, constraints and results. Using Pxn, Pxn
H
 and Pxn

L
, the

optimization framework will then drive toward the optimal solution using the results from the

analyses to both determine how the design model will be changed and finally the optimal Pxn for

the design model.

 The type of problem will determine the algorithm to be used within the optimization

framework. Gradient-based algorithms are very efficient and will generally be the fastest

method to achieve the optimum. Two gradient based algorithms are the Generalized Reduced

Gradient (GRG) method and the Sequential Quadratic Programming (SQP) method. A GRG

algorithm is very robust and can obtain an optimum within a specific design space, staying

within specific constraints. SQP is known to be faster than the GRG method, but does not

operate as well within a specific design space, meaning test cases my violate the bounds of the

design space during the optimization. This method would not work for a model which will only

work within a specific range. This means using this algorithm may not always be the best choice

due to limits of an analysis model. A genetic algorithm can also be used for the optimization

process. While they are not as efficient as gradient based, genetic algorithms are well suited to a

large design space, or multi-objective cases. It is important to consider the type of model,

constraints, objectives and number of variables when choosing an optimization algorithm.

29

A method to run an optimization framework in batch mode is to set up the optimization

process in a standard manner, meaning to open up the optimization program and to set up the

needed information to complete an optimization process. This optimization can then be saved

and run in batch mode, controlling the needed programs. This process is acceptable for

optimization cases that do not take significant amounts of time to set up, negating the need for a

more automated process of setting up the optimization framework. For complex or large

optimization routines, the setup of an optimization framework can take a significant amount of

time. Some optimization frameworks can also be programmed using an API similar to the CAD

and meshing tools. This enables it to be set up using a file with the commands needed to set up

the optimization process (command file) to run in batch mode so that the graphical user interface

GUI is not needed and the entire process can be automated. Using a command file for the

optimization framework enables one to read in the design variables, constraints, results file, type

of optimization used and its associated settings. This process of automatic set up will take

advantage of Gxn assigned in the original model as well as Pxn variables and limits. In addition

to the attributes assigned to the original model other parameters may be imported that will

further guide the optimization process with best known practices when desired. The best known

practices referred to would be using a “Knowledge Based” engineering approach. Once the

inputs and set up of the optimization framework are completed then the optimization can be

performed. Though the development of this command file, to set up the optimization algorithm,

will be time-intensive in the beginning, the amount of time saved can be large in comparison to

when similar optimization routines are performed.

30

3.6 Summary

Here a method has been presented that integrates existing CAx tools with an optimization

framework, specifically using mesh morphing. Mesh morphing is used in industry currently,

both in automated and manual optimization processes. The important difference here is that the

method presented demonstrates how after a model has been optimized with a morphing process,

the original model does not need to be manually matched to the optimized shape, which is the

current practice.

Developing an integrated optimization framework takes a substantial initial time

investment, with the amount of time depending on the complexity and detail of the process being

developed. The goal of spending the time to develop this process is to greatly reduce the time

spent manually performing the process repeatedly for design and optimization. The time spent to

develop the process should pay off by saving significant time using the process that has been

developed..

31

4 IMPLEMENTATION

This chapter will discuss the implementation of the optimization process developed.

Following is an outline of this process represented by Figure 4-1.

1. Develop parametric flow path model in NX

2. Generate mesh for the flow path model using HyperMesh

3. Create mesh morphing model from mesh using HyperMorph

4. Perform CFD analysis with Fluent

5. Optimize flow path by changing mesh geometry with Isight

Figure 4-1: Optimization Framework Implementation

32

The optimization process developed used NX 5.0, HyperMesh 11.0, Fluent 12 and Isight

3.5. Following the method outlined in chapter 3, these were implemented in the programs’

respective areas.

The flow model presented here is a simple design study to be used in the integration

process for an optimization being driven by a CAD model. While this geometry is not complex,

the method and implementation shown is generally applicable. The changes possible are only

limited by the model used and the capabilities of the software. While there are many different

tools that could have been selected, the tools used were chosen primarily because of support

from the Partners for the Advancement of Collaborative Engineering Education (PACE)

Program and their use by General Motors.

4.1 Parametric Model

To test and demonstrate the capability of the method, an S type shape design space was

optimized within the envelope defined by Figure 4-2. The pipe in this space is to be optimized

for the highest mass flow and lowest pressure drop from inlet to exit, while changing the

dimensions of the parametric part.

Figure 4-2: Design Space

33

The defining parameters for the possible shapes for the pipe are the center angle (Pc4),

entrance/exit length (Pc3 & Pc5), height (Pc1) and width (Pc8). Pc3 & Pc5 are related to Pc1 by a

linear function so the arcs will not go out of bounds on the turns. The parametric setup on the

sketch and the dimensions used are illustrated in Figure 4-3 and Figure 4-4.

Figure 4-3: Control Dimensions and Parameters

Figure 4-4: Control Dimensions End View

34

Table 4-1: Parameter Variables and Limits

 Lower Base Upper

Pc1 & Pc6 (mm) 26 28 28

Pc3 & Pc5 (mm) 120 140 140

Pc4 (angle) 35 45 50

Pc8 (mm) 26 32 32

Many combinations are possible with this setup and the dimensions that can be changed.

One of the tradeoffs that can be seen from just changing Pc1 is the smoothness of the pipe bend

transition. A larger Pc1 can be used, but the path does not transition as smoothly. This can be

seen in Figure 4-5. Here the maximum angle of 50 degrees is used where the pipe does not cross

the boundaries around the turns. Figure 4-5 and Figure 4-6 demonstrate how the linear relation

works between Pc3, Pc5 and Pc1, as well as how those dimensions affect how the model can fill

the design space. This linear relation is based on formula (4-1).

Pc5 = 10*Pc1-140 (4-1)

 This pipe does not represent any particular intake runner; the reason this geometry was

created was to optimize flow through a shape with a non-trivial solution. While the method

presented may work with any geometry, and the parametric configuration could be much more

complex, this was not the focus of the research or method. This was also the reason why Pc3

equals Pc5 and Pc1 equals Pc6. This geometry was used to demonstrate the capability of the

method that has been developed. For a more complex design such as an intake manifold or port

design the amount of possible combinations becomes very large.

35

Figure 4-5: Pc1 = 28mm

Figure 4-6: Pc1 = 26mm

The flow path shape changes were in the ZY plane and the cross sectional shape of the

test pipe is constant from beginning to end, which varies from circular to elliptical using Pc1 and

Pc9. How these bounds were used in the optimization will be discussed in 4.5.

With a parametric flow model that has specific design limitations, the next process is to

have the model prepared so that the remainder of the geometric design process may be

automated. To transfer the needed information from the CAD model to pre-processing and

analysis, attributes or relations need to be established. This model accomplished this by using

layers within NX. Features or parts in an assembly may be moved to a layer or group. Each

layer may be assigned additional attributes as well so that the information will be passed on to

36

downstream processes. For this process, the outer pipe surface, inlet surface, and outlet surface

were each moved to a specific layer. In addition to the flow path shape, the centerline of the

runner was also moved to a layer. With these defined in the CAD model, the boundary

conditions can be easily set when meshing the part and setting up the analysis.

4.2 Mesh Generation

HyperMesh is the meshing tool that has been implemented for the meshing of the CAD

model for analysis. Similar to other programs, HyperMesh has two features that greatly simplify

the automation of the meshing process and creation of a CFD mesh. As mentioned previously,

the CAD model is divided into layers that are used to define the boundary types of the CFD

model. The HyperMesh import tool can directly import the part file and separate the imported

file according to layers assigned in NX. This functionality was implemented into a TCL script,

which is the language used by the HyperMesh API. As the part is imported, the layers are

renamed to the boundary type they represent. Here, layers 9-11 represent the inlet, wall and

outlet respectively, which in the method were referred to as flow features. There are many layer

numbers available to assign within NX. The numbers used for a particular layer can be

determined by the user. Layers 9-11 were used to identify the flow features. Other layer numbers

may be used to represent other features, groups, or other methods of organization and

identification. Table 4-2 demonstrates how the flow features were identified in the process.

37

Table 4-2: Model Flow Features

Flow Feature
(Generic)

Layer
(NX)

Name
(HyperMesh/Fluent)

FI1 9 inlet

FO1 10 outlet

FW1 11 wall

 These components inside of HyperMesh were then used to define how the mesh was

created and for identifying those components as needed by the CFD analysis package. For the

inlet and outlet, the mesh used a float method for creating the mesh. This means that the

boundary layer elements only propagated form the wall and that the inlet and outlet were used as

boundaries for the mesh being created from the wall.

The mesh generation for the flow model used a mixed grid along the wall with primarily

hexahedral elements and some triangular elements on the surface of the pipe. This enabled the

best quality with the shape being used for the base analysis model. From this model, the other

models were morphed to create the other test cases. The reason for a grid that is structured is

because they are able to handle memory more efficiently and generally are faster to solve [29].

To create the mesh, the surface is first meshed using a mixed mesh (triangle and square

elements) and an optimizer for the mesh layout that is built into HyperMesh. Once the surface

mesh was created, these elements were then used to generate the interior 3D elements for the

model. The Boundary layer grows in thickness from the wall, and the base mesh model has a

thin boundary layer that has a growth rate into prism elements. HyperMesh has different options

for how the mesh will transition into the interior tetrahedral mesh. In this case a smooth

transition was used which consisted of hex cells, pyramid and prism cells that transitioned into

38

the interior tetrahedral elements. An end view and cut away view can be seen in Figure 4-7

which shows the result of this process.

Figure 4-7: Mesh Sample

The size of the outer mesh, ratio of the smooth transition to the tetrahedrals, growth rate

of the boundary layer, thickness and size of the inner tetrahedral elements can be set when

generating the mesh for the flow model. The sizes used were implemented into the TCL script

for the traditional loop and the initial mesh generation. Mesh sizes in hypermesh are

dimensionless, this means since the model was created in millimeters the sizes given are in

millimeters. The size of the interior and transition elements were interpolated from the wall and

boundary layer to the interior using an algorithm which is built into HyperMesh. The settings for

this process were set as automatic so the size of the tetrahedral elements and pyramids were

determined by the algorithm. The size mesh settings can be seen in Table 4-3.

39

Table 4-3: Mesh Type and Size

Type Size

Surface mixed 2

1st boundary layer thickness hex 0.09

growth rate (8 cells thick) hex 1.3

transition elements pyramid Interpolated

interior tetrahedral Interpolated

To automate the meshing process, the commands needed were all implemented into a file

using the TCL language. This file includes importing the geometry, cleaning the geometry,

meshing the geometry and then exporting a Fluent case file that can then be used for Fluent. One

of the steps which was included in “cleaning” the geometry was to equivalence any edges so that

the model had no openings. Depending on the use of the case file after it was created, it may be

exported with information from a previous case that has been set up for Fluent, or a case file only

containing the mesh and boundary definitions can be exported. This makes it possible to reuse

information from setups previously made, or also to use data that has been stored from previous

analyses. This functionality and its use will be discussed more in section 4.5.

4.3 Mesh Morphing Process

The mesh morphing process is performed after meshing the part has been completed.

Mesh morphing in this study was performed using HyperMorph using the domains and handles

method. The Fluent case file, containing the mesh created, was imported by HyperMesh to use

for the morphing process. To morph the model, different domains needed to be created that

correlated to the mesh. When the mesh is created for Fluent, it is organized to correlate to the

solver with the associated boundary identities, such as wall, inlet and outlet. While there are

other possibilities that are used in a CFD solver, the components created in this mesh are the

40

inlet, outlet, wall and fluid. When the model is imported, a morphing domain is assigned to each

of the components; one group for the wall, another for the inlet, outlet and fluid respectively.

Assigning the 2D components individually and then creating the 3D domain for fluid was the

most robust method found during this study. There were two primary reasons why each

component was assigned individually. First, was to control the domain and handle creation.

When each component had a morph domain assigned to it, this prevented extra handles from

being automatically assigned to a morphing domain that were not needed. Second, assigning

each component in a specified order provided a way to keep track of the morphing domains.

Once the domains were created they were reassigned new numbers in a specified order so that

each domain could be readily identified or used in the script. These domains are identified by

numbers, so specifying the order and starting point enabled identification for use later in the

code. This allows morphing to be performed on specific domains of the mesh in groups that

represent the conditions in the mesh.

Once the groups were created, the original flow centerline, the new centerline and the

new surface were imported. The original centerline (Gc1) was imported from the base part file

and the new centerline (Gc2 and surface (Gs1) were imported from the new part file with the

updated dimensions to HyperMorph using a layering scheme in the CAD model to identify the

geometries so they may be named accordingly. The geometric features, associated layers and

names used are seen in Table 4-4.

41

Table 4-4: Model Geometric Features

Geometric Feature
(Generic)

Layer
(NX)

Name
(HyperMesh)

Gc1 2 old_line

Gc2 2 new_line

Gs1 3 new_surface

 Using the map to geometry function in HyperMorph, the mesh from the case file was

morphed to the flow path line using the line difference method. The old line and new line are

used to calculate the change that needs to be made for the flow path of the model. To morph to

the surface robustly, a two-step process needs to be followed. If this process was not followed

the wall of the mesh would morph to the correct shape, but the entrance and exit of the pipe

would only partially morph, resulting in an unacceptable model. First, the nodes on the edges of

the pipe were morphed to the edge of the surface. Following this, the nodes from the outside of

the geometry (in the wall domain) were then morphed to the surface that was imported. This

process created the geometry changes desired in the analysis model. Once the morphing process

was complete, the model was then exported to a case file for Fluent to be used for analysis.

To make sure that over time the mesh would not become deformed by the many

morphing operations performed on the same analysis mesh, the original mesh created was used

for each shape change. During initial testing it was found that if changes too large for the model

were made, that HyperMorph would simply state that the change is too large and to try a smaller

operation. In HyperMorph the node and element numbers would remain the same throughout the

morphing procedures performed during the optimization routine. Because these remained the

same, Fluent will see a similar mesh so that the analysis can be started from the previous run.

42

This enables the model to converge faster because the model can start from where the previous

analysis stopped.

4.4 Flow Model Analysis

For the flow analysis, Fluent was used as the CFD solver. To optimize the flow through

the pipe a velocity inlet case was used with an outflow exit boundary type.. While a pressure

drop case is typically what is used in industry, t a velocity inlet setup was chosen to simplify

setup and reduce the time to convergence. The outflow boundary condition is a special case

where the exit conditions are calculated based on the flow through the pipe. To use this

boundary condition, the flow needs to be incompressible, single phase and steady state. To

satisfy these conditions air was single phase, the Mach number was 0.04 and the flow study was

steady state. Here the focus was to demonstrate how the morphing process would be

implemented in a flow optimization, so a pressure drop case was not used. Outlined in Table 4-5

are the boundary conditions used for the flow model in the optimization.

Table 4-5: Flow Boundary Conditions

inlet 10 m/s

outlet Outflow

fluid Air

ambient pressure 101,325 Pa

temperature 300 K

Wall stationary, no slip, 0.5 roughness constant, adiabatic

To perform the optimization, a model needed to be created which would return good

results but would not be too computationally expensive. A grid independence study was

performed to verify the size of mesh that would result in consistent solutions for the pressure

43

drop and the mass flow through the initial pipe design. The results of the grid independence tests

can be seen in Table 4-6 and Table 4-7.

Table 4-6: Grid Independence Mesh Size and Flow Results

surface grid size
(mm)

cells faces nodes
Pressure
Drop (Pa)

mass-flow
(kg/s)

3 63512 149338 28699 50.58313 0.006446654

2 162874 376152 67980 51.33856 0.006479774

1.5 302013 691865 121479 51.32079 0.006490538

Table 4-7: Grid Independence Results Comparison

surface grid size (mm) Pressure Drop Mass Flow

3 mm to 2 mm 1.471% 0.511%

2 mm to 1.5 mm -0.035% 0.166%

3 mm to 1.5 mm 1.437% 0.676%

 Because of the small difference between an initial surface size of 2mm and 1.5 mm, it

was decided due to mesh generation time for the traditional loop and the computation time that 2

mm would be used for the study. Once the size of the mesh was decided, the type of mesh used

consisted of a structured boundary layer along the wall of the pipe, and then a smooth

transitional mesh using pyramid elements. The remainder of the elements were tetrahedral. To

make sure that the mesh size and type would work, the quality of the mesh after morphing was

checked using the outer bounds of the design space to check for abnormal or poorly shaped

elements. For this process the checks were performed manually, though to perform this

automatically would consist of writing a script and implementing it into the process. The quality

checks of the mesh were performed manually with the mesh checking utility within Fluent.

Performing this study ensured that the model would have good quality within the bounds tested

during the optimization.

44

A realizable k epsilon (RKE) turbulence model was used for the turbulence in the solving

method. This model was found to be the most robust and reliable in a previous study for internal

flow optimization by Mistreanu [30]. To optimize the flow through the pipe there were two

objectives, one was to reduce the pressure drop from the inlet to the outlet, and the other was to

maximize the flow of the pipe. These criteria were measured after each run and output from

Fluent. To establish a good flow model, multiple runs were performed on the base model for the

flow path. The RKE turbulence model was used during these tests. It was found while

performing the analysis of the base shape that there was reversed flow in some of the elements,

which was incorrect. Because of this, each new shape analysis was started as a laminar case and

then, once this converged within the assigned range, a first order turbulence model was used.

After the turbulence model converged with first order equations, second order equations were

used for the final part of the analysis. Once this reached a prescribed residual convergence, the

flow analysis was completed for a geometric design and the results were then written to a text

file to be read by the optimization software. The details for the flow analysis setup can be seen in

Table 4-8. This setup was used for every flow test case during the optimization routines,

including each of the morphing cases.

45

Table 4-8: Flow Solver Setup

Pressure Velocity Coupling Scheme SIMPLE

 realizable K-epsilon (2 eqn)

 standard wall functions

Gradient Solver Least Square Cell Based

Second Order Solvers Pressure

 Momentum

 Turbulent Kinetic Energy

 Turbulent Dissipation Rate

 Energy

Solution Method Laminar using 1st order (300 iterations)

 Turbulent using 1st order (300 iterations)

 Turbulent using 2nd order (800 iterations)

 Convergence residual check k and epsilon 5e-7

To automate the flow process, a journal file was created for Fluent that contained the

operations needed to be performed within Fluent for the optimization. For the morphing process,

the first case read in would use the results of the test case, providing the data from that model.

The boundary conditions would then be read in for the laminar case. Following convergence, the

process would continue similarly with the following two cases. This generated good results with

no errors during the flow analysis. To perform the analysis for the standard mesh loop

optimization, the Fluent journal file was written to read in the case file that contained the mesh

with the boundary definitions. The journal file would then read in the boundary conditions,

initialize and perform the analysis in the same manner as the morphing process. The main

difference between these methods in CFD analysis was how the flow analysis was started. Each

morphed case would iterate from the previous solution. For the meshing optimization routine,

each run would begin with an initialization and then perform the analysis with the same

convergence criteria. The comparative differences and detail on the optimization routines will be

discussed further in chapter 5.

46

4.5 Optimization Framework

The goal of this process is the optimization of the flow path through integrating the CAx

programs. This was accomplished using Isight as the optimization framework for the process.

How Isight was used to perform this optimization will be presented here.

Isight was used to integrate NX, HyperMesh, HyperMorph and Fluent. These programs

are used by Isight to generate the designs and perform the analysis needed for the optimization

algorithm being used. Isight determines the values of the parameters that need to be tested, and

then as the output is generated from the programs being run, will find the optimum based on the

results output. Isight is a text based optimization framework, meaning that the programs being

used by Isight communicate via text files. Isight will write values to a text file, and then the text

file is parsed and the contents used for each optimization run by the programs which need that

information. This means that the programs, which need to communicate with Isight, will need

text parsing functionality. As an example, and to explain its implementation in this optimization

loop, NX was used to make the geometric changes, be it for the meshing or morphing

optimization loop process. To begin, initial sets of values, from the first iteration of the

optimization loop, are written to a text file. In this case for the optimization loop, there were

three variables written to this file. Those variables included pipe width, pipe height, and the

angle of the center of the pipe to the vertical wall. These variables have constraints within the

design space that are established in Isight. A program was written with the C++ API for NX that

would parse the text file for the dimensions to be changed. NX would then generate a new part

and save this part under a different name from the original. The optimization loop would then

continue with the other programs in the optimization loop. HyperMesh only needed the part

from the newly created part file, so in this case a text file was not parsed for this component.

47

Fluent also had no need of the initial input file because the geometry changes being made would

come from the new or adapted case file. For the results, a report was generated that would write

to two different text files from Fluent. One would output the mass flow rate of the pipe while

another would output the static pressure at the inlet and outlet of the pipe. The text files created

by Fluent would then be parsed for the mass flow rate and pressure. The mass flow rate would

be used directly, and the pressure results from the inlet and outlet were used to determine the

pressure drop. These results were used as inputs for Isight that would be used to find the

optimum. This process layout can be seen in Figure 4-8. The diagram shown is the loop from

Isight. Note the text file icons shown before the NX component and after the Fluent component

show where in the process text files are used.

Figure 4-8: Optimization Loop Example

A Large Scale Generalized Reduced Gradient (LSGRG) algorithm was used for the

optimization process. There are two primary reasons why this algorithm was selected. First, this

optimization was selected because gradient-based optimization methods converge to the

48

optimum in the least amount of time compared to other methods. Second, this algorithm was

used because of the constraints on the design space; it can optimize with constraints and still

achieve the optimum. To ensure that the global optimum was achieved, Isight would not only

find an optimum, but continue with analysis tests exploring the complete design space using the

method specified by the algorithm. As a result, more analysis runs were performed past the

optimum found, but this ensured that a global, and not a local optimum was found. These

characteristics make it more suitable than others that could be used. For a design space which

was less sensitive to constraints that would not present problems outside of the immediate design

space, the SQP algorithm would have been used. For a discontinuous design space where there

are many variables and constraints, a genetic algorithm would be implemented to find an optimal

solution. The settings used for the LSGRG algorithm in Isight can be seen in Figure 4-9.

Figure 4-9: Optimization Settings

49

To perform the optimization, different programs and scripts are called or run from within

Isight. For components not part of Isight, such as Fluent and HyperMesh, the program is started

from a batch file in a Windows operating system. Using a batch file enables the use of

commands or input files that will be used for the specific program, executable programs can also

be run from within Isight. In the optimization loops used in this case, the NX component was

written as an executable. This was called each iteration of the optimization process. The location

of the file to be parsed and the commands needed to change the part were programmed directly

into this executable file. Details that will be given here will pertain mainly to the Windows

operating system. Specifically, Windows 7 Enterprise 64 bit was used for the analysis performed

for this optimization process. The calculator component that is built into Isight was also used.

This component was used to calculate the pressure drop between the inlet and the outlet of the

pipe. A parser built into Isight was used to read the results from the pressure output text file

created by Fluent, and then the difference of the inlet and outlet static pressures was assigned to a

variable. This pressure drop variable and the mass flow rate were checked after each

optimization loop to drive the steps the optimization algorithm would use for subsequent runs.

During the optimization many different case files were created that were run in Fluent for

the optimization routine. In each of the optimization loops the case and data files for Fluent were

written over each loop. While this would take up only as much space as was needed for each

optimization run, this did not provide a way for the analysis runs to be checked or analyzed after

completion. To keep a record of each run, a batch file was written which would copy the files

needed and name them as specified after each analysis. This made it possible to check the

analysis runs for diagnosis and verification.

50

To be able to speed up the analysis runs, a high performance computer (HPC) from the

college of engineering was utilized. When the HPC was utilized to run the Fluent analysis, this

made it possible to free up local resources for additional optimization runs. Because

HyperWorks 11 was not yet available on the HPC, the optimization process was controlled

locally where the mesh and mesh morphing were performed. To use the HPC, PuTTy was used

to automate the submission process of the flow analysis. PuTTy is a terminal emulator that made

it possible to login to the Linux server to submit the Fluent analysis. To automate this process, a

batch file was written which would execute PuTTy, log in to the remote server and submit the

needed files so the flow analysis could be performed. In this case, a text file was written which

contained the commands for PuTTy to execute. A command option when starting PuTTy can be

called which will read a text file with the commands to be followed. This file included the log in

process needed. After the log in, a .pbs file was submitted to the server that would queue the

analysis. The .pbs file included the information that was needed to run Fluent, the license file to

be used, number of processors, nodes, and amount of memory that needed to be allocated for the

job. Using a terminal emulator in this manner makes it possible to use remote resources while

also running programs locally. The ability to use this method in the optimization loop came

from instructing Isight to look for the results files written to a file server. In this case, a remote

storage location was used by both the local machine and the HPC. For the Fluent analysis, an

option was set within Isight which would look for a file that would be the signal for the process

being completed. After this file was found, Isight would continue the optimization routine.

The integration of the programs with Isight made it possible to automate the complete

optimization process. Many different optimization frameworks are available to perform similar

optimization routines that can significantly reduce the time to an optimal design when used

51

effectively. Using an optimization framework takes an initial time investment, but can help

greatly reduce the amount of manual work greatly by automating the process of design iterations

and using proven algorithms to drive to the optimal solution.

4.5.1 Optimization Using Traditional Method

To perform a comparison between the different ways a flow path could be optimized,

there were two different optimization loops made. Each of these loops optimized the same

design with the same design space limitations. The difference between them lies in how the

geometry of the mesh was changed for each flow analysis. The standard or traditional method

modifies the CAD model, meshes the flow path, performs the CFD and then reports the results to

the optimization framework, which then carries on the optimization process with the same loop.

This method is still used frequently in industry even without an optimization framework to reach

the optimum. The designer changes the model and then remeshes the part and performs the

analysis. This process takes place either with the same person, or with multiple people. The

development of an optimization framework for this process has a great advantage over this

traditional process. Using this traditional method with an optimization framework can greatly

speed up the time to drive to an optimum. Because the traditional process is more commonly

used, an optimization process was set up using this methodology. This provided a base for how

much time it would take with the example used to determine an optimum for the design space.

4.5.2 Optimization Using Morphing Method

The major difference between the traditional and mesh morphing methods is how the

analysis model geometry is changed. As mentioned in the traditional method, new geometry is

52

generated and then meshed. The method to change the geometry for the analysis model in this

loop was mesh morphing. Details of this process have previously been covered in section 4.3.

There are different kinds of mesh morphing that can be used, and how the mesh shape is

changed. A mesh can be set up so that various changes can be made to the mesh, and then those

results can be input into an optimization framework so the effect of those shapes can be analyzed

and the optimum found. A process used with morphing saves the changes made to the mesh

during the morphing process from Pxn
H
 to Pxn

L
. This makes it possible to change the shape of

the mesh very quickly because the calculations have already been made. Different shape

combinations can also be saved that correlate to Pxn or to the mesh and design space. These are

sometimes referred to as arbitrary shape changes. While this has the advantage of being able to

analyze the design space freely with the possible shapes that can be used in optimization, the

optimal model may not match what is in the CAD model, so the CAD model would need to be

modified or recreated to match the shape of the optimal flow path. A different approach was

used to eliminate this problem in this analysis as explained in section 4.3. While the method

implemented does not take advantage of using pre-calculated shapes mentioned earlier, it ensures

that the changes made to the model will always be CAD based, so that when the optimum is

achieved the variables found to be optimum can be directly transferred back to the CAD model

without recreation of the optimal model. This eliminates the need to go back and redesign the

model because the parameters that have been found can be readily input to the parametric model

previously created.

53

5 RESULTS

Here the results from the different optimization loops will be presented. For the results

that will be presented, the optimization loops were performed on a computer with the following

specifications found in Table 5-1. For the processing, Isight and Hypermesh/HyperMorph

utilized a single core and Fluent used four. Each optimization loop will be presented separately

and then the results will be compared between them. The optimization runs were performed with

the same mesh parameters, and each model started at the same point in the optimization.

Table 5-1: Computer Specs.

OS Windows 7 64 bit

Processor

type Intel Xeon W3520

cores 4

speed 2.67 GHz

RAM

amount 12 GB

speed DDR3 PC3-8500

5.1 Traditional Method Loop

The traditional method took approximately 27.5 hours and performed 53 iterations to

determine the optimal flow path configuration. This resulted in each iteration taking

approximately 0.52 hrs. In Table 5-2 is the comparison of the initial to the optimal case found by

Isight. For the optimization, the goal was to maximize the mass flow rate while minimizing the

54

pressure drop each having an equal weight for the optimization. This configuration for an

optimization could easily be changed to meet a specified pressure drop and maximize the mass

flow rate, or any desired combination.

Table 5-2: Traditional Optimization Results

Angle
(deg)

Height
(mm)

Width
(mm)

Mass Flow
(kg/s)

Pressure
Drop (Pa)

Starting Point 45 28 32 0.008596 61.170

Optimal Point 43.712 26 32 0.007981 57.112

Percent
Difference -2.95% -7.69% 0.00% -7.71% -7.11%

Both the pressure drop improvement and the decline in mass flow changed a similar

amount in opposite directions when considering one improved and the other did not. The result

of the mass flow decreasing was not expected because each had an equal weight for the

optimization. After checking the optimization settings it was found that the mass flow and

pressure drop were not scaled correctly. Because the scale of the mass flow rate was much

smaller than the pressure drop, this resulted in the pressure drop taking precedence over the mass

flow rate in the optimization routine. Taking into account the scaling issue, it was solid

improvement for the pressure drop at just over 7 percent. While this optimization did take 27.5

hours, it took significantly less time than this process would have if performed manually by

either an individual or group of engineers. For the contour figures which will be shown, a center

plane was used that would show the middle of the flow path. While this will not show the

complete picture of what is happening, it is indicative of the changes made in the flow path. In

Figure 5-1 the upper pipe is the initial test case and the lower is the optimized center plane of the

optimized geometry. The improvement in the flow pattern for the velocity can be seen because

the areas of low velocity were reduced, as seen at and around the turns of the pipe. Flow

55

velocity in the optimized pipe also improved because the velocity became more uniform with

lower gradients. There is still an area in the center section of the pipe that has low velocity that

may be able to be improved upon. This could be accomplished with a model that has a different

parametric configuration that would enable greater movement of the flow path. A possible

method to accomplish this would be to have a parametric surface that has more degrees of

freedom to be adjusted. This would be similar to an arbitrary shape deformation process

mentioned previously.

Figure 5-1: Traditional Velocity Contour Comparison

Static gauge pressure was used to show the pressure changes in the pipe so that the

velocity component of dynamic pressure would not dominate the pattern and it would be easier

to see where pressure drops would occur in steps. Total pressure should have been used for the

pressure drop calculations, but static pressure was used. In Figure 5-2 pressure contours

improved from the initial geometry in the top diagram compared to the lower diagram due to

greater uniformity and lower gradients, especially around the bends of the flow path. Similarly

this may be able to be improved further with a different parametric control scheme.

56

Figure 5-2: Traditional Static Pressure Contour Comparison

5.2 Morph Method Loop

The morph method loop took approximately 9.16 hours and 39 iterations to determine the

optimal point, at 0.23 hours per iteration. In Table 5-3 the beginning and optimal points are

presented from the optimization performed using the mesh morphing process.

Table 5-3: Morph Optimization Results

 Angle (deg) Height (mm)
Width
(mm)

Mass Flow
(kg/s)

Pressure
Drop (Pa)

Starting Point 45 28 32 0.008596 59.556

Optimal Point 43.48808037 26.269 32 0.008053 55.495

Percent
Difference -3.48% -6.59% 0.00% -6.75% -7.32%

Table 5-3 shows the improvement in the pressure drop was about 7 percent while the

mass flow decreased nearly the same percentage at 6.75 percent. The reason for the reduction in

mass flow was a result of improper scaling in the optimization. In Figure 5-3, the differences in

57

the starting and optimal points can be seen in the velocity profile. Flow in the optimized flow

path has a smoother flow path through the center section and more uniform flow versus the

starting point. The areas of low velocity were reduced, the flow became more uniform around

the turns and the gradients were also reduced around the turns resulting in the improvements

made.

Figure 5-3: Morphing Velocity Contour Comparison

The static pressure drop difference can also be seen in Figure 5-4. This demonstrates the

improvement in pressure that was obtained from the optimization, which was a result of the

greater uniformity in the pressure, specifically around the turns where the gradients were

reduced.

58

Figure 5-4: Morphing Static Pressure Comparison

5.3 Traditional and Morph Loop Comparison

Table 5-4 is the comparison of the traditional and morphing optimization loops. The

difference between the optimal geometry and flow property results reached is very similar.

Table 5-4: Loop Comparison

Angle
(deg)

Height
(mm)

Width
(mm)

Mass Flow
(kg/s)

Pressure
Drop (Pa)

Optimization
Time (hrs) Iterations

hrs.
/iteration

Morph 43.49 26.27 32 0.00805 55.49 9.17 39 0.24

Traditional 43.71 26 32 0.00798 57.11 27.50 53 0.52

Percent
Difference 0.51% 1.04% 0.00% 0.90% 2.83% 67% 26% 55%

The greatest difference in flow characteristics is the pressure drop (2.83%) and the largest

geometric difference is the height (1.04%). Because the morphed model has the same amount of

elements from the smallest to largest case, this may account for the difference between geometric

59

and flow results. The largest reduction of the two different optimization loops, accounting for

the difference between the number of iterations, was the hours per iteration at 55%. This

represents the reduction in time for the complete optimization loop, including mesh generation as

well as the flow analysis time. While this result is not as drastic as has been seen in other cases

such as Hosford [17], an advantage of this method is that the CAD model is already at the

optimal shape, so there is no need to go back and match the CAD to the optimal result,

eliminating the time needed for manual redesign.

Figure 5-5 is a comparison of the different velocity flow patterns of the analysis for the

optimal geometry for each optimization loop type.

Figure 5-5: Optimal Velocity Comparison

Figure 5-6: Elbow Velocity Profile

60

Based on the comparison between the different velocity profiles, there is very little

difference between the two. A small difference between them can be seen by the size of the

velocity gradient at the first turn on the inside, which shows a larger area of higher speed flow

shown in Figure 5-6. Generally the results agree closely with small differences in the contours.

Figure 5-7: Pressure Profile Comparison

Similar to the differences between the velocity profile, small differences can be seen in

the size of the pressure gradient changes in Figure 5-7 as well as some differences in the

pressures in the entry area. While there is this discrepancy, the overall patterns agree very well,

and the static pressure drop difference between the two is only 2.83%.

An explanation for the differences between the two optimization loops is the grid

resolution at different geometric configurations. The grid has the same number of elements for

the morph case regardless of the change in the geometry. This accounts for part of the

calculation speed increase between the flow analyses. This also may be the reason for the small

differences in the flow profiles. Overall, this difference does not greatly affect the results.

While the difference is not as significant as some, greater improvement could be made with the

implementation of pre-calculating the mesh shape changes. This would greatly reduce the

61

amount of time that was needed for the optimization loops to perform the shape change. With

the current morphing method, to change the shape each time takes approximately 2 minutes.

This time could likely be reduced down to few seconds, which would increase the time savings

by that amount each iteration. In addition to this improvement, the analysis could also be sent to

a HPC where the analysis time for the fluid flow could be significantly reduced.

62

63

6 CONCLUSIONS

The process of automating the optimization of a flow path through the use of mesh

morphing mapped back to the original CAD part/model has been presented, i.e. the resulting

optimal discretized flow path’s geometric parameters are mapped back to the original CAD

model. This process has been shown to reduce the per-iteration time by 55%. A result of this

process is the elimination of the need to match optimal geometry created outside of the CAD

package.

In summary, the method presented uses an optimization framework to find the optimal

flow path for an intake runner. CAD, a meshing/morphing tool and CFD were used together to

find the optimum within a specified design space. The objectives of this thesis were as follows.

1. Using an optimization framework, integrate a pipe flow analysis process from CAD, to a

meshing/morphing utility, to a CFD package.

2. Determine an effective way to optimize the shape of the intake runner and have

optimization performed in the loop with full or partial automation as desired by the

designer.

Objective one was completed by demonstrating the implementation of an optimization

framework. This made it possible to automate the design and optimization of a flow path. The

second objective was achieved by using a parametric model from a CAD package, and using Pxn

of that model in the optimization framework. Through the use of the optimization framework a

64

designer can determine the best starting point for the optimization. The use of the optimization

framework and other programs also may be completely automated through the use of a batch file,

program or script, or they may be used interactively to the degree desired by the designer.

The method and the implementation thereof have shown that with the example shown,

savings of 55% per iteration are possible. Developed further, this process will have even greater

advantages when used to optimize an intake manifold or flow path network which are much

larger.. Using this method, the time to repeatedly mesh an analysis part can be eliminated. In

the example given, the time to mesh a flow model would take about a minute to complete. Time

spent redesigning a flow path for differing applications and changes can be completely

eliminated, making it possible to drastically increase the amount of time spent on new

development and research. For the current example, the time it would take to match the optimal

shape is minimal, but for much more complex flow paths, the time to match a complex optimized

model could be substantial. . These advantages will result in a large reduction in the time

needed for flow path development, here it has been shown that the time to find the optimum was

reduced by over 50%.

6.1 Future Work

As mentioned previously, this work is the basis for an ideal manifold development tool.

While this thesis has presented a base for intake flow optimization there are many areas that

could be developed further to work toward an ideal intake development and optimization tool.

65

1. Develop a method and tool for automated geometry creation based on a given design

space.

2. Implement the optimization process with a complete intake manifold and intake

system.

3. Determine how to link CAD parameters directly to geometric control for shape

optimization in a morphing tool

4. Implement unsteady analysis into the optimization process

5. Develop user interfaces for each tool within the CAD package for complete

automation from CAD.

Work in each of these would further enhance the usefulness of the preliminary tool

presented in this thesis. A comprehensive intake manifold tool would significantly reduce initial

design time while radically reducing the time in redesigning the manifold for a similar

application but different design envelope.

66

67

REFERENCES

[1] J. B. Heywood, Internal Combustion Engine Fundamentals. New York: McGraw Hill

Publishing Co, 1988, pp. 215-220.

[2] C. R. Ferguson and A. T. Kirkpatrick, Internal Combustion Engines: Applied

Thermosciences, 2nd ed. New York: John Wiley & Sons, Inc., 2001.

[3] J. J. Shah and M. Mantyla, Parametric and Feature-Based CAD/CAM Concepts,

Techniques, and Applications. New York: John Wiley & Sons, Inc., 1995, pp. 78-79.

[4] I. Zeid, Mastering CAD/CAM. New York: McGraw Hill Publishing Co, 2005, p. 424.

[5] C. M. Hoffmann, “Constraint-Based Computer-Aided Design,” Journal of Computing and

Information Science in Engineering, vol. 5, no. 3, p. 182, 2005.

[6] C. M. Hoffmann and K. J. Kim, “Towards Valid Parametric CAD Models,” Computer-

Aided Design, vol. 33, no. 1, pp. 81-90, Jan. 2001.

[7] D. Orenstein, “QuickStudy: Application Programming Interface (API),” Computerworld,

2000. [Online]. Available:

http://www.computerworld.com/s/article/43487/Application_Programming_Interface.

[Accessed: 26-Mar-2011].

[8] A. Hepworth, “Methods to Streamline Laminate Composite Design, Analysis, and

Optimization,” M.S. thesis, Mech. Eng., BYU, Provo, UT, 2010.

[9] K. J. Mix, “Integrating Engineering and Communication Tools for the Automation of

Design Rationale Capture,” M.S. thesis, Mech. Eng., BYU, Provo, UT, 2010.

[10] H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics

The Finite Volume Method, Second. Harlow, England, UK: Pearson Education Limited,

2007, p. 3.

68

[11] X. Zhu, M. E. Gleason, and K. Sbeih, “A CFD Application of Surface Morphing for

Vehicle Exterior Development,” SAE International World Congress, no. 2007-01-0110,

2007.

[12] P. Hoke and M. Doroudian, “Optimization of an IP and Console Duct using Advanced

Shape Deformation Technology,” in 3rd European Automotive CFD Conference, 2007.

Available: http://www.ansys.com/industries/automotive/advanced-shape-deformation-

9972.pdf

[13] R. Singh, “Automated Aerodynamic Design Optimization Process for Automotive

Vehicle,” SAE International World Congress, no. 2003-01-0993, 2003.

[14] M. Cross and D. Smith. (2005, Feb 14). Generic Automotive Engine Intake Port

Optimisation. Available: http://www.scribd.com/doc/24992703/Whitepaper-Engine-

Intake-Optimization

[15] X.-W. Gao, P.-C. Chen, and L. Tang, “Deforming Mesh for Computational Aeroelasticity

Using a Nonlinear Elastic Boundary Element Method,” AIAA Journal, vol. 40, no. 8, pp.

1512-1517, Aug. 2002.

[16] Altair, “Altair HyperMesh Users Guide Version 11.0.” 2011.

[17] A. T. Hosford, “Mesh Deformation Approach for Aerodynamic Optimization Using a

Genetic Algorithm,” B.S. honors thesis, Mech. Eng., BYU, Provo, UT, 2008.

[18] F. Campos, P. Geremia, and S. Weston, “Fast Robust Design Optimisation of an Under-

hood Cooling Duct,” in NAFEMS World Congress, 2007. Available:

http://www.iconcfd.com/media/publications/F.Campos_etal_NAFEMS2007.pdf

[19] M. Usan, “Automotive component product development enhancement through multi-

attribute system design optimization in an integrated concurrent engineering framework,”

M.S. thesis, Eng.& Mgt., MIT, Boston, MA, 2005.

[20] V. A. Jairazbhoy, L. Wang, M. Shahabi, R. Nimbalkar, and S. Earla, “OPTIMIZATION

OF AIR FLOW THROUGH A HEAT EXCHANGER IN AN AUTOMOTIVE HVAC,”

in 3rd ANSA & µETA International Conference, 2009, pp. 1-26.

[21] M. L. King, “A CAD-Centric Approach To CFD Analysis With Discrete Features,” M.S.

thesis, Mech. Eng., BYU, Provo, UT, 2004.

69

[22] “WordNet Search 3.0 ‘Optimal’,” WordNet. [Online]. Available:

http://wordnetweb.princeton.edu/perl/webwn?s=optimal. [Accessed: 22-Apr-2011].

[23] A. Parkinson, Optimization-Based Design. 2010, Provo: BYU.

[24] R. L. Fox, Optimization Methods For Engineering Design. Reading, Massachusetts:

Addison-Wesley Publishing Company, Inc., 1971.

[25] R. Fletcher, Practical Methods of Optimization, Second. Tiptree, UK: John Wiley & Sons,

Inc., 1987.

[26] H. Blaxill, J. Downing, J. F. Seabrook, and M. Fry, “A Parametric Approach to Spark-

Ignition Engine Inlet-Port Design,” SAE International Congress and Exposition, no. 1999-

01-0555, 1999.

[27] S. Gaikwad, K. Arora, V. M. Korivi, and S. K. Cho, “Steady and Transient CFD

Approach for Port Optimization,” SAE International World Congress, no. 2008-01-1430,

2008.

[28] A. D. Khondge and S. Sovani, “Automation of Vehicle Aerodynamic Shape Exploration

and Optimization using Integrated Mesh Morphing and CFD,” SAE International, no.

2011-01-0170, 2011.

[29] N. Wyman, “CFD Review | State of the Art in Grid Generation.” [Online]. Available:

http://www.cfdreview.com/features/01/04/28/2131215.shtml. [Accessed: 22-Aug-2011].

[30] A. M. Mistreanu, “Computational Methodology for Large Scale Simulation of Flow in the

Intake System of a V-8 Engine,” Ph.D. dissertation, Mech. Eng., Clemson Univ., 2003.

70

71

APPENDIX A. C++ NX EXECUTABLE CODE

A.1 Tokenizer Header File

#ifndef TOKENIZER_H
#define TOKENIZER_H
#include<string>
#include<vector>
#endif// TOKENIZER_HPP
void tokenize(const std::string& str,
 std::vector<std::string>& tokens,
const std::string& delimiters = " ")
{
//tokens.clear();
 // Skip delimiters at beginning.
 std::string::size_type lastPos = str.find_first_not_of(delimiters, 0);
// Find first "non-delimiter".
 std::string::size_type pos = str.find_first_of(delimiters, lastPos);
while (std::string::npos != pos || std::string::npos != lastPos)
 {
// Found a token, add it to the vector.
 tokens.push_back(str.substr(lastPos, pos - lastPos));
// Skip delimiters. Note the "not_of"
 lastPos = str.find_first_not_of(delimiters, pos);
// Find next "non-delimiter"
 pos = str.find_first_of(delimiters, lastPos);
 }
}

A.2 NX Main .cpp File

/***
**
** NX7 Open Wizard1.cpp
**
** Description:
** Main file for the application.
**
***/
/* Include files */
#if ! defined (__hp9000s800) && ! defined (__sgi) && ! defined (__sun)
include<strstream>
include<iostream>
using std::ostrstream;
using std::endl;
using std::ends;

72

using std::cerr;
#else
include<strstream.h>
include<iostream.h>
#endif
#include<uf.h>
#include<uf_ui.h>
#include<uf_exit.h>
#include<uf_defs.h>
#include<NXOpen/NXException.hxx>
#include<NXOpen/Session.hxx>
#include<NXOpen/Expression.hxx>
#include<NXOpen/ExpressionCollection.hxx>
#include<NXOpen/PartSaveStatus.hxx>
#include<NXOpen/Part.hxx>
#include<NXOpen/PartCollection.hxx>
#include<NXOpen/Session.hxx>
#include<NXOpen/Unit.hxx>
#include<NXOpen/UnitCollection.hxx>
#include<NXOpen/Update.hxx>
#include<fstream>
#include<string>
#include<stdio.h>
#include"tokenizer.h"
#include<windows.h>
#include<sstream>
// added following for opening part
#include<NXOpen/BasePart.hxx>
#include<NXOpen/PartLoadStatus.hxx>
usingnamespace NXOpen;
usingnamespace std;
#define UF_CALL(X) (report_error(__FILE__, __LINE__, #X, (X)))
staticint report_error(char *file, int line, char *call, int irc)
{
if (irc)
 {
char err[133],
 msg[133];
 sprintf(msg, "*** ERROR code %d at line %d in %s:\n+++ ",
 irc, line, file);
 UF_get_fail_message(irc, err);
 UF_print_syslog(msg, FALSE);
 UF_print_syslog(err, FALSE);
 UF_print_syslog("\n", FALSE);
 UF_print_syslog(call, FALSE);
 UF_print_syslog(";\n", FALSE);
 }
return(irc);
}
// functions for parsing
// declare identifiers for lines to be parsed
enum paramType
{
 width_,
 diameter_,
 centralAngle_
};
paramType WhichParamAmI(std::string paramName)

73

{
 if(paramName == "W")
 return width_;
 if(paramName == "D")
 return diameter_;
 if(paramName == "A")
 return centralAngle_;
}
/* Main routine */
externvoid main(char argc, char *argv[])
{
/* Initialize the API environment */
if(UF_CALL(UF_initialize()))
 {
/* Failed to initialize */
return;
 }
/* TODO: Add your application code here */
 std::string line;
 std::string file;
 file = "C:\\MorphLoop\\shape.txt"; /* */
 ifstream infile;
 infile.open(file.c_str());
 //set variable
 string CentAngle;
 string Diameter;
 string width;
 //define an STL vector of strings to hold the result in loop to clean up for each
object
 vector<string> tokens;
 while (getline(infile, line, '\n'))
 {
 //delimiters defined
 string delimiters(", =;\t");
 // break the string into a list of tokens
 tokenize(line, tokens, delimiters);
 // skip blank lines
 if(tokens.empty())
 continue;
 }
 infile.close();
 if((int)tokens.size()>=3)
 {
 width = tokens[1];
 Diameter = tokens[3];
 CentAngle = tokens[5];
 }
 Session *theSession = Session::GetSession();
 BasePart *basePart1;
 PartLoadStatus *partLoadStatus1;
 basePart1 = theSession->Parts()->OpenBaseDisplay("C:\\MorphLoop\\sA_NX5.prt",
&partLoadStatus1);
 Part *workPart(theSession->Parts()->Work());
 Part *displayPart(theSession->Parts()->Display());
 delete partLoadStatus1;
 Session::UndoMarkId markId1;
 markId1 = theSession->SetUndoMark(Session::MarkVisibilityVisible, "Change Display
Part");

74

 PartLoadStatus *partLoadStatus2;
 PartCollection::SdpsStatus status1;
 status1 = theSession->Parts()->SetDisplay(workPart, true, true, &partLoadStatus2);
 workPart = theSession->Parts()->Work();
 delete partLoadStatus2;
 theSession->Parts()->SetWork(workPart);
 workPart = theSession->Parts()->Work();
 Session::UndoMarkId markId2;
 markId2 = theSession->SetUndoMark(Session::MarkVisibilityVisible, "Enter
Gateway");
 Session::UndoMarkId markId3;
 markId3 = theSession->SetUndoMark(Session::MarkVisibilityVisible, "Enter
Modeling");
// --
// Menu: Tools->Expression...
// --
 Session::UndoMarkId markId4;
 markId4 = theSession->SetUndoMark(Session::MarkVisibilityVisible, "Expression");
 Expression *expression1(dynamic_cast<Expression *>(workPart->Expressions()-
>FindObject("angle")));
 Unit *unit1(dynamic_cast<Unit *>(workPart->UnitCollection()->FindObject("Degrees")));
 workPart->Expressions()->EditWithUnits(expression1, unit1,
(char*)CentAngle.c_str());
 Expression *expression2(dynamic_cast<Expression *>(workPart->Expressions()-
>FindObject("diameter")));
 Unit *unit2(dynamic_cast<Unit *>(workPart->UnitCollection()-
>FindObject("MilliMeter")));
 workPart->Expressions()->EditWithUnits(expression2, unit2, (char*)Diameter.c_str());
 Expression *expression3(dynamic_cast<Expression *>(workPart->Expressions()-
>FindObject("width")));
 workPart->Expressions()->EditWithUnits(expression3, unit2, (char*)width.c_str());
int nErrs1;
 nErrs1 = theSession->UpdateManager()->DoUpdate(markId4);
 // --
// Menu: File->Save As...
// --
 remove("C:\\MorphLoop\\ItWorks.prt");

 PartSaveStatus *partSaveStatus1;
 partSaveStatus1 = workPart->SaveAs("C:\\MorphLoop\\ItWorks.prt");
delete partSaveStatus1;
/* Terminate the API environment */
 UF_CALL(UF_terminate());
}

75

APPENDIX B. HYPERMORPH TCL SCRIPT FOR MESHING

Imports NX part file layers 9 inlet 10 wall 11 outlet. Meshes pipe then exports CFD .cas file.

Importing commands when part is imported naming collectors and organizing parts with

layers.

*createstringarray 12 "SELECTIONS 0 1 0 0 0 1 0 0 0 1" "" "BEGIN_PARTS" "END_PARTS"

"" "BEGIN_LAYERINFO" "DISABLE" "ENABLE 9-11" "END_LAYERINFO" ""

"COMPONENT_NAME custom <Layer>" "";

to make the following line work "#ug\ug"

"C:/Users/William/Documents/Research/NX/TestPipe.prt" 1 0 -0.01 0 0 1 12 1 0 needed to be

changed to the following line with the brackets ug command refers to ext api function in

hypermesh

*feinputwithdata2 {#ug\ug} {C:/MeshLoop/ItWorks.prt} 1 0 -0.01 0 0 1 12 1 0 ; #

*settopologydisplaytype 1

#change name of collectors from numbers to names

*retainmarkselections 1

*renamecollector components "11" "outlet"

*retainmarkselections 0

*retainmarkselections 1

*renamecollector components "10" "wall"

*retainmarkselections 0

*retainmarkselections 1

*renamecollector components "9" "inlet"

*retainmarkselections 0

commands to clean up geometry to get ready for 2D meshing

*createmark surfaces 1 "by collector name" "wall" "inlet" "outlet"

*selfstitchcombine 1 18 0.0254 0.0254

#commands used to 2d automesh part with QI optimize mixed mesh type element size 2.00 flow

align checked

*setedgedensitylink 0

*createdoublearray 89 1 1 0.00602 0.005418 0.002408 0.001204 0.0006019 1 1 0.00602

0.007223 0.009029 0.01204 0.01806 1 1 1 2 4.4 5 10 1 1 0 5 13 15 30 1 1 90 110 134 140 160 1

1 90 70 46 40 20 1 1 60 80 112 120 150 1 1 60 50 34 30 15 1 1 0 10 34 40 70 1 1 1 0.9 0.7 0.6

0.3 0 1 0 0.3 0.8 1 2 1 1 0 6 10 15 20 0 0 0.8 1 10

*reset_qa_calculator 1 89

*reset_elemsize_criteria 2

*elementorder 1

*createmark surfaces 1 "by collector name" "wall" "inlet" "outlet"

76

*optimized_mesh 1 "dummy" 2 2 1 30 1 1 1

#checks for T-connections

*createmark components 1 "wall" "inlet" "outlet"

*findedges components 1 1

#checks for edges

*createmark components 1 "wall" "inlet" "outlet"

*findedges components 1 0

*createstringarray 2 "tet: 67 1.05 -1 0 1 0 0" "cfd: 118 0.09 8 1.3 0"

*createmark components 1 "wall"

*createmark components 2 "inlet" "outlet"

*tetmesh components 1 3 components 2 0 1 2

3d mesh with boundary layer

*createmark components 1 "wall"

*createmark components 2 "inlet" "outlet"

*tetra_cfdmesh_transition components 1 components 2 1.2 0.75 0.3 1.1 5 3 1 0 310 0.8

following line is original method for meshing in first completed run, higher res boundary layer

and smooth boundary development

#*createstringarray 2 "tet: 67 1.05 -1 0 1 0 0" "cfd: 118 0.09 8 1.3 0"

*createstringarray 2 "tet: 35 1.05 -1 3.5 0.8 0 0" "cfd: 118 0.08 8 1.3 0"

*createmark components 1 "wall"

*createmark components 2 "inlet" "outlet"

*tetmesh components 1 3 components 2 0 1 2

*createstringarray(2) "tet: 35 1.05 -1 3.5 0.8 0 0" "cfd: 118 0.2 3 1 0"

*tetmesh(elements,0,-1,elements,0,-1,1,2)

*createstringarray(2) "tet: 35 1.05 -1 3.5 0.8 0 0" "cfd: 118 0.2 3 1 0"

*createmark(components,1) "10"

*createmark(components,2) "9" "11"

*tetmesh(components,1,3,components,2,0,1,2)

create fluid component by renaming cfd tetramesh

*retainmarkselections 1

*renamecollector components "CFD_tetramesh_core" "fluid"

*retainmarkselections 0

create inflow and outflow collectors

*createmark materials 1

*clearmark materials 1

*collectorcreateonly components "inflow" "" 64

*createmark components 1

*clearmark components 1

*createmark components 1 "inflow"

*materialupdate components 1 ""

*createmark components 1

*clearmark components 1

*createmark materials 1

*clearmark materials 1

*collectorcreateonly components "outflow" "" 64

*createmark components 1 "inflow"

77

*clearmark components 1

*createmark components 1 "outflow"

*materialupdate components 1 ""

*createmark components 1

*clearmark components 1

move cfd boundary layer to fluid

*createmark elements 1 "CFD_boundary_layer"

*movemark elements 1 "fluid"

delete cfd_boundary_layer collector

*retainmarkselections 1

*createmark components 1 "CFD_boundary_layer"

*deletemark components 1

*retainmarkselections 0

find faces of fluid and make faces collector

*createmark components 1 "fluid"

*findfaces components 1

isolate faces collector

*retainmarkselections 1

*createmark components 1 "^faces"

*createmark surfaces 1 "fluid"

*displaycollectorsallbymark 1 "isolateonly" 1 1

*createmark groups 2

*displaycollectorsbymark groups 2 "isolate" 1 1

*retainmarkselections 0

moved element faces by

need to create variables that specify the plane for both the inflow and the outflow this will be

based on the layer of the place in CAD

*createmark elements 1 "on plane" 1 380 1 0 1 0 0.1 1 1

*movemark elements 1 "inflow"

*createmark elements 1 "on plane" 1 0 1 0 1 0 0.1 1 1

*movemark elements 1 "outflow"

delete remaining faces component

*retainmarkselections 1

*createmark components 1 "^faces"

"inlet" "outlet"

*deletemark components 1

*retainmarkselections 0

display only needed components

*displaycollectorwithfilter components "on" "wall" 1 0

*displaycollectorwithfilter components "on" "fluid" 1 0

*displaycollectorwithfilter components "on" "inflow" 1 0

*displaycollectorwithfilter components "on" "outflow" 1 0

un edited export of model to cas file

*retainmarkselections 0

*entityhighlighting 1

*entityhighlighting 0

78

*displaycollectorwithfilter components "none" "" 0 1

*createmark components 1 "displayed"

*clearmark components 1

*createmark nodes 1 "displayed"

*clearmark nodes 1

*createmark elements 1 "displayed"

*clearmark elements 1

*createmark elements 2 "fluid"

*clearmark elements 2

*createmark elements 2

*clearmark elements 2

*createmark elements 1 "wall"

*createmark elements 2 "wall" "inflow" "outflow"

*markintersection elements 1 elements 2

*createmark elements 1 "wall"

*clearmark elements 1

*createmark elements 1 "fluid"

*createmark elements 2 "wall" "inflow" "outflow"

*markintersection elements 1 elements 2

*createmark elements 1

*clearmark elements 1

*createmark elements 1 "inlet"

*createmark elements 2 "wall" "inflow" "outflow"

*markintersection elements 1 elements 2

*createmark elements 1 "inlet"

*clearmark elements 1

*createmark elements 1 "outlet"

*createmark elements 2 "wall" "inflow" "outflow"

*markintersection elements 1 elements 2

*createmark elements 1 "outlet"

*clearmark elements 1

*createmark elements 1 "displayed"

*clearmark elements 1

*createmark components 1 "fluid"

*collectormarkmove components 1 1 0

*createmark components 1 "displayed"

*clearmark components 1

*createmark elements 1 "wall" "inflow" "outflow"

*findedges elements 1 0

*createmark elements 1

*clearmark elements 1

*createmark nodes 1 "displayed"

*clearmark nodes 1

*nodecleartempmark

*cfdoutput "C:/MeshLoop/mesh.cas" "ASCI" "FLUENT" "0" ""

*entityhighlighting1

79

APPENDIX C. HYPERMORPH TCL SCRIPT

code to import cas file and modify cas file then export new case file with solving method and

previous solved data

import CAS file

*view "rear"

*entityhighlighting 0

*createmark components 1

*clearmark components 1

*feinput "C:/Program Files/Altair/11.0/io/model_readers/feinput/bin/win64/fluent_cas_msh.exe"

"C:/MorphLoop/morphOrig.cas" 1 0 -0.01 1 0

*createmark components 1 "all"

*clearmark components 1

*entityhighlighting 1

I will need to make sure that the file name can be adjusted or that the saving method will match

what is determined

import original geometry

*createstringarray 12 " SELECTIONS 0 1 0 0 0 1 0 0 0 1" "" "BEGIN_PARTS"

"END_PARTS" "" "BEGIN_LAYERINFO" "DISABLE " "ENABLE 2" "END_LAYERINFO"

"" "COMPONENT_NAME custom <Layer>" ""

*feinputwithdata2 {#ug\ug} {C:/MorphLoop/sA_NX5.prt} 1 0 -0.01 0 0 1 12 1 0 ; #

rename imported

*retainmarkselections 1

*renamecollector components "2" "old_line"

*retainmarkselections 0

import new geometry

*createstringarray 12 " SELECTIONS 0 1 0 0 0 1 0 0 0 1" "" "BEGIN_PARTS"

"END_PARTS" "" "BEGIN_LAYERINFO" "DISABLE " "ENABLE 2-3"

"END_LAYERINFO" "" "COMPONENT_NAME custom <Layer>" ""

*feinputwithdata2 {#ug\ug} {C:/MorphLoop/ItWorks.prt} 1 0 -0.01 0 0 1 12 1 0 ; #

change name of new geometry component

*retainmarkselections 1

*renamecollector components "2" "new_line"

*retainmarkselections 0

*retainmarkselections 1

*renamecollector components "3" "new_surface"

*retainmarkselections 0

#scale imported geometry to match flow model

80

*createmark components 1 "old_line" "new_line" "new_surface"

*scalemark components 1 0.001 0.001 0.001 0

*window 0 0 0 0 0

#create domains 2D then 3D

only 2 domain groups created in following method

*morphstoredomains 1

*createmark elements 1 "by comps" "wall" "inflow" "outflow"

*morphcreatedomaindc elements 1 2 0 0 1 0

*morphstoredomains 1

*createmark elements 1 "by comps" "fluid"

*morphcreatedomaindc elements 1 3 0 0 1 0

---------------get mark id of lines----------------

*createmark lines 1 "by comp" "old_line"

*createmark lines 2 "by comp" "new_line"

set mee [hm_getmark lines 1]

set mee2 [hm_getmark lines 2]

*morphstoremorphvolumes 3

*createmark nodes 1 "fluid"

*createmark nodes 2

if { [catch {eval *createlist lines 1 $mee}] } {

#Handle error

}

*createlist nodes 1

if { [catch {eval *createlist lines 2 $mee2}] } {

Handle error

}

*createlist nodes 2

*createplane 1 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000

entity type(nodes) mark id(1,2) f_entity_type(nodes) f_mark_id(1,2) i_line_list(1,2)

i_node_list(1,2) f_line_list(1,2) f_node_list(1,2) r_plane(1,2) rotate(0 linear mapping, 1 rotate

nodes) axis(0-5) sym(0) con(0,1) blend mbias(value) fbias(value)

*morphmapdifference(nodes,1,nodes,2,1,1,2,2,1,1,5,0,1,0,1,1)

if { [catch {*morphmapdifference nodes 1 nodes 2 1 1 2 2 1 1 5 0 1 0 1 1 }] } {

#Handle error

}

Morph to edges at ends first

method with original morph case to morph outflow to edge of surface

*morphstoremorphvolumes 3

*createmark nodes 1 86342-86382

*createmark handles 1

*createlist lines 2 21

*createlist nodes 2

*createvector 1 1.0000 0.0000 0.0000

*morphmaptolinevec nodes 1 handles 1 2 2 0 1 1 1 1

method with original morph case to morph inflow to edge of surface

*morphstoremorphvolumes 3

81

*createmark nodes 1 1 2 91859-91897

*createmark handles 1

*createlist lines 2 11

*createlist nodes 2

*createvector 1 1.0000 0.0000 0.0000

*morphmaptolinevec nodes 1 handles 1 2 2 0 1 1 1 1

Morph to surface commands

Using map to surfaces and then using map nodes by collector this works

*morphstoremorphvolumes 3

*createmark nodes 1 "by comps" "wall"

*createmark handles 1

*createmark surfaces 1 "by comps" "new_surface"

*createvector 1 1.0000 0.0000 0.0000

*morphmaptosurfacevec(nodes,1,handles,1,surfaces,1,0,1,1,1,1)

*morphmaptosurfacevec nodes 1 handles 1 surfaces 1 0 1 1 1 1

#export cas file using previous cas information

*retainmarkselections 0

*entityhighlighting 1

*entityhighlighting 0

*displaycollectorwithfilter components "none" "" 0 1

*createmark components 1 "displayed"

*clearmark components 1

*createmark nodes 1 "displayed"

*clearmark nodes 1

*createmark elements 1 "displayed"

*clearmark elements 1

*createmark elements 2 "fluid"

*clearmark elements 2

*createmark elements 2

*clearmark elements 2

*createmark elements 1 "wall"

*createmark elements 2 "wall" "inflow" "outflow"

*markintersection elements 1 elements 2

*createmark elements 1 "wall"

*clearmark elements 1

*createmark elements 1 "fluid"

*createmark elements 2 "wall" "inflow" "outflow"

*markintersection elements 1 elements 2

*createmark elements 1

*clearmark elements 1

*createmark elements 1 "inlet"

*createmark elements 2 "wall" "inflow" "outflow"

*markintersection elements 1 elements 2

*createmark elements 1 "inlet"

*clearmark elements 1

*createmark elements 1 "outlet"

82

*createmark elements 2 "wall" "inflow" "outflow"

*markintersection elements 1 elements 2

*createmark elements 1 "outlet"

*clearmark elements 1

*createmark elements 1 "displayed"

*clearmark elements 1

*createmark components 1 "fluid"

*collectormarkmove components 1 1 0

*createmark components 1 "displayed"

*clearmark components 1

*createmark elements 1 "wall" "inflow" "outflow"

*findedges elements 1 0

*createmark elements 1

*clearmark elements 1

*createmark nodes 1 "displayed"

*clearmark nodes 1

*nodecleartempmark

*cfdoutput "C:/MorphLoop/morph.cas" "ASCI" "FLUENT" "1" "C:/MorphLoop/morph.cas" 1 1

*entityhighlighting 1

83

APPENDIX D. FLUENT JOURNAL FILE

D.1 Mesh Fluent Journal

rc C:/MeshLoop/mesh.cas

;to scale mesh to mm

mesh/scale .001 .001 .001

file/read-bc

C:/MeshLoop/bclam

in/i-f

it 300

file/read-bc

C:/MeshLoop/bc1st

in/i-f

it 300

;file wcd C:/MeshLoop/fluent.dat y

file/read-bc

C:/MeshLoop/bc2nd

in/i-f

it 800

report/surface-integrals/area-weighted-avg inflow outflow () pressure yes "pressure.txt" n y

report/fluxes/mass-flow yes yes "mdot.txt" n y

file wcd C:/MeshLoop/fluent.dat y

exit

84

D.2. Morph Journal File

rcd C:/MorphLoop/morph.cas

file/read-bc

C:/MorphLoop/bclam

solve/iterate 300

file/read-bc

C:/MorphLoop/bc1st

solve/iterate 300

file/read-bc

C:/MorphLoop/bc2nd

solve/iterate 800

report/surface-integrals/area-weighted-avg inflow outflow () pressure yes "pressure.txt" no yes

report/fluxes/mass-flow yes yes "mdot.txt" n y

file wcd C:/MorphLoop/morph.dat yes

exit

