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ABSTRACT 

The Passive Load-Bearing Capacity of the Human Lumbar  
Spine in the Neutral Standing Posture 

 
Shaun B. Jeffs 

Department of Mechanical Engineering 
Master of Science 

 
The human lumbar spine has been shown to support compressive loads of 1000 N in 

standing and walking, and up to many thousands of Newtons in strenuous activities such as 
lifting.  The literature presents a number of biomechanical models that seek to replicate the load-
carrying capacity of the spine while adhering to physiological constraints.  While many of these 
models provide invaluable insights into the mechanisms governing spinal stability, there is a 
nearly universal disregard for the magnitude of the muscle forces required in the neutral standing 
posture.  In compliance with constraints on metabolic cost and muscle fatigue, muscle 
activations in excess of 5% maximum voluntary contraction (MVC) in the standing posture are 
physiologically infeasible.  The purpose of this thesis was to investigate the hypothesis that the 
passive structures of the lumbar spine are sufficient to produce static equilibrium under the body 
weight load in the neutral standing posture.   

 
A novel method of applying physiologic loads to the lumbar spine in vitro to determine 

its passive stability was developed.  Five cadaver specimens were tested and a passive 
equilibrium posture was discovered for each.  Further, the parameters defining the equilibrium 
posture correlate well with the standing posture as reported in the literature.  This is an indication 
that the lumbar spine is inherently capable of remaining erect in the neutral posture with muscle 
activations below 5% MVC.  It is postulated that the iliolumbar ligament and the thoracolumbar 
fascia, passive components that are not typically incorporated into stability models of the spine, 
have the potential to provide added passive stabilization to the system.  It is recommended that 
biomechanical models of the spine incorporate this 5% MVC constraint and place greater 
emphasis on the contributions of passive structures to overall stability. 
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1 INTRODUCTION 

1.1 The Prevalence of Back Pain 

The human spine is the core structure of the axial skeleton.  It is an important load-

bearing component that experiences compressive forces of several thousands of Newtons [1] in 

activities of daily living while maintaining a great range of mobility that is unparalleled by man-

made structures.  While impressive in its capabilities, the human spine is nevertheless susceptible 

to structural degradation and instability that might result from pathological issues such as disc 

degeneration.  Damage to the spinal structure, whether suffered by pathological disorders or by 

injury, can affect its static and kinematic response to the loading that is imposed on it by gravity 

and the surrounding musculature.  Consequently, patients suffering from the effects of 

deterioration of the spine often experience severe pain and weakness that can, in many cases, 

become completely debilitating.  Many patients experiencing back pain are unable to function in 

their normal capacity and will never return to the workforce.  The socioeconomic strain of back 

pain and its effects is enormous.  It has been estimated that the total cost of low back pain related 

issues exceeds $100 billion in the United States alone [2].  Much of these costs are indirect, as 

back pain is the most expensive cause of work-related disability [3].  These statistics alone are 

reason enough to engage in a focused investigation into ways back pain can be more accurately 

characterized, diagnosed, and treated in an effort to not only reduce economic burden but to 

improve the quality of life of those who are suffering daily from it. 
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1.2 Stability and Equilibrium of the Spine 

This work will focus on the stability of the lumbar spine in the neutral (standing) posture 

and its implications for clinical diagnosis and treatment of spinal disorders.  It is important to 

identify the meaning of the term “stability” as used in this work.  There are typically two 

interpretations of stability of the spine: clinical stability and mechanical stability.   

Clinical stability has been defined as the “ability of the spine, under physiologic loads, to 

limit patterns of displacement so as not to damage or irritate the spinal cord or nerve roots and, in 

addition, to prevent incapacitating deformity or pain due to structural changes [4].”  In short, 

clinical stability is concerned with the protection of the spinal nerves and pain avoidance.  

Damage to an intervertebral disc (IVD) or to a spinal ligament can cause clinical instability in 

varying degrees depending on the amount of damage.  Many pathological disorders that are 

associated with kinematic or kinetic changes in spinal behavior (e.g., spondylolisthesis, disc 

degeneration, vertebral fracture) cause clinical instability. 

Mechanical stability is a more concrete concept than clinical stability.  It has been 

defined as “the ability of a loaded structure to maintain static equilibrium even at (small) 

fluctuations around the equilibrium position.  If stability does not prevail, an arbitrarily small 

change of the position is sufficient to cause ‘collapse’, i.e. the structure moves further away from 

equilibrium [5].”  This definition allows the spine to be viewed as a structural column that will 

exhibit characteristics of Eulerian buckling if moved away from the stable position.  It also 

denotes a relationship to equilibrium.  Mechanically (and mathematically) there are two types of 

equilibrium: stable and unstable.  An unstable equilibrium can be likened to a ball positioned on 

the top of a hill (see Figure 1-1a).  The ball is in static equilibrium and will remain so until 

perturbed away from its stable position.  A stable equilibrium (Figure 1-1b) can be viewed as a 
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ball at the bottom of a hill.  After any finite deviation, the ball will seek to return to its minimum 

energy state at the bottom of the hill.     

   

 

Figure 1-1: Unstable Equilibrium (a) and Stable Equilibrium (b) 
 

At an unstable equilibrium, if the slope of the hill is flattened, the ball will be more tolerant 

to very small perturbations around the equilibrium (see Figure 1-2).  Though the ball on the 

broader hill is still considered an unstable equilibrium, this flattening of the slope can be seen as 

an increase in relative stability.  In this study the usage of the word “stability” will refer to 

mechanical stability unless otherwise specified.  This thesis will seek equilibrium configurations 

of the lumbar spine and will attempt to quantify their stability. 

 

 

Figure 1-2: The Relative Stability of a Ball Determined by the Slope of the Hill 
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1.3 Modeling Techniques and Physiological Constraints 

Gaining an understanding of the unique way in which the spine manages the loads 

imposed on it has the potential to affect the way we approach implant design and 

implementation, physical therapy procedures, ergonomic design, and diagnosis and treatment of 

pathological spinal disorders [6-8].  This understanding is dependent upon the monumental task 

of accurately characterizing the way the physiologic load is distributed among the active 

components (muscles) and passive components (ligaments, intervertebral discs, vertebrae) of the 

spine.  The unique and complex structure of the spine presents a number of obstacles when 

approached as a biomechanical system.  The majority of the passive structures of the spine 

exhibit material characteristics that are challenging to characterize and analyze: they are 

viscoelastic, nonlinear, anisotropic, and inhomogeneous.  The difficulty in characterizing the 

precise response of these materials under load is a huge obstacle that impacts analytical and 

finite element models.  Additionally, due to the structure of the musculature and the high degree 

of mobility attributed to the intervertebral joints, the spine is a highly indeterminate system 

(statically and kinematically).  As Aspden summarized [9], “This indeterminacy means that for 

any given posture the spine has many ways in which the forces can be distributed between the 

spinal column and the attached muscles and ligaments.  A corollary of this is that the body has 

available many different postures to achieve a given end, e.g., picking up a weight from the 

floor.”  Though this is currently an area of active research, the relative contributions of the active 

and passive components of the spine to its stability are still not completely understood [10, 11].  

The literature is replete with models that seek to predict the response of the spine under 

various loading conditions.  The objective of these studies is to replicate the physiological load 

distribution around the spine while accurately simulating the response of the spine as compared 
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to data measured in vivo.  The majority of these models typically employ one of, or some 

combination of, three analysis methodologies: finite element analysis (FEA), analytical modeling 

and optimization, and cadaveric testing.  Each has a number of merits and advantages, as well as 

a number of drawbacks.  Validation of these models is challenging.  Due to ethical 

considerations, in vivo measurements are difficult to obtain and are limited in their scope.  

Commonly used as validation for a model’s ability to simulate the physiological condition, 

parameters such as intradiscal pressure, internal shear forces, cortical bone strains, and geometric 

parameters have been measured either invasively or through imaging techniques such as 

magnetic resonance imaging (MRI).  Chapter 2 will present a representative sample of these 

models and identify their strengths and their weakness in being able to accurately model the 

biomechanics of the human lumbar spine. When investigating the biomechanics of the human 

lumbar spine, it is imperative that physiological constraints be imposed upon the model to 

maintain physiologic feasibility.  The majority of the models presented in the literature make use 

of a number of constraints on the passive structures and the passive loading of the spine, yet they 

allow unconstrained action of the musculature.  Many require an infeasible amount of muscular 

support to maintain stability.  This is an issue that is largely overlooked in the literature.  Though 

the precise distribution of these loads among the ligamentous spine and the musculature is not 

well understood, it is reasonable to assume that as least a portion, if not a majority, of the load is 

carried by the passive structure in the standing posture [12]. 

1.4 Thesis Statement 

The primary objective of this research is to quantify the ability of the human ligamentous 

lumbar spine to support the load of gravity in the absence of active control from the musculature 
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in the neutral standing posture.  It is hypothesized that there exists a unique equilibrium 

configuration of the spine which requires little or no muscular input to remain erect, and that this 

equilibrium posture coincides with the configuration of the spine in the standing posture.  This 

equilibrium point configuration is the posture of minimal metabolic expenditure and satisfies 

physiological constraints on muscle activation.  This study is an in vitro (cadaveric) investigation 

of the equilibrium point and its stability. 

1.5 Contributions 

Though there have been a number of investigations into the passive stability of the 

lumbar spine, this is the first study to our knowledge that uses an in vitro methodology to 

demonstrate the load-carrying capacity of the ligamentous spine in the absence of simulated 

muscle activation.  This research has identified a semi-stable equilibrium posture that requires no 

muscular input.  The implications of this finding are far-reaching.  We have demonstrated that 

the lumbar spine is able to stand freely and seek a configuration of minimal energy expenditure 

while in the standing posture.  This new understanding sheds light on how the lumbar spine 

regulates the contributions of active and passive structures to provide stability.  It implies that 

any spine model that is to be accurate, whether numerical or otherwise, should be able to 

replicate an equilibrium posture with little or no muscle activation.  This finding brings into 

question the validity of current stability models and indicates a need for significant modification 

if not a complete revision of the current modeling techniques.  Since many of these models are 

used in the design of spinal implants and devices, a more accurate understanding of the spine’s 

biomechanical response in the neutral posture will allow for better implant design and more 

accurate simulation of spinal motion.  This study is not meant to provide a comprehensive 
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characterization of the stability of the spine.  Rather it identifies a critical passive capability of 

the spine that has been previously overlooked.  This thesis will also identify a number of passive 

components which have not typically been incorporated into stability models that have potential 

for added stabilization.  The stability of the equilibrium posture will be characterized and the 

need for low-level muscle activations will be assessed.   

1.6 Thesis Outline 

Chapter 2 will begin by giving background information on the anatomy and 

biomechanics of the spine.  It will present the musculature around the spine and will define 

metabolic constraints on muscle activation in the neutral posture.  It will then present a number 

of the spine stability models found in the literature and will identify the strengths and shortfalls 

of each.  Chapter 3 is a technical journal article describing this research that was submitted to the 

The Spine Journal and is currently under review.   It will present the testing methods and the 

major results of the work.  Chapter 4 will provide detail on additional insights that were gained 

during accomplishment of the work.  Chapter 5 will make some concluding remarks and provide 

recommendations for future research. 
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2  BACKGROUND AND LITERATURE REVIEW 

This chapter presents a brief overview of spinal anatomy including the primary active and 

passive components of the lumbar spine that contribute to stability.  It then presents the 

physiological rationale for a previously-overlooked constraint on muscle activation while in the 

standing posture.  It will then discuss a number of spinal stability models and will identify their 

strengths as well as their inadequacies with respect to the constraint on muscular activation. 

2.1 The Structures of the Lumbar Spine 

In order to understand the control of stability of the spine, a basic understanding of the 

active and passive structures that might be involved in stabilization must be gained.  This section 

will present basic spinal anatomy and a number of structures that have been identified as 

contributing to stability. 

2.1.1  Gross Anatomy 

The spinal column is divided into three segments: the cervical, the thoracic, and the 

lumbar.  It is composed of seven vertebrae in the cervical region (C1-C7), 12 in the thoracic (T1-

T12), and five in the lumbar (L1-L5).  Caudally, the lumbar spine attaches to the sacrum which 

in turn is joined to the pelvis by the fibrous sacro-iliac joint.  There are two principal curvatures 

of the spine: kyphosis and lordosis.  The thoracic spine is concave anteriorly (kyphosis) and the 

lumbar and cervical spines are concave posteriorly (lordosis), shown in Figure 2-1.  When 
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viewed as a structural column, these curvatures are the cause of instability when the spine is 

subjected to a purely vertical load.  When loaded in this manner, internal moments are generated 

within the intervertebral discs and the free-standing lumbar spine is only able to withstand loads 

of up to 100 N [13-15], an order of magnitude less than what is experienced during activities of 

daily living.  The bony structures of the vertebrae are roughly divided into the anterior body (i.e., 

the vertebral body) and the posterior elements (pedicles, lamina, transverse processes, spinous 

process, and the facets) (shown in Figure 2-2). 

 

 

Figure 2-1: The Columns and Curvatures of the Spine 

2.1.2  Spinal Ligaments and Intervertebral Discs 

The functional spinal unit (FSU) is composed of 2 adjacent vertebrae and the disc in 

between.  There are 7 spinal ligaments in the lumbar region: the anterior longitudinal, posterior 

longitudinal, supraspinous, interspinous, ligamentum flavum, intertransverse, and capsular 

ligaments.  These are shown in Figure 2-2.  The primary function of the spinal ligaments is to 

restrict motion.  The physical make-up of ligaments provides a very unique set of mechanical 

Kyhosis 

Lordosis 

CERVICAL 

THORACIC 

LUMBAR 
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behaviors.  Ligaments are composed of bundles of collagen fibers surrounded by a ground 

substance matrix that is primarily composed of water and proteoglycans.  The mechanical 

response of ligaments is non-linear, anisotropic, viscoelastic and inhomogeneous.  These 

properties pose challenges in characterizing their constitutive response.  An important property 

of ligaments is that they exhibit a low modulus of elasticity at low strains and a high modulus of 

elasticity at high strains.  This is primarily due to a crimp pattern of the collagen fibers that 

“flattens out” as strain increases [16].  In general, the spinal ligaments have some amount of pre-

strain in the neutral posture to provide stabilization.  As the spine is articulated, these ligaments 

prevent excessive motion and protect the intervertebral discs. 

 

 

Figure 2-2: The Functional Spinal Unit (FSU) 
 

The intervertebral discs join adjacent vertebrae.  They are cartilaginous joints and are 

composed primarily of collagen fibers, proteoglycans, and water.  Structurally, discs are 
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composed of an outer ring called the annulus fibrosis and an inner core called the nucleus 

pulposus, shown in Figure 2-3.  The annulus fibrosis is made up of concentric rings of 

fibrocartilage, termed lamellae, and collagen fibers that attach the disc to the bodies of adjacent 

vertebrae.  The nucleus pulposus is a gelatinous core that functions as a hydrostatic shock 

absorber [17].  It provides resilience and contributes to the disc’s resistance to compression. 

 

 

Figure 2-3: The Intervertebral Disc 

2.1.3  Spinal Musculature 

The musculature surrounding the spine can broadly be categorized into two systems: the 

global musculature and the local musculature [5] (see Figure 2-4).  The global musculature 

controls the bulk motion of the upper torso and (generally) causes relative motion between the 

pelvis and the rib cage.  Global muscles typically have a larger physiological cross-sectional area 

(PCSA) and are responsible for large motions.  Co-contraction of the posterior flexor muscles 

and the anterior extensor muscles can provide supplemental stabilization to the spinal column 

[18].  Examples of global muscles are the erector spinae and the rectus abdominis.  Local 

muscles generally have a much smaller PCSA and are shorter in length.  They may attach lumbar 

vertebrae to the pelvis or they may articulate adjacent vertebral levels.  They are well suited for 

small adjustments and fine motor control of individual vertebrae [19].  In general they control the 

Annulus Fibrosis 

Nucleus Pulposis 

Lamellae 
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minute alterations to the intersegmental angles that are required to create the optimal spinal 

geometry.  Examples of local muscles are the multifidus and rotatores.   

 

 

Figure 2-4: Local and Global Musculature of the Lumbar Spine 
 

When determining the action of muscles and their effect as they contract, it is useful to 

quantify muscular input as a percentage of maximum voluntary contraction (MVC).  Because the 

actual force within a muscle is difficult to measure in vivo, the activation of a muscle is measured 

with electromyography (EMG) and is normalized to the maximum possible activation for that 

muscle.  In general, the maximum amount of force a skeletal muscle can exert is proportional to 

Global Muscles 

Local Muscles 

RIB CAGE 
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its PCSA.  The force in a muscle under sub-maximal contraction then becomes a function of the 

MVC and the PCSA.  The equation for the muscular force then becomes, 

𝐹𝐹m =
%𝑀𝑀𝑀𝑀𝑀𝑀 ∗ 𝑃𝑃𝑀𝑀𝑃𝑃𝑃𝑃 ∗ 𝑘𝑘

100%
                                                                                                     (2 − 1) 

where k is the maximum contractile force constant.  In the literature, the value of this constant 

varies greatly [20-23].  A mid-range value of k = 25 N/cm2

16

 was proposed by Nigg and Herzog 

[ ] based on measurements of in vitro muscle force in skeletal muscle under full tetanic 

contraction.  Their experimental procedures give a more reasonable estimate of k than some 

others, so it will be used in this thesis.  Alternatively, if the force required is given (in a 

numerical model of the spine for example), Equation 2-1 can be rearranged to calculate the 

%MVC: 

%𝑀𝑀𝑀𝑀𝑀𝑀 =
𝐹𝐹m

𝑘𝑘 ∗ 𝑃𝑃𝑀𝑀𝑃𝑃𝑃𝑃
∗ 100%                                                                                                (2 − 2) 

Naturally, the PCSA of the muscle in question must be known.  There are many sources 

of empirical data on these cross-sectional areas [20, 24].  This calculation of %MVC will 

become important later on as a constraint on muscular activation in the standing posture is 

introduced. 

2.1.4  Intra-Abdominal Pressure 

There is a dynamic pressure within the abdominal cavity that rises and falls with different 

activities and postures.  This intra-abdominal pressure (IAP) has been shown to increase from 

16.7 and 20 mm Hg in sitting and standing to 107.6 and 171 mm Hg when coughing and 

jumping, respectively [25].  Increased IAP has been shown to reduce the compressive load on the 

spine and provide stabilization during physical exertions such as lifting [26].  However, there is 
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conflicting data in the literature concerning the role of IAP in the standing posture.  Some 

researchers have attempted to simulate the effects of IAP in the standing posture with numerical 

models and have suggested an increase in stability [9, 27].  A more recent study has shown these 

effects to be negligible [28].  Since IAP is nominally low in standing, its direct local action on 

the vertebrae is not likely to cause any motion or stabilization.  However, it is possible that it 

may be a necessary restraining force to the muscles that insert into the thoracolumbar fascia.  

Because of its likely minor contribution, and because of the difficulty in simulating it in vitro, 

IAP is neglected in this study. 

2.1.5  Thoracolumbar Fascia 

The thoracolumbar fascia is a thin sheet of fibrous connective tissue that runs nearly the 

entire length of the lumbar spine.  It is the insertion site for a number of torso muscles, including 

the latissimus dorsi, external obliques, internal obliques, and the transversus abdominis.  These 

muscles wrap anteriorly around the lower torso and join at the linea alba on the ventral side.  

Tension in these muscles pulls laterally and anteriorly on the spinous processes of the vertebrae 

and can affect the spine’s postural configuration.  The action of these muscles on the 

thoracolumbar fascia is thought to stiffen the intervertebral joints and increase resistance to 

flexion [29, 30].  Barker et al. [29] simulated fascial tension in individual FSUs to investigate its 

contribution to segmental stability.  They demonstrated that with a 20 N tension in the 

thoracolumbar fascia, the FSU significantly (~44%) increased its initial stiffness.  They propose 

that fascial tension is better suited for fine-tuning of segmental motion rather that for bulk 

motion of the entire spine.  Tension in the transversus abdominis and internal obliques has also 

been suggested to contribute to segmental stiffness via the generation of IAP [31].  Though this 

may be the case in postures other than standing, a constraint on muscle activation that will be 
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presented later will restrict the amount muscle force, and therefore the amount of IAP, that can 

be generated.  Due to complexities in simulating the thoracolumbar fascia, it was not included in 

the present study.  Rather, the relative contribution of the ligamentous lumbar spine alone will be 

characterized and suggestions for further investigation into the contributions of other passive 

structures will be made.   

2.1.6 The Iliolumbar Ligament 

The iliolumbar ligament (ILL) is a passive structure that has been largely overlooked in 

full-spine stability models.  There is, however, a body of literature that investigates the ILL in 

isolation to describe its contribution to stiffening the lumbosacral joint.  It spans the gap between 

the posterior superior aspect of the ilium (pelvis) and the transverse process of the L5 vertebra.  

A number of sources report that an additional band that attaches to the L4 transverse process [32, 

33], but one study was unable to identify the L4 band in 100 cadaver specimens [34].  The L5 

portion of the ILL is typically divided into a posterior, middle, and anterior portion.  The 

posterior band is normally the thickest and has been shown to restrict flexion motion [32, 34, 

35].  Pool-Goudzwaard et al. [36] concluded that with L5 being stabilized by surrounding tissue 

and by the trunk weight, the L5-S1 joint cannot give way with tension in the ILL.  Despite these 

very convincing findings, the ILL has not been incorporated into any full-spine biomechanical 

models that attempt to characterize stability.  This is perhaps due to difficulty in obtaining 

cadaveric specimens with intact ILLs or due to the lack of constitutive properties for the 

ligament that could be incorporated into finite element models.  The role of the ILL will be 

explored very briefly in the present study and will be discussed hereafter. 
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2.2 Biomechanics of the Spine 

The mechanical response of the intervertebral joint is typically characterized by 

sectioning the spine into functional spinal units.  The motion of the FSU is tracked (usually 

optically) as it is subjected to loading conditions (usually combinations of torques and 

compressive loads).  A load-displacement graph of a typical spinal segment in flexion/extension 

is shown in Figure 2-5.  There is a narrow section in the middle of the graph that can be 

approximated as linear.  At larger deflections, the response becomes highly non-linear.  

Hysteresis causes the curve to follow a different path for the loading and unloading phases.   

 

 

Figure 2-5: Flexion-Extension Response of a Typical Lumbar FSU 
 

The instantaneous axis of rotation (IAR) of the FSU is the axis in space about which the 

vertebrae rotate and defines the kinematics of spinal motion.  A typical location for the IAR of 

the lumbar FSU in flexion and extension is shown in Figure 2-6.  Around the neutral posture, the 

IAR has been shown to be located approximately 4 mm posteriorly from the center of the 

vertebral endplate [37, 38].  As the spine experiences physiologic motion, the location of the IAR 

translates in the A-P direction and in the superior-inferior direction [39] due to the non-linear 
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nature of the disc.  In the healthy spine the IAR resides within a small region around the 

posterior portion of the vertebra.  Pathologically degenerate discs will affect the location of the 

IAR [8, 21] and will therefore affect the biomechanical response of the entire spine.   

 

 

Figure 2-6: The Instantaneous Axis of Rotation (IAR) of a Lumbar Segment 
 

The health of the intervertebral disc has been shown to have a significant effect on its 

biomechanical properties.  Thompson et al. [40] proposed a standardized characterization 

scheme to classify the health of intervertebral discs into one of five categories (I – IV), known as 

the Thompson grades.  The healthy disc (Grade I) has been described as well-hydrated with a 

bulging gelatinous nucleus, distinct fibrous lamellae in the annulus, and thick, uniform endplates.  

Pathological discs will exhibit varying degrees of dehydration, fibrous bundles in the nucleus, 

and osteophytes throughout.  As the disc becomes dehydrated, its resistance to hydrostatic 

compression is reduced and more mobility is observed.  Figure 2-7 shows the general trend of 

the amount of segmental motion that occurs for increasingly degenerate discs [37, 40].  The drop 

IAR 
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in mobility (increase in stiffness) between Grade IV and Grade V can be attributed to a nearly 

complete degeneration of the disc resulting in interference of the adjacent vertebral bodies, and 

therefore increased stiffness.  In a cadaver-based experiment such as the present study, the 

overall health of the spine and specifically of its intervertebral discs must be considered to have 

an effect on the overall biomechanical response. 

 

 

Figure 2-7: Mean Segmental Motion as Correlated with the Thompson Scale for Intervertebral Disc 
Degeneration, Adapted from Thompson et al. [40] 

 

2.3 The 5% MVC Constraint 

The passive structures of the spine contribute to its overall stiffness, but spinal motion 

control cannot be achieved without the musculature.  It is therefore important do define the role 

of the muscles in stabilizing the spine.  Though a relationship can be drawn between the EMG 

pattern of a muscle and its force, it is extremely difficult to isolate individual muscles in the back 

to measure their level of activation.  Therefore, there is little if any in vivo data on the 
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contributions of each muscle component to the overall spinal motion [20].  Consequently, the 

primary method of determining muscle force as it relates to stability has been through numerical 

simulation of the back musculature.  In general, researchers use some type of universal model of 

the musculature such as in [20] to determine the role of the morphological features that are 

incorporated into the biomechanical model.   

There is an almost universal consensus that the human spine requires muscle force to 

remain stable [1, 18, 19, 41, 42].  While this may be true in the very strictest sense, any amount 

of muscular activation in the neutral standing posture must be constrained to a reasonable level.  

This is based on the qualitative observation that a human is able to sustain this posture for an 

extended period of time before experiencing fatigue.  Jonsson [43] described this quantitatively 

by observing that sustained muscle activations beyond 5% MVC will cause pain and eventual 

fatigue.  Cholewicki et al. [18] recognized that the spine should be able to remain stable in the 

standing posture while being subjected to this constraint.  One of the most commonly-cited 

muscles of the lumbar region to contribute to stability is the multifidus.  Cholewicki and McGill 

[44] measured the activity of the lumbar multifidus in the standing posture and found it to not 

exceed 3% MVC. 

The constraint on muscle activation is not to suggest that muscles are entirely uninvolved 

in the stabilization of the spine around the neutral posture.  Weyand et al. [45] have shown an 

increase in metabolic expenditure from the supine resting position to the standing position (1.08 

W·kg-1 and 1.25 W·kg-1).  However when contrasted with the metabolic rate of brisk walking 

(6.90 W·kg-1

31

), this difference between expenditures in resting versus standing is minimal.  

O’Sullivan et al. [ ] observed a significant increase in activation of the internal obliques and 

erector spinae muscles from resting to erect standing.  However, in that study the level of 
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muscular activation was normalized to a sub-maximal contraction, not to the MVC as is the more 

common practice.  It is therefore impossible to draw any definitive inference from their results as 

compared to the data reported by others.  They did, however, show very little increase in erector 

spinae activation.  Recognizing that some small amount of muscle contraction may be necessary 

in the neutral posture, any biomechanical model of the spine must adhere to the 5% MVC 

requirement in order to be physiologically feasible.  This constraint is largely overlooked in the 

literature but is a critical requirement and must be taken into consideration.  A summary of the 

PCSA of a number of spinal muscles and their 5% MVC capacities are reported in Table 2-1.  

Any muscular force in the neutral standing posture beyond these values is considered 

unreasonable.  As will be shown hereafter, the vast majority of the biomechanical models of the 

spine in the literature violate this constraint.   

 

Table 2-1: 5% MVC Values for Select Lumbar Muscles 
Muscle PCSA (mm2 MVC (N) ) 5% MVC (N) 
Iliopsoas 334 83.5 4.175 
Multifidus 211 52.75 2.638 
Quadratus Lumborum 88 22 1.10 
Longissimus (local) 116 29 1.45 
Iliocostalis (local) 189 47.25 2.363 
Longissimus (global) 1100 275 13.75 
Iliocostalis (global) 600 150 7.50 
External Obliques 1576 394 19.70 
Internal Obliques 1345 336.25 16.813 
Erector Spinae 1700 425 21.25 

 

2.4 Stability Models of the Spine 

Spinal stability has been an area of intense research for many years.  The present study 

was inspired by preliminary work done by Peter Halverson at Brigham Young University on the 

“balance spine” concept, which will be briefly discussed.    Early models of the spine focused on 
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simplifying the system to be statically determinate and characterizing the bulk loading 

conditions.  More recently, models have become complex three-dimensional finite element 

analysis (FEA) optimizations and have attempted to approximate physiological conditions as 

closely as possible.  In the literature there are three principal research groups that have made the 

most significant contributions to understanding the mechanisms behind spinal stability: 

Patwardhan et al., Rohlmann et al., and Shirazi-Adl et al.  Each of these groups has contributed a 

number of important findings which have helped define the basic principles governing spinal 

stability.  However, despite their invaluable insights, all of these groups fail to adhere to 

constraints on muscle activation in the neutral posture, much less the 5% MVC requirement.  

The positive contributions of each of these groups as well as their shortcomings will be discussed 

in succession.  Additionally, two other models that have proved important to understanding 

spinal stability will be briefly discussed.  

2.4.1 The Balanced Spine Concept 

The lack of attention to the passive structures of the spine and their contributions to 

stability in standing was recognized by Peter Halverson at BYU.  He proposed a model called the 

“balanced spine” that attempted to determine the ability of the thoracolumbar spine to remain 

upright under the gravity load [38].  This simple model used an estimation of the distribution of 

the body weight as discrete masses and reduced the spinal system to a series of stacked levers, 

each balanced around a fulcrum (see Figure 2-8).  To accomplish this, a method introduced by 

Pearsall [46] which partitions a full-body computed tomography (CT) scan into a series of cross-

sectional slices was used.  The thickness of each slice is the combined height of its vertebra and 

the inferior disc.  Using a calibration factor, the image intensity of each pixel is correlated to a 

material density, enabling the total mass and center of mass (CM) of each segment to be 
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calculated.  The masses and CG locations from Pearsall [46] were used in the balanced spine 

model.  For a comprehensive description of the CT segmentation method, and for the 

calculations of the CMs that were used in the present study, see Appendix A: Calculation of 

Mass Segments from CT Images. 

 

 

Figure 2-8: The Balanced Spine Model 
 

In the balanced spine model, the freely-rotating fulcrum of a given level rests atop the 

massless lever of the inferior level.  The CM weights are applied on the lever and create flexion 

moments at each level.  The cumulative mass of all levels superior to the current level acts 

through the fulcrum of the superior level.  A free-body diagram of a single level is shown in 

Figure 2-9.  With the CM location and vertebral center locations known, the equations of 

moment equilibrium are applied to calculate the location of the instantaneous axis of rotation of 

the level, namely: 

𝑙𝑙𝐼𝐼𝑃𝑃𝐼𝐼 =
𝑚𝑚𝑃𝑃𝑆𝑆𝑙𝑙𝑃𝑃𝑆𝑆 + 𝑚𝑚𝑖𝑖𝑙𝑙𝑖𝑖
𝑚𝑚𝑃𝑃𝑆𝑆 + 𝑚𝑚𝑖𝑖

                                                                                                            (2 − 3) 
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where lIAR is the distance to the IAR, mST and lST are the mass and distance to the weight of the 

superior tissue (the superior level IAR), and mi and li

 

 are the mass and distance to the CM of 

segment i.  The distances used in this equation are measured from an arbitrary reference point; 

only the relative differences in the distances are of import.  The balanced spine theory postulated 

that the more massive superior tissue weight is balanced by the smaller segmental weight which 

is applied at a much longer lever arm.  The static equilibrium equations of the system initially 

indicated that this loading scenario forced the IAR at each level to be near the vertebral center (-

4 mm), which corresponds to the physiological location of the IAR in vivo.  However, after 

closer investigation, the equations used in the calculation were found to be in error and did not, 

in fact, produce fulcrum locations that corresponded with the physiologic IAR.  In the geometric 

configuration of the lumbar spine, the vertebral centers (and therefore the IARs) of L2 and L3 

are located anteriorly of the L4 and L5 vertebral centers.  The equilibrium equations therefore 

produced L4 and L5 IAR locations that fell much further anterior than their physiologic 

locations.  It is postulated that the in vivo loading scenario is much more complex than can be 

represented by the simple balanced spine model.  Though the balanced spine model was found to 

be invalid, it did identify a method to more accurately simulate the weight of the torso in vitro.  It 

also sparked interest in the passive capabilities of the spine to “balance” in a passive equilibrium 

posture.   

Figure 2-9: Free-Body Diagram of a Single Spinal Level in the Balanced Spine Model 
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2.4.2 Patwardhan et al. 

In vitro testing of the human spine presents a challenge in simulating the complete 

loading condition of the in vivo spine.  With a complex distribution of the body weight and 

interactions with hundreds of muscle fascicles, a comprehensive in vitro model is not possible.  

The work of many researchers has therefore centered on making simplifications to the 

physiological loading condition that would allow for more simple application to cadaveric 

specimens.  Until recently, the body weight has been simplified as a single lumped mass applied 

at the most cranial vertebra, which, as has been previously noted, can only reach a fraction of the 

total body weight before the spine buckles.   

Patwardhan et al. discovered a loading condition termed the “follower load” that allows 

for a compressive load of physiologic magnitude to be applied to the spine while maintaining 

stability [15, 47].  The follower load is applied in such a manner that the line of action of the 

force follows the tangent to the curvature of the spine.  In order to induce stability, it must pass 

through the IAR of the spine at all levels.  It is implemented in vitro by guiding a tensioned cable 

bilaterally along the curvature of the spine with eyelets embedded into the vertebral bodies.  The 

follower load creates a state of nearly pure compression in the intervertebral discs with very 

small internal moments and shear.  Patwardhan submits that this is a necessary physiological 

requirement for the standing posture, yet there has been little evidence to suggest that the 

intervertebral disc does not experience shear and moment loads in standing.  The follower load 

does, however, accurately replicate intradiscal pressures.  A study by Rohlmann et al. has shown 

that a follower load of 500 N replicates the intradiscal pressures of the in vivo spine.   

The literature has demonstrated that a compressive load applied to an FSU increases its 

resistance to bending [40, 48].  While the follower load applies this condition to all discs 
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simultaneously and thereby increases the overall stiffness of the spinal column, there has yet to 

be presented a reasonable explanation for the origin of such a load based on the morphological 

features composing the spine.  Patwardhan suggested that the follower load is created in the 

lumbar spine by the action of the muscles surrounding it [15].  Studies by Patwardhan et al. [1] 

and Han et al. [49] attempted to replicate the follower load in the lumbar spine with muscle 

forces using numerical simulations.  Patwardhan presented a frontal plane model that made a 

number of idealizations to simplify the musculature, namely that a single muscle force was 

applied bilaterally to each vertebra in the frontal plane.  He allowed the spine to undergo small 

deviations in lateral bending and recorded the muscular force that would be necessary to restore 

the column to the upright position.  Though the resultant force of the muscular components 

followed the curvature of the spine (the follower load condition), the average muscle force 

required was approximately 44 N with the maximum force reaching 219 N.  These are well 

outside the range of feasible values for muscle activations based on the 5% MVC requirement.  

Han presented a more sophisticated model of the sagittal-plane stability of the lumbar spine in 

the standing posture.  He incorporated 232 muscle fascicles and a rigid mass above the L1 

vertebra representing the weight of all tissue superior to L1.  He used a nonlinear optimization 

routine to determine the muscle activations needed to create the follower load.  The model was 

successful in creating a follower load condition, but the forces in individual muscles ranged from 

4 N to 117 N (1% - 100% MVC).  Metabolic energy expenditure and muscle fatigue arguments 

dictate that forces of these magnitudes cannot reasonably be sustained in the standing posture.    

In summary, the follower load model can be very useful when conducting in vitro testing 

of the human spine.  It is simple to implement and allows compressive loads of physiologic 

magnitude to be applied to the spine.  This is particularly useful when conducting mobility 
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testing, as the hardware is minimal and unrestricting.  Despite its ability to simulate 

physiological intradiscal pressures, researchers have been unable to describe it from a 

physiologically realistic standpoint. 

2.4.3 Rohlmann, Bergman, Wilke et al. 

Many of the studies conducted by this group revolve around a specialized spinal fixator 

device that is instrumented to record axial forces and bending moments in the lumbar spine.  The 

spinal fixator is a rigid orthopaedic device that is used to immobilize two adjacent FSUs.  It 

spans an entire vertebra and is screwed into the pedicles of superior and inferior vertebrae.  The 

authors created a custom fixator with load cells and strain gauges to measure the loads and 

deflections in the fixated segments.  The spinal fixator serves as the basis for comparison 

between in vivo and in vitro spinal loading, as it has been implanted in a number of live patients 

and is also used in cadaveric testing.  Though this is a very clever method of measuring the loads 

in an in vivo spine, it is important to point out that the spinal fixator bridges an entire FSU and 

will therefore restrict motion almost entirely at that level.  The result is a drastic change in the 

biomechanical response of the spine as a whole, a fact that must be taken into consideration as 

the results of a number of studies are discussed.  When comparing analytical or cadaveric data to 

the in vivo data recorded by the spinal fixator, the quantitative results are restricted to spines 

instrumented with a spinal fixator and cannot be extrapolated to include un-instrumented spines.  

However, some general trends that they identify can be applied to spinal stability as a whole.  In 

an effort to define the mechanisms behind stability, they explore a number of different loading 

conditions in search of the one that provides results most similar to in vivo data.  There are 

number of invaluable contributions in this body of research, but similar to studies by 

Patwardhan, excessive muscle activations go unnoticed. 
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Two experimental investigations in 1998 [50, 51] attempted to determine the effect of 

antagonistic muscle activation on overall spinal motion.  They instrumented cadaver lumbar 

spines with a cables attached to the L4 vertebra to simulate the action of the psoas and multifidus 

muscles.  With coactivation of 90 N in the agonist muscle (muscle causing the desired motion) 

and 30 N in the antagonist muscle (muscle restricting the desired motion), they observed that the 

spine was stiffer in lateral bending and axial rotation, but less resistant to mobility in 

flexion/extension.  The decrease in stability in flexion/extension is contradictory to observations 

made by Patwardhan [15] and Cholewicki [18].  These studies did not focus on the neutral 

posture, so it is difficult to determine the physiological feasibility of the simulated muscle forces 

they used.  A significant contribution of these two studies is that they pointed out the possibility 

of complex muscle interactions that might be required for stability. 

One of the most commonly used loading conditions for in vitro testing is the application 

of pure bending moments to the most cranial vertebra.  This method has primarily been used for 

a lack of a more complete understanding of the true loading condition of the spine, and because it 

is easy to implement.  Wilke et al. [41] used the instrumented spinal fixator to determine if the 

pure moment condition was an accurate simulation of the physiologic loading.  For lateral 

bending and axial rotation, they found qualitative similarities between in vivo and in vitro fixator 

loads.  However, the differences recorded in flexion did not allow them to make a definitive 

correlation between in vitro and in vivo data.  They attribute this difference to muscle forces but 

do not supply any further explanation as to the potential function of the muscles.  Though they 

conclude that pure moments provide a reasonable simulation for physiological loading, their data 

is based solely on the loads measured in the spinal fixator and overlooks other important 
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measures for comparison such as intersegmental angles.  Further, no body weight load is applied 

to the system so many potentially important interactions could not be evaluated. 

In a much more advanced cadaveric study conducted in 2003, Wilke et al. instrumented a 

number of cadaver spines to determine the role of trunk muscles in flexion and extension [19].  

This study is perhaps the most comprehensive in vitro simulation of the physiological loading 

condition in the literature.  The experiment included the ability to simulate body weight, apply 

pure moments, apply a follower load, and simulate a number of muscle groups with pneumatic 

cylinders.  The objective was to explore 12 different combinations of body weight, follower load, 

and muscular activation and determine which scenario most closely approximated the in vivo 

condition.  Data from in vivo spinal fixator studies were used as the baseline for comparison.  

The study identified a number of key principles.  As the vertical force, follower load, and muscle 

force were increased, an increase in intersegmental rotation, intradiscal pressure, and internal 

fixator load were observed.  Specifically, the global muscle force (erector spinae) increased as 

the spine was moved into flexion.  They also made a very interesting observation that the 

follower load had very little effect on the magnitude of the global muscle force required to 

maintain stability.  Others (including members of the Rohlmann research group) have attempted 

to describe the follower load as being supplied by local muscles.  That being the case, the results 

of this study would indicate that the local muscles are uninvolved in flexion-extension motion of 

the spine, which does not agree with the literature [18, 52].  Under the optimum loading scenario 

with a follower load of 200 N and an upper body weight of 260 N, they reported a force of 100 N 

in the erector spinae for standing.  This value is approximately five times the acceptable 5% 

MVC threshold calculated in Table 2-1.  This model did, however, show that hip flexion angle 
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had a significant influence on the total force required in the erector spinae.  The effect of hip 

(sacrum) flexion will be studied in the present work. 

 A finite element model of the lumbar spine was developed by Zander et al. to determine 

the muscle forces involved in upper-body inclination [52].  This study comes closer than most 

others presented in this thesis to obeying the 5% MVC constraint.  The advantages of an FE 

model lie in its ability to simulate the complete musculature and loading conditions around the 

spine and thereby gain a more complete understanding of their role in stabilization.  This study 

simulated a global dorsal muscle force and the local muscle forces of 70 muscle fascicles.  To 

eliminate the problem of redundancy, the force of all local muscles was assumed to be the same.  

The body weight was positioned in such a way that dorsal muscle forces were required for 

stabilization (weight applied anterior of the spinal column).  The study showed a curvilinear 

relationship between global muscle force and flexion angle, with a linear relationship between 0ο 

and 10ο of flexion, followed by a parabolic section of decreasing slope between 10ο and 30ο.  

When in the standing posture, and with a 5 N activation in all local muscles, a 50 N force in the 

global muscles was required for equilibrium.  Referring to Table 2-1, these muscle forces still 

exceed the 5% MVC requirements, but they are on the same order of magnitude, so it is 

conceivable that they could still be physiologically feasible.  In the absence of local muscle 

activation, a global muscle force of 300 N is required, which is unreasonable.  Though they 

produce some promising results, they do recognize the shortcomings of their model.  Requiring 

that the force in every local muscle fascicle be the same is not realistic.  In reality the force in 

each muscle will be governed by the amount of segmental rotation that is required at that level 

and by the complex neuromuscular recruitment pattern that is unique to every person.  In short, 

this study demonstrated the possibility of modeling the lumbar spine using FE tools and 
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obtaining fairly realistic results that compare favorably with in vivo data.  It is one of the few 

studies that does not use or attempt to simulate a follower load, yet the reported muscle forces 

are much lower than those studies that do use the follower load. 

 In a follow-up study to [19], Rohlmann et al. attempted to rectify the disagreement 

between in vitro and in vivo spinal fixator loads in flexion/extension.  They had previously 

achieved agreement in the cadaveric model only with hip flexion.  In [28] they made use of the 

finite element model mentioned above and explored the contributions of intra-abdominal 

pressure, preload in the fixators, and combined hip and lumbar flexion to achieve better 

agreement with in vivo measurements.  Once the model was deemed more reliable, they removed 

the spinal fixators to determine the muscle forces needed for stability in the free-standing lumbar 

spine.  They reported that IAP has a negligible effect when applied directly to the vertebral 

bodies in standing.  An erector spinae force of 170 N was estimated in the standing posture 

(without a spinal fixator), which is 70 N more than they reported in [19].  They concluded that 

while the follower load is a convenient tool for adjusting the in vitro intradiscal pressure to 

physiological level, it may not provide the most accurate simulation of the in vivo loading 

condition.  Nevertheless, without a better paradigm, the authors support the postulation that the 

follower load is created within the lumbar spine with local muscle forces.   

In [11] the same group further studies six other loading conditions and compares the 

response to intersegmental rotations found in other studies.  They conclude that the follower load 

most accurately simulates the in vivo condition.  However, the new loading conditions studied 

were not very diverse; the only external load applied was a vertical body weight at the L1 

vertebral center.  They do not attempt to simulate the continuous distribution of the body weight 

throughout the lumbar region.  Interestingly, they also find that the intradiscal pressure is 
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generally unaffected by the mode of loading, i.e. all six loading conditions produced similar 

pressures.  As was previously mentioned, the group attempted to determine the muscular 

activations that would be required to produce the follower load and reported activations of up to 

100% MVC [49].   

 In summary, this group has developed some innovative ways of measuring forces within 

the in vivo and in vitro spine.  They have used a number of tools (cadaveric studies, FE 

simulation, and spinal fixator device) to study various loading conditions and have compared 

results to in vivo data.  They have identified a number of important contributing factors to spinal 

stability such as: 

1. The stiffening of the spine under compressive load  

2. Increased global muscular force required as the spine is rotated into flexion 

3. The insignificant effect of the follower load on global muscle force  

4. The importance of hip flexion on lumbar stability 

5. Minimal contribution of IAP to stability 

A number of these observations will be shown to be significant in the present work.  In 

these studies, some of the muscular forces reported are among the lowest in the literature, though 

they are still significantly greater than the 5% MVC criterion.  They also report some of the 

largest activations.   

2.4.4 Shirazi-Adl et al. 

Whereas the Patwardhan and Rohlmann groups have used a combination of in vitro and 

numerical testing methods, Shirazi-Adl et al. almost exclusively employ numerical techniques.  

Their focus is on the combinatorial effects of postural parameters and the distribution and 

positioning of body weight on overall stability.  Their work does not presume the follower load 
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model.  There are a number of key principles identified by this group, yet as the others presented 

here, the muscle activations they report are generally in violation of the 5% MVC criterion. 

An early study by Shirazi-Adl and Parianpour [53] explored mechanisms to stabilize the 

lumbar spine in the neutral posture.  Though the methods presented in this paper do not represent 

a particularly realistic loading scenario, they do provide valuable insights into stability.  They use 

a simple non-linear FE model of the lumbar spine that incorporates all ligaments and the non-

linear inhomogeneous nature of the discs.  They identified two simple boundary conditions 

which, when applied at the L1 vertebra, greatly enhanced the load-carrying capacity of the 

lumbar spine.  With an applied flexion moment coupled with a constraint on the translation of 

L1, they were able to apply an axial load of 400 N at the L1 vertebral center before instability 

ensued.  This is approximately a fourfold increase from the capacity of the unconstrained lumbar 

spine.  Though the authors do not provide an explanation for the application of the translational 

constraint, they do pose a reasonable source for the flexion moment.  In the study they apply the 

compressive load at the L1 vertebral center, yet they recognize that in the in vivo spine the body 

weight generally falls anterior of the L1 vertebral center.  The applied flexion moment 

compensates for the anatomically off-centered location of the body weight.  They therefore 

postulate that by carefully positioning the CG of the upper body, the optimal flexion moment is 

created to stiffen the spine and increase its load-bearing capacity.  This is an extremely important 

observation that has identified a passive mechanism that has the potential to provide added 

stabilization to the free-standing spine.  The load on the musculature is thereby reduced and 

metabolic expenditure is minimized.  This observation will be valuable as the current work is 

presented.  Additionally, this study proposes that the thoracolumbar fascia can have a stabilizing 

effect on stability.   



 

34 
 

A subsequent study extended the investigation to include the entire thoracolumbar spine 

[12].  Additionally, the body weight was uniformly distributed on all vertebrae at their centers.  

Working on the observation that the in vivo body weight induces moments in the spine, flexion 

moments were applied at each vertebra.  With optimized moments at each level, a total load of 

1000 N was applied to the full spine without buckling.  However, the segmental moments 

required at each level for this scenario reach as high as 22 N-m, which seems quite unrealistic.  

Even if the largest muscle in the back, the erector spinae, were activated at 5% MVC, it would 

need to work at a moment arm of approximately 1 m to achieve this torque.  Nonetheless, the 

qualitative observation that segmental torques stabilize the spine is noteworthy.  Another 

conclusion made by the authors is that an optimal pelvic rotation will provide additional 

stabilization, though pelvic rotation alone is insufficient to keep the spine erect.    

In a similar study [54] Kiefer et al. applied the body weight segmentally at the CM 

locations of body slices corresponding to each vertebral level.  This was found to be a more 

accurate simulation of the real physiologic gravity load and to create favorable flexion moments 

at each level.  They also explored sacral rotations and applied global muscle forces at the T1 and 

L1 vertebrae to determine the muscular requirement to maintain stability.  They found that the 

simulation of the distributed body weight as segmental masses applied at their respective mass 

centers greatly improved the stiffness of the spine.  The authors confirm that sacral rotation has a 

notable effect on stability.  In one of their two FEA models they report very low muscle forces 

(~5 N each), but in the second model they report activations between 1 N and 407 N.  Though 

the authors attribute the motivation for their study to the observation that muscle activation in the 

trunk is very low in standing, they fail to address the 407 N muscle force as being potentially 
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unrealistic.  Despite this oversight, they have shown that the geometry of the spine and the 

method in which the body weight is simulated are important factors for stability. 

In a study utilizing a more comprehensive model of the musculature, Keifer et al. [55] 

sought to define a synergistic relationship between the role of muscle force and the passive 

stiffness of the spine.  60 local and global muscles were simulated as linear springs and were 

combined with the effects of the passive spine.  Global muscles that attach to the ribcage were 

found to be important for control of the overall spinal posture and maintenance of equilibrium.  

Their contribution is manifest in the careful positioning and modulation of the CG of the torso.  

One of the few models seeking to minimize muscle force, they apply a minimizing cost function 

on muscle activation and pursue stability of the spine.  The cumulative force in all local and 

global muscles at equilibrium ranged from 128.5 N to 216.0 N.  When distributed across all 60 

muscles, it is conceivable that this model maintains stability while adhering to the 5% MVC 

criterion.  However, individual muscle forces are not reported, so it is not possible to draw a 

definitive conclusion.  Additionally, in this model an arbitrary horizontal stiffness is applied at 

the T12 vertebra that remains unexplained from a physiological standpoint.  Though this 

horizontal support does provide additional stiffness to the spine and relieves the load on the 

musculature, the authors’ failure to describe the physiological origins of this force brings into 

question the validity of the reported muscle forces.  In relation to the role of the global and local 

muscles, they found that the action of the global muscles alone, in conjunction with the passive 

resistance of the spine, are sufficient to maintain equilibrium for small sagittal translations of the 

spinal column, but that the addition of local muscle activation provides additional stiffness and 

relieves some of the load on the global muscles. 
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El-Rich et al. [6] extended this muscle-driven model to include in vivo validation of the 

results.  They measured the kinematic motion of the spines of 15 individuals using skin marker 

tracking.  EMG muscle activation was also measured as a guide for muscle force used in the 

computational model.  In addition to the muscular activation required for stability, they predicted 

the response of the spinal system as weights were held at the sides and out in front of the body.  

In general they predicted reasonable muscle activations (2 N – 34 N) in all muscles of the back, 

yet many still exceed the 5% MVC criterion as calculated in Table 2-1.  All of the EMG 

activations were normalized to the largest contraction observed during the series of exercises that 

were performed.  The activations in neutral standing were on the order of 15%, but this number 

is not directly comparable to the activations computed in Table 2-1 because it was not 

normalized to the maximum voluntary contraction.  It is likely that these activations would be 

closer to 5% if normalized to the 100% MVC.  A significant principle was observed in this study 

in both the numerical model and in the in vivo study: weights held in the hands at the sides did 

not increase the amount of back muscle activation.  This observation points towards an inherent 

ability of the spine to adapt to vertical loads without muscle action.  Interestingly, a 

corresponding increase in the margin of stability was observed under the additional load held in 

the hands.  Coactivation of the abdominal muscles were shown to increase overall stability but 

also resulted in increased back muscle activity.  There is an apparent tradeoff between 

coactivation providing added protection to the soft structures of the spine and the additional 

metabolic cost of higher muscle activation.  In short, this model endeavored to minimize muscle 

stress while exploring the degree of stability induced by different levels of muscular input.  They 

have created very sophisticated FE model of the spine and have achieved relatively low 

activations in the standing posture. 
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In summary, the studies conducted by this group began with very simple simulations of 

the spine and summarily increased in complexity and in the impact of their contributions.  They 

provided a number of invaluable insights into the role of the passive structures of the spine, 

particularly to the importance of the body weight and the loads induced by it.  Other key 

contributions are: 

1. Flexion moments applied at each vertebra stabilize the spine 

2. These flexion moments can in part be created by the segmental masses of the torso 

3. Careful positioning of the CG of the upper torso with the global muscles can add to the 

load-bearing capacity of the spine 

4. Optimal pelvic rotations can stabilize the spine 

5. The global and local muscles can work synergistically with the passive structures of the 

spine to resist moments 

6. Weight added to the hands held at the sides does not increase back muscle activation. 

Most importantly, this group has been able to simulate stability in their later studies with 

relatively low muscle activations without the use of a follower load.  The local muscles, without 

being constrained to adhere to the follower load, are able to make the fine postural adjustments 

that are necessary to add stability without the large forces required by the follower load.  Though 

a number of the muscular activations might be large compared to the 5% MVC requirement, 

their later studies produced activations that are much closer and could be very near the 

physiologically feasible limit.   

2.4.5 Others 

Early models of the spine were dependent on the force-couple model, a method of 

determining the forces and moments at each vertebral level using equations of static equilibrium.  
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One of the hallmarks of spinal stability research, and one of the first models to use this method, 

is a paper produced by Bergmark [5].  The basis of this model is what is often termed the 

“inverted pendulum” system (shown in Figure 2-10).  This model treats the spine as a series of 

stacked pendulums that are weighted with a vertical load and are restrained by a linear spring 

representing a muscle force.  Often, the bulk response of the intervertebral discs and the spinal 

ligaments are lumped into a torsional spring applied at the axis of rotation.  This method can be 

very powerful in understanding bulk motion of the spine while being very simple 

computationally.  However, the simplifications that are made prohibit any comparison to in vivo 

values.  The main contributions of Bergmark lie in his thorough analysis of the passive structures 

and their potential role in stability.  Also, he proposed a method of simplifying the complex 

muscular architecture of the back into local and global systems.  In general he provided an 

efficient method of simplifying the spinal system into a set of linear equations that could be 

solved with some degree of accuracy.  Current biomechanical models have advanced well 

beyond the simple inverted pendulum model, yet aspects of Bergmark’s work are still used 

today.  

 

 

Figure 2-10: The Inverted Pendulum Model (a Single Spinal Segment) 
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 The precursor to the follower load model has often been cited as a paper written by 

Aspden [9].  It recognizes the insufficiency of many models that either treat the spine as a 

cantilever or that perform an elastic analysis of the system.  A number of models report reactions 

caused by muscular force that are large enough to be damaging to the soft structures of the spine.  

As has been shown with the studies already discussed, Aspden reveals that most of the models in 

the literature contain a sufficient number of parameters that may be adjusted within physiological 

limits such that the model can be made to agree with virtually any set of measurements.  

Therefore, they provide only limited insight into the actual response of the spine. This study 

treated the spine as a structural arch and explored the bounds for the applied loads that would 

allow it to remain stable.  The key contribution made is that the resultant force vector of all 

forces (internal and external) imposed on the spine must remain within the column of the spine to 

induce stability.  This “thrust line” is affected by changes in posture and by the addition of 

weight to the system.  In activities such as flexion to lift a weight off the ground, the muscle 

forces, body weight, and IAP all work together to cause the thrust line to be enclosed by the 

spinal column.  Not only are the forces important, but the natural flexibility of the spine allows 

its shape to be adapted such that the thrust line is enclosed and the magnitude of this force is 

minimized.  In the standing posture, this means that the lordotic curvature of the spine is crucial 

in being able to adapt to the gravity loads that are imposed.  Rather than being the cause for 

instability, the curvature is inherently vital to achieving stability.  The present work will show 

agreement with these observations. 



 

40 
 

2.5 Summary 

This chapter has identified a number of key principles of spinal stability that will be 

important as the current work is presented.  First, that postural parameters such as sacral rotation 

and linear positioning of the vertebrae have the ability to add stability.  Second, that the body 

weight of each vertebral segment applied at its respective CM location has the ability to provide 

flexion moments at each level that help stabilize the spine.  Third, that despite the ability of the 

follower load to replicate some physiological conditions in vitro, there has not been a reasonable 

explanation as to the source of this load, and that the models that have not imposed the follower 

load constraint on the musculature have recorded results that are much closer to adhering to the 

5% MVC requirement.  Fourth, that other passive structures such as the thoracolumbar fascia and 

the iliolumbar ligament have been ignored in current models and could potentially add to passive 

stability.   

In the studies discussed in this chapter, a disproportionate amount of emphasis has been 

placed on active (muscular) stabilization of the spine while the passive structures have not 

received sufficient attention.  Consequently, the muscle activations reported in many of the 

studies are unreasonably high.  The present work will identify equilibrium postures of the lumbar 

spine and their relative stability, features which allow the spine to remain erect in the neutral 

standing posture without violating the 5% MVC criterion.  The following chapter is a technical 

journal article that was submitted to The Spine Journal and is currently under review.   
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3 EVIDENCE FOR A PASSIVE PARADIGM IN LUMBAR SPINAL EQUILIBRIUM 
IN THE STANDING POSTURE 

3.1 Introduction 

The compressive load in the in vivo lumbar spine has been estimated to approach 1000 N 

in standing and walking and up to several thousand Newtons in strenuous activities such as 

lifting [1].  Conversely, researchers have found that when the in vitro lumbar spine is subjected 

to a vertical compressive load it will buckle under loads less than 100 N [2-4].  This disparity 

between the loading capacities of the in vivo spine and the in vitro free-standing cadaveric spine 

has driven many researchers to seek after a set of loading conditions that will replicate spinal 

stability while satisfying physiological constraints (please note that in all instances in the present 

work, the term stability refers to mechanical stability rather than clinical stability.)  However, the 

nature of in vivo testing prohibits the use of many invasive methods that could most accurately 

characterize the relationship between the active and passive support systems of the spine.  

Further, the static and kinematic redundancy of the spinal system makes numeric analysis 

extremely difficult.  Consequently, despite the numerous biomechanical models of the spine that 

have been presented, the precise loading conditions that govern it are not completely understood 

[5, 6].   

In vivo metrics such as intradiscal pressure, intersegmental rotation, internal moments 

and shear stress are typically used as the basis for determining the ability of a biomechanical 

model of the spine to simulate physiological conditions.  While these are important requirements 

that must be satisfied, there are other essential physiological constraints that must not be 
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overlooked.  One such constraint is a restriction that should be placed on the level of muscle 

activation in the neutral standing posture.   

The spine is stable in the standing posture, yet the difference in energy consumption 

between standing and supine resting is minimal [7, 8].  Maintaining such a low amount of 

metabolic expenditure requires that skeletal muscle activation remain at a minimal level.  In an 

EMG-based in vivo study, Cholewicki and McGill [9] confirmed the ability of the lumbar spine 

to remain stable with less than 3% maximum voluntary contraction (MVC) activation in the 

lower multifidus muscles.  Additionally, if an activity such as standing is to be sustained for an 

extended period of time, muscle activation must remain below the threshold for inducing muscle 

fatigue.  Jonsson [10] reported that prolonged muscle activation at or above 5% MVC would 

result in muscular pain and fatigue.  It is therefore reasonable to assume that any muscular 

activity associated with stabilization of the lumbar spine in the neutral posture should not exceed 

5% [8].  This is an important criterion that must be satisfied if a spine model is to be considered 

physiologically feasible.   

The literature contains a number of spine stability models that provide invaluable insights 

into the types and magnitudes of the loads that might be involved in the stabilization of the spine 

during standing posture.  The follower load, a nearly purely compressive loading condition 

proposed by Patwardhan et al. [4], offers a loading condition that creates stability in the in vitro 

lumbar spine.  Working on the assumption that the follower load is created within the in vivo 

spine by the action of the local muscles [11] surrounding it, Patwardhan et al. [1] and Han et al. 

[12] attempted to quantify the magnitudes of the muscle forces needed to generate the follower 

load in the frontal and sagittal planes respectively.  They were successful in simulating the 

follower load using muscle forces and showed increased stiffness of the intervertebral joints 
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under this loading condition.  Studies conducted by Rohlmann et al. [6, 13], Wilke et al. [14, 15], 

and Zander et al. [16] explored the utility of the follower load in conjunction with global muscle 

support and simulated body weight.  They demonstrated that with the presence of global muscle 

activation the magnitude of the follower load needed for stability in the standing posture was 

greatly reduced.  Shirazi-Adl and others [17-22] have studied the sensitivity of spine stability to 

changing postural parameters such as T1 translation in the sagittal plane and sacrum rotation.    

They identified the importance of accurate simulation of the distributed weight of the torso and 

careful modulation of postural parameters. 

Though the objective function of the majority of these studies is to minimize muscle 

stress, they all report muscle activations that violate the 5% MVC criterion in the standing 

posture.  Table 3-1 shows a representative sample of these studies and the muscle activations 

required by them.  It reports the maximum muscle contraction found in each model, as well as 

any muscles that each model indicates are in violation of the 5% MVC requirement.  If not 

explicitly stated in the model, the %MVC for each muscle was calculated using Equation 2-2 

where Fm is the muscle force reported in the study, k is the maximum contractile force constant 

from [23] and PCSA is the physiological cross sectional area from [24] and [19].  In light of the 

consideration of muscle expenditure as an essential criterion for spinal stability in the neutral 

posture, the present work seeks to identify stable postures of the lumbar spine that result in an 

equilibrium configuration that requires zero external force to maintain the upright posture when 

loaded under body weight.  
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Table 3-1: Maximum Contractions Found in Select Studies 
Author Han et al. Zander et al. Shirazi-Adl et al. Patwardhan 
Max % MVC 100% 17.2%* 96.6%* 75.3%*† 
Other  muscles 
violating the 5% 
MVC criterion 

Rotatores, 
Latissimus Dorsi, 

Longissimus, 
Intertransversarii, 

Interspinales 

Multifidus, 
Iliocostalis, 

Longissimus, 
Erector Spinae 

Multifidus, 
Iliocostalis, 

Longissimus, 
Iliopsoas, 
Quadratus 
Lumborum 

Multiple 

[reference] [49] [52] [6] [1] 
* The %MVC was calculated for all muscles used in the study and the largest reported here. 
 † Specific data for the individual muscles was unavailable.  It was assumed that all muscles in [20] were acting 
simultaneously on each vertebral level. 
 

A number of other components have been suggested to contribute to the stability of the 

spine.  Some of the most prevalent include the iliolumbar ligament and the thoracolumbar fascia.  

Some studies [25, 26] have shown that intra-abdominal pressure (IAP) contributes significantly 

to the overall stability of the spine.  More recently IAP has been shown to have a negligible 

effect in standing [13].  While the iliolumbar ligament and thoracolumbar fascia will be briefly 

examined in this study, IAP will be neglected due to the disagreement in the literature and based 

on findings that it is nominally low during standing (20 mm Hg [27]).   

While the contributions of these and other passive structures are significant, it is unlikely 

that the lumbar spine is stabilized entirely by its passive structures alone during standing [1, 8, 

14, 15, 28].  However, we hypothesize that the neutral standing posture corresponds with a 

position of passively unstable equilibrium.  This hypothesis implies that any sustained muscular 

activation in excess of 5% MVC in the neutral standing posture is unreasonable and unnecessary.  

Additionally, we propose that postural parameters such as sacral tilt, modulation of the center of 

gravity (CG) of the upper torso, and the distribution of mass in the torso are all important factors 

which can provide transient passive stability to the spine.  The present work utilizes in vitro 

testing of five human cadaver spines to investigate this hypothesis and to characterize the passive 
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stability of the compressively loaded lumbar spine in the neutral posture in the absence of 

muscular support. 

3.2 Materials and Methods 

Each spine was loaded with a simulated body weight and postural parameters were 

subsequently altered within the physiological range of neutral standing posture to explore 

potential positions of passive equilibrium and their relative mechanical stability.  Equilibrium 

positions can broadly be categorized as either stable or unstable.  To illustrate the difference 

between a stable and an unstable equilibrium position, consider a ball on the top of a hill.  With 

precise initial positioning at the top of the hill, and in an ideal world, the ball would be able to 

remain on the top as long it was not perturbed from its initial position.  At this position the ball is 

in unstable equilibrium.  On the other hand, a stable equilibrium position corresponds to the ball 

being at rest at the bottom of a valley.  Any perturbation would result in the ball returning to its 

initial position.  This study aimed to not only identify the existence of passive equilibrium 

configurations of the lumbar spine, but to explore their stability.   

3.2.1 Specimen Preparation 

Five cadaver lumbar spines (T12 – sacrum), obtained through accredited tissue banks 

under an IRB-approved protocol, were used in the study (see Table 3-2 for age, height and 

weight).  The surrounding soft tissue was dissected, leaving all ligaments and discs intact.  A 

saline spray was applied to the spine every five to 10 minutes throughout the duration of 

dissection and testing to prevent dehydration.  The T12 vertebra and sacrum were fixated using a 

polyester resin (Bondo®, 3M Corp) and anchor screws.  Special precaution was taken to 
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minimize freeze-thaw cycles and each spine was tested immediately after dissection to minimize 

autolysis of the soft tissue. 

 

Table 3-2: Age, Height, and Weight Statistics for all Test Specimens 
Specimen Sex Age Weight (kg) Height (m) 

A M 67 52.16 1.72 
B M 50 36.28 1.78 
C F 79 36.74 1.60 
D F 47 113.40 1.50 
E F 56 58.97 1.55 

Mean  59.8(13.2) 59.5(31.7) 1.63(0.12) 
 

3.2.2 Test Protocol 

In the experimental setup the distributed weight of the in vivo lumbar torso was simulated 

with discretized segmental masses in order to provide a more accurate representation of the body 

weight than can be obtained with a single lumped mass.  This was done by dividing calibrated 

CT images into transverse-plane slices corresponding to each vertebral level (L1-L5).   The 

location and magnitude of the center of mass (CM) for each of these segments was then 

calculated by correlating pixel intensity with a calibrated material density value.  The segmental 

mass properties (location and magnitude) from three CT images were averaged with values 

published by Pearsall, Reid, and Livingston [29] and Keifer, Shirazi-Adl, and Parianpour [18].  

The upper body weight (UBW) of all tissue superior to the L1 vertebra was simulated with a 

free-hanging weight applied at the T12 vertebra.  Table 3-3 shows the average values of the 

segmental masses and the UBW as used in this study, as well as their respective distances of 

application from their vertebral center. 
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Table 3-3: Segmental Mass Parameters Applied to each Spine 
Level Weight (N) Location (cm)* 
UBW 311.4 Variable 
L1 17.27 3.18 
L2 18.01 2.45 
L3 18.33 1.56 
L4 18.98 .99 
L5 19.58 .84 
*  The location of the segmental weight is measured in cm anterior of the vertebral center 

 

A custom testing apparatus was constructed to allow for the adjustment of the sacrum 

angle, location and magnitude the UBW, and the application of the segmental weights from 

Table 3-3.  The UBW was applied bilaterally to the superior endplate of the T12 vertebra via 

cables and deadweight.  The relative location of this weight (d in Figure 3-1) was adjustable in 

the anterior-posterior (A-P) direction to explore the effect of torso CG location on the 

equilibrium position.  d was measured as the distance from the T12 vertebral center and is 

defined as positive in the anterior direction.  A graphical representation of the setup is shown in 

Figure 3-1 and an image of a fully-loaded lumbar spine is shown in Figure 3-2. 

 

 

Figure 3-1: The Experimental Setup 
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Figure 3-2: A Fully Loaded Lumbar Spine 
 

Average values taken from the literature for the sacrum angle (α) and UBW location (d) 

were used as a starting point for the equilibrium point search.  From this starting position, α and 

d were manually adjusted until an equilibrium point was discovered (a postural configuration 

that required no external stabilization.)  

A stability analysis was performed on all of the spines but one (spine E) to quantify the 

amount of external (muscular) stabilization that is required as the spine is perturbed away from 

the initial equilibrium point.  As each spine was allowed to rotate into flexion and extension in 

incremental steps, the magnitude of the A-P restraining force required to prevent hypermobility 

was measured with a linear spring scale attached horizontally to the T12 vertebra.  During the 

procedure sagittal plane digital images were taken of the spine for post-processing.  These were 

The Cobb angle, θ, measured between superior endplates 

of L1 and S1 [30, 31], was recorded and used as a general measure of overall lordosis and as a 

metric for comparison to published values.  
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evaluated in Analyze 8.1 (Analyze Direct, Inc., Overland Park, Kansas, USA) to measure 

intersegmental angles between adjacent levels at each increment of flexion/extension. 

With the equilibrium position characterized, α and d were then systematically altered 

within a feasible physiological range to identify additional equilibrium points for each 

spine.  

3.3 Results 

This was done to characterize a predictable range over which the spine should be 

expected to manifest an equilibrium position. 

3.3.1 Equilibrium  

An equilibrium position in which the spine remained free-standing without any external 

support was discovered for each specimen.  After a reasonable time delay (2-7 seconds) the spine 

would begin to “drift” into flexion or extension due to viscoelastic creep.  Table 3-4 reports the 

values of the location of the upper body weight, sacrum angle, and Cobb angle that produced the 

equilibrium point.   

 

Table 3-4: Postural Parameters at the Equilibrium Point 

Specimen 
UBW  Location  

d (cm) 
Sacrum Angle  

α (°) 
Cobb Angle  

θ (°) 
A -0.5 -28.9 37.5 
B 1 -31.4 40.9 
C 0 -44.3 44.3 
D 1 -53.3 68.5 
E 2.4 -51 52.6 

 

3.3.2 Stability Analysis 

The stability analysis was performed to investigate the resistance of the lumbar spine 

specimens to perturbations away from equilibrium.  As the spine was moved away from the 
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equilibrium point, an increasing amount of force was required to maintain the upright posture, 

indicating that the equilibrium points investigated in this study were in unstable equilibrium.  

The results of the stability analysis are shown in Figure 3-3.  The reported force represents the 

horizontal component of the muscular force that would be required at T12 to keep the spine 

erect.  This is a simplified representation of the muscle components involved and is not meant to 

be interpreted as the force of any single muscle or any particular group of muscles.  In Figure 

3-3, extension data was unavailable for spine A because the equilibrium point was close to the 

full extension limit of the spine. 

 

 

Figure 3-3: The Results of the Stability Analysis 
 

The curves for spines C and D in Figure 3-3 exhibited a distinct “neutral region” around 

the equilibrium point where very little force was required within a several degrees of flexion or 

extension.  Once a certain threshold of UBW translation was reached, the curves became much 

steeper, indicating that much more external (i.e., muscular) force was required for stabilization.  
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Though spines A and B did not show as distinct of a neutral region, they followed the same 

general trend of requiring more active stabilization with increased flexion or extension angle.   

3.3.3 Other Equilibrium Points 

As the design space for α and d was explored, each spine tested was found to have 

several equilibrium points, i.e. there were at least two combinations of α and d that would enable 

the spine to remain upright without any additional support.  All equilibrium points were found to 

exist within a narrow range of α and d.  Figure 3-4 shows the combinations of these variables 

that produced an equilibrium point.  The shaded region encircling the equilibrium points 

represents a two standard deviation envelope for α and d at equilibrium.  The average values of 

UBW location and sacrum angles as well as resulting Cobb angles for all equilibrium points 

identified in the study are reported for each spine in Table 3-5.  Also reported are the average 

values for these parameters as published in the literature.  Though multiple equilibrium points 

were identified for every spine, it was not possible to perform an exhaustive search of the design 

space. Therefore, the shaded regions in Figure 3-4 do not necessarily represent the absolute 

bounds wherein equilibrium may be expected to exist.  Due to the natural variability between 

spines, the range of α and d

Table 3-5: Postural Parameters Averaged Between all Equilibrium Points for each Specimen 

 that produced equilibrium was unique to each spine.  Since only two 

equilibrium points were identified for Spine A, the standard deviation envelope for that spine 

was not included in Figure 3-4. 

Specimen 
UBW Location 

d (cm) 
Sacrum Angle  

α (°) 
Cobb Angle  

θ (°) 
A -1 (0.71) -30.2 (1.8) 40.1 (3.6) 
B 0.58 (0.49) -32.2 (1.3) 41.8 (2.5) 
C 0.13 (0.25) -43.8 (1.9) 43.1 (3.1) 
D 1.50 (0.32) -54.3 (2.1) 73.0 (5.2) 
E 1.78 (0.44) -51.5 (1.7) 52.0 (4.0) 

Mean 0.93 (0.94) -44.9 (12.8) 52.2 (13.0) 
Literature (ref) 1.77 [28, 46, 56] -51.6 (7.8) [57, 58]  59.4 (12.5) [7, 57] 
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Figure 3-4: Sacrum Angle and UBW Location for all Equilibrium Postures 
 

3.4 Discussion 

That the spine was able to stand freely within several degrees of the equilibrium point is 

an important finding.  It is an indication that muscles need not be involved in stabilization around 

the standing posture until a threshold value of flexion or extension is reached.  The Cobb angles 

and sacrum angles measured in this study define the postural configuration of the spine at 

equilibrium.  In general these measurements fell within the ranges for the standing posture as 

reported in the literature (see Table 3-5).  Thus, the neutral standing posture is an energetically 

favorable equilibrium configuration of the spine.  It is therefore reasonable to conclude that with 

the fine motor control of the local and global muscles required to adjust the sacrum angle and the 

location of the CG of the upper body, the lumbar spine is able to stabilize with less than 5% 

MVC in the surrounding musculature.  Muscles such as the multifidus and rotatores are 

Literature 
Average 
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particularly well suited for the fine postural adjustments that are required to maintain the 

equilibrium posture [14]. 

3.4.1 Characteristics of Spinal Equilibrium 

Variations in α and d affected the overall angle of lordosis (the Cobb angle) at which 

equilibrium occurred.  Though multiple equilibrium points were discovered for each spine, not 

all exhibited the same degree of stability.  Some equilibrium points were quicker to succumb to 

viscoelastic creep than others.  This suggests that even though there is a range of postures over 

which the lumbar spine is passively stable, there exists an optimal posture that is the most 

energetically favorable.   

In this study the weight of the upper torso was applied at each lumbar segment and by a 

lumped mass at T12, which causes internal moments at each vertebral level.  Without some 

initial positioning of the CG of the trunk weight, these moments will cause buckling [1-4].  

Shirazi-Adl and Parianpour [17] suggested that by regulating the location of the CG of the torso, 

the body creates the optimal moments that are needed to relieve the load on the musculature 

surrounding the spine.  Additionally, they observed that simulating the lower torso weight with 

anteriorly off-centered segmental weights creates flexion moments that stabilize each level and, 

coupled with positioning of the upper body CG and an optimal sacrum angle, greatly enhances 

the load carrying capacity of the spine.  These observations were confirmed in the present study. 

3.4.2  Intersegmental Angles 

As the spines were moved through flexion and extension in the stability analysis, it was 

of interest to observe the individual contributions of each lumbar segment to the overall quasi-

static motion of the spine.  The average changes in intersegmental angle for each spinal segment 
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are reported in Figure 3-5.  The heights of the columns in Figure 3-5 represent the angular 

change in the individual segments as the spine is perturbed away from the equilibrium position.  

On average the spines were moved through a flexion angle of ±8ο (i.e. Δθ = ±8ο

 

).   

 

Figure 3-5: Change in Intersegmental Angle During Stability Analysis, Averaged for all Spines 
 

Figure 3-5 identifies a very interesting trend in the overall motion of the spine.  The L5-

S1 and L4-L5 segments experience much more mobility than all other segments.  A study by 

Renner et al. [33] reported a similar trend with more segmental motion in the L5-S1 and L4-L5 

segments than in other segments.  The intersegmental rotations for the L4-L5 segment are in 

close agreement with those reported by Rohlmann et al. [13].  
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3.4.3 The LOA of the Gravity Load 

The line of action (LOA) of the upper body weight is defined by a plumb line dropped 

from the CG of the UBW.  As the spine is allowed to rotate into flexion, the LOA translates 

anteriorly by the horizontal distance δ (see Figure 3-6).  The location of the LOA with respect to 

the sacrum was shown to have an important effect on the stability of the spine and on the 

definition of the equilibrium point.  In general, at the equilibrium point the LOA intersected the 

S1 superior endplate near its geometric center.  The standard deviation of the LOA for all 

equilibrium points was δ = 0.78 cm.  This is an indication that the lumbar spine is able to adapt 

to postural changes in such a way that an energetically neutral position can always be found as 

long as the CG of the torso can be positioned above the sacrum.  Significant deviation of the 

LOA in flexion or extension requires external input (muscle activation) to prevent the spine from 

collapsing.  Rohlmann, Zander, and Bergmann made the observation that the upper body weight 

has its center of gravity positioned in front of the spine [6].  However, with the CG of the torso 

more centrally positioned above the sacrum as found in the present study, the need for large 

extension moments is decreased and therefore the need for muscle activation is reduced.   

 

 

Figure 3-6: The Translation of the LOA of the UBW During Flexion 
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This finding is complementary to a study performed by Aspden [26].  He treated the 

spine as a structural arch and characterized the path that the internal load of the spine must 

follow in order to maintain stability.  The path of the internal load, or thrust line, was shown to 

induce stability as long as it remained inside the physical column of the spine.  He concluded that 

the flexibility of the spine allows it to adapt is geometric configuration in order to enclose the 

thrust line within the anterior column.  This theory has been corroborated by the present study.  

The LOA at the equilibrium posture falls in such a way that it is encompassed completely by the 

lumbar column.  Without any muscular input the passive structures alone are capable of self-

adjusting their geometric configuration to ensure that the thrust line is enclosed by the column. 

3.4.4 Limitations 

The lumbar spine possesses an inherent ability to stand freely when positioned into the 

neutral standing posture.  Though we have identified postures of passive equilibrium, this is not 

to suggest that all muscle activation is unnecessary for standing.  Initial positioning of the CG of 

the UBW requires muscular input, and muscles would also be required to reposition the spine 

subsequent to the viscoelastic creep that was observed in this study.  Additionally, as has been 

shown in the literature, co-activation of the lumbar muscles can provide additional stabilization 

[8, 21] which may be necessary to protect the spine from unexpected events or balance 

deviations.  Though this study has identified a passive equilibrium position of the lumbar spine, 

it is not intended to be interpreted as a comprehensive model of spinal stability.  A full 

understanding of the overall stability of the spine cannot be gained without incorporating all 

active and passive components involved.   

This study simulates the body weight of the lower torso with discretized segmental 

masses applied at each vertebral level.  Though we present that this method provides a more 
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accurate approximation of the load distribution imposed on the spine [18] as compared to a 

single point mass or a cabled follower load, it is unlikely that the weight of the body behaves as a 

series of rigid segments.  It is likely that the visceral organs and their fibrous attachments to the 

abdominal cavity create a more complex loading condition, which should be investigated more 

closely.   

The values that were used for the UBW and segmental masses were averaged from three 

different sources.  Differences in methodology among these studies are a potential source of 

error.  Further, these average values likely do not provide the same in vivo body weight 

distribution of any of the individuals whose donated spines were used in this study.  However, 

considering the range of values over which equilibrium points were found, it would not appear 

that the existence of an equilibrium point is particularly sensitive to the load distribution. 

While the individual donors for the cadaver spines were not ideal representations of the 

population mean for height and weight, the good agreement of resultant postural parameters with 

published values indicates that the specimens yielded reasonably representative results.  Two of 

the spines (A and B) had abnormally shallow curvatures when unloaded, i.e. their Cobb angles 

were small compared to anthropometric data.  These spines reside in the upper-left region of 

Figure 3-4 indicating that a spine’s inherent shape could affect its equilibrium point posture.  

Specifically, the UBW must be placed more posterior and the sacrum angle reduced in order to 

achieve equilibrium.  Spine C showed signs of osteoporosis and had suffered a complete 

compression fracture of the entire L1 vertebral body and complete crushing of the T12-L1 disc.  

The health of these spines may have affected their biomechanical response as reported in Figures 

Figure 3-3 and Figure 3-4.   
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3.4.5 Other Potential Contributors to Passive Stability 

 As previously mentioned, the iliolumbar ligament and the thoracolumbar fascia are two 

passive structures that may be involved in stabilization but have historically not been 

incorporated into full-spine biomechanical models.  While these structures could not be fully 

integrated into this study, the results offer some insight into their importance. 

The iliolumbar ligament (ILL) attaches the lateral aspects of the L5 transverse processes 

to the postero-superior aspect of the ilium [34, 35].  The ILL has been shown to restrict flexion 

and extension motion of the lumbosacral joint [36, 37] and to stabilize the lower lumbar spine.  

In this study the ILL was not present on any of the specimens, and the majority of the motion of 

the spine away from the equilibrium point was observed to originate in the L4-L5 and L5-S1 

intervertebral joints.  To determine the capacity of the ILL to supply additional passive 

stabilization to the lumbar spine, two specimens were instrumented with simulated iliolumbar 

ligaments using digital load cells (MLP-25, Transducer Techniques, Temecula, CA). As the 

spines were allowed to move into flexion, it was observed that with 30 – 40 N of force in the 

ILL, the spine was able to remain in stable equilibrium for flexion angles of up to 2.6ο

Research has shown that tension in the thoracolumbar fascia causes increased resistance 

to flexion [39, 40].  More specifically, Barker et al. [39] have shown that a tension of 20 N in the 

.  Whether 

a force of this magnitude can be expected to be sustained by the ILL without injury has yet to be 

determined, however it is very reasonable based on reported cross-sectional areas and reported 

properties for other spinal ligament [34, 35, 37, 38].  Most importantly, we have demonstrated 

that the ILL has the potential to provide additional passive stabilization to the lumbar spine. To 

our knowledge, there are no studies that take into consideration the iliolumbar ligament while 

attempting to characterize the stability of the entire lumbar column. 
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lumbar fasciae stiffens the lumbar spine particularly near the neutral zone.  This tension would 

primarily be supplied by the transversus abdominis and oblique muscles.  These muscles have a 

relatively large PCSA compared to the posterior local muscles surrounding the spine (1,576 mm2 

for external obliques compared to 211 mm2

3.5 Conclusion 

 for multifidus [19]).  It is therefore likely that a 

tension of 20 N is well within the 5% MVC requirement.  As has already been stated, intra-

abdominal pressure is not likely to have a direct effect on the stability of the lumbar spine.  

However, in conjunction with the action of the transversus abdominis and obliques, IAP may 

have an important effect as a resistive force to the posteriorly-directed action of these muscles at 

the linea alba.  Since the muscles must be constrained to less than 5%MVC, the change in IAP 

will be small, which has been observed in the literature [27]. 

This study has identified a passive equilibrium position of the lumbar spine which is able 

to support the body weight load with no external stabilization.  This spinal configuration 

corresponds to the neutral posture of standing and can be sustained with little muscular input.  It 

is our recommendation that a 5% MVC constraint on muscle activation in the standing posture 

be incorporated into spinal stability models.  Further, we recommend that a more careful 

examination into the relative contributions of the passive elements of the spine to overall stability 

be conducted.  Particularly, the postural configuration of the lumbar spine in the standing 

posture, the distribution and positioning of the body weight, the iliolumbar ligament, and the 

thoracolumbar fascia should be more carefully considered.  Further investigation into the spinal 

control mechanisms necessary to maintain the passively stable posture could offer great insight 

into overall spinal stability. 
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4 ADDITIONAL INSIGHTS 

The technical journal paper comprising the previous chapter was limited in its ability to 

comprehensively address some of the methods and results of this research due to length 

constraints on the manuscript.  This chapter will cover in greater detail some of the procedures 

and implications of the results that were not included in the previous chapter. 

4.1 The Significance of the Equilibrium Posture 

The definitive results of this study beg the question as to why the passive equilibrium 

capabilities of the spine have not yet been described in the literature.  This study has clearly 

identified equilibrium postures for five cadaver spines that correlate very well with the neutral 

standing posture.  Particularly, for spines D and E the average postural parameters at equilibrium 

were very close to the literature average values.  Though a stability analysis was not performed 

for spine E, the curve for spine D shows a much more distinct neutral region in Figure 3-3 than 

the other spines, so we can assume that the stability curve for spine E would be similar to that of 

spine D.  It is non-coincidental that these two spines were observed to have greatest amount of 

overall curvature in the unloaded posture.  Aspden [9] made the observation that not only is the 

spine able to remain stable in spite of its curvature, but that the curvature is in fact necessary for 

stability.  The geometric configuration of the spine is therefore a critical parameter in 

determining its stability.  This observation may account for the inability of current numerical and 

finite element models to produce the equilibrium posture.  In this study, equilibrium was found 
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to be highly sensitive to the A-P location of the T12 vertebra, the UBW, and the sacrum angle.  

In the FE models discussed in this thesis, the initial geometric configuration of the spinal column 

is typically extracted from either a standing radiograph or from a supine MRI or CT image.  The 

angles between adjacent vertebrae are then kept constant in the analysis, and the loads required 

to maintain that posture are solved for.  Errors in the method of measurement of the 

intersegmental angles can potentially produce a spinal geometry that is slightly different than the 

configuration that is required for equilibrium.  It has been shown that it is not possible to 

consistently measure geometry parameters from a medical image without a fair degree of 

statistical variation [7].  For MRI and CT images, though the curvature of the spine in the supine 

posture has been shown to differ only slightly from the standing posture, overall lordosis can 

vary by 5.5ο 11 [ ], which would be sufficient to cause instability as defined by the “neutral 

region” discovered in this study.  Additionally, the use of values averaged over large populations 

for either spinal geometries or for the loading parameters further dilutes the geometric specificity 

that is required to produce equilibrium.  It is very probable then that the spinal geometries used 

in these numerical studies are not conducive to the discovery of the neutral region and passive 

equilibrium.  As previously mentioned, the rotational freedom of the individual vertebrae is 

critical to the spinal column’s ability to passively adjust to the loads imposed on it.  This is 

supported by El-Rich [6] who showed that an increased vertical load on the spine did not cause 

any additional muscular activation, suggesting that the passive structures alone are 

compensating.  Many numerical studies constrain this movement in an effort to replicate the 

geometry from the medical image.  It is therefore not surprising that previous numerical studies 

have not identified the passive equilibrium capabilities of the lumbar spine.  Though average 
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values were used for the weights applied to the spines in the present study, the intervertebral 

joints were free to adjust their postural configuration and find an equilibrium posture.              

In in vitro studies, the failure to identify the equilibrium posture may partially be 

attributed to the bias towards the follower load found in the literature.  Since the introduction of 

the follower load, virtually all cadaveric studies have made use of it because of its simplicity and 

its apparent ability to replicate the physiologic loading condition.  Many studies have been 

occupied with attempting to rationalize the follower load from a physiological standpoint.  

Though the lines of action of the posterior local muscles have been shown to act in such a way 

that the follower load could be produced [49], the forces required by these muscles when acting 

in isolation are much too large.  The results of this study suggest that the follower load alone is 

not an accurate representation of the in vivo loading condition and is irrelevant in the neutral 

posture.  However, it is possible that in conjunction with the equilibrium posture defined in this 

study, a partial follower load generated within the local muscles could provide additional 

compressive stabilization without altering the geometric configuration of the spine.  Naturally, 

the muscle activations would need to be below 5% MVC for this contribution to be 

physiologically feasible.  This potentially synergistic interaction merits further attention and 

research. 

The individual FSU has been shown to exhibit a distinct “balance point”, or neutral zone 

around which little force required to maintain stability [48].  If each segment in the lumbar spine 

can exhibit this balance behavior on an individual basis, there is no reason to believe that all the 

segments of the bulk spine cannot simultaneously be in their balance point configuration and 

thereby require zero external stabilization.  This study has shown that under the proper loading 

conditions, the spine has a natural disposition to produce this bulk balance point.  In the clinical 
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setting, full disc replacement devices should therefore not only be able to replicate the 

biomechanics of the individual segment, but reproduce the motion of the bulk system as well.  

As has been previously mentioned, additional low-level muscle contraction may be needed for 

additional stabilization and protection of the spinal column.   

The 5% MVC activations calculated in this study are only approximations since it is 

extremely difficult to measure muscle force directly.  They are based on a single maximum force 

constant, k = 25 N/cm2

20

, which may not necessarily reflect the in vivo capabilities of the muscle.  

The inconsistency in this valve as reported in the literature is a source of potential error.  The 

effect of using a different value for k in this thesis will only alter the acceptable limits for muscle 

contraction.  For example, Bogduk [ ] reports a k value of 46 N/cm2

Though equilibrium behavior has been only been demonstrated in the lumbar spine in this 

study, it is reasonable to assume that the other regions of the spine (thoracic and cervical) will 

exhibit similar behavior.  In this study the thoracic region was treated as a single rigid mass.  

This technique has been used in the majority of the other studies discussed in this thesis.  The 

thoracic spine is indeed much stiffer than the lumbar or cervical spines because of the ribcage, 

which supplies a large amount of passive stiffness to the intervertebral joints.  The FSUs of the 

thoracic spine are very similar to those of the lumbar, with the main difference being in the 

orientation of the mating surfaces of the facet joints.  This similarity, along with the additional 

, which would increase the 

5% MVC limit for the multifidus muscle from 2.638 N to 4.853 N.  Though the percent increase 

is significant, these two values are on the same order of magnitude, meaning that the majority of 

the studies discussed here are still in violation of the constraint.  It may be difficult to assign a 

specific value to the acceptable force limit for any single back muscle, yet the general principle 

holds true that any activation in standing must be only a small fraction of the maximum. 
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stiffness of the ribcage, indicates that the thoracic spine will be even more predisposed toward 

equilibrium postures.  The anatomy of the cervical spine is significantly different from the 

thoracic or lumbar, so no inference can be made with respect to its passive equilibrium.  

However since this region is supporting a much lighter load than the lumbar spine it can be 

assumed that any required muscle activation should be on a low order of magnitude and thereby 

not contribute significantly to the overall metabolic expenditure.  The cervical spine has shown 

similar behavior to the lumbar under a follower load [47], so it is possible that an equilibrium 

configuration does exist.  The most interesting question then becomes how the three spinal 

columns work in harmony to remain in a state of minimal metabolic expenditure in standing.  

This question merits further research. 

4.2 Experimental Procedures 

Though the testing procedure for this study may seem simple and straightforward, countless 

hours were spent in conceptualizing and devising a robust protocol that would provide consistent 

results.  Additionally, all hardware used in the testing had to be designed and custom 

manufactured.  For a detailed description of all devices and custom hardware used in the testing, 

see Appendix B: Testing Fixture. 

One of the most time-consuming aspects of the testing procedure was the dissection and the 

preparation of the cadaver specimens.  Prior to testing, each specimen was stored in a deep-cycle 

freezer at -25ο C.  Before dissection, each spine was thawed at room temperature overnight for 

approximately 14 hours.  Special care was taken to reduce freeze-thaw cycles for the spines, an 

excess of which can have destructive effects on the soft tissues.  Spine E was the first spine to be 

investigated and was tested a number of times in order to solidify the testing protocol.  It was 
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therefore subjected to five freeze-thaw cycles.  All other spines underwent only a single cycle.  

Dissection was performed to remove all muscle and fatty tissue from the anterior portion of the 

spine.  Since un-contracted muscle has very little if any stiffness, the removal of this tissue had 

little effect on the biomechanics of the spine.  The main purpose of the removal of this tissue was 

to allow clear access to the vertebral bodies so the segmental weight brackets could be attached.  

A few of the spines came with a portion of the T11 vertebra still attached.  This was removed 

leaving the superior endplate of the T12 vertebra exposed.  The majority of the sacrum was 

removed at approximately the S2 or S3 level with a vibratory cutting tool.  The inferior two-

thirds of the remaining sacrum and the superior two-thirds of the T12 vertebra were cleaned 

down to the bone to allow for proper adhesion of the potting material.  For each the sacrum and 

T12, Bondo® adhesive was poured into a 4”X4”X1” square plastic mold and the bone was 

imbedded as far as possible without contacting the adjacent disc.  Because the heat of the 

reaction of the adhesive had the potential to dehydrate the specimen, it was continuously sprayed 

with saline until the adhesive cooled. 

With the caudal and cranial ends of the spines fixated in the potting material, the caudal end 

was mounted to the adjustable-angle base plate of the spine tester.  Because of the difficulty of 

continuously measuring the sacrum angle throughout the duration of the testing, the constant 

relationship between the sacrum angle and the base plate angle was measured with a laser level 

before the spine was loaded.  The base plate angle was then measured throughout the testing so 

that the sacrum angle could be calculated.  With the spine securely mounted, the segmental 

weight brackets were attached one at a time starting with the L5 vertebra moving up to the L1 

vertebra.  A metal plate was then attached to the superior endplate of T12 and cables were 

connected between it and the deadweight platform hanging below the testing platform.  The 
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attachment points for these cables were secured inside a slot in the top plate that allowed for 

adjustment of approximately 5” in the A-P direction and 1” in the medial-lateral direction.  From 

this point on, it became important to manually support the spine at all times to keep it from 

collapsing into flexion or extension.  Deadweight was then applied in 10 lb increments to the 

hanging platform until a final weight of 70 lbs was reached.  Based on anthropometric data, it 

was calculated that this weight should be closer to 90 lbs for the average population.  However 

the total body weight for two of the donors (B and C) was approximately 80 lbs at time of death, 

so the UBW of 70 lbs was used in the experiments to avoid excessive loading of these potentially 

more fragile specimens. 

With the full body weight applied, the sacrum angle and UBW position were placed in their 

starting locations (the average values from Table 3-3).  It became immediately apparent whether 

these parameters would need to be adjusted in order to find the equilibrium point.  For example, 

since spine B had very little initial lordosis, the initial sacrum angle was much too steep, i.e. the 

facet joints made contact and prevented any further extension.  The sacrum angle therefore had 

to be significantly reduced.  The sacrum angle and UBW position were altered until equilibrium 

was achieved.  For each combination, the sacrum angle and the L1 vertebra angle were measured 

(and the Cobb angle calculated) with a digital level.  Because of the unstable nature of the 

equilibrium point, the L1 angle could only be measured with an accuracy of approximately 

±0.5ο

As multiple equilibrium postures were identified for each spine, it became apparent that 

there is likely an “optimal” posture that is more stable than the others.  The qualitative 

observation was made that although each equilibrium posture was indeed a configuration of 

unstable equilibrium, some were quicker to succumb to viscoelastic creep than others.  No 

.  Every effort was made to measure this angle as consistently as possible. 
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attempt was made to quantitatively define the “optimal” equilibrium posture, recognizing that 

since the precise in vivo loading conditions for each specimen was not accurately replicated in 

this study, the in vitro optimal posture would have little meaning.  The qualitative observation is, 

however, a relevant indicator that a most efficient posture should exist in vivo and the body 

likely seeks after this posture whenever possible.  

During the stability analysis, a digital image was taken at each step away from the 

equilibrium posture.  The camera was placed at a distance of approximately five feet away from 

the test apparatus, and was manually aligned to be perpendicular to the sagittal plane of the 

spine.  The images were analyzed in an open-source image processing and analysis software 

package, ImageJ (National Institute of Health).  This software was able to determine the angle 

between any two lines in the image.  Since the camera may not have always been aligned parallel 

to the testing platform in each test, the known angle of the base plate (sacrum angle) was used as 

the reference angle.  The angels of each vertebral level were then measured at each perturbation 

so that the angular change of each segment could be calculated.   

4.3 Iliolumbar Ligament Study 

As has been previously mentioned, a simulated iliolumbar ligament was attached to two 

of the specimens (spines B and E) in this study to explore its ability to constrain motion.  This 

study would have been performed on all specimens, but the L5 transverse processes for spines A, 

C, and D were either broken or completely removed by the tissue bank.  In future testing, 

specific instructions should be given to the tissue bank to take special care to leave the L5 

transverse processes intact. 
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The procedure for the iliolumbar ligament study was very similar to the stability study, 

but the spines were only moved into a single angle of flexion.  Holes were drilled near the ends 

of the transverse processes and 1/8” braided steel cables were looped through the holes.  In order 

to obtain realistic results, care was taken to simulate the spatial geometry of the ILL.  The ILL 

can be divided into a number of segments which typically lie at some positive or negative angle 

to the transverse plane [34, 59].  In this study, the simulated ILL was placed parallel to the 

transverse plane to act at the average line of action of the in vivo ligament.  The ILL has also 

been observed to be at an angle of about 45ο 35 to the sagittal plane [ , 36, 60].  The ILL cables 

were placed approximately at this angle using a protractor.  Tension was placed in the cables and 

then the spine was allowed to rotate into a few degrees of flexion, with the load cells measuring 

the force.  Spine B was able to rotate into 2.6 ο of flexion with a force of 7.5 lbs in the left ILL 

and 7.8 lbs in the right ILL.  Unfortunately, the flexion angle was not measured for Spine E, but 

it is estimated that it rotated approximately 3-4 ο with a force of 6 and 7 lbs in the left and right 

ligaments respectively.  These postures with the attached ILL were considered to be “stable”, i.e. 

they had no propensity to continue into further flexion.  However, if allowed to rotate much 

further, the force in the ILL would rise steeply, quickly exceeding the breaking strength of the 

ligament.  It is therefore plausible that the ILL is a stabilizer around the neutral posture, but any 

significant deviation away from the equilibrium posture would likely be accompanied by sacral 

rotation and muscle activation to prevent damage to this ligament. 
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5 CONCLUSION 

The human lumbar spine is a complex biomechanical system.  The high degree of static 

indeterminacy of the system and the difficulties of measuring spinal loads in vivo have made it 

nearly impossible to characterize the precise load-sharing relationship between the active and 

passive systems.  Despite the extensive research that has attempted to characterize this 

relationship, it would seem that there is not a single universal solution that is applicable to every 

spine.  Morphological and biological variation in the structures and the tissues of the spine from 

one subject to another would suggest that there is a specific neuromuscular recruitment pattern 

that is unique to each individual.  Though it may not be possible to determine this precise 

neuromuscular strategy for any single individual, a number of generalized principles can, and 

have been made that shed light on the load-bearing capacities of the spine.  This thesis has shown 

the weight of the upper body to be supported by the lumbar spine in the absence of muscular 

input.      

This new understanding about the load-bearing capacities of the lumbar spine has the 

potential to influence the way we approach the diagnosis and treatment of spinal disorders.  

Particularly, this understanding sheds light on the compressive load that is imposed on the spine 

in the standing posture.  Others have postulated that the compressive load in the spine reaches 

1000 N in standing [15], but this work has shown static equilibrium under approximately 400 N.  

This study has also identified the postural parameters that are critical to obtaining passive 

equilibrium, namely the Cobb angle, the angle of rotation of the sacrum, and the positioning of 
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the upper body weight.  Surgical procedures must therefore avoid altering the spine’s ability to 

freely adjust these parameters.  Due to the lack of a more viable solution, one of the most 

common methods to repair damaged discs is to perform inter-body fusion of adjacent vertebrae.  

This procedure eliminates intersegmental rotation at the level of fusion and places additional 

strain on adjacent levels and, in accordance with the results of this thesis, will therefore require 

additional strain on the musculature to maintain stability.  It is therefore imperative that a more 

dedicated effort be focused on total disc replacement devices and restoring the natural mobility 

of the segment that will allow it to attain passive equilibrium in the standing posture. 

5.1 Summary of Contributions 

The primary contributions of this research are as follows: 

• The discovery that the neutral standing posture is a state of passively unstable 

equilibrium. 

• Compliance with a constraint on muscle activation (i.e. 5% MVC) is necessary and 

attainable in standing. 

• The identification of postural parameters critical to passive equilibrium of the spine, 

namely lordosis angle, sacrum angle, and upper body weight positioning. 

• The identification of passive structures that have the potential to provide additional 

stabilization: the iliolumbar ligament and the thoracolumbar fascia. 

• A call for revision of biomechanical models to comply with the 5% MVC requirement in 

standing. 
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5.2 Recommendations for Future Work 

The results of this study are a promising indication that the lumbar spine is stable in the 

neutral standing posture with little muscle activation.  Since this phenomenon has not been 

discussed in the literature to date, it is important to verify these results and to conduct further 

research to determine the sources of the passive equilibrium posture.  

This study was limited in its scope and magnitude.  Only five cadaver spines were 

available for testing, and the majority of these either had some degree of degenerative disc 

disease or the physiological curvature was atypically flat.  Further, the average age of the 

specimens was nearly 60 years.  Future work should focus on obtaining a greater number of 

specimens that are more representative of the average healthy population. 

The most promising continuation of this work is to experimentally determine the effects 

of the iliolumbar ligament and the thoracolumbar fascia on stability in the standing posture.  

Lumbar specimens with an intact pelvis and iliolumbar ligament could easily be obtained from 

accredited tissue banks.  To isolate the effect of the ILL, the intact specimen should be tested, 

and then re-tested after the ligaments are transected bilaterally.  It is postulated that the ILL will 

provide additional stiffness, particularly to the L4 and L5 segments.  Since it may not be possible 

to obtain an entire human torso for testing, the simulation of tension in the thoracolumbar fascia 

may be a more complex challenge.  The testing protocol should closely follow a study conducted 

by Barker [29] where tension was applied transversely to the fascia with spring scales.  The 

effects of the ILL and the thoracolumbar fascia should be investigated independently to avoid 

combinatorial effects.  In reality, these two components may have complex interactions that may 

only be able to be fully understood with computer simulation and optimization.  The 
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incorporation of these components will only add to the static indeterminacy of the system, yet 

their effects can be studied in isolation without active muscle control. 

The most likely source of error for this study is the body weight that was applied to each 

spine.  Though the UBW and the segmental masses were averaged from a number of sources, the 

specimens used in the study were far from average in their heights and body mass index (BMI), 

so the weights that were applied are not accurate representations of the in vivo body mass.  The 

in vivo loading of each spine could be more accurately simulated by customizing the applied 

weights and their CGs.  This can only be accomplished by imaging a much larger sample of 

volunteers and, rather than taking the average segmental mass properties and applying them to 

all the cadaver specimens, creating a database of masses and CGs based on height and BMI.  

Each cadaver specimen would then be matched with the imaged subject that most closely 

matches its height and BMI.  The sensitivity of the equilibrium posture should be explored with 

respect to these mass parameters.  This would give a sense the effect of weight gain or weight 

loss on the shape of the spine at equilibrium.  

Another potential factor in the accuracy of the applied masses is the fact that the images 

used to calculate segmental masses were taken in the supine position.  The body weight 

distribution in this position is potentially different than in standing, and therefore the CM 

calculations could be inaccurate.  Upright MRI is a relatively new technology that is able to take 

a full-body image in the standing position.  Ideally, the subjects imaged for future studies should 

be imaged in an upright MRI to get the best representation of the distribution of the body weight 

in standing.  There is, however, a challenge with using this technique: pixel intensity in MRI 

cannot be directly correlated with material density as it can with CT.  Other techniques do exist 

to calculate the density of biological materials from MRI images, but they are more involved.  
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The behaviors discovered in this study should be incorporated into a numerical model of 

the spine for validation.  A finite element model is currently being developed at the BYU 

Applied Biomechanical Engineering Laboratory.  This model should be compared against the 

results of this study and it should be altered, if necessary, to comply with the 5% MVC criterion.  

Once this validation is completed, other research labs would be encouraged to produce similar 

results. 

Finally, a more comprehensive in vitro test protocol should be created.  As previously 

mentioned, this would include passive structures that have not typically been incorporated into 

biomechanical studies of stability.  It should also include a more complete representation of the 

musculature.  Muscle insertions at each vertebral level have the potential to alter the 

intersegmental rotations as the spine is moved into flexion or extension.  A more accurate 

method of determining intersegmental angles should also be devised.  This more comprehensive 

experimental study will give additional insight into the synergistic roles of the muscles and the 

passive structures as they relate to stability.  Once the behavior of the lumbar spine is well 

understood, this technique should be expanded to explore the passive equilibrium behavior of the 

thoracic and lumbar spines, and then incorporate the entire spinal column into a single 

comprehensive model.   
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APPENDIX A: CALCULATION OF MASS SEGMENTS FROM CT IMAGES 

The CT segmentation method used by Pearsall [46] was employed in the present work to 

determine segmental mass parameters for three full-body CT images which were obtained from 

the Utah Valley Regional Medical Center in Provo, UT.  This method relies on assessing the 

image intensity of each pixel of a CT image and assigning a material density value to each based 

on a linear calibration curve.  Image intensity is measured in units of Hounsfield number (HU), 

where the HU of air is -1000 and the HU of water is 0.  Using a linear fit between these two 

values, and knowing the HU number of any given pixel, the density can be calculated with the 

relationship: 

𝜌𝜌𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑙𝑙 = 𝐻𝐻𝐻𝐻 ∗
𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑝𝑝𝑤𝑤 − 𝜌𝜌𝑤𝑤𝑖𝑖𝑤𝑤

1000
+ 𝜌𝜌𝑤𝑤𝑤𝑤𝑤𝑤𝑝𝑝𝑤𝑤                                                                              (𝑃𝑃 − 1). 

This is a fairly good approximation to calculate the density of any material that is being imaged.  

However, with high density materials such as bone the approximation becomes slightly less 

accurate.  One way to obtain a more precise relationship is to use a calibration phantom with 

known material densities that are closer to those that are anticipated to be imaged.  For the 

purposes of this study, the above equation provides sufficient accuracy for the calculation of the 

mass of body segments. 

To divide the full-body CT images into segments at each vertebral level, the raw CT data 

was imported into AMIDE (by user Andy Loening, SourceForge.net), an open-source CT 

analysis software package.  A region of interest (ROI) box was drawn around each vertebra and 

all the tissue extending out radially from it.  A text file containing the HU number and the XYZ 
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coordinates of each pixel was created for each ROI.  These values were imported into a C++ 

code to calculate the center of mass of each segment (the source code is included at the end of 

this appendix).  The CM locations were then plotted in the AMIDE image on the mid-sagittal 

plane.  The parameter of interest in this study was the distance of the segment CM from the 

vertebral center of that level.  To calculate the VC, two lines were drawn connecting opposite 

corners of the vertebral body, the intersection of which corresponds to the vertebral center.  The 

distance between the CM and the VC could then be calculated.  The CM locations from the CT 

images were averaged with [46] and [56].  A representative view of a segmented image with CM 

locations is shown in Figure A-1.   

 

 

Figure A-1: Segmentation of a CT Image and CM Locations (Yellow Dots) for each Segment 
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A convenient feature of AMIDE is its ability to calculate the average Hounsfeld number 

and the overall volume of the region of interest.  Using this information and Equation A-1, the 

mass of each segment was calculated.  These mass values for the three images were averaged 

with values from [54] and [46] and are reported in Table 3-3.   

There are a number of potential sources of error that were introduced in the execution of 

this methodology.  The resolution of the CT images in the sagittal plane was quite low.  

Therefore, the calculation of the vertebral centers may not be entirely accurate, though they are 

likely within ±2 mm of the actual location.  Also, the selection of a region of interest to define a 

torso segment was somewhat arbitrary and subject to the preferences of the person performing 

the analysis.  However, the purpose of the method was not necessarily to determine precisely 

how much weight is acting on any given vertebral level, but to provide a more reasonable 

representation of the body weight load than with a single load applied at the most cranial 

vertebra.  As has already been recognized, this method may not be the most accurate 

representation of the distributed weight of the body, though it is the most accurate that has been 

presented in the literature.  It is therefore less important how an ROI is defined, just as long as 

the global effect is to simulate the distributed weight of the body by applying masses at each 

vertebral level.  

 

Source Code for CM Calculation 

/************************************************************************** 
Project: CM 
File:  main.cpp 
Date:  6/8/2010 
Notes:  This program is designed to read in raw data point values 
   exported from AMIDE and calculate the center of mass for  
   each ROI (correlated to a vertebral body and its 
surrounding tissue. 
 
***************************************************************************/ 
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#include <iostream> 
#include <fstream> 
#include <string> 
#include<vector> 
#include<sstream> 
using namespace std; 
 
void COM(ifstream& infile); 
 
int main() 
{ 
 ifstream input; 
 vector<string> filename; 
 char buffer[100]; 
 stringstream ss; 
 filename.resize(17); 
 string name; 
 string number; 
 name="C:\\Users\\Cesare Jenkins\\Documents\\Research\\Balanced 
Spine\\PA1 Data\\T"; 
 for (int i=1; i<13;i++)//write filenames for thoracic vertebrae 
 { 
  sprintf(buffer,"%d%s",i,".raw"); 
  ss<<buffer; 
  ss>>number; 
  filename[i-1]=name+number; 
  ss.clear(); 
 } 
 name="C:\\Users\\Cesare Jenkins\\Documents\\Research\\Balanced 
Spine\\PA1 Data\\L"; 
 for (int i=1; i<6; i++)//write filenames for lumbar vertebrae 
 { 
  sprintf(buffer,"%d%s",i,".raw"); 
  ss<<buffer; 
  ss>>number; 
  filename[i+11]=name+number; 
  ss.clear(); 
 } 
 for (int i=0; i<17; i++)//evaluate each file 
 { 
  input.open(filename[i].c_str()); 
  if(input.is_open()) 
  { 
   COM(input); 
   input.close(); 
   input.clear(); 
  } 
  else 
  { 
   cout<<"problem opening file "<<filename[i]<<endl; 
   input.close(); 
   input.clear(); 
  } 
 
 } 
 
 /* Code for foing the cadaver spine 
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 input.open("C:\\Users\\Cesare Jenkins\\Desktop\\RawData_T11_L3"); 
 COM(input); 
 input.close(); 
 input.clear(); 
 input.open("C:\\Users\\Cesare Jenkins\\Desktop\\RawData_L4_S"); 
 COM(input); 
 input.close(); 
 input.clear();*/ 
 cout<<"Finished"<<endl; 
 system("Pause"); 
 return 0; 
} 
void COM(ifstream& infile) 
{ 
  
  
 int raw_val; 
 double x_val; 
 double y_val; 
 double z_val; 
 double wght; 
 string stuff; 
 double pix_mass; 
 double mass(0); 
 double xmass(0); 
 double ymass(0); 
 double zmass(0); 
 double x_com; 
 double y_com; 
 double z_com; 
 string ROI; 
 //get the first thing from the file, it should probably be a # 
 infile>>stuff; 
 while(!infile.eof()) 
 { 
  if (stuff=="#")//if you have header info, just read over it until 
you get to the end 
  { 
   infile>>stuff; 
   while (stuff!="#" && stuff!="Z")//keep reading until you 
get to another # or to the Z 
   { 
    if (stuff=="ROI:") 
     infile>>ROI; 
    infile>>stuff; 
   } 
 
  } 
  if (stuff=="Z")//if you have a Z, there is data to follow 
  { 
   infile>>stuff;//read the (mm) to get it out of the way 
   infile>>raw_val; 
   do //read only pixels that are greater than -200 
   { 
    infile>>wght; 
    infile>>x_val; 
    infile>>y_val; 
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    infile>>z_val; 
    pix_mass=raw_val*0.998303+999.6;//adjust pixel value 
to always be positive 
    mass+=pix_mass*wght;//add mass to aggregate mass, do 
not multiply by volume since this just cancels out 
    xmass+=pix_mass*x_val*wght; 
    ymass+=pix_mass*y_val*wght; 
    zmass+=pix_mass*z_val*wght;  
    infile>>raw_val; 
   }while(raw_val >= -850); 
   x_com=xmass/mass; 
   y_com=ymass/mass; 
   z_com=zmass/mass; 
   cout<<"The center of mass for "<<ROI<<" is located 
at:"<<endl; 
   cout<<"("<<x_com<<", "<<y_com<<", "<<z_com<<")"<<endl; 
   while(stuff!="#"&&!infile.eof())//keep reading the rest of 
the values until you reach the next header 
    infile>>stuff; 
   mass=0; 
   xmass=0; 
   ymass=0; 
   zmass=0; 
 
  } 
    
 } 
 
} 
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APPENDIX B: TESTING FIXTURE 

The testing of human cadaver spines under a simulated body load necessitated the design 

and manufacture of a custom testing apparatus. It was important that the design be simple yet 

able to support up to 100 lbs.  The primary design criteria were that the sacrum angle could 

easily be adjusted and that a vertical load of up to 70 lbs could be applied to the superior 

endplate of the T12 vertebra.   It was important that the test fixture be resistant to rusting and be 

easily cleanable; Aluminum was used for all components of the base structure.  The testing 

platform with adjustable-angle mounting plate is shown below.  Also found below are the 

dimensions of all parts of the platform.  The slots in the top plate allow for passage of the cables 

that connect from the T12 plate to deadweight hanging below. 
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 One of the greater challenges of this research was determining the best method to apply 

an individual weight to each vertebral body.  An important consideration was to be able to apply 

weight at a single point in space corresponding to the segmental masses calculated from the CT 

images.  Additionally, because of the compact structure of the lumbar spine, the weights needed 

to be as compact as possible.  After exploring a number of options, the design shown below was 

decided upon.  The bracket is made up of a number of stainless steel sheet metal strips that are 

spot welded together.  The stainless steel provided a sufficient amount of ductility to be formed 

into the desired shape while maintaining resistance to oxidation.  The lead weights shown in the 

image below are comprised of a series of thin lead plates.  These plates ranged in weight from 2 

grams to 5 grams and were formed by melting lead shot and forming it in a rectangular mold.  

Plates were added to each side until the total weight of the bracket and weights reached the 

desired segmental mass weight.  The weights were then adjusted within the slots in the bracket to 

be at the CM location from Table 3-3.  The weighted bracket was affixed to the vertebral body 

with three 1-1/4” wood screws: two on the sides and one through the front.  Care was taken to 

align the bracket parallel to the superior endplate of the vertebra.  The weights are extended out 

laterally from the vertebra so that the deadweight cable could pass bilaterally down along the 

spine and through the slots in the top plate.  . 
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The dimensions for the L3 bracket are shown below.  In general the dimensions for all 

other brackets are similar, with the exception of the arms that attach to the vertebral body: 

smaller for the cranial vertebrae and larger for the caudal vertebrae 

  


